15MH423E		Mobile RoboticsLTP300						
Co-requisite:	Nil							
Prerequisite:	Nil							
Data Book / Codes/Standards	Nil							
Course Category	Р	Professional Elective	Mechatronics	Engin	eerin	ıg		
Course designed by	Depart	ment of Mechatronics Engineering						
Approval	32 nd A	cademic Council Meeting held on 23.07.2016.						

 Purpose
 To impart knowledge in the field of mobile robotics with special emphasis on autonomous wheeled mobile Robots.

Ins	structional Objectives			Student Outcomes					
At 1	At the end of the course, student will be able to								
1.	rmulate the challenges in developing autonomous mobile Robots.								
2.	Abstract kinematic control of wheeled mobile Robots.		e						
3.	Understand the challenges involved in sensory perception for mobile Robots.	а							
4.	Develop localization and path planning algorithms for mobile Robot navigation.	а		j					
5.	Comprehend the challenges and configurations of legged, aerial and underwater mobile Robots.	a	e	j	k				

Session	Description of Topics		C-D-I-O	IOs	Reference
	Unit I: Introduction to Autonomous Mobile Robots	6			
1.	Introduction to autonomous mobile Robots, problems to be addressed.	1	С	1	1
2.	Locomotion aspects of mobile Robots.	1	С	1	1
3.	Introduction to wheeled mobile Robots, applications, wheel types and different configurations of wheeled Robots.	2	C,D	1	1
4.	Maneuverability, controllability and stability of mobile Robots	1	С	1	1
5.	Case studies: Wheeled locomotion.	1	С	1	1
	Unit II: Kinematics of Wheeled Mobile Robot	9			
6.	Kinematic constraints of a fixed standard wheel and omni- directional wheel.	1	С	2	1
7.	Forward kinematic model of a differential drive Robot and three wheel omni-directional Robot.	2	С	2	1
8.	Mobility analysis.	1	С	1,2	1
9.	Holonomic and non-holonomic configurations, workspace and trajectory considerations.	1	C,D	2	1
10.	State space modeling and control of a differential drive Robot.	1	С	2	1
11.	Go to goal control, cruise controllers.	2	С	2	1,3
12.	Wheel odometry.	1	С	2,3	1
	Unit III: Perception for Mobile Robots	7			
13.	Sensors for mobile Robots, definitions, classification and characteristics applicable to mobile Robots.	1	С	1,3	1
14.	Physical and computational attributes of sensors applicable to mobile Robots: Sensor noise and sensor aliasing.	1	С	1,3	1
15.	GPS and heading sensors: Principles, challenges and interpretation.	1	C,D	3	1
16.	Light and sound based ranging: Principles, challenges and interpretation.	1	C,D	3	1
17.	Vision for mobile Robots.	1	C,D	3	1
18.	Multi-sensor combinations: Types, sensor fusion algorithms.	2	С	1,3	1,2
	Unit IV: Localization and Path Planning	10			
19.	Introduction to localization.	1	С	4	1
20.	Brief representations and considerations.	1	С	4	1
21.	Map representations and considerations.	1	С	4	1
22.	Markov localization.	1	C,D	4	1
23.	Kalman filtering: Introduction, Kalman filter for localization.	2	C,D	4	1
24.	Path planning, challenges, types and algorithms types.	1	C,D	4	1

Mechatronics Engineering 2015-16

Session	Description of Topics		C-D-I-O	IOs	Reference
25.	D*, distance transform.		С	4	1,2
26.	Obstacle avoidance, bug algorithms, vector field histogram approach.		С	4	1,2
	Unit V: Legged, Aerial and Underwater Robots	9			
27.	Legged Robots: Configurations and challenges.	1	C,D	1,5	2
28.	Modeling and motion control of four legged mobile Robot and biped Robot.		С	5	2,4
29.	Aerial Robots: Configurations, challenges and applications.	1	C,D	1,5	2,4
30.	Modeling of a quadrotor aerial vehicle, motion control of a quadrotor aerial vehicle.	2	С	5	2,4
31.	Underwater Robots: Configurations, challenges and applications	1	C,D	1,4	2
32.	Comparison of modelling approach for aerial and underwater robots, Modeling and control of a propeller based underwater vehicle.	2	С	4	2
	Assessment	4			
33.	Cycle test-I	1			
34.	Cycle test-II	2			
35.	Surprise test/Assignment and Quiz	1			
	Total contact hours		4	5	

Learning Resources

Sl. No.	Text Book
1.	Siegwart., Nourbakhsh, "Introduction to Autonomous Mobile Robots", MIT Press, 2011.
	Reference Books/Other Reading Materials
2.	Bruno Siciliano, OussamaKhatib, "Handbook of Robotics", Springer, 2008.
3.	Choset, "Principles of Robot Motion: Theory, Algorithm and Implementations", MIT Press, 2005.
4.	Perter Corke, "Robotics, Vision and Control", Springer, 2011.

Course nature				Theory					
Assessment Method (Weightage 100%)									
In-semester	Assessment too	I Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage: 5									