

FACULTY OF ENGINEERING AND TECHNOLOGY

CURRICULUM, PRE- REQUISITES/ CO-REQUISITES CHART, AND SYLLABUS FOR B.TECH UNDER CHOICE BASED FLEXIBLE CREDIT SYSTEM REGULATIONS 2015

(For students admitted from 2015-16 onwards)

Specialization: B.Tech Civil Engineering (Full Time) Offering Department: Civil Engineering

Approved in the 32nd Academic Council Meeting held on 23rd July 2016

CONTENTS

COURSE	TOPIC / COURSE TITLE	PAGE NUMBER
CODE	Student Outcomes And C-D-I-O	iv
	Abbreviations	v
	Curriculum – Core Courses	vi
	Curriculum – Elective Courses	viii
	Listing of Courses	ix
	Pre/Co Requisites List	viii
	Pre/Co Requisites Flow Chart	XIII
	Year – I, Semester - I	
15CE101	Basic Civil Engineering	1
	Year – I, Semester - II	
15AR101	Principles Of Architecture	3
15CE102	Elements Of Building Material Science	5
	Year – II, Semester - I	
15CE201	Engineering Geology	7
15CE203	Mechanics Of Solids	9
15CE203L	Strength Of Materials Laboratory	12
15CE205	Fluid Mechanics	14
15CE207	Engineering Surveying	16
15CE207L	Surveying Laboratory	18
15CE209	Construction Technology	20
	Year – II Semester - II	
15CE202	Strength Of Materials	22
15CE204	Structural Design (Masonry& RCC)	25
15CE206L	Concrete And Highway Laboratory	27
15CE208	Applied Hydraulic Engineering	30
15CE210	Geomatics Surveying	32
15CE210L	Geomatics Surveying Laboratory And Survey Camp	34
	Year – III, Semester - I	
15CE301	Structural Analysis	36
15CE303	Structural Design -Steel	39
15CE305L	Hydraulic Engineering Laboratory	41
15CE309	Geotechnical Engineering-I	42
15CE309L	Geotechnical Engineering Laboratory	44
15CE311	Highway Engineering	45
15CE390L	Industrial Training I (Training To Be Undergone After Year II, Semester II)	48
	Year – III, Semester - II	
15CE302	Computer Aided Structural Analysis	49
15CE302L	Computer Aided Structural Analysis And Testing Laboratory	52
15CE304	Hydrology And Irrigation Engineering Design	54
15CE306M	Water Supply And Environmental Engineering And Design	57
15CE308	Geotechnical Engineering-II	59
15CE310	Principles Of Construction Management	61
15CE312L	Computer Applications In Construction Management	63
	Year – IV, Semester - I	
15CE401	Advanced RCC Design	65
15CE403	Advanced Steel Design	67
15CE405	Sanitary Engineering And Design	69
15CE407L	Environmental Engineering Laboratory	71
15CE409	Quantity Surveying And Valuation	72

COURSE CODE	TOPIC / COURSE TITLE	PAGE NUMBER
15CE391L	Industrial Training II (Training To Be Undergone After Year III,	74
15CE275I	Semester II)	75
15CE3/5L	Minor Project	/5
15CE40CI	Year – IV, Semester - II	76
15CE496L	Major Project	/0
-	Department Floring I (To be offered in II Semester of III Veer)	70
	Transportation Engineering	19
15CE350E	Railway Airport And Harbour Engineering	80
15CE351E	Traffic Engineering	83
15CE357E	Pavement Engineering	85
15CE352E	Pavement Construction Technology	87
15CE354E	Pavement Management System	89
15CE355E	SCE354E Tavement Wanagement System 5CE355E Transportation Systems Planning	
15CE355E	Intelligent Transportation Systems	93
15CE357E	Urban Planning And Sustainable Development	95
IJCLJJ/L	Department Elective II (To be offered In I Semester of IV Vear)	97
	Water Resources Engineering)1
15CE421E	Advanced Hydrology	98
15CE421E	Advanced Irrigation Engineering Design	100
15CE422E	Groundwater Engineering	100
15CE423E	Coastal Engineering And Management	105
15CE424E	Hydropower Engineering	103
15CL+20L	Department Elective III(To be offered In I Semester of IV Vear)	107
	Construction Engineering And Management	10)
15CE430E	Advanced Construction Techniques	110
15CE431E	Construction Resource Planning And Management	113
15CE432E	Advanced Construction Project Management	115
	Department Elective IV (To be offered In II Semester of IV Year)	118
	Geotechnical Engineering	
15CE440E	Advanced Geotechnical Engineering	119
15CE441E	Ground Improvement Techniques	121
15CE442E	Structures On Expansive Soil	123
15CE443E	Introduction To Soil Dynamics And Machine Foundation	125
15CE444E	Environmental Geotechnology	127
	Structural Engineering	
15CE450E	Computer Analysis Of Structures	129
15CE451E	Computer Aided Design Of Structures	131
15CE452E	Tall Buildings	134
15CE453E	Storage And Industrial Structures	137
15CE454E	Advanced Prestressed Concrete Structures	139
15CE455E	Advanced Structural Design	141
15CE456E	Analysis And Design Of Structural Sandwich Panels	144
15CE457E	Bridge Engineering	146
15CE458E	Forensic Civil Engineering	148
15CE459E	Design Of Machine Foundation	150
15CE460E	Repair And Rehabilitation Of Structures	152
15CE461E	Design Of Earthquake Resistant Structures	154
15CE462E	Concrete Technology	157
15CE463E	Special Concretes	160
15CE464E	Concrete Testing Techniques	163
15CE465E	Design Of Steel-Concrete Composite Structures	166

COURSE	TOPIC / COURSE TITLE	PAGE NUMBER
	Department Elective V (To be offered In II Semester of IV Year)	168
	GIS And Remote Sensing	
15CE321E	Geographical Information System	169
15CE322E	Remote Sensing And Its Applications	171
15CE323E	Photogrammetry Surveying	174
15CE324E	Elements Of Cartography	176
15CE325E	GPS Surveying	178
	Engineering Geology	
15CE329E	Rock Mechanics	180
	Environmental Engineering	
15CE331E	Industrial Pollution Prevention And Cleaner Production	183
15CE332E	Ground Water Contamination And Quality Monitoring And Modeling	185
15CE333E	Air Quality Monitoring And Modeling	187
15CE334E	Advanced Waste Water Treatment Design	189
15CE335E	Design Of Environmental Engineering Structures	191
15CE336E	Noise Pollution Control	193
15CE337E	Marine Pollution Monitoring And Modeling	195
15CE338E	Mass Transfer In Air-Water-Soil Interaction	197
15CE339E	Instrumental Monitoring Of Environment And Modeling	199
15CE340E	RS And GIS For Environmental Engineering	201
15CE341E	Air Pollution Control And Management	203
15CE342E	Environmental Health Engineering	205
15CE343E	Environmental Impact Assessment	207
15CE344E	Industrial Waste Management	209
15CE345E	Municipal Solid Waste Management	211

STUDENT OUTCOMES

The curriculum and syllabus for B.Tech programs (2015) conform to outcome based teaching learning process. In general, ELEVEN STUDENT OUTCOMES (a-k) have been identified and the curriculum and syllabus have been structured in such a way that each of the courses meets one or more of these outcomes. Student outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the skills, knowledge, and behaviors that students acquire as they progress through the program. Further each course in the program spells out clear instructional objectives which are mapped to the student outcomes.

The student outcomes are:

- (a) an ability to apply knowledge of mathematics, science, and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (**k**) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

C-D-I-O INITIATIVE

The CDIO Initiative (CDIO is a trademarked initialism for **Conceive** — **Design** — **Implement** — **Operate**) is an innovative educational framework for producing the next generation of engineers. The framework provides students with an education stressing engineering fundamentals set in the context of Conceiving — Designing — Implementing — Operating real-world systems and products. Throughout the world, CDIO Initiative collaborators have adopted CDIO as the framework of their curricular planning and outcome-based assessment.

In the syllabus, every topic has been classified under one or more of C-D-I-O so that students and faculty alike are clear about the scope of learning to take place under each one of the topics.

SYMBOLS AND ABBREVIATIONS

AR	 Architecture Courses
В	 Courses under Basic Science and Mathematics
BT	 Biotechnology Courses
C-D-I-O	 Conceive-Design-Implement-Operate
CE	 Civil Engineering Courses
CS	 Computer Science and Engineering Courses
СҮ	 Chemistry Courses
Dept.	 Department of Civil Engineering
E with course code	 Elective Courses
Ε	 Courses under Engineering Sciences
EC	 Electronics and Communication Engineering Courses
EE	 Electrical and Electronics Engineering Courses
G	 Courses under Arts and Humanities
IOs	 Instructional Objectives
L	 Laboratory / Project / Industrial Training Courses
LE	 Language Courses
L-T-P-C	 L- Lecture Hours Per Week
	T- Tutorial Hours Per Week
	P- Practical Hours Per Week
	C- Credits for a Course
Μ	 Courses with Multi Disciplinary Content
MA	 Mathematics Courses
ME	 Mechanical Engineering Courses
NC	 NCC- National Cadet Corps
NS	 NSS – National Service Scheme
Р	 Professional Core Courses
PD	 Personality Development Courses
РҮ	 Physics Courses
SO/SOs	 Student Outcomes (a-k)
SP	 NSO- National Sports Organization
YG	 Yoga Course

FACULTY OF ENGINEERING AND TECHNOLOGY, SRM UNIVERSITY

DEPARTMENT OF CIVIL ENGINEERING

B.TECH CIVIL ENGINEERING CHOICE BASED FLEXIBLE CREDIT SYSTEM (CBFCS) Curriculum Under Regulations 2015 (For students admitted from 2015-16 onwards)

L	Lecture H	rs / Week	T Tutorial Hours / Week	С	Credi	its		P Practical Hours / Week	L	L	abor	ato	ry Course	E Elective Courses J Theory jointly		y with Lab	vith Lab M Course with Multidisciplinary conten			ntent				
ry	- y - of Is						Year	1											Year 2					
ego	egor e % edit		1st Semester		_			2nd Semester			_			1st Semester	.	<u> </u>	-			2nd Semester			—	
Cat	Cate wise Cr	Course Code	Course Title	L	T I	P C	Course Code	Course Title	L	Т	P	c	Course Code	Course Title	L	Т	P	C	Course Code	Course Title	L	TI	2	2
zh		15LE101	English	2	0 (0 2	15LE102	Value Education	2	0	0	2	15LE201E	German Language I	T				15LE207E	German Language II			T	
es-(15PD101	Soft Skills I	1	1 (0 1	15PD102	Soft Skills II	1	1	0	1	15LE202E	French Language I	1				15LE208E	French Language II				
miti							15NC101	NCC- National Cadet Corps					15LE203E	Japanese Language I	2	0	0	2	15LE209E	Japanese Language II	2	0 0) 2	2
uma	8.33%						15NS101	NSS- National Service Scheme					15LE204E	Korean Language I					15LE210E	Korean Language II				
k Hı						_	15SP101	NSO- National Sports Organization	0	0	1	1	15LE205E	Chinese Language I	_		_		15LE211E	Chinese Language II			_	_
ts &							15YG101	Yoga					15PD201	Quantitative Aptitude & Logical	1	1	0	1	15PD202	Verbal Aptitude	1	1 () 1	L
Ar	15		Total	3	1 (0 3		Total	3	1	1	4		Total	3	1	0	3		Total	3	1 () 3	3
								Advanced Calculus And Complex						Fourier Series, Partial Differential									-	
В		15MA101	Calculus And Solid Geometry	3	1 (0 4	15MA102	Analysis	3	1	0	4	15MA202	Equations And Their Applications	4	0	0	4	15MA206	Numerical Methods	4	0 () 4	÷
- Sə	21.110/	15PY101	Physics	3	0 (0 3	15PY102L	Materials Science	2	0	2	3	15CE201	Engineering Geology	3	0	0	3						
enc	21.11%	15PY101L	Physics Laboratory	0	0	2 1	15CY102	Principles Of Environmental Science	2	0	0	2												
Sci		15CY101	Chemistry	3	0 (0 3																	\perp	
asic		15CY101L	Chemistry Laboratory	0	0 2	2 1									_		_						+	
В	20	15BT101	Biology For Engineers	2	0 (0 2		T. (. 1	7	1	2	0		T. (.1	7	0	0	7		T 1	4	0 (_
	38	-	lotal	11	1 4	4 14	+	lotal	/	1	2	9		lotal	/	0	0	/		lotal	4	0 () 4	
gu 🖽		15CE101	Basic Civil Engineering	2	0 (0 2	15ME101	Basic Mechanical Engineering	2	0	0	2			_									
eerii ces -	8.33%	15EE101	Basic Electrical Engineering	2	0 ($\frac{0}{2}$	15EC101	Basic Electronics Engineering	2	0	0	2			-		+						+	
iene		15CS1011	Engineering Graphics	1	0 4	$\frac{4}{2}$	15ME104L	Workshop Practice	0	0	3	2			+	┢	╋					_	+	_
En Sc	15	IJCSIUIL	Total	6	0 0	5 9		Total	4	0	3	6		Total	0	0	0	0		Total	0	0 ())
							15AR101	Principles Of Architecture	2	0	0	2	15CE203	Mechanics Of Solids	2	2	0	3	15CE202	Strength Of Materials	2	2 (2
					-	+	15/101	Elements Of Building Material	2	0		2	1501205	Weenames of Bonds		2			1501202	Structural Design (Masonrv&	2	2 (+	
							15CE102	Science	2	0	0	2	15CE203L	Strength Of Materials Laboratory	0	0	4	2	15CE204	RCC)	2	2 () 3	i .
4	41 (70)												15CE205	Fluid Mechanics	3	0	0	3	15CE206L	Concrete And Highway	0	0 4	1 2	,
Core	41.6/%				_	_						+								Laboratory		_	┿	_
- I													15CE207	Engineering Surveying	3	0	0	3	15CE208	Applied Hydraulic Engineering	3	0 () 3	;
iona												╈	15CE207I	Surveying Laboratory	0	0	4	2	15CE210	Coomption Surveying	3	0 (2
fess					_						_	+	13CE207L		0	0	4	2	13CE210		5	0	<u>_</u>	_
													15CE209	Construction Technology	1	2	0	2	15CE210L	Geomatics Surveying Laboratory	0	0 4	4 2	2
				\vdash	+	+			╞┼┤		+	+			+	\vdash	+	+			┝╴┤	+	+	_
	75		Total	0	0 (0 0		Total	4	0	0	4		Total	9	4	8	15		Total	10	4 8	3 1	6
- ves	8 33%																							
-P	8.33%																						\Box	
E	15		Total	0	0 (0 0		Total	0	0	0	0		Total	0	0	0	0		Total	0	0 () ()
r/ in-																								
ina) uina) nsh	8.33%					_									_		_						+	
rro Sem nter	16		T. (.)	0	0 (T. (. 1	0	0	0	0		T. (.1	0	0				T 1	0	0 (_
	16		Total	0	0 0	0 0		Total	0	0	0	0		Total	0	0	0	0		Total	0	0 (
en ives	`				\rightarrow	_			\square		+	+			-	<u> </u>							+	_
Op Ject	(Total	0	0 1			Total		0	0			Total	0	0	0	0		Total	0	0 /	+	_
H	0		Total	0	0 0				0	0	0	0		Total	0	0	0	0		10(8)	0	0 (
Total	180		Contact hours	20 32	2 1	0 26		Contact hours	18	2	6 2	23		Total contact hours	19	5	8	25		Total Contact hours	17	5 8	<u>; 2</u> .	3
			Contact nours	1				Contact nours	40					i oun connect nours	134					rotal Contact nours	50			

CE-Engg&Tech-SRM-2015

FACULTY OF ENGINEERING AND TECHNOLOGY, SRM UNIVERSITY

DEPARTMENT OF CIVIL ENGINEERING

Theory jo Tutorial Hours / Week Laboratory Course Lecture Hours / Week Т C Credits P Practical Hrs / Week J L L E Elective Courses Year 3 Year 4 1st Semester 2nd Semester 1st Semester Course L Course Code Course Title L T P С Course Code Course Title Т Р **Course Title** LT P C С Code Communication & Reasoning Quantitative Aptitude & Logical 15PD301 0 15PD302 1 1 0 Skills Reasoning –II Total 1 1 0 1 Total 1 1 0 1 Total 0 0 0 0 0 4 0 15MA301 Probability and Statistics 4 Total 4 0 0 4 Total 0 0 0 0 Total 0 0 0 Total 0 0 0 0 Total 0 0 0 0 Total 0 0 0 15CE302 Computer Aided Structural Analysis 2 2 0 3 15CE401 Advanced RCC Design 15CE301 2 2 0 3 Structural Analysis 2 0 Computer Aided Structural Analysis And 2 2 0 3 15CE302L 0 0 2 1 15CE403 1 2 2 15CE303 Structural Design -Steel Advanced Steel Design 0 Testing Laboratory Hydrology And Irrigation Engineering 0 0 4 2 15CE304 2 0 2 15CE405 2 2 15CE305L Hydraulic Engineering Laboratory Sanitary Engineering And Design 0 Design Water Supply And Environmental 15CE309 2 2 0 15CE306M 2 0 2 15CE407L 0 0 2 Geotechnical Engineering-1 3 Environmental Engineering. Laboratory Engineering And Design Geotechnical Engineering 15CE309L 0 0 4 15CE308 2 2 0 3 15CE409 Quantity Surveying And Valuation 1 2 0 2 Geotechnical Engineering-II 2 Laboratory 2 2 2 0 Principles Of Construction Management 1 0 15CE311 Highway Engineering 3 15CE310 2 Computer Applications In Construction 0 4 0 15CE312L 2 Management Total 8 8 8 16 Total 8 9 6 15 Total 4 8 2 9 Dept Elective-I 3 0 0 3 Dept Elective-II 3 0 0 3 Dept Elective-III 3 0 0 3 0 0 0 0 3 0 0 3 Total Total Total 6 0 0 6 Industrial Training (To be done Industrial Training II (Training To Be Undergone 0 15CE390L 0 0 5CE391L 1 0 after Year II, Semester II) After Year III, Semester II) Minor Project 15CE375L 0 0 4 0 0 1 1 Total Total 0 0 0 0 Total 0 0 5 $3 0 0 \overline{3}$ 3 0 0 3 Open Elective I Open Elective II As per list / as taken by the student As per list / as taken by the student Total 3 0 0 3 Total 3 0 0 3 0 0 0 Total 0 10 8 7 18 16 9 9 25 15 10 6 22 **Total Contact hours Total contact hours** 31 **Total contact hours** 25 34

B.TECH CIVIL ENGINEERING CHOICE BASED FLEXIBLE CREDIT SYSTEM (CBFCS) Curriculum Under Regulations 2015 (For students admitted from 2015-16 onwards)

CE-Engg&Tech-SRM-2015

ointly with Lab	M Course with Multidiscip	inar	y co	onte	nt
4					
	2nd Semester				
Course Code	Course Title	L	Т	Р	С
	Total	0	0	0	0
	Total	0	0	0	0
	Total	0	0	0	0
	Total	0	0	0	0
	Total	0	0	0	0
	Dept Elective-IV	3	0	0	3
	Dept Elective-V	3	0	0	3
	Total	6	0	0	6
15CE496L	Major Project	0	0	24	12
			-		
	Total	0	0	24	12
	T-4-1	0	0	0	0
	1 otal	0	0	0	0
	Total contact hours	6 30	0	24	18
			_		

	B.Tech CIVIL Engineering (Regulation List of Electives	s 2015)				B.Tech CIVIL Engineering (Regulations 2 List of Electives	2015)				DEPARTMENT ELECTIVE V (To be offered in IV year, second semester)			0	0	3	Π
COURSE CODE	Course Title	L	Т	Р	С	COURSE CODE	Course Title	L	Т	Р	с		GIS AND REMOTE SENSING					Γ
	Department Elective I (To Be Offered In III Year, Second Semester)	3	0	0	3		Department Elective IV (To Be Offered In IV Year, Second Semester)	3	0	0	3	15CE321E	Geographical Information System	3	0	0	3	Π
	Transportation Engineering						Geotechnical Engineering	1				15CE322E	Remote Sensing And Its Applications	3	0	0	3	П
15CE350E	Railway, Airport And Harbour Engineering	3	0	0	3	15CE440E	Advanced Geotechnical Engineering	3	0	0	3	15CE323E	Photogrammetry Surveying	3	0	0	3	Π
15CE351E	Traffic Engineering	3	0	0	3	15CE441E	Ground Improvement Techniques	3	0	0	3	15CE324E	Elements Of Cartography	3	0	0	3	П
15CE352E	Pavement Engineering	3	0	0	3	15CE442E	Structures On Expansive Soil	3	0	0	3	15CE325E	GPS Surveying	3	0	0	3	Π
15CE353E	Pavement Construction Technology	3	0	0	3	15CE443E	Introduction To Soil Dynamics And Machine Foundation	3	0	0	3		Engineering Geology					Π
15CE354E	Pavement Management System	3	0	0	3	15CE444E	Environmental Geotechnology	3	0	0	3	15CE329E	CE329E Rock Mechanics			0	3	Π
15CE355E	Transportation Systems Planning	3	0	0	3		Structural Engineering						Environmental Engineering					Π
15CE356E	Intelligent Transportation Systems	3	0	0	3	15CE450E	Computer Analysis Of Structures	3	0	0	3	15CE331E	Industrial Pollution Prevention And Cleaner Production	3	0	0	3	Γ
15CE357E	Urban Planning And Sustainable Development	3	0	0	3	15CE451E	Computer Aided Design Of Structures	3	0	0	3	15CE332E	Ground Water Contamination And Quality Monitoring And Modeling	3	0	0	3	
	Department Elective II (To Be Offered In IV Year, First Semester)	3	0	0	3	15CE452E	Tall Buildings	3	0	0	3	15CE333E	Air Quality Monitoring And Modeling	3	0	0	3	
	Water Resources Engineering					15CE453E	Storage And Industrial Structures	3	0	0	3	15CE334E	Advanced Waste Water Treatment Design		0	0	3	Γ
15CE421E	Advanced Hydrology	3	0	0	3	15CE454E	Advanced Prestressed Concrete Structures	3	0	0	3	15CE335E	Design Of Environmental Engineering Structures	3	0	0	3	
15CE422E	Advanced Irrigation Engineering Design	3	0	0	3	15CE455E	Advanced Structural Design	3	0	0	3	15CE336E	Noise Pollution Control	3	0	0	3	
15CE423E	Groundwater Engineering	3	0	0	3	15CE456E	Analysis And Design Of Strucutral Sandwich Panels	3	0	0	3	15CE337E	Marine Pollution Monitoring And Modeling	3	0	0	3	
15CE424 E	Coastal Engineering And Management	3	0	0	3	15CE457E	Bridge Engineering	3	0	0	3	15CE338E	Mass Transfer In Air-Water-Soil Interaction	3	0	0	3	
						15CE458E	Forensic Civil Engineering	3	0	0	3	15CE339E	Instrumental Monitoring Of Environment And Modeling	3	0	0	3	
15CE426E	Hydropower Engineering	3	0	0	3	15CE459E	Design Of Machine Foundation	3	0	0	3	15CE340E	RS And GIS For Environmental Engineering	3	0	0	3	
	Department Elective III (To Be Offered In IV Year, First Semester)	3	0	0	3	15CE460E	Repair And Rehabilitation Of Structures	3	0	0	3	15CE341E	Air Pollution Control And Management	3	0	0	3	
	Construction Engineering And Manage	ement			-	15CE461E	Design Of Earthquake Resistant Structures	3	0	0	3	15CE342E	Environmental Health Engineering	3	0	0	3	Π
15CE430E	Advanced Construction Techniques	3	0	0	3	15CE462E	Concrete Technology	3	0	0	3	15CE343E	Environmental Impact Assessment	3	0	0	3	Π
15CE431E	Construction Resource Planning And Management	3	0	0	3	15CE463E	Special Concretes	3	0	0	3	15CE344E	Industrial Waste Management	3	0	0	3	
15CE432E	Advanced Construction Project Management	3	0	0	3	15CE464E	Concrete Testing Techniques	3	0	0	3	15CE345E	Municipal Solid Waste Management	3	0	0	3	
						15CE465E	Design Of Steel-Concrete Composite Structures	3	0	0	3		SCHEME OF PROFESSIONAL ELECTIVE	S				
												Elective Group	SPECIALIZATION	Year	Sem	ester	Credit	t
	Regarding open electives, all core / elective											Ι	Transportation Engineering	III	I	I	3	
	courses can be listed / delisted every semester, under open electives based on the availability of											II	Water Resources Engineering	IV]	1	3	Π
	resources and demand											III	Construction Engineering And Management	IV]	1	3	
												IV	Geotechnical Engineering	IV	T	n	3	
													Structural Engineering	- 1		-	5	
												V	GIS And Remote Sensing					
													Engineering Geology	IV	I	I	3	
												Environmental Engineering					ļ	$\left \right $

COURSE CODE	TOPIC / COURSE TITLE	L	Т	Р	С
	Year – I, Semester - I				
15LE101	English	2	0	0	2
15PD101	Soft Skills I	1	1	0	1
15MA101	Calculus And Solid Geometry	3	1	0	4
15PY101	Physics	3	0	0	3
15PY101L	Physics Laboratory	0	0	2	1
15CY101	Chemistry	3	0	0	3
15CY101L	Chemistry Laboratory	0	0	2	1
15BT101	Biology For Engineers	2	0	0	2
15CE101	Basic Civil Engineering	2	0	0	2
15EE101	Basic Electrical Engineering	2	0	0	2
15ME105L	Engineering Graphics	1	0	4	3
15CS101L	Programming Laboratory	1	0	2	2
	Year – I, Semester - II				
15LE102	Value Education	2	0	0	2
15PD102	Soft Skills II	1	1	0	1
15NC101	NCC- National Cadet Corps	0	0	1	1
15NS101	NSS- National Service Scheme	0	0	1	1
15SP101	NSO- National Sports Organization	0	0	1	1
15YG101	Yoga	0	0	1	1
15MA102	Advanced Calculus And Complex Analysis	3	1	0	4
15PY102L	Materials Science	2	0	2	3
15CY102	Principles Of Environmental Science	2	0	0	2
15ME101	Basic Mechanical Engineering	2	0	0	2
15EC101	Basic Electronics Engineering	2	0	0	2
15ME104L	Workshop Practice	0	0	3	2
15AR101	Principles Of Architecture	2	0	0	2
15CE102	Elements Of Building Material Science	2	0	0	2
	Year – II, Semester - I				
15LE201E	German Language I	2	0	0	2
15LE202E	French Language I	2	0	0	2
15LE203E	Japanese Language I	2	0	0	2
15LE204E	Korean Language I	2	0	0	2
15LE205E	Chinese Language I	2	0	0	2
15PD201	Quantitative Aptitude & Logical Reasoning –I	1	1	0	1
15MA202	Fourier Series, Partial Differential Equations And Their	4	0	0	4
	Applications		-	-	
15CE201	Engineering Geology	3	0	0	3
15CE203	Mechanics Of Solids	2	2	0	3
15CE203L	Strength Of Materials Laboratory	0	0	4	2
15CE205	Fluid Mechanics	3	0	0	3
15CE207	Engineering Surveying	3	0	0	3
15CE207L	Surveying Laboratory	0	0	4	2
15CE209	Construction Technology	1	2	0	2
	Year – II Semester - II				
15LE207E	German Language II	2	0	0	2
15LE208E	French Language II	2	0	0	2
15LE209E	Japanese Language II	2	0	0	2
15LE210E	Korean Language II	2	0	0	2
15LE211E	Chinese Language II	2	0	0	2

LISTING OF COURSES

COURSE	TOPIC / COURSE TITLE	L	Т	Р	С
15PD202	Varbal Aptituda	1	1	0	1
15MA 206	Numerical Matheda	1	1	0	1
150F202	Strongth Of Materials	2	2	0	4
15CE202	Structural Design (Mesonry & PCC)	2	2	0	3
15CE204	Concrete And Highway Laboratory	0	0	4	2
15CE200L	Applied Hydraulic Engineering	3	0	4	2
15CE208	Geometrics Surveying	3	0	0	3
15CE210	Geometrics Surveying Laboratory And Survey Camp	0	0	4	2
15CE210E	Vear - III Semester - I	0	0	4	
15PD301	Communication and Reasoning Skills	1	1	0	1
15MA301	Probability and Statistics	1	0	0	1
150F301	Structural Analysis	2	2	0	4
15CE301	Structural Analysis	2	2	0	2
15CE305	Siluctular Design -Steel		2	4	2
15CE303L	Geotochnical Engineering L		2	4	2
15CE309	Geotechnical Engineering Laboratory		2	4	2
15CE309L	Ui shusu Engineering		2	4	2
15CE311	Industrial Training L (Training To Do Undergono After Voor II	2	2	0	3
ISCES90L	Somestor II)	0	0	1	1
	Open Elective I	3	0	0	3
	Voor III Somester II		0	0	5
1500202	Quantitative Antitude & Logical Bassening, II	1	1	0	1
15CE202	Computer Aided Structurel Analysis	2	2	0	2
15CE302	Computer Aided Structural Analysis	2	2	0	3
15CE302L	Undrology And Imigation Engineering Design	1	0	2	1
15CE304	Water Supply And Environmental Engineering Design	1	2	0	2
15CE300M	Costochnical Engineering II	2	2	0	2
15CE310	Detectmical Engineering-II Principles Of Construction Management	2	2 1	0	2
15CE310	Computer Applications In Construction Management	2	1	4	2
IJCE512L	Dept Elective I	2	0	4	2
	Open Elective I	3	0	0	3
	Voor IV Someter I		0	0	5
15CE401	Advanced PCC Design	1	2	0	2
15CE401	Advanced Steel Design	1	2	0	2
15CE405	Advanced Steel Design	1	2	0	2
15CE403	Environmental Engineering Laboratory	0	2	2	 1
15CE407L	Quantity Surveying And Valuation	1	2	2	2
1JCE409	Dent Elective II	2	2	0	2
	Dept Elective III	3	0	0	3
15CE3011	Industrial Training II (Training To Be Undergone After Vear III	5	0	0	5
IJCEJJIE	Semester II)	0	0	1	1
15CE375L	Minor Project	0	0	4	2
IJCLJ/JL	Vear _ IV Semester _ II	0	0	-	2
	Dent Elective-IV	3	0	0	3
	Dent Elective-V	3	0	0	3
15CF496I	Major Project	0	0	24	12
13014701	Flective Courses		0	<u> </u>	12
	Department Elective I(To be offered In II Semester of III				
	Vear)				
	Transportation Engineering	<u> </u>			
15CE350E	Railway Airport And Harbour Engineering	3	0	0	3
15CE351E	Traffic Engineering	3	0	0	3
130133115	Turne Digineering		v	v	5

COURSE	TOPIC / COURSE TITLE	L	Т	Р	С
CODE					
15CE352E	Pavement Engineering	3	0	0	3
15CE353E	Pavement Construction Technology	3	0	0	3
15CE354E	Pavement Management System	3	0	0	3
15CE355E	Transportation Systems Planning	3	0	0	3
15CE356E	Intelligent Transportation Systems	3	0	0	3
15CE357E	Urban Planning And Sustainable Development	3	0	0	3
	Department Elective II (To be offered In I Semester of IV				
	Year)				
	Water Resources Engineering				
15CE421E	Advanced Hydrology	3	0	0	3
15CE422E	Advanced Irrigation Engineering Design	3	0	0	3
15CE423E	Groundwater Engineering	3	0	0	3
15CE424E	Coastal Engineering And Management	3	0	0	3
15CE426E	Hydropower Engineering	3	0	0	3
	Department Elective III(To be offered In I Semester of IV				
	Year)				
15054005	Construction Engineering And Management		0	0	-
15CE430E	Advanced Construction Techniques	3	0	0	3
15CE431E	Construction Resource Planning And Management	3	0	0	3
15CE432E	Advanced Construction Project Management	3	0	0	3
	Department Elective IV (To be offered In II Semester of IV				
	Year)				
15004400	Geotechnical Engineering		0	0	-
15CE440E	Advanced Geotechnical Engineering	3	0	0	3
15CE441E	Ground Improvement Techniques	3	0	0	3
15CE442E	Structures On Expansive Soil		0	0	3
15CE443E	Introduction To Soil Dynamics And Machine Foundation	3	0	0	3
15CE444E	Environmental Geotechnology	3	0	0	3
	Structural Engineering	-			
15CE450E	Computer Analysis Of Structures	3	0	0	3
15CE451E	Computer Aided Design Of Structures	3	0	0	3
15CE452E	Tall Buildings	3	0	0	3
15CE453E	Storage And Industrial Structures	3	0	0	3
15CE454E	Advanced Prestressed Concrete Structures	3	0	0	3
15CE455E	Advanced Structural Design	3	0	0	3
15CE456E	Analysis And Design Of Structural Sandwich Panels	3	0	0	3
15CE457E	Bridge Engineering	3	0	0	3
15CE458E	Forensic Civil Engineering	3	0	0	3
15CE459E	Design Of Machine Foundation	3	0	0	3
15CE460E	Repair And Rehabilitation Of Structures	3	0	0	3
15CE461E	Design Of Earthquake Resistant Structures	3	0	0	3
15CE462E	Concrete Technology	3	0	0	3
15CE463E	Special Concretes	3	0	0	3
15CE464E	Concrete Testing Techniques	3	0	0	3
15CE465E	Design Of Steel-Concrete Composite Structures	3	0	0	3
	Department Elective V (To be offered In II Semester of IV				
	Year)		0		~
15002010	GIS And Remote Sensing	3	0	0	3
15CE32IE	Geographical Information System	3	0	0	3
15CE322E	Remote Sensing And Its Applications	3	0	0	3
15CE323E	Photogrammetry Surveying	3	0	0	3
15CE324E	Elements Of Cartography	3	0	0	3

COURSE CODE	TOPIC / COURSE TITLE	L	Т	Р	С
15CE325E	GPS Surveying	3	0	0	3
	Engineering Geology				
15CE329E	Rock Mechanics	3	0	0	3
	Environmental Engineering				
15CE331E	Industrial Pollution Prevention And Cleaner Production	3	0	0	3
15CE332E	Ground Water Contamination And Quality Monitoring And Modeling	3	0	0	3
15CE333E	Air Quality Monitoring And Modeling	3	0	0	3
15CE334E	Advanced Waste Water Treatment Design	3	0	0	3
15CE335E	Design Of Environmental Engineering Structures	3	0	0	3
15CE336E	Noise Pollution Control	3	0	0	3
15CE337E	Marine Pollution Monitoring And Modeling	3	0	0	3
15CE338E	Mass Transfer In Air-Water-Soil Interaction	3	0	0	3
15CE339E	Instrumental Monitoring Of Environment And Modeling	3	0	0	3
15CE340E	RS And GIS For Environmental Engineering	3	0	0	3
15CE341E	Air Pollution Control And Management	3	0	0	3
15CE342E	Environmental Health Engineering	3	0	0	3
15CE343E	Environmental Impact Assessment	3	0	0	3
15CE344E	Industrial Waste Management	3	0	0	3
15CE345E	Municipal Solid Waste Management	3	0	0	3

Note : Students who join I Semester of II Year under lateral entry scheme have to undergo additional bridge courses in Mathematics, Physics and Chemistry as prescribed by the respective departments.

B. Tech Civil Engineering 2015-16 Curriculum

Prerequisites/Co requisites

Course		Prerequisite	Co requisite
Code	Course Title	courses	courses
	Core Courses		
15CE202	Strength of Materials	15CE203	Nil
15CE208	Applied Hydraulic Engineering	15CE205	Nil
15CE204	Structural Design (Masonry& RCC)	15CE203	Nil
15CE210	Geomatics Surveying	15CE207	Nil
15CE210L	Geomatics Surveying Laboratory And Survey Camp	15CE207L	Nil
15CE301	Structural Analysis	15CE203	Nil
15CE303	Structural Design -Steel	15CE203	Nil
15CE305L	Hydraulic Engineering Laboratory	Nil	15CE208
15CE309L	Geotechnical Engineering Laboratory	Nil	15CE309
15CE302	Computer Aided Structural Analysis	15CE301	Nil
15CE302L	Computer Aided Structural Analysis and Testing Laboratory	Nil	15CE302
15CE308	Geotechnical Engineering-II	15CE309	Nil
15CE312L	Computer Applications In Construction Management	Nil	15CE310
15CE401	Advanced RCC Design	15CE204	Nil
15CE403	Advanced Steel Design	15CE303	Nil
15CE407L	Environmental Engineering Laboratory	15CE306M	Nil
	Department Elective -I		
	Transportation Engineering		
15CE350E	Railway, Airport and Harbour Engineering	15CE311	Nil
15CE351E	Traffic Engineering	15CE311	Nil
15CE352E	Pavement Engineering	15CE311	Nil
15CE353E	Pavement Construction Technology	15CE311	Nil
15CE354E	Pavement Management System	15CE311	Nil
15CE355E	Transportation Systems Planning	15CE311	Nil
15CE356E	Intelligent Transportation Systems	15CE311	Nil
15CE357E	Urban Planning and Sustainable Development	15CE311	Nil

	Department Elective -I		
	Water Resources Engineering		
15CE421E	Advanced Hydrology	15CE304	Nil
15CE422E	Advanced Irrigation Engineering Design	15CE304	Nil
15CE423E	Groundwater Engineering	15CE304	Nil
15CE426E	Hydropower Engineering	15CE208	Nil
	Department Elective -IV		
	Geotechnical Engineering		
15CE440E	Advanced Geotechnical Engineering	15CE308	Nil
15CE441E	Ground Improvement Techniques	15CE308	Nil
15CE442E	Structures on Expansive Soil	15CE308	Nil
15CE443E	Introduction to Soil Dynamics and Machine Foundation	15CE308	Nil
15CE444E	Environmental Geotechnology	15CE309	Nil
	Structural Engineering		
15CE450E	Computer Analysis of Structures	15CE301	Nil
15CE451E	Computer Aided Design of Structures	15CE302	Nil
15CE453E	Storage And Industrial Structures	15CE204	Nil
15CE455E	Advanced Structural Design	15CE204	Nil
15CE456E	Analysis And Design of Sandwich Panels	15CE202	Nil
15CE457E	Bridge Engineering	15CE204	Nil
15CE458E	Forensic Civil Engineering	15CE203	Nil
15CE465E	Design of Steel-Concrete Composite Structures	15CE303	Nil

B.Tech CIVIL ENGINEERING

PREREQUISITE / CO REQUISITE FLOW CHART FOR CORE DEPARTMENTAL COURSES

Curriculum and Syllabus - 2005-16

B.Tech CIVIL ENGINEERING

PREREQUISITE / CO REQUISITE FLOW CHART FOR DEPARTMENTAL ELECTIVE COURSES

(Student shall take only one course from each of the five groups of electives thus earning a total of 15 credits for the departmental elective courses))

Curriculum and Syllabus – 2005-16

Elective I- Transportation Engineering – Year – III,

Elective II- Water Resources Engineering – Year – IV,

Elective III- Construction Engineering and Management – Year – IV,

Elective IV- Geotechnical Engineering – Year – IV, Semester- II

Elective IV- Structural Engineering – Year – IV,

15CE329E

Elective V- Rock Mechanics – Year – IV,

Elective V- Environmental Engineering – Year – IV,

Courses which have Legend prerequisites __►

YEAR I, SEMESTER I

15CE101	BASIC CIVIL ENGINEERING	L 2	T 0	P 0	C 2	
Co-requisite:	NIL					
Prerequisite:	NIL					
Data Book /	NII					
Codes/Standards	INIL					
Course Category	E ENGINEERING SCIENCES					
Course designed by Department of Civil Engineering						
Approval	32 nd Academic Council Meeting, 2016					

PURPO	To get exposed to the glimpses of Civil Engineering	To get exposed to the glimpses of Civil Engineering topics that are essential for an				
IUNIO	Engineer.					
INSTRU	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES					
At the end of the course, student will be able to						
1.	Know about different materials used in civil engineering					
	structures in general a					
2.	Understand the engineering properties of material related	Inderstand the engineering properties of material related to a				
	the design of civil engineering structural members					
3.	Know about terms, definitions and uses related	to a				
	multifarious building components.					
4.	Learn the importance of surveying and the transportation	on a				
	systems					
5.	Comprehend rudiments of engineering related to dams, a					
	water supply, and sewage disposal					

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I- BUILDING MATERIALS	6			
1.	Introduction to Civil Engineering and Civil Engineering materials	1	С	1	1-3
2.	Composition, classifications, properties, and uses of stones	1	С	1	1-3
3.	Classification of rocks, quarrying, dressing, properties and uses	1	С	1	1-3
4.	Properties and uses of timber and ply wood	1	С	1	1-3
5.	Types, grades, properties and uses of cement and grade, designation, properties and uses of concrete	1	С	1	1-3
6.	Types of steel, mild, medium and hard, properties and uses and market forms	1	С	1	1-3
	UNIT II- MATERIAL PROPERTIES	6			
7.	Types of stresses and strains and Hook's law	1	С	2	1-3
8.	Three modulii of elasticity and Poisson's ratio and their interrelationship, simple problems	1	C, I	2	1-3
9.	Determination of centre of gravity of plane areas	1	C, I	2	1-3
10.	Concept of Moment of inertia, parallel and perpendicular axis theorems and the concept of radius of gyration	1	С	2	1-3
11.	Determination of moment of inertias of rectangular, circular, I, T and channel sections	2	C, I	2	1-3
	UNIT III -BUILDING COMPONENTS	6			
12.	Factors to be considered for site selection for buildings	1	С	3	1-3
13.	Classification of buildings and their components	1	C	3	1-3
14.	cement concrete, marble terrazzo, ceramic tiled floorings including the names of popular commercial brands	2	С	3	1-3

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
15.	Requirements of roofing in buildings and corresponding classification of building roofs – RCC flat roofs and sheet roofings for pitched steel buildings.	2	С	3	1-3
	UNIT IV-SURVEYING AND TRANSPORTATION	6			
16.	Objectives, classification and principles of surveying	1	С	4	1-3
17.	Classification of transportation of and cross section and components of road	1	С	4	1-3
18.	Railway – cross section and components of permanent way and its functions	1	С	4	1-3
19.	Water way, docks and harbor their classifications and components.	2	С	4	1-3
20.	Components of bridge	1	С	4	1-3
	UNIT V- WATER SUPPLY AND SEWAGE DISPOSAL	6			
21.	Purpose of dams, types of dam, selection of site for the dams, and the cross section of gravity of dams	2	С	5	1-3
22.	Objectives of water supply, estimation of quantity of water, sources of water, standards of drinking water and distribution system	2	С	5	1-3
23.	Classification of sewage , technical terms and definitions, septic tank its components and functions.	2	С	5	1-3
Total contact hours				30	

LEA	LEARNING RESOURCES			
Sl. No.	TEXT BOOKS			
1.	Raju .K.V.B, Ravichandran .P.T, "Basics of Civil Engineering", Ayyappa Publications, Chennai, 2012.			
2.	Rangwala .S.C," Engineering Material"s, Charotar Publishing House, Anand, 2012.			
	REFERENCE BOOKS/OTHER READING MATERIAL			
3.	Punmia, B.C., Ashok Kumar Jain, Arun Kumar Jain, "Basic Civil Engineering", Laxmi			
	Publications, First edition (2003), New Delhi			

Course nat	ure			Theory			
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 50%				50%			

YEAR I, SEMESTER II

15AR101	PRINCIPLES OF ARCHITECTURE	L	Т	Р	С
		2	0	0	2
Co- requisite	NIL				
Pre requisite	NIL				
Databook/ codes/ Standards	des/ NIL				
Course Category	PROFESSIONAL CORE				
Course designed by Department of Architecture					
Approval	32 nd Meeting of Academic Council, 2016				

PU	URPOSE To instill a broad understanding about architecture in students of civil engineering				
		INSTRUCTIONAL OBJECTIVES	ST	UDENT OUTCO	MES
1.	At the end	l of the course, student will be able to			
2.	Get aware developm	ness about design criteria, building bye laws, ent control rules & zoning regulations.	a	c	
3.	Get an int imparting	roduction to the basic architectural principles & knowledge about building	a	j	
4.	Get an exp functional	posure to the basic architectural principles in planning	j		
5.	Acquire 1	knowledge about building services .	h		

Session	Description of topic	Contact hours	C- D-I- O	IOs	Reference
	UNIT 1-PLANNING ASPECTS & REGULATIONS	10			
1	Building types & design criteria	1	С	1	1,2,3
2	Space standards for residential	1	С	1	1,2,3
3	Space standards for commercial	2	С	1	1,2,3
4	Space standards for institutional categories	2	С	1	1,2,3
5	Building bye laws applicable for approval by the local governing body.	2	C, I	1	1,2,3
6	Development control rules for Chennai metropolitan area.	2	C, I	1	1,2,3
	UNIT II - ARCHITECTURAL PRINCIPLES	10		2,3	1,2,3
7	Introduction to architecture	1	С	2,3	1,2,3
8	Elements of architecture	3	С	2,3	1,2,3
9	Primary forms - organizing principles -	1	C	2,3	1,2,3
10	Proportion, scale, balance	2	С	2,3	1,2,3
11	Symmetry, hierarchy, axis	2	С	2,3	1,2,3
12	Building examples from historical & contemporary architecture.	1	С	2,3	1,2,3
	UNIT III - BUILDING SERVICES	10			1,2,3
13	Integration of services in buildings	1	С	4,5	1,2,3
14	Water supply & plumbing layout for a residential building	2	C, I	4	1,2,3,4

15	Basic components of the electrical system for a residence - typical electrical layout diagram.	2	C,I	4	1,2,3,4
16	Elevators & escalators - planning & installation	3	C,I	4	1,2,3,4
17	Lay out of external services -water supply	1	С	4	1,2,3,4
18	Sewage disposal-electrical cabling.	1	С		1,2,3,4
TOTAL CONTACT HOURS 30		30			

LEARNI	LEARNING RESOURCES			
SL.NO	TEXT BOOKS			
1	Francis .D.K Ching- "Architecture: Form Space & Order" Van Nastrand Reinhold, 1996			
2	Vaidyanathan .G, Kulasekaran .I, Sathishkumar .G, "Building planning & construction companion", Edifice Institute of Building services publication,2002			
REFERF	REFERENCES			
3	Joseph De chiara& John Callendar – "Time saver standards for building types", III Edition - Mc Graw Hill, 1990			
4	National Building Code, "Bureau of Indian Standars", New Delhi, 2005			

Course nature				Theory	7		
Assessment Method (Weightage 100%)							
	Assessment	Cycle	Cycle	Cycle Test	Surprise	Ouia	Tatal
In-semester	tool	test I	test II	III	Test	Quiz	Total
	Weightage	10%	15%	15%	5%	5%	50%
			Enc	l semester exa	mination V	Veightage :	50%

15CE102	ELEMENTS OF RUILDING MATERIAL SCIENCE			L	Т	Р	С
15CE102	E	LEWIEN IS OF BUILDING WAT	ENIAL SCIENCE	2	0	0	2
Co-requisite:	NI	NIL					
Prerequisite:	NI	L					
Data Book /	NI	NII					
Codes/Standards	111	L					
Course Category	D	DROFESSIONAL CODE	CONSTRUCTION				
Course Category P PROFESSIONAL CORE MANAGEMENT							
Course designed by	Department of Civil Engineering						
Approval	32	32 nd Academic Council Meeting, 2016					

PU	RPOSE	To develop knowledge of conventional and new	w materials of construction.			
IN	STRUCTIO	ONAL OBJECTIVES	STUDENT OUTCOMES			
At	the end of th	he course, student will be able				
1.	To learn th	ne manufacturing process, types, applications				
	and testing	g procedures for materials used for load	а			
	bearing pu	rpose				
2.	To know a	bout materials that is used for protection and				
	functional purpose e					
3.	To impart	knowledge about basis of recent paradigms,	k			
	and new m	naterials	K			

Session	Description of Topic	Contact hours	C- D- I-O	IOs	Reference
	UNIT I -BASIC LOAD BEARING MATERIALS	6			
1.	Conventional Materials: Stones: classification of rocks – quarrying – dressing	2	С	3	1,2,3
2.	Properties and uses of stones – tests for stones. Bricks: composition – manufacture – four operations – classification and uses	2	С	3	1,2,3
3.	Timber: classification of trees	1	C,O	3	1,2,3
4.	Structure of tree – methods – wood product – uses.	1	С	3	1,2,3
	UNIT II: -ADVANCED LOAD BEARING MATERIALS	6			
5.	Cement: Introduction – ingredients – manufacture – dry and wet process – types of cement	2	C,I	1,3	2,3
6.	Properties – uses – tests for cement. Mortar: functions – requirements – types – properties – uses – tests on mortar.	1	С	1,3	2,3,4
7.	Steel: introduction – types – properties – uses – market forms. Concrete: Ingredients – functions – w/c ratio – grades – admixture	2	С	1,3	2,3
8.	Test on concrete – properties – uses. RCC: Characteristics – elements - advantages – disadvantage	1	С	1,3	2,3,4
	UNIT III: - SPECIAL CONSTRUCTION MATERIALS	6			
9.	Prestressed concrete – types – properties – uses – merits and demerits. Ferro cement – advantages – uses	1	C	1,3	2,3,4
10.	Fibre reinforced concrete – types of fibres – steel fibres – SFRC – properties – applications.	1	C,I	1,3	2,3
11.	Lightweight concrete – types. High density concrete, High strength concrete	2	С,О	1,3	2,3
12.	Advantages – applications, High performance concrete – properties	2	C	1,3	1,2,3
	UNIT IV: NON LOAD BEARING MATERIALS	6			
13.	Paints: Functions – constituents – characteristics – selection – types of paints – defects	2	C	2,3	2,3
14.	Varnishes: Elements – properties – types. Distempers:	2	С	2,3	1,2,3

Session	Description of Topic	Contact hours	C- D- I-O	IOs	Reference
	composition – properties.				
	Asbestos: Properties – uses – asbestos cements				
15.	products. Glass: Constituents - composition -	1	С	2,3	2,3
	classification – properties –market form – uses				
16	Plastic: constituents - classification - properties -	1	C	22	122
10.	uses.	1	C	2,5	1,2,5
	UNIT V: RECENT CONSTRUCTION	6			
	MATERIALS	U			
17	Reactive powder concrete – properties, Geopolymer	2	CO	3	2356
17.	concrete – advantages	2	0,0	5	2,3,3,0
18	Blended cement concrete – use of mineral admixtures	1	C	3	234
10.	 properties, Self health monitoring concrete 	1	C	5	2,3,7
10	Bacterial concrete, Roller compacted concrete - uses,	2	С	3	235
19.	Self-compacting concrete – properties – advantages	2	C	5	2,3,3
20.	Ready mixed concrete – advantages.	1	С	3	5, 6, 7
	Total contact hours			30	

LEARNING RESOURCES Sl.No. **TEXT BOOKS** Varghese .P.C, "Building Materials", Prentice Hall India, 2010. 1 Raju .K.V.B, Annadurai .R and Ravichandran.P.T, "Construction Materials", Ayyappaa 2 Publications, Chennai, 2012 **REFERENCE BOOKS/OTHER READING MATERIAL** 3. Surendra Singh, "Building Materials", Vikas Publishing Company, New Delhi, 1996. 4. Rangwala .S.C, "Engineering Materials", Charotor Publishing House, New Delhi, 2012. 5. "Lecture Notes on Special Concretes, Special Concrete," Department of Civil Engineering, SRM Engineering College, Kattankulathur 2007. 6. Shetty .M.S, "Concrete Technology", S.Chand and Company, New Delhi, 2010 7. Gurucharan Singh, "Building Construction and Materials", Standard Book House, Delhi, 1988 8. P.Purushothama Raj, "Building Construction Material and Techniques", Pearson India Education services, - 2016.

Course nat	Course nature Theory						
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5% 5% 5%		50%
				End semester	examination	Weightage:	50%

YEAR II, SEMESTER I

15CE201		ENGINEERING GEOLOGY					C 3
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL						
Course Category	В	BASIC SCIENCE					
Course designed by	Dep	artment of Civil Engineering					
Approval	32 nd	Academic Council Meeting, 2016					

PU	PURPOSE To understand the basics and application of engineering geology technology						
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOM					COM	ES	
At t	the end of the course, student will be able						
1.	To study the origin, development and ultimate fate of	f a	d	e	h	k	
	various surface features of the earth						
2.	To understand the basic building units of which the soli	1 a	d	e	h	k	
	crust of the earth						
3.	To understand the nature of geographic distribution of rock	s a	d	e	h	k	
	and engineering properties of rock on the earth						
4.	To understand the nature of geological structures and the	r a	d	e	h	k	
	importance on the civil engineering structures						
5.	To know the importance of geology in civil engineerin	g a	d	e	h	k	
	practices						

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I GENERAL GEOLOGY	9			
1.	Fundamentals of Geology	1	C D	1	1,2
2.	Earth Structure - Lithosphere	1	С	1	1,2
3.	Scope of Geology in Engineering	1	C,D	1	1,2
4.	Internal structure of the earth Composition	1	C,D	1	1,2
5.	External Agencies Weathering, Geological work of Wind	1	C,D	1	1,2
6.	Geological work of River,	1	C,D	1	1,2
7.	Geological work of Sea and Landslide	1	C,D	1	1,2
8.	Internal Agencies - Earthquake, Plate Tectonics	1	C,D	1	1,2
9.	Geological work of Ground Water	1	C,D	1	1,2
	UNIT II: MINERALS OF THE EARTH'S	9			
10	Rock Forming Minerals	1	CD	2	12
11	Physical Properties of Minerals	2	C D	2	1.2
12.	Quartz group	1	C.D	2	1,2
13.	Feldspar group	1	C.D	2	1.2
14.	Mica - Calcite	1	C,D	2	1.2
15.	Clay Minerals and its importance	1	C,D	2	1,2,3
16.	Indian resource of Coal	1	C,D	2	1,2,3
17.	Indian resource of Petroleum	1	C,D	2	1,2,3
	UNIT III - ROCKS OF THE EARTH'S CRUST	9			
18.	Introduction to Rocks and their study - Rock Cycle	1	C,D	3	1,2
19.	Igneous Rocks	1	C,D,I	3	1,2,4
20.	Sedimentary Rocks	1	C,D	3	1,2,4
21.	Metamorphic Rocks	1	C,D	3	1,2,4
22.	Engineering Properties, Uses and Indian Occurrence of the Igneous rocks - Granite,	1	C,I	3	1,2,4

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	Diorite				
23.	Engineering Properties, Uses and Indian Occurrence of the Igneous rocks -, Dolerite, Pegmatite, Basalt	1	C,I	3	1,2,4
24.	Engineering Properties, Uses and Indian Occurrence of the Sedimentary rocks- Shale, Sandstone, Limestone	1	C,I	3	1,2,4
25.	Engineering Properties, Uses and Indian Occurrence of the Sedimentary rocks-, Breccia and Conglomerate	1	C,I	3	1,2,4
26.	Engineering Properties, Uses and Indian Occurrence of the Metamorphic rocks Gneiss, Schist, Slate, Quartzite and Marble	1	C,I	3	1,2,4
	UNIT IV - STRUCTURAL FEATURES OF ROCKS	9			
27.	Introduction - Terminology in Structural Geology	1	С	4	1,2,5
28.	Outcrop - Geological Map - Clinometer	2	D,I	4	1,2,5
29.	Geological Structures - Folds	2	D,I	4	1,2,5
30.	Geological Structures - Fault	2	D,I	4	1,2,5
31.	Geological Structures - Joints	1	D,I	4	1,2,5
32.	Engineering Considerations involves Structures.	1	D,I	4	1,2,5
	UNIT V - GEOLOGY FOR ENGINEERING PROJECTS	9			
33.	Geological Investigations-Direct and Indirect Methods	1	C,D,I	5	1
34.	Geophysical Investigations–Electrical and Resistivity Survey,	1	C,D	5	1
35.	Seismic Investigation, Gravitational techniques,	1	C,D	5	1
36.	Remote Sensing Techniques	1	C,D	5	1
37.	Geological Considerations for Dam Reservoirs	1	C,D	5	1
38.	Geological Considerations for Tunnels and Road Cuts	1	C,D	5	1
39.	Practice in Geology - Demonstration for Clinometer	1	C,D,I	5	1
40.	Geological Maps	1	C,D,I	5	1
41.	Identification of Crystals, Minerals and Rocks	1	C,D,I	5	1
	Total contact hours		4	15	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Garg .S.K, "Physical and Engineering Geology", Khanna Publication, New Delhi, 1999.
2.	Parbin Singh, "Engineering and General Geology", Katson Publication House, 2010.
	REFERENCE BOOKS/OTHER READING MATERIAL
2	Maruthesha Reddy .M.T, "Engineering Geology Practical", New Age International Pvt Ltd,
5.	2003
4.	Legeet, "Geology and Engineering", McGraw Hill Book Company, 1998.
5.	Blyth, "Geology for Engineers", ELBS, 1995

Course nature				Theory				
Assessment Method (Weight age 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle II	Test I	Surprise Test	Quiz	Total
semester	Weight age	10%	15%	159	% 5%		5%	50%
	End semester examination Weight age : 5						50%	

15CE203 MECHANICS OF SOLIDS		L	Т	Р	С
15CE205	MECHANICS OF SOLIDS	2	2	0	3
Co-requisite:	NIL				
Prerequisite:	NIL				
Data Book /	NII				
Codes/Standards	NIL				
Course Category	P PROFESSIONAL CORE STRUCTURAL EN	IGIN	EER	ING	
Course designed by	Department of Civil Engineering				
Approval	32 nd Academic Council Meeting, 2016				

PU	PURPOSE To know the basics of solid mechanics. To understand the concepts of mechanics of structures To understand the behaviour, determine the internal forces and analyse the stresses of various structural elements under action of different types of forces.						
IN	STRUCTI	ONAL OBJECTIVES	STUDENT OUT	COMES			
At	the end of t	he course, student will be able to					
1. Resolution of forces and to comprehend free body diagrams; a e							
	determina	tion of stresses and strains					
2.	2. Analyse the state of stress (two and three dimensional) and a e						
	evaluate t	he principal stresses and principal planes by analytical					
	and graph	ical treatment					
3.	Determina	ation of centre of gravity for plane areas and solids;	а	e			
	determination of the moment of inertia of plane areas and mass						
	moment of area of solids.						
4.	Study the behaviour of determinate beams and examine the a e						
	internal forces, stresses induced and learn the theory of torsion						
	and stresses developed in solid, hollow shafts and helical springs						
5.	Analyse a	and determine the internal forces in pin jointed plane	a	e			
	trusses by	various methods					

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I- BASICS OF MECHANICS, STRESS, STRAIN AND DEFORMATION OF SOLIDS	15			
1.	Vectors, Concept of forces, Concept of particle and rigid body, Non-concurrent and parallel forces in a plane.	2	С	1	1,2,5,6
2.	Moment of force and Varignon's theorem	2	С	1	1,2,5,6
3.	Free body diagram-conditions of equilibrium, Principle of virtual work, equivalent force system	2	С	1	1,2,5,6
4.	Rigid bodies and deformable solids, tension, compression and shear stresses	2	С	1	1-6
5.	Longitudinal strain, Lateral strain, Poisson's ratio and Volumetric strain	2	С	1	1-6
6.	Deformation of simple and compound bars, Elastic constants	3	С	1	1-6
7.	Composite sections and Thermal stresses.	2	C,I	1	1-6
	UNIT II- ANALYSIS OF STATE OF STRESS	10			
8.	Two Dimensional Stresses on inclined planes and Combined stresses	2	С	2	3,4
9.	Principal stresses and Principal planes	3	С	2	3,4
10.	Mohr's circle of stress	1	С	2	3,4
11.	Spherical and Deviatric components of stress tensor	2	C	2	3,4
12.	Determination of Principal stresses and Principal planes	2	C, I	2	3,4
	UNIT III: CENTRE OF GRAVITY AND	10			

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	MOMENT OF INERTIA				
13.	Areas and volumes, Theorems of Pappus and Guldinus, Centroid of simple areas and volumes by integration, Centroid of composite areas	2	C, I	3	1-6
14.	Second and product moment of areas, radius of gyration, parallel axis and perpendicular axis theorems,	2	C, I	3	1-6
15.	Moment of Inertia of simple areas by integration	2	C, I	3	1-6
16.	Moment of inertia of composite areas	2	С, І	3	1-6
17.	Mass moment of inertia of thin plates and simple solids.	2	C, I	3	1-6
	UNIT IV: BENDING OF BEAMS AND TORSION OF SHAFTS				
18.	Beams, Types of Support and Types of load	1	C, I	4	3,4
19.	S.F and B.M in beams, Cantilevers and Simply supported beams with different types of loading	3	С, І	4	3,4
20.	S.F and B.M in Overhanging beams with different types of loading, Relationship between B.M and S.F.	1	C, I	4	3,4
21.	Theory of simple bending, Bending stresses, analysis of stresses, load carrying capacity and Proportioning of sections	2	C, I	4	3,4
22.	Shear stress distribution for various Cross sections, Shear flow, beams of uniform strength.	2	C, I	4	3,4
23.	Theory of pure torsion, Stresses and deformation in Circular solid and Hollow shafts	2	C, I	4	3,4
24.	Power transmitted by shafts and determination of stresses	2	C, I	4	3,4
25.	Stresses in helical springs, Deflection of springs	2	C, I	4	3,4
	UNIT V: ANALYSIS OF STATICALLY DETERMINATE PLANE TRUSSES	10			
26.	Stability and Equilibrium of plane frames, Types of Trusses, Perfect frames	2	C, I	5	3,4
27.	Analysis of forces in truss members, Method of joints	4	C, I	5	3,4
28.	Analysis of forces in truss members, Method of Sections	3	C, I	5	3,4
29.	Principles of Graphical Method for the analysis of trusses	1	C	5	3,4
	Total contact hours		·	60	•

LEARNI	NG RESOURCES
Sl. No.	TEXT BOOKS
1.	Punmia.B.C, Ashok Kumar Jain, Arun Kumar Jain, "Mechanics of Materials", Laxmi
	Publications (P) Ltd., 2003.
2.	Timoshenko.S.P and Gere.J.M, "Mechanics of Materials", A&C, Black 2 Ed. 1990.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Rajput.R. K, "Strength of Materials: Mechanics of Solids", Edition 4, S. Chand Limited,
	New Delhi, 2007.
4.	Ramamrutham.S, Narayan.R, "Strength Of Materials", Dhanpat Rai Publishing Company
	(P) Limited, 2008.

5.	Rajasekaran.S, "Engineering Mechanics: Statics And Dynamics", 3E, Vikas Publishing
	House Pvt Limited, 2009.
6.	Beer and Johnson, "Mechanics for Engineers, Statics and Dynamics", Mc Graw Hill Book
	Company, 1987.
7.	Dongre, A.P., "Strength of Material". Scitech publication India. 2nd Edition, August, 2014
8.	Bhavikatti, S.S., "Solid Mechanics", Vikas publishing -2010

Course natu	ure			Theory			
Assessment	Assessment Method (Weightage 100%)						
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :							50%

15CE203L	STRENGTH OF MATERIALS LABORATORY	L T P C 0 0 4 2
Co-requisite:	NIL	
Prerequisite:	NIL	
Data Book /	NII	
Codes/Standards	NIL	
Course Category	P PROFESSIONAL CORE STRUCTURAL	L ENGINEERING
Course designed by	Department of Civil Engineering	
Approval	32 nd Academic Council Meeting, 2016	

PU	PURPOSE To be exposed to testing of different materials under the action of various determine the characteristics experimentally.						
IN	INSTRUCTIONAL OBJECTIVES				STUDENT OUTCOMES		
At the end of the course, student will be able to							
1.	1. Learn the properties of different materials like steel, concrete, brick etc.,				k		
2.	Study the tests like t	a	b	k			
3.	Study the	non-destructive test on concrete cubes	а	b	k		

Sl.	Description of experiments	Contact	C-D-I-O	IOs	Reference
No		hours			
1.	Tension test on mild steel and H.T.S rods	6	0	1,2	1
	– under load control and displacement				
	control				
2.	Double shear test on mild steel rods	6	0	1,2	1,3
3.	Hardness test on metals like mild steel,	6	0	1,2	1
	brass, copper and aluminimum				
4.	Torsion test on mild steel rods	6	0	1,2	1
5.	Impact test on metal specimens - Charpy	6	0	1,2	1,5,6
	and Izod test				
6.	Compression tests on wood specimen,	6	0	1,2	1,2
	bricks & concrete cubes including				
	displacement control				
7.	Tests on helical springs	6	0	1,2	1
8.	Deflection test on steel, aluminimum and	6	0	1,2	1
	timber beams				
9.	Non Destructive Test on Concrete Cubes	6	0	1,2,3	1,4
	(Rebound Hammer and Ultrasonic Pulse				
	Velocity)				
10.	Flexure test on steel and timber beams	6	0	1,2	1
	with strain/deflection measurements				
	Total contact hours		60		

LEARN	LEARNING RESOURCES					
Sl.No.	REFERENCES					
1.	Laboratory Manual					
2.	IS:516-1987, "Methods of Test for Strength of Concrete," BIS, New Delhi.					
3.	IS:5242-1979, "Methods of Test for Determining Shear Strength of Metals," BIS, New Delhi.					
4.	IS:13311 (Part 2) -1992, "Non Destructive Test of Concrete - Methods of Test," BIS, New					
5.	IS:1598 -1977, "Method for Izod Impact Test for Metals," BIS, New Delhi.					
6.	IS:1757 – 1988, "Charpy Impact Test (V-Notch) on Metallic Material," BIS, New Delhi.					

Course nat	Course nature Practical							
Assessment	Assessment Method (Weightage 100%)							
In-	Assessment tool	Experiments	Record	MCQ/Quiz/Viva Voce	Model examination	Total		
semester	Weightage	40%	5%	5%	10%	60%		
End semester examination Weightage : 4						40%		

15CE205	FLUID MECHANICS				Т	Р	С
			3	0	0	3	
Co-requisite:	NII	L					
Prerequisite:	NII	L					
Data Book /	NII	ſ					
Codes/Standards	1911						
Course Category	р	PROFESSIONAL CORE	WATER RESOURC	CES			
Course Curegory	1	I KOI LISSIONAL CORL	ENGINEERING				
Course designed by	Dep	partment of Civil Engineering					
Approval	32 ⁿ	^d Academic Council Meeting, 20	16				

PU	URPOSE	The purpose of this course is to learn fundamental concepts in the field of fluid mechanics								
INS	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES									
At the	he end of the	e course, student will be able								
1.	To learn relationshi density, vi	the importance, application and inter- p of various properties of fluid like mass scosity, and surface tension.	а	е						
2.	To deterr surfaces i buoyancy	nine the forces on plane and curved n a fluid at rest and the concepts of and metacentre.	a	е						
3.	To study velocity a through Bernoulli'	the properties of a moving fluid like nd acceleration, and the forces on fluid the continuity equation, Euler's and s equations.	a	e						
4.	To study l and minor	aminar and turbulent flow in pipes, major losses in pipes.	а	е	k					
5.	To study t and model	the fundamentals of dimensional analysis studies.	a	е	k					

Session	Description of Topic	Contact hours	C- D- I-	IOs	Reference
	UNIT I -FLUID PROPERTIES	7	•		
1.	Importance and application of fluid mechanics	1	С	1	1-4
2.	Fluid properties – Density ,Specific weight, Specific volume, Specific Gravity– Viscosity- Newton's law of Viscosity -Kinematic Viscosity	3	C,I	1	1-5
3.	Surface Tension- Liquid droplet, Hollow bubble, Liquid jet, Capillarity – Capillary Rise and Fall	2	C,I	1	1-5
4.	Vapor Pressure - Compressibility and Bulk Modulus	1	C,I	1	1-5
	UNIT II – FLUID STATICS	9			
5.	Pascal' law – Law of Hydrostatics	1	C,I	2	1-5
6.	Forces on plane – Horizontal, Vertical and Inclined and Curved surfaces	5	C,I	2	1-5
7.	Buoyancy- Center of Buoyancy – Meta center – Meta centric Height	2	C,I	2	1-5
8.	Stability of floating and submerged bodies	1	C,I	2	1-5
	UNIT III – FLUID KINEMATICS AND FLUID DYNAMICS	10			
9.	Velocity and Acceleration – Local and Convective acceleration - Classification of flows – Continuity equation	3	C,I	3	1-5
10.	Stream, Streak and Path line – Velocity Potential function and Stream Function- Equipotential line -	3	C,I	3	1-4

	Flow net analysis				
11.	Control volume – Euler and Bernoulli's equation	3	C,I	3	1-5
12.	Free and Forced vortex motion.	1	С	3	1-4
	UNIT IV – FLOW THROUGH PIPES	11			
13.	Definition of boundary layer – Laminar and turbulent flows	1	С	4	1-4
14.	Reynold's experiment – Darcy-Weisbach equation – Moody diagram	2	C,I	4	1-4
15.	Friction factor – Major and Minor losses – HGL and TEL	4	CI	4	1-4
16.	Pipes in series and parallel – Equivalent pipe	2	C,I	4	1-4
17.	Pipe network- Hardy cross method Introduction to software to analyse water distribution modeling	2	C,I	4	1-4
	UNIT V – DIMENSIONAL AND MODEL ANALYSIS	8			
18.	Units and Dimensions - Dimensional homogeneity	2	C,I	5	1-4
19.	Rayleigh's method – Buckingham's Pi theorem	2	C,I	5	1-5
20.	Model Analysis -Hydraulic similitude – Dimensionless numbers -Model laws	3	C,I	5	1-4
21.	Model studies- Distorted and Undistorted	1	C,I	5	1-4
	Total contact hours			45	

LEAR	NING RESOURCES
Sl.No.	TEXT BOOKS
1.	Modi .P.N and.Seth .S.M, "Hydraulics and Fluid Mechanics", Standard Book House, 2001.
2.	Rajput .R.K, "Fluid Mechanics and Hydraulic Machines", S.Chand and Company Ltd., 2005
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Bansal .R.K, "Fluid Mechanics and Hydraulic Machines", Laxmi Publications, Ninth
	Edition, 2010
4.	Kumar .K.L, "Engineering Fluid Mechanics", Eurasia Publishing House, 2002
5.	http://nptel.ac.in/courses/105103095/1-101

Course nat	Course nature Theory										
Assessmen	Assessment Method (Weightage 100%)										
In	Assessment	Cycle	Cycle test	Cycle Test	Surprise	Ouiz	Total				
III-	tool	test I	II	III	Test	Quiz	Total				
semester	Weightage	10%	15%	15%	5%	5%	50%				
End semester examination Weightage :											

1500207	ENCINEEDING SUDVEVING			L	Т	Р	С
15CE207		EIGHVEEKING SORVETING					3
Co-requisite:	NII	_					
Prerequisite:	NII	_					
Data Book /	NII						
Codes/Standards	1111	_					
Course Category	Р	PROFESSIONAL CORE	GEOMATICS	ENGIN	EERI	NG	
Course designed by	Dep	partment of Civil Engineering					
Approval	32 ⁿ	^d Academic Council Meeting, 2016					

DUDDOSE		To measure the land area, to prepare map and to find out the elevation of a point for						
IC	IN USE	constructional purpose.						
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES							
At	the end of th	he course, student will be able						
1.	To measur	e the land area by chaining, compass and plane	0	0	:			
	table.		a	e	J			
2.	To measur	re the elevation of points using dumpy level.	а	b	j			
3.	To measur	e the height and distance by theodolite.	а	b	j			
4.	To know a	b	j					
5.	To know	about the curves, contouring and setting out works	0	h	;			
	for constru	action purposes.	ä	υ	J			

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
1.	UNIT I: CHAIN, COMPASS AND PLANE TABLE SURVEYING	11			
2.	Chain: Definition – Principles – Classification –	2	C,D	1,4	1,2
3.	Field and office work – Conventional signs	1	C,D	1,4	1,2
4.	Ranging and chaining – Reciprocal ranging – Setting perpendiculars- Well- conditioned triangles	1	C,D	1,4	1,2,
5.	Compass: Prismatic compass – Surveyor's compass	2	C,D	1,4	1,2,6,7
6.	Bearing systems and conversions – Local attraction	2	C,D	1,4	1,2,6,7
7.	Magnetic declination – dip – Traversing – Plotting – Adjustment of error	1	C,D	1,4	1,2,6,7
8.	Plane Table Surveying: Plane table instruments and accessories – merits and demerits – methods –	1	C,D	1	1,2,6,7
9.	Radiation-Intersection – Resection – Traversing.	1	C,D	1	1,2,6,7
10.	UNIT II: LEVELLING	9	C,D	1	1,2,3,4,
11.	Level line – Horizontal line	2	C, D	2	1,3,4,6
12.	Levels and Staves – Spirit level – sensitiveness – Bench marks	2	C, D	2	1,2,3,4,
13.	Temporary and Permanent adjustments	1	C, D	2	1,2,3,4,
14.	Fly and check levelling – Booking – Reduction	2	D,I	2	1,2,3,4,
15.	Curvature and Refraction	1	D,I	2	1,2,3,4,
16.	Reciprocal levelling – Longitudinal and Cross sections – Plotting	1	D,I	2	1,2,3,4,
17.	UNIT III: THEODOLITE SURVEYING	8			
18.	Theodolite – Vernier and Microptic – Description and uses.	2	C,D,I	4	1,2,5,7
19.	Temporary and Permanent adjustments of	2	C,D,I	4	1,2,5,7

Session	Description of Topic		C- D- I- O	IOs	Reference
	vernier transit				
20.	Horizontal angles – Heights and Distances – Traversing	1	C,D,I	4	1,2,5,7
21.	Closing error and distribution	1	C,D,I	4	1,2,5,7
22.	Trigonometric levelling	2	C,D,I	4	1,2,5,7
23.	UNIT IV: TACHEOMETRIC SURVEYING	8			
24.	Tacheometric Systems – Tangential, Stadia and subtense methods	2	С	4	3,6,7
25.	Stadia systems – horizontal and inclined sights – vertical and normal staff	3	D,I	4	3,6,7
26.	Fixed and movable hair – stadia constants, anallatic lens	2	D,I	4	3,6,7
27.	Subtense bar- Self reducing tacheometers	1	D,I	4	3,6,7
28.	UNIT V: ENGINEERING SURVEYS	9			
29.	Reconnaissance, Preliminary and location surveys for engineering projects – layout – setting out works-	3	D,I	4	3,4,5,7
30.	Curves- Curve ranging – Horizontal and Vertical curves – Simple curves –setting with chain and tapes, tangential angles by theodolite –	2	С	4,5	3,4,5,7
31.	compound and reverse curves – Transition curves	1	I, O	5	3,4,5,7
32.	Contours- Contouring – Methods – Characteristics and uses of contours –	2	С	5	3,4,5,7
33.	Plotting – Calculation of areas and volumes.	1	I, O	5	3,4,5,7
	Total contact hours		45		

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Kanetkar .T.P,"Surveying and Levelling," Vols. I and II, United Book Corporation, Pune,
	2007.
2.	Punmia .B.C,"Surveying," Vols. I ,Laxmi Publications,Seventeenth edition,2016.
3.	Chandra .A.M, "Plane Surveying and Higher Surveying", New Age International (P)
	Limited, Publishers, Chennai, 3 rd Edition 2015.
	REFERENCE BOOKS/OTHER READING MATERIAL
4.	Punmia .B.C,"Surveying," Vols. II, Laxmi Publications, Sixteenth edition,2016
5.	James M. Anderson and Edward M. Mikhail, "Introduction to Surveying", McGraw Hill
	Book Company, Third Edition, 2001.
6.	Clark.D, "Plane and Geodetic Surveying", Vols. I and II, C.B.S. Publishers and Distributors,
	Delhi, Seventh Edition, 2002.
7.	Arora .K.P, "Surveying", Volume 3, Standard Book House, 11th edition, 2013.

Course nat	Course nature Theory									
Assessment	Assessment Method (Weightage 100%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%			
End semester examination Weightage :										
15CE207I	SUDVEVINC LADODATODV				Т	Р	С			
-----------------	--------------------------------	--------------------------	----------	-----	---	---	---	--		
15CE207L	SUK	UKVETING LADUKATUKT				4	2			
Co-requisite:	NIL									
Prerequisite:	NIL									
Data Book /	Survey Laboratory	Survey Laboratory Manual								
Codes/Standards										
Course Category	P	PROFESSIONAL CORE	GEOMATIC	CS						
Course Culegory	1	I KOI ESSIONAL CORE	ENGINEER	ING						
Course designed	Department of Civil	Engineering								
by										
Approval	32 nd Academic Cour	ncil Meeting, 2016								

PURP	OSE To measure the land area, preparation of map, elev practical work.	To measure the land area, preparation of map, elevation of point, setting out works by practical work.						
INSTR	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES							
At the	end of the course, student will be able							
1.	To study the practical experiments in chaining, compass,	а	g	j	k			
	plane table.							
2.	To study the practical application of levelling and	а	g	j	k			
	theodolite.							
3.	To gain experience in handling surveying equipments	а	g	j	k			
	and help in Civil Engineering career.							

Sl.No.	Description of experiments	Contact hours	C- D- I- O	IOs	Reference
1.	Simple chain survey – calculation of area using cross staff-Perpendicular off Set	3	I- O	1, 3	1
2.	Simple chain survey – calculation of area using cross staff-oblique off Set	3	I- O	1, 3	1
3.	Simple chain survey—Measurement of Obstacle Length	3	I- O	1, 3	1
4.	Traversing - Measurement of bearing of survey lines by prismatic compass -Correction of Local Attraction	3	I- O	1, 3	1
5.	Traversing prismatic compassRunning closed and open compass traverse- Plotting and adjustments of traverse.	6	I- O	1, 3	1
6.	Plane table survey by Radiation methods.	3	I- O	1, 3	1
7.	Plane table survey by Intersection methods	3	I- O	1, 3	1
8.	Resection: Field solution of two point problems.	6	I- O	1, 3	1
9.	Resection: Field solution of three point problems (any one method).	3	I- O	1, 3	1
10.	Reduction of levels : (i) Height of collimation method	3	I- 0	2,3	1
11.	Reduction of levels : (ii) Rise and Fall method	3	I- O	2,3	1
12.	Theodolite - Measurement of horizontal angles by reiteration.	6	I- O	2,3	1
13.	Theodolite - Measurement of horizontal angles by repetition.	6	I- O	2,3	1
14.	Theodolite - Measurement of vertical angles and determination of height of an object.	3	I- O	2,3	1
15.	Heights and distances: Single plane method.	3	I- O	2,3	1

16.	Heights and distances : Double plane method	3	I- O	2,3	1
	Total contact hours	60			

LEARNING RESOURCESSl.No.REFERENCES 1.

Surveying Laboratory Manual

Course nature Practical								
Assessment Method (Weightage 100%)								
In-	Assessment tool	Experiments	Record	MCQ/Quiz/Viva Voce	Model examination	Total		
semester	Weightage	40%	5%	5%	10%	60%		
End semester examination Weightage : 40								

1505200	CONSTRUCTION TECHNOLOCY			L	Т	Р	С
15CE209		CONSTRUCTION TECHN	1	2	0	2	
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	NII						
Codes/Standards		NIL					
Course Category	р	CONSTRUCTION					
Course Calegory	P	PROFESSIONAL CORE	MANAGEMENT				
Course designed by	De	Department of Civil Engineering					
Approval	32 ⁿ	32 nd Academic Council Meeting, 2016					

PU	RPOSE	It is aimed to develop a thorough understanding of the basics of building components and its construction.						
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES							
At	At the end of the course, student will be able to							
1.	To build a	n awareness about the type of masonry, floors, and	а	d	k			
	roofs							
2. To understand types of doors and stairs and its uses				d	k			
3.	To know a	bout the supporting structures and building	а	d	k			
	amenities.							

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I - GENERAL	9			
1	Principles of Planning - Planning Regulations and laws	2	C,I	3	1,2,3
2	Housing Analysis- Role and Uses of Computers in Planning	2	C,I	3	1,2,3
3	Orientation of Building – Functional Requirements of a Building	3	C,I	3	1,2,3
4	Types of Plans.	2	C,I	3	1,2,3
	UNIT II: - MASONRY	9			
5	Masonry - Stone Masonry - Rubble and Ashlars Masonry -	3	C,I	1,3	2,3
6	Brick Masonry - Bond - Types of bonds - English and Flemish bond	2	C,I	1,3	2,3
7	Composite masonry – Stone masonry-Concrete Masonry- Reinforced masonry	2	C,I	1,3	2,3
8	Types of walls-Types of Partition walls.	2	C,I	1,3	2,3
	UNIT III: - FLOORS AND ROOFS	9			
9	Floors - Types of floor - Details of concrete and Terrazzo floors –Flooring Tiles with commercial Names	2	C,I	1,3	2,3
10	Roofs - Types of Roofs - Flat roofs – Sloping roofs - Shell Roofs - Roof coverings-AC sheets-GI sheets	2	C,I	1,3	2,3
11	Lintels -Classification of lintels- Arches - Classification of arches	2	C,I	1,3	2,3,5
12	Types of weathering courses- Damp proofing- Methods of damp proofing.	1	C,I	1,3	2,3,5
13	Anti Termite Treatment - Pre-Construction &Post Construction Termite Control	2	C,I	1,3	4
	UNIT IV: STAIRS AND SUPPORTING STRUCTURE	9			
14	Staircase - Types of staircase	2	C,I	2,3	2,3,5
15	Types of doors and windows - Wooden and metallic door frames-Ventilators	2	C,I	2,3	2,3,5

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
16	Fixtures and fastening for doors –PVC doors and windows	1	C,I	2,3	2,3,6
17	Shoring-Types-Underpinning-Types-Scaffolding- Components	2	C,I	2,3	2,3,6
18	Types-Form work- From work for columns, beam, stairs, walls	2	C,I	2,3	2,3,6
	UNIT V: - BUILDING AMENITIES	9			
19	Thermal insulation- Heat transference - Insulating material -	2	C,I	3	2,3,5
20	Method of application - Ventilation - Requirements - Types of ventilation - Air conditioning	2	C,I	3	2,3,5
21	Fire proof construction methods-Fire alarms	1	C,I	3	2,3,5
22	Principles of acoustical design of building- Sound insulation-materials and methods	2	C,I	3	1,2,3
23	Painting – surface area calculation	2	C,I	3	8
	Total contact hours			45	

ING RESOURCES
TEXT BOOKS
Varghese .P.C,"Building Construction", Prentice Hall India, 2011.
Arora and Bindra .S.P, "Building Construction, Planning Techniques and Method of
Construction", Dhampatrai sons, New Delhi, 2008.
Punmia B.K., Ashok Kumar Jain, Arn Kumar Jain, "Building Construction", Laxmi
Publications Pvt. Ltd., New Delhi, 2008.
IS 6313 (part 2) :2001, Code of practice for anti-termite measures in buildings. Bureau of
Indian standards, New Delhi.
REFERENCE BOOKS/OTHER READING MATERIAL
National Building Code, Bureau of Indian Standards, New Delhi, 2005.
Chudley. R, Construction Technology, ELBS Publishers, 2007.
Gurucharan Singh, "Building Construction and Materials", Standard Book House, Delhi,
2008.
Asian Paint Manual.
Purushothama Raj, P., "Building Construction Material and Techniques", Pearson India
Education services, - 2016.

Course nature Theory							
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :							50%

YEAR II, SEMESTER II

15CE202	STRENGTH OF MATERIALS	L T P C 2 2 0 3
Co-requisite:	NIL	
Prerequisite:	15CE203	
Data Book /	NII	
Codes/Standards	NIL	
Course Category	P PROFESSIONAL CORE STRUCTURA	L ENGINEERING
Course designed by	Department of Civil Engineering	
Approval	32 nd Academic Council Meeting, 2016	

DI	DDOGE	To study advanced concepts in strength of materials like deflection, energy principles,						
PU	RPOSE	stability criteria, theories of failure, unsymmetrical be	nding, benaviou	r of curved bars				
		and locating shear centre.	-					
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES							
At	the end of t	he course, student will be able to						
1.	Determine	the deflections in beams by various methods like	а	e				
	Macaulay	's, Area Moment method and conjugate beam method.						
2.	Analyse t	he structural elements by energy concepts and find	а	e				
	stresses ar	nd deflections.						
3.	Study Eul	er's, Rankine's and other theories of columns.	а	e				
4.	Study van	ious theories of failure in designing the structural	а	e				
	members.							
5.	5. Understand advanced concepts like unsymmetrical bending, a e							
	stresses in curved bars and locating shear centre and stresses in							
	thick cylin	iders.						

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I- DEFLECTION OF BEAMS	15			
1.	Determination of deflection curve	2	C,I	1	1-7
2.	Computation of Slopes and Deflections in Beams using Double Integration Method	2	C,I	1	1-7
3.	Computation of Slopes and Deflections in Beams using Macaulay's method	3	C,I	1	1-7
4.	Computation of Slopes and Deflections in Beams using Moment Area Method	2	C,I	1	1-7
5.	Computation of Slopes and Deflections in Beams using Conjugate Beam Method	3	C,I	1	1-7
6.	Effect of shear on Deflection and Deflection of leaf springs	3	C,D,I	1	1-7
	UNIT II- ENERGY PRINCIPLES	15			
7.	Concept of Strain energy and Strain energy density	1	C,I	2	2,3,7
8.	Strain energy due to Axial Load and Flexure	3	C,I	2	2,3,7
9.	Strain energy due to Shear and Torsion	2	C,I	2	2,3,7
10.	Concept of Strain energy and complimentary strain energy	1	C,I	2	2,3,7
11.	Castigliano's, Engessor's Energy theorems and Principle of virtual Work	2	C,I	2	2,3,7
12.	Application of Energy theorem for computing deflection in beams	2	C,I	2	2,3,7
13.	Application of Energy theorem for computing deflection in pin jointed plane frames and rigid plane frames (Determinate structures), Dummy Unit Load Method	2	C,I	2	2,3,7
14.	Williot Mohr's diagram and Maxwell's reciprocal theorem	2	C,I	2	2,3,7

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT III: COLUMNS	10			
15.	Euler's theory of long columns, Critical loads for Prismatic columns with different end conditions (Both the ends Hinged and Both the ends Fixed)	2	C,D,I	3	3,4,5
16.	Euler's theory of long columns, Critical loads for Prismatic columns with different end conditions (One End Fixed and the other end hinged, One End fixed and the other end free)	2	C,D,I	3	3,4,5
17.	Rankine Gordon's formula and Secant formula for eccentrically loaded long columns	3	C,D,I	3	3,4,5
18.	Combined bending and axial load, IS code recommendations	3	C,D,I	3	3,4,5
	UNIT IV: THEORIES OF FAILURE	10			
19.	Maximum Principal stress theory (Rankine's Theory) in application in analysis of stress	2	C,I	4	3
20.	Maximum shear stress theory (Guest's or Tresca's Theory) in application in analysis of stress	2	C,I	4	3
21.	Strain energy theory (Haigh Theory) in application in analysis of stress	2	C,I	4	3
22.	Distortion energy theory (Von Mises – Henky Theory) in application in analysis of stress	2	C,I	4	3
23.	Principal strain theory (St.Venant's Theory) in application in analysis of stress.	2	C,I	4	3
	UNIT V: SPECIAL TOPICS	10			
24.	Product Moment of Inertia and Principle Moment of Inertia	1	C,I	5	3,7
25.	Unsymmetrical bending of Beams of Symmetrical and Unsymmetrical Sections (Only angle sections)	2	C,I	5	3,7
26.	Box Sections and its importance, Analysis of Curved bars using Winkler Bach formula	2	C,I	5	3,7
27.	Concept of shear centre, Analysis of sections for Shear Centre simple problems on channel sections only	1	C,I	5	3,7
28.	Thin Cylinders and spherical Shells, Deformation of thin Shells, Stresses at a point in thin shells	2	C,I	5	3,7
29.	Analysis for Stresses for Thick cylinders and concept of shrink fit in compound cylinders	2 C,I 5 3,7		3,7	
	Total contact hours	60			

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Punmia .B.C, Ashok Kumar Jain, Arun Kumar Jain, "Mechanics of Materials", Laxmi
	Publications (P) Ltd., 2003.
2.	Timoshenko.S.P and Gere.J.M, "Mechanics of Materials", A&C, Black 2 Ed. 1990.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Rajput.R. K, "Strength of Materials: Mechanics of Solids", Edition 4, S. Chand Limited,
	New Delhi, 2007.
4.	Ramamrutham.S, Narayan.R, "Strength of Materials", Dhanpat Rai Publishing Company (P)
	Limited, 2008.
5.	Khurmi .R.S, "Strength Of Material", 23rd edition, S. Chand Limited, 2007, New Delhi.
6.	Beer and Johnson, "Mechanics for Engineers, Statics and Dynamics", Mc Graw Hill Book
	Company, 1987.
7.	Fred B. Seely, James Ohrea Smith, "Advanced Mechanics of Materials", Wiley, 1955.
8.	Bansal.R. K, "Strength of Materials", Revised Edition 4, Laxmi Publications (P) Limited,

	New Delhi, 2010.
9.	Dongre, A.P., "Strength of Material", Scitech publication India. 2 nd Edition, August, 2014

Course nat	Course nature Theory						
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :							50%

1500204	STRUCTURAL DESIGN	L	Т	Р	С
15CE204	(MASONRY AND RCC)	2	2	0	3
Co-requisite:	NIL				
Prerequisite:	15CE203				
Data Book /	IS . 456 2000 IS . 10262 2000 IS . 1005 1087 SB . 16 Deci	an C	horto		
Codes/Standards	13.430-2000, 13.10202-2009, 13.1903-1987, 3r = 10 Desi	gn C	nants	•	
Course Category	P PROFESSIONAL CORE STRUCTURAL EN	GIN	EER	ING	ŗ
Course designed by	Department of Civil Engineering				
Approval	32 nd Academic Council Meeting, 2016				

PURPOSE		To impart comprehensive knowledge on the design of masonry and reinforced concrete				
10	KI USE	structures.				
IN	STRUCTIO	ONAL OBJECTIVES	STUDENT O	UTCOMES		
At	the end of t	he course, student will be able to				
1.	Design m	asonry structures like walls, columns, and	а	с	e	
	foundation	n incorporating earthquake resistant features				
2.	Bring abo	out an understanding of the behaviour of	а	с	e	
	reinforced	l concrete , the design philosophies mix				
	design					
3.	Design RO	CC beams and slabs, columns and footings	а	с	e	
	including	structural design of piles and pile caps				
4.	Design I	RCC columns and footings including	а	с	e	
	structural design of piles and pile caps					
5.	Design R	CC footings including structural design of	a	с	e	
	piles and p	pile caps				

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
	UNIT I- MASONRY	10			
1.	Introduction to Strength of bricks and brick masonry	1	С	1	6,7
2.	Structural design of walls using BIS Codes and use of nomograms	3	C,D	1	6,7
3.	Design of Masonry piers and columns	2	C,D	1	6,7
4.	Design of footings for walls and columns	2	C,D	1	6,7
5.	Earthquake resistant features in masonry buildings as per BIS codes - Masonry retaining walls	2	C,D	1	6,7
	UNIT II- MIX DESIGN AND BEHAVIOUR OF RCC SECTIONS	12			
6.	Introduction to various Grades of Concrete and the concrete mix design of nominal mix and design mix as per BIS codes	3	C,D, I	2	8
7.	Theories of basic design concepts, working stress method, limit state method of design, behavior of RCC beams / slabs in flexure and shear, general codal recommendations for limit state method	2	C,D	2,3	1,2,4,5,6
8.	Limit state method of design of one-way slabs	3	C,D	2,3	1,2,4,5,6
9.	Limit state method of design of two-way slabs	2	C,D	2,3	1,2,4,5,6
10.	Limit state method of design continuous slabs and reinforcement detailing	2	C,D	2,3	1,2,4,5,6
	UNIT III: LIMIT STATE METHOD OF DESIGN OF BEAMS AND STAIRCASES	15			
11.	Concept of Transfer of load from slab to beam	1	C,D	2,3	2,5
12.	Limit state method of design of singly reinforced beams	3	C,D	2,3	1-5
13.	Limit state method of design of doubly reinforced beams	4	C,D	2,3	1-5
14.	Limit state method of design of Flanged beams	3	C,D	2,3	1-5
15.	Design of Staircases and use of SP34 for	4	C,D,	2,3	2,5

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
	reinforcement detailing		Ι		
	UNIT IV: LIMIT STATE METHOD OF DESIGN FOR COLUMNS	8			
16.	Limit state method of design of short and long columns, effective length of columns, braced and unbraced columns	1	C,D	2,3,4	1-5
17.	Design of Axially loaded short columns	1	C,D	2,3,4	1-5
18.	Uni-axial and biaxial bending of columns using interaction curve (SP16), shear in columns	3	C,D	2,3,4	1-5
19.	Design of Long Columns	2	C,D	2,3,4	1-5
20.	Ductile detaining of columns, reinforcement detailing at beam-column joints using SP34, extension of design of columns to piles	1	C,D, I	2,3,4	1-5
	UNIT V: LIMIT STATE METHOD OF DESIGN FOR FOUNDATIONS	15			
21.	Limit state method of design of isolated foundations axially loaded	3	C,D	4,5	1-5
22.	Limit state method of design of isolated foundations eccentrically loaded	2	C,D	4,5	1-5
23.	Transfer of forces at column - foundation junction	1	C,D	4,5	1-5
24.	Limit state method of design of combined foundations	4	C,D	4,5	2,5
25.	Pile foundation, pile caps (2/4 piles) and reinforcement detailing	5	C,D, I	4,5	2,5
	Total contact hours			60	

LEARNING RESOURCES

Sl.No.	TEXT BOOKS					
1.	Varghese.P.C, "Limit State Design Of Reinforced Concrete", 2nd Ed, PHI Learning Pvt. Ltd.,					
	2004.					
2.	Unnikrishna Pillai.S and Deavadas Menon, "Reinforced Concrete Design," Tata MacGraw					
	Hill Publishing Company Limited, Second Edition, New Delhi, 2003.					
3.	Krishnaraju .R, Pranesh .R.N, "Design of Reinforced concrete IS : 456-2000", New age					
	International Publication (P) Ltd., New Delhi, 2003.					
	REFERENCE BOOKS/OTHER READING MATERIAL					
4.	Gambhir.M.L, "Design of Reinforced Concrete Structures", Prentice Hall of India, Pvt. Ltd.,					
	New Delhi, 2008.					
5.	Subramanian.N, "Design of Reinforced Concrete Structures", Oxford University Press, New					
	Delhi, 2013.					
6.	Anand .S and Arya, "Masonry and Timber Structures Including Earthquake Resistant					
	Design", Nem Chand and Brothers, Roorkee, 1987.					
7.	Dayaratnam.P, "Brick & Brick Reinforced Structures", Oxford & IBH Publications Company					
	Pvt. Ltd.,					
8.	Shetty.M.S, "Concrete Technology", S.Chand & Co. Ltd., New Delhi, 1986.					
9.	IS4326:1976, "Code of practice for Earthquake Resistant Design and Construction" of					
	Buildings, BIS, New Delhi.					
10.	IS13920:1993, "Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic					
	Forces – Code of Practice"-, BIS, New Delhi.					

Course nat	ure			Theory				
Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage :							50%	

15CE206I		CONCRETE AND HIGHWAY LABORATORY				Р	С
IJCE200L		CONCRETE AND INGINAT L	ADURATURI	0	0	4	2
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	NII						
Codes/Standards	111						
Course Category	Р	PROFESSIONAL CORE	STRUCTURAL EN	JGIN	IEER	RINC	j
Course designed by	De	partment of Civil Engineering					
Approval	32 ^r	^{ad} Academic Council Meeting, 2016					

PURPOSE To understand and perform various tests on concrete making materials like cement, aggregates, on fresh and hardened concrete, bricks and also on bitumen as well.						
IN	STRUCTI	ONAL OBJECTIVES	STUDENT OUTCOMES			
At the end of the course, student will be able						
1.	1. To do tests on cement as per IS codes of practice a, b & k					
2.	. To do tests on fine and coarse aggregates according to Is		a, b & k			
	codes of P	Practice				
3.	To do test	ts on fresh and hardened cement / concrete and brick	a, b & k			
	as per IS c	codes of practice				
4.	. To conduct various tests on bitumen and its grades as per IS a, b & k					
	codes					

Sl. No.	Description of experiments	Contact hours	C-D- I-O	IOs	Reference
	UNIT I - TESTS ON CEMENT	12			
1.	Determination of specific gravity of cement	2	C & 0	1	1 &2
2.	Determination of fineness and specific surface area of cement	4	C & 0	1	1 & 3
3.	Determination of normal consistency, initial and final setting time of cement	4	C & 0	1	1 & 4
4.	Determination of soundness of cement sample (Demonstration only using Le- chatelier apparatus)	2	С	1	1 & 5
	UNIT II - TESTS ON FINE AGGREGATE	4			
5.	Determination of specific gravity of fine aggregate	2	C & 0	2	1 & 6
6.	Determination of bulking of sand	2	C & 0	2	1&6
	UNIT III - TESTS ON COARSE AGGREGATE	20			
7.	Determination of specific gravity of coarse aggregate (Pycnometer and wire basket method)	4	C & O	2	1 & 6
8.	Determination of fineness modulus of coarse aggregate using sieve analysis	4	C & 0	2	1 & 7
9.	Determination of Flakiness index and elongation index of coarse aggregate	4	C & 0	2	1 & 7
10.	Determination of crushing and impact strength of coarse aggregates	4	C & 0	2	1,8&9
11.	Determination of abrasion resistance of coarse aggregate.	4	C & 0	2	1 & 8
	UNIT IV - TESTS ON FRESH CONCRETE	4			
12.	Determination of the degree of workability of fresh concrete using slump cone test.	2	C & 0	3	1 & 10
13.	Determination of the degree of workability of fresh concrete using compaction factor	2	C & 0	3	1 & 10

Sl. No.	Description of experiments	Contact hours	C-D- I-O	IOs	Reference
	test.				
	UNIT V - TESTS ON HARDENED CONCRETE / BRICKS	8			
14	Determination of compressive strength of cement, cement mortar, concrete and bricks	4	C & 0	3	1, 11, 12 & 13
15.	Determination of split tensile strength of concrete cylinders	2	C & 0	3	1 & 14
16.	Determination of modulus of rupture of concrete standard beams	2	C & 0	3	1 & 12
	UNIT VI - TESTS ON BITUMEN	12			
17.	Determination of penetration resistance of bitumen	3	C & 0	4	1 & 17
18.	Determination of softening point of bitumen	3	C & 0	4	1 & 18
19.	Determination of ductility property of bitumen	2	C & 0	4	1 & 19
20.	Determination of viscosity of bitumen	2	C & 0	4	1 & 20
21.	Mix design of bituminous mix (Demo only)	2	С	4	
	Total contact hours			60	

LEAR	NING RESOURCES
Sl.No.	REFERENCES
1.	Laboratory Manual
2.	IS 4031-11 (1988): Methods of physical tests for hydraulic cement, Part 11: Determination of
	density
3.	IS 4031-2 (1999): Methods of physical tests for hydraulic cement, Part 2: Determination of
	fineness by specific surface by Blaine air permeability method
4.	IS 4031-5 (1988): Methods of physical tests for hydraulic cement, Part 5: Determination of
	initial and final setting times.
5.	IS 4031-3 (1988): Methods of physical tests for hydraulic cement, Part 3: Determination of
	soundness
6.	IS 2386-3 (1963): Methods of test for aggregates for concrete, Part 3: Specific gravity,
	density, voids, absorption and bulking.
7.	IS 2386-1 (1963): Methods of Test for Aggregates for Concrete, Part I: Particle Size and
	Shape
8.	IS 2386-4 (1963): Methods of test for aggregates for concrete, Part 4: Mechanical properties
9.	IS 5640 (1970): Method of test for determining aggregate impact value of soft coarse
	aggregates
10.	IS 1199 (1959): Methods of sampling and analysis of concrete
11.	IS 4031-6 (1988): Methods of physical tests for hydraulic cement, Part 6: Determination of
	compressive strength of hydraulic cement.
12.	IS 516 (1959): Method of Tests for Strength of Concrete
13.	IS 3495-1 to 4 (1992): Methods of tests of burnt clay building bricks: Part 1 Determination of
	compressivestrength
14.	IS 5816 (1999): Method of Test Splitting Tensile Strength of Concrete
15.	IS 13311-2 (1992): Method of non-destructive testing of concrete-methods of test, Part 2:
	Rebound hammer
16.	IS 13311-1 (1992): Method of Non-destructive testing of concrete, Part 1: Ultrasonic pulse
17	
17.	IS 1203 (1978): Methods for Testing Tar and Bituminous Materials – Determination of
10	penetration
18.	IS 1205 (1978): Methods for Testing Tar and Bituminous Materials – Determination of
10	somening point
19.	15 1208 (1978): Methods for Testing Tar and Bituminous Materials – Determination of
20	uucunty IS 1206 port 1 (1078), Mothoda for Testing Tor and Dituminant Materials Determination of
20.	15 1200 part 1 (1978). Methods for Testing Tar and Bituminous Materials – Determination of

vis	cosity								
Course nat	Course nature PRACTICAL								
Assessment Method									
In-	Assessment	Europinoento	Decord	MCQ/Quiz/Viva	Model				
semester	tool	Experiments	Record	Voce	examination				
	Weightage	40%	5%	5%	10%				
End semest	er examination	Weightage : 40 ^o	%						

1505208	APPLIED HYDRAULIC ENGINEERING			L	Т	Р	С		
15CE200		AFFLIED HIDRAULIC EN	GINEENING	3	0	0	3		
Co-requisite:	NI	L							
Prerequisite:	150	CE205	E205						
Data Book /	NII	Π							
Codes/Standards	INI	NIL							
Course Category	р	N PROFESSIONAL CODE WATER RESOURCES							
Course Calegory	Г	FROFESSIONAL CORE	ENGINEERING						
Course designed by	De	partment of Civil Engineering							
Approval	32 ^r	32 nd Academic Council Meeting, 2016							

PU	TO acquire analytical ability in solving mathematical proble respective branches of Engineering.	E To acquire analytical ability in solving mathematical problems as applied to the respective branches of Engineering.									
IN	TRUCTIONAL OBJECTIVES STUDENT OUTCOMES										
At	the end of the course, student will be able										
1.	To study the measurement of pressure of fluid in pipes using various devices like manometers, mechanical gauges	а	b		e	k					
2.	To study the measurement of velocity and discharge using weirs, notches, venturimeter etc.,	а	b	c	e	k					
3.	To study open channel flow through Chezy's, Manning's, Kutter's formulae; economical channel sections, hydraulic jump; introduction to irregular flows.	a	b	с	e	k					
4.	To understand the components, function, and uses of centrifugal and reciprocating pumps.	а	b	c	e	k					
5.	To understand the components, function, and uses of Pelton wheel, Kaplan and Francis turbines	а	b	c	e	k					

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: PRESSURE MEASUREMENT	7			
1.	Introduction -brief recap of fluid mechanics & overview of subject	1		1-5	1,2
2.	Introduction – pressure and pressure head, Pascals' law, applications	1	C	1	1,2
3.	Atmospheric, Absolute, Gauge and Vacuum pressure	1	C,I	1	1,2,3,4
4.	Measurement, Manometers, Simple manometers, Differential manometers, Advantages and limitations of manometers gaues,	2	C,I	1	1,2,5
5.	Mechanical gauges, Bourdan tube gauge	2	C, I	1	2,3
	UNIT II: FLOW MEASUREMENT	10			
6.	Velocity, Pitot tube, Current meter, Floats	2	C,I	2	2,3,5
7.	Discharge, Venturimeter, Orificemeter, Rotameter	2	C,I	2	1,2
8.	Notches/ Weirs, Rectangular, Triangular, Trapezoidal, Stepped	3	C,I	2	2,3,4
9.	Effect on discharge due to error in head measurement	1	C,I	2	3,4,5
10.	Broad crested, Narrow crested and Ogee weir	2	C,I	2	1,2
	UNIT III: OPEN CHANNEL FLOW	10			
11.	Open channel, Types of flow, Uniform flow, Chezy's formula, Manning's formula and Kutter's formula	2	С	3	3,4
12.	Most economical section, Rectangular and Trapezoidal section	2	C,D	3	3,4
13.	Non Uniform flow, Specific energy and Specific	3	C,I	3	3,4

Session	Descr	iption of To	pic		Contact hours	C-D- I-O	IOs	Ref	erence
	energy curves								
14.	Hydraulic Jump, M irregular channels	easurement (of flow in		3	C,I	3		1,2
	UNIT IV: PUMPS				9				
15.	Classification, Cent and working	rifugal pump	p, Component		1	C	4	2	,3,5
16.	Velocity triangle, we efficiencies, specifie	ork done, lo c speed	sses and		2	C,I	4	3	,4,5
17.	Multistage centrifug curves, Net positive	gal pump, Cl	naracteristic d		2	C,I	4		1,2
18.	Reciprocating pump	o, Componer	nt and working		1	С	4	1	,2,3
19.	Discharge, Work do Slip, Indicator diago and friction	one, Coeffici ram, Effect c	ent of discharg of acceleration	ge,	2	C,I	4	1,	2,3,4
20.	Maximum speed of reciprocating pump, Air1C43,4vessel and its functions1C43,4							,4,5	
	UNIT V: TURBIN		9						
21.	Components of Hydro Electric Power Plant, Classification of Turbine				1	C,I	5	1	,2,3
22.	Pelton wheel, Kapla construction and we	an turbine, Fi orking	rancis turbine		3	C,D,I	4	2	,3,5
23.	Velocity Triangles,	Workdone,	Design aspects		2	C,D,I	4	3	,4,5
24.	Draft tube theory, S Selection of turbine	pecific spee	d, Cavitation,		3	C,D,I	4	3	,4,5
	Total contact hour	'S				4	45		
LEARN	ING RESOURCES								
Sl.No.	TEXT BOOKS								
1.	Modi, P.N and Seth S	S.M " Hydra	ulics and fluid	mech	<i>nanics</i> ". St	andard bo	ook hou	ise, 20	05.
2.	Rajput R.K, "Fluid r	nechanics ar	nd Hydraulic m	ıachir	nes", S. Cl	nand and	compar	ıy Ltd	., 2005.
	REFERENCE BOO	KS/OTHE	R READING	MAT	ERIAL				
3.	Bansal, R.K, "Fluid	mechanics a	nd hydraulic n	ıachi	nes", Laxi	ni publica	ations, 2	2005	
4.	Subramanya, K., " <i>Th</i> Publishing Company	heory and ap , 2002.	pplications of fl	luid n	nechanics	", tata Mc	cGraw l	Hill	
5.	http://nptel.ac.in/cour	rses/1051030)21/						
Course n	ature				Theory				
Assessme	ent Method (Weighta	ge 100%)							
In-	Assessment	Cycle	Cycle test	Cyc	ele Test	Surprise		miz	Total
semeste	r tool	test I	II		III	Test		zuiz.	iotai
Semeste	Weightage	10%	15%	1	5%	5%	5	5%	50%
			End	seme	ester exan	nination \	Weight	age :	50%

1505210		GEOMATICS SURVEYING					С
15CE210		GEOMATICS SURVE	ING	3	0	0	3
Co-requisite:	NI	L					
Prerequisite:	150	CE207					
Data Book /	NU	ſ					
Codes/Standards	INI	L					
Course Category	Р	PROFESSIONAL CORE	GEOMATICS ENG	INE	ERIN	١G	
Course designed by	De	partment of Civil Engineering					
Approval	32 ^r	^{ad} Academic Council Meeting, 2016					

PU	IRPOSE	To learn the different aspects of Geomatics survey different types of Surveying. The course will enable of science like Hydrographic surveying, EDM, Photogrammetry and Remote Sensing.	ing and the engin Global	the adva neers to t Positionin	ancemen he new 1 ng Syst	t in the frontiers em and		
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES								
At the end of the course, student will be able								
1.	To know t and Trilate	e basics, importance, and methods of Triangulation a b e						
2.	To study t	he various Hydrographic Surveying Techniques.	a	b	e	k		
3.	3.To study the Advance Surveying Instruments like EDM Total Station and GPS.abe					k		
4.	To Study t	he Concept of Aerial Photo Interpretation.	a b e !					
5.	To learn th	ne importance and different aspects of remote sensing.	a	b	e	k		

Session	Description of Topic		C- D-I-	IOs	Reference
	UNIT I:TRIANGULATION AND TRILATERATION	9	U		
1.	Horizontal and vertical control - methods	1	С	1	1, 2, 3, 4
2.	Triangulation – Network, Signals.	2	С	1	1, 2, 3, 4
3.	Base line - choices - instruments and accessories -	1	С	1	1, 2, 3, 4
4.	extension of base lines - corrections	2	С	1	1, 2, 3, 4
5.	Satellite station - reduction to centre - Intervisibility of height and distances	1	Ι	1	1, 2, 3, 4
6.	Axis single corrections	2	С	1	1, 2, 3, 4
	UNIT II: HYDROGRAPHIC SURVEYING	9			
7.	Shore line survey, Tides - Gauges, Signals,	1	С	2	4, 10
8.	Sounding, Equipments - Sounding Rods and Lead Lines, ,	1	С	2	4, 10
9.	Sounding Chain and lead, Sounding Machine, Fathometers, Sextants	1	С	2	4, 10
10.	Locating the sounding - Transit and stadia, Range and time intervals,	1	C, I	2	4, 10
11.	Range and one angle from shore, Range and one angle from Boat, Two angle from Boat, Intersecting Ranges, Cross ropeShore,	1	C, I	2	4, 10
12.	Plotting of sounding - The Three point problem- Mechanical, Graphical Analytical methods.	1	C, I	2	4, 10
13.	River survey	3	С	2	4, 10
	UNIT III : EDM, TOTAL STATION, GPS SURVEYING	9			
14.	Electro-optical system-Measuring Principle, Working Principle,	1	С	3	3, 7, 10
15.	Microwave system-Measuring and working principle - Sources of error	2	С	3	3, 7, 10
16.	Total station-Measuring and working principle, Sources of error	1	C, I	3	3, 7, 10

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
17.	Coordinate system, GPS - Fundamentals	1	C,D	3	3, 7, 8, 10
18.	Introduction space, Control segments User segment	2	C,D	3	3, 7, 8, 10
19.	Errors in GPS signal propagation	1	C,D	3	3, 7, 8, 10
20.	GPS Survey types - Kinematic and static	1	D,I	3	3, 7, 8, 10
	UNIT IV:PHOTOGRAMMETRY SURVEYING	9			
21.	Introduction , Photo theodolite, Terrestrial and Aerial photographs - vertical and oblique photographs	2	С	4	5, 6
22.	Flight Planning,	2	С	4	5, 6
23.	Scale of an aerial photograph-Measurement of Scale.	1	D,I	4	5, 6
24.	stereoscopy principles - parallax, Height determination by Parallax bar	2	D,I	4	5, 6
25.	Photo Interpretation, Applications of aerial Photos.	2	D,I	4	5, 6
	UNIT V: REMOTE SENSING	9	D,I	4	5, 6
26.	Introduction – Historical Background - Electromagnetic Radiation (EMR)	1	D,I	5	5, 8, 9
27.	Electromagnetic Spectrum, Interactions with atmosphere and Earth features	2	C	5	5, 8, 9
28.	Platform, Sensors - Definition, Types Airborne Platforms	1	C	5	5, 8, 9
29.	Geostationary and Sunsynchronuous Orbits,	2	С	5	5, 8, 9
30.	Parameter of Remote Sensing-Spatial-Spectral- Radiometric-Temporal	1	C	5	5, 8, 9
31.	Microwave remote sensing Scanners - Radiometer - RADAR	2	C	5	5, 8, 9
	Total contact hours			45	

LEAR	NING RESOURCES
Sl.No.	TEXT BOOKS
1.	Kanetkar .T.P, "Surveying and Levelling" Vols. I and II, United Book Corporation, Pune,
	1994.
2.	Surveying and leveling Part I"I, Late T P Kanetkar and Prof. S V Kulkarni, Poona
	VidyagrihaPrakashan,
3.	Punmia .B.C, "Surveying, Vols". I and II, Laxmi Publications, 1999.
	REFERENCE BOOKS/OTHER READING MATERIAL
4.	Chandra .A.M "Plane Surveying and Higher Surveying", New Age International (P) Limited,
	Publishers, Chennai, 2002.
5.	Agarwal .C.S, Garg .P.K, "Remote Sensing", Wheekrs Publishing Co., 2000.
6.	Wolf, P.R "Elements of Photogrammetry", Tata MaGrawHill Co., 1997.
7.	Burnside .C.D, "Electromagnetic Distance Measurement," Beekman Publishers, 1971.
8.	Anji Reddy .M, "Remote sensing and Geographical information system," B.S Publications,
9.	Leudr.D.R., "Aerial Photographic Interpretation," McGrawHill, 1959.
10.	Arora .K.P, "Surveying", Volume III, Standard Book House, 2000.

Course nature					Theory						
Assessment Method (Weightage 100%)											
In-	Assessment tool	Cycle test I	Cycle test II	Cycle	Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%		5%	5%	50%			
End semester examination Weightage :											

15CE210I		GEOMATICS SURVEYING LABORATORY					С
13CE210E		AND SURVEY CAMP					2
Co-requisite:	NI	NIL					
Prerequisite:	15CE207L						
Data Book / Codes/Standards	Survey Laboratory Manual						
Course Category		D DROFESSIONAL CODE GEOMATICS					
		P PROFESSIONAL CORE ENGINEERIN					
Course designed by	Department of Civil Engineering						
Approval	32 nd Academic Council Meeting, 2016						

PURPOSE To measure the elevation of points by advanced methods and instruments.							
INSTR	UCTIONAL OB	STUDENT OUTCOMES					
At the	end of the course, s	tudent will be able					
1.	1. To conduct experiments related to finding height and a b g j					j	
2.	To conduct settir road purposes.	g out of simple curve for construction of	a	b	ЪŊ	j	
3.	To study the c traversing by Tot	o-ordinate measurements by GPS and al station.	а	b	g	j	
4.	To study about th	e use of stereoscope for 3-D viewing,	a	b	g	j	

Sl. No.	Description of experiments	Contact hours	C- D- I-O	IOs	Reference
1.	Tacheometric SurveyingConstants of Tacheometer	3	I-O	1	1
2.	Tacheometric SurveyingStadia Tacheometry	3	I-O	1	1
3.	Tacheometric SurveyingTangential Tacheometry	3	I-0	1	1
4.	Tacheometric SurveyingSubtense bar method	3	I-O	1	1
5.	Contouring	6	I-O	1	1
6.	Setting out simple circular curveSingle Theodolite Method	6	I-O	2	1
7.	Setting out simple circular curveDouble Theodolite Method	6	I-O	2	1
8.	GPS Surveying –Measurement of Coordinates	3	I-O	3	1
9.	Total Station Surveying - Measurements of Distances and angles,	6	I-O	3	1
10.	Total Station Surveying- Measurements of, Slope	6	I-O	3	1
11.	Total Station Surveying- Measurements of distances & Height	6	I-O	3	1
12.	Total Station Surveying - Measurements of, Traversing,	3	I-O	3	1
13.	Use of Stereoscope for 3-D Viewing	3	I-O	4	1
14.	Height determination from a Stereo pair using the Parallax bar	3	I-O	4	1
	Total contact hours	60			

LEA	LEARNING RESOURCES								
SI. No.	REFERENCES								
1.	Geomatics surveying lab manual								

SURVEY CAMP (1 WEEK)

PURPOSE

Experiments in the various types of surveying in actual field to provide better knowledge and develop skills of application in real life situations

INSTRUCTIONAL OBJECTIVES

Depending upon the field, various methods of chaining, traversing, leveling, GPS and total station can be adopted to get wide experience in the camp.

LIST OF EXPERIMENTS

1. Triangulation 2. Total Station 3.Contouring 4. GPS 5. Road survey (LS and CS)

Course nature				Prac	Practical				
Assessment Method (Weightage 100%)									
In-	Assessment tool	Experiments	Record	MCQ/Quiz/Viva Voce	Model examination	Survey camp	Total		
semester	Weightage	40%	5%	5%	5%	5%	60%		
End semester examination Weightage :									

YEAR III, SEMESTER I

15CE301		STRUCTURAL ANALYSIS				P 0	C 3
Co-requisite:	NI						
Prerequisite:	150	15CE203					
Data Book /	NII	NII					
Codes/Standards	INI						
Course Category	Р	PROFESSIONAL CORE	STRUCTURAL EN	IGIN	EER	INC	j
Course designed by Department of Civil Engineering							
Approval	32 ^r	^d Academic Council Meeting , 2016					

PU	PURPOSE To enable student to solve statically indeterminate structures					
IN	STRUCTIO	STUDENT OUTCOMES				
At	the end of th	ne course, student will be able to				
1.	I. Identify indeterminate structures and determine the degree of indeterminacy a					
2.	Apply M indetermin	acaulay's method and Clapeyron's theorem to solve nate beam problems	а	с		
3.	Apply ene	rgy principles to beams, frames and trusses	а	с		
4.	Apply mat	rix flexibility method to solve beams and frames	а	с		
5.	Apply slop and frames	be deflection and moment distribution methods to solve beams	a	С		

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: PROPPED CANTILEVER, FIXED AND CONTINUOUS BEAMS	12	-	-	1,2,6,7
1.	Introduction to statically indeterminate structures – degree of static indeterminacy of beams and frames	2	С	1	1,2,6,7
2.	Application of Macaulay's method to analyze propped cantilevers	1	Ι	2	1,2,6,7
3.	Application of Macaulay's method to analyze fixed beams	2	Ι	2	1,2,6,7
4.	Analysis of continuous beams using Clapeyron's theorem of three moments	4	C, I	2	1,2,6,7
5.	Analysis of continuous beams with differential settlements using Clapeyron's theorem of three moments	3	Ι	2	1,2,6,7
	UNIT II ENERGY METHODS FOR ANALYZING BEAMS, FRAMES AND TRUSSES	12			
6.	Use of Castigliano's theorem to analyze propped cantilever and fixed beams	2	Ι	3	1,2,4,5,8,9
7.	Analysis of non-sway frames up to a degree of indeterminacy of two using Castigliano's theorem	2	Ι	3	1,2,4,5,8,9
8.	Analysis of sway frames up to a degree of indeterminacy three using Castigliano's theorem	3	Ι	3	1,2,4,5,8,9
9.	Introduction to Unit load method	1	С	3	1,2,4,5,8,9
10.	Analysis of indeterminate trusses up to a degree of indeterminacy of two using unit load method	2	Ι	3	1,2,4,5,8,9
11.	Analysis of indeterminate trusses for lack of fit	1	Ι	3	1,2,4,5,8,9
12.	Analysis of indeterminate trusses for temperature stresses	1	Ι	3	1,2,4,5,8,9
	UNIT III: MATRIX FLEXIBILITY METHOD OF ANALYSIS OF INDETERMINATE	11			

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	STRUCTURES				
13.	Concept of flexibility of structures	1	С	4	1,3
14.	Derivation of direct flexibility matrix equation	1	C, I	4	1,3
15.	Application of flexibility matrix method to solve propped cantilever	1	Ι	4	1,3
16.	Application of flexibility matrix method to solve fixed beam	1	Ι	4	1,3
17.	Application of flexibility matrix method to solve non-sway frames up to a degree of indeterminacy of two.	3	Ι	4	1,3
18.	Application of flexibility matrix method to solve sway frames up to a degree of indeterminacy of three.	4	Ι	4	1,3
	UNIT IV: SLOPE DEFLECTION METHOD	12			
19.	Degree of kinematic indeterminacy and degrees of freedom of beams, frames and trusses	1	С	5	1,2,6,7
20.	Introduction and derivation of slope deflection equations	1			
21.	Application of slope deflection method to solve continuous beams up to a degree of indeterminacy of three	4	Ι	5	1,2,6,7
22.	Application of slope deflection method to solve continuous beams with settlements	1	Ι	5	1,2,6,7
23.	Application of slope deflection method to solve non sway frames	2	Ι	5	1,2,6,7
24.	Application of slope deflection method to solve sway frames	3	Ι	5	1,2,6,7
	UNIT V: MOMENT DISTRIBUTION METHOD	13			1,2,6,7
25.	Introduction and development of moment distribution method	1	С	5	1,2,6,7
26.	Application of moment distribution method to solve continuous beams up to a degree of in determinacy of three	2	Ι	5	1,2,6,7
27.	Application of moment distribution method to solve continuous beams with settlements	2	Ι	5	1,2,6,7
28.	Application of moment distribution method to solve non sway frames	3	Ι	5	1,2,6,7
29.	Application of moment distribution method to solve sway frames	3	Ι	5	1,2,6,7
30.	Introduction to Kani's method –and advantages of Kani's method over moment distribution method- Application of Kani's method to sway frames (single bay, single storey)	2 C, 5			1,2,6,7
	Total contact hours			60	

LEARNING RESOURCES

Sl.No.	TEXT BOOKS
1.	Menon.D, "Structural Analysis", Alpha Science International Limited, 2009.
2.	Punmia, B.C., Ashok Kumar Jain, Arun Kumar Jain, "Theory of Structures", Laxmi
	Publications, New Delhi, 12th Edition, 2004.
3.	Pandit.G.S., Gupta.S.P., "Structural Analysis- A Matrix Approach", 2 nd Edition, Tata
	McGraw-Hill Education, New Delhi,2010.
	REFERENCE BOOKS/OTHER READING MATERIAL
4.	Bhavikatti.S.S., "Structural Analysis Vol-1", E-3, Vikas Publishing House Pvt Limited, 2009.

5.	Vaidyanathan.R, "Comprehensive Structural Analysis", Volume 1, Laxmi Publications, New
	Delhi, 2005.
6.	Wang .C.K, "Statically Indeterminate Structures", McGraw Hill International Book
	Company, 1984.
7.	Harry H.West., "Analysis of Structures", John Wiley &Sons.1980.
8.	Charles Head Norris, John Benson Wilbur, Senol Utku, "Elementary Structural Analysis", 3rd
	Edn. McGraw Hill International Editions, Structures Series, 1987.
9.	Timoshenko.S.P & Young .D.H, "Theory of Structures", 2 Edn. McGraw Hill Book
	Company, International Ed. 1965.

Course nature Theory										
Assessment Method (Weightage 100%)										
T	Assessment	Cycle test	Cycle test	Cuala Tast III	Surprise	Quiz	Total			
III-	tool	Ι	Π	Cycle Test III	Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	% 5%				
End semester examination Weightage : 5										

15CE303		STRUCTURAL DESIGN -	L 2	Т 2	P 0	C 3				
Co-requisite:	Nil									
Prerequisite:	150	15CE203								
Data Book /	IC	$10 \cdot 900 \cdot 2007 \cdot 911 = 11 = (D = 11 = 1) \cdot 10 \cdot 901 \cdot 911$				1				
Codes/Standards	15	IS : 800-2007, Steel Tables(Revised), IS : 801 & IS : 811								
Course Category	P PROFESSIONAL CORE STRUCTURAL ENGINEERING						ł			
Course designed by	De	Department of Civil Engineering								
Approval	32 nd Academic Council Meeting, 2016									

PURP	PURPOSE To develop knowledge in designing structural elements made of steel									
INSTRUCTIONAL OBJECTIVES STUDENT OUTCO										
At the end of the course, student will be able to										
1.	Understand basics of limit state design, code provisions and design tension members	to a	с	e						
2.	Design connections	а	с	e						
3.	Design steel members subjected to compression	а	с	e						
4.	Design simple and built-up beams	а	с	e						
5.	Design light gauge steel sections	а	с	e						

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I-INTRODUCTION AND TENSION MEMBERS	12			
1.	Types of Steel Structures - Properties of Structural Steel, Indian Standard Specifications and sections	1	C,D	1	1-9
2.	Design criteria as per IS800:2007	1	C,D	1	1-2
3.	Analysis methods- Calculation of Loads as per IS codes	1	C,I	1	1-10
4.	Design Philosophy-Introduction to Limit State Method of design – Partial safety factor- general design requirements as per IS800:2007	1	C,D	1	1-2
5.	Design provisions of Tension members	1	C,D	1	1-9
6.	Design of simple tension members -Effective net area-Types of failures	1	C,D,I	1	1-9
7.	Design of Plates with holes subjected to tension	2	C,D,I	1	1-9
8.	Design of Angles subjected to tension	2	C,D,I	1	1-9
9.	Design of built-up members - Tension splices	2	C,D,I	1	1-9
	UNIT II-CONNECTIONS	10			
10.	Types of Connections-Bolted and Welded connections - types of bolts and welds	2	С	2	1-9
11.	Load transfer mechanism- failure of joints - permissible stresses	2	C,D	2	1-9
12.	Design of Pin connections-Design of lap joints	2	C,D,I	2	1-9
13.	Design of butt joints	2	C,D,I	2	1-9
14.	Design of Truss joint	2	C,D,I	2	1-9
	UNIT III-COMPRESSION MEMBERS	14			
15.	Compression member design -Design provisions	1	C,D	3	1-9
16.	Effective length-Slenderness ratio-Types of buckling-Classification of cross-sections	2	C,D	3	1-9
17.	Design of simple columns	3	C,D,I	3	1-9
18.	Design of built up columns -Types	2	C,D,I	3	1-9
19.	Design of lacing	3	C,D,I	3	1-9
20.	Design of batten	3	C,D,I	3	1-9
	UNIT IV-BEAMS	14			

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
21.	Behavior of Steel members in flexure	2	С	4	1-9
22.	Design of simple beams	2	C,D,I	4	1-9
23.	Phenomenon of Web Buckling and Web Crippling- Design provisions	2	C,D,I	4	1-9
24.	Lateral Torsional Buckling behavior of unrestrained beams	3	C,D,I	4	1-9
25.	Check for Lateral Torsional Buckling of unrestrained beams	1	C,D,I	4	1-9
26.	Design of beams subjected to Biaxial Bending	2	C,D,I	4	1-9
27.	Design of built-up beams	2	C,D,I	4	1-9
	UNIT V- LIGHT GAUGE STEEL SECTIONS	10			
28.	Design of light gauge steel members-design provisions	1	C,D	5	4,5,6
29.	Local and post buckling behavior of thin element of light gauge steel sections	1	C,D	5	4,5,6
30.	Design of light gauge steel compression members	3	C,D,I	5	4,5,6
31.	Design of light gauge steel tension members	2	C,D,I	5	4,5,6
32.	Design of light gauge steel beams	2	C,D,I	5	4,5,6
33.	Design of connections	1	C,D,I	5	4,5,6
	Total contact hours			50	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Subramanian.N, "Design of Steel Structures-Limit State Method", Oxford University Press,
	New Delhi, 2016
2.	Duggal .S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing
	Company, New Delhi, 2010.
3.	REFERENCE BOOKS/OTHER READING MATERIAL
4.	Gaylord, E.H., Gaylord, N.C., and Stallmeyer, J.E., "Design of Steel Structures", McGraw Hill
	Pub.,1992.
5.	Ramamrutham .S., "Design of Steel Structures", Dhanpat Rai Pub., 2013.
6.	Vazirani .V.N, "Design and Analysis of Steel Structures", Khanna Publishes, 2003.
7.	Ramachandra .S, Virendra Ghelot, "Limit State Design of Steel of Structures", Scientific
	Publishers, New Delhi,2012.
8.	Arya.A.S. & Ajmani.J.L., "Design of Steel Structures", Nemchand & Bros., 2011.
9.	Dayarathnam .P, "Design of Steel Structures", S.Chand and Company Ltd., 2008.
10.	Kazimi. S. M. A. and Jindal. R. S., "Design of Steel Structures", 2nd Edition, Prentice Hall
	of India,1988.
11.	IS: 875(Parts 1,2,3): "Code of Practice for Design Loads on Buildings and Structures", BIS,
	New Delhi, 1987 (Reaffirmed 2003)

Course nature 7					Theory				
Assessment Method (Weightage 100%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
semester	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage :							50%		

15CE205I	HVDDAULIC ENCINEEDINC LABODATODY					Р	C
ISCESUSE HIDKAULIC ENGINEERING LADOKATOKI		0	0	4	2		
Co-requisite:	150	5CE208					
Prerequisite:	NI	NIL					
Data Book /	NII	NIL					
Codes/Standards	111						
Course Category	Р	PROFESSIONAL CORE	WATER RESOURCES E	NGIÌ	VEEI	RINO	ĩ
Course designed by	De	Department of Civil Engineering					
Approval	32 nd Academic Council Meeting , 2016						

INS	INSTRUCTIONAL OBJECTIVES				8			
At the end of the course, student will be able								
1.	To learn the working principle, components, functions of orificemeter and venturimeter.	а	b	k				
2.	To determine the losses in pipes.	а	b	k				
3.	To study the flow through orifices, mouthpieces and notches.	а	b	k				
4.	To study the concept of Buoyancy	а	b	k				
5.	To study the performance of centrifugal and reciprocating pumps.	а	b	k				
6.	To study the performance of Pelton wheel and Francis turbines.	а	b	k				

Session	Description of Experiments	Contact hours	C- D-I- O	IOs	Reference
1.	Measurement of Flow using Venturimeter	4	0	1	1,2,3
2.	Measurement of Flow using Orificemeter	4	0	1	1,2,3
3.	Determination of Friction Factor of the Pipe Material	4	0	2	1,2,3
4.	Losses due to Sudden Contraction and Sudden Enlargement of the Pipe	4	0	2	1,2,3
5.	Measurement of Flow through Orifice	5	0	3	1,2,3
6.	Measurement of Flow thorough Mouthpiece	5	0	3	1,2,3
7.	Measurement of Flow through Notch	5	0	3	1,2,3
8.	Determination of Metacentric Height	5	0	4	1,2,3
9.	Performance Test on Centrifugal Pump	6	0	5	1,2,3
10.	Performance Test on Reciprocating Pump		0	5	1,2,3
11.	Performance Test on Pelton Wheel		0	6	1,2,3
12.	Performance Test on Francis Turbine	6	0	6	1,2,3
Total	Contact Hours			60	

LEARN	LEARNING RESOURCES								
Sl.No.	REFERENCE								
1.	Laboratory Manual								
2.	Rajput .R.K, "Fluid Mechanics and Hydraulic Machines", S.Chand and Company Ltd.,								
	2013.								
3.	Bansal .R.K, "Fluid Mechanics and Hydraulic Machines", Laxmi Publications 2010								

Assessment	Assessment Method									
In- semester	Assessment tool	Conducting experiments and submission of records	Objective type tests on the experiments carried out	Written Quiz on experiments	Model examination					
	Weightage	40%	10%		10%					
End semest	End semester examination Weightage : 40%									

15CE200	CEOTECHNICAL ENCINEEDINC I			L	Т	Р	С
15CE309	ISCESUS GEOTECHNICAL ENGINEERING I					0	3
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	NII						
Codes/Standards	INI	IIL					
Course Category	Р	PROFESSIONAL CORE	PROFESSIONAL CORE GEOTECHNICAL				
			ENGINEERING				
Course designed by	De	partment of Civil Engineering					
Approval	32 ¹	nd Academic Council Meeting, 2016					

PU	This course is aimed to develop analytical skills in dealing water flow, a medium for structural supports and a primary b	with uildir	vith soil as a medium of ilding material.			
IN	STRUCTIONAL OBJECTIVES		STUDENT OUTCOMES			
At	the end of the course, student will be able to					
1	Provide the description, classification and to know about properties of	a	e			
	soil.					
2	Familiarize the students an understanding of permeability and seepage of soils	a	e			
3	To know about the consolidation and compaction effect on soil in lab and field.	а	e	k		
4	To develop an understanding of the principles of effective stress in saturated soils, and its application to various soil condition and to know the shear strength of the soils.	a	e	k		

Session	Description of Topic	Contact	C-D-	IOs	Reference
	LINIT I. PASIC CONCEPTS	nours	5 I-0 ¹⁰³		
1	Definition of Soil and Soil Machanias Formation	12	C	1	1 2 2
1.	of soils	1	C	1	1,2,5
2.	Type of Soils	2	С		
3.	Two and Three phase systems and relationships - problems	4	C,D	1	1,2,3
4.	Specific gravity – Definition - Determination	2	C,D	1	1,2,3
5.	Field density - sand replacement and core cutter method	3	C,D	1	1,2,3
6.	UNIT II: INDEX PROPERTIES	12			
7.	Classification of soil - Grain size analysis	2	С	1	1,2,3
8.	Stoke's law and Hydrometer analysis	2	С	1	1,2,3
9.	Consistency - Atterberg limits – PI, LI, CI, SR, FI & TI Problems	5	C,D	1	1,2,3
10.	Classification of coarse grained and fine grained soils as per BIS	3	C,I	1	1,2,3
11.	UNIT III: PERMEABILITY AND SEEPAGE	12			
12.	Permeability – Definition - Assumptions- One dimensional flow through soil - Darcy's law - Limitations	2	С	2	1,2,3
13.	Field and laboratory permeability tests	4	C, I	2	1,2,3
14.	Permeability in stratified soil deposits	3	C,D	2	1,2,3
15.	Factors affecting permeability, Introduction to flow nets – Properties – Applications – Discharge Velocity and seepage Velocity		С	2	1,2,3
16.	UNIT IV: COMPACTION AND CONSOLIDATION	12			
17.	Compaction - Lab compaction methods - Proctor's test	3	C,D, I	3	1,2,3

Session	Dese	cription of T	opic		Contact hours	t C-D- I-O	IOs	Ref	erence
18.	Field compaction	methods - fac	ctors affecting	g	2	С	3	1,2	2,3,4
	compaction – effect of compaction in soil properties								
10	California Bearing Ratio test				2	CDI	3	1 '	234
19.	Consolidation da	finition To	zaghi's theor	wof	2	C,D,I	3	1,	2,3,4
20.	one dimensional of	onsolidation	partial differ	y 01 ential	2	C	3	1,.	2,3,4
	equations(no anal	vtical)	partial difference	ciitiai					
21.	Laboratory test - D	Determination	n of co-efficie	ent of	3	С	3		1-6
	consolidation- \sqrt{t} a	and log t met	hods.						
22.	UNIT V: STRES	S DISTRIBU	UTION AND)	12				
	SHEAR STRENG	ЪТН							
23.	Introduction - Str neutral stresses	esses in soil	s - Effectiv	ve and	2	C	4		1-6
24.	Stress distribution	in soil medi	a - Boussines	sq and	3	C,D	4	1	,2,3
	Westergards equa	tion – poir	it load, unif	formly					
	distributed load,	line load, r	ectangular l	oad –					
	Pressure bulb – Ne	wmark's cha	art - Introduc	tion				1	
25.	Shear strength - S cohesionless soils	- Mohr - cou	lomb's theory	ye and	2	C	4	1	,2,3
26.	Laboratory and f	ield test: D	virect, triaxia	and and	4	C,D,I	4	1	,2,3
	unconfined shear	strength tes	st – lab and	l field					
27	vane shear test	1			1	0	4		1.6
27.	Factors affecting s	near strengtr	l.		1		4		1-0
IFADN	1 otal contact nou	rs					00		
SI No	TFYT BOOKS								
1	Raiu K V B and H	Ravichandrar	PT "Meck	nanics o	of Soils"	Avvannaa I	Publica	tions	2000
2	Punmia B.C., Soil /	Mechanics ar	nd Foundatio	ns. Lax	mi Public	ations Pvt.	Ltd., 2	000	2000.
3	Gopal Ranjan, Rao	A.S.R., Basi	ic and Applie	d Soil N	Aechanics	Wiley Ea	stern L	td., 20	000
	REFERENCE BO	OKS/OTH	ER READIN	G MA	TERIAL	<u> </u>		,	
4	Terzaghi K., Peck I	R.B., Soil Me	echanics in E	ngineer	ing Practi	ice, John W	Viley L	td., 19	67
5	Lambe T.W., White	man, <i>Soil Me</i>	echanics, Joh	n Wiley	/ Ltd., 197	'9.			
6	Arora .K.R, "Soil N	Aechanics an	d Foundation	n Engine	eering", S	tandard Pu	blicatio	on	
	Distributors, 2011.								
Course r	nature	40000			Theory				
Assessm	ent Method (Weigh	ntage 100%)	C 1. ()		<u> </u>	G			
In-	Assessment	Cycle test	Cycle test	Cycle	Test III	Surprise	Q	uiz	Total
semeste	r Weightage	10%	15%	14	5%	50 /2	5	0/0	50%
	meightage	10/0	<u> </u>	nd sem	ester exa	mination V	J S Weight	age •	50%
L			Ľ	na sem	cour cha		, vigin	mge .	2070

15CE309I CEOTECHNICAL ENGINEERING LABORATORY		L	Т	Р	С			
15CE509L	GEOTECHNICAL ENGINEERING LADORATORI	0	0	4	2			
Co-requisite:	15CE309 -Geotechnical Engineering - I							
Prerequisite:	NIL							
Data Book /	NII							
Codes/Standards	INIL							
Course Category	P Professional Core GEOTECHNICAL							
	ENGINEERING							
Course designed by	signed by Department of Civil Engineering							
Approval	32 nd Academic Council Meeting, 2016							

PU	URPOSE To provide the hands on training in determination of Engineering and index properties of soils, applied to the field problems.						
IN	STRUCTIO	STUDENT OUTCOMES					
At	the end of th	ne course, student will be able to					
1.	Get Famili	arized to do the experiments as per the guidelines of BIS	b				
2.	Gain the	knowledge on the use of experimental results pertaining to	b				
	foundation	problems					

SI. No.	Description of experiments	Contact hours	C- D- I- O	IOs	Reference
1.	Water content determination (Oven drying method)	2	0	1	1
2.	Grain size distribution - Sieve analysis	5	0	1	1
3.	Determination of Specific gravity by Pycnometer and density bottle method	5	0	1	1
4.	Determination of Liquid and Plastic limit (Casagrande method)	5	0	1	1
5.	Determination of Shrinkage limit of soil	5	0	1	1
6.	Determination of moisture-density relationship (Standard Proctor's)	5	0	1,2	1
7.	Determination of Permeability by Constant and Variable head method	5	0	1,2	1
8.	Determination of in-situ density by sand replacement and core cutter method	5	0	1,2	1
9.	Determination of Relative density - Sand	5	0	1,2	1
10.	Unconfined compression test for fine grained soils	5	0	1,2	1
11.	California Bearing Ratio (CBR) Test	5	0	1,2	1
12.	Direct shear test	5	0	1,2	1
13.	Triaxial Compression Test (Demo)	3	0	1,2	1
	Total contact hours			60	

LEARNING RESOURCES					
Sl.No.	REFERENCES				
1.	Laboratory Manual				

Course nat	Course nature Practical								
Assessmen	Assessment Method (Weightage 100%)								
In-	Assessment tool	Experiments	Record	MCQ/Quiz/Viva Voce	Model examination	Total			
semester	Weightage	40%	5%	5%	10%	60%			
End semester examination Weightage :						40%			

15CE311		HIGHWAY ENGINEERING			Т	Р	С
ISCESII		IIIGIIWAI ENGINEE	MING	2	2	0	3
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	NI	T					
Codes/Standards	INI	L					
Course Category	D	DDOEESSIONAL CODE	TRANSPORTATIO	DN			
Course Calegory	Г	FROFESSIONAL CORE	ENGINEERING				
Course designed by	De	partment of Civil Engineering					
Approval	321	nd Academic Council Meeting, 2016	j				

PU	IRPOSE	This course is offered to develop skill to desi regulatory measures on roads and introduce th pavements	gn geom ne studer	etric elent to stru	ments uctural	and desi	traff gn (ic of
IN	STRUCTIO	ONAL OBJECTIVES	STUDE	NT OUT	COM	ES		
At	the end of t	he course, student will be able						
1.	To introdu familiarize	ce basic highway geometric element and e with its design.	а	b	e	k		
2.	To unders	tand the traffic flow modeling	а	b	e	k		
3.	To impart element	basic knowledge on the design of various traffic	а	е	k			
4.	To unders load and	tand the behavior of flexible pavement to traffic to carry out basic design	а	b	e	i	k	
5.	To expose design.	the structural component of rigid pavement and its	a	e	i	k		

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: HIGHWAY GEOMETRIC DESIGN	13			
1	Elements of transportation Engineering and Role of transportation in society and Overview of the course	1	-		1,2,5
2	Highway planning and alignment	1	С	1	1, 2
3	Classification of rural and urban roads and its cross sectional elements	1	С	1	1, 2,10
4	Sight Distance – Stopping sight distance, Overtaking sight distance and intersection sight distance	2	C,I	1	1, 2, 10
5	Speed of vehicle on different terrain - Horizontal curve – circular curve radius – super elevation – extra widening - Design of Transition curve – set back distance – reverse curve and compound curve	4	C,D,I	1	1, 2, 10
6	Attainment of super elevation in field	1	С	1	1, 2, 10
7	Design of vertical alignment – summit and valley curve - underpass	2	C,D,I	1	1, 2, 10
8	Introduction to MXROAD software package for geometric design	1	D	1	12
	UNIT II: TRAFFIC FLOW MODELLING	12			
9	Fundamental parameters - speed, density, volume, travel time, headway, and spacing - time mean speed, space mean speed and their relation.	2	С	2	3, 4
10	Relation between speeds, flow, density, fundamental diagrams, Greenshield's model, Greenberg's logarithmic model - Moving observer method.	3	C	2	3, 4
11	Car-following models - Concept of stimulus-	3	C	2	3, 4

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	response, general motors models - Vehicle arrival models.				
12	Poisson distribution, headway modeling, random vehicle generation - Microscopic traffic simulation – demonstration.	4	C,I,O	2	3, 4
	UNIT III: TRAFFIC FACILITIES DESIGN	12			
13	Capacity and Level of service LOS - Definitions, highway capacity, factors affecting LOS - Urban Street - Classification, operational performance measures.	3	С	3	3, 4, 5
14	Traffic signs and road markings – channelization.	2	С	3	3, 5
15	Traffic rotary - design elements, capacity of rotary - Grade separated intersection - Elements of traffic signal - headway, saturation flow.	3	C, D	3	3, 5
16	Design principles of a traffic signal - Phase design, cycle time determination, green splitting - Vehicle actuated signals - Coordinated traffic signal - offset, common cycle length, bandwidth.	4	C, D	3	3, 4
	UNIT IV: INTRODUCTION TO FLEXIBLE PAVEMENT	12			
17	Materials - Basic properties of bitumen, Resilient modulus of aggregate and soil	2	С	4	1, 2
18	Cross-section of flexible pavement – specifications for different layers	2	С	4	1, 2
19	Bituminous concrete mix design	2	C,D	4	1, 2
20	Flexible pavement design factor – Traffic factor – equivalent single wheel load, standard axle load, truck factor, vehicle damage factor, number of repetition of standard axle load	3	C,I	4	1, 2, 6, 7
21	Flexible pavement design factor –environmental factor	1	С	4	1, 2, 6, 7
22	Design of flexible pavement – determination of pavement thickness and fatigue damage analysis	2	C,D	4	1, 2, 6, 7
	UNIT V: INTRODUCTION TO RIGID PAVEMENT	10			
23	Components of Rigid pavement	1	С	5	1, 2, 6, 8
24	Cement concrete mix design	2	C,D	5	1, 2, 6, 8
25	Design of cement concrete slab	3	C,D	5	1, 2, 6, 8
26	Design of transverse Joints	2	C,D	5	1, 2, 6, 8
27	Design of Longitudinal Joints	2	C,D	5	1, 2, 6, 8
	Total contact hours		6	50	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Chakroborthy and A. Das, "Principles of Transportation Engineering", Prentice-Hall of
	India, 2003
2.	S. K. Khanna, C.E.G. Justo and A. Veeraragavan, "Highway Engineering", Revised 10th
	edition, Nem Chand &Bros., Roorkee, 2014.
3.	Roess, R. P. McShane, W. R. & Prassas, E. S. (1998), Traffic Engineering, Prentice - Hall.
4.	Papacostas, C. S. and Prevedouros, P.D. (2001) "Transportation Engineering and Planning",
	Prentice Hall of India Pvt. Ltd.
5.	Kadiyali, L. R. (1987), "Traffic Engineering and Transportation Planning", Khanna
	Publishers, India.
6.	Yang Huang, Pavement Analysis and Design, Pearson, 2004
	REFERENCE BOOKS/OTHER READING MATERIAL

7.	Guidelines for the Design of Flexible Pavements, IRC :37- 2012, The Indian Road Congress,
	New Delhi, 2012
8.	Guidelines for the Design of Rigid Pavements for Highways, IRC:58-2011, The Indian Road
	Congress, New Delhi
9.	P.H. Wright and K.K. Dixon, Highway Engineering, John Wiley & Sons, Seventh Edition,
	2004
10.	AASHTO (2011), A Policy on Geometric Design of Highways and Streets, American
	Association of State Highway and Transportation Officials, Washington, D. C.
11.	http://nptel.ac.in/courses/105101087/ (as on 11.04.2016)
12.	MXROAD- Design manual

Course nat	Course nature Theory						
Assessment	Assessment Method (Weightage 100%)						
In-	Assessment	Cycle test	Cycle test	Cycle Test	Surprise	Quiz	Total
semester	Weightage	1 10%	15%	115%	5%	5%	50%
	End semester examination Weightage :						

	INDUSTRIAL TRAINING I	L	Т	Р	С
15CE390L	(Training to be undergone After Year II, Semester II)			1	1
	2 week practical training in industry				
Co-requisite:	NIL				
Prerequisite:	NIL				
Data Book /	NII				
Codes/Standards	INIL				
Course Category	P PROFESSIONAL CORE				
Course designed by	Department of Civil Engineering				
Approval	32 nd Academic Council Meeting, 2016				

PU	PURPOSE To provide practical exposure in Civil Engineering related organizations									
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOME					AES	5				
At	the end of th	e training, student will								
1.	Become av	vare of the practical applications of theoretical concepts	d	e	f	g	h	i	j	k
	studied in	the class rooms after undergoing two – week practical							-	
	training in	Civil Engineering related organizations.								

Description of course

Students have to undergo two-week practical training in Civil Engineering related organizations of their choice but with the approval of the department. At the end of the training student will submit a report as per the prescribed format to the department.

This course is mandatory and a student has to pass the course to become eligible for the award of degree.

Course natu	ire	PRACTICAL
Assessment	Method	
In-	Assessment tool	
semester	The student shall make a presentation	before a committee constituted by the department
	which will assess the student based of	on the report submitted and the presentation made.
	Marks will be awarded out of 100 and	appropriate grades assigned as per the regulations
	100%	

YEAR III, SEMESTER II

1501202		COMPUTER AIDED STRUCTURAL ANALYSIS				Р	С
15CE302						0	3
Co-requisite:	NI	L					
Prerequisite:	150	CE301					
Data Book /	NII	ſ					
Codes/Standards	INI	L					
Course Category	Р	PROFESSIONAL CORE	STRUCTURAL EN	VGIN	EER	ING	
Course designed by	De	partment of Civil Engineering					
Approval	32 ^r	^{ad} Academic Council Meeting, 2016					

PURPOSE		To enable students understand the stiffness mat programming and also to enable students get an plastic analysis and influence line diagram	rix meth exposure	od amenal to the and	ble for c alysis of	omputer arches,
IN	STRUCTI	ONAL OBJECTIVES	ST	UDENT O	OUTCON	1ES
At	the end of t	he course, student will be able to				
1.	Apply may insight int software	trix method to analyze structures and develop an o programming embedded in structural analysis	а	с	е	k
2.	Analyze a	rches and suspension cables and bridges	а	с		
3.	Draw infludetermina	uence line diagrams and deal with rolling loads for te structures	а	с		
4.	Draw influ indetermin	uence line diagrams and deal with rolling loads for nate structures	a	с		
5.	Carry out	plastic analysis of structures	а	с		

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: STIFFNESS MATRIX METHOD	16			
	Direct Stiffness Method				
1.	Introduction to stiffness and derivation of basic stiffness values and matrix equation	1	С, І	1	2
2.	Application of stiffness method to propped cantilevers and fixed beams	1	Ι	1	2
3.	Application of stiffness method to continuous beams up to a degree of indeterminacy of three	1	Ι	1	2
4.	Application of stiffness method to non sway and sway frames	1	Ι	1	2
5.	5. Application of stiffness method to sway frames up to a degree of indeterminacy of three		Ι	1	2
	Element Stiffness Method				
6.	Concept of element stiffness matrix for truss members.Global and local coordinates for truss elements	1	С	1	4
7.	Transformation of displacement and force in truss elements. Transformation of truss element stiffness matrix in local coordinates to global coordinates	1	С	1	4
8.	Assembling global stiffness matrix for trusses and formulating matrix equation. (Solution not required)	1	С	1	4
9.	Beam element stiffness matrix	1	Ι	1	4
10.	Generation of load vector for nodal and distributed loads for beams	1	Ι	1	4
11.	Assembling structure stiffness matrix and formulating matrix equation for beams. (Solution Not required)	1	Ι	1	4

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
12.	Frame element stiffness matrix and Transformation matrix	2	Ι	1	4
13.	Assembling global stiffness matrix for two element frame and formulation of matrix equation (solution not required)	2	Ι	1	4
14.	Introduction to structural analysis software like SAP, ETABS, STAAD.Pro	1	Ι	1	9,10,11
	UNIT II: THREE HINGED ARCHES AND SUSPENSION BRIDGES	12			
15.	Introduction to arches and their behavior under loads.Types of arches- three hinged, two hinged fixed arches	1	C	2	1,3,4
16.	Theoretical arch and Eddy's theorem	1	С	2	3
17.	Analysis of three hinged parabolic arches with supports at same and different levels – BM, SF, Normal thrust, Radial shear and maximum values	2	Ι	2	3,5,6
18.	Analysis of three hinged circular arches with supports at same levels - BM, SF, Normal thrust, Radial shear and maximum values	1	Ι	2	3,5,6
19.	Analysis of two hinged parabolic arches with supports at same levels- arches – finding horizontal reaction only.	1	Ι	2	3,5,6
20.	Introduction to methods of analysis of fixed arches	1	С	2	3,5,6
21.	Introduction to suspension cables and behavior of cable under point loads	1	С	2	3,5,6
22.	Analysis of suspension cables for uniformly distributed loads with pulley and saddle supports at same level and different levels and length of suspension cables	2	I	2	3,5,6
23.	Suspension bridges: Three hinged girder analysis for BM and SF	1	C, I	2	3,5,6
24.	Suspension bridges: Two hinged girder analysis for BM and SF	1	C, I	2	3,5,6
	UNIT III: INFLUENCE LINE DIAGRAMS FOR DETERMINATE STRUCTURES	11			3,5,6
25.	Concept of influence lines for BM, SF, Horizontal reaction, Normal thrust, Radial shear	1	С	3	3,5,6
26.	Muller Breslau's principle	1	С	3	3,5,6
27.	Influence lines using Muller Breslau's principle for simply supported beams, overhanging beams and cantilever for BM and SF – Use of software to plot ILD	2	Ι	3	3,5,6
28.	Finding maximum / absolute maximum BM and SF for simply supported beams due to series of moving loads using influence line diagrams – equivalent uniformly distributed load	3	Ι	3	3,5,6
29.	Influence line diagrams for determinates truss members, focal length, reversal of stresses	2	Ι	3	3,5,6
30.	Influence line diagrams for Horizontal thrust, BM, SF in three hinge arches	2	Ι	3	3,5,6
	UNIT IV: INFLUENCE LINE DIAGRAMS FOR INDETERMINATE STRUCTURES	9			
31.	Influence line diagrams for vertical support reactions for two span continuous beams	2	Ι	4	3,5,6
32.	Influence line diagrams for support moments, and	3	Ι	4	3,5,6

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	span moments for two span continuous beams				
33.	Influence line diagrams for shear for two span continuous beams	2	Ι	4	3,5,6
34.	Pattern loading from qualitative Influence line diagrams for multi-span continuous beams	1	Ι	4	3,5,6
35.	Qualitative influence lines for Horizontal thrust, reactions and moments for portal frames.	1	С	4	3,5,6
	UNIT V: PLASTIC ANALYSIS OF STRUCTURES	12			
36.	Introduction to Plastic Analysis -Plastic moment of resistance - Plastic Modulus - Shape factor - Load factor	2	C	5	3,5,6
37.	Shape factor for circular, rectangular, triangular, box and diamond shaped sections	1	Ι	5	3,5,6
38.	Shape factor for Tee and I section	1	Ι	5	3,5,6
39.	Method of plastic analysis – mechanism method and equilibrium method – lower bound, upper bound and uniqueness theorems	1	С	5	3,5,6
40.	Plastic hinge- hinge length – simply supported and fixed beam with full UDL /central/ point load	1	С	5	3,5,6
41.	Plastic analysis of indeterminate beams using mechanism method – continuous beams, fixed beams and propped cantilevers	3	Ι	5	3,5,6
42.	Plastic analysis of indeterminate frames using mechanism method – single bay, single storey rectangular portal frames.	2	Ι	5	3,5,6
43.	Introduction to pushover analysis	1	С	5	9-11
	Total contact hours	60			

LEARN	ING RESOURCES						
Sl.No.	TEXT BOOKS						
1.	Menon.D, "Structural Analysis", Alpha Science International Limited, 2009.						
2.	Pandit.G.S., Gupta.S.P., "Structural Analysis- A Matrix Approach", 2nd Edition, Tata						
	McGraw-Hill Education, New Delhi,2010.						
	REFERENCE BOOKS/OTHER READING MATERIAL						
3.	Punmia.B.C, Ashok Kumar Jain, Arun Kumar Jain, "Theory of Structures", Laxmi						
	Publications, New Delhi, 12 th Edition, 2004						
4.	Hibbeler, R.C., "Structural Analysis (8th edition)", Prentice Hall, New York, 2012						
5.	Bhavikatti.S.S, "Structural Analysis", Vol-2, E-2, Vikas Publishing House Pvt Limited, 2009.						
6.	Vaidyanathan .R, Perumal .P, "Comprehensive Structural Analysis-Volume II", Laxmi						
	Publications (P) Ltd., New Delhi, 2004.						
7.	Natarajan, C., Revathi, P., "Matrix Method Of Structural Analysis Theory and Problems",						
	PHI Learning Delhi. 2 nd Edition. 2013						
8.	Sterling Kinney .J, "Indeterminate Structural Analysis", Narosa Publishing House, 1987.						
9.	https://www.bentley.com/en/products/brands/staad						
10.	https://www.csiamerica.com/products/etabs						
11.	https://www.csiamerica.com/products/sap2000						

Course nature Theory							
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 50°							

15CE202I	COMPUTER AIDED STRUCTURAL ANALYSIS AND					Р	С	
ISCESU2L	TESTING LABORATORY					2	1	
Co-requisite:	150	15CE302						
Prerequisite:	NII	NIL						
Data Book /	NII	NII						
Codes/Standards	1911	_						
Course Category	Р	P PROFESSIONAL CORE STRUCTURAL ENGINEERING						
Course designed by	Department of Civil Engineering							
Approval	32 nd Academic Council Meeting, 2016							

PURPOSETo expose students to the use of MS Excel and structural analysis software packs for solving civil engineering problems and provide hands on experience on testin structural systems to understand their behavior.						
IN	STRUCTIO	ONAL OBJECTIVES	STUDENT OUTCOMES			
At	the end of th	ne course, student will be able to				
1.	Use Ms E	xcel to solve problems like design of beams, matrix	b			
	method of	structural analysis				
2.	Use STAA	D. Pro and ETABS to analyze and design structural	b			
	systems					
3.	. Understand the behavior of RCC / steel beams under flexure, b					
	shear, tors	ion by carrying out appropriate tests.				

COMPUTER LAB

Sl.No.	Description of experiments	Contact hours	C- D- I- O	IOs	Reference	
1.	Programming in MS Excel for the calculation of A_{st} for singly reinforced beams by LSM	2	0	1	1, 2, 3, 4	
2.	Solving matrix equation and finding member forces by stiffness method.	2	0	1	1, 2, 3, 4	
	Using STAAD.Pro / STAAD Foundation to analyze a	nd design f	ollow	ing stru	uctures,	
	including the dynamic analysis		1	1		
3.	Plane steel frames	2	0	2	1, 2, 3, 4	
4.	2D moment resistant RC frames	2	0	2	1, 2, 3, 4	
5.	5. 3D moment resistant RC frames		0	2	1, 2, 3, 4	
	Using SAP / ETABS analyze and design for following structures, including the dynamic					
	analysis		1	1		
6.	Plane steel frames	2	0	2	1, 2, 3, 4	
7.	2D moment resistant RC frames	2	0	2	1, 2, 3, 4	
8.	3D moment resistant RC frames	2	0	2	1, 2, 3, 4	
STRU	CTURAL ENGINEERING LAB				-	
9.	Testing of RCC beams under flexure	2	0	2	1	
10.	Testing of RCC beams under shear	2	0	2	1	
11.	Testing of RCC beams under torsion	2	0	2	1	
12.	Testing of castellated steel beam	2	0	2	1	
13.	Testing of frames for lateral loads	2	0	2	1	
14.	Slab testing	2	0	2	1	
15.	Model analysis using Muller Breslau principle	2	0	2	1	
	Total contact hours			30		

LEAR	LEARNING RESOURCES				
Sl.No.	REFERENCES				
1.	Laboratory Manual				
2.	https://www.bentley.com/en/products/brands/staad				
3.	https://www.csiamerica.com/products/etabs				

4. https://www.csiamerica.com/products/sap2000

Course nature PRACTICAL							
Assessment Method							
In-	Assessment	Experimente	Desord	MCQ/Quiz/Viva	Model		
semester	tool	Experiments	Recolu	Voce	examination		
	Weightage	40%	5%	5%	10%		
End semester examination Weightage : 40%							
1500204	HYDROLOGY AND IRRIGATION ENGINEERING				Т	Р	С
--------------------	--------------------------------------	---	---------------	----	---	---	---
15CE504	DESIGN				2	0	2
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	NI						
Codes/Standards	111	L					
Course Category	D	DROEESSIONAL CODE	WATER RESOURC	ES			
	P	PROFESSIONAL CORE ENGINEERING					
Course designed by	De	partment of Civil Engineering					
Approval	32 ^r	32 nd Academic Council Meeting, 2016					

PU	PURPOSE To acquire analytical ability in solving mathematical problems as applied to the respective branches of Engineering.						
INS	STRUCTIC	NAL OBJECTIVES	STUDENT OUTCOMES				
Att	the end of th	e course, student will be able					
1.	To study estimation	the hydrologic cycle, precipitation, runoff and its .	а	с	e		
2.	. To study the occurrence, movement and augmentation of ground water through Darcy's law, recuperation test, pumping test and a c e						
3.	To know impoundin	the importance, features and uses of diversion and ag structures	a		e		
4.	To explore	e the importance of rivers, reservoirs and silt control.	а	с	k		
5.	To learn a channel th	bout basics of irrigation, consumptive use and design a rough Kennedy's theory, Lacey's theory.	a	с	e		

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: SURFACE WATER HYDROLOGY	8			
1.	Introduction - overview of syllabus – Hydrologic cycle	1	С	1-4	1-7
2.	Precipitation – forms and types – Measurement of precipitation – Recording and Non-recording rain gauge - Rain gauge density	1	C, I	1	1, 2, 7
3.	Mean areal depth of precipitation – Arithmetic average method – Thiesson polygon method – Isohyetal method	2	C, I		1, 2, 7
4.	Estimation of missing precipitation – Optimum rain gauge network design - Probable maximum precipitation	2	C, D, I	1	1, 2, 7
5.	Runoff process – Components of stream flow – Factors affecting runoff – Estimation of runoff – Emphirical formulae and Infiltration method – introduction to software to analyze storm water system including rainfall, runoff, detention periods.	2	C, I	1	1, 2, 7
	UNIT II: GROUND WATER HYDROLOGY	8			
6.	Occurrence of ground water – Porosity – Permeability and transmissibility - Zones of subsurface water	1	С	2	1, 2, 5, 6, 7
7.	Movement of ground water - Darcy's Law – Specific yield and Specific retention - Aquifers and their types- Specific capacity – Coefficient of storage - Infiltration wells and Infiltration galleries	2	C, I	2	1, 2, 5, 6, 7
8.	Open wells - Tube wells – Types of tube wells - Yield of an open well - Pumping test – Recuperation test	2	C, I	2	1, 2, 5, 6, 7
9.	Steady radial flow to a well located in	3	C, I	2	1, 2, 5, 6, 7

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	unconfined and confined aquifers – Dupuit's and Thiem's equilibrium formulae - Spacing of wells				
	- Artificial recharge methods.				
	UNIT III: DIVERSION AND IMPOUNDING STRUCTURES	12			
10.	Weirs and barrages – Gravity and non-gravity	2	С	3	1, 3, 4, 6
	weirs – Diversion head works and its				
	components, simple explanation about weir				
	proper, under sluices, divide wall, fish ladder,				
	canal nead regulator, weirs ancillary works such				
11	Eailure of hydraulie structures Eailure by	2	C	3	1.6
11.	nining and failure by direct unlift Bligh's creen	2	C	5	1,0
	theory Lane's weighted creep theory and				
	Khosla's theory				
12.	Khosla's method of independent variables for	2	C, D,	3	1, 6
	determination of pressures and exit gradient for		Ι		
	seepage below a weir or a barrage. Design of				
	pucca floor and aprons.				
13.	Dams – Definition and uses - Classification –	2	С, І	3	1, 3, 4, 6
	Factors governing the selection of a particular				
	type of dam – Selection of dam site - Problems				
1.4	in dam construction	2	C	2	1246
14.	Gravity dam - Forces acting on a gravity dam -	2	C	3	1, 3, 4, 6
	stability				
15	Construction of gravity dam – Functions and	2	CI	3	1346
15.	types of galleries - Types of earthen dam –	2	С, 1	5	1, 5, 4, 0
	Causes of failure of Earthen dams				
	UNIT IV: RESERVOIR PLANNING	8			
16.	Rivers - Types and characteristics –	1	С	4	1, 3, 4, 6
	Classification based on the basis of the				
	topography of the river basin, Classification				
	based on the basis of flood hydrogaphs, Indian				
	rivers and their classification		~		
17.	Behaviour of rivers – Straight reaches, Bends,	1	С	4	1, 3, 4, 6
	Meanders – Causes of meandering, Cutoff –				
19	Kiver training - Classification	1	C	4	1216
10.	- Types of grovnes - Artificial cutoff - Pitched	1	C	4	1, 3, 4, 0
	island				
19.	Reservoir - Types – Suitable site for reservoir -	2	С	4	1, 3, 4, 6
	Storage capacity of reservoir - Area-Elevation		_		7 - 7 7 -
	curve and Storage Elevation curve - Storage				
	zones				
20.	Reservoir yield – Safe yield, Design yield,	2	C,D,	4	1, 3, 4, 6
	Secondary yield, Average yield - Mass curve		Ι		
	and Demand curve - Designing reservoir capacity				
	for a given yield – Designing yield from a				
21	Reservoir Losses Reservoir sedimentation Silt	1	CI	1	1316
21.	control – Pre constructing measures and Post	1	C, I	+	1, 5, 4, 0
	constructing measures				
	UNIT V: IRRIGATION	9			
22.	Irrigation - Necessity – Advantages and	2	C, I	5	1, 3, 4, 6
	disadvantages - Soil-water-plant relations -				
	Hygroscopic water, Capillary water,				

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	Gravitational water, Field capacity, Permanent				
	wilting point, Available moisture, Readily				
	available moisture – Depth of water stored in				
	root zone				
23.	Limiting soil moisture conditions – Depth and	2	С, І	5	1, 3, 4, 6
	frequency of irrigation - Crop season - Duty and				
	Delta – Factors affecting duty – Methods of				
	improving duty				
24.	Consumptive use - Estimation - Blaney Criddle	2	C, I	5	1, 3, 4, 6
	method - Pan evaporation method				
25.	Canal – Alignment of canals - Distribution	1	C	5	1, 3, 4, 6
	system – Channel losses				
26.	Description, functions and uses of Tank sluice,	2	C	5	1, 3, 4, 6
	Tank weir, Canal regulator, Cross regulator,				
	Canal fall, Canal escapes and Cross drainage				
	works				
	Total contact hours			45	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Santhosh Kumar Garg, "Irrigation Engineering and Hydraulic Structures", Khanna
	Publishers, 2000.
2.	Raghunath .H.M, "Hydrology", New Age International Publishers, New Delhi, 2007.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Asawa .G.L, "Irrigation and Water Resources Engineering", New Age International
	Publishers, New Delhi, 2005.
4.	Sharma .R.K, "Irrigation Engineering and Hydraulic Structures", Oxford and IBH
	Publishing Company, New Delhi, 2002.
5.	Raghunath .H.M, "Ground Water Hydrology", Wiley Eastern Ltd., Second reprint, 2000.
6.	Punmia B.C. and Pande B.B. Lal, " Irrigation and Water Power Engineering", Laxmi
	Publications Pvt. Ltd., New Delhi, 2009
7.	Subramanya K, "Engineering Hydrology", McGraw Hill Education (India) Pvt. Ltd., New
	Delhi, 2014

Course nature Theory							
Assessment Method (Weightage 100%)							
In	Assessment	Cycle test	Cycle test	Cycle Test	Surprise Test	Ouiz	Total
III-	tool	Ι	II	III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :						50%	

15CE306M		WATER SUPPLY AND ENVIR	ONMENTAL	L	Т	Р	С
ISCESUOIVI	ENGINEERING AND DESIGN					0	2
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	IC.	10,10500,2012					
Codes/Standards	15:	10300-2012					
Course Category	р	DROFESSIONAL CODE ENVIRONMENT					
Course Calegory	г	FROFESSIONAL CORE	ENGINEERING				
Course designed by	Department of Civil Engineering						
Approval	32 ⁿ	32 nd Academic Council Meeting, 2016					

PU	TO learn the fundamental concepts in the field of water supply and environmental engineering and design of water supply schemes and treatment units.					
IN	STRUCTIO	ONAL OBJECTIVES	STUDENT	OUTCO	MES	
At	the end of th	ne course, student will be able to				
1.	Know the	basics, importance, and methods of water supply.		a		
2.	Study the	various sources and properties of water.	a			
3.	3. Understand the various methods of conveyance of water. c e				e	
4.	. Learn the objectives and methods of water treatment and study the features and function of different water treatment a c e				e	
5.	Learn the pollution.	importance of rain water harvesting and water		a		

Session	Description of Topic	Contact	C-D-	IOs	Reference
	UNIT I - INTRODUCTION TO WATER SUPPLY	9	1-0		
1.	Environmental Engineering - Role of Environmental Engineer - Water supply – and its need-development-scheme-quantity of water	2	С	1-4	1
2.	Sources of water- estimating requirements - Design period – per capita consumption - fluctuations in demand pattern	3	C,D	1	2,3
3.	Population forecast- Arithmetic, Incremental	2	C,D	1	1,3
4.	Geometric methods, Zoning methods, Simple graphical method.	2	C,D	1	1,3
	UNIT II-QUALITY & STANDARDS OF WATER	9			
5.	Intake structures	3	С	2	2,3
6.	Quality of water - physical, chemical and biological aspects	3	С	2	3,4
7.	Analysis of water - water quality standards.	3	D,I	2	4
	UNIT III - CONVEYANCE & DISTRIBUTION SYSTEM	9			
8.	Hydraulics of flow in pipes - Pipe materials - laying, jointing, testing of pipes	2	C,D	3	1,3
9.	Pumping stations - selection of pumps - methods of distributing water- storage and distribution reservoirs	2	C,D,I	3	1
10.	Analysis of distribution system Hardy- cross method of balancing	3	C,D,I	3	3,4
11.	equivalent pipes –Introduction to SWMM, LOOP distribution system software.	2	C,D,I	3	3,4
	UNIT IV -WATER TREATMENT	9			
12.	Definition of unit process and unit operations - objectives of water treatment - methods &	2	С	4	1

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	sequence of treatment of water - typical flow				
	water				
13.	Coagulation, flocculation filtration and disinfection	2	D,I	4	1,3
14.	Principles functions of design - sedimentation	2	D,I	4	2,3
15.	flocculation- filter units miscellaneous methods	2	D,I	4	2,3
16.	Water softening- Iron and manganese removal – de-fluoridation and demineralization.	1	D,I	4	1,2
	UNIT V - WATER MANAGEMENT AND ENVIRONMENT	9			
17.	Sustainable Development	2	D,I	5	5
18.	Rain Water harvesting-Methods	2	D,I	5	5
19.	Water Pollution- Causes and effects of water pollution	2	С	5	2,5
20.	Role of regulatory bodies& Local bodies- CPCB-TWAD Board-CMWSSB etc-Water Act 1974	3	С	5	4,5
	Total contact hours		4	45	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Garg .S.K., "Environmental Engineering", Vol. I, Khanna Publishers, New Delhi, 2014.
2.	Duggal .K.N, "Elements of Environmental Engineering", S. Chand & Company Ltd.,
	New Delhi, 2012.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Paneerselvam .R "Environmental Engineering", Vol. I, SPGS Publishers Chennai, 2010.
4.	"Manual on Water Supply and Treatment," CPHEEO, Ministry of Urban Development,
	Government of India, New Delhi, 2009.
5.	Goel .P.K. "Water Pollution Causes , Effects and Control", " New age International
	Publishers "2011

Course nature Theory							
Assessment	Method (Weigh	tage 100%)					
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 5					50%		

1505208	CENTECHNICAL ENCINEEDINC II					Р	С
ISCESUO GEOTECHNICAL ENGINEENING II				2	2	0	3
Co-requisite:	NI	L					
Prerequisite:	15	15CE309 - GEOTECHNICAL ENGINEERING I					
Data Book /	NI	NII					
Codes/Standards	191.	NIL					
Course Category	D	DROEESSIONAL CODE	GEOTECHNICAL				
Course Calegory	г	P PROFESSIONAL CORE ENGINEERI					
Course designed by	Department of Civil Engineering						
Approval	321	32 nd Academic Council Meeting, 2016					

PU	PURPOSE To develop an understanding of the behavior of and to gain knowledge of the design methods the		foundation at can be a	s for engineer	ing structures ical problems.
IN	STRUCTI	ONAL OBJECTIVES	STUDEN	T OUTCOM	ES
At	the end of t	he course, student will be able to			
1.	Get fami essential investigat	liarized with a basic understanding of the steps involved in a geotechnical site ion.	а	e	
2.	Learn the governing foundation	principle types of foundation and the factors the choice of the most suitable type of n for a given solution, settlement of foundation.	a	e	k
3.	Get famili capacity e determinin slope.	iarized with the procedures used for: a) bearing estimation, b) load carrying capacity of pile c) ng earth pressure and d) concept on stability of	a	e	k

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: SITE INVESTIGATION AND SELECTION OF FOUNDATION	12			
1	Introduction- planning and stages in sub-surface exploration	1	С	1	1,2
2	Depth and spacing of exploration	1	С	1	1,2
3	Methods of exploration – Test pit- Trenches – Boring methods –Auger, Shell and Auger, wash boring, Rotary and percussion borings	3	С	1	1,2
4	Geophysical methods – Seismic refraction and Electrical resistivity method	2	С	1	1,2
5	Types of soil samples – disturbed and undisturbed samples - problems – Features of sampler affecting soil disturbance.	2	C,D,I	1	1,2
6	Standard penetration test – Corrections – problems – Static and Dynamic cone penetration test – bore log report	3	C,D,I	1	1,2
	UNIT II: BEARING CAPACITY – SHALLOW FOUNDATION	12			
7	Bearing capacity – definition -Types of failure	1	С	3	1,2
8	Bearing capacity of shallow foundation on homogenous deposits- Terzaghi's methods- problem	3	C,D,I	3	1,2
9	Bearing capacity - Skempton's methods- problem	1	C,D,I	3	1,2
10	Bearing capacity - BIS methods- problem	2	C,D,I	3	1,2
11	Effect of Water Table on bearing capacity- problem	2	C,D,I	3	1,2
12	Bearing capacity from in-situ tests – SPT, SCPT and Plate load test	2	C	3	1,2
13	Methods of improving bearing capacity	1	С	3	1,2
	UNIT III: FOOTINGS, RAFTS AND SETTLEMENT OF FOUNDATION	12			

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
14	Types of foundation	1	С	2	1,2,3
15	Contact pressure distribution below isolated footing	1	C	2	1,2,3
16	Types and proportioning of combined footing (Rectangular and Trapezoidal) - Problem	4	C,D,I	2	1,2,3
17	Types and application of mat foundation – Floating foundation	1	C	2	1, 2.
18	Settlement : Total and differential settlements	2	С	2	1,2,3
19	Causes and methods of minimizing settlement.	3	С	2	1,2,3
	UNIT IV: DEEP FOUNDATION	12			
20	Types and function of piles – Factors influencing the selection of pile	2	С	3	1,2,3,4
21	Load carrying capacity of single pile in cohesionless and cohesive soil – Static formulae-problem	2	C,D,I	3	1,2,3,4
22	Dynamic formulae (Engineering News and Hileys) - problem	2	C,D,I	3	1,2,3,4
23	Load carrying capacity from in-situ tests (SPT and SCPT) - Pile load test	2	С	3	1,2,3,4
24	Load carrying capacity of Pile group- problem	2	C,D,I	3	1,2,3,4
25	Negative skin friction – Under-reamed piles, Introduction to well foundation - Diaphragm walls	2	С	3	1,2,3,4
	UNIT V: EARTH PRESSURE AND STABILITY OF SLOPES	12			
26	Earth pressure in soils: active and passive states- problem	2	C,D,I	3	1,2,3,5
27	Lateral earth pressure- Rankine's Theory- Stratified soil- problem	4	C,D,I	3	1,2,3,5
28	Culmann's Graphical method	2	С	3	1,2,3,5
29	Slopes- Finite and Infinite slopes-Types of failure- Causes of failure-Remedial measures	2	С	3	1,2,3,5
30	Procedure for slip circle method and method of slices	2	С	3	1,2,3,5
	Total Contact hours		6	50	

LEAR	NING RESOURCES
Sl.No.	TEXT BOOKS
1	Joseph.E Bowles, "Foundation Analysis and Design", Mc Graw Hill Publishing co., 2001.
2	Murthy .V.N.S, "Textbook of Soil Mechanics and Foundation Engineering", CBS Publishers
	and Distributors, New Delhi, 2009.
Sl.No	REFERENCE BOOKS/OTHER READING MATERIAL
3	Arora .K.R. "Soil Mechanics and Foundation Engineering", Standard Publishers and
	Distributors, New Delhi, 2011.
4	Varghese, P.C., "Foundation Engineering", PHI Learning New Delhi. 2011
5	Punmia.B.C., "Soil Mechanics and Foundations", Laxmi publications Pvt Ltd., 2000.
6	Das .B.M, "Principles of Foundation Engineering", (Fifth Edition), Thomson Books, 2010.

Course nature Theory							
Assessment	Method (Weigh	tage 100%)					
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 50°					50%		

1505210	DDINCIDI ES OF CONSTRUCTION MANACEMENT		L	Т	Р	С	
ISCESIU	FR	PRINCIPLES OF CONSTRUCTION MANAGEMENT				0	2
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	NII	NU					
Codes/Standards	1111						
Course Category	р	PROFESSIONAL CORE	CONSTRUCTION				
	P	P PROFESSIONAL CORE MANAGEMENT					
Course designed by	De	Department of Civil Engineering					
Approval	32 ⁿ	^{ad} Academic Council Meeting, 2016					

PUF	PURPOSE To learn the fundamental concepts of construction management principles in th field of construction engineering and management.						
INS	TRUCTION	AL OBJECTIVES	STUDE	ENT	OU	TCOMES	
At th	ne end of the	course, student will be able					
1.	To know at	out the basics and importance of construction	а				
	managemer	nt andcash flow concepts.					
2.	To study ab	out the construction contract documents.	d	e	k		
3.	To impart t	he idea about planning and scheduling of activities	а	e	d		
	and schedu	ling.					
4.	To study ab	out the quality and safety in construction sites.	а	e	k		
5.	To study ab	out optimization techniques of construction	a				
	resources						

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I - CONSTRUCTION PROJECT FORMULATION	9			
1.	Introduction - Project Management: An Overview – Types, Project Organization	2	С	1	1,2,3,5
2.	Characteristics of Projects – Project life cycle.	1	C	1	1,2,3,5
3.	Project Appraisal – Feasibility study	1	С	1	1,2,3,5
4.	Introduction to Time value of money	1	С	1	1,2,3,5
5.	Net Present Value, Benefit Cost Ratio with problems	2	C,I	1	1,2,3,5
6.	Evaluation of Public Projects – BOOT, BOT, BOLT concepts.	2	0	2	1,2,3,5
	UNIT II - CONSTRUCTION CONTRACT	9			
7.	Indian Contracts Act 1872 – Basic Terminologies	2	C, I	2	1,2,3,5
8.	Engineering contract classification, Sub contracts	2	C, I	2	1,2,3,5
9.	CPWD – FIDIC form of contract methods	1	C	2	1,2,3,5
10.	Arbitration	2	С	2	1,2,3,5
11.	Tender – Basics of evaluation	2	С	2	1,2,3,5
	UNIT III - CONSTRUCTION PLANNING & SCHEDULING	9			
12.	Introduction – types of project plans - work breakdown structure	1	С	3	1,2,3,5
13.	Planning techniques - bar charts - preparation of network diagram -	1	C, I	3	1,2,3,5
14.	Critical Path Method Problems	3	C, I	3	1,2,3,5
15.	Program Evaluation And Review Technique With Problems	3	C, I	3	1,2,3,5
16.	Basics of Resource Management	1	C	3	1,2,3,5
	UNIT IV - CONSTRUCTION QUALITY AND SAFETY MANAGEMENT	9			
17.	Construction quality - inspection, quality control and quality assurance	2	С	4	4

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
18.	Total quality management - quality gurus and their teachings	2	C, I	4	4
19.	ISO standards - audit - evaluation of safety -	1	C	4	4
20.	Accident causation theories - health and safety act and regulations	2	С	4	4
21.	Role of safety personnel - causes of accidents - principles of safety - safety and health management system	2	C, I, O	4	4
	UNIT V: APPLICATION OF OPERATION RESEARCH TECHNIQUES IN CONSTRUCTION	9			
22.	Introduction -concepts in probability and statistics	1	C	5	6
23.	linear programming by Graphical Method- Different types of LPP Solution	2	C, I	5	6
24.	Transportation Problems	2	С, І	5	6
25.	Assignment Problems	2	C, I	5	6
26.	Simulation Techniques- Introduction to Monte Carlo Method simulation- functions of random variables	2	C, I, O	5	6
	Total contact hours			45	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Kumar NeerajJha, "Construction project management", Dorling Kindersley, New Delhi. 2013
2	Sengupta .B, Guha .H, "Construction management and planning", TataMcgrawHill,New
۷.	Delhi,2001.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Sharma .S.C, "Construction engineering and management", KhannaPublishers, Delhi, 2008.
4.	Murugesan .G, "Total quality management", Laxmi Publications, Delhi, 2013
5	Prasanna Chandra, "Planning, Analysis, Selection, Financing, Implementation, and Review",
5.	7 th Edition, TataMcgrawHill, New Delhi, 2001.
6.	PannerSelvam, "Operation research", PHI India Private limited, New Delhi, 2011.

Course nat	Course nature Theory						
Assessment Method (Weightage 100%)							
In	Assessment	Cycle test	Cycle test	Cycle Test	Summing Test	Ouiz	Total
In-	tool	Ι	II	III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5% 5%		50%
End semester examination Weightage :				50%			

	COMPUTER APPLICATIONS IN CONSTRUCTION	L	Т	Р	С
15CE312L MANAGEMENT				4	2
Co requisito:	15CE210				
Co-requisite.	IJCESIU				
Prerequisite:	NIL				
Data Book /	NII				
Codes/Standards	NIL				
Course Category	P PROFESSIONAL CORE				
Course designed by	Department of Civil Engineering				
Approval	32 nd Academic Council Meeting, 2016				

PU	PURPOSE To acquire practical exposure about preparation of drawings, readings, construction project planning , scheduling, resource allocation and tracking of projects using the software tools						truction ing the
IN	STRUCTI	ONAL OBJECTIVES	STUD	ENT	10 I	JTC	OMES
At	the end of t	he course, student will be able					
1.	1. To preparation of plan, elevation and sections of various types of b d						
	buildings using AutoCAD						
2.	. To acquire knowledge in preparation of planning and scheduling of d e k						
	construction projects by using MS Projects						
3.	. To acquire knowledge in preparation of planning and scheduling of d e k						
	constructi	on projects by using Primavera					

Sl.No.	Description of experiments	Contact hours	C- D- I- O	IOs	Reference
1.	Preparation of plan, elevation and section of residential buildings-single storey and double storey (load bearing structures)	4	D	1	5, 7
2.	Preparation of plan, elevation and section of institutional buildings - school.(framed structure)	6	D, I	1	5,7
3.	Preparation of plan, elevation and section of industrial buildings workshop (steel structure)	6	D, I	1	5, 7
4.	Basic concepts of construction planning, scheduling, control and its uses in MS Project and Primavera.	4	C	2	2,3,6
5.	Planning, scheduling and resource assigning in residential building by using MS Project.	12	I, O	2	6
6.	Planning, scheduling and resource assigning in infrastructure by using MS Project.	8	I, O	2	6
7.	Planning, scheduling and resource assigning in industrial buildings by using Primavera	12	I, O	3	2, 3
8.	Planning, scheduling and resource assigning in the interior design of hotel management by using primavera.	8	I, O	3	2, 3
	Total contact hours			60	

LEARN	ING RESOURCES
Sl.No.	REFERENCES
1.	Laboratory Manual
2.	Feigenbaum.L, "Construction Scheduling with Primavera Project Planner", Prentice Hall Inc., 1999.
3.	"Project planning and management: Primavera Reference guide", CADD Centre training services
4.	Paul F. Aubin, "Mastering Autodesk Revit Building", Cengage Learning, March 2006.
5.	Robert M. Thomas, "Advanced AutoCAD Release" 12, ED 3, Wiley, John & Sons, Incorporated, 1993.
6.	"Project planning and management: MS Project specially for Civil professional", CADD

	Centre training services
7.	Geprge Omura," <i>Introducing AutoCAD 2010 and AutoCAD LT 2010</i> ", Willey India Pvt. Ltd., 2010.

Course nature				Practical		
Assessment	Assessment Method (Weightage 100%)					
In-	Assessment tool	Experiments	Record	MCQ/Quiz/Viva Voce	Model examination	Total
semester	Weightage	40%	5%	5%	10%	60%
End semester examination Weightage :					40%	

YEAR IV, SEMESTER I

15CE401	ADVANCED RCC DESIGN	L 1	T 2	P 0	C 2			
Co-requisite:	NIL	NIL						
Prerequisite:	15CE204							
Data Book /	IS : 456 2000 SD 16 IS : 1242:2012 IDC 6 2010							
Codes/Standards	IS : 450-2000, SF = 10, IS : 1545.2012, IKC 0-2010							
Course Category	P PROFESSIONAL CORE STRUCTURAL ENGINEERING							
Course designed by	Department of Civil Engineering							
Approval	32 nd Academic Council Meeting, 2016							

PURPOSE To bring about an exposure to advanced topics in structural design compression of bridge prestressed concrete.				prising es and	g of R(CC
INSTRUCTIONAL OBJECTIVES STUDENT OUT					IES	
At	At the end of the course, student will be able					
1.	Design RCC cantilever and counterfort retaining walls a				с	e
2.	2. Design different type of water tanks including underground and overhead tanks				с	e
3.	3. Create an awareness on yield line theory of slabs and to design flat slabs a c c				e	
4.	. Design RCC slab culvert, girder bridge and to draw ILD for simple spans. a c e				e	
5.	5. Analyse prestressed concrete sections and design of beams. a				с	e

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I- RCC RETAINING WALLS	9			
1.	Introduction to Retaining Walls	1	С	1	2,4
2.	Design of cantilever retaining walls	4	C,D,I	1	2,4
3.	Design of counterfort retaining walls	4	C,D,I	1	2,4
	UNIT II- RCC WATER TANKS	9			
4.	Design of rectangular water tanks	2	C,D,I	2	3,4,5,6,10
5.	Design of circular water tanks	1	C,D,I	2	3,4,5,6,10
6.	Design of Underground Water Tanks	2	C,D,I	2	3,4,5,6,10
7.	Design of overhead water tank and Intze type tanks	2	C,D,I	2	3,4,5,6,10
8.	Design of Staging with columns and beams, Shaft and conventional types	2	C,D,I	2	3,4,5,6,10
	UNIT III: FLAT SLABS AND YIELD LINE THEORY	9			
9.	Concept and Advantages of Flat Slab,	1	С	3	2,3
10.	Design of flat slab using Direct Design method as per BIS code, use of design aids (SP16)	3	C,D,I	3	2,3
11.	Introduction to yield line theory	1	С	3	2,3
12.	Design of square and rectangular slabs for collapse loads using Yield line theory of slabs	2	C,D,I	3	2,3
13.	Design of circular and triangular slabs for collapse loads using Yield line theory of slabs	2	C,D,I	3	2,3
	UNIT IV: DESIGN OF BRIDGES	9			
14.	Types of bridges and culverts	1	С	4	7,8
15.	Simply supported girder bridges, Balanced cantilever and their behavior	1	С	4	7,8
16.	Introduction to IRC Loading, impact loading	1	C,D	4	7,8
17.	Codal Provisions for design	1	C,D	4	7,8
18.	Design of slab culvert for Class AA, 70R, Class A	3	C,D,I	4	7,8
19.	Loads on T-beam girder bridges using Courbans theory	1	C,D,I	4	7,8
20.	Drawing ILD diagram for simple spans and	2	C,D	4	7,8

	calculation of design Bending moment, shear				
	force for class AA and class A loading				
	UNIT V: PRESTRESSED CONCRETE	0			
	STRUCTURES	,			
21.	Basic concepts, Principle of prestressing methods and materials required	2	C,D	5	3
22.	Stress and Strength concept and Load balancing concept	1	C,D	5	3
23.	Analysis of sections subjected to flexure, Losses of prestress using Simple cable profile	4	C,D	5	3
24.	Introduction to design of beams	2	С	5	3
	Total contact hours		4	15	

LEARNING RESOURCES

Sl.No.	TEXT BOOKS
1.	Varghese.P.C, "Advanced Reinforced Concrete Design", Pretince-Hall India, 2005.
2.	Unnikrishna Pillai.S and Devadas Menon, "Reinforced Concrete Design," Tata MacGraw
	Hill Publishing Company Limited, Second Edition, New Delhi, 2010.
3.	Krishnaraju .N, Pranesh .R.N, "Design of Reinforced concrete IS : 456-2000", New age
	International Publication (P) Ltd., New Delhi, 2003.
4.	Ramamrutham.S, "Design of Reinforced concrete Structures", Dhanpat Rai Publishing
	Company (P) Ltd., New Delhi, 2015.
	REFERENCE BOOKS/OTHER READING MATERIAL
5.	Krishnaraju .N, "Prestressed Concrete", Tata McGraw-Hill Education, 2008, New Delhi.
6.	Punmia.B.C, Ashok Kumar Jain, Arun Kumar Jain, "Limit State Design of Reinforced
	Concrete", Laxmi Publications, New Delhi, 2007.
7.	Jain.A. K, "Reinforced Concrete Structures", Nem Chand & Brothers, Roorkee, 2002.
8.	Johnson Victor.D, "Essentials Of Bridge Engineering", 6/E, Oxford & IBH Publishing
	Company Pvt. Ltd., Fourth edition, 2007.
9.	Krishna Raju.N, "Design of Bridges", Oxford & IBH Publishing Company Pvt. Ltd., Fourth
	edition, 2010.
10.	Vazirani.V.N and Ratwani.M.M, "Design of Reinforced concrete Structures", 16th
	Edition, Khanna Publishers, New Delhi,

Course nature Theory				7			
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 50%					50%		

15CE/03	15CE403 ADVANCED STEEL DESIGN		L	Т	Р	С	
1302403		ADVANCED STEEL DESIGN					2
Co-requisite:	NI	NIL					
Prerequisite:	15	5CE303					
Data Book /	IC	$10 - 900 - 2007 - 9(-17) + 1 - (D_{12} + -1) + 10 - 975 - D_{12} + 1.2 + 2$					
Codes/Standards	15	IS : 800-2007, Steel Tables(Revised), IS : 875-Part 1,2 & 3					
Course Category	P PROFESSIONAL CORE STRUCTURAL ENGINEER						3
Course designed by	De	Department of Civil Engineering					
Approval	321	32 nd Academic Council Meeting, 2016					

PURPOSE	JRPOSE To develop knowledge in designing special steel structures						
INSTRUCTION	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES						
At the end of the	At the end of the course, student will be able to						
1.	Design eccentric and moment resistant connections	а	с	e			
2.	Design beam-columns, plate girder and gantry girder	а	с	e			
3.	Design column bases and eccentrically loaded base plate	а	с	e			
4.	Analyze and design roof truss and connections of industrial structures	a	с	e			
5.	Understand design principle of pre-engineered buildings and towers	а	с	e			

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I-ECCENTRIC AND MOMENT RESISTANT CONNECTIONS	9	10		
1.	Simple, Semi-rigid and Rigid Connections- Connection configurations	2	C	1	1-10
2.	Beam to Column connections-Stiffened Seat angle connections	2	C,D,I	1	1-10
3.	Bracket connections – Moment resistant connections	3	C,D,I	1	1-10
4.	Beam and Column Splices	2	C,D,I	1	1-10
5.	UNIT II-BEAM-COLUMNS	9			
6.	Behavior of short and long beam-columns	2	С	2	1-10
7.	Interaction Formula-Design approach to beam- columns (design principle only)	2	C,D	2	1-10
8.	Design of Plate Girder-General design considerations-Design procedure	2	C,D,I	2	1-10
9.	Design of Gantry Girder-Maximum load effects	3	C,D,I	2	1-10
10.	UNIT III-COLUMN BASES	9			
11.	Introduction to column bases and footings-types	2	С	3	1-10
12.	Design of slab base	2	C,D,I	3	1-10
13.	Design of gusseted base	2	C,D,I	3	1-10
14.	Design of base plate and connections with anchor bolts subjected to tension	3	C,D,I	3	1-10
	UNIT IV-INDUSTRIAL BUILDINGS	9			
15.	Structural Framing-Functions of Components- Types of roof trusses for different spans	1	C	4	1-11
16.	Estimation of dead, live and wind loads – Load combinations	2	C,I	4	1-11
17.	Analysis of roof truss	2	C,I	4	1-10
18.	Design of roof truss	1	C,D,I	4	1-11
19.	Design of Purlins	2	C,D,I	4	1-11

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
20.	Structural Behavior and Design of Connections	1	C,D,I	4	1-11
	UNIT V-PRE-ENGINEERED BUILIDINGS AND TOWERS	9			
21.	Components and Structural behavior of Pre- engineered buildings	1	C	5	1-10
22.	Design aspects	2	C,D	5	1-10
23.	Design of Connections	1	C,D	5	1-10
24.	Classification of Towers-Loads and their combinations-Wind Effects	1	C,D,I	5	1-10
25.	Methods of Analysis of Communication Towers	2	C,I	5	1-10
26.	Design principle-Foundation for Towers	2	C,D,I	5	1-10
	Total contact hours		4	15	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Subramanian.N, "Design of Steel Structures-Limit State Method", Oxford University Press,
	New Delhi, 2016
2.	Duggal .S.K, "Limit State Design of Steel Structures", Tata McGraw Hill Publishing
	Company, New Delhi, 2010.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Gaylord, E.H., Gaylord, N.C., and Stallmeyer, J.E., "Design of Steel Structures", McGraw Hill
	Pub.,1992.
4.	Ramamrutham .S., "Design of Steel Structures", Dhanpat Rai Pub., 2013.
5.	Vazirani .V.N, "Design and Analysis of Steel Structures", Khanna Publishes, 2003.
6.	Ramachandra .S, Virendra Ghelot, "Limit State Design of Steel of Structures", Scientific
	Publishers, New Delhi,2012.
7.	Arya.A.S. & Ajmani.J.L., "Design of Steel Structures", Nemchand & Bros., 2011.
8.	Dayarathnam .P, "Design of Steel Structures", S.Chand and Company Ltd., 2008.
9.	Kazimi. S. M. A. and Jindal. R. S., "Design of Steel Structures", 2nd Edition, Prentice Hall
	of India,1988.
10.	Shiyekar., M.R, "Limit State Design in Structural Steel", PHI Learning, New Delhi, 2013.
11.	IS: 875(Parts 1,2,3): "Code of Practice for Design Loads on Buildings and Structures", BIS,
	New Delhi, 1987 (Reaffirmed 2003)

Course nat	Course nature Theory						
Assessment	Method (Weigh	tage 100%)					
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 5					50%		

15CE405		SANITADV ENCINEEDING AND DESIGN			Т	Р	С
15CE405	SAMITART ENGINEERING AND DESIGN					0	2
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	NII	NII					
Codes/Standards	INI	NIL					
		ENVIRONMENTAL					
Course Category	Р	PROFESSIONAL CORE	ENGINEERING				
Course designed by	De	Department of Civil Engineering					
Approval	32 ^r	^{ad} Academic Council Meeting, 2016					

PU	RPOSE	RPOSE To familiarize about the importance and methods of sewage treatment and solid waste with special attention to design and application.					
IN	STRUCTI	ONAL OBJECTIVES	STUDENT	OUTCO	OMES		
At	the end of t	he course, student will be able to					
1.	Know the basics of sewage, types of sewers and sewer a						
2.	learn the features of various sewer appurtenances. a c						
3.	. Learn the objectives and methods of sewage treatment and study the features and function of different primary treatment a e units.				e		
4.	Study the treatment	e features and function of different secondary units.	a	с	e		
5.	Learn the methods of	objectives and methods of sewage disposal and f solid waste and sludge management.	a		e		

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I - SANITATION	9			
1.	Sewage - Characteristics of sewage- sewer, sewage and sewerage - Components of sewerage system - Conservancy system, Water carriage system	3	С	1-4	1-4
2.	Classification of sewerage systems - quantity of sanitary sewage - Variation in sewage flow	2	С	1	1,3,4
3.	Design of flow of sewage for separate, storm and combined sewers – full flow	2	C,D	1	1,3,4
4.	partial flow conditions - design of separate sewers using Manning's formula-Introduction to SEWER software package- custom-made sewer design using MS-Excel	2	C,D	1	1,3,4
	UNIT II - SEWER MATERIALS, CONSTRUCTION AND APPURTENANCES	9			
5.	Materials for pipe sewers - construction - laying , jointing, dewatering and testing	2	С	2	1,3,4
6.	Sewer appurtenances - traps	3	C,D	2	1,2
7.	Plumbing system of drainage - one pipe system	2	D,I	2	1,2
8.	two pipe system of plumbing - sanitary fittings	2	D,I	2	1,2
	UNIT III - SEWAGE TREATMENT	9			
9.	Objective - Unit Operation and Processes - Selection of treatment processes	1	C,D	4	2,3,4
10.	Onsite sanitation - Septic tank, Grey water harvesting	3	C,D,I	4	2,3,4
11.	Primary treatment - Principles, functions and design of screen	3	C,D	4	2,3,4
12.	Grit chambers and primary sedimentation tanks	2	C,D	4	2,3,4
	UNIT IV - SECONDARY TREATMENT	9			
13.	Objective -Selection of Treatment Methods - Principles, Functions and Design of treatment	2	С	4	3,4

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	Units				
14.	Activated Sludge Process and Trickling filter	2	D,I	4	3,4
15.	Other treatment methods - Oxidation ditches, UASB - Waste Stabilization Ponds	3	D,I	4	3,4
16.	Reclamation and Reuse of sewage - Recent Advances in Sewage Treatment - Construction and Operation & Maintenance of Sewage Treatment Plants	2	D,I	4	3,4
	UNIT V - SEWAGE DISPOSAL, SLUDGE MANAGEMENT AND SOLID WASTE MANAGEMENT	9			
17.	Sewage Disposal - Dilution - self purification of running streams	1	D,I	4,5	3,4
18.	Oxygen sag curve land disposal - sewage farming - deep well injection - soil dispersion system.	3	С	4,5	4
19.	Objectives of sludge treatment - properties and characteristics of sludge - sludge digestion - thickening - dewatering - conditioning -	3	С	4,5	2,3,4
20.	Sludge drying beds - biogas recovery. solid waste -generation-collection-conveyance-disposal.	2	С	4,5	4
	Total contact hours		4	15	

LEARN	ING RESOURCES
Sl. No	TEXT BOOKS
1.	Garg .S.K "Sewage Disposal & Air Pollution," Khanna Publishers, New Delhi, 2004.
2.	Duggal.K.N, "Elements of Environmental Engineering", S. Chand & Company Ltd., New
	Delhi, 2002.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Paneerselvam .R "Environmental Engineering", Vol. II, SPGS Publishers Chennai, 2006.
4.	"Manual on Sewerage & Sewage Treatment", CPHEEO, Ministry of Urban Development,
	Government of India, New Delhi, 2009.

Course nature			Theory						
Assessment Method (Weightage 100%)									
	Assessment	Cycle test	Cycle test	Cuala Test III	Surprise	Ouia	Total		
In-semester	tool	Ι	II	Cycle Test III Test		Quiz	Total		
	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage :									

15CE407I	ENVIRONMENTAL ENGINEERING LABORATORY			Т	P	С
15CE40/L				0	2	1
Prerequisite:	150	CE306M				
Data Book /						
Codes/Standards	INII					
Course Category	Р	Professional Course				
Course designed by	Dep	Department of Civil Engineering				
Approval	32 ⁿ	^d Academic Council Meeting, 2016				

PU	PURPOSE This subject helps to gain knowledge on characteristics of water and waste water.								
IN	STRUCTIO	ONAL OBJECTIVES	STUDENT OUTCOMES						
At	At the end of the course, student will be able to								
1.	Get hand-	on experience in the operation of equipment's like	h						
	pH meter,	TDS meter, turbidity meter, etc.	U						
2.	Know the	drinking water quality standards and the waste water	h						
	disposal st	andards	D						
3.	Gain knov	vledge in importance of treatment of water and waste	h						
	water		0						

Sl.No	Description of experiments	Contact	C-D-I-	IOs	Reference
	res res res su	hours	0		
1.	Introduction	2	0	1	1,2
2.	Measurement of pH	2	0	1	1,2
3.	Estimation of Optimum Coagulant Dose by Jar Test	2	0	1	1,2
4.	Measurement of Conductivity	2	0	1	1,2
5.	Estimation of Suspended, Settleable, Volatile and fixed solids.	2	0	1-3	1-3
6.	Estimation of Dissolved Oxygen	2	0	1,2	1-3
7.	Determination of Turbidity by using Nephlometer	2	0	1,3	1
8.	Determination of Iron and Fluoride	2	0	1	1
9.	Estimation of Chlorides	2	0	1	1
10.	Estimation of Residual Chlorine	2	0	1	1,2
11.	Estimation of Alkalinity	2	0	1	1
12.	Estimation of Hardness by EDTA method	2	0	1,2	1
13.	BOD test for water and waste water.	2	0	1,3	1-3
14.	COD test for water and waste water.	2	0	1,2	1-3
15.	Introduction to Bacteriological Analysis	2	0	1,3	1
	Total contact hours		30)	

LEARN	ING RESOURCES
Sl.No.	REFERENCES
1.	Garg .S.K, "Environmental Engineering", Vol. I, Khanna Publishers, New Delhi, 2004
2.	IS:10500-2012 "Indian Standards for Drinking Water", Bureau of Indian Standards, New
	Delhi.
3.	IS:2490-1981,"Indian Standards for Industrial and sewage effluent discharge", Bureau of
	Indian Standards, New Delhi.
4.	"Environmental Engineering lab manual", Department of Civil Engineering, SRM
	University(Revised 2015).

Course nat	Course nature Practical								
Assessment	Assessment Method (Weightage 100%)								
In- semester	Assessment tool	Experiments	Record	Viva Voce	Model examination	Total			
	Weightage	40%	5%	5%	10%	60%			
End semester examination Weightage :									

15CE400	OUANTITY SUDVEVING AND VALUATION					Р	С
15CE409		QUANTILL SURVELLING AND VALUATION				0	2
Co-requisite:	NI	L					
Prerequisite:	NI	NIL					
Data Book /	NII	ſ					
Codes/Standards	INI	L					
Course Category	D	PROFESSIONAL CORE	CONSTRUCTION				
Course Calegory	Г	FROPESSIONAL CORE	MANAGEMENT				
Course designed by	De	Department of Civil Engineering					
Approval	32 ^r	32 nd Meeting of academic council, 2016					

PU	PURPOSE To provide hands-on experience on estimation of RCC, steel, masonry buildings roads and culverts and inculcate the fundamentals of valuation, contracts and tender							
IN	STRUCTI	ONAL OBJECTIVES	STUDENT OUTCOMES					
At the end of the course, student will be able								
1.	To unde	rstand the fundamentals of estimation and	а					
	specificati	on						
2.	To provid	e exposure to rate analysis	а					
3.	To provid	e hands on experience on estimation	а					
4.	To study t	he fundamentals of valuation	f	j	k			
5.	To carry o	ut valuation by different methods.	f	j	k			

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
	UNIT I - INTRODUCTION TO ESTIMATES AND SPECIFICATIONS	9			
1.	Introduction to Quantity surveying – Types of estimates	2	С,О	1	1.2.3.4
2.	Principles in selecting units of measurement for items, various units and modes of measurement for different trades	2	C,O	1	1.2.3.4
3.	Degree of accuracy in measurements, I.S. 1200, Lump sum and Contingency provisions in Estimates	2	С,О	1	1.2.3.4
4.	Specifications – purpose and basic principles of general and detailed specifications	1	С,О	1	1.2.3.4
5.	detailed specifications for various items of work, Approximate estimates, purpose, various methods used for buildings	2	С,О	1	1.2.3.4
	UNIT II - RATE ANALYSIS	9			
6.	Taking out quantity, Measurement and abstract sheets and recording	2	С,О	2	1.2.3.4
7.	Categories of Labourers- Material requirements for different items of works- Labour requirement for different items of works	2	С,О	2	1.2.3.4
8.	Standard Data Book- Task or Out turn of labourers -Cost of materials and wages of labour	2	С,О	2	1.2.3.4
9.	Schedule of Rates- Revision of rates- Market Rates	1	С,О	2	1.2.3.4
10.	Cost of conveyance- Handling charges, Preparation of bills of quantities	2	С,О	2	1.2.3.4
	UNIT III - ESTIMATION OF BUILDINGS	9			
11.	Reading and interpretation of architectural and structural drawings	1	C,D,O	1,3	1,2,3,5

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference	
12.	Detailed estimate – Load bearing masonry building	2	C,D,I,O	1,3	1,2,3,5	
13.	Detailed estimate – Framed structure	2	C,D,I,O	1,3	1,2,3,5	
14.	Detailed estimate – Steel Structure	2	C,D,I,O	1,3	1,2,3,5	
15.	Bar bending schedule – Slab, Beam, Column & Footing	2	C,D,I,O	1,3	1,2,3,5	
	UNIT IV - ESTIMATION OF INFRASTRUCTURES	9				
16.	Detailed estimate – Culverts	2	C,D,I,O	1,3	1,2,3,5	
17.	Detailed estimate – Roads – road materials for flexible and rigid pavements	2	C,D,I,O	1,3	1,2,3,5	
18.	Detailed estimate – bridge	2	C,D,I,O	1,3	1,2,3,5	
19.	Detailed estimate – water supply& drainage	2	C,D,I,O	1,3	1,2,3,5	
20.	Detailed estimate – Railway projects	1	C,D,I,O	1,3	1,2,3,5	
	UNIT V – FUNDAMENTALS AND METHODS OF VALUATION	9				
21.	Principles & Purpose of valuation – Types, Mortage & Lease	2	С,О	4,5	1,6,7,8	
22.	Problems on valuation, Valuer and his duties, Form of rent, different types of rent	2	С,О	4,5	1,6,7,8	
23.	Years' Purchase – Capital cost, Method of valuation	2	С,О	4,5	1,6,7,8	
24.	Reversion value of land, annuity perpetual, whole life	2	С,О	4,5	1,6,7,8	
25.	Deferred Depreciation – Obsolescence – Sinking fund	1	С,О	4,5	1,6,7,8	
	Total contact hours	45				

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Chakraborti .M," Estimating Costing", Specification and Valuation in Civil Engineering,
	2001.
2.	Dutta .B.N, "Estimating and Costing in Civil Engineering Theory and Practice," 2000.
3.	Birdie .G.S, "A Text Book on Estimating and Costing", Dhanpat Rai and Sons, New Delhi,
	2000.
	REFERENCE BOOKS/OTHER READING MATERIAL
4.	Joglekar .P.T, "Practical Information for Quantity Surveyors", Mrs. Mandakini Joglekar,
	Pune,1990.
5.	Rangwala .S.C.," <i>Elements of Estimating and Costing</i> ", Charotar Publishing House, Anand,
	1987.
6.	Rangwala .S.C,"Valuation of Real Properties", Charotar Publishing House, Anand, 1984.
7.	Jagannathan .G, "Getting More at Less Cost", - The Value Engineering Way, Tata McGraw
	Hill, New Delhi, 1992.
8.	Lecture notes on "Development of Real Estate Business", Department of Civil Engineering,
	S.R.M. Engineering College, 2002

Course nat	Course nature Theory						
Assessment Method (Weightage 100%)							
т	Assessment	Cycle test	Cycle test	Cycle Test	Surprise	Ouiz	Total
In-	tool	Ι	II	III	Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage:							50%

	INDUSTRIAL TRAINING II	L	Т	Р	С
15CF301I	(Training to be undergone after After Year III,	0	0	1	1
13013911	Semester II)				
	2 week practical training in industry				
Co-requisite:	NIL				
Prerequisite:	NIL				
Data Book /	NII				
Codes/Standards	INIL				
Course Category	P PROFESSIONAL CORE				
Course designed by	Department of Civil Engineering				
Approval	32 nd Academic Council Meeting, 2016				

PU	TRPOSE To provide practical exposure in Civil Engineering related organizations									
IN	INSTRUCTIONAL OBJECTIVES					OU	ГСС	MI	ES	
At	At the end of the training, student will									
1.	Become av	vare of the practical applications of theoretical	d	e	f	g	h	i	j	k
	concepts studied in the class rooms after undergoing two – week									
	practical training in Civil Engineering related organizations.									

Description of course Students have to undergo two-week practical training in Civil Engineering related organizations of their choice but with the approval of the department. At the end of the training student will submit a report as per the prescribed format to the department. This course is mandatory and a student has to pass the course to become eligible for the award of degree.

Course natu	Ire PRACTICAL
Assessment	Method
In-	Assessment tool The student shall make a presentation before a committee constituted
semester	by the department which will assess the student based on the report submitted and the presentation made. Marks will be awarded out of 100 and appropriate grades assigned as per the regulations
	100%

15CE375I	MINOP PROJECT	L	Т	Р	С
IJCE575L	MINOK I KOJEC I	0 0 4			
Co-requisite:	NIL				
Prerequisite:	NIL				
Data Book /	NII				
Codes/Standards	NIL				
Course Category	P PROFESSIONAL CORE				
Course designed by	Department of Civil Engineering				
Approval	32 nd Academic Council Meeting, 2016				

PURPOSE To carry out a design project in one of the specializations of civil engineering with multidisciplinary component							
INST	FRUCTION	NAL OBJECTIVES	STUDENT OUTCOMES				
After	r completing	the minor project student will					
1.	Be equipp	ed to carry out the full fledged project work to be	a-k				
	taken subs	sequently in VIII semester.					

Description of courseThe students will carry out a project in one of the following civil engineering areas but with
multidisciplinary component involving other areasStructural EngineeringGeotechnical
EngineeringWater Resources Engineering and environmental engg. Geomatics Engineering and
surveying Construction managementTransportation engineering Student groups will be formed
(Maximum: 6 in a group) and a faculty member will be allocated to guide them. The final year Major
Project 15CE496L need not be a continuation of Minor Project.

Course natu	re	P	RACTICAL								
Assessment	Method										
In-	Assessment	t tool									
semester	There will I	be three reviews . First revie	w will not carry any marks but the project topic								
	will be fina	<i>i</i> ll be finalized in it. Of remaining 2 reviews one will be carried out in the mid-semester									
	and the las	nd the last one by the end of semester. The break-up awarding internal assessment									
	marks is giv	narks is given below:									
	Marks	Awarded by	Criteria								
	30	Guide	For regularity, systematic progress, extent								
			of work and quality of w								
	20	Review committee during	II Presentation, contents and viva								
		review									
	20	Review committee during	g Quality of project report								
		III review									
	10	Review committee during	g Multidisciplinary component								
		III review									
	20	Review committee during	Presentation, contents and viva								
		III review									
	100%										

YEAR IV, SEMESTER II

	15CE496L			MA	AJOR PROJE	ССТ				L 0	Т 0	P 24	C 12
Co-r	requisite:		NIL										
Prer	equisite:		NIL										
Date	Data Book /												
Codes/Standards													
Cou	rse Category		P PROF	ESSIONAI	L CORE								
Cou	rse designed	by	Department	t of Civil E	Ingineering								
App	roval		32 nd Acade	mic Counc	il Meeting , 20)16							
PURPOSEThe Major Project experience is the culminating academic endeavor of students we can a degree in their Undergraduate Programs. The project provides students we the opportunity to explore a problem or issue of particular personal or profession interest and to address that problem or issue through focused study and applied research under the direction of a faculty member. The project demonstrates the student's ability to synthesize and apply the knowledge and skills acquired in his academic program to real-world issues and problems. This final project affirms students' ability to think critically and creatively, to solve practical problems, to make reasoned and ethical decisions, and to communicate effectively.INSTRUCTIONAL OBJECTIVESSTUDENT OUTCOMES								ents wi ssiona ied the n his/ rms s, to IES	vho th al her				
Afte	r completing	the ma	jor project	students wi	ill be able to						6		<u> </u>
1	Provide stu and skills a issue.	dents v acquire	d in the oppo	ortunity to ourses to a	apply the kno a specific prot	wledge olem or	а	b	с	e	f		1
2	Extend the interest, we individuals	eir aca orking	demic expe with new ic	rience inte leas, issue	o areas of p s, organization	ersonal ns, and	a	с		e	f		i
3	individuals. a c Think critically and creatively about academic, professional, a c or social issues and to further develop their analytical and ethical leadership skills necessary to address and help solve these issues c							e	f	h	i		
4	refine rese written and	arch s /or ora	cills and de communica	emonstrate tion skills	their proficie	ency in	а	с	e	f	g	i	j
5	Take on the a professio work	e challe nal ma	nges of tean nner, and d	nwork, pre locument	pare a presenta all aspects of	ation in design			d			d	k

Session	Description of course	Contact hours	C-D- I-O	IOs	Refer ence
	 The Major project is a major component of our engineering curriculum: it is the culmination of the program of study enabling the students to showcase the knowledge and the skills they have acquired during the previous four years, design a product/service of significance, and solve an open-ended problem in engineering. Each student must register to the project course related to his or her program Major Project course consists of one semester and would be allowed to register only during the final year of study. The Major Project may be initiated during the pre-final semester but will be assessed and 		C,D,I, O	1,2,3, 4,5	

credits transferred only during the last semester		
of study, upon completion of all other degree		
requirements. Generally the undergraduate		
major project is a team based one.		
5. Each team in the major project course will		
consist of maximum of 5 students.		
6. Each project will be assigned a faculty, who will		
act as the supervisor.		
7. The project shall be driven by realistic		
constraints like that related to economic,		
environmental, social, political, ethical, health &		
safety, manufacturability and sustainability.		
8. Each group must document and implement a		
management structure. Group leadership roles		
must be clearly identified including who has		
responsibility for monitoring project		
deliverables and group coordination.		
9. A group project may be interdisciplinary, with		
students enrolled in different engineering		
degrees, or in Engineering plus other faculties		
such as Management, Medical and Health		
Sciences, Science and Humanities.		
10. Each student team is expected to maintain a log		
book that would normally be used to serve as a		
record of the way in which the project		
progressed during the course of the session.		
11. Salient points discussed at meetings with the		
supervisor (i.e., suggestions for further		
meetings, changes to experimental procedures)		
should be recorded by the student in order to		
provide a basis for subsequent work.		
12. The logbook may be formally assessed,		
member will be clearly identified and the		
weightage of this component will be explicitly		
considered while assessing the work done		
14 A project report is to be submitted on the topic		
which will be evaluated during the final review.		
15. Assessment components will be as spelt out in		
the regulations.		
16. The department will announce a marking		
scheme for awarding marks for the different		
sections of the report.		
The project report must possess substantial technical		
depth and require the students to exercise analytical,		
evaluation and design skills at the appropriate level.		
MAJOR PROJECT		
Each project will cover all the aspects (to the extent		
possible) like investigation, planning, designing,		
detailing and estimating of a civil engineering		
structure / process in which the aspects like analysis,		
Alternately a few research problems also may be		
identified for investigation and the use of laboratory		
facilities and appropriate design component shall be		
embedded in the work. The project shall be driven by		
realistic constraints like that related to economic		
environmental, social, political, ethical, health &		
safety, manufacturability and sustainability. Each		

project work will have multidisciplinary component		
either involving civil engineering areas other than		
that of the primary focus area of the project work		
under consideration or/ and components from other		
programs like Architecture, Mechanical Engineering		
etc. The outcomes to be attained by students by		
doing the project work shall be spelt out clearly. A		
project report is to be submitted on the topic which		
will be evaluated during the final review. Major		
project work need not be a continuation of		
15CE375L Minor Project		
PRACTICE SCHOOL		
Alternately, a student is encouraged to take an		
industrial project with civil engineering		
organizations or firms chosen by the institute. In		
such cases the student will stay with the firm and		
carry out the project. The project will be guided by		
the faculty member and the concerned officer in the		
industry All the requirements spelt out under '		
MAIOR PROJECT' above shall be incorporated		
under this work also However reviews will be		
conducted in the institute which the student shall		
conducted in the institute which the student shall		
attend.		

Course nat	ure		PRACT	PRACTICAL			
Assessment	t Method						
In- semester	Assessment tool	Review I	Review II	Review III	Total		
	Weightage	10%	15%	20%	45%		
End semester	Assessment tool	Project Report	Viva Voce	Viva Voce			
	Weightage	25%	30%		55%		

ELECTIVE I TRANSPORTATION ENGINEERING OFFERED IN

III YEAR, II SEMESTER

ELECTIVE I

15002500	RAILWAY, AIRPORT AND HARBOUR					Р	С
ISCESSUE		3	0	0	3		
Co-requisite:	NI	L					
Prerequisite:	150	CE311					
Data Book /	NII	ſ					
Codes/Standards	INII						
Course Category	D	PROFESSIONAL ELECTIVE	TRANSPORTATIC)N			
Course Calegory	Г	FROFESSIONAL ELECTIVE	ENGINEERING				
Course designed by	De	partment of Civil Engineering					
Approval	32 ⁿ	^{ad} Academic Council Meeting, 2016					

PURPOSE		To impart the knowledge of planning, design, construction and maintenance of railway									
10	KI USE	tracks, airports and harbours.									
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES											
At	the end of th	he course, student will be able									
1.	To get exp	osed to Railway Planning and design	а	с							
2.	To underst	tand the process of operation and maintenance of	0		12						
	Railway tr	ack	a	е	К						
3.	To attain k	mowledge on the concepts of planning and	0	0	ŀ						
	design of a	airport components	a	C	ĸ						
4.	To acquire knowledge about the various components of			ŀ							
	Harbour an	nd docks	a	ĸ							

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: RAILWAY PLANNING AND DESIGN	9			
1.	Introduction to railway engineering - Role of Indian Railways in National Development	1		1	1,6
2.	Track Alignment - Obligatory points - Engineering Surveys for Track Alignment – Conventional and Modern methods (Remote Sensing, GIS & GPS, EDM and other equipment)	2	С	1	1,6
3.	Permanent Way and its components – Functions of each component - Concept of Gauges - Coning of Wheels - Creeps and kinks	2	С	1	1,6
4.	Geometric Design of Railway Tracks – Gradients and Grade Compensation - Super-Elevation, Widening of Gauges in Curves, Transition Curves, Horizontal and Vertical Curves	4	C,D,I	1	1,6
	UNIT II: RAILWAY TRACK OPERATION AND MAINTENANCE	9			
5.	Points and Crossings - Turnouts – Types - Working Principle Signaling, Interlocking and Track Circuiting	2	С	2	1,6
6.	Construction & Maintenance – Conventional, Modern methods and Materials, Track Drainage	2	С	2	1,6
7.	Track Modernization– Automated maintenance and upgrading, Technologies, Re-laying of Track	2	С	2	1,6
8.	Lay outs of Railway Stations and Yards, Rolling Stock, Tractive Power, Track Resistance, Level Crossings		С	2	1,6
	UNIT III: AIRPORT PLANNING AND GEOMETRIC DESIGN	10			
9.	Advantages and Limitations of Air Transport, Characteristics of Air travel	1	С	3	2,3,7

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
10.	Airport Master Plan – Evaluation and Institutional arrangements - Site Selection and survey, Components of airport	1	С	3	2,3,7
11.	Runway Design- Orientation, Cross wind Component, Wind rose Diagram (Problems)	2	C,I	3	2,3,7
12.	Basic Runway length and Corrections for Gradients (Problems), Airport classification, Geometric design and specifications, Runway patterns	3	C,I	3	2,3,7
13.	Taxiway Design – Geometric Design elements and specifications, Minimum Separation Distances, Airport Drainage Airport Zoning - Clearance over Highways and Railways	2	С	3	2,3,7
14.	Visual Aids – Runway and Taxiway Markings, Wind Direction Indicators, Runway and Taxiway Lightings	1	С	3	2,3,7
	UNIT IV: PAVEMENT DESIGN AND EVALUATION	8			
15.	Traffic component in pavement design	2	C,I	3	2,3,7
16.	Structural design of runway	2	C,D	3	2,3,7
17.	Pavement evaluation	2	С,О	3	
18.	Specification for airfield rigid pavement	2	С	3	2,3,7
	UNIT V: HARBOUR ENGINEERING	9			
19.	History and modern trends of waterway transportation, Definition of Terms - Harbours, Ports, Docks, Tides and Waves, Littoral Drift, Sounding, Classification of Harbours, Site Selection & harbour planning	3	С	4	4,5,8
20.	Types of Layouts of ports and components, Approach facilities	2	С	4	4,5,8
21.	Protection facilities – Breakwater and its types, Docking facilities – Wet docks – Dry docks and its types	2	С	4	4,5,8
22.	Loading facilities – Quay – Wharves – Piers – Jetties – Fendor - Dolphins, Storing facilities – Warehouses - Transit sheds – Cold storage, Navigation facilities – Light House-Signals, Dredging facilities Total contact hours	2	С	4	4,5,8

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Saxena Subhash C and Satyapal Arora, "A Course in Railway Engineering", Dhanpat Rai and
	Sons, Delhi, 1998.
2.	Khanna S K, Arora M G and Jain S S, "Airport Planning and Design", Nemchand and
	Brothers, Roorkee, 1994.
3.	R Horonjeff and F X Mckelvy, Planning and design of Airport, Mc-Graw Hill International
	Editions, 1993
4.	S P Bindra, "A Course in Docks and Harbour Engineering", Dhanpat Rai and Sons, New
	Delhi, 1993.
5.	R. Srinivasan, "Harbour, Docks and Tunnel Engineering", Charotar Publishing home, 27th
	Edition, 2015
	REFERENCE BOOKS/OTHER READING MATERIAL
6.	S.C Rangwala, "Railway Engineering", Charotar Publishing House, 1995
7.	S.C. Rangwala, "Airport Engineering", Charotar Publishing House, 1996
8.	H. P. Oza and G H Oza, Dock and Harbour Engineering, Charotar Book House, 1996

Course nat	ure		Theory					
Assessment Method (Weightage 100%)								
In	Assessment	Cycle test	Cycle test	Cycle Test	Surprise	Ouiz	Total	
III-	tool	Ι	II	III	Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage :								

15CE251E	TRAFFIC ENCINEERING					Р	С		
ISCESSIE		I KAFFIC ENGINEEKING					3		
Co-requisite:	NII	IL							
Prerequisite:	150	5CE311							
Data Book /	NII	ш							
Codes/Standards									
Course Category	D	DDOFESSIONAL ELECTIVE	TRANSPORTATIC	N					
Course Calegory	г	FROFESSIONAL ELECTIVE	ENGINEERING						
Course designed by	Dep	Department of Civil Engineering							
Approval	32 ⁿ	32 nd Academic Council Meeting, 2016							

PUI	RPOSE	POSE The purpose of the course is to introduce the students on traffic flow modelling an design of various traffic regulatory and control measures.							
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES									
At the end of the course, student will be able									
1.	To know a	bout traffic flow modelling.	а	b					
2.	To evaluat	e various transportation facilities.	с	h					
3.	To familia	rize on various traffic regulatory measures.	с	e	h				
4.	To impart control me	basic knowledge on the design of various traffic asures.	c	e	h				

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: TRAFFIC STREAM MODELLING	10			
1.	Introduction - Overview of syllabus	1		1-4	1,2,3,4
2.	Fundamental parameters - speed, density, volume, travel time, headway, spacing, time-space diagram	3	C	1	1,2
3.	Fundamental relations - time mean speed, space mean speed and their relation, relation between speeds, flow, density, fundamental diagrams	3	С	1	1,2
4.	Greenshield's model, Greenberg's logarithmic model, Underwood's exponential model, pipe's generalized model, multi-regime models, Moving observer method.	3	С	1	1,2,4
	UNIT II: MICROSCOPIC TRAFFIC FLOW MODELLING	9			
5.	Car-following models - Concept of stimulus- response, general motor's models	3	С	1	1,2
6.	Vehicle arrival models - Poisson distribution, headway modeling, random vehicle generation	3	С	1	1,3,5
7.	Microscopic traffic simulation - Vehicle generation, design, calibration, validation, applications, operational models.	3	C, I, O	1	1,3,5
	UNIT III: UNINTERRUPTED FLOW	8			
8.	Capacity and Level of service LOS - Definitions, highway capacity, factors affecting LOS	2	C	2	3,5,6
9.	HCM methods - Urban Street - Classification, operational performance measures, congestion management	2	С	2	3,5,6
10.	10. Multilane highways - Characteristics, capacity and level of service - Freeway operations		С, О	2	3,5,6
11.	11. Operational considerations, capacity and level of service of a basic freeway segment, weaving operation		С	2	6
	UNIT IV: INTERRUPTED FLOW	9			
12.	2. Traffic signs and road markings - Regulatory, warning, and information signs; longitudinal,		С	3	1,2,4

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	transverse, and object marking, channelization				
13.	Traffic rotary - Conflict resolution in a rotary, geometric layout, design elements, capacity of rotary	3	C, D	3	1,2,4
14.	Grade separated intersection - Road over bridges, under pass, overpass, trumpet interchange, diamond interchange, fully and partial clover leaf intersection.	3	С	3	1,2,4
	UNIT V: TRAFFIC CONTROL	9			
15.	Elements of traffic signal - Definitions, analysis of saturation headway, saturation flow, lost time, critical flows - Design principles of a traffic signal - Phase design, cycle time determination, green splitting	3	C, D	4	1,3
16.	 Splitting Definitions and measurement of stopped and control delay, Webster's delay model - Capacity and LOS analysis - HCM 2000 method of analysis of a signalized intersection and determination of the level of service 		С	4	1,3,6
17.	Coordinated traffic signal - Concepts of offset, common cycle length bandwidth, offset for one- way and two way streets - Vehicle actuated signals.	3	С	4	1,3
	Total contact hours			45	

LEARN	IING RESOURCES
Sl.No.	TEXT BOOKS
1.	Roess, R. P. McShane, W. R. & Prassas, E. S. (1998), Traffic Engineering, Prentice – Hall.
2.	May, A. D. (1990), "Fundamentals of Traffic Flow", second edn, Prentice Hall.
3.	Papacostas, C. S. (1987), "Fundamentals of Transportation Engineering", Prentice-Hall,
	India
4.	Kadiyali, L. R. (1987), "Traffic Engineering and Transportation Planning", Khanna
	Publishers, India.
5.	Papacostas, C. S. and Prevedouros, P.D. (2001) "Transportation Engineering and Planning",
	Prentice Hall of India Pvt. Ltd.
	REFERENCE BOOKS/OTHER READING MATERIAL
6.	Highway Capacity Manual (2010), Transportation Research Board, USA

Course nat	Course nature Theory									
Assessment Method (Weightage 100%)										
In.	Assessment	Cycle test	Cycle test	Cycle Test	Surprise	Ouiz	Total			
- comostor	tool	I	II	III	Test	Quiz	Totui			
semester	Weightage	10%	15%	15%	5%	5%	50%			
End semester examination Weightage :										

15CF352F		DAVEMENT ENCINEEDING			Т	Р	С		
15CE552E		PAVEMENTEINGINEERING					3		
Co-requisite: NIL									
Prerequisite:	15	CE311							
Data Book /	NI	ſ							
Codes/Standards	INI								
Course Category	D	DDOEESSIONAL ELECTIVE	FRANSPORTATI	ON					
Course Calegory	P	PROFESSIONAL ELECTIVE	ENGINEERING	IGINEERING					
Course designed by	De	partment of Civil Engineering							
Approval	32	^{ad} Academic Council Meeting, 2016							
PURPOSE This of	ourse	is offered to develop skill on analysis a	and design of flexi	ble pa	avem	ents			
INSTRUCTIONAL	OBJI	CTIVES	STUDENT ()UT(COM	ES			
At the end of the cour	se, sti	ident will be able							
1. To familiarize wi	h the	analysis of layered structure	a e	k					
2. To know about vi	scoel	astic characterization of the material	a b	e	k				
3. To impart basic knowledge on various bituminous technology				;	1-				
and its characterization a b					к				
4. To familiarize the design of flexible pavement a b					i	k			
5. To expose to the	baven	nent condition evaluation process	a e	i	k				

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
	UNIT I: STRESS ANALYSIS OF LAYERED STRUCTURE	9			
1	Importance of Pavement Design and Overview of the course	11	-	1	1,2,3,4
2	Single layer system – stress analysis	2	C, I	1	1,2,3,4
3	Two layer pavement - stress analysis	2	C, I	1	1,2,3,4
4	Multilayered stress analysis	2	C, I	1	1,2,3,4
5	Software demo for Multilayered structure	2	С, О	1	1
	UNIT II: VISCOELASTICITY	9			
6	Introduction to viscoelasticity – creep and recovery – stress relaxation	3	С	2	5
7	Response to oscillatory shearing	2	С	2	5
8	Viscoelastic solid model	2	C,D	2	5
9	Viscoelastic fluid model	2	C,D	2	5
	UNIT III: PAVEMENT MATERIALS	9			
10	Bitumen, modified bitumen, bitumen emulsion – performance grading of binder – aging of binder	3	С,О	3	1,2
11	Bituminous mixture - Hot mix, warm mix, half warm mix, cold mix	3	С,О	3	1,2
12	Mixture characterization – Resilient modulus - dynamic modulus – time temperature superposition principle	3	C, O	3	1,2
	UNIT IV: DESIGN OF FLEXIBLE PAVEMENT	9			
13	Traffic characteristics	3	С	4	2,3,6
14	Pavement Design as per IRC	3	C,D	4	2,3,6
15	Design of airfield pavement	3	C,D	4	2,3,6
	UNIT V: EVALUATION OF PAVEMENT	9			
16	Distress in flexible and rigid pavement	3	С	5	2,3
	Pavement distress measurement - Surface				
17	roughness, skid resistance, deflection	4	C,O	5	2,3
	measurement and Falling weight deflectometer				
18	Design of pavement overlay	2	C,D	5	2,3
	Total contact hours			45	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Yang Huang, Pavement Analysis and Design, Pearson, 2004
2.	Chakroborthy and A. Das, "Principles of Transportation Engineering", Prentice-Hall of
	India, 2003
3.	S. K. Khanna, C.E.G. Justo and A. Veeraragavan, "Highway Engineering", Revised 10th
	edition, Nem Chand &Bros., Roorkee, 2014.
4.	Yoder, E.J., and Witczak. "Principles of Pavement Design", 2 nd ed. John Wiley and Sons,
	1975.
5.	Wineman, A. S. and Rajagopal, K. R, "Mechanical Response Of Polymers: An Introduction",
	Cambridge University Press, 2000.
	REFERENCE BOOKS/OTHER READING MATERIAL
6.	Guidelines for the Design of Flexible Pavements, IRC :37- 2012, The Indian Road Congress,
	New Delhi, 2012
7.	Subash C. Saxena , Textbook of "Highway and Traffic Engineering", CBS Publishers. 1st
	Edition. 2014

Course nat	ture			The	ory		
Assessmen	Assessment Method (Weightage 100%)						
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :							

15CE252E	DAVEMENT CONSTRUCTION TECHNOLOCY					Р	С	
ISCESSE FAVENIENT CONSTRUCTION TECHNOLOGI			LECHNOLOGI	3	0	0	3	
Co-requisite:	NI	NIL						
Prerequisite:	150	15CE311						
Data Book /	NIII							
Codes/Standards	INI	L						
Course Category	D	P PROFESSIONAL ELECTIVE TRANSPORTAT						
Course Calegory	Г	FROFESSIONAL ELECTIVE	ENGINEERING					
Course designed by	Department of Civil Engineering							
Approval	32 ^r	32 nd Academic Council Meeting, 2016						

 PURPOSE
 The purpose of the course is to make student understand the importance of pavement construction technology and methods in the pavement construction process

IN	STRUCTIONAL OBJECTIVES	ST OU	UDI TC	ENT OMES
At	the end of the course, student will be able			
1.	To obtain information about pavement construction	а	k	
2.	To attain knowledge about various pavement construction equipment	а	k	
3.	To understand the construction procedures for various types of pavements	а	k	

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
	UNIT I: SUBGRADE CONSTRUCTION	9			
1.	Earthwork grading, compaction and construction of embankments and cuts - embankment construction on weak and compressible foundation, quality control tests	3	С	1	1
2.	Design factors, mix design, construction control and quality control checks for soil- cement, soil-bitumen and soil-lime stabilization methods.	4	С	1	1
3.	Principles of gradation/proportioning of soil- aggregate mixes and compaction	2	С	1	1,2
	UNIT II: CONSTRUCTION OF FLEXIBLE PAVEMENT	9			
4.	Methods of construction and field control checks for various types of flexible pavement layers in in sub-base, base, binder and surface course layers	4	С	3	1,3
5.	Need for recycling, methods of recycling, construction controls and economics.	3	С	3	1,3
6.	Warm mix and cold mix asphalt pavement	2	С	3	1,3
	UNIT III: CONSTRUCTION OF RIGID PAVEMENT	9			
7.	Concrete mix design procedure	2	C,D	3	1,4
8.	Methods and guideline for construction for concrete pavement	3	С	3	1,4
9.	Construction of supporting layers of CC pavement, pavement slab, joints in pavements and its quality control check during construction	2	С	3	1,4
10.	Construction practice of brick, stone and concrete block pavement	2	С	3	4
	UNIT IV: PAVEMENT CONSTRUCTION EQUIPMENT	9			
11.	Equipment for excavation, grading and compaction -their working principle,	3	С	2	1,2,6

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
	advantages and limitations.				
12.	Special equipment for bituminous road construction	3	C	2	2,6
13.	Special equipment for cement concrete pavement construction	3	C	2	2,6
	UNIT V: PAVEMENT CONSTRUCTION – SPECIAL CASES	9			
14.	General guidelines for construction of pavement in water logged areas as per IRC specifications	2	С	3	1,2
15.	Design and construction of surface and sub- surface drainage system for highways and airports. Drainage materials, design procedures and IRC Guidelines for Drainage of Urban Roads	4	С	3	1,2
16	16 Functions and applications of Geosynthetics in highway embankment, slopes, new pavements and overlays		С	3	1,2
	Total contact hours			45	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	S. K. Khanna, C.E.G. Justo and A. Veeraragavan, "Highway Engineering", Revised 10th
	edition, Nem Chand &Bros., Roorkee, 2014.
2.	Sharma, S.C." Construction Equipment and its Management"- Khanna Publisher
3.	Freddy L. Roberts, Prithvi S. Khandal, E. Ray Brown, Dah-Yinn Lee and Thomas W.
	Kenneday, Hot Mix Asphalt Materials, Mixture, Design and Construction, NAPA Education
	Foundation, 1997
4.	Norbert J. Delatte, ' Concrete Pavement Design, Construction and Performance', Second
	Edition, CRC Press, 2014
	REFERENCE BOOKS/OTHER READING MATERIAL
5.	Kadyali L.R and Lal N.B, " Principles and practices of Highway Engineering (Including
	Expressways and Airport Engineering)", Khanna publishers, Delhi
6.	Peurify.R.L., "Construction Planning, Equipment and Methods", McGraw Hill
	Publishers, New York, 2000.
7.	Relevant IRC code books

Course nat	Course nature Theory							
Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage :								

15CE254E	DAVEMENT MANACEMENT SYSTEM				Т	Р	С
15CE554E	PAVEIVIENI MANAGEMENI SYSIEM					0	3
Co-requisite:	NI	L					
Prerequisite:	150	CE311					
Data Book /							
Codes/Standards	111	NIL					
Course Category	р	DDOEESSIONAL ELECTIVE	TRANSPORTATIC	N			
Course Calegory	Г	FROFESSIONAL ELECTIVE	ENGINEERING				
Course designed by	Department of Civil Engineering						
Approval	32 nd Academic Council Meeting, 2016						

DUDDOSE		The purpose of the course is to make student understand the importance of pavement								
101	N USE	asset management	asset management							
INS	TRUCTIO	NAL OBJECTIVES	STUDEN	T OUT	COMES	•				
At t	he end of th	e course, student will be able								
1.	1. To understand the various levels in pavement management				12					
			a	е	К					
2.	To study v	various pavement evaluation technique and								
	understand	the data requirement for effective	а	e	i	k				
	manageme	ent								
3.	To select s	suitable rehabilitation strategies	a	e	k					
4.	To conduc	et economic analysis of different strategies	a	e	k					

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: PAVEMENT MANAGEMENT PROCESS	9			
1.	Need for Pavement Management and its Concept	2	С	1	1,2
2.	Different levels of pavement management and functions	3	С	1	1,2
3.	Applications of Pavement Management System as a planning and technology improvement tool	4	С	1	1,2
	UNIT II: DATA REQUIREMENT	10			
4.	Overview of pavement management data needs, inventory data	2	С	2	1,2
5.	Characterizing pavement performance, evaluation of pavement structural capacity, evaluation of pavement surface distress condition, evaluation of pavement safety	5	C,I	2	1,2,4
6.	Combined measures of pavement quality, data base management, communicating the present status of pavement networks	3	C	2	1,2
	UNIT III: PRIORITY OF REHABILITATION AND MAINTENANCE	9			
7.	Establishing criteria for rehabilitation	1		3	1,2,3
8.	Prediction models for pavement deterioration, Rehabilitation and maintenance alternatives	4	С	3	1,2,3
9.	Priority programming of rehabilitation and maintenance, developing combined programs of maintenance and rehabilitation	4	С	3	1,2,3
	UNIT IV: REHABILITATION DESIGN AND ECONOMIC ANALYSIS	9			
10.	Generating alternate strategies of design and rehabilitation - Materials, construction and maintenance policy alternatives	3	С	3	1,2,4
11.	Consideration of preservation in pavement design and analysis procedures	3	С	4	1,2,4
12.	Economic evaluation of alternate pavement design strategies and selection of optimal strategies	3	C,I	4	1,2,4
	UNIT V: INNOVATIONS IN PAVEMENT	8			
Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
---------	--	------------------	---------------------	-----	-----------
	MANAGEMENT				
13.	Role of construction quality on performance and pavement preservation on maintenance needs	2	С	2,3	1,3,5
14.	Emerging trends in road asset management	3	С	2,3	1,3,5
15.	Urban Pavement Management System	3	С	2,3	1,3,5
	Total contact hours			45	

LEARN	LEARNING RESOURCES					
Sl.No.	TEXT BOOKS					
1.	Ralph Haas, W. Ronald Hudson, "Pavement Asset Management", John Wiley & Sons, 2015					
2	Ralph C, G Haas and W. Ronald Hudson, "Pavement management system", McGraw-Hill					
۷.	Book Company, 1978					
3	W. Ronald Hudson, Ralph Haas and Zeniswki, "Modern Pavement Management", Krieger					
5.	Pub. Co., 1994					
	REFERENCE BOOKS/OTHER READING MATERIAL					
4	RajibBasuMallick and Tahar El-Kochi, Pavement Engineering: Principles and Practice, CRC					
4.	Press, 2013.					
5	Shahin, M.Y, Pavement Management for Airports, Roads and Parking Lots, Springer, Second					
5.	Edition, 2005.					

Course nature				The	eory		
Assessment Method (Weightage 100%)							
In-	Assessment	Cycle test	Cycle test	Cycle Test	Surprise	Ouiz	Total
comostor	tool	Ι	II	III	Test	C	2000
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :					50%		

15CE355E TRANSPORTATION SYSTEMS						NING		T	P	C 2
Co	roqui	sita.			3	U	U	3		
$\frac{CO}{Pr}$	oroquis	site.	15	~F311						
Da	ta Roo	she.	15							
Codes/Standards NIL										
Co	urse C	ategory	Р	PROFESSIONAL ELECTIVE	TRANSI ENGINE	PORTAT EERING	ION			
Co	urse d	esigned by	De	partment of Civil Engineering						
Ap	proval		321	nd Academic Council Meeting, 201	.6					
PU	RPOS	SE The purplet transport	pose of tation	of the course is to introduce the stud facilities.	lents on pl	anning of	f vario	ous ur	ban	
IN	STRU	CTIONAL O	BJEC	TIVES	STUDE	NT OUT	ГСОМ	IES		
At	the end	d of the course	. stud	ent will be able	~					
1.	To k	now about tr	anspo	rtation system characteristics and						
	planr	ing process.			а					
2.	To fa	miliarize on v	ariou	s travel surveys and data collection	а	b				
2	To in	nques.	wlad	a on travel demand forecasting	0	h	0			
Э. Л		upart basic Kno	oticz	of various transportation projects	a	0 6	e	1-		
4.	10 er	hable the evalu	ation	of various transportation projects.	a		e	n		
Se	ssion		De	scription of Topic	Contact hours	t D- I- O	IOs	Re	ferei	ıce
		UNIT I: UR	BAN	TRANSPORTATION	10					
	1	Introduction	- Ove	rview of syllabus	1	C	1-4	1 '	234	5
	1.	Urban Issues	s, Tra	vel Characteristics, Evolution of	1			1,	2, <u></u> ,,,,	,5
	2.	Planning Pro approach	cess,	Supply and Demand – Systems	3	С	I		1,2,4	
		Travel deman	nd - 1	Frends, Overall Planning process,		9				
	3.	Long term Function, Ind	Vs lepend	Short term planning, Demand lent Variables	3	С	I		1,2,4	
	4.	Travel Attr Estimation, Approaches, Techniques.	ribute Sec A	s, Assumptions in Demand quential, and Simultaneous ggregate and Disaggregate	3	С	1		1,2,4	
		UNIT II: DA INVENTOR	ATA (IES	COLLECTION AND	9					
	5.	Collection of Analysis, Stu Data	f data dy Ai	 Organization of surveys and rea, Zoning, Types and Sources of 	3	С	2		1,2	
	6.	Road Side Commercial Techniques,	Interv V Expar	iews, Home Interview Surveys, ehicle Surveys, Sampling usion Factors	3	C	2		1,2	
	7.	Accuracy C Economic o Employment	hecks data – Vel	, Use of Secondary Sources, – Income – Population – nicle Owner Ship.	3	C	2		1,2	
		UNIT III: T DISTRIBUT	RIP (TION	GENERATION AND	9					
	8.	UTPS Appro Models, Cate	ach, gory	Trip Generation Analysis: Zonal Analysis, Household Models	3	С	3		3,4	
	9.	Trip Attracti Trip Distribu	on m tion -	odels, Commercial Trip Rates - Growth Factor Methods	3	С	3		3,4	
	10.	Gravity Mo Function Iter	odels, ation	Opportunity Models, Time Models.	3	С	3		3,4	
		UNIT IV: M ASSIGNME	ODE NT	CHOICE AND TRAFFIC	9					
	11.	Mode Choic	e An	alysis: Mode Choice Behavior,	3	С	3		3,4	

	Competing Modes Mode Split Curves Models and				
	Probabilistic Approaches				
	Traffic Assignment: Basic Elements of Transport				
12	Networks Coding Route Properties Path Building	3	С	3	34
12.	Criteria, Skimming Tree	5	C	5	3,1
	All-or-Nothing Assignment, Capacity Restraint				
13.	Techniques, Reallocation of Assigned Volumes,	3	С	3	3,4
	Equilibrium Assignment, Diversion Curves.				,
	UNIT V: TRAFFIC CORRIDORS AND PLAN	o			
	PREPARATION	o			
1.4	Master plans, Selection of Corridor, Corridor	2		4	1 4 5
14.	Identification, Corridor deficiency Analysis	5	С	4	1,4,5
15	Plan preparation and evaluation - Travel Forecasts	2	C	4	1 4 5
15.	to Evaluate Alternative Improvements	2	C	4	1,4,5
	Brief Case studies of Comprehensive Traffic and		C		
16.	Transportation problems of Indian towns / cities,	3	С, D	4	1,4,5
	Introduction to Computer packages		D		
	Total contact hours			45	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Bruton, M. J. (2000), "An Introduction to Transportation Planning" (The Living
	Environment), UCL Press, London, UK.
2.	Hutchinson, B.G. (1974), "Principles of Urban Transportation System Planning", McGraw
	Hill.
3.	Papacostas, C.S. and Prevedouros, P.D. (2001), "Transportation Engineering and Planning",
	Prentice Hall of India Pvt. Ltd.
4.	Mayer M and Miller E (2000), "Urban Transportation Planning: A decision oriented
	Approach", McGraw Hill.
	REFERENCE BOOKS/OTHER READING MATERIAL
5.	Edwards, J. D. (1999), Transportation Planning Handbook, 2nd Edition, Institution of
	Transportation Engineers.

Course nat	Course nature Theory						
Assessment	Assessment Method (Weightage 100%)						
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 50%						50%	

15CE256E	ΙΝΤΕΙ Ι ΙΔΕΝΤ ΤΟ ΑΝΩΟΛΟΤΑΤΙΛΝ ΩνSTEMS			L	Т	Р	С
15CE550E	INTELLIGENT TRANSPORTATION SYSTEMS					0	3
Co-requisite:	NI	ΠL					
Prerequisite:	150	15CE311					
Data Book /	NI	NII					
Codes/Standards	111	L					
Course Category	р	PROFESSIONAL ELECTIVE	TRANSPORTATIO	N			
Course Calegory	Г	FROFESSIONAL ELECTIVE	ENGINEERING				
Course designed by	Department of Civil Engineering						
Approval	32 nd Academic Council Meeting, 2016						

PU	URPOSE This course imparts knowledge on various ITS technology and at the end of the course student will be able to appreciate the effectiveness of ITS tool.					
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES						ES
At	the end of th	ne course, student will be able				
1.	To know a	bout the fundamentals of ITS and its features	а	k		
2. To gain knowledge on the importance of telecommunication and data collection of ITS a					d	
3.	To learn the various functional areas of ITS a d					
4.	Image: A structure Image: A					
5.	To know a	bout the ITS applications globally	a	d	i	

Session	Description of Topic	Contact hours	C- D- I-O	IOs	Reference
	UNIT – 1 FUNDAMENTALS OF ITS	7			
1.	Introduction to Intelligent Transportation Systems (ITS) – Definition of ITS and Identification of ITS Objectives, Historical Background, Benefits of ITS	7	С	1	1,5
	UNIT – II TELECOMMUNICATIONS AND DATA REQUIREMENTS OF ITS	11			
2.	Importance of telecommunications in the ITS system, Information Management, Traffic Management Centres (TMC).	2	С	2	1,2
3.	Application of sensors to Traffic management; Traffic flow sensor technologies	3	C,I	2	1,2
4.	ITS Data collection techniques – Detectors, Automatic Vehicle Location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), video data collection	4	C,I	1	1,2
5.	Vehicle – Road side communication – Vehicle Positioning System	2	С	2	1,2
	UNIT – III ITS FUNCTIONAL AREAS	9			
6.	Advanced Traffic Management Systems (ATMS), Advanced Traveler Information Systems (ATIS)	3	С	3	1,2
7.	Commercial Vehicle Operations (CVO), Advanced Vehicle Control Systems (AVCS)	3	С	3	1,2
8.	Advanced Public Transportation Systems (APTS), Advanced Rural Transportation Systems (ARTS)	3	С	3	1,2
	UNIT – IV ITS USER NEEDS AND SERVICES	9			
9.	Travel and Traffic management, Public Transportation Management, Electronic Payment	3	С	4	2,3
10.	Commercial Vehicle Operations, Emergency Management	3	С	4	2,3
11.	Advanced Vehicle safety systems, Information Management	3	С	4	2,3

Session	Description of Topic	Contact hours	C- D- I-O	IOs	Reference
	UNIT – V ITS APPLICATIONS	9			
12.	Automated Highway Systems - Vehicles in Platoons	3	C,I	5	5,3
13.	Integration of Automated Highway Systems – A case study	3	C,I	5	
14.	ITS Programs globaly – Overview of ITS implementations in developed countries, ITS in developing countries	3	C,I	5	5,3
	Total contact hours			45	

LEARN	LEARNING RESOURCES					
Sl.No.	TEXT BOOKS					
1.	"Fundamentals of intelligent transportation systems planning" Mashrur A. Chowdhury, Adel					
	Wadid Sadek					
	REFERENCE BOOKS/OTHER READING MATERIAL					
2.	Lawrence A. Klein," Sensor technologies and Data requirements of ITS"					
3.	"Recommendations for World Road Association (PIARC)" Kan Paul Chen, John Miles, ITS					
	Hand Book 2000					
4.	Sussman, J. M., "Perspective on ITS", Artech House Publishers, 2005.					
5.	"National ITS Architecture Documentation", US Department of Transportation, 2007					

Course nature				Theory			
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 50						50%	

15CE257E	URBAN PLANNING AND SUSTAINABLE					Р	С
ISCESS/E	DEVELOPMENT				0	0	3
Co-requisite:	NI	L					
Prerequisite:	150	5CE311					
Data Book /	NU	NII					
Codes/Standards	111	L					
Course Category	D	DDOFESSIONAL ELECTIVE	TRANSPORTATIC	N			
Course Calegory	Г	FROFESSIONAL ELECTIVE	ENGINEERING				
Course designed by	De	partment of Civil Engineering					
Approval	32 ^r	^{ad} Academic Council Meeting, 2016					

PU	RPOSE This course is offered to gain a knowledge about transportation policies and their planning and to know about the urban planning and sustainable development				eir				
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES								
At	the end of th	ne course, student will be able							
1.	To know a	bout urban planning and their development.	а	d	f	h	k	i	
2.	To know a formulation	bout various development plans, n and evaluation	а	f	h	i			
3.	To familia manageme	rize with plan implementation and urban	f	h	k				
4.	To know sustainable urban and Transport principles a h i								
5.	To familia environme	rize about urban region and their ent	f	h	k	i			

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: URBAN PLANNING AND DEVELOPMENT	10			
1	Overview of the course	1			1,3,4,5
2	Introduction – Definition of terms	1	С	1	1,3
3	National policies and strategies on issues related to urban development – Explanation of Concepts	2	C,I	1	1,3
4	Trends of Urbanization – Positive and Negative impacts of Urban development	2	С	1	1,3
5	Types and levels of Urban plans	2	С	1	1,3
6	Stages in planning process	1	C,I	1	1,3
7	Principles of planning	1	C,I	1	1,3
	UNIT II: DEVELOPMENT PLANS, FORMULATION AND EVALUATION	9			
8	Scope and content of regional plan and Master plan	2	С	2	1,2,3
9	Detailed development plan, Structural plan	2	C,I	2	1,2,3
10	Sub regional plan, DCR planning and development of industrial estates	2	C,I	2	1,2,3
11	SEZ – Strategies of development – formulation and evaluation	3	C,I,O	2	1,2,3
	UNIT III: PLAN IMPLEMENTATION AND URBAN MANAGEMENT	9			
12	Constraints of plan implementation – Industrial, Financial and Legal constraints	3	C,I	3	1,3,5
13	Institutional arrangements for urban development	2	C,I	3	1,3,5
14	Financing of urban developments	1	C,I	3	1,3,5

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
15	Decision support for Urban Management- Involvement of public, Private, NGO, CBO - Beneficiaries	3	C,I,O	3	1,3,5
	UNIT IV: SYSTAINABLE URBAN AND TRANSPORT PRINCIPLES	9			
16	Urban Environmental Sustainability	1	С	4	1,3,5
17	Urban Sustainable development	2	С	4	1,3,5
18	Methods and Tools for Sustainable appraisal	2	C,I	4	1,3
19	Sustainable Transportation – Principles, indicators and its implication	2	C,I	4	4,5
20	Environment and resources – Economic benefits of Sustainable transportation	2	C,I	4	4,5
	UNIT V: URBAN REGION AND ENVIRONMENT	8			
21	Sustainability Assessment – Future scenarios	2	С	5	3,5
22	Shape of urban region, Managing the change, Integrated planning	2	С	5	3.5
23	Sustainable development - city centre areas, Inner city areas, suburban areas, periurban areas, country side	2	C,I	5	2,3,5
24	Economy and society	2	C,I	5	3,5
	Total contact hours		4	15	

LEARNING RESOURCES

Sl.No.	TEXT BOOKS
1.	Goel.S.L "Urban development and Mangement", Deep publication, New Delhi, 2002
	REFERENCE BOOKS/OTHER READING MATERIAL
2.	CMDA, Master plan for Chennai, 2008
3.	Sigh.V,B, "Revitalised urban administration in India", Kalpaz publication, Delhi 2001
4.	"Sustainable Transportation and TDM – planning the balances, Economic, Social and
	ecological Objectives", Victoria transport policy institute, 2007
5.	Joe Ravetz, City region 2020 – "Integrated planning for a sustainable Environment", 2000.

Course nature			Theory				
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 50					50%		

ELECTIVE II WATER RESOURCES ENGINEERING OFFERED IN

IV YEAR, I SEMESTER

ELECTIVE II

15CE421E		ADVANCED HYDRO	LOGY		T	P	C	
Co-requisite:	NI							
Prerequisite:	150	5CE304						
Data Book /	NI							
Codes/Standards	141	INIL						
Course Category	F	PROFESSIONAL ELECTIVE	WATER RESOURC	CES				
Course Calegory	Б	I KOI ESSIONAL EEEC IIVE	ENGINEERING					
Course designed by	Department of Civil Engineering							
Approval	32 ^r	Academic Council Meeting, 2016	5					

PU	URPOSE To acquire analytical ability in solving mathematical problems as applied to the respective branches of Engineering.								
IN	STRUCTIO	ONAL OBJECTIVES	STUDENT OUTCOMES						
At	the end of th	he course, student will be able							
1.	To know t	he basic concepts of hydrology	а						
2.	2. To study the features of precipitation, rain gauge density, DAD curve, evaporation, transpiration and infiltration, $a = b = c = h = k$								
3.	To learn a hydrograp	bout runoff, estimation, modeling of runoff, and h.	а		c	h	k	e	
4.	To underst concept of	tand estimation, forecasting, control of flood, and ² Muskingum method.	а	-	c	h	k	e	
5.	To familia artificial n	rize with computer applications in hydrology using eural network, fuzzy logic	a	-	с	h	k	e	

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: HYDROLOGY	7			
1.	Introduction about Hydrology	1	С	1-5	1,2
2.	Hydrology and hydrologic cycle	1	С	1	1,2
3.	World's water resources and India's water resources	2	С	1	1,2,3,4
4.	Hydrologic budget , problems based on water budget, Hydrometeorology	3	C,I	1	2,3
	UNIT II: PRECIPITATION, EVAPORATION AND INFILTRATION	11			
5.	Precipitation, Types, Measurement, Types, Rain gauge density	2	C,I	2	2,3,5
6.	Estimation of missing data, Optimum rain gauge network, Problems solving	2	C,I	2	1,2
7.	DAD curves, Analysis of rainfall data, Evaporation, Transpiration	2	C,I	2	2,3,4
8.	Evaporation, Factors affecting evaporation, Measurement and Estimation	1	С	2	1,2
9.	Transpiration, Measurement and estimation, Pan evaporation, Blaney Criddle method	2	C,I	2	3,4,5
10.	Infiltration, Factors affecting infiltration, Measurement and estimation Horton's model, Phi-index, W-index	2	C,I	2	1,2
	UNIT III: RUNOFF AND HYDROGRAPHS	9			
11.	Runoff, Components of stream flow, Catchment characteristics	2	С	3	3,4
12.	Factors affecting runoff, Estimation of runoff, Different Methods, Flow duration curve	2	C,I	3	3,4
13.	Rainfall runoff modeling, Hydrograph, Unit hydrograph, problems	3	С	3	3,4
14.	S- curve hydrograph, Synthetic hydrograph, Applications	2	C,I	3	1,2

Session	Description of Topic	Contact hours	Contact D- hours I- O O Reference			
	UNIT IV: FLOOD ESTIMATION AND FORECASTING	10				
15.	Estimation of peak flood, Flood frequency studies, Gumbel's method	3	C,I	4	2,3,5	
16.	Methods of flood control, Flood routing through a reservoir	3	C,I	4	3,4,5	
17.	Channel flow routing	1	C,I	4	1,2	
18.	Muskingum method, Flood forecasting and warning	3	C,I	4	1,2,3	
	UNIT V: RESERVOIR PLANNING AND MANAGEMENT	8				
19.	Reservoir, Single and multipurpose, Multi objective	2	С	5	1,2,3	
20.	Fixation of storage capacity, Strategies for reservoir operation	2	C,I	5	2,3,5	
21.	Sedimentation of reservoirs, Design flood	2	C,I	5	3,4,5	
22.	Levees and flood walls, Channel improvement	2	C,I	5	3,4,5	
	Total contact hours			45		

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Raghunath, H.M, "Hydrology: Principles, Analysis and Design ", New age publications, 2006
2.	K. Subramanya "Engineering Hydrology" Tata McGraw-Hill Education,
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Chow V T and Maidment, "Hydrology for Engineers", McGraw Hill Inc , Ltd., 2000
4.	Singh V P, "Hydrology", McGraw Hill Inc., Ltd., 2000
5.	Vedula S. and Mujumdar P.P, "Water Resources Systems", Mcgraw Hill International Book Company, 2005
6.	http://www.nptel.ac.in/courses/105101002/

Course nature Theory							
Assessment	Assessment Method (Weightage 100%)						
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination weightage : 50%					50%		

15CE422E	ADVANCED IDDICATION ENCINEEDING DESIGN				Т	Р	С
15CE422E	A	ADVANCED IKKIGA HON ENGINEERING DESIGN					3
Co-requisite:	NII	IIL					
Prerequisite:	150	5CE304					
Data Book /	NII	NII					
Codes/Standards	INII						
Course Category	Б	PROFESSIONAL ELECTIVE	WATER RESOURC	ES			
Course Calegory	Б	E PROFESSIONAL ELECTIVE ENGINEERING					
Course designed by	Department of Civil Engineering						
Approval	32 ⁿ	^d Academic Council Meeting, 2016	<u>.</u>				

DI	DDASE	To acquire analytical ability in solving	mathematical	problems as	applied to the
10	KI ÜSE	respective branches of Engineering.			
INS	STRUCTIC	NAL OBJECTIVES	STUDENT (DUTCOMES	
At 1	the end of th	ne course, student will be able			
1.	To know t	he basics of irrigation, types and methods,	а		
	drip, sprin	kler and lift irrigation.			
2.	To study	the relationship between soil, plant and	а	e	
	water, dut	y and delta relationship and consumptive			
	use				
3.	To learn a	bout importance and functions of diversion	а	e	
	head work	s and its various components			
4.	To learn a	bout importance, location and function of	а	e	
	conveyance	e and distribution system			
5.	To learn a	bout importance, location and function of	а	f	
	various ca				
	regulators,	, cross regulators etc.			

Session	Description of Topic	Contact hours	C- D-I-	IOs	Reference
		0	0		
	UNIT I: IRRIGATION	8			
1.	Introduction - overview of syllabus	1	C	1-4	1-4
2.	Necessity and importance of irrigation -	2	C	1	1, 2, 3, 4
	Advantages and ill effects of irrigation – Types of				
	irrigation				
3.	Irrigation methods – Types of Surface, subsurface	2	C	1	1, 2, 3, 4
	and sprinkler irrigation				
4.	Pressurized irrigation - Drip, Sprinkler, Lift	2	C	1	1, 2, 3, 4
	Irrigation				
5.	Methods of improving soil fertility – Standards of	1	C	1	1, 2, 3, 4
	quality for irrigation water				
	UNIT II: WATER REQUIREMENTS OF	8			
	CROPS				
6.	Preparation of land for irrigation – Classes and	2	C, I	2	1, 2, 3, 4
	availability of soil water – Soil moisture deficiency				
	– Depth of water stored in root zone - Limiting soil				
	moisture conditions – Depth and Frequency of				
	irrigation				
7.	Crop season - Duty and Delta – Factors affecting	2	C, I	2	1, 2, 3, 4
	duty – Methods of improving duty				
8.	Consumptive use - Estimation - Blaney Criddle	2	C, I	2	1, 2, 3, 4
	method - Pan evaporation method				
9.	Irrigation efficiencies – Types – Principle crops	2	C, I	2	1, 2, 3, 4
	and Crop rotation – Assessment of irrigation water				
	UNIT III: DIVERSION HEAD WORKS	11			
10.	Weirs and barrages – Gravity and non-gravity	2	С	3	1, 2, 3, 4

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
	weirs – Diversion head works and its components				
11.	Diversion weir and its types – Afflux, pond level – Under sluices – Divide wall – River training works – Guide banks, Marginal bunds, Groynes – Fish ladder	2	С	3	1, 2, 3, 4
12.	Canal head regulator – functions – Design of water way of regulator	2	C,D	3	1, 2, 3, 4
13.	Silt control devices – Silt excluders and Silt ejectors	1	С	3	1, 2, 3, 4
14.	Failure of hydraulic structures – Failure by piping and failure by direct uplift, Bligh's creep theory, Lane's weighted creep theory and Khosla's theory	2	C,I	3	1, 2, 3, 4
15.	Khosla's method of independent variables for determination of pressures and exit gradient for seepage below a weir or a barrage. Design of a vertical drop weir on Bligh's creep theory. Design of pucca floor and aprons.	2	C,D	3	1, 2, 3, 4
	UNIT IV: CONVEYANCE AND DISTRIBUTION SYSTEM	9			
16.	Canal – Classification –Canal alignment - Canal losses – Balancing depth	1	C	4	1, 2, 3, 4
17.	Maintenance of irrigation channels – Canal breaches – Regulation of canal system	2	C	4	1, 2, 3, 4
18.	Measurement of discharge of a canal – Area velocity method, Chemical method, Weir method, Meter flume method, Stage discharge method	2	C, I	4	1, 2, 3, 4
19.	Water logging – Causes and control – Reclamation of saline land - Land drainage – types – Layout of tile drain system	2	C, I	4	1, 2, 3, 4
20.	Canal lining – Advantages and Disadvantages of canal lining – Type of lining	2	C	4	1, 2, 3, 4
	UNIT V: CANAL STRUCTURES	9			
21.	Canal falls – Necessity and location of falls – Types – Design of a trapezoidal notch fall – Design of simple vertical drop fall	3	C,D	5	1, 2, 3, 4
22.	Canal regulators – Alignment of the off taking channel - Head and cross regulators – Functions - Design	2	C,D	5	1, 2, 3, 4
23.	Canal escape – Types - Canal outlets – Types	2	C,D	5	1, 2, 3, 4
24.	Cross drainage works – Types – Selection of suitable type of cross drainage work	2	C	5	1, 2, 3, 4
	Total contact hours			45	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Santhosh Kumar Garg, "Irrigation Engineering and Hydraulic Structures", Khanna
	Publishers, 2000.
2.	Punmia B.C. and Pande B.B. Lal, " Irrigation and Water Power Engineering", Laxmi
	Publications Pvt. Ltd., New Delhi, 2009
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Asawa .G.L, "Irrigation and Water Resources Engineering", New Age International
	Publishers, New Delhi, 2005.
4.	Sharma .R.K, "Irrigation Engineering and Hydraulic Structures", Oxford and IBH
	Publishing Company, New Delhi, 2002.

Course nature				The	ory		
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 50						50%	

15CE422E	CDOUNDWATED ENCINEEDINC					Р	С	
15CE425E		GROUNDWATERE	3	0	0	3		
Co-requisite:	NIL	NIL						
Prerequisite:	15CI	5CE304						
Data Book /	NII							
Codes/Standards	NIL							
Course Category	$\mathbf{E} \begin{bmatrix} 1\\ 1 \end{bmatrix}$	E PROFESSIONAL ELECTIVE WATER RESOURCES ENGINEERING					ì	
Course designed by	Department of Civil Engineering							
Approval	32 nd	32 nd Academic Council Meeting 2016						

DI	DDOGE	The purpose of this course is to understand the pr	rinciples ar	d application	n of grou	ınd
гu	KI USE	water engineering.				
IN	STRUCTIO	ONAL OBJECTIVES	STUDEN	T OUTCOM	AES	
At	the end of th	he course, student will be able				
1.	To underst	tand the sources of ground water, aquifers, water	а	e		
	occurrence	e in different types of rocks.	u	•		
2.	To under	stand the ground water potential theory and				
	movement	of ground water through Theis' method and	а	e		
	Jacob's m	ethod.				
3.	To study a	bout open well and tube well.	а	с	e	
4.	To study	the evaluation of aquifer parameters through				
	pumping test, recuperation test and methods of ground a e					
	water inve	stigation.				
5.	To study	the ground water contamination and recharge	9	h	k	
	methods.		a	11	к	

Session	Description of Topic	Contact hours	ContactC-D- I-OIOsF			
	UNIT I – GEOHYDROLOGY	7				
1.	Introduction, Water bearing formations-Aquifer, Aquitard, aquiclude, Aquifuge, Geological formation of water supply, Subsurface distribution of water, Sources of ground water	3	С	1	1,3,4	
2.	Types of aquifers-Confined , Unconfined, Leaky and Perched Aquifers, Aquifer parameters- Porosity, Hydraulic Conductivity, Specific Yield, Storage Coefficient and Transmissivity, Groundwater in different rocks.	4	C,I	1	1,3,4	
	UNIT II – GROUNDWATER MOVEMENT	14				
3.	Groundwater flow-Darcy's law- Permeability- Ground water flow problems i) Steady state 1D flow, ii) Aquifer with recharge, iii) Steady state flow confined aquifer with constant and Variable thickness	6	C	2	1,3,4	
4.	Steady state flow- Dupit's Equation and Thiem's Equation	4	C,I	2	1,3,4	
5.	Unsteady flow- Theis method and Jacob's method	4	C,I	2	1,3,4	
	UNIT III – WELLS AND EXPLORATION	8				
6.	Open wells-Types, Construction of open wells, Pumping Test, Recuperation Test, Image well Theory.	4	С	3	1,3,4	
7.	Tube well-Types-Construction and boring of tube well	3	С	3	1,3,4	
8.	Well capacity, Well development	1	С	3	1,3,4	
	UNIT IV – GROUND WATER GEOPHYSICS	8				
9.	Groundwater investigation, Geological methods,	4	С	4	1,3,4	

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	Geophysical- Electrical Resistivity Methods,				
10	Seismic Refraction methods, Hydrological Maps,	4	C	4	134
10.	Remote sensing methods.		Ŭ		1,5,1
	UNIT V – ENVIRONMENTAL	o			
	GROUNDWATER	0			
11	Groundwater quality- Groundwater	1	C	5	234
11.	contamination,	1	C	5	2,3,7
	Seawater intrusion-Fresh Water Salt Water				
12.	Interface, Slope of Interface shape of Interface,	3	3 C	5	2,3,4
	Control measures				
12	Groundwater Development, Conjunctive Use,	2	C	5	224
15.	Groundwater recharge, Recharge methods	2	C	5	2,3,4
	Groundwater modeling-Conceptual Model,				
14.	Physical Model, Analog Model, Mathematical	2	C,I,O	5	2,3,4
	Model				
	Total contact hours		4	15	

LEARNING RESOURCES

SI. No.	TEXT BOOKS
1.	Raghunath .H.M, "Ground Water Hydrology", Wiley Eastern Ltd., Second reprint, 2000.
	REFERENCE BOOKS/OTHER READING MATERIAL
2.	David Keith Todd, Larry W.Mays, "Groundwater Hydrology", John Wiley and Sons, 2004.
3	Murthy .V.V.N, "Land and Water Management Engineering", Kalyani Publishers, New Delhi,
5.	1994.
4.	http://nptel.ac.in/courses/105105042/
5.	http://nptel.ac.in/courses/105103026/

Course nature				The	eory		
Assessmen	Assessment Method (Weightage 100%)						
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :						50%	

15CE424E	COASTAL ENCINEEDING AND MANACEMENT				Т	Р	С
15CE424E		COASIAL ENGINEERING AND MANAGEMENT					3
Co-requisite:	NII	IL					
Prerequisite:	NII	IL					
Data Book /	NII	NII					
Codes/Standards	1111						
Course Category	Б	BROEESSIONAL ELECTIVE WATER RESOURCES		S			
Course Calegory	E	E PROFESSIONAL ELECTIVE ENGINEERING					
Course designed by	De	Department of Civil Engineering					
Approval	32 ⁿ	32 nd Academic Council Meeting, 2016					

PURPOSE The purpose of this course is to learn about the coastal features and to of knowledge about managing the coastal zone.					
INS	TRUCTIO	NAL OBJECTIVES	STUDENT OI	TCOMES	5
At th	ne end of the	e course, student will be able			-
1.	To learn a	bout estuaries, wetlands, lagoons, and of the uses	а		
	of and stre	sses on the coastal zone.	ů		
2.	2. To study the classification, characteristics, and theories of				
	waves, tid	es and currents.	u		-
3.	To learn a	bout coastal erosion, sea level change, and coastal	а	h	
	structures.		u		
4.	To study s	ea water intrusion, desalination, and anthropogenic	9	h	
	impacts or	n wetlands, mangroves and coral reefs.	a	11	
5.	To learn a	bout coastal zone management and the applications			
	of remote	sensing and geographical information systems in	n a h		
	coastal zor	ne management.			

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I -COASTAL FEATURES	9			
1.	Basic Concepts - Coastal Waters, Estuaries, Wetlands and Lagoons	1	С	1	1-3
2.	Pollution Stresses on Coastal Waters	1	С	1	1-3
3.	Beaches - Types of Beaches - Beach Profiles – Long shore Drift	2	С	1	1-3
4.	Marine Sediments -Sediment Transport, Texture, Composition and Distribution	2	С	1	1-3
5.	Resources in the Coastal Zone and their Conservation and Utilization	2	С	1	1-3
6.	Non-living Resources and their Exploration and Exploitation	1	С	1	1-3
	UNIT II – WAVES, TIDES AND CURRENTS	9			
7.	Waves – Classification and characteristics	2	С	2	1-3
8.	Wave theories - Wave energy - Wave deformation	3	С	2	1-3
9.	Breaking of waves - Wave forecasting -Tides – Classification – Harmonics	3	С	2	1-3
10.	Currents - Classification of Currents	1	С	2	1-3
	UNIT III – COASTAL PROCESSES AND MANMADE STRUCTURES	9			
11.	Plate Tectonics and Coasts - Types of Coasts	2	С	3	1-3
12.	Coastal Erosion - Causes, Effects and Protection	1	С	3	1-3
13.	Sea Level Change - Coastal Structures	2	С	3	1-3
14.	Soft and hard engineering structures	2	С	3	1-3
15.	Wave Force on Structures.	2	С	3	1-3
	UNIT IV – ENVIRONMENTAL IMPACTS IN COASTAL ZONE	9			

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
16.	Land Use in Coastal Zone - Seawater Intrusion	3	С	4	1-3
17.	Desalination - Brackish Water Aquaculture and its Impact on Coastal Zone	3	С	4	1-3
18.	Natural Hazards in Coastal Zone – Impacts on wetlands, mangroves and coral reefs.	3	С	4	1-3
	UNIT V – COASTAL ZONE MANAGEMENT AND RS & GIS APPLICATIONS	9			
19.	Coastal Zone Management - Concepts and Development	2	С	5	1-3
20.	Database for Coastal Zone Management	2	С	5	1-3
21.	Remote Sensing Data for CZM	2	С	5	1-3
22.	GIS - Concepts and Models Used in Coastal Zone- Case studies	3	С	5	1-3
	Total contact hours			45	

LEARN	LEARNING RESOURCES				
Sl.No.	TEXT BOOKS				
1.	Garrison.T, "Oceanography", Wadsworth Publications, 4th edition, 2002				
2.	Sorenson.R. M, "Coastal Zone Engineering", Chapman & Hall, 3rd edition, 2006				
	REFERENCE BOOKS/OTHER READING MATERIAL				
3.	Shore protection manual ,Volume I, coastal engineering research centre, Department of				
	army, US army engineer waterways experiment station 1984.				

Course nat	Course nature Theory						
Assessment	Assessment Method (Weightage 100%)						
In-	Assessment	Cycle	Cycle test	Cycle Test	Surprise	Ouiz	Total
semester	tool	test I	II	III	Test		
	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 5						50%	

15CE426E	HVDDODOWED ENCINEEDING				Т	Р	С
15CE420E		HIDROPOWER ENGINEERING					3
Co-requisite:	NI	TIL					
Prerequisite:	150	5CE208					
Data Book /	NII						
Codes/Standards	1111	L					
Course Category	Б	DROFESSIONAL ELECTIVE	WATER RESOURC	ES			
Course Calegory	E	E PROFESSIONAL ELECTIVE ENGINEERING					
Course designed by	De	Department of Civil Engineering					
Approval	32 ⁿ	32 nd Academic Council Meeting, 2016					

PU	POSE The purpose of this course is to understand the concept of hydropower projects including investigation, planning and design aspects.					
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES					
At	the end of the course, student will be able					
1.	To learn the elements of hydropower scheme.	а	h	k		
2.	To study the estimation of hydropower potential.	e	k			
3.	To gain knowledge on water conveyance system by studyin intake structures, power canals, surge tanks and penstocks.	g a	с	e	k	
4.	To understand the force exerted by a jet on a fixed targe moving target, and by a jet on a series of curved vanes.	a a	e	k		
5.	To gain knowledge on Francis turbine and Miscellaneou hydraulic machines.	s a	с	e	k	

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I – HYDROPOWER PLANT DEVELOPMENT	7			
1.	Sources and forms of energy	1	С	1	1,4
2.	Hydropower plants classification	1	С	1	1,4
3.	Layout and components, Development of hydropower schemes	3	С	1	1,4
4.	Comparison of Hydro and Thermal power, Survey and Investigation	2	C	1	1,4
	UNIT II – POWER POTENTIAL	8			
5.	Estimation of Hydropower potential	2	C,I	2	1,4
6.	Flow duration curve, Firm power, Secondary power	2	C,I	2	1,4
7.	Load and Load duration curves, Load factor, Firm capacity,	2	C,I	2	1,4
8.	Reservoir capacity, Capacity factor	2	C,I	2	1,4
	UNIT III – WATER CONVEYANCE SYSTEM	12			
9.	Intake structures: Location function and types of intakes, Energy losses at intake trash rock	2	С	3	1,4
10.	Power canals, Alignment, Design of power canals	2	C,D	3	1,4
11.	Penstocks, Alignment, types of penstock, Economic diameter of penstocks and Anchor blocks	3	C,I	3	1,4
12.	Water hammer pressure	1	С	3	1,4
13.	Behavior of surge tanks, Types of surge tanks	2	C	3	1,4
14.	Hydraulic design of simple surge tank	2	C,D	3	1,4
	UNIT IV – IMPACT OF JET ON VANES	9			
15.	Introduction to Impulse	1	C	4	1,2,3
16.	Momentum equation and its applications	2	C	4	1,2,3
17.	Force exerted by a Jet on a fixed target	2	C,I	4	1,2,3
18.	Force exerted by a Jet on a moving target	2	C,I	4	1,2,3

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
19.	Force exerted by a Jet on a serious of curved vane	2 C,I 4 1,2,			
	UNIT V – MISCELLANEOUS HYDRAULIC MACHINES	9			
20.	Francis Turbine, Component and Working	1	С,О	5	1,2,3
21.	Velocity triangle, Work done	1	С	5	1,2,3
22.	Design parameters, Problems	2	C,D,I	5	1,2,3
23.	Draft tube theory, Runaway speed	1	С	5	1,2,3
24.	Hydraulic accumulator, Hydraulic intensifier	2	С	5	1,2,3
25.	Hydraulic press and ram, Hydraulic cranes and lift	2	С	5	1,2,3
	Total contact hours		4	15	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Modi .P.N. and Seth .S.M, "Hydraulics and Fluid Mechanics", Standard Book House, 2005.
2.	Rajput .R.K, "Fluid Mechanics and Hydraulic Machines", S.Chand and Company Ltd.,
	2013.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Bansal .R.K, "Fluid Mechanics and Hydraulic Machines", Laxmi Publications 2010
4.	M.M.Dandekar and K.N.Sharma, "Water Power Engineering", Vikas ublications 1979

Course nature Theory							
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
	End semester examination Weightage :						50%

ELECTIVE III

CONSTRUCUTION ENGINEERING AND MANAGEMENT

OFFERED IN

IV YEAR, I SEMESTER

Office of the Registrar SRMIST Control Copy Approved in 36th Board of Management Meeting 11 August 2016 32nd Academic Council Meeting 23 July 2016

ELECTIVE III

150004200	A DVANCED CONSTRUCTION TECHNIQUES				Т	Р	С
ISCE45VE		ADVANCED CONSTRUCTION TECHNIQUES					3
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	NU	NUL					
Codes/Standards	INI	L					
Course Category	D	DDOEESSIONAL ELECTIVE	CONSTRUCTION				
Course Calegory	Г	P PROFESSIONAL ELECTIVE MANAGEMENT					
Course designed by	Department of Civil Engineering						
Approval	32 nd Academic Council Meeting, 2016						

PURPOSE		To acquire Jknowledge about the various construction	on technio	ques carri	ed out a	and the
10		role of supporting structure				
IN	STRUCTIO	ONAL OBJECTIVES	STUDE	NT OUT	COME	5
At	the end of th	ne course, student will be able				
1.	To acquire substructu	howledge about the supporting structure in re construction	а	e	k	
2.	2. To know the concept of erection and launching techniques of a e k				k	
3.	To Familia structures	arize with the techniques used in erecting large span	а	e	k	
4.	To get an overview about the special structure construction practices a e k					
5.	To underst techniques	and and learn about various repair and demolition	a	e	k	

Session	Description of Topic		C- D-	IOs	Reference
			0		
	UNIT I: SUB STRUCTURE CONSTRUCTION	9			
1.	A frame techniques	1	C,I	1	1,4
2.	Box Jacking ,Pipe jacking	1	C,I	1	1,4,7
3.	Diaphragm walls types and methods	1	C,I	1	1,4,7
4.	Piling techniques- driving well and caisson	2	C,I	1	1,4,7
5.	Sheet piles-construction procedures and applications	1	C,I	1	1,4,7
6.	Cofferdam - methods -cable anchoring	1	C,I	1	1,4
7.	Laying operations for built up offshore system -	1	C,I	1	1
	shoring for deep cutting				
8.	Well points - Trenchless Technology.	1	C,I	1	1
	UNIT II: TALL STRUCTURES	9			
	CONSTRUCTION				
9.	Techniques of construction for continuous concreting operation in tall buildings	2	C,I	2	3,7
10	various shapes and varying sections launching	1	CI	2	37
10.	techniques	-	0,1	-	5,7
11.	Slip form techniques - suspended form work	2	C.I	2	3.7
12.	Erection techniques of tall structures, large span	1	Ċ,I	2	3.7
	structures		,		,
13.	Launching techniques for heavy decks	1	C,I	2	3,7
14.	Aerial transporting - handling erecting lightweight	2	C,I	2	3,7
	components on tall structures				
	UNIT III: LARGE SPAN STRUCTURES	9			
	CONSTRUCTION				
15.	Types of bridges and loading standards	1	C,I	2,3	3,2
16.	Bow string bridges, cable stayed bridges	2	C,I	2,3	3,2

Session	Description of Topic	Contact hours	C- D- I-	IOs	Reference
17.	Construction aspects and inspection and maintenance of bridges	1	C,I	2,3	3,2
18.	Launching and pushing of box decks	1	C,I	2,3	3,2
19.	Construction sequence and methods in domes and prestressed domes	1	C,I	2,3	3,2
20.	Various construction techniques of domes -methods	2	C,I	2,3	3
21.	Conveyor and machinery in heavy industries	1	C,I	3	3
	UNIT IV: SPECIAL STRUCTURE CONSTRUCTION	9			
22.	Erection of lattice towers and rigging of transmission line structures	1	C,I	4	1,3,5,6
23.	Construction procedures of cooling towers, silos, chimney, sky scrapers.	2	C,I	2,3,4	1,3,5,6
24.	Advanced construction techniques in offshore construction practice	1	C,I	4	1,3,5,6
25.	Vacuum dewatering of concrete – white topping – methods and application	2	C,I	4	1,3,5,6
26.	Erection of articulated structures, floating structures- methods	2	C,I	2,3,4	1,3,5,6
27.	Sustainable methods.	1	C,I	4	1,3,5,6
	UNIT V: COMMON STRENGTHENING TECHNIQUES	9			
28.	Mud Jacking grout through slab foundation	1	C,I	5	4,8,9,10
29.	Micro piling for strengthening floor and shallow profile pipeline laying	1	C,I	5	3,7
30.	Screw anchors – sub grade water proofing- Under pinning	1	C,I	5	3,7
31.	Crack stabilizing techniques - advanced techniques	1	C,I	5	3,7
32.	Demolition Techniques, Demolition by Machines, Demolition by Explosives- Advanced techniques using Robotic Machines	1	C,I	5	4,9,10
33.	Demolition Sequence, Dismantling Techniques	2	C,I	5	4, 9,10
34.	Safety precaution in Demolition and Dismantling. Explosives and its classification. Sequence in demolition and dismantling.	2	C,I	5	4, 9,10
	Total contact hours			45	

LEAR	NING RESOURCES						
Sl.No.	TEXT BOOKS						
1.	Roy Chudley, Roger Geeno,"Advanced Construction Technology" Latest Edition, 2005.						
2.	Ponnuswamy .S,"Bridge Engineering "Second Edition, 2008.						
3.	Sankar .S.K. And Saraswati .S, Construction Technology, Oxford University Press, New Delhi, 2008.						
4.	Gahlot .P.S & Sanjay Sharma ,"Building repair and maintenance management", CBS Publications.2006.						
5.	Robertwade Brown, " <i>Practical Foundation Engineering Hand Book</i> ", Mcgraw Hill Publications, 2005.						
	REFERENCE BOOKS/OTHER READING MATERIAL						
6.	Patrick Powers .J, "Construction Dewatering: New Methods And Applications", John Wiley & Sons, 2002.						
7.	Antil J.M., Civil Engineering Construction, McGraw Hill Book Co., 1982.						
8.	Peurifoy. R.L., Ledbette. W.B., Construction Planning, Equipment and Methods, McGraw Hill Co., 2000.						

9.	Ratay. R.T., Hand Book of Temporary Structures in Construction, McGraw Hill, 1984
10.	Smith. R.C., Andres. C.K., Principles and Practice of Heavy Construction, Prentice Hall, 1986.

Course nat	Course nature Theory						
Assessmen	Assessment Method (Weightage 100%)						
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
	End semester examination Weightage :						

15CE421E	CONSTRUCTION RESOURCE PLANNING AND				Т	Р	С
15CE451E		MANAGEMENT		3	0	0	3
Co-requisite:	NI	L					
Prerequisite:	NI	L					-
Data Book /	NI	NII					-
Codes/Standards	INI	NIL					
Course Category	D	DDOFESSIONAL ELECTIVE	CONSTRUCTION				
Course Calegory	Г	FROFESSIONAL ELECTIVE	MANAGEMENT				
Course designed by	De	Department of Civil Engineering					
Approval	321	32 nd Academic Council Meeting, 2016					

PU	PURPOSE To provide an understanding of resource management concepts, developing the basis knowledge and skills in resource planning and management in the construction industry, assigning resources in construction organization and management, better understanding of conditions, opportunities and ways to put into practice the knowledge gained						basic ction better edge
IN	STRUCTIO	ONAL OBJECTIVES	ST	UDEN	JT OU	UTCO	MES
At	the end of the	he course, student will be able					
1.	To study	the concepts of construction resource planning, scheduling	а	с			
	and to ap	pply appropriate tools and techniques like allocation of					
	resources	as per requirement					
2.	To know t	he methods of project estimation and obtain the knowledge	а	с			
	of plannin	g and preparing budgets for the construction projects.					
3.	3. To know the materials and equipments used in construction projects				e		
	and gain k						
4.	To create	awareness on resource leveling and resource allocation	-	-	e	e	

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I - RESOURCE PLANNING	9			
1.	Introduction to resources	2	C,I	1	1,2
2.	Types of resources	2	C,I	1	1,2
3.	Resource Planning – Material and Money	2	C,I	1	1,2
4.	Resource Planning – Manpower and Equipment	2	C,I	1	1,2
5.	Scheduling Concepts	1	C,I	1	1,2
	UNIT II - COST MANAGEMENT	9			
6.	Methods of Estimating project cost (An overview)	2	C,I	1,2	1,2
7.	Classification of Construction cost – Planning resources unit rate, Cost inflation	2	C,I	1,2	1,2
8.	Classification of Construction cost – Escalation and Contingencies	2	C,I	1,2	1,2
9.	Earned value budget	1	C,I	1,2	1,2
10.	Project master budget – Contractors cost control system	2	C,I	1,2	1,2
•	UNIT III - MATERIAL MANAGEMENT	9			
11.	Time of purchase, Quantity of material, Sources	2	C,I	1,3	1,2,3
12.	Transportation, Delivery and Distribution	2	C,I	1,3	1,2,3
13.	Control methods- Inventory basics	2	C,I	1,3	1,2,3
14.	Inventory Planning – EOQ problems	3	C,I	1,3	1,2,3
	UNIT IV - EQUIPMENT AND LABOUR MANAGEMENT	9			
15.	Equipment: Planning and selecting, Extension of Equipment	1	C,I	1,3	1,2
16.	Equipment: Types, Cost control Methods	2	C,I	1,3	1,2
17.	Depreciation and Replacement	2	C,I	1,3	1,2
18.	Labour Administration - Labour, Classes of	2	C,I	1,4	1,2

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	Labour, Cost of Labour				
19.	Labour schedule, optimum use Labour	2	C,I	1,4	1,2
	UNIT V - RESOURCE SCHEDULING AND ALLOCATION	9			
20.	Resource list - Resource Allocation	3	C, I	4	1,2,3
21.	Resource Leveling and Smoothening	2	C, I, O	4	1,2,3
22.	Time-cost trade off	2	C, I	4	1,2,3
23.	Value Management	2	C, I	4	1,2,3
	Total contact hours			45	

	LEARNING RESOURCES						
Sl.No.	TEXT BOOKS						
1.	Chitkara .K.K, "Construction Project Management", McGraw Hill, 2012						
2.	Sharma .S.C, "Construction Engineering and Management", Khanna Publishers, 2008						
	REFERENCE BOOKS/OTHER READING MATERIAL						
3.	Senguptha .B, "Construction Management and Planning", Tata McGraw Hill, 2005.						

Course nat	Course nature Theory							
Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage :								

15CE432E		ADVANCED CONSTRUCTION PROJECT					С
		MANAGEMENT		3	0	0	3
Co-requisite:	NI	L					-
Prerequisite:	NI	L					
Data Book /	NI	NU					
Codes/Standards	INI	NIL					
Course Category	р	DDOFESSIONAL ELECTIVE	CONSTRUCTION				
Course Calegory	P PROFESSIONAL ELECTIVE MANAGEMEN						
Course designed by	Department of Civil Engineering						
Approval	321	32 nd Academic Council Meeting, 2016					

PURPOSE To learn the advanced concepts of construction management in the field of construction engineering and management									
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES								
At	the end of th	he course, student will be able							
1.	To learn a	nd implement of Simulation techniques	а	k					
2.	To know t developme	he fundamentals and principles sustainability ent	d	e	k				
3.	To learn le	ean construction principles	a	e	k				
4.	To learn th	ne various tools of decision making	e	k					

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I SIMULATION TECHNIQUES	9			
1.	Introduction to Simulation –types of simulation- randomness in simulation	2	С	1	1,2,3
2.	Role of probability and statistics in simulation- characterization of common distribution in simulation	1	С	1	1,2,3
3.	Properties of common distribution- elements of discreet simulation- concepts of events in simulation	1	C, I	1	1,2,3
4.	Common simulation approaches	2	Ι	1	1,2,3
5.	Event scheduling approach- activity scanning approach	2	С, І	1	1,2,3
6.	Process simulation approach- construction simulation – application of construction simulation	1	C, I	1	1,2
	UNIT II FUNDAMENTALS OF SUSTAINABILITY	9			
7.	Fundamentals of Sustainable Construction Engineering	1	C	2	4,5,6
8.	Sustainability and resources, need, present practices	2	С, І	2	4,5,6
9.	Sustainability of construction resources, process modification	2	C, I	2	4,5,6
10.	Product performance evaluation - Sustainability assessment using standard approaches	2	C, I	2	4,5,6
11.	LEED/GRIHA rating evaluation process	2	C, I, O	2	4,5,6
	UNIT III SUSTAINABILITY DEVELOPMENT	9			
12.	Tools & Aids available for sustainable construction products	1	C	2	4,5,6
13.	Life Cycle Assessment and Costing	2	C, I	2	4,5,6
14.	Various aspects related to construction cost, present value analysis	2	С, І	2	4,5,6

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
15.	Life cycle stages	2	C, I, O	2	4,5,6
16.	Evaluation criteria, sensitivity analysis, break even analysis	2	С, І, О	2	4,5,6
	UNIT IV LEAN CONSTRUCTION	9			
17.	Fundamentals in lean – principles of lean	1	С	3	7,8
18.	Various lean techniques- 5S TECHNIQUE	2	C, I	3	7,8
19.	Last planner technique-increased visualization technique	1	C, I	3	7,8
20.	Daily hurdle meeting-Just In Time	1	C, I	3	7,8
21.	Implementation of lean techniques in construction	1	С, І,	3	7,8
22.	Lean construction and enhanced performance	1	С	3	7,8
23.	Toyato way model- case study	2	C, I,O	3	7,8
24.	UNIT V DECISION MAKING TOOLS	9			
25.	Virtual reality and BIM concepts	1	С	4	1
26.	Applications of BIM software packages	1	C, I	4	1
27.	Decision making models - Introduction to Artificial Neural Networks				
28.	Concept of Multilayer Feed forward Network (MLFF)- application example- factors affecting MLFF	2	C, I, O	4	1
29.	General Regression Neural Network (GRNN)- application example- factors affecting GRNN	2	C, I, O	4	1
30.	Concept of Probabilistic Neural Network (PNN) – Genetic algorithm – applications.	1	С, І, О	4	1
	Total contact hours			45	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1	"Decision making and operations research techniques for construction management".
1.	C.m.tam, thomas k.l.tong h.zhang
2	Charles J.Kibert, "Sustainable Construction: Green Buildings Design And Delivery", John
Ζ.	Wiley & Sons, 2005
2	Lynne elizabeth, cassandra adams, "alternative construction: contemporary natural building
5.	methods" soft cover, wiley & sons australia limited, john, 2005
4.	Hagger Sustainable Industrial Design and Waste Management, Techniz Book 2010.
	REFERENCE BOOKS/OTHER READING MATERIAL
5.	Helmut Rechberger, Practical handbook of Material Flow Analysis, Taylor & Francis. 2010.
6.	LEED for India: Reference Guide, 2011
7	"Lean Construction Management: The Toyota Way" by Shang Gao, Sui Pheng Low, springer
7.	publication.
0	Lean Construction by luis alarcon, springer publication A A BALKEMAROTTERDAM /
0.	BROOKFIELD

Course nature					Theory			
Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
			En	d semester e	xamination W	/eightage :	50%	

ELECTIVE IV GEOTECHNICAL ENGINEERING AND STRUCTURAL ENGINEERING OFFERED IN

IV YEAR, II SEMESTER

ELECTIVE IV GEOTECHNICAL ENGINEERING

15CE440E	ADVANCED CEOTECHNICAL ENCINEEDINC					Р	С
ADVANCED GEOTECHNICAE ENGINEERING					0	0	3
Co-requisite:	NI	L					
Prerequisite:	15	CE308					
Data Book /	NI	NII					
Codes/Standards	INI.	L					
Course Category	Р	PROFESSIONAL ELECTIVE	GEOTECHNICAL	ENC	INE	ERI	NG
Course designed by	De	partment of Civil Engineering					
Approval	32	nd Academic Council Meeting, 2016					

PU	RPOSE	To assess behavior of various clay minerals, analyst aspects of stress analysis, tunneling and coastal struct	is of dewate cture.	ering in soi	l, and vai	rious
IN	STRUCTIO	ONAL OBJECTIVES	STUD	ENT OU	ГСОМЕ	S
At	the end of the	he course, student will be able to				
1.Equip themselves familiar with identification of clay minerals and its interaction with waterae						
2.	Get famil flow net a	iarized with the design methods for dewatering, nalysis for soil	а	e	k	
3.	Understan retaining v	d the concept of stress distribution in soil and walls	а	e	k	
4.	Improve th structures	neir ability in analyzing the off shore and special	a	e	k	

Session	Description of Topic		C- D-I- O	IOs	Reference
	UNIT I: CLAY MINEROLOGY AND STRUCTURE	9			
1.	Introduction – Gravitational and surface forces	1	С	1	1,2,4,5
2.	Electrical charges on clay minerals-bonds	1	С	1	1,2,4,5
3.	Basic structural units of clay - isomorphic substitution	2	С	1	1,2,4,5
4.	Base exchange capacity common clay minerals (Kaolinite, Montmorillionite and illite only)	2	С	1	1,2,4,5
5.	Diffuse double layer	1	С	1	1,2,4,5
6.	Thixotrophy - activity of soils	1	С	1	1,2,4,5
7.	Capillary water – soil suction -capillary potential.	1	С	1	1,2,4,5
	UNIT II: DEWATERING AND FLOW NET	9			
8.	Permeability of soil – aquifers - field methods for permeability - quick sand condition	2	C,D	1	1,2,4,5
9.	Two dimensional flow - Laplace's equation - flow net and it's uses	2	С	2	1,2,4,5
10.	Construction of flow net for sheet pile wall - phreatic lines	2	D,I	2	1,2,4,5
11.	Construction of flow net for earth dams - phreatic lines	1	D,I	2	1,2,4,5
12.	Dewatering – methods - flow to a slot from a single line source and two line source – fully and partially penetrating slot.	2	C,D	2	1,2,4,5
	UNIT III: STRESS DISTRIBUTION	9			
13.	Introduction - Newmarks chart – regular and irregular footing	2	C,D	3	1-5
14.	Westergard's stress analysis for various loading conditions	2	C,D	3	1-5
15.	Earth pressure theories - types of retaining walls	2	С	4	1-5
16.	Sheet pile walls – types	1	C	4	1-5

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
17.	Pressure distribution diagrams for cantilever sheet pile walls in cohesion less soil.	2	C,D	4	1-5
	UNIT IV: OFFSHORE STRUCTURES	9			
18.	Origin, nature and distribution of marine soils – their engineering properties	2	C	4	1-6
19.	sampling and sample disturbance	1	С	4	1-6
20.	Iin-situ testing- Vane shear test, Pressuremeter test, Field permeability test.	2	C	4	1-6
21.	Introduction of fixed and floating platforms	2	С	4	1-6
22.	Steel, concrete and hybrid platforms piling techniques.00	2	C	4	1-6
	UNIT V: SPECIAL STRUCTURES	9			
23.	Coffer dams - Caissons and wells- Shafts	2	С	4	1-6
24.	Tunnels classification – methods of tunneling	2	С	4	1-6
25.	construction sequence - stress around tunnels	2	С	4	1-6
26.	Micro tunneling – tunnel lining	1	C	4	1-6
27.	Diaphragm walls – analysis- anchors	2	C	4	1-6
	Total contact hours			45	

LEARN	LEARNING RESOURCES								
Sl.No.	TEXT BOOKS								
1.	Shashi K. Gulhati and Manoj Datta., "Geotechnical Engineering", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2011.								
2.	Joseph .E & Bowles, "Foundation Analysis & Design", McGraw Hill, 1996.								
	REFERENCE BOOKS/OTHER READING MATERIAL								
3.	Leonards .G.A, "Foundation Engineering", Tata McGraw-Hill, 1962.								
4.	James K. Mitchell, "Fundamentals of soil behavior", John Wiley and Sons, Inc., 1993.								
5.	Terzaghi & Peck, "Soil Mechanics in Engineering Practice", Asia Publishing, 1967.								
6.	Poulos .H.G, "Marine Geotechniques", Unwin Hyman, London, 1980								

Course nature				Theo	ory			
Assessment	Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage :							50%	

15CE441E	CDOUND IMDDOVEMENT TECHNIQUES		L	Т	Р	С		
15CE441E		GROUND INFROVEMENT TECHNIQUES					3	
Co-requisite:	NII							
Prerequisite:	150	15CE308						
Data Book /	NII	NII						
Codes/Standards	1911	NIL						
Course Category	Р	PROFESSIONAL ELECTIVE	Geotechnical Engin	eerin	g			
Course designed by	Dep	Department of Civil Engineering						
Approval	32 ⁿ	^d Academic Council Meeting , 2016						

PURPOSE	To develop an understanding of the ground improvement techniques and use of new materials and its behaviour for ground improvement techniques.

IN	STRUCTIONAL OBJECTIVES	STUDENT OUTCOMES						
At	At the end of the course, student will be able							
1.	To develop an awareness of problematic soils and selection of ground improvement techniques based on soil conditions	а	e					
2.	To understand drainage, dewatering, grouting technique in ground improvement method.	а	e					
3.	To get the awareness of the ground improvement techniques.	а	e	k				
4.	To study the applications of geosynthetics.	a	e					

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I : PROBLEMATIC SOIL AND GROUND	9			
1.	Ground improvement - Role of ground improvement in foundation engineering	3	С	1,3	1,3,6
2.	Methods of ground improvement, Geotechnical problems in alluvial, lateritic and black cotton soils.	3	С	1,3	1,3,6
3.	Selection of suitable ground improvement techniques based on soil conditions	3	С	1,3	1,3,4,6
	UNIT II : DEWATEREING	9			
4.	Dewatering Techniques - Well points.	3	С	1,2,3	3,6
5.	Vacuum and electro-osmotic methods.	3	С	1,2,3	3,6
6.	Seepage analysis for two dimensional flow - fully and partially penetrated slots in homogeneous deposits (Simple cases only).	3	C	2,3	3,4,6
	UNIT III : GROUND IMPROVEMENT FOR COHESIONLESS AND COHESIVE SOILS	9			
7.	In-situ densification of cohesion-less soils and consolidation of cohesive soils:	3	С	1,3	1,2,6
8.	Dynamic compaction Vibroflotation, Sand compaction piles. Consolidation: Preloading with sand drains, and fabric drains.	3	C	13,4	1,3,6
9.	Stone columns	2	C, D	1,3	1,3,4,6
10.	Lime piles-installation techniques only – relative merits and limitations – deep soil mixing.	1	С	1, 3	1, 3,4
	UNIT IV : GROUTING TECHNIQUE	9			
11.	Grouting - Types of grouts - Suspension grouts - solutions grouts	3	С	2,3	1,2,3,4
12.	Grouting equipment and method - Grouting with soil	3	С	2,3	2,3,4
13.	Bentonite - cement mixes and asphalt - Grout monitoring schemes.	3	С	2,3	1,4
	UNIT V – GEOSYNTHETICS APPLICATIONS	9			
14.	Geosynthetics - Types	3	С	2,4	1,2,5

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
15.	Functions of Geotextiles – Separation – Filtration – Drainage - reinforcement -	3	С	2,4	1,3,5
16.	Geomembranes - Containments and barriers - Application to Ground Anchors.	3	С	3,4	3,4,5
	Total contact hours			45	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Purushothama Raj. P, "Ground Improvement Techniques", Laxmi Publications (P) Ltd. New
	Delhi, 2000.
	REFERENCE BOOKS/OTHER READING MATERIAL
2.	Koerner. R. M, "Construction and Geotechnical Methods in Foundation Engineering",
	McGraw Hill, new York, 1984.
3.	Moseley. M.P, "Ground Improvement", Blockie Academic and Professional, Chapman and
	Hall, Glassgow, 1998.
4.	Winterkorn .H .F and Fang. H. Y, "Foundation Engineering Hand Book", Van Nostrand
	Reinhold, 1994.
5.	Koerner. R. M, "Designing with Geosynthetics" (Fourth Edition), Prentice Hall, New Jersey,
	1999.
6.	IS: 13094:1992- "Selection of ground improvement techniques for foundations in weak
	soils", BIS, New Delhi, 1992

Course nature					Theory			
Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage :							50%	

15CE442E	STRUCTURES ON EVRANSIVE SOIL				Т	Р	С		
15CE442E	SIRUCIURES ON EXPANSIVE SOIL					0	3		
Co-requisite:	NIL	VIL							
Prerequisite:	15CI	15CE308							
Data Book /	NII	NII							
Codes/Standards	MIL	NIL							
Course Category	P 1	PROFESSIONAL ELECTIVE	GEOTECHNICAL	ENG	INE	ERIN	١G		
Course designed by	Depa	Department of Civil Engineering							
Approval	32 nd	Academic Council Meeting, 2016							

DI	To get exposure about various aspects of	To get exposure about various aspects of structures especially constructed on expansive								
10	soil.	soil.								
IN	STRUCTIONAL OBJECTIVES	STUDE	NT OU	FCOMES						
At	the end of the course, student will be able to									
1.	To know the occurrence and distribution of expansiv	e								
2.	To study the properties of expansive soils	а	e							
3.	To understand various methods of prediction of heav	e a	e							
4.	To study the design procedure for foundation on e soils	expansive a	e	k						
5.	To understand various methods of stabilization expansive soils	used in a	e							

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I : GEOTECHNICAL PROBLEM	9			
1.	Occurrence and distribution - Expansive soils of India	3	С	1,2	1,4
2.	Related civil engineering problems - Environmental interaction moisture equilibrium	3	C	1	1,4
3.	Distress symptoms- Factors influencing swelling & shrinkage of soils.	3	С	1	1,4
	UNIT II : EXPANSIVE SOIL PROPERTIES	9			
4.	Soil structure and Clay mineralogy	3	С	2	2,3
5.	Field exploration – Identification of expansive soils, free swell, cation exchange capacity	3	C	2	2,3
6.	Expansive index test- classification using engineering index properties.	3	C	2	2,3,4
	UNIT III : HEAVE PREDICTION	9			
7.	Methods of prediction of heave - Empirical methods	3	С	,3	1,2,3
8.	Double oedometer tests	3	С	3	1,2,3
9.	Soil moisture- suction - field observations - shrinkage.	3	С	3	1,2,3
	UNIT IV : FOUNDATION DESIGN	9			
10.	Recommendations for type of foundation in expansive soils	3	C	4	2,3
11.	Design consideration - Individual and continuous footings	2	С	4	2,3
12.	Stiffened mats - Codal provisions.	2	С	4	2,3
13.	Under reamed piles - codal provisions.	2	C, D	4	2,3
	UNIT V : STABILIZATION	9			
14.	Soil stabilization -Method - mechanical stabilization	3	C	5	1,3,4
15.	Cement stabilization – lime stabilization - bituminous stabilization	3	C	,5	1,3,4

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
16.	Chemical stabilization - Thermal stabilization.	3	С	5	1,3,4
	Total contact hours	45			

LEARNING RESOURCES						
Sl.No.	TEXT BOOKS					
1.	John .D.N & Debora .J.M, "Expansive Soils Problems And Practice In Foundation &					
	Pavement Engineering", 1992.					
	REFERENCE BOOKS/OTHER READING MATERIAL					
2.	Chenn.F.R, "Foundation on Expansive Soils"- Elsevier, 1973.					
3.	Parcher.J.V & Means .R.E, "Soil Mechanics and Foundations", Columbus, 1968.					
4.	Boominathan. S,"Lecture Notes on Structures on Expansive Soil", College of Engineering,					
	Guindy, Anna University, Chennai, 1990.					

Course nature			Th	Theory			
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :						50%	

15CF443F	INTRODUCTION TO SOIL DYNAMICS AND	L	Т	Р	С
15024452	MACHINE FOUNDATION			0	3
Co-requisite:	NIL				
Prerequisite:	15CE308				
Data Book /	IS5249:1992				
Codes/Standards					
Course Category	P PROFESSIONAL ELECTIVE GEOTECHNI	CAL EN	GINE	ERI	NG
Course designed by	Department of Civil Engineering				
Approval	32 nd Academic Council Meeting, 2016				

PURPOSE To assess various design dynamic properties of soil, demonstration machineries and also about the measures to isolate vibramachines.				ign of foundation for common ation due to the operations of			
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES						
At	At the end of the course, student will be able to						
1.	Equip themselves familiar with wave and wave propagation and a e						
	dynamic properties of soils.						
2.	2. Get familiarized with the procedure used for machine foundation			0	k		
	design.						
3.	Learn the	concept of the vibration isolation and screening		e	k		
	techniques	3.					

Session	Description of Topic	Contact hours	C- D- I-O	IOs	Reference
	UNIT I: THEORY OF VIBRATION	9			
1.	Vibration of elementary systems	1	С	1	1,2,4
2.	Vibratory motion-single degree freedom system	2	С	1	1,2,4
3.	Free vibration with and without damping	1	С	1	1,2,4
4.	Forced vibration with and without damping	2	С	1	1,2,4
5.	Principles of vibration measuring instruments.	3	С	1	1,2,4
6.	UNIT II: WAVES AND WAVE PROPAGATION	9			
7.	Wave propagation in an elastic homogeneous isotropic medium	3	С	1	1,2,4
8.	Rayleigh, shear and compression waves	3	С	1	1,2,4
9.	Waves in elastic half space (no theoretical treatment or derivation).	3	С	1	1,2,4
10.	UNIT III: DYNAMIC PROPERTIES OF SOILS	9			
11.	Elastic properties of soils	2	С	1	1,2,3
12.	Coefficient of elastic uniform and non-uniform compression and shear	2	С	1	1,2,3
13.	Effect of vibration dissipative properties of soils	2	С	1	1,2,3
14.	Determination of dynamic properties of soil - codal provisions – IS:5249- 1992.	3	C	1	1,2,3,5,6
15.	UNIT IV: DESIGN PROCEDURES FOR SIMPLE MACHINE FOUNDATION	9			
16.	Design criteria	2	С	2	1-7
17.	Dynamic loads	3	С	2	1-7
18.	simple design procedures for foundations of reciprocating type machines (Treated single degree freedom only)	2	C,D	2	1-7
19.	simple design procedures for foundations of impact type machines (Treated single degree freedom only)	2	C,D	2	1-7
20.	UNIT V: VIBRATION ISOLATION AND SCREENING	9			
21.	Vibration isolation technique	3	С	3	1-7
22.	Foundation isolation- isolation by location	3	C,D	3	1-7
23.	Isolation by barriers active and passive isolation	3	C,D	3	1-7
Session	Description of Topic	Contact hours	C- D- I-O	IOs	Reference
---------	----------------------	------------------	-----------------	-----	-----------
	methods				
	Total contact hours			45	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Swamisaran, "Soil Dynamics and Machine Foundations", Galgotia Publications Pvt. Ltd.
	2010.
2.	Prakash.S, and Puri,V.K., "Foundation for Machines", McGraw Hill Publishing Company,
	Newyork, 1988.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Kameswara Rao, "Dynamics Soil Tests and Applications", Wheeler Publishing, New Delhi,
	2003.
4.	Kamaswara Rao, "Vibration Analysis and Foundation Dynamics", Wheeler Publishing, New
	Delhi, 1998.
5.	IS 2974 Code (Part I to IV) of Practice for "Design and Construction of Machine
	Foundations", Bureau of Indian Standards, New Delhi.
6.	IS 5249 Code of Practice for "Method of test for determination of dynamic properties of soil"
	Bureau of Indian Standards, New Delhi.
7.	Moore.P.J, "Analysis and Design of Foundation for Vibration", Oxford and IBH, 2005.

Course nat	ure			Theory				
Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage :								

15CE444E	ENVIRONMENTAL CEOTECHNOLOCY			L	Т	Р	С	
15CE444E		ENVIRONMENTAL GEOTECHNOLOGI				0	3	
Co-requisite:	NIL	_						
Prerequisite:	150	15CE309						
Data Book /	NII	NII						
Codes/Standards	INIL	_						
Course Category	Р	PROFESSIONAL ELECTIVE	GEOTECHNICAL	ENG	INE	ERI	١G	
Course designed by	Dep	partment of Civil Engineering					-	
Approval	32 nd	^d Academic Council Meeting, 2016						

PU	RPOSE To develop an understanding of the geotechnical aspects in the disposal of waste materials and the remediation of environmentally contaminated sites.								
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES								
At	the end of t	he course, student will be able to							
1.	Learn the	e concept of interaction between waste and soil	a	e	k				
2	Get famili	arized with the role of geotechnical engineering							
2.	in waste n	nanagement.		e	k				
3.	3. Improve their ability in waste disposal and management								
	system an	d ground remediation technologies.			А				

Session	Description of Topic	Contact hours	C- D- I-O	IOs	Reference
	UNIT I: INTRODUCTION	9			
1.	Introduction to environmental geotechnology	1	С	1	1,2,3
2.	Environmental cycles & interaction	2	С	1	1,2,3
3.	Soil water environment interaction	3	С	1	1,2,3
4.	Causes of soil pollution	2	С	1	1,2,3
5.	Factors governing soil pollutant interaction	1	С	1	1,2,3
	UNIT II: SOURCES OF WASTES AND CONTAMINANT TRANSPORT	9			
6.	Waste characteristics - Sources and types of wastes	2	С	1	1,2,3
7.	Contaminant transport in sub surface : advection, diffusion, dispersion	2	С	1	1,2,3
8.	Contaminant transformation : sorption, biodegradation, ion exchange, precipitation	2	С	1	1,2,3
9.	Ground water pollution : pollution of aquifers by mixing of liquid waste – protecting aquifers.	3	С	1	1,2,3
	UNIT III: WASTE DISPOSAL METHODS	9			
10.	Objectives of waste disposal facilities – site selection criteria for waste disposal	3	С	2,3	1,2,3
11.	Methods of disposal: surface impoundment systems	3	С	2,3	1,2,3
12.	Sub-surface disposal, passive containment systems	2	С	2,3	1,2,3
13.	landfills	1	С	2,3	1,2,3
	UNIT IV: LANDFILLS	9			
14.	Landfill – types, requirements, components - Site selection	2	С	3	1,2,3
15.	Leachate and gas generation – primary and secondary leachate	1	C,D	3	1,2,3
16.	Leachate collection and removal system– gas collection and removal system	2	C,D	3	
17.	Landfill liners – compacted clay liners, geosynthetic clay liners, geomembrane liners.	2	C,D	3	1,2,3
18.	Landfill cover system – end uses of closed landfills.	2		3	
	UNIT V:GROUND REMEDIATIONTECHNOLOGIES	9			
19.	Soil remediation technologies: soil washing	2	С	3	1,2,3

Session	Description of Topic	Contact hours	C- D- I-O	IOs	Reference	
20.	Electrokinetic remediation	1	С	3	1,2,3	
21.	Soil vapour extraction, bioremediation, stabilization and solidification.	2	С	3	1,2,3	
22.	Ground water remediation technologies	1	С	3	1,2,3	
23.	Pump and treat, insitu flushing,	1	С	3	1,2,3	
24.	bioremediation, air sparging, reactive well.	2	С	3	1,2,3	
	Total contact hours	45				

LEARN	LEARNING RESOURCES								
Sl.No.	TEXT BOOKS								
1.	Hsai- Yang Fang, "Introduction to Environmental Geotechnology, - CRC Press", New York,								
	2009.								
	REFERENCE BOOKS/OTHER READING MATERIAL								
2.	David. E. Daniel, "Geotechnical practice for waste disposal" – Chapman and Hall – London,								
	1993.								
3.	Wentz .C.A, Hazardous, "Waste Management", McGraw Hill Publishing Company,								
	Singapore, 1989.								

Course nature			Theory				
Assessment Method (Weightage 100%)							
In- semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :							50%

ELECTIVE IV STRUCTURAL ENGINEERING

15CE450E	COMDUTED ANALVSIS OF STRUCTURES			L	Т	Р	С	
ISCE450E		COMPUTER ANALISIS OF STRUCTURES				0	3	
Co-requisite:	NI	L						
Prerequisite:	150	15CE301						
Data Book /	мп	NII						
Codes/Standards	1111							
Course Category	Р	PROFESSIONAL ELECTIVE	STRUCTURAL EN	IGIN	EER	ING		
Course designed by	De	partment of Civil Engineering						
Approval	32 ⁿ	^{ad} Academic Council Meeting, 2016						

PU	RPOSE	wo and three					
INSTRUCTIONAL OBJECTIVES STUE OUTC							
At	the end of t	he course, student will be able					
1.	To introdu	uce fundamentals of matrix analysis - Principle of superposition	а				
	and to for	rmulate flexibility and stiffness matrices of spring systems and					
	elements.						
2.	To apply e	energy concepts to develop nodal load vectors.	b				
3.	To analyze	e a structure by stiffness and flexibility methods	с				
4.	To analyze	e and design a structure using computer software packages.	d				
5.	To introdu	ce Finite Element method.	e				

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: INTRODUCTION	9			
1.	Introduction to syllabus - Force and Displacement	1	С	1	2,4,5,6,10,11
2.	Generalized or independent measurements	1	С	1	2,4,5,6,10,11
3.	Constrained or dependent measurements	1	С	1	2,4,5,6,10,11
4.	N dimensional space – principle of superposition	1	С	1	2,4,5,6,10,11
5.	Methods of structural analysis structure with single and two coordinates	1	С	1	2,4,5,6,10,11
6.	Flexibility and stiffness matrices in coordinates - examples	1	Ι	1	2,4,5,6,10,11
7.	Symmetric nature – constrained measurements	1	С	1	2,4,5,6,10,11
8.	Stiffness and flexibility matrices of the element as well as the system	1	С	1	2,4,5,6,10,11
9.	Computing the influence coefficient	1	С	1	2,4,5,6,10,11
	UNIT II: ENERGY CONCEPTS	5			
10.	Strain energy in terms of stiffness and flexibility matrices	3	С	2	2,3
11.	Interpretation of coefficient- Betti's law	1	С	2	2,3
12.	Other energy theorems using matrix notation	1	С	2	2,3
	UNIT III: FLEXIBITY AND STIFFNESS METHODS (ELEMENT APPROACH)	15			
13.	Choice of redundant – ill and well condition equation -transformation matrices	1	C	3	4,5,10,11
14.	Transformation of one set redundant to other set – thermal expansion – lack of fit	1	С	3	4.5,10,11
15.	Application of pin jointed plane truss – continuous beams, frames and grids	4	Ι	3	4,5,10,11
16.	Development of stiffness method- analogy between flexibity and stiffness – analysis due to thermal	2	C,I	3	4,5,10,11

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	expansion				
17.	Lack of fit - Stiffness matrix with rigid body motion	1	С	3	4,5,10,11
18.	Application to pin jointed plane and space trusses – continuous beams- frames and grids	4	Ι	3	4,5,10,11
19.	Problem solving by computer – choice of the method	2	Ι	3	4,5,10,11
	UNIT IV: COMPUTER APPLICATIONS	10			
20.	Analysis and design of pin jointed and rigid jointed frame structures using STADD Pro (2D &3D)	6	I,D	4	1,9
21.	Introduction to SAP, ETABS, ABACUS	4	Ι	4	1,9
22.	UNIT V: INTRODUCTION TO FINITE ELEMENT METHOD	6			
23.	Basic concepts – Raleigh Ritz method	1	С	5	7,8
24.	Finite difference method - variational principles1	1	С	5	7,8
25.	MWR(theory only) – steps in finite element method – axial element force formulation by displacement method	2	С	5	7,8
26.	Theory of stress model – Hybrid model- Displacement model	2	Ι	5	7,8
	Total contact hours	45			

I FADNING DESOLIDCES

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Krishnamoorthy .C.S, Rajeev .S, "Computer Aided Design", Narosa Publishing House, New
	Delhi 1991.
2.	Rajasekaran .S, Sankarrasubramanian .G, "Computational Structural Mechanics", prentice-Hall
	of India Pvt, 2006.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Chandramouli.P.N " Structural Analysis", Yesdee publications, 2015
4.	Beaufait .F.W "Computer Methods of Structural Analysis", Prentice Hall, 1970.
5.	Meek .J.L, "Matrix Structural Analysis", McGraw Hill Kogakusha Ltd., 1971.
6.	Harrision.H.B., "Structural Analysis and Design" Vol. II, Pergamon Press, 1991 & I.
7.	Hinton .E, Owen.D.R.J, "Finite Element Programming", Academic press, 1977
8.	K.J.Bathe., "Finite Element Procedures", February 15, 2007
9.	Billy E.Gillet, "Introduction to Operations Research", A Computer Oriented Algorithmic
	approach, Tata McGraw Hill Co., 1982.
10.	Mcquire and Gallagher, R.H., "Matrix Structural Analysis", John Wiley, 1979
11.	.Rubinstein .M.F, "Matrix Computer Analysis of Structures", Prentice Hall, 1966

Course nat	Course nature Theory									
Assessment Method (Weightage 100%)										
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%			
End semester examination Weightage :										

15CE451E	COMPLITED AIDED DESIGN OF STRUCTURES			L	Т	Р	С
15CE451E		COMPUTER AIDED DESIGN OF STRUCTURES					3
Co-requisite:	NII	م					
Prerequisite:	150	CE302					
Data Book /	NII	NII					
Codes/Standards	1911	_					
Course Category	Р	PROFESSIONAL ELECTIVE	STRUCTURAL EN	GIN	EER	ING	j
Course designed by	Dep	Department of Civil Engineering					
Approval	32 ⁿ	^d Academic Council Meeting, 2016					

PU	PURPOSE To familiarize with hardware, software aspects of computer graphics including application of FEM and optimization technique.						
IN	STRUCTIO	ONAL OBJECTIVES	STUDE	NT OU	ТСОМ	ES	
At	the end of the	he course, student will be able to					
1.	Know abo	ut graphic primitives.	а	с	e	k	
2.	Acquire k	nowledge about optimization and design principles.	а	с	e	k	
3.	Get expos problems.	ure on finite element method and to apply for simple	а	с	e	k	
4.	Gain knov analysis.	vledge on the use of standard software packages for	а	с	e	k	
5.	Gain know design	vledge on the use of standard software packages for	a	с	e	k	

Session	n Description of Topic		C- D- I-O	IOs	Reference
	UNIT I: UNIT I –INTRODUCTION &	9			
1	COMPUTER GRAPHICS	1	C	1	4.7
1.	Fundamentals of CAD	1	C	1	4,7
2.	Hardware and Software requirements	1		1	4,7
3.	Design process	1	C,D	1	4,7
4.	Application and benefits	1	C,D	1	4,7
5.	Graphic primitives	1	C	1	4,7
6.	Wire frame modeling	1	l	1	4,7
7.	Solid modeling	1	l	1	4,7
8.	Drafting packages	l	С	I	4,7
9.	Applications to layout of buildings and structures using AUTOCAD	1	Ι	1	4,7
	UNIT II: DESIGN & OPTIMIZATION	9			
10.	Principles of design of steel and RC structures	1	С	2	6
11.	Applications of optimization techniques to simple	2	пι		6
	design problems	Z	D, 1		0
12.	User interactive format, input, output techniques	1	Ι		6
13.	Display techniques	1	Ι	2	6
14.	Server control techniques and feedback systems	1	Ι	2	6
15.	Introduction to MS PROJECT	1	С	2	6
16.	Introduction to PRIMAVERA	2	С	2	6
	UNIT III: INTRODUCTION TO FINITE	12			
	ELEMENT ANALYSIS	12			
17.	Fundamentals of Finite Element Analysis	1	С	3	1,2,3,8
18.	Steps involved in finite element formulation	1	Ι	3	1,2,3,8
19.	Formulation of Boundary value problems	1	Ι	3	1,2,3,8
20.	Galerkin's approach to finite element formulation	1	С	3	1,2,3,8
21.	Variational principles to finite element formulation	1	С	3	1,2,3,8
22.	Isoparametic finite element formulations and field application of isoparametric formulations	1	Ι	3	1,2,3,8
23.	Finite Element Divisions and convergence	1	Ι	3	1.2.3.8
24.	Generation of Element stiffness matrix and assembling	1	I	3	1,2,3,8

Session	Description of Topic	Contact hours	C- D- I-O	IOs	Reference
	global structure stiffness matrix				
25.	Matrix and solution for deflection and derivation of	2	т	3	1238
	stresses and strains from deflection	2	1	5	1,2,3,8
26.	Simple problem using triangular elements	2	Ι	3	1,2,3,8
	UNIT IV: ANALYSIS OF STRUCTURES BY	9			
27	FINITE ELEMENT WETHOD				
27.	STAAD.Pro and ETABS – for gravity loads	2	Ι	4	9,10,11
28.	Understanding and interpretation of output	1	Ι	4	9,10,11
29.	Input for analysis of plane and space frames using SAP, STAAD.Pro and ETABS for gravity loads	2	Ι	4	9,10,11
30.	Understanding and interpretation of output in SAP, STAAD.Pro and ETABS	2	Ι	4	9,10,11
31.	Generation and application of wind loads on structures in SAP, STAAD.Pro and ETABS	1	Ι	4	9,10,11
32.	Generation and application of seismic loads on structures using response spectrum method in SAP, STAAD.Pro and ETABS	1	Ι	4	9,10,11
33.	UNIT V: DESIGN OF STRUCTURES BY FINITE ELEMENT METHOD	6			
34.	Input for design of plane and space trusses using SAP, STAAD.Pro and ETABS – for gravity loads	1	Ι	5	9,10,11
35.	Understanding and interpretation of output	1	Ι	5	9,10,11
36.	Input for design of plane and space frames using SAP, STAAD.Pro and ETABS for gravity loads	2	Ι	5	9,10,11
37.	Understanding and interpretation of design output in SAP, STAAD.Pro and ETABS for space and plane frames	1	Ι	5	9,10,11
38.	Input for design of structures for wind and seismic loads in SAP, STAAD.Pro and ETABS and load combinations	1	Ι	5	9,10,11
39.	Modeling and analysis of suspension cable bridges, arches and water tanks using SAP, STAAD.Pro and ETABS	1	Ι	5	9,10,11
	Total contact hours			45	

LEAR	LEARNING RESOURCES									
Sl.No.	TEXT BOOKS									
1.	Krishnamoorthy .C.S. and Rajeev .S, "Computer Aided Design", - Narosa Publishing House,									
	New Delhi 1991.									
2.	Rajasekaran .S, "Finite Element Analysis", - A.H. Wheelers Publishing Co. Ltd., 1993.									
	REFERENCE BOOKS/OTHER READING MATERIAL									
3.	Rao .S.S, "The Finite Element Method in Engineering", Fourth Edition, Elsevier, 2006.									
4.	Grover .M.P and Zimmers E.W.Jr. CAD/CAM, "Computer Aided Design and									
	Manufacturing", - Prentice Hall of India Ltd., 1996									
5.	Harrison .H.B, "Structural Analysis and Design", Parts I and II - Pergamon Press, Oxford,									
	1970.									
6.	Rao.S.S "Optimization Theory and Applications" - Wiley Eastern Ltd. New Delhi 1977.									
7.	AUTOCAD Manual, 2000.									
8.	REDDY, 'Finite Element Methods", II Edn McGraw Hill Co., 1993.									
9.	https://www.bentley.com/en/products/brands/staad									
10.	https://www.csiamerica.com/products/etabs									
11.	https://www.csiamerica.com/products/sap2000									

Course natu	ire		Theor	y			
Assessment	Assessment Method						
In-	Assessment	Cycle test I	Cycle test II	Cycle Test	Surprise	Quiz	
semester	tool			III	Test		
	Weightage	10%	15%	15%	5%	5%	
End semester examination Weightage : 50%							

15CF452E	TALL BUILDINGS					Р	С
13014521							3
Co-requisite:	NIL	_					
Prerequisite:	NIL	_					
Data Book /	10.	IC: 075 Date 2, 2, IC: 1902 Date 1					
Codes/Standards	15.	675 Falt 2, 5, 15. 1695 Falt 1					
Course Category	Р	PROFESSIONAL ELECTIVE	STRUCTURAL EN	GIN	EER	INC	ł
Course designed by	Department of Civil Engineering						
Approval	32 nd	^d Academic Council Meeting, 2016					

PURPOSE		To impart the overall knowledge about the elements and systems with planning,						
10	KI OBE							
IN	STRUCTIO		STUDENT					
			0	UTCO	MES			
At	the end of the	he course, student will be able						
1.	To get a	n introduction to various aspects of planning of Tall	а	P	k			
	Buildings		a	C	к			
2.	To know a	bout different types of loads	а	e	k			
3.	To get an	introduction to various structural systems for medium rise	а	P	k			
	buildings	with their behaviour and analysis	u	C	ĸ			
4.	To get an	introduction to various structural systems for high rise	0	0	ŀ			
	buildings	with their behaviour and analysis	a	e	К			
5.	To acquire	e knowledge about stability analysis of various systems and	я	e	k			
	to know al	pout advanced topics	a	C	ĸ			

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I – INTRODUCTION	9	С	1	1-3
1.	Design Philosophy-History-Advantages and disadvantages	2	С	1	1-3
2.	Vertical city concepts - Essential amenities	1	С	1	1-3
3.	Fire safety -Water supply - Drainage and garbage disposal	1	С	1	1-3
4.	Service systems	1	С	1	1-3
5.	Structural and Foundation systems	2	С	1	1-3
6.	Factors affecting height, growth and Structural form	1	С	1	1-3
7.	Human comfort criteria.	1	С	1	1-3
	UNIT II – LOADS	10			
8.	Gravity Loading - Dead and Live Load as per IS 875: Part 1 and 2	1	C, D	2	8
9.	Reduction of Live Load – Problem solving as per IS 875: Part 2	1	C, D	2	8
10.	Impact and Construction Loads	1	С	2	1,2
11.	Wind loading as per IS 875: Part $3 - k_1$, k_2 , k_3 factors, quasi static method of load computation on RCC framed structures	3	C, D	2	8
12.	Earthquake loading – introduction to IS: 1893 Part 1- Definitions, Concept of response spectrum	1	C, D	2	9
13.	Base shear computation as per IS:1893 Part 1, Seismic Coefficient Method	2	C, D	2	9
14.	Combination of loading	1	С	2	10
	UNIT III – MEDIUM RISE BUILDINGS- BEHAVIOUR AND ANALYSIS	9			
15.	Medium rise structures- Vertical and Horizontal load resistant systems – Behaviour of RCC Rigid frames with and without infills	3	C, I	3	1-2

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
16.	RCC Rigid frames without infills –problem solving using portal method	3	C, I	3	1-2
17.	RCC Rigid frames without infills –problem solving using cantilever method	2	C, I	3	1-2
18.	Infill frames – equivalent diagonal strut	1	C, I	3	1-2
	UNIT IV– HIGH RISE BUILDINGS-BEHAVIOUR AND ANALYSIS	8			
19.	Behaviour of High rise structures -Vertical and Horizontal load transfer systems	1	C	4	1-2
20.	Braced frames – Behaviour Problem solving to find approximate drift	2	C, I	4	1-2
21.	Shear walls- Behaviour	1	С	4	1-2
22.	Wall frames - Behaviour	1	С	4	1-2
23.	Tubular systems – Behviour of Framed Tubular system	1	С	4	1-2
24.	Tubular systems – Behviour of Bundled Tubular system	1	С	4	1-2
25.	Outrigger-braced systems – behavior	1	С	4	1-2
	UNIT V- ADVANCED TOPICS	9			
26.	Stability Analysis (Qualitative Treatment only) - Overall buckling analysis of frames	2	C, I		1,2, 3,4,5,6,7
27.	Stability Analysis (Qualitative Treatment only) - Overall buckling analysis of Wall Frames	2			1,2, 3,4,5,6,7
28.	P- Δ effects and various methods of analysis	1	C, I		1,2, 3,4,5,6,7
29.	Influence of foundation instability	1	C		1,2, 3,4,5,6,7
30.	Elastic Deformations. Analysis for various secondary effects	1	С		1,2, 3,4,5,6,7
31.	Effect of Creep on tall buildings	1	C		1,2, 3,4,5,6,7
32.	Effect of Shrinkage and Temperature on tall buildings	1	С		1,2, 3,4,5,6,7
	Total contact hours			45	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Smith.B.S and Coull.A, "Tall Building structures- Analysis and Design" John Wiley & Sons,
	1991.
2.	Taranath.B.S, "Structural Analysis and Design of Tall Buildings", Mc Graw Hill co., 1988.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Schuller .W.G, "High Rise Building Structures", John Wiley & Sons, 1977.
4.	Lynn.S.Beedle, "Advances in Tall Buildings", CBS Publishers and Distributers, New
	Delhi,1986.
5.	Lin .T.Y and Stotes Burry.D, "Structural Concepts and Systems for Architects and
	Engineers", John Wiley & Sons, 1988.
6.	Dr.Gupta.Y.P, mEditor, "Proceedings of National Seminar on High Rise Structures- Design
	and construction Practices for Middle Level Cities", Nov.14-16, 1955, New Age
	International Pub. Ltd., Chennai.
7.	Lecture Notes on, "Tall Buildings" - Short term Course Organised by Civil Engineering
	Dept., SRM Engineering College, Kattankulathur. June 2002.
8.	IS: 875(Parts 1,2,3): "Code of Practice for Design Loads on Buildings and Structures", BIS,
	New Delhi, 1987 (Reaffirmed 2003)
9.	IS : 1893 (Part1): , "Criteria For Earthquake Resistant Design Of Structures", BIS, New
	Delhi, 2002

10.	IS: 456:, "Plain And Reinforced Concrete - Code Of Practice", BIS, New Delhi, 2000 (
	Reaffirmed 2005)

Course nature Theory						
Assessment	Assessment Method					
In-	Assessment	Cycle test I	Cycle test II	Cycle Test	Surprise	Quiz
semester	tool	-		III	Test	
	Weightage	10%	15%	15%	5%	5%
End semester examination Weightage : 50%						

15CE452E	STORACE AND INDUSTRIAL STRUCTURES		Т	Р	С	
15CE455E	STORAGE AND INDUSTRIAL STRUCTURES	3	0	0	3	
Co-requisite:	NIL					
Prerequisite:	5CE204					
Data Book /	IS · 9640 1077 IS · 2492 1065 IS · 1644 1099					
Codes/Standards	IS . 8040-1977, IS . 5485-1905, IS . 1044-1988					
Course Category	P PROFESSIONAL ELECTIVE STRUCTURAL ENGINEERING					
Course designed by	Department of Civil Engineering					
Approval	32 nd Academic Council Meeting, 2016					

PU	PURPOSE To get exposed to the design of industrial structures and their functional requirements.						
IN	STRUCTI	ONAL OBJECTIVES	STUDENT OUTCOMES				
At	the end of t	he course, student will be able to					
1.	Understan	d the functional planning of industrial structures	a	с	e		
	including	lighting and ventilation					
2.	Design of	steel gable frame with knee joint, beam column,	a	с	e		
	base plate	and anchor bolt are dealt with here					
3.	Design RO	C silos, bunkers	a	с	e		
4.	Design R	C Chimney and cooling tower	a	с	e		
5.	Understan	d general principles of prefabrication and	а	с	e		
	functional	requirements of precast concrete units and					
	composite	sections					

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I: INTRODUCTION AND FUNCTIONAL REQUIREMENTS	7			
1.	Classification of Industries and Industrial structures	1	С	1	1,4,5,6
2.	General requirements for industries like cement, chemical and steel plants like site layout, Lighting and Ventilation.	3	C,D	1	1,4,5,6
3.	General requirements for industries like cement, chemical and steel plants like Fire safety electrical installations and Guidelines from factories etc	3	C,D,I	1	1,4,5,6
	UNIT II: DESIGN OF STEEL GABLE FRAME AND BEAM COLUMNS	9			
4.	Design of steel gable frame with knee joint	2	C,D	2	1,4,5,6
5.	Design of steel gable frame with beam column	2	C,D,I	2	1,4,5,6
6.	Design of steel gable frame with base plate and anchor bolt.	5	C,D,I	2	1,4,5,6
	UNIT III: DESIGN OF RC SILOS AND BUNKERS	11			
7.	Design of RC silos.	6	C,D,I	3	2,3
8.	Design of RC bunkers.	5	C,D,I	3	2,3
	UNIT IV: DESIGN OF RC CHIMNEYS AND COOLING TOWER	11			
9.	Design of RC chimneys	6	C,D,I	4	2,3
10.	Design of RC cooling tower	5	C,D,I	4	2,3
	UNIT V: PREFABRICATION	7			
11.	Principles of Prefabrication, modular coordination, advantages and limitations	2	С	5	7,8
12.	Functional requirements of precast concrete units, beams and columns	2	С	5	7,8
13.	Functional requirements of walls, roof trusses and footings	2	С	5	7,8
14.	Joints in prefab elements and erection of precast elements.	1	С	5	7,8

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	Total contact hours	45			

-						
LEARN	ING RESOURCES					
Sl.No.	TEXT BOOKS					
1.	Subramanian.N, "Design of Steel Structures", Oxford University Press, New Delhi, 2008.					
2.	Krishna Raju.N, "Advanced Concrete Structures", McGraw Hill, New Delhi, 2000.					
3.	Varghese.P.C., "Advanced Reinforced Cement Concrete", Pretince-Hall India, Second					
	edition, 2006 .					
	REFERENCE BOOKS/OTHER READING MATERIAL					
4.	Ramchandra .S., Virendra Ghelot, "Design of Steel of Structures", Volume 1, Scientific					
	Publishers, 2009, New Delhi.					
5.	Duggal.S.K. "Limit State Design of Steel Structures", Tata McGraw Hill Publishing					
	Company, New Delhi, 1st Edn., 2010.					
6.	Edwin H. Gaylord, Charles N. Gaylord, Japes R. Stallmeyer, "Steel Structures", McGraw					
	Hill, NewDelhi, 1995.					
7.	CBRI, Building materials and components, India, 1990.					
8.	Laszlo Mokk, "Prefabricated Concrete for Industrial and Public Structures", Akademiai					
	Kiado, Budapest, 2007.					

Course nat	ure			Theory			
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :						50%	

15CE454E	ADVANCED PRESTRESSED CONCRETE					Р	С
15CE454E	STRUCTURES					0	3
Co-requisite:	NII	NIL					
Prerequisite:	NII						
Data Book /	IC.	19 1242 2012 119 456 2000					
Codes/Standards	15:	1545-2012 and IS: 456-2000					
Course Category	Р	PROFESSIONAL ELECTIVE	STRUCTURAL EN	GIN	EER	INC	ì
Course designed by	Dej	partment of Civil Engineering					
Approval	32 ⁿ	^d Academic Council Meeting , 2016					

	To provide an exposure to the design of Prestressed Cor	To provide an exposure to the design of Prestressed Concrete Structures and							
FUNFU	SE StructuralElements	StructuralElements							
INSTRUCTIONAL OBJECTIVES STUDENT OUTCO									
At the en	d of the course, student will be able to								
1.	Learn the prestressing concepts, principles and methods	а	с	e					
2.	Determine losses in prestress & anchorage zone stresses	а	с	e					
3.	Compute shear strength and ultimate shear resistance capacity as per IS code	а	с	e					
4.	Design of prestressed concrete beams, stresses at transfer, service load, limit state of collapse in flexure and shear	a	с	e					
5.	Design prestressed concrete slabs	a	с	e					

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I-INTRODUCTION AND ANALYSIS FOR STRESSES	9			
1.	Basic concepts - terminology	1	С	1-5	1-5
2.	System of prestressing - pretensioning – posttensioning	1	C,D	1	1-5
3.	Principle of prestressing - types of prestressing. Assumptions	1	C,D	1	1-5
4.	Analysis of prestress- concentric & eccentric tendon	1	C,D	1	1-5
5.	Resultant stresses	1	C,D	1	1-5
6.	Rectangle - I-section (symmetrical only)	1	C,D	1	1-5
7.	Concepts of prestressing	1	С	1	1-5
8.	Stress concept, strength concept	1	С	1	1-5
9.	Load balancing concept	1	С	1	1-5
	UNIT II-LOSS OF PRESTRESS AND ANCHORAGE ZONE STRESSES	9			
10.	Losses of prestress - types	1	С	2	1-3
11.	Losses due to elastic deformation of concrete	2	C,D	2	1-3
12.	Shrinkage of concrete - creep of concrete	2	C,D	2	1-3
13.	Friction - anchorage slip.	1	C,D	2	1-3
14.	Anchorage zone stresses -stress distribution in end block	2	C,D	2	1-3
15.	Investigations on anchorage zone - Indian code provision only stresses	1	C.D.I	2	1-3
	UNIT III-SHEAR STRENGTH	7			
16.	Behavior of prestressed concrete members under shear	2	C,D	3	1-3
17.	Shear strength - principal stresses	2	C,D	3	1-3
18.	Ultimate shear resistance - Indian Standard code provision	3	C,D,I	3	1-3
	UNIT IV-DESIGN OF PRESTRESSED CONCRETE BEAM	11			

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
19.	Design of sections for flexure	3	C,D	4	1-3, 6,7
20.	Stress condition - minimum section modulus	2	C,D,I	4	1-3, 6,7
21.	Stresses at transfer - service loads - prestressing force - eccentricity	2	C,D,I	4	1-3, 6,7
22	Check for stresses - initial and final conditions	2	C,D,I	4	1-3, 6,7
23.	Limit state of collapse in flexure - shear. (Rectangular Section only)	2	C,D,I	4	1-3, 6,7
	UNIT V- DESIGN OF PRESTRESSED CONCRETE SLAB	9			
24.	Types of prestressed concrete slab	1	C,D	5	1-3, 6,7
25.	Design of one-way slab	2	C,D	5	1-3, 6,7
26.	Design of two-way slab	3	C,D,I	5	1-3, 6,7
27.	Design of simple flat slab	3	C,D,I	5	1-3, 6,7
Total contact hours			4	15	

LEARN	LEARNING RESOURCES						
Sl.No.	TEXT BOOKS						
1.	Krishnaraju .R, "Prestressed Concrete", Tata McGraw-Hill Education, NewDelhi, 2006						
2.	Pandit .G.S, Gupta .S.P, "Prestressed Concrete", CBS Publishers & Distributors, 2008						
3.	Rajagopalan .N, "Prestressed Concrete", Alpha Science International, Limited, 2005.						
	REFERENCE BOOKS/OTHER READING MATERIAL						
4.	Lin T.Y, Design of, "Prestressed Concrete Structures", Asia Publishing House, Bombay						
	1995.						
5.	Guyon .V, "Limit State Design of Prestressed Concrete", Vol.I & II Applied Science						
	Publishers, London, 1992.						
6.	IS: 1343-2012 "IS Code Of Practice For Prestressed Concrete", BIS, New Delhi, 2012.						
7.	IS: 456-2000 "Plain and Reinforced Concrete - Code of Practice", BIS, New Delhi, 2000						

Course nature Theory								
Assessment Method (Weightage 100%)								
In- semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage :							50%	

15CE455E	ADVANCED STRUCTURAL DESIGN	L	Т	Р	С				
15CE455E	ADVANCED STRUCTURAL DESIGN			0	3				
Co-requisite:	NIL								
Prerequisite:	15CE204								
Data Book /	IS:456-2000, IS: 1893-2002 (Part 1), IS: 875-1987 (Part 3),	: 112	-201	1,					
Codes/Standards	IRC : 22-2010, SP(16)								
Course Category	P PROFESSIONAL ELECTIVE STRUCTURAL ENGINEERING								
Course designed by	Department of Civil Engineering								
Approval	32 nd Academic Council Meeting, 2016								

PU	OSE To bring about a thorough understanding of limit state design of continuous beams, design of grid floors and design of space frames, analysis of frames, design of bridges, shells and folded plates.					
INS	TRUCTIONAL OBJECTIVES	STU OUT	STUDENT OUTCOMES			
At th	he end of the course, student will be able to					
1.	Study the limit state design methodology as applicable to continuou beams.	is a	с	e		
2.	Understand the behaviour of grid floors, to carry out their design and to study principles of steel space frames.	gn a	с	e		
3.	Study approximate analysis methods of medium rise frame building.	a a	с	e		
4.	Get exposed to the design of small span bridges and design principles of steel bridges.	a a	с	e		
5.	Study the analysis and design of folded plates and shells.	а	с	e		

Session	Description of Topic		C- D-	IOs	Reference
	UNIT I : LIMIT ANALYSIS OF CONTINUOUS / FIXED BEAMS	9	1-0		
1.	Behaviour of reinforced concrete members in bending and shear	1	С	1	2,4
2.	Plastic hinge, rotation capacity and factors affecting rotation capacity of a section	2	C	1	2,4
3.	Plastic moment and moment curvature relationship	1	С	1	2,4
4.	Analysis, redistribution of moments and limit state design of continuous beams(Two Span only)	3	C, D	1	2,4
5.	Analysis, redistribution of moments and limit state design of fixed beams	2	C, D	1	2,4
	UNIT II: DESIGN OF GRID FLOORS AND SPACE FRAMES	9			
6.	Behaviour of, and analysis theories	2	С	2	1,2
7.	Design of waffle slab and grid system as per IS456-2000	3	C, D	2	1,2
8.	Steel Space frames-types	1	С	2	8,9
9.	Steel Space analysis and design principles	3	C, D	2	8,9
	UNIT III: DESIGN OF MEDIUM RISE FRAMED BUILDINGS	9			
10.	Planning of structural layout of slabs, beams, columns	1	C, I	3	1,2,4,10-12
11.	Computation of design moments and shears using substitute frame method of IS 456 and explanatory handbooks	2	C, D	3	1,2,4,10-12
12.	Estimation of wind loads as per IS: 875	1	C, I	3	1,2,4,10-12
13.	Estimation of seismic forces as per IS: 1893	1	C, I	3	1,2,4,10-12
14.	Analysis by portal and cantilever methods	2	C, I	3	1,2,4,10-12
15.	Combination of internal forces due to live, dead and	1	C, I	3	1,2,4,10-12

Session	n Description of Topic		C- D- I-O	IOs	Reference	
	lateral loads					
16.	Design of key members using design aids (SP16).	1	C, D	3	1,2,4,10-12	
	UNIT IV:DESIGN OF BRIDGES	9				
17.	IRC Specifications for Road Bridges	1	С	4	6,7,14,15	
18.	Standard Live loads, other forces on Bridges	1	С	4	6,7,14,15	
19.	General Design Considerations and codal provisions	1	C, D	4	6,7,14,15	
20.	Design of Slab Culverts for Class AA, 70R and Class A loading	2	D		6,7,14,15	
21.	Lay out of Tee beam Bridges and computation of effective loads on girders using Courbon's theory	2	C, I	4	6,7,14,15	
22.	Construction of Influence line diagrams and computation of maximum moments and shears on simple spans for Class AA, 70R and Class A loading	2	C, I	4	6,7,14,15	
	UNIT V: SHELLS AND FOLDED PLATES	9				
23.	Concept of shells and classification of shells as per IS codes	2	C, I	5	3,5, 13	
24.	Membrane theory of shells	1	С	5	3,5, 13	
25.	Design of circular cylindrical shells using beam method.	3	C, D	5	3,5, 13	
26.	Design of prismatic folded plates	3	C, D	5	3,5, 13	
	Total contact hours	45				

LEARN	ING RESOURCES						
Sl.No.	TEXT BOOKS						
1.	Krishna Raju," Advanced Concrete Structures", McGraw Hill, New Delhi, 2000.						
2.	Varghese.P.C, "Advanced Reinforced Cement Concrete", Pretince-Hall India, Second edition, 2006						
3.	Varghese.P.C, "Design Of Concrete Shells And Folded Plates", PHI learning Pvt. Ltd., 2010.						
	REFERENCE BOOKS/OTHER READING MATERIAL						
4.	Unnikrishna Pillai.S and Deavadas Menon, " <i>Reinforced Concrete Design</i> ", Tata MacGraw Hill Publishing Company Limited, Second Edition, New Delhi, 2003.						
5.	Ramaswamy.G.S, "Design, Construction of Concrete Shell Roofs', CBS Publishers & Distributors, 2005.						
6.	Krishna Raju.N, "Design of Bridges", Oxford & IBH Publishing Company Pvt. Ltd., Fourth edition, 2010.						
7.	Johnson Victor.D, "Essentials Of Bridge Engineering", 6/E, Oxford & IBH Publishing Company Pvt. Ltd., Fourth edition, 2007.						
8.	Eekhout. M, Suresh .G.R, "Analysis, Design, and Construction of Steel Space Frames", Thomas Telford, 2002.						
9.	Subramanian .N, "Space Structures: Principles and Practice, Volume 1", Multi-Science Pub., 2006.						
10.	Krishnaraju .R, Pranesh .R.N, "Design of Reinforced concrete" IS : 456-2000, New age International Publication (P) Ltd., New Delhi						
11.	"Design Aids for Reinforced Concrete" to IS 456, Special Publication (SP16), BIS New Delhi, 1980.						
12.	IS456:2000, "Code of Practice for Plain and Reinforced Concrete", BIS, New Delhi						
13.	IS:2210:1988, "Criteria For Design Of Reinforced Concrete Shell Structures And Folded Plates", BIS, New Delhi, 1988						

14.	IRC:112-2011, "Code of Practice for Concrete Road Bridges" Indian Road Congress, New
	Delhi, 2011
15.	IRC:22-2010, "Standard Specifications and Code of Practice for Road Bridges", Indian
	Road Congress, New Delhi, 2011

Course nature			Theor	Theory				
Assessment	Assessment Method							
In-	Assessment	Cycle test I	Cycle test II	Cycle Test	Surprise	Quiz		
semester	tool			III	Test			
	Weightage	10%	15%	15%	5%	5%		
End semester examination Weightage : 50%								

15CE454E	ANALYSIS AND DESIGN OF STRUCTURAL					Р	С	
15CE450E	SANDWICH PANELS					0	3	
Co-requisite:	NII	NIL						
Prerequisite:	150	CE202						
Data Book /	NII						-	
Codes/Standards	INIL	_						
Course Category	Р	PROFESSIONAL ELECTIVE	STRUCTURAL EN	IGIN	EER	ING	-	
Course designed by	Department of Civil Engineering						-	
Approval 32 nd Academic Council Meeting , 2016								

PU	PURPOSE To introduce the basic principles related to the structural sandwich panels								
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES									
At	At the end of the course, student will be able								
1.	To learn about various standards for testing and procedures. b								
2.	To learn about methods of analysis of sandwi	ch panels.	а	e	k				
3.	To know about design methodologies of sand	wich panels.	а	e	k				

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: MATERIALS AND TESTING OF SANDWICH PANELS	9			
1.	Functions and Classification of Core materials	2	С	1	1
2.	Functions and Classification of Skin Materials	2	С	1	1
3.	Typical values for Properties of materials	2	С	1	1
4.	Methods of Testing of materials used in sandwich constructions.	3	С	1	1
	UNIT II: ANALYSIS OF SANDWICH FLEXURAL ELEMENTS	10			
5.	Introduction to Sandwich beams behaviour	2	С	2	1
6.	Analysis of Antiplane core and thin faces of equal thickness	1	С	2	1
7.	Analysis of Antiplane core and thin faces of unequal thickness	2	С	2	1
8.	Cases of core with considerable value of modulus of elasticity	2	С	2	1
9.	Deflection of Sandwich beams due to symmetrical load	1	С	2	1
10.	Deflection of Sandwich beams due to unsymmetrical load including point load and udl	2	С	2	1
	UNIT III: BUCKLING OF SANDWICH STRUTS	8			
11.	Phenomenon of Buckling of Sandwich struts	2	С	2	1
12.	Analysis of sandwich beam by strain energy method	2	С	2	1
13.	Analysis of sandwich strut by strain energy method	1	С	2	1
14.	Analysis of Isotropic sandwich strutsby Ritz's method	2	С	2	1
15.	Analysis of Orthotropic sandwich struts by Ritz's method	1	С	2	1
	UNIT IV: SANDWICH PANELS UNDER BENDING AND BUCKLING	8			
16.	Differential equations of bending of isotropic sandwich panels	3	С	2	1
17.	Differential equations of buckling of isotropic sandwich panels	2	С	2	1
18.	Wrinkling form of local instability – Only Formulae for analysis	2	С	2	1

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference	
19.	Other forms of local instability – Only Formulae for 1 C 2					
	UNIT V: DESIGN OF SANDWICH PANELS	10				
20.	Theory of design of sandwich panels	2	С	2	1	
21.	Design of Sandwich panels with Simply supported edge for large deflection	2	С	2	1	
22.	Design of Sandwich panels with Simply supported edge for Initial deformations	1	С	2	1	
23.	Design of sandwich beams	2	D	3	1	
24.	Design of sandwich Struts	2	D	3	1	
25.	Design of sandwich panels	1	D	3	1	
	Total contact hours 45					

LEARN	LEARNING RESOURCES								
Sl.No.	TEXT BOOKS								
1.	David Randal and Steve Lee, "The Polyurathanes Book"-, JOHN WILEY, LTD, November,								
	2002								
	REFERENCE BOOKS/OTHER READING MATERIAL								
2.	Howard G.Allen, "Analysis and design of structural sandwich panels" - First edition,								
	PERGAMON PRESS, 1969.								

Course nat	Course nature Theory									
Assessment Method (Weightage 100%)										
In	Assessment	Cycle test I	Cycle test	Cycle Test	Surprise	Ouiz	Total			
	tool	Cycle lest I	II	III	Test	Quiz	10141			
semester	Weightage	10%	15%	15%	5%	5%	50%			
End semester examination Weightage :										

15CE457E	DDIDCE ENCINEEDINC	L	Т	Р	С		
15CE45/E	BRIDGE ENGINEERING			0	3		
Co-requisite:	NIL						
Prerequisite:	15CE204						
Data Book /	IS: 456- 2006, IS: 1343- 1980, IRC:06-2014, IRC:112-2011, IRC:21-2010,						
Codes/Standards	IRC:82 (Part 1) – section IX – 1999, IRC:82 (Part 2) – Part IX	- 19	87				
Course Category	P PROFESSIONAL ELECTIVE STRUCTURAL ENGINEER						
Course designed by	Department of Civil Engineering	Department of Civil Engineering					
Approval	32 nd Academic Council Meeting,2016						

PURPOSE To provide an exposure to the essential of bridge engineering with the focus on structural design									
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES									
At	At the end of the course, student will be able								
1.	To study essential of bridge engineering. a c e								
2.	To design	RCC slab bridges.	a	с	e				
3.	To design	RCC girder bridges.	a	с	e				
4.	To design	Prestressed concrete slab and girder bridges.	a	с	e				
5.	To design	bearings.	а	с	e				

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I- BRIDGE ENGINEERING	8			
1.	Types of bridges – suitability of different types of bridges for various spans	1	С	1	1,2,3
2.	Segmental bridges – continuous bridges- arch bridges	1	С	1	1,2,3
3.	Cable- suspended bridges	1	C, I	1	1,2,3
4.	Selection of bridge site – approaches	1	C, I	1	1,2,3
5.	Economical span of a typical bridge-	1	C, I	1	1,2,3
6.	Discharge and Linear water way calculations	1	C,D	1	1,2,3
7.	Scour depth	1	C,D	1	1,2,3
8.	IRC formula IRC Specifications for Road Bridges, Standards live loads, other forces on bridges – general design considerations	1	C,D,I	1	1,2,3
	UNIT II - SLAB BRIDGES	10			
9.	RCC Slab bridge - Introduction	2	C,D	2	1,2,3
10.	One-way slab bridge	2	C,D	2	1,2,3
11.	Two-way slab bridge	2	C,D	2	1,2,3
12.	Introduction of Pigeaud curves	2	C,D	2	1,2,3
13.	Principles of design of skew bridges	2	C,D	2	,2,3
	UNIT III - RCC GIRDER BRIDGES	10			
14.	RCC girder bridges- Introduction	1	C,D	3	1,2,3
15.	Kerbs- diaphragms	1	C,D	3	1,2,3
16.	Various Methods of design of RCC girder	2	C,D	3	1,2,3
17.	Courbon's theory– calculation of maximum bending moment,	2	C,D	3	1,2,3
18.	Calculation of shear- moving loads	2	C,D	3	1,2,3
19.	Design of cross section	2	C,D	3	1,2,3
	UNIT VI - PRESTRESSED CONCRETE GIRDER BRIDGES	10			
20.	Introduction about Prestressed concrete bridge- Principles of prestressing- Pre tensioning- Post Tensioning-Advantages of pre stressed concrete slab and girder bridges –	2	C,D	4	1,2,3
21.	Suitable span – Anchorages- End Block	1	C,D	4	1,2,3
22.	Design of slab and beam cross sections for given bending moment,	2	C,D	4	1,2,3

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference	
23.	Calculation of shear	2	C,D	4	1,2,3	
24.	Calculation of prestressing force,	2	C,D	4	1,2,3	
25.	Eccentricity (analysis of bridges need not be repeated)	1	C,D	4	1,2,3	
	UNIT V - DESIGN OF BEARINGS	7				
26.	Introduction about Bearings- Forces of bearings- Types of bearings	2	C,D	5	1,2,3	
27.	Design of Neoprene bearings	2	C,D	5	1,2,3	
28.	Introduction about steel rocker bearing	1	C,D	5	1,2,3	
29.	Design of steel rocker bearings	2	C,D	5	1,2,3	
	Total contact hours	45				

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Johnson Victor .D, "Essentials Of Bridge Engineering", 6/E, Oxford & IBH Publishing
	Company Pvt. Ltd., Fourth edition, 2007.
2.	Krishna Raju .N, "Design of Bridges", Oxford & IBH Publishing Company Pvt. Ltd., Fourth
	edition, 2010.
3.	Jagadeesh .T.R, Jayaram .M.A, "Design Of Bridge Structures", Prentice – Hall of India Pvt.
	Ltd., 2006.
	REFERENCE BOOKS/OTHER READING MATERIAL
4.	Ponnuswamy .S, "Bridge Engineering, 2nd E, Tata McGraw Hill", 2008.
5.	Conference Proceedings, 'Advances and Innovations in Bridge Engineering', IIT, Madras and
	Indian Institute of Bridge Engineers, Tamilnadu, Allied Publisher, New Delhi, 1999.
6.	IS: 456-2000," Code of Practice for Plain and Reinforced Concrete", BIS, New Delhi, 2008.
7.	IS: 1343-2012, "IS Code of Practice for Prestressed Concrete", BIS, New Delhi, 2012.
8.	IRC:06-2014, "Code of practice for road bridge", Section – II, Loads and stresses, Indian
	Road Congress, New Delhi,2014
9.	IRC:112-2011," Code of Practice for Concrete Road Bridges", Indian Road Congress, New
	Delhi, 2011.
10.	IRC:21-2010, "Standard Specifications and Code of Practice for Road Bridges", Section III
	Cement concrete (Plain and Reinforced), Indian Road Congress, New Delhi, 2000.
11.	IRC:82 (Part 2) – Part IX- 1987, "Standard Specifications and Code of Practice for Road
	Bridges", Elastomeric Bearings, IRC, 1987.
12.	IRC:82 (Part 1) – section IX – 1999, "Standard Specifications and Code of Practice for Road
	Bridges", Metallic Bearings, IRC, 1999.

Course nature						Theory				
Assessment Method (Weightage 100%)										
In-semester	Assessment	Cycle	Cycle test	Cycle Test	Surprise	Quiz	Total			
	tool	test I	II	III	Test					
	Weightage	10%	15%	15%	5%	5%	50%			
		End ser	mester exam	ination Weig	htage:		50%			

15CE458E		FORENSIC CIVIL ENGIN	L 3	Т 0	P 0	C 3		
Co-requisite:	NII	_						
Prerequisite:	150	CE203						
Data Book /	NII	NII						
Codes/Standards	1911	_						
Course Category	Р	PROFESSIONAL ELECTIVE	STRUCTURAL E	ENGI	NEE	RIN	G	
Course designed by	Dep	Department of Civil Engineering						
Approval	32 ⁿ	32 nd Academic Council Meeting, 2016						

_								
PURPOSE To introduce the various aspects of investigation involved in failure of structures								
IN	STRUCTI	ONAL OBJECTIVES	STUDENT OUTCOMES					
At	At the end of the course, student will be able							
1.	. To impart knowledge of various testing methods of Failed b							
	Structures.							
2.	To learn structural	about aspects of failures connected with various systems and materials.	а					
3.	To impart	knowledge about foundation failures.	e					
4.	To know a	about strategic measures against failures.	e					
5.	To gain in	sight into previous structural failures.	e					

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: TESTING OF FAILURES	9			
1.	Introduction to various methods of testing of failed structures	2	С	1-5	1
2.	Usage of techniques such as laser scanning and microscope for investigation of failed structures	2	С	1-5	1
3.	Radio graphic evaluation of failures	2	С	1-5	1
4.	Load Testing of shoring systems	2	Ι	1-5	1
5.	Repair technology used for failed structures	1	Ι	1-5	1
	UNIT II: STRUCTURAL FAILURES	9			
6.	Failure of construction materials such as steel and concrete and failure of bolted and welded joints	2	C	2	1
7.	Failure of compression members by reversal of loads	1	С	2	1
8.	Failure of tension members by reversal of loads	1	С	2	1
9.	Failure aspects of post tensioned concrete systems and precast buildings	2	C	2	1
10.	Failure aspects of space frame and plane frame	1	С	2	1
11.	Study of reasons for failure of bridges	2	С	2	1
	UNIT III: GEOTECHNICAL FAILURES	8			
12.	Soil liquefaction in cohesive and cohesionless soil	2	С	3	1
13.	Failure of shallow foundation systems in different types of soil	2	С	3	1
14.	Failure of deep foundation systems in different types of soil	2	С	3	1
15.	Causes and remedial measures for failure	2	С	3,4	1
	UNIT IV: DESIGNING AGAINST FAILURE	8			
16.	Quality control as a measure for failure control	2	С	4	1
17.	Material selection parameters for failure prevention	1	С	4	1
18.	Workmanship parameters and care against failure	2	С	4	1
19.	Importance of design and detailing in preventing the failures of buildings	3	D	4	1
	UNIT V: CASE STUDIES AND	11			

Session	Description of Topic		C- D- I- O	IOs	Reference
	PROFESSIONAL PRACTICE				
20.	Case Studies on famous failures in India	2	С	5	1
21.	Case Studies on famous failures from abroad	2	С	5	1
22.	Reasons of various types of failures	2	С	5	1,3
23.	Lessons learnt from various types of failures	2	С	5	1,3
24.	Aspects of professional practice to safeguard against failure	3 C 5 1		1	
	Total contact hours			45	

LEARN	LEARNING RESOURCES							
Sl.No.	TEXT BOOKS							
1.	Kenneth and L. Carper, "Forensic Engineering", 2nd Edition, CRC Press, 2001.							
	REFERENCE BOOKS/OTHER READING MATERIAL							
2.	"Forensic Engineering - 2012", proceedings of sixth ASCE Conference of Forensic							
	Engineering held in San Francisco, California, Oct 31- Nov 03, 2013.							
3.	Raikar, R.N., "Learning from failures – Deficiencies in Design, Construction and Service",							
	R&D Centre (SDCPL), Raikar Bhavan, 1987.							

Course nature Theory									
Assessment Method (Weightage 100%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
semester	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage : 50%									

15CE450E	DESIGN OF MACHINE FOUNDATION	L	Т	Р	С			
15CE459E	DESIGN OF MACHINE FOUNDATION	3	0	0	3			
Co-requisite:	NIL							
Prerequisite: NIL								
Data Book /	IS:2974-1982, Part 1, IS:2974-1980, Part 2							
Codes/Standards	/Standards IS:2974-1979, Part 4, IS 1893: 2002, (Part 1)							
Course Category	P PROFESSIONAL ELECTIVE STRUCTURAL EN	GIN	EER	INC	j			
Course designed by	Department of Civil Engineering							
Approval	32 nd Academic Council Meeting, 2016							

PURPOSE To familiarize with fundamental of structural dynamics and apply the same to d of foundations for different types of machines							
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOME							
At the end of the course, student will be able to							
1.	Introduce fundamentals of free vibration	a	с	e			
2.	Provide exposure to forced vibration and vibration isolation	a	с	е			
3.	Design foundation for reciprocating machines	а	с	e			
4.	Design foundation for hammers	а	с	e			
5.	Design foundation for low frequency rotary machines	a	с	e			

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: UNIT I – FUNDAMENTALS OF FREE VIBRATION	9	C, I	1	1
1.	Undamped free vibration analysis of Single degree of vibration using D' Alembert principle	2	C, I	1	1
2.	Damped Free vibration analysis of Single degree of vibration using D' Alembert principle	2	C, I	1	1
3.	Determination of forces due to free vibration	2	C, I	1	1
4.	Modal analysis for lumped mass modeling for two degree of freedom system	3	C, I	1	1
	UNIT II: FUNDAMENTALS OF FORCED VIBRATION	9			
5.	Response of single degree freedom system to forced harmonic loading	3	C, I	2	1
6.	Vibration isolation, resonance and dynamic amplification factor of single degree freedom system	2	C, I	2	1
7.	Response spectrum analysis of 2 mass system using modal analysis	3	C, I	2	1,5
8.	Shock spectrum	1	C, I	2	1
	UNIT III: FOUNDATION FOR RECIPROCATING MACHINES	9			
9.	Determination of unbalanced portion of periodic inertia forces	2	C, I	3	2, 3, 4, 6
10.	Concepts of degrees of freedom in reciprocating machines	1	C, I	3	2, 3, 4, 6
11.	Design data required for machine & soil	oil 1 D, I		3	2, 3, 4, 6
12.	Static design criteria	1	D, I	3	2, 3, 4, 6
13.	Dynamic design criteria	1	D, I	3	2, 3, 4, 6
14.	RCC foundation design for reciprocating machines	2	D,	3	2, 3, 4, 6

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference	
			Ι			
15.	Construction Techniques for machine foundation	1	Ι	3	2, 3, 4, 6	
	UNIT IV:FOUNDATION FOR HAMMERS	9				
16.	Types of foundation support and influence of coefficient of restitution	1	C	4	2, 3, 4, 7	
17.	Design data and soil parameters	1	D	4	2, 3, 4, 7	
18.	Details of hammer and cushioning pad	1	D	4	2, 3, 4, 7	
19.	Design criteria and permissible stress	1	D	4	2, 3, 4, 7	
20.	Dimensions and mass- two mass system – vibration analysis	2	D, I	4	2, 3, 4, 7	
21.	Design of foundation	2	D	4	2, 3, 4, 7	
22.	Construction Techniques for hammer foundation	1	Ι	4	2, 3, 4, 7	
	UNIT V: FOUNDATION FOR ROTARY MACHINES	9				
23.	Definition of low frequency rotary machines	1	С		2, 3, 4, 8	
24.	Typical foundation details for pumps, motor generators, rolling mills	2	С		2, 3, 4, 8	
25.	Design data on soil parameters and machines	1	D		2, 3, 4, 8	
26.	Design criteria and principles of design	1	D		2, 3, 4, 8	
27.	Analysis for static and dynamic loads	3	Ι		2, 3, 4, 8	
28.	Construction techniques for foundation of rotary machines	1	Ι		2, 3, 4, 8	
	Total contact hours 45					

LEARNING RESOURCES

	it in to habo the bo						
Sl.No.	TEXT BOOKS						
1.	Anil K.Chopra. "Dynamics of structures" (Theory and Applications to Earthauake						
	<i>Engineering</i>), 2nd Edition, Prentice Hall of India Private Limited. New Delhi, 2003.						
2.	Dayaratnam, P., "Design of Reinforced Concrete Structures", 4th edition, Oxford &IBH-Pubs						
	Company-NEW DELHI,2011						
3.	Srinivasulu.P, Vaidyanathan .C.V, "Handbook Of Machine Foundations", McGraw-Hill,						
	1977.						
	REFERENCE BOOKS/OTHER READING MATERIAL						
4.	Shamsher Prakash, Vijay Kumar Puri, "Foundations for machines: analysis and design",						
	Wiley, 1988.						
5.	IS 1893: 2002, (Part 1) "Criteria for Earthquake Resistant Design of Structures - Part 1 :						
	General Provisions and Buildings", BIS, 2002.						
6.	IS:2974-1982, Part 1, "Code of practice for design and construction of machine foundations:						
	Part 1 Foundation for reciprocating type machines", BIS, 1982.						
7.	IS:2974-1980, Part 2, "Code of practice for design and construction of machine foundations:						
	Part 2 Foundations for impact type machines" (hammer foundations), BIS, 1980.						
8.	IS:2974-1979, Part 4, "Code of practice for design and construction of machine foundations:						
	Part 4 Foundations for rotary type machines of low frequency", BIS, 1979.						

Course nature			Theor	y			
Assessment Method							
In-	Assessment	Cycle test I	Cycle test II	Cycle Test	Surprise	Quiz	
semester	tool			III	Test		
	Weightage	10%	15%	15%	5%	5%	
End semester examination Weightage : 50%							

15CE460E		REPAIR AND REHABILITATION OF			Т	Р	С
		STRUCTURES					3
Co-requisite:	NII	L					
Prerequisite:	NII	L					
Data Book /	NII	ſ					
Codes/Standards	1111						
Course Category	Р	PROFESSIONAL ELECTIVE	STRUCTURAL EN	JGIN	EER	INC	j
Course designed by	De	partment of Civil Engineering					
Approval	32 ⁿ	^d Academic Council Meeting, 2016					

DUDDOSE		To provide a comprehensive knowledge on the diagnosis, assessment and material							
ΓU	KI USE	application relating to maintenance and rehabilitation of structures.							
IN	STRUCTIO	ONAL OBJECTIVES	STUDENT OUTCOMES						
At the end of the course, student will be able									
1.	. To provide an overview of performance of concrete structures			с	e				
2.	. To assess the diagnosis of distress			с	e				
3.	To assess	the extent of distress	а	с	e				
4.	To choose the appropriate material and its application		а	с	e				
5.	To study strengthening and demolition of structural			C	9				
	componen	ts	a	C	e				

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: GENERAL ASPECTS	9			
1.	Performance of construction materials and components in services for strength permeability	2	С	1	1,2,4
2.	Thermal properties and cracking effects due to climate, temperature, chemicals, wear and erosion	3	С	1	1,2,4
3.	Design and construction errors	3	С	1	1,2,4
4.	Effects of cover thickness	1	С	1	1,2,4
	UNIT II: MAINTENANCE AND DIAGNOSIS OF FAILURE	9			
5.	Definitions : Maintenance, Repair and rehabilitation	1	С	2	6
6.	Facets of Maintenance, Importance of Maintenance	2	С	2	1,2,3,4,5
7.	Preventive measures based on various aspects of inspection	2	С	2	1,2,3,4,5
8.	Assessment procedure for evaluating a damaged structure	2	С	2	1,2,3,4,5
9.	Diagnosis of construction failures.	2	С	2	1,2,3,4,5
	UNIT III: DAMAGES AND THEIR REMEDIES	9	С		
10.	Corrosion damage of reinforced concrete, methods of corrosion protection	3	С	2,3	2,4,5,6,7
11.	Corrosion inhibitors, corrosion resistant steels, coatings, cathodic protection, rust eliminators	2	С	2,3	2,4,5,6,7
12.	Causes of deterioration of concrete, steel, masonry and timber structures	2	С	2,3	2,4,5,6,7
13.	surface deterioration, efflorescence, causes, prevention and protection.	2	С	2,3	2,4,5,6,7
	UNIT IV: MATERIALS AND TECHNIQUES OF REPAIR	9			
14.	Special concrete and mortar, concrete chemicals, expansive cement	2	С	4	1,2,4,5,6,7
15.	Polymer concrete sulphur infiltrated concrete	2	С	4	1,2,4,5,6,7
16.	Ferro cement, fiber reinforced concrete	2	С	4	1,2,4,5,6,7

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
17.	Methods of repair in concrete, steel, masonry and timber structures	2	С	4	1,2,4,5,6,7
18.	Guniteand shotcrete, expoxy injection	1	С	4	
	UNIT V: STRENGTHENING AND DEMOLITION ASPECT	9	С		
19.	Strengthening of existing structures	1	С	5	2,4,5,6,7
20.	Repairs to overcome low member strength, deflection, cracking, chemical disruption, weathering, wear, fire, leakage, marine exposure	2	С	5	2,4,5,6,7
21.	Use of non destructive testing techniques for evaluation	2	С	5	2,4,5,6,7
22.	Load testing of structure using IS codal provisions - Demolition of structures using engineered and non engineered techniques	2	С	5	2,4,5,6,7
23.	Case studies	2 C 5 2,4,5,6,			2,4,5,6,7
	Total contact hours 45				

LEARN	VING RESOURCES
Sl.No.	TEXT BOOKS
1.	Shetty .M.S, "Concrete, Technology, Theory and Practice", S.Chand and Company, New
	Delhi 2005.
2.	Raiker .R.N, "Learning from Failures, Deficiencies in Design, Construction and Service",
	- R&D Centre (SDCPL), RaikarBhavan, Bombay 1987.
3.	Krishna Raju N, "Prestressed Concrete", Tata Mcgraw hill publishing Company Limited,
	New Delhi, 1981.
	REFERENCE BOOKS/OTHER READING MATERIAL
4.	<i>"Repair & Rehabilitation"</i> , Compilation from The Indian Concrete Journal, – ACC – RCD
	Publication 2001.
5.	"Health Monitoring of Structures – A Proactive strategy"-proceedings of the ISTE
	sponsored short course", organized by the Department of Civil Engineering,
	S.R.M.Engineering College, S.R.M.Nagar, January 2003.
6.	Campbell-Allen, D, Harold Roper, "Concrete Structures Materials Maintenance and
	Repair"Longman Scientific and Technical UK 1991.
7.	Allen .R.T, and Edwards .S.C, Shaw .D.N, "Repair of Concrete Structures", Chapman and
	Hall, 2005.

Course nature Theory					ry					
Assessment Method (Weightage 100%)										
Ta	Assessment	Cycle test	Cycle test	Cycle Test	Surprise	Ouiz	Total			
III-	tool	Ι	II	III	Test	Quiz	Total			
semester	Weightage	10%	15%	15%	5%	5%	50%			
End semester examination Weightage :										

15CE461E	DESIGN OF EARTHQUAKE RESISTANT					Р	С
ISCE40IE		STRUCTURES				0	3
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	IC	S 1893: 2002, (Part 2), IS 13920: 1993					
Codes/Standards	15						
Course Category	Р	PROFESSIONAL ELECTIVE	STRUCTURAL EN	GIN	EEF	RINC	ч
Course designed by Department of Civil Engineeri		partment of Civil Engineering					
Approval	32 nd Academic Council Meeting, 2016						

PURPOSE		To enable students to acquire knowledge on the fundamentals structural dynamics and							
101	U OBE	their application to the design of earthquake res	istant structur	es					
INS	TRUCTI	ONAL OBJECTIVES	STUDENT OUTCOMES						
At th	he end of t	he course, student will be able to							
1.	Understa	and the principles of vibration with regard to	0	0	0				
	single de	egree of freedom system.	a	Ľ	e				
2.	Carry ou	r dynamic analysis of moment resistant frames.	а	с	e				
3.	Determin	ne the design lateral forces by means of codal	0	0	0				
	provision	ns.	a	C	е				
4.	Introduce	e the concept of ductility and corresponding	0	0	0				
	detailing	•	a	C	е				
5.	Expose	the students to base isolation techniques	0	0	0				
	earthqua	ke induced damages.	a	C	e				

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: SINGLE DEGREE OF FREEDOM SYSTEM (SDOF)	9			
1.	Introduction to Systems with single degree of freedom	1	С	1	1
2.	Equation of motion of SDOF and its solution	2	Ι	1	1
3.	Analysis of free vibrations damped and undamped	2	Ι	1	1
4.	Response to harmonic, impulsive, periodic and general dynamic loading	3	Ι	1	1
5.	Analysis SDOF systems with ground motion (earth quake loads)	1	Ι	1	1
	UNIT II: MULTI-DEGREE OF FREEDOM SYSTEM (MDOF)	9			
6.	Modeling of shear frames up to 2 degree of freedom system	1	С	2	1,2
7.	Modal analysis for free vibration	3	Ι	2	1,2
8.	Modal analysis for forced vibration with harmonic loading and determination of nodal forces from first principles	5	Ι	2	1,2
	UNIT III: DESIGN SEISMIC FORCES	9			
9.	Codal provisions for design as per IS 1893-2002	1	С	3	2,8
10.	Concept of response spectrum and procedure for constructing the response spectrum	1	C, I	3	2,8
11.	Determination of lateral forces – base shear – by response spectrum method for 2 storey moment resistant frames	2	Ι	3	2,8
12.	Calculation of drift and top storey lateral deflection	1	Ι	3	2,8
13.	Aspects in planning and layout for regular and irregular buildings in plan and elevation	1	C, I	3	2,8
14.	Mass and stiffness irregularity	1	Ι	3	2,8
15.	Calculation of centre of mass and centre of rigidity for simple layouts.	1	Ι	3	2,8

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
16.	Computation of eccentricity and torsion in irregular building s	1	Ι	3	2,8
	UNIT IV:DETAILING FOR DUCTILITY	9			
17.	Definition of Ductility	1	С	4	2,8,9
18.	General Codal provisions for ductility detailing as per IS :13920-1993	1	D, I	4	2,8,9
19.	Codal provisions for ductility detailing as per IS :13920- 1993 for columns	2	D, I	4	2,8,9
20.	Codal provisions for ductility detailing as per IS :13920- 1993 for beams	1	D, I	4	2,8,9
21.	Codal provisions for ductility detailing as per IS :13920- 1993 for foundation	1	D, I	4	2,8,9
22.	Shear wall design and detailing as per IS :13920-1993	3	D, I	4	2,8,9
	UNIT V: SPECIAL TOPICS	9			
23.	Concept of seismic damage ratings	1	С	5	3,4,5,6,7
24.	Repair and Rehabilitation techniques and seismic strengthening	1	Ι	5	3,4,5,6,7
25.	Case studies in repair and rehabilitation	2	Ι	5	3,4,5,6,7
26.	Passive control of vibration using base isolation techniques	1	Ι	5	3,4,5,6,7
27.	Properties of base isolators and modeling procedure of base isolators using SAP and ETABS	1	Ι	5	3,4,5,6,7
28.	Active control of vibration	2	С	5	3,4,5,6,7
29.	New and favorable materials to resist seismic forces	1	D	5	3,4,5,6,7
	Total contact hours			45	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Anil K.Chopra, "Dynamics of structures" (Theory and Applications to Earthquake Engineering), 2nd Edition, Prentice Hall of India Private Limited. New Delhi, 2003.
2.	Short course on "Seismic design of reinforced concrete buildings", CEP, IIT, Kanpur, 2005.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Short term course on "Seismic Retrofit of Multistoreyed Reinforced concrete Buildings", National Programme on Earthquake Engineering Education (NPEEE), IIT, Madras, July, 2005.
4.	Paulay.T and Priestly. M.N.J, "Aseismic Design of Reinforced Concrete and Masonry Building", John Wiley and Sons, 1991.
5.	Course Notes on "Structural Design for Dynamic Loads", SRM Engineering College, Dec2002.
6.	Lecture notes on " <i>Health Monitoring of Structures- A Proactive Strategy</i> ", ISTE sponsored course held at SRM Engineering College, Jan,2003.
7.	Damodarasamy, S.R., S.Kavitha, "Basic Structural dynamics and Aseismic Deign", PHI Learning (Pvt)New Delhi. 2014.
8.	<i>"Learning earthquake Design and Construction"</i> , Earthquake Tips 1 to 24, Authored by C.V.R. Murthy, IIT, Kanpur. <u>eqtips@iitk.ac.in</u> Web sites: <u>www.nicee.org</u> .
9.	IS 1893: 2002, (Part I) "Criteria for Earthquake Resistant Design of Structures - Part 1 :General Provisions and Buildings", BIS, New Delhi, 2002.
10.	IS 13920: 1993 ,"Ductile detailing of reinforced concrete structures subjected to seismic forces - Code of practice", Reaffirmed, 2003, BIS, New Delhi, 2003

Course natu	ire		Theor	y					
Assessment Method									
In-	Assessment	Cycle test I	Cycle test II	Cycle Test	Surprise	Quiz			
semester	tool			III	Test				
	Weightage	10%	15%	15%	5%	5%			
End semester examination Weightage : 50%									

15CE462E		CONCRETE TECHNOLOGY					С
							3
Co-requisite:	NI	L					
Prerequisite:	NI	NIL					
Data Book /	NI	ſ					
Codes/Standards	191	NIL					
Course Category	Р	PROFESSIONAL ELECTIVE	STRUCTURAL EN	IGIN	EER	ING	ŕ
Course designed by	De	Department of Civil Engineering					
Approval	<i>pproval</i> 32 nd Academic Council Meeting , 2016						

PURPOSETo gain theoretical knowledge on concrete materials, admixtures used in concrete, hardened concrete and durability properties of concrete and respective technologies				used in concrete, concrete and the	
IN	STRUCTIO	ONAL OBJECTIVES	STUDENT (OUTCOMES	
At	the end of the	he course, student will be able to			
1.	Gain know	wledge about concrete materials and their	a		
	properties				
2.	2. Understand the role of different admixtures in concrete a				
3.	Know the	а	b		
	procedures	8			
4.	I. Obtain knowledge on hardened concrete properties and their a b				
	testing procedures				
5.	. Understand the aspects of durability properties of concrete a b				
	and their to	esting procedures			

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: CONCRETE MATERIALS	9			
1.	Cement and its chemical composition, Bogue's Compound, Hydration of cement, Heat of hydration and water requirement for hydration.	2	С	1	1,2,3,4
2.	Conventional aggregates and its formation types, size and limitations, shape and classification.	1	С	1	1,2,3,4
3.	Strength tests on aggregates, crushing, impact, abrasion, density and specific gravity, water absorption and moisture content	3	С	1	1,2,3,4
4.	Grading of aggregates and sieve analysis.	1	С	1	1,2,3,4
5.	Lightweight aggregate and its types, artificial and natural aggregate, coconut shell, oil palm shell and palm kernel shell.	1	С	1	1,2,3,4
6.	Quality and quantity of water for concrete	1	С	1	1,2,3,4
7.	UNIT II: ADMIXTURES	9			
8.	Admixtures and additives, chemical admixtures	1	С	2	1,2,3,4
9.	Plasticizers and its effects in concrete	1	С	2	1,2,3,4
10.	Super plasticizers and its effects in fresh and hardened properties of concrete	2	С	2	1,2,3,4
11.	Accelerators, retarders and water proofers.	2	С	2	1,2,3,4
12.	Mineral admixtures, Fly ash, Silica fume, GGBS andMetakaolin	2	С	2	2,3,4
13.	Effects of mineral admixtures on concrete properties and its uses	1	С	2	2,3,4
	UNIT III: FRESH CONCRETE	9			
14.	Fresh concrete, workability and its significance, factors affecting workability and its measurement	1	C,I	3	1,2,3,4
15.	Vee Bee consistometer, flow test, kelly ball test.	2	C,I	3	1,2,3,4
16.	Segregation and its condition, remedies for	1	C,I	3	1,2,3,4

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	segregation				
17.	Bleeding and its effects, test for bleeding	1	С	3	1,2,3,4
18.	Process of manufacture of concrete, batching, mixing, transporting, placing, compaction, curing and finishing of concrete.	3	D	3	1,2,3,4
19.	Underwater concrete.	1	С	3	1,2,3,4
	UNIT IV: HARDENED CONCRETE	9			
20.	Hardened concrete and compression test on hardened concrete	1	C,I	4	1,2,3,4
21.	Factors affecting strength and failure due to compression	1	C,I	4	1,2,3,4
22.	Flexural strength tests	2	C,I	4	1,2,3,4
23.	Stress –strain curve for concrete and test for modulus of elasticity of concrete	2	C,I	4	1,2,3,4
24.	Different elastic moduli	1	C,I	4	1,2,3,4
25.	Creep and its measurement, factors affecting creep, effects of creep on concrete	1	С	4	1,2,3,4
26.	Shrinkage and its classifications, factors	1	С	4	1,2,3,4
	UNIT V: DURABILITY OF CONCRETE	9			
27.	Definition for durability, significance and impact of W/C ratio	2	С	5	1,2,3,4
28.	Permeability and higher permeability in actual structures.	1	C,I	5	1,2,3,4
29.	Joints in concrete and their categories	1	С	5	3
30.	Concrete subjected to high temperature, fire resistance, freezing and thawing.	2	C	5	1,2,3,4
31.	Concrete in sea water. Carbonation, rate of carbonation and measurement of depth of carbonation.	3	С	5	1,2,3,4
	Total contact hours			45	

LEARNING RESOURCES			
CUNG			

Sl.No.	TEXT BOOKS
1.	Neville, A.M. Properties of Concrete, Fifth Edition, Pearson, 2011.
2.	Shetty, M.S. Concrete Technology, Theory and Practice, S. Chand & Company, New Delhi,
	2013.
3.	A.R. Santhakumar, Concrete Technology, 2009 Edition, Oxford University Press
	REFERENCE BOOKS/OTHER READING MATERIAL
4.	Kumar Mehta Paulo,P and Monteiro, J.M. Concrete Microstructure, Properties and
	Materials.Fourth Edition, McGraw Hill Education, 2006, copy right ©2014.
5.	IS 269: 1989, Indian Standard Specification for ordinary Portland cement, 33 grade, 1998.
6.	IS 383: 1970, Indian Standard Specification for coarse and fine aggregates from natural
	sources for concrete, 1997.
7.	IS 456:2000, Indian Standard Specification for code of practice for plain and reinforced
	concrete, 2000
8.	IS 516: 1959, Indian Standard Specification for method of test for strength of concrete.
9.	IS 1199: 1959, Indian Standard Specification for methods of sampling and analysis of
	concrete.
10.	IS 2386 (Part 1):1963, Indian Standard Specification for methods of test for aggregates for
	concrete Part 1 Particle size and shape, 1997.
11.	IS 2386 (Part 4):1963, Indian Standard Specification for methods of test for aggregates for
	concrete Part 4 Mechanical Properties, 1997.
12.	IS 3085: 1965, Indian Standard Specification for methods of test for permeability of cement

	mortar and concrete.
13.	IS 3812: 1981, Indian Standard Specification for fly ash for use as a pozzolana and
	admixture.
14.	IS 6461 (Part 7): 1973, Indian Standard Specification for glossary of terms relating to cement
	concrete: mixing, laying, compaction, curing and other construction aspects.
15.	IS 6461 (Part 8): 1973, Indian Standard Specification for glossary of terms relating to cement
	concrete: Properties of concrete.
16.	IS 8112: 1989, Indian Standard Specification for 43 grade ordinary Portland cement, 2000.
17.	IS 9013: 1978, Indian Standard Specification for method of making, curing and determining
	compressive strength cured concrete test specimen.
18.	IS 10510: 1983, Indian Standard Specification for Vee Bee consistometer.
19.	IS 12269: 1987, Indian Standard Specification for 53 grade ordinary Portland cement, 1999.
20.	ASTM C330, Standard Specification for lightweight aggregates for structural concrete,
	Annual Book of ASTM Standards.

Course nature Theory							
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 5				50%			

15CE462E	SDECIAL CONCRETES		L	Т	Р	С	
ISCE405E		SI ECIAL CONCRETES		3	0	0	3
Co-requisite:	NIL	TIL .					
Prerequisite:	NIL						
Data Book /	NII						
Codes/Standards	NIL						
Course Category	P PRC	OFESSIONAL ELECTIVE	STRUCTURAL EN	GIN	EER	ING	
Course designed by	Department of Civil Engineering						
Approval	32 nd Aca	32 nd Academic Council Meeting, 2016					

PU	PURPOSE To acquire theoretical knowledge on special concretes, lightweight, high density, fibre reinforced, ferrocement, polymer and geo-polymer, self-compacting and other concretes.				
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES				
At	the end of t	he course, student will be able to			
1.	Gain knov	vledge about lightweight and high density concretes	a		
2.	Obtain kn ferroceme	owledge about fibre reinforced concrete and nt	a		
3.	Gain knov	vledge about polymer and geo-polymer concretes	a		
4.	Have fami	liarity with concepts about self-compacting concrete	a	b	
5.	Know and concretes	gain knowledge about some of the other types of	a		

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
1.	UNIT I: LIGHTWEIGHT AND HIGH DENSITY CONCRETE	9			
2.	Lightweight concrete, its classification and its advantages	1	С	1	2,3,4
3.	Natural and artificial lightweight aggregate	1	С	1	2,3,4
4.	Requirements for aggregates for structural concrete.	1	С	1	2,3,4
5.	Effects of water absorption by lightweight aggregate.	1	С	1	2,3,4
6.	Aspects of fresh state and strength of lightweight aggregate	1	С	1	2,3,4
7.	Aggregate-matrix bond, Elastic properties and durability properties.	1	С	1	2,3,4
8.	Methods to make lightweight concrete ,Cellular , aerated and no fines concrete concrete.	1	С	1	2,3,4
9.	Uses of High Density concrete and types of radiation	1	С	1	2,3,4
10.	Shielding ability and concrete for radiation shielding.	1	С	1	2,3,4
	UNIT II: FIBRE REINFORCED AND FERROCEMENT	9			
11.	Basic requirements and properties of Fiber Reinforced Concrete	1	С	2	1,2,3,
12.	Factors affecting FRC, Orientation, volume fraction and aspect ratio.	1	С	2	1,2,3,
13.	Type of fibres and effects of fibre in concrete.	1	С	2	2,3,4
14.	Types of FRC	2	С	2	2,3,4
15.	Benefits ,applications and current development in FRC.	1	C	2	2,3,4
16.	Casting and curing of FRC, itsadvantages and		C,I		

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	applications.				
17.	Materials of ferrocement	1	C,I	2	2,3,4
18.	Mixing ,casting techniques and applications	1	C,I	2	1,2,3,4
	UNIT III: POLYMER AND GEO-POLYMER CONCRETE	9			
19.	Polymer concrete and its types	1	С	3	2,3,4
20.	Polymer Impregnated Concrete	1	С	3	2,3,4
21.	Polymer Cement Concrete and Polymer concrete	2	С	3	2,3,4
22.	Partially impregnated and surface coated polymer	2	С	3	2,3,4
	concrete, its advantages and its applications				
23.	Geo-polymer concrete and Reduction of cement	1	С	3	2,3,4
	consumption				
24.	Casting, curing and Properties of geo-polymer	1	С	3	2,3,4
25.	Economics benefits, advantage and application of	1	С	3	2,3,4
	geo-polymer.				
	UNIT IV: SELF COMPACTING CONCRETE	9			
26.	Self Compacting Concrete, its benefit and	1	C	4	2,3,4
	materials of SCC	1	C	+	
27.	Mineral admixtures and SCC mixes	1	С	4	2,3,4
28.	Characteristics and workability requirement	1	С	4	2,3,4
29.	Mix design, production and placing of SCC	2	С	4	2,3,4
30.	Test methods including slump flow ,V – funnel test , L-box test ,U-box test and fill box test	3	С	4	2,3,4
31.	Complexities involved in making SCC and Indian Scenario of SCC.	1	С	4	2,3,4
	UNIT V: OTHER CONCRETES	9			
32.	SIFCON, its composition and process of making SIFCON	1	С	5	2,3,4
33.	Design Principle, Factors, Advantage, disadvantage and application	1	D	5	2,3,4
34.	Gunite, shotcrete, advantages, limitation s and its use	1	С	5	2,3,4
35.	dry and wet process and its advantage	1	С	5	2,3,4
36.	Pre-packed concrete, its advantages and essential requirements	1	С	5	2,3,4
37.	Vacuum concrete, general arrangement and rate of extraction of water	1	С	5	2,3,4
38.	Sulphur infiltrated concrete and its applications	1	С	5	2,3,4
39.	Cold weather concreting, its effects and	1	C	5	2,3,4
	precautions to be carried out	1	C		
40.	Hot weather concreting ,problems associated with it and precautions to be carried out. Concrete based on waste materials usingRecycled aggregate,coconut shell, palm shell. etc.	1	С	5	2,3,4
	Total contact hours			45	

LEARNING RESOURCES

Sl. No.	TEXT BOOKS
1.	Neville, A.M. 'Properties of Concrete', Fifth Edition, Pearson, 2011.
2.	Shetty, M.S. 'Concrete Technology, Theory and Practic'e, S. Chand & Company, New Delhi,
	2013.
3.	A.R. Santhakumar, 'Concrete Technology', 2009 Edition, Oxford University Press
	REFERENCE BOOKS/OTHER READING MATERIAL
4.	Kumar Mehta Paulo,P and Monteiro, J.M. 'Concrete Microstructure, Properties and
----	---
	Material's.Fourth Edition, McGraw Hill Education, 2006, copy right ©2014.
5.	EFNARC, 'Specification and Guidelines for Self-Compacting Concrete', ISBN 0 9539733 44,
	February 2002.

Course nat	ure			Theory			
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weight age :							50%

15CE464E		CONCRETE TESTING TECHNIOUES					С
15CE404E		CONCRETE TESTING TEC	INQUES	3	0	0	3
Co-requisite:	NII						
Prerequisite:	NII						
Data Book /	NIL						
Codes/Standards							
Course Category	Р	PROFESSIONAL ELECTIVE	STRUCTURAL EN	IGIN	EER	ING	ŗ
Course designed by	Department of Civil Engineering						-
Approval	32 ⁿ	^d Academic Council Meeting , 2016					

r						
PU	PURPOSE To gain knowledge on various tests to be conducted on cement, aggregate and concret					
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES						
At	At the end of the course, student will be able to					
1.	1.Gain knowledge about cement testsab					
2.	Obtain knowledge about aggregate tests	a	b			
3. Be Familiar with various tests on fresh concretes a b						
4. Be thorough about hardened concrete tests a b						
5.	Have knowledge about some of the other types of concretes	a	b			

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	UNIT I: CEMENT TESTS	9			
1.	Cement and its types	2	C,I	1	1,2,3,4
2.	Tests on cement, Field tests before and after open of bag	1	C,I	1	1,2,3,4
3.	Laboratory tests, Fineness test, sieve test and air- permeability test	1	C,I	1	1,2,3,4
4.	Consistency test, setting time tests procedure and precautions.	2	C,I	1	1,2,3,4
5.	Soundness test, Strength test and precautions	1	C,I	1	1,2,3,4
6.	Specific gravity test and precaution	1	C,I	1	1,2,3,4
7.	Hydration test for cement	1			
	UNIT II: AGGREGATE TESTS	9			
8.	Aggregates and its types, classifications	1	C,I	2	1,2,3,4
9.	Mechanical properties, strength, crushing value test, Aggregate 10 % fines value and impact value test	1	C,I	2	1,2,3,4
10.	Abrasion test and methods, bulk density and specific gravity test	1	C,I	2	1,2,3,4
11.	Absorption and moisture content, bulking of aggregates, cleanliness	2	C,I	2	1,2,3,4
12.	Soundness tests, flakiness index and elongation index	1	C,I	2	1,2,3,4
13.	Grading of Aggregates and sieve analysis	1	C,I	2	1,2,3,4
14.	Tests for finding clay, fine silt, fine dust and organic impurities	1	C,I	2	1,2,3,4
15.	Alkali Aggregate reaction	1	C,I	2	1,2,3,4
	UNIT III: FRESH CONCRETE TESTS	9			
16.	Fresh concrete, workability and tests for workability	1	C,I	3	1,2,3,4
17.	Slump cone test and compaction factor test	2	C,I	3	1,2,3,4
18.	Flow test, Kelly ball test and Veebeeconsistometer	2	C,I	3	1,2,3,4
19.	Segregation and test for bleeding of concrete	2	C,I	3	1,2,3,4
20.	Setting time of concrete	1	C,I	3	1,2,3,4
21.	Air entrainment test, fresh concrete density and	1	C,I	3	1,2,3,4

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	demoulded density				
	UNIT IV: HARDENED CONCRETE TESTS	9			
22.	Strength of concrete, water / cement ratio and gel / space ratio	1	C,I	4	1,2,3,4
23.	Accelerated curing test, compressive strength test, UPV and rebound hammer test	2	C,I	4	1,2,3,4
24.	Flexural strength test by central point load and third point load tests	1	C,I	4	1,2,3,4
25.	Split tensile test and impact test	1	C,I	4	1,2,3,4
26.	Elastic property of concrete test and Poisson's ratio	1	C,I	4	1,2,3,4
27.	Measurement of creep of concrete and test for shrinkage of concrete	2	C,I	4	1,2,3,4
28.	Bond test between concrete and steel	1	C,I	4	1,2,3,4
	UNIT V: DURABILITY TESTS	9			
29.	Water absorption and volume of permeable pore voids	1	C,I	5	1,2,3
30.	Test on Sorptivity	1	C,I	5	1,2
31.	Rapid chloride penetration test, acid and sulphate resistance tests	1	C,I	5	1,2,3,4
32.	Salt ponding test	1	C,I	5	1,2,3,4
33.	Elevated temperature resistance test	1	C,I	5	1,2,3,4
34.	Freezing and thawing	1	C,I	5	1,2,3,4
35.	Carbonation and its measurements, phenolphthalein test	1	C,I	5	1,2,3.4
36.	Corrosion of steel	1	C,I	5	1,2,3,4
37.	Surface treatments of concrete	1	C,I	5	1,2,3,4
	Total contact hours	45			

LEAR	NING RESOURCES
Sl.No.	TEXT BOOKS
1.	Neville, A.M. "Properties of Concret"e, Fifth Edition, Pearson, 2011.
2.	Shetty, M.S. "Concrete Technology, Theory and Practic"e, S. Chand & Company, New
	Delhi, 2013.
3.	A.R. Santhakumar, "Concrete Technology", 2009 Edition, Oxford University Press
	REFERENCE BOOKS/OTHER READING MATERIAL
4.	Kumar Mehta Paulo,P and Monteiro, J.M. "Concrete Microstructure, Properties and
	Materials".Fourth Edition, McGraw Hill Education, 2006, copy right ©2014.
5.	IS 269: 1989, Indian Standard Specification for ordinary Portland cement, 33 grade, 1998.
6.	IS 383: 1970, Indian Standard Specification for coarse and fine aggregates from natural
	sources for concrete, 1997.
7.	IS 516: 1959, Indian Standard Specification for method of test for strength of concrete.
8.	IS 1199: 1959, Indian Standard Specification for methods of sampling and analysis of
	concrete.
9.	IS 2386 (Part 1):1963, Indian Standard Specification for methods of test for aggregates for
	concrete Part 1 Particle size and shape, 1997.
10.	IS 2386 (Part 2):1963, Indian Standard Specification for methods of test for aggregates for
	concrete Part 2 Estimation of deleterious materials and organic impurities, 1997.
11.	IS 2386 (Part 3):1963, Indian Standard Specification for methods of test for aggregates for
	concrete Part 3 Specific gravity, density, voids, absorption and bulking, 1997.
12.	IS 2386 (Part 4):1963, Indian Standard Specification for methods of test for aggregates for
	concrete Part 4 Mechanical Properties, 1997.
13.	IS 3085: 1965, Indian Standard Specification for methods of test for permeability of cement
	mortar and concrete.

14.	IS 4031(Part 9): 1988, Indian Standard Specification for methods of physical tests for
	hydraulic cement: Determination of heat of hydration
15.	IS 4032: 1985, Indian Standard Specification for method of chemical analysis of hydraulic
	cement.
16.	IS 5816: 1999, Indian Standard Specification for method of test for splitting tensile strength of
	concrete.
17.	IS 6461 (Part 8): 1973, Indian Standard Specification for glossary of terms relating to cement
	concrete: Properties of concrete.
18.	IS 8112: 1989, Indian Standard Specification for 43 grade ordinary Portland cement, 2000.
19.	IS 9013: 1978, Indian Standard Specification for method of making, curing and determining
	compressive strength cured concrete test specimen.
20.	IS 10510: 1983, Indian Standard Specification for Vee Bee consistometer.
21.	IS 12269: 1987, Indian Standard Specification for 53 grade ordinary Portland cement, 1999.
22.	IS:2770(Part 1):1967, Indian Standard Methods of Testing of Bond in Reinforced Concrete.
	UDC 666-982:620.172.21.
23.	ASTM C78-84, Standard Test Method for Flexural Strength of Concrete, Annual Book of
	ASTM standards.
24.	ASTM C496-90, Standard Test Method for Splitting Tensile strength Of Cylindrical Concrete
	Specimens, Annual Book of ASTM Standards
25.	ASTMC C 234, Standard Test Method for Comparing Concrete on the basis of Bond
	development with Reinforcing Steel, Annual Book of ASTM Standards.
26.	ASTM C1202 - 12, Standard Test Method for Electrical Indication of Concrete Stability to
	resist Chloride Ion Penetration
27.	ASTM C 642-97, Standard Test for Density, Absorption and Voids on Hardened Concrete,
	Annual Book of ASTM Standards

Course nat	Course nature Theory						
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :							50%

15CE465E	DESIGN OF STEEL-CONCRETE COMPOSITE	L	Т	Р	С
15CE405E	STRUCTURES	3	0	0	3
Co-requisite:	NIL				
Prerequisite:	15CE303				-
Data Book /	15.11204				
Codes/Standards	13.11504				
Course Category	P PROFESSIONAL ELECTIVE STRUCTURAL EN	IGIN	EER	ING	ŗ
Course designed by	Department of Civil Engineering				-
Approval	32 nd Academic Council Meeting, 2016				

PURPO	PURPOSE To bring about an exposure to design of steel -concrete composite structural members							
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES								
At the en	d of the course, student will be able to							
1.	understand the behavior of steel -concrete composite members and the principle of design of composite beams	а	с	e				
2.	understand the behavior and principle of design of composite slabs and trusses	a	с	e				
3.	understand the behavior and principle of design of composite columns	a	с	e				
4.	know the design of connections	а	с	e				

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I-INTRODUCTION	9			
1.	Basic Terminology-Advantages of Steel - Concrete Composite Construction	1	С	1	1-6
2.	Types of Composite Structural systems adopted for multi-storied buildings	1	С	1	1-6
3.	General Code provisions	1	C,D,I	1	1-6
4.	Behavior of Composite Structures and structural elements	2	C,I	1	1-6
5.	Composite action in Beams	2	C,I	1	1-6
6.	Design of Composite Beams (principle only)	2	C,D,I	1	1-6
	UNIT II-DESIGN OF COMPOSITE SLABS AND TRUSSES	9			
4.	Types-Structural advantages	1	С	2	1-6
5.	Behavior of Composite Slabs	2	C,I	2	1-6
6.	Design principles	2	C,D,I	2	1-6
7.	Behavior of Composite Trusses	2	C,I	2	1-6
8.	Design principles	2	C,D,I	2	1-6
	UNIT III-DESIGN OF COMPOSITE COLUMNS	9			
9.	Types-Structural advantages of Composite Columns	2	С	3	1-6
10.	Behavior of Composite Columns	3	C,I	3	1-6
11.	Code provisions	1	C,D,I	3	1-6
12.	Design of Composite Columns(principle only)	3	C,D,I	3	1-6
	UNIT IV-DESIGN OF CONNECTIONS	9			
13.	Types of Connections - Basics of Design of Connections in Composite structures	2	C,D	4	1-6
14.	Shear Connections -Types	2	C,D,I	4	1-6
15.	Design procedure	2	C,D,I	4	1-6
16.	Design of Connections in Composite trusses	3	C,D,I	4	1-6
	UNIT V-SEISMIC DESIGN	9			
17.	Basics of Seismic analysis and design	1	С	5	1-6
18.	Seismic behavior of Composite structures	2	С	5	1-6
19.	Concepts regarding analysis of Composite	2	C	5	1-6

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	structures				
20.	Design principles and methods	2	C,D,I	5	1-6
21.	Case Studies	2	C,D,I	5	1-6
	Total contact hours	45			

NG RESOURCES
TEXT BOOKS
ohnson.R.P., "Composite Structures of Steel and Concrete", Blackwell Publishing, 2008.
Dehlers.D.J., Bradford.M.A., "Composite Steel and Concrete structural members-
Fundamental Behavior", Pergaman Pub.,1995.
REFERENCE BOOKS/OTHER READING MATERIAL
Teaching Resource Material for Structural Steel Design" Volume 2/3 jointly prepared by
ITM, Chennai, Anna University, Chennai, SERC, CSIR, Chennai and INSDAG, Kolkatta.
Proceedings of STTP on "Emerging potential of Steel Composites as powerful alternative in
construction industry" organized by Dept. of Civil Engineering, SRM University,
Kattankulathur during 01-05 Feb. 2005.
Proceedings of STTP on "Steel-Concrete Composite Structures" organized by Dept. of Civil
Engineering, SRM University, Kattankulathur during 20-21 Dec. 2007.
S : 11384-1983, "Code of Practice for Composite Construction in Structural Steel and
Concrete" (Reaffirmed 2003), BIS, New Delhi, 2003

Course nat	Course nature Theory							
Assessment	Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage : 50							50%	

ELECTIVE V GIS AND REMOTE SENSING ENGINEERING GEOLOGY ENVIRONMENTAL ENGINEERING OFFERED IN

IV YEAR, II SEMESTER

ELECTIVE V GIS AND REMOTE SENSING

15CE321E				CEOCRAPHICAL INFORMATIO	ON SV	STEM	r	L	Т	Р	С
	13CE521E			GEOGRAI IIICAL INFORMATIN	01 51			3	0	0	3
Co-	requisite:		NII								
Pre	requisite:		NII	_							
Dat	a Book /		NII								
Cod	les/Standards	5	1111	_							
Сог	irse Category	v	Р	DEPARTMENTAL ELECTIVE	GIS Al	ND RE	MOTE	e sei	NSIN	١G	
Сог	ırse designed	l by	De	partment of Civil Engineering							
App	oroval		32 ⁿ	^d Academic Council Meeting, 2016							
PU	RPOSE	To unde	erst	and the basics and application of GIS							
INS	STRUCTION	NAL OF	BJE	CTIVES	S	STUDE	ENT O	UTC	COM	IES	
At t	he end of the	course,	, stu	dent will be able							
1.	To underst	tand the	e C	HS, background, development and	a	d	g	h	i		k
	components	s of GIS					-				
2.	To study th	he data	cap	oturing for GIS techniques and data	а	d	g	h	i		k
	base manag	ement									
3. To study the analysis of various spatial and non-spatial data a			a	d	g	h	i		k		
in GIS											
4.	To study the	e genera	atio	n DEM and making model	a	d	g	h	i		k
5.	To apprecia	te the a	ppli	cation of GIS	a	d	g	h	i		k

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I- INTRODUCTION TO GIS	9			
1.	Definition of GIS, Historical background	1	C,D	1	1,2
2.	Concepts and Basic Requirements	1	C,D	1	1,2
3.	GIS Softwares	1	C,D	1	1,2
4.	Elements of GIS	1	C,D	1	1,2
5.	Cartography – definition and importance	1	C,D	1	1,2
6.	Map definition - Types	1	C,D	1	1,2
7.	Map Analysis	1	C,D	1	1,2
8.	Coordinate system	1	C,D	1	1,2
9.	Different Coordinate system	1	C,D	1	1,2
	UNIT II: DATA BASE MANGEMENT	9			
10.	Introduction – Types of data	1	C,D	2	1,2,4
11.	Spatial data – Nonspatial data	2	C,D	2	1,2,4
12.	Data input - Methods	1	C,D	2	1,2,4
13.	Data Output - Methods	1	C,D	2	1,2,4
14.	Software Modules	1	C,D	2	1,2,4
15.	Vector data – Structure - Topology	1	C,D	2	1,2,4
16.	Raster data - Structure	1	C,D	2	1,2,4
17.	Raster data – Structure – Merits and Demerits	1	C,D	2	1,2,4
	UNIT III - DATA ANALYSIS	9			
18.	Spatial data analysis	1	C,D,I	3	1,2,4
19.	Non Spatial Data analysis	1	C,D,I	3	1,2,4
20.	Manipulation – Spatial interpolation	1	C,D,I	3	1,2,4
21.	Data retrieval – Reclassification Techniques	1	C,D,I	3	1,2,4
22.	Buffer analysis	1	C,D,I	3	1,2,4
23.	Vector and Topological Overlay analysis	1	C,D,I	3	1,2,4
24.	Raster overlay analysis	1	C,D,I	3	1,2,4
25.	Measurement - Query	1	C,D,I	3	1,2,4
26.	Record Modeling and Expert System	1	C,D,I	3	1,2,4
	UNIT IV –DIGITAL ELEVATION MODEL	9			
27.	Introduction – Data Capture	1	C,D,I	4	1,3
28.	Generation of DEM - Parameters	1	C,D,I	4	1,3

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
29.	Modeling Surface	1	C,D,I	4	1,3
30.	Applications of DEM	1	C,D,I	4	1,2,4
31.	Cost and Path analysis	1	C,D,I	4	1,2,3
32.	Digital Terrain Visualization	1	C,D,I	4	1,3
33.	TIN Generation	1	C,D,I	4	1,3
34.	DTM and DEM advantages	1	C,D,I	4	1,3
35.	DTM and DEM advantages	1	C,D,I	4	1,3
	UNIT V - APPLICATION OF GIS	9			
36.	Use of GIS in Resource Mapping	1	I,O	5	1,3
37.	Use of GIS in Ground Water and Runoff	1	I,O	5	1,3
	Modeling			-	7-
38.	Use of GIS in Flood monitoring and Wetland	1	I,O	5	1.3
	Management			-	2-
39.	Use of GIS in Forest Management	1	I,O	5	1,3
40.	Land use and Land cover analysis	1	I,O	5	1,3
41.	Use of GIS in Geology	1	I,O	5	1,3
42.	Use of GIS in Regional and Urban Planning	1	I,O	5	1,3
43.	Use of GIS in Agriculture and soil	1	I,O	5	1,3
44.	Integrated with remote sensing	1	I,O	5	1,2,3
	Total contact hours		4	15	

LEARN	ING RESOURCES
Sl.No.	TEXT BOOKS
1.	Anji Reddy .M, "Remote sensing and Geographical information system", B.S Publications,
	2011.
	REFERENCE BOOKS/OTHER READING MATERIAL
2.	Chestern, "Geo Informational Systems - Application of GIS and Related Spatial Information
	Technologies », ASTER Publication Co., 1992.
3.	Jeffrey Star and John Estes, "Geographical Information System - An Introduction", Prentice
	Hall, 1990.
4.	Burrough .P.A, "Principles of GIS for Land Resources Assessment", Oxford
	Publication,1980
5.	SatheeshGopi, "Global Positioning System - Principles and Applications," Tata McGraw-
	Hill Publishing Company Limited, New Delhi (India), 2005

Course nat	Course nature Theory						
Assessment Method (Weight age 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weight age	10%	15%	15%	5%	5%	50%
End semester examination Weight age : 5							50%

15CE200E	2E REMOTE SENSING AND ITS APPLICATIONS		L	Т	Р	С	
15CE522E	KENIOTE SENSIN	G AND 115 A	FLICATIONS	3	0	0	3
Co-requisite:	IL						
Prerequisite:	IL						
Data Book /	n						
Codes/Standards	11						
Course Category	DEPARTMENTAL	LELECTIVE	GIS & REMOTE S	ENS	ING		
Course designed by	epartment of Civil Eng	gineering					
Approval	2 nd Academic Council	Meeting, 2016					

PU	RPOSE	The purpose of this course is to provide an unde underlying various engineering and technological addition, the course is expected to understand the and its applications.	rstanding applicati basic pri	of phy ons in inciples	ysical of remote s of ren	conce e ser note	epts a ising sens	and . In ing
INS	STRUCTIO	NAL OBJECTIVES	STU	JDENI	Γ OUT	CON	ЛES	
At t	he end of th	e course, student will be able						
1.	To study the	he basic principles of remote sensing	а	с	d	e	h	k
2.	To study the	he characteristics of the instrument used for remote	а	с	d	e	h	k
	sensing							
3.	To study a	nd understand optical remote sensing	а	с	d	e	h	k
4.	To unders	stand the Basic concepts of Microwave remote	а	с	d	e	h	k
	sensing							
5.	To study	the different areas of applications of Remote	а	с	d	e	h	k
	sensing							

Session	Description of Topic	Contact hours	C- D- I-O	IOs	Reference
	UNIT I BASICS OF REMOTE SENSING	9			
1.	Overview of syllabus, Introduction of Remote sensing	1	C,D	1	1,2
2.	Remote Sensing in India	1	C,D	1	1,2
3.	Electromagnetic Radiation and Electromagnetic Spectrum	1	C,D	1	1,2
4.	Energy Sources & Radiation Principles	1	C,D	1	1,2
5.	Introduction to Reflection, absorption, Emission and Transmission	1	C,D	1	1,2
6.	Electromagnetic Radiation interaction with Atmosphere	1	C,D	1	1,2
7.	Electromagnetic Radiation interaction with Earth surface features	1	C,D	1	1,2
8.	Reflectance Characteristics of Earth cover types	1	C,D	1	1,3
9.	Remote Sensing Systems	1	C,D	1	1,3
	UNIT II: PLATFORMS AND SENSORS	9			
10.	Introduction to Platforms (Airborne, Space borne)	1	C,D	2	1,3
11.	Active Sensors and Passive Sensors	1	C,D	2	1,3
12.	Across track and along Track Scanning	1	C,D	2	1,3
13.	Optical Sensors	1	C,D	2	1,3
14.	Thermal Scanners	1	C,D	2	1,3
15.	Microwave Sensing radar	1	C,D	2	1,3
16.	LANDSAT series SPOT Series	1	C,D	2	1,3
17.	IRS Satellites	1	C,D	2	1,3
18.	Metrological Satellites , High Resolution Satellites IKONOS	1	C,D	2	1,3
	UNIT III: OPTICAL REMOTE SENSING	9			
19.	Classification of Remote Sensor	1	С	3	1,4
20.	Selection of sensor Parameter – Spatial Resolution, Radiometric Resolution,	1	C, D	3	1,4
21.	Selection of sensor Parameter – Spectral Resolution,	1	C,	3	1,4

Session	Description of Topic	Contact hours	C- D- I-O	IOs	Reference
	Temporal Resolution,		D		
22.	Optical and infrared camera	1	C, D	3	1,4
23.	Quality of image in Optical system, Imaging mode	1	C, D	3	1,4
24.	Types of Camera Photographic camera, Television Camera	1	C, D	3	1,4
25.	Introduction to Opto-Mechanical Sensors	1	C, D	3	1,4
26.	Push broom Cameras	1	C, D	3	1,4
27.	Whiskbroom Cameras	1	C, D	3	1,4
	UNIT IV: MICROWAVE REMOTE SENSING	7			
28.	Introduction to Microwave Remote Sensing	1	C, D	4	2,3,5,6
29.	Classification of Microwave Spectrum	1	C, D	4	2,3,5,6
30.	Airborne and Space borne radar systems	1	C, D	4	2,3,5,6
31.	System Parameters- Wave length,Polarisation,Resolutions	1	D,I	4	2,3,5,6
32.	Radar Geometry Target Parameters – Black Scattering, Point target	1	D,I	4	2,3,5,6
33.	Volume Scattering – Penetration, Reflection	1	D,I	4	2,3,5,6
34.	Application and uses of Microwave remote sensing	1	D,I	4	2,3,5,6
	UNIT V: REMOTE SENSING APPLICATIONS	11			
35.	Introduction to image interpretation	1	D,I	5	1,4,5,6
36.	Visual and Digital Interpretation	1	С	5	1,4,5,6
37.	Elements of image Interpretation	1	I,O	5	1,4,5,6
38.	Techniques of Image Interpretation	1	I,O	5	1,4,5,6
39.	Remote Sensing applications of Natural Resource Management	1	1,0	5	1,4,5,6
40.	Remote Sensing applications of Water with case studies	1	I,O	5	1,4,5,6
41.	Remote Sensing applications of Forest with case studies	1	I,O	5	1,4,5,6
42.	Remote Sensing applications of Agriculture and Soils with case studies	1	I,O	5	1,4,5,6
43.	Remote Sensing applications of Geology with case studies	1	I,O	5	1,4,5,6
44.	Remote Sensing applications of EIA(Air, Water and Soil Pollution with case studies	1	I,O	5	1,4,5,6
45.	Remote Sensing applications of Solid Waste management with case studies	1	I,O	5	1,4,5,6
	Total contact hours			45	

LEARN	LEARNING RESOURCES									
Sl.No.	TEXT BOOKS									
1.	Floyd F. Sabins, Jr: "Remote Sensing Principles and Interpretation", Freeman and Co., San									
	Franscisco, 2007.									
	REFERENCE BOOKS/OTHER READING MATERIAL									
2.	"Remote Sensing and Image Interpretation", 6th Edition, Thomas, Ralph W.									
	Kiefer, Jonathan ChipmanNovember 2007, ©2008.									
3.	"Manual of Remote Sensing Vol. I&II", 2 nd Edition, American Society of Photogrammetry.									
4.	Remote Sensing: "The quantitative approach", P.H. Swain and S.M. Davis, McGraw									

	Hill.1978.
5.	Introductory Digital Image Processing: "A remote sensing perspective", John R. Jensen,
	Prentice Hall, 2005.
6.	Imaging Radar for Resource Survey: "Remote Sensing Applications", W Travelt, Chapman
	& Hall, 1986.

Course nat	ure			Theo	ry		
Assessment Method (Weight age 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle test III	Surprise Test	Quiz	Total
semester	Weight age	10%	15%	15%	5%	5%	50%
End semester examination Weight age :							50%

		L	Т	Р	С	
ISCE525E	ISCES2SE PHOTOGRAMMETRY SURVETING				3	
Co-requisite:	NIL					
Prerequisite:	NIL					
Data Book /	NII					
Codes/Standards	111					
Course Category	P DEPARTMENTAL ELECTIVE GIS AND REMOT	E SE	NSIN	١G		
Course designed by	Department of Civil Engineering					
Approval	32 nd Academic Council Meeting, 2016					

PU	RPOSE The basic purpose of a course in Photogram and application of the many areas particular	The basic purpose of a course in Photogrammetry is to understand the basic principles and application of the many areas particularly related to civil engineering projects.						
INS	STRUCTIONAL OBJECTIVES		STUDEN	T OUI	CO	MES		
At t	the end of the course, student will be able							
1.	To understand the Photogrammetric techniques, con	ncepts, a	b	с	e	j	k	
	components of Photogrammetry							
2.	To approximate the photographic systems and how to	obtain a	b	с	e	j	k	
	the photographs.							
3.	To study the various platforms and photographs us	sed in a	b	с	e	j	k	
	photogrammetry.							
4.	To understand how to use measurements from	n the a	b	с	e	j	k	
	photographs.							
5.	To study the application of photogrammetry in	Civil a	b	с	e	j	k	
	Engineering.							

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I INTRODUCTION	9			
1	Overview of syllabus, Introduction of	1	C	1	1,2
1.	Photogrammetry	1		1	
2.	History of Photogrammetry	1	С	1	1,2
3.	Types of Photo grammetry	1	C,D	1	1,2
4.	Photo Theodolite and its uses	1	C,D	1	1,2
5.	Ballistic Camera	1	C,D	1	1,2
6.	Different types of Aerial Photographs	1	C,D	1	1,2
7.	Oblique Terrestrial Photos	1	C,D	1	1,2
8.	Location, Camera axis and Direction	2	C,D	1	1,2
	UNIT II: PLATFORMS AND SENSORS	9			
9.	Introduction to Aerial Photogrammetry	1	С	2	2,3
10.	Geometric Characteristics of Aerial Photography	1	C,D	2	2,3
11	Introduction of Scale, Types of Scale and	1	D,I	2	2,3
11.	measurements of scale	1		2	
12.	FOV, IFOV GIFOV and GCP.	1	C,D	2	2,3
13.	Introduction to Flight Planning	1	C,D	2	2,3
14.	Design of Flight Planning	1	C,D	2	2,3
15.	Types of Aerial Photography	1	C,D	2	2,3
16.	End Lap and Side lap	1	C,D	2	2,3
17	Advantages and disadvantages of Aerial	1	C,D	2	2,3
17.	Photographs	1		2	
	UNIT III: - STREOSCOPY	9			
18.	Introduction to Stereoscopy	1	C,D	3	1,2,3
10	Stereovision of Aerial Photographs for Three	1	C,D,I	3	1,2,3
19.	dimensional View	1		5	
20.	Types of mosaic, Vertical Exaggeration	1	C,D	3	1,2,3
21.	Mirror Stereoscope and its Uses	1	C,D,I	3	1,2,3
22.	Parallax Bar and measurement of	1	C,I	3	1,2,3
23.	Relief displacement for Plain Terrain	1	C,D	3	1,2,3
24.	Relief displacement of Undulating Terrain	2	C,D	3	1,2,3

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
25.	Plotting Instruments	1	C,D	3	1,2,3
	UNIT IV – DIGITAL PHOTOGRAMMETRY	9			
26.	Introduction to digital cameras	1	С	4	1,2,3
27.	CCD and Spectral Sensitivity of CCD	1	C,D	4	1,2,3
28.	Geometric Problem of CCD	1	C,D	4	1,2,3
29.	Types of Scanner Line Scanner and Drum Scanner	1	D,I	4	1,2,3
30.	Characteristics of Scanner	1	C,D	4	1,2,3
31.	Types of Resolution	1	D,I	4	1,2,3
32.	Resolution Scanner calibration	1	C,D	4	1,2,3
33.	Introduction of Digital photogrammetric Instruments	1	C,D	4	1,2,3
34.	Orthocomp and planicomp	1	C,D	4	1,2,3
	UNIT V-PHOTOGRAMMETRY APPLICATIONS	9			
35.	Introduction to Planimetric Mapping	1	D,I	5	1,2,3
36.	Digital Elevation model	1	D,I	5	1,2,3
37.	Generation of DEM, Application and errors	1	D,I	5	1,2,3
38.	Digital Terrain Model and its applications	1	D,I	5	1,2,3
39.	Digital Surface Model and its applications	1	D,I	5	1,2,3
40.	Introduction to SRTM Mission and its applications	1	D,I	5	1,2,3
41.	Photogrammetric applications in town planning	1	D,I	5	1,2,3
42.	Photogrammetric applications in Disaster applications		D,I	5	1,2,3
43.	Photogrammetric applications in Construction of dam and canal alignment	1	D,I	5	1,2,3
	Total contact hours	45			

LEARN	LEARNING RESOURCES								
Sl.No.	TEXT BOOKS								
1.	Thomas M.Lillesand, Ralph W., <i>"KieferRemote Sensing & Image Interpretation"</i> , .2009. Shiv N. Pandey, <i>"Principles and application of photogrammetry"</i> , New Age International (p) Limited, India. 2008								
	REFERENCE BOOKS/OTHER READING MATERIAL								
2.	Paul R. Wolf, "Elements of photogrammetry", McGraw Hill edition.2004.								
3.	James B Campbell, "Introduction to Remote sensing", Taylon&francis London 2004.								

Course nature Theory							
Assessment Method (Weightage 100%)							
In-	Assessment	Cycle test I	Cycle test	Cycle Test	Surprise	Ouiz	Total
comoston	tool		II	III	Test	C	
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :							50%

15CE224E				L	Т	Р	С	
15CE524E	ISCES24E ELEMENTS OF CARTOGRAPHY				3	0	0	3
Co-requisite:	NII							
Prerequisite:	NII							
Data Book /	NII							
Codes/Standards	1911	_						
Course Category	Р	DEPARTMENTAL ELECTIVE	GEOMATICS	ENGI	NEE	RIN	3	
Course designed by	Dep	Department of Civil Engineering						
Approval	32 nd Academic Council Meeting, 2016							

		To learn the fundamental concepts of Cartography and its advancements as Digital							
PU	RPOSE	Cartography. The engineers will be enabling to different aspects of Map Making,							
		Generalization, Map Production and Map Reproduction	on.						
INS	STRUCTIC	NAL OBJECTIVES	STU	JDENT	OUTCO	MES			
At	the end of th	e course, student will be able							
1.	To know t	he basics, importance, and methods of Cartography.	а	с	e	k			
2.	To study t	he various maps projection and co-ordinate systems.	а	с	e	k			
3.	To study t	he different aspects of design in cartography.	а	с	e	k			
4.	To learn cartograph	the Generalization and designing aspects of y.	а	с	e	k			
5.	To learn Reproduct	the different techniques of Map production and ion	а	с	e	k			

Session	n Description of Topic		C- D-I- O	IOs	Reference
	UNIT I: INTRODUCTION TO CARTOGRAPHY	9			
1.	Cartography-Introduction and Civil Engineering Importance	2	С	1	1, 4, 5, 6
2.	Scope and content.	1	С	1	1, 4, 5, 6
3.	Concept of Development of Cartography	1	С	1	1, 4, 5, 6
4.	Characteristics of Map. Categories of maps	1	С	1	1, 4, 5, 6
5.	Methods of mapping, relief maps, thematic maps.	1	С	1	1, 4, 5, 6
6.	Trends in Cartography-Manual and Mechanical	1	С	1	1, 4, 5, 6
7.	Trends in Cartography-Optical, Opto-mechanical and Digital Cartography	2	С	1	1, 4, 5, 6
	UNIT II: PROJECTION AND COORDINATE SYSTEMS	9			
8.	Map projection, classification principles of construction of common projections,	2	C,D	2	1, 4, 5, 6
9.	Cylindrical, conical, azimuthal and globular projections,	1	C,D	2	1, 4, 5, 6
10.	Properties & Uses of projection	1	C,D	2	1, 4, 5, 6
11.	The spheroid, Map scale	1	C,D	2	1, 4, 5, 6
12.	Co-ordinate system –Cartesian, Polar and Geographical Coordinate Systems	2	C,D	2	1, 4, 5, 6
13.	UTM Coordinate system	1	C,D	2	1, 4, 5, 6
14.	Projection used in Survey of India topographic sheets	1	I,O	2	1, 4, 5, 6
	UNIT III: CATROGRAPHIC PROCESS	9			
15.	Processing of geographic data	1	C,D	3	3, 4, 5, 6
16.	Generalizinggeographic data	1	C,D	3	3, 4, 5, 6
17.	Measurements of Geographical data	1	C,D	3	3, 4, 5, 6
18.	Design of color and pattern,	2	C,D	3	3, 4, 5, 6
19.	Hue, Value and Chroma-Additive and Subtractive colors	1	C,D	3	3, 4, 5, 6
20.	Typography and lettering the map- Rules of	2	C,D	3	3, 4, 5, 6

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
	typography				
21.	Storage formats	1	C,D	3	3, 4, 5, 6
	UNIT IV: DATA GENERALIZATION	9			
22.	Simplification and Classification of Cartographic Data	2	D,I	4	3, 4, 5, 6
23.	Computer assisted cartographic processes,	2	D,I	4	3, 4, 5, 6
24.	Symbolization	1	D,I	4	3, 4, 5, 6
25.	Mapping with point, line and area symbols, Volumetric Symbolization	1	D,I	4	3, 4, 5, 6
26.	Portraying the land surface form.	1	D,I	4	3, 4, 5, 6
27.	Map Compilation-Analog and Digital Compilation	2	D,I	4	3, 4, 5, 6
	UNIT V: MAP EXECUTION AND DISSEMINATION	9			
28.	Map production. Methods of few copies	2	D,I	5	1, 4, 5, 6
29.	Map production. Methods of many copies	1	D,I	5	1, 4, 5, 6
30.	Map reproduction: Methods of few copies and many copies	2	D,I	5	1, 4, 5, 6
31.	Formsof Art Work-Construction Methods of Art work	1	D,I	5	1, 4, 5, 6
32.	Output option- Digital cartography.	1	D,I	5	1, 4, 5, 6
33.	Geographic Information System and Applications	2	I, O	5	1, 4, 5, 6
	Total contact hours	45			

LEARN	LEARNING RESOURCES					
Sl.No.	TEXT BOOKS					
1.	Cromley .R. G, "Digital Cartography". Prentice-Hall of India, New Delhi, 1992					
2.	Dent, B. D., "Cartography – Thematic Map Design", 5th" Edition, W C B McGraw-Hill,					
	Boston, 1999.					
3.	Rampal .K.K, "Mapping and Compilation". Concept Publishing Co., New Delhi, 1993.					

	REFERENCE BOOKS/OTHER READING MATERIAL
4.	Muller, "Advances in Cartography", ISBN: 1851666036, Elsevier Science Publications.
5.	Anson .R.W and Ormeling .F.J, "Basic Cartography for students and Technicians". Vol, I,
	II and III Elsevier Applied Science publishers 2nd Edition, 1995
6.	Robinson .A. H, Morrison .J. L, Muehrcke .A. C, Kimerling .A. J. and Guptill, S. C.,
	"Elements of Cartography." 6th Edition, John Wiley and Sons, 1995.

Course nat	Course nature Theory						
Assessment Method (Weightage 100%)							
In- semester	Assessment	Cycle test I	Cycle test	Cycle Test III	Surprise Test	Quiz	Total
	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage :							50%

15CE225E	CDS SUDVEVINC			Р	C
15CE525E	GESSORVEIING	3	0	0	3
Co-requisite:	NIL				
Prerequisite:	NIL				
Data Book /	NII				
Codes/Standards	NII				
Course Category	P DEPARTMENTAL ELECTIVE GIS AND REMOTE	E SE	NSIN	١G	
Course designed by	Department of Civil Engineering				
Approval	32 nd Academic Council Meeting, 2016				

PU	JRPOSE This course introduces the fundamental and advanced concepts, and applications Global Positioning System (GPS) to the undergraduate students of civil engineering							
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES								
At the end of the course, student will be able								
1.	To underst	and the Earth's Geodetic and Reference system.	а	b	k			
2.	To underst	and the concepts and components of GPS.	а	b	k			
3.	To study th	he basic principles of GPS, its merits and demerits	а	b	k			
4.	To underst	and the various errors and biases in GPS.	а	b	k			
5.	To study the	he various application of GPS.	а	b	k			

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I INTRODUCTIONTO GEODESY	9			
1.	Overview of syllabus, Fundamentals of Geodesy	1	C,D	1	1,5
2	Shape of the Earth, Geoid, Mean Sea Level and	1	C,D	1	1,5
۷.	Datum	1		1	
3.	Reference Surface	1	C,D	1	1,5
4.	Introduction to Geodetic System	1	C,D	1	1,5
5.	Indian Geodetic System	1	C,D	1	1,5
6.	Elements of Coordinate System	1	C,D	1	1,5
7.	Different types of Coordinates System	2	C,D	1	1,5
8.	Projection System and classifications	1	C,D	1	1,5
	UNIT II: FUNDAMENTALS OF GLOBAL POSITIONING SYSTEM	9			
9.	History of Global Positioning System	1	C,D	2	1,5
10.	Elements and Components of GPS system	1	C,D	2	1,5
11.	Different Global Positioning System Programme	1	C,D	2	1,5
12.	NAVSTAR GPS	1	C,D	2	1,5
13.	Indian Regional Navigational Satellite System IRNSS	1	C,D	2	1,5
14.	Design Objectives	1	C,D	2	1,5
15.	Advantages and Disadvantages of Global Position System	1	C,D	2	1,5
16.	Limitation of Global Position System	1	C,D	2	1,5
17.	Other Navigational Systems	1	C,D	2	1,5
	UNIT III - GPS SIGNAL STRUCTURE	9			
18.	Introduction to GPS Signal Structure	1	C,D	3	1,4,5
19.	Various types of GPS Codes	1	C,D,I	3	1,4,5
20.	GPS Receiver : Structure of Receiver	1	C,D	3	1,4,5
21.	Types and Receiver Selection	2	C,D	3	1,4,5
22.	Principles of Position Fixing	1	C,I	3	1,4,5
23.	Pseudo Ranging	1	C,D	3	1,4,5
24.	Types of Ephemerides	1	C,D	3	1,4,5
25.	Different Data Formats	1	C,D	3	1,4,5
	UNIT IV - ERRORS AND ACCURACY	9			
26.	Types of Errors	1	C,D	4	1,2,5
27.	Satellite Dependent – Ephemeris errors	1	C,D	4	1,2,5
	Satellite Clock bias – Selective availability	1	C,D	4	1,2,5

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
28.	Receiver Dependent – Receiver clock bias – Cycle slip	1	D,I	4	1,2,5
29.	Selective availability (SA), Observation medium dependent	1	D,I	4	1,2,5
30.	Ionospheric and Tropospheric errors	1	D,I	4	1,2,5
31.	Station dependent: Multipath – station Coordinates	1	D,I	4	1,2,5
32.	Satellite geometry based measures: Geometry dependent (Dilution of Precision:DOP)	2	2 D,I		1,2,5
	UNIT V - SURVEYING AND	0			
	APPLICATIONS	,			
33.	GPS Field Survey Techniques	1	D,I	5	1,2,5
34.	Static Surveying and Kinematic Surveying	1	D,I	5	1,2,5
35.	Introduction to DGPS Survey	1	D,I	5	1,2,5
36.	Preparation of GPS Surveys	1	D,I	5	1,2,5
37.	Setting up on Observation Plan	1	D,I	5	1,2,5
38.	Observation Stategies and Network design	1	D,I	5	1,2,5
39.	GPS applications in Cadastral Surveys	1	D,I	5	1,2,5
40.	GPS applications in Remote sensing and GIS	1	D,I	5	1,2,5
41.	GPS applications in Military and Vehicle Tracking	1	D,I	5	1,2,5
	Total contact hours	45			

LEARN	LEARNING RESOURCES						
Sl.No.	TEXT BOOKS						
1.	Akash Deep Sharma, "Global Positioning System", MD Publication Pvt. Ltd, New Delhi						
	(India), 2008.						
2.	Hofmann Wellenhof, B., Lichtenegger, H. and Collins, J., "Global Positioning System:						
	Theory and Practice", Springer, Berlin (Germany), 1994.						

	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Bradford W. Parkinson, James J. Spiker Jr., "Global Positioning System: Theory and
	Applications, vol 1 and 11, American Institute of Aeronautics and Astronautics: washington (USA) 1006
	(USA), 1990
4.	Gunter Seeber, "Satellite Geodesy", Walter de Gruyter, Berlin (Germany), 2003.
5.	AnjiReddy.M, "Textbook of Remote Sensing and Geographical Information System", BS
	Publications, Hydrabad (India), 2012.
6.	SatheeshGopi, "Global Positioning System - Principles and Applications," Tata McGraw-
	Hill Publishing Company Limited, New Delhi (India), 2005

Course nature Theory								
Assessment Method (Weightage 100%)								
In- semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage :							50%	

ENGINEERING GEOLOGY

15CF320F	ROCK MECHANICS			L	Т	Р	С	
13CE327E		KUCK MECHANICS				0	3	
Co-requisite:	NIL	IL						
Prerequisite:	NIL							
Data Book /	NII							
Codes/Standards		NIL						
Course Category	D	DEDADTMENTAL ELECTIVE	GEOTECHNICA					
Course Calegory	P DEPARTMENTAL ELECTIVE		ENGINEERING					
Course designed by	Department of Civil Engineering							
Approval	32 nd	¹ Academic Council Meeting, 2016						

PU	RPOSE To understand the basics and application of engineering geology technology									
INS	STRUCTIC	STU OUI	DEN ICON	T MES						
Att	At the end of the course, student will be able									
1. To understand the properties of rocks.					e	j	k			
2.	To study t	he various types of strength of rocks.	а	d	e	j	k			
3.	3. To study stress-strain relation of rocks.				e	j	k			
4.	. To understand the what is grouting, system, testing					j	k			
5.	To study t	а	d	e	j	k				

session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
	UNIT I- INDEX PROPERTIES OF ROCK	9			
1.	Introduction	1	C D	1	1,2
2.	Physical Properties of Rocks	2	С	1	1,2
3.	Mechanical Properties of Rocks	2	C,D	1	1,2
4.	Elastic Parameters of Rocks	1	C,D	1	1,2
5.	Dynamic Property of Rocks	2	C,D	1	1,2
6.	Static and Dynamic Module	1	C,D	1	1,2
	UNIT II- ROCK STRENGTH	9			
7.	Types of Waves –Compressive – Measurements	1	C,D	2	1,2
8.	Theory of Wave Propagation	2	C,D	2	1,2
9.	Factors influencing Wave Velocity in Rock Mass	1	C,D	2	1,2
10.	Modest of Rock Failure	2	C,D	2	1,2
11.	Strength of Rock –	1	C,D	2	1,2
12.	Shear – Tensile – strength measurements	1	C,D	2	1,2,3
13.	Compressive – strength Measurements	1	C,D	2	1,2,3
	UNIT III - DEFORMABILITY OF ROCKS AND STRESS	9			

14.	Stress-Strain Behavior	2	C,D 3 1,2					
15.	Initial Stress	2	C,D,I	3	1,2,4			
16.	Influence of Joints	2	C,D	3	1,2,4			
17.	Distribution of Stresses	2	C,D	3	1,2,4			
18.	Measurements of Initial Stresses	1	C,I	3	1,2,4			
	UNIT IV -ROCK GROUTING	9						
19.	Introduction	1	С	4	1,2,5			
20.	Grouting	2	D,I	4	1,2,5			
21.	Types of Grouting	2	D,I	4	1,2,5			
22.	Rock Bolt -Types – Systems	2	D,I	4	1,2,5			
23.	Testing of Rock Bolts	2	D,I	4	1,2,5			
	UNIT V - ROCK ENGINEERING	9						
24.	Introduction	1	C,D,	5	1, 2, 6			
25.	Application	1	C,D	5	1, 2, 6			
26.	Merits and Demerits	1	C,D	5	1, 2, 6			
27.	Tunneling	1	C,D	5	1, 2, 6			
28.	Rock Openings	1	C,D	5	1, 2, 6			
29.	Rocks for Mining Subsidence,	1	C,D	5	1, 2, 6			
30.	Dam and reservoir	1	C,D,I	5	1, 2, 6			
31.	Road Cuts,	1 C,D,I 5 1, 2			1, 2, 6			
32.	Slabs and Foundations	1 C,D,I 5 1, 2, 6						
	Total contact hours	45						

LEAR	NING RESOURCES
SI. No.	TEXT BOOKS
1.	Jaeger .C, "Rock Mechanics for Engineers", Camridge University Press, 2011.
2.	Verma .B.P, "Rock Mechanics for Engineers", Khanna Publication, 1997.
	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Goodman .P.E, "Introduction of Rock Mechanics", John Wiley and Sons, 1989.
4.	Stillburg, "Professional User Handbook for Rock Bolting", Tran Tech Publications, 1989.
5.	Brow .E.T, Rock Characterisation, "Testing and Monitoring", Pergman Press, 1981.
6.	Hock and Bray.J, "Rock Slate Engineering", Institute of Mining and Metallurgy", 1981.

Course nature				Theory				
Assessment Method (Weight age 100%)								
In- semester	Assessment tool	Cycle test I	Cycle test II	Cycle	Test III	Surprise Test	Quiz	Total
	Weight age	10%	15%	15%		5%	5%	50%
End semester examination Weight age :								50%

ENVIRONMENTAL ENGINEERING

15CE331E		INDUSTRIAL POLLUTION PREVENTION AND					С
ISCESSIE		CLEANER PRODUCT	ION	3	0	0	3
Co-requisite:	NI	L					
Prerequisite:	NI	VIL.					
Data Book /	NI	ſ					
Codes/Standards	INI	L					
Course Category	D	DDOEESSIONAL ELECTIVE	ENVIRONMENTA	L			
Course Calegory	Г	P PROFESSIONAL ELECTIVE ENGINEERING					
Course designed by	Department of Civil Engineering						
Approval	321	nd Academic Council Meeting, 2016					

р	URPOSE	To develop a basic knowledge about the cleaner produ	ction and apply the	e same in the					
		field application.							
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES								
At	the end of t	he course, student will be able to							
1.	Know the	Basics of sustainable development and about							
	preventior	n against pollution	a						
2.	Know the	concept of pollution prevention and cleaner	0						
	production	1	a						
3.	Get educa	ted on Life cycle assessment concept.	с	e					
4.	Get educa	ted on complete management principles related to the	0	0					
	Cleaner P	roduction and Control of Industrial Pollution.	a	C					

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
	UNIT I-SUSTAINABLE DEVELOPMENT	9			
1.	Sustainable Development-Indicators of Sustainability-SustainabilityStrategies-Barriers to Sustainability-Industrial activity and Environment	3	С	1	1,2
2.	Industrialization and sustainable development- Industrial Ecology-CleanerProduction (CP) in Achieving Sustainability-Prevention versus Control ofIndustrial Pollution	3	С	1	1,2
3.	Environmental Policies and Legislations- Regulations toEncourage Pollution Prevention and Cleaner Production-Regulatory versusMarket Based Approaches	3	С	1	1,2
	UNIT II-POLLUTION PREVENTION	9			
4.	Definition-Importance-Historical evolution- Benefits-Promotion-Barriers-Role of Industry, Government and Institutions - Environmental ManagementHierarchy	3	С	2	1,2,3
5.	Source Reduction Techniques-Process and equipment optimization, reuse, recovery, recycle	3	С	2	1,2,3
6.	Raw material substitution-Internet Information and Other CP Resources.	3	С	2	1,2,3
	UNIT III-CONCEPT OF CLEANER PRODUCTION	9			
7.	Overview of CP Assessment Steps and skills, Preparing for the site visit,Information Gathering, and process flow diagram, material balance	3	С	2	1,2
8.	CP Option Generation Technical and Environmental feasibility analysis-Economic valuation of alternatives-total cost analysis	2	С	2	1,2
9.	CP Financing- Establishing a program-Organizing a program-preparing a program plan- Measuring progress		С	2	1,2

10.	Pollution prevention and cleaner production Awarenessplan –Waste audit-Environmental Statement	2	С	2	1,2
	UNIT IV-LIFE CYCLE ASSESSMENT	9			
11.	Elements of LCA-Life Cycle Costing	3	С	3	1,2
12.	Eco Labeling –Design for the Environment	3	С	3	1,2
13.	International Environmental Standards-ISO 14001- Environmental audit.	3	С	3	1,2
	UNIT V-CASE STUDIES	9			
14.	Industrial application of CP,LCA	3	С	4	4,5
15.	EMS	3	С	4	4,5
16.	Environmental Audits.	3	С	4	4,5
	Total contact hours		4	45	

LEARNING RESOURCES

	Into REDOCINCED
Sl. No.	TEXT BOOKS
1.	Paul L Bishop, "Pollution Prevention Fundamental and Practice", McGraw-Hill
	International, 2009.
2	Prasad modak, C.Visvanathan and Mandarparasnis" Cleaner Production Audit",
	Environmental System Reviews, No.38, Asian Institute of Technology, Bangkok, 2005.
3	S.P.Mahajan, "Pollution Control In Process Industries", McGraw-Hill International, 2005.
Sl.No	REFERENCE BOOK
4.	World Bank Group, "Pollution Prevention and Abatement Handbook-Towards Cleaner
	Production", World Bank and UNEP, Washington D.C, 2005.
5.	Arceivala, S.J., "Wastewater Treatment for Pollution Control", Tata McGraw-Hill, 2008.

Course nature				Theory					
Assessment Method (Weightage 100%)									
In- semester	Assessment tool	Cycle test I	Cycle test II	test Cycle Test III Surprise Test				Total	
	Weightage	10%	15%	14	5%	5%	5%	50%	
End semester examination Weightage :									

15CE222E		GROUNDWATER CONTAMIN	NATION AND	L	Т	Р	С
15CE552E		QUALITY MONITORING ANI) MODELING	3	0	0	3
Co-requisite:	NII						
Prerequisite:	NII						
Data Book /	NII						
Codes/Standards							
Course Category	Р	PROFESSIONAL ELECTIVE	ENVIRONMENTA	L			
			ENGINEERING				
Course designed by	Dep	partment of Civil Engineering					
Approval	32 ⁿ	^d Academic Council Meeting, 2016					

PU	RPOSE To d	To develop a basic knowledge about the groundwater contamination and transport								
	modeling and apply the same in the field application.									
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES									
At	At the end of the course, student will be able to									
1.	Get educated on through models	Ground water contamination and its application	а	с	e					
2.	Learn about test	for groundwater and its uses	а	c						
3.	Develop knowle	dge on water quality models	a	с	e					

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
1.	UNIT I-INTRODUCTION TO GROUND WATER	9			
2.	The Hydrological Cycle, Ground water Contamination and Transport, Ground Water remediation, Sources and Types of Ground water contamination Introduction	1	С	1-2	1
3.	Under Ground storage Tanks, Land fills	2	С	1-2	1
4.	Surface impoundment's, Waste disposal Injection wells Septic systems	2	С	1-2	1
5.	Agricultural wastes, land applications, Radioactive contamination, other sources of contaminates	2	С	1-2	1
6.	Data-collection methods: Introduction, Geological data acquisition	1	С	1-2	1
7.	Hydrologic data acquisition, acquisition of soil and ground water quality data		С	1-2	1
	UNIT II-HYDRAULIC FLOW	9			
8.	Flow nets - Graphical construction - Flow nets by numerical simulation	3	С	1-2	1,2
9.	Steady state Regional Ground Water flow	2	С	1-2	1,2
10.	Steady state hydrologic budgets	2	С	1-2	1,2
11.	Fluctuations in ground water levels.	2	С	1-2	1,2
	UNIT III-DEVELOPMENT OF GROUND WATER RESOURCES	9			
12.	Development of Ground Water resources - Exploration for Aquifers – the response of Ideal aquifers to pumping	2	C,I	1-2	1,2
13.	Measurement of parameters -Laboratory tests - Piezometer test - Pumping tests	2	C,I	1-2	1,2
14.	Estimation of saturated hydraulic conductivity - Numerical simulation for aquifer yield prediction	2	C,I	1-2	1,2
15.	Artificial recharge and induced infiltration - Land subsidence	2	C,I	1-2	1,2
16.	Sea water intrusion.	1	C,I	1-2	1,2
	UNIT IV-CHEMICAL EQUILIBRIUM	9			
17.	Constituents - Chemical equilibrium -	3	С	1-2	1-4

Session	Description of Topic		C- D-I- O	IOs	Reference
	Association and Dissociation of dissolved species - effects of concentration gradients - Mineral				
18.	Oxidation and solubility Oxidation and reduction Process - Ion exchange and Adsorption - Environmental isotopes - Field Measurement of Index parameters	3	С	1-2	1-4
19.	Chemical Evolution: Hydro Chemical sequences and facies -graphical methods - Hydro chemical Facies - Ground water in carbonate terrain		С	1-2	1-4
	UNIT V-TRANSPORT MODELING	9			
20.	Water quality models – Historical development – Mass balance equation – Streeter - Phelps Equation – Modification to Streeter – Phelps Equation – Waste load allocations	3	C,D	1-3	1-4
21.	Dissolved oxygen in Rivers and estuaries; Lake Water Quality Models; Models for Nitrogen, Bacteria, Phosphate and toxicants	3	C,D	1-3	1-4
22.	Ground Water Quality Modeling - Contaminant solute transport equation, Numerical methods. Modeling Principles - MOC Modeling. Case studies	3	C,D	1-3	1-4
	Total contact hours			45	•

LEARNING RESOURCES

Sl. No.	TEXT BOOKS
1	Randall J. Charbeneau, "Ground water Hydraulics and Pollutant transport", Prentice Hall,
1.	Upper Saddle River, 2009.
2	Todd David Keith, "Ground water Hydrology", Second edition, John Wiley and Sons, New
۷.	York, 2010.
3.	Allen Freeze, R. and John A. Cherry, "Ground Water", Prentice Hall, Inc., 2009
Sl.No	REFERENCE
4	Steven C.Chapra, Surface Water Quality Modeling, McGraw-Hill Companies, Inc., New
4.	Delhi, 2008.
4.	Steven C.Chapra, <i>Surface Water Quality Modeling</i> , McGraw-Hill Companies, Inc., New Delhi, 2008.

Course nature						The	ory				
Assessment Method (Weightage 100%)											
In-	Assessment tool	Cycle test I	Cycle test II	t Cycle Test III Surprise Quiz							
semester	Weightage	10%	15%	15	5%	5%	5%	50%			
End semester examination Weightage :											

15CF333F AIR OUALITY MONITORING AND MODELING		L	Т	Р	С		
ISCESSSE	A	AIR QUALITY MONITORING AND MODELING					3
Co-requisite:	Nil						
Prerequisite:	Nil						
Data Book /	Nil						
Codes/Standards							
Course Category	Р	PROFESSIONAL ELECTIVE	ENVIRONMENTA	L			
			ENGINEERING				
Course designed by	Dep	Department of Civil Engineering					
Approval	32 ⁿ	^d Academic Council Meeting , 2016					

PU	JRPOSE To develop a basic knowledge about the apply the same in the field application.	To develop a basic knowledge about the concept of air and water quality modeling and apply the same in the field application.								
IN	STRUCTIONAL OBJECTIVES	STUDEN	STUDENT OUTCOMES							
At	At the end of the course, student will be able to									
1.	Learn about Air pollution modeling & its applicatio	n a		с						
2.	Get educated on various aspects related to air pollut	ants a	с	e						
3.	Get educated on the basic principles, develop application of air and water quality models with applications.	ment and computer a		c						

Session	Description of Topic	Contact hours	C-D- I-O	IOS	Reference
	UNIT I - AIR QUALITY MODELING AND MONITORING	10			
1.	Model - definition - types - uses	2	С	1	1,2
2.	Systems and models - kinds of mathematical models - model development - ambient air quality standards	2	С	1	1,2
3.	Air monitoring - Ambient Monitoring	2	С	1	1,2
4.	Monitor types	2	С	1	1,2
	UNIT II AIR POLLUTION MODELING	9			
5.	Chemistry of air Pollutants - Atmospheric reactions, sinks for air pollution	2	C,I	1,2	2,4
6.	Transport of air Pollutants - Meteorological settling for dispersal of air pollutants – Vertical structure of temperature and stability	3	C,I	1,2	2,4
7.	Atmospheric motions, Wind and shear, self cleaning of atmosphere transport and diffusion of stack emissions	2	C,I	1,2	2,4
8.	Atmospheric characteristics significant to transport and diffusion of stack emission – stack plume characteristics.	2	C,I	1,2	2,4
	UNIT III AIR QUALITY MODELS	9			
9.	Types modeling technique, modeling for nonreactive pollutants, single source, short term impact	2	C,I	2,3	1,3,4
10.	Multiple sources and area sources, Fixed box models	2	C,I	2,3	1,3
11.	Diffusion models – Gaussian plume derivation	2	C,I	2,3	1,3
12.	Modifications of Gaussian plume equation- long term average-multiple cell model	2	C,I	2,3	1,3
13.	Receptor oriented and source oriented air pollution models model performance, accuracy and utilization	1	C,I	2,3	1,3
	UNIT IV - DISPERSION OF AIR POLLUTANTS	10			
14.	Transport and dispersion of air pollutants	2	C,I	2	1,3
15.	Wind velocity, wind speed and turbulence	2	C,I	2	1,3
16.	Estimating concentrations from point sources	2	C,I	2	1,3
17.	Gaussian Equation - atmospheric stability	8	C,I	2	1,3
18.	Air pollution modeling and prediction	1	C,I	2	1,3

Session	Description of Topic	Contact hours	C-D- I-O	IOS	Reference
19.	Plume rise, modeling techniques.	1	C,I	2	1,3
	UNIT V-TRANSPORT MODELING	7			
20.	Software package applications: Air quality modeling .	7	Ι	3	1,3
	Total contact hours	45			

LEAR	NING RESOURCES
Sl. No.	TEXT BOOKS
1.	J.L.Schnoor, <i>Environmental Modeling Fate and Transport of Pollutants in Water, Air and Soil, John Wiley & Sons Inc., New York, 2006.</i>
2.	Air Pollution (Third Ed.) Volume I – <i>Air Pollutants, their transformation and Transport</i> , (Ed.) Arthur C.Stern, Academic Press, 2006.
SI. No.	REFERENCE BOOK
3.	Deaton and Wine Brake, "Dynamic Modeling of Environmental Systems", Wiley & Sons, 2002
4.	Darrell W.Pepper and david Carrington, "Modeling Indoor Air Pollution", Imperial College Press, 2009

Course nature					The	ory						
Assessment Method (Weightage 100%)												
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	cle Test III Surprise Quiz							
semester	Weightage	10%	15%	15%	5%	5%	50%					
End semester examination Weightage :												

15CE224E	A DY ANCED WASTE WATED THE ATMENT DESIGN				Т	Р	С
15CE554E	AL	ADVANCED WASIE WAIEK IKEAIMENI DESIGN					3
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book /	NIL	,					
Codes/Standards							
Course Category	Р	PROFESSIONAL ELECTIVE	ENVIRONMENTA	Ĺ			
			ENGINEERING				
Course designed by	Dep	artment of Civil Engineering					
Approval	32 nd	Academic Council Meeting, 2016					

Р	PURPOSE To develop a basic knowledge about the concept of design and operation of waste water and apply the same in the field application.						
IN	STRUCTIO	STUDENT O	UTCOMES				
At	the end of t	he course, student will be able to					
1.	Learn abo	ut Basics of waste water treatment methods	a				
2.	Know ab treatment	out Biological processes involved in waste water	а	С			
3.	Get educa treatment	ated on principles and design of various biological units used for wastewater treatment.	а	e			

Session	Description of Topic	Contact hours	C- D- I-O	IOS	Reference
	UNIT I - INTRODUCTION TO WASTEWATER TREATMENT	9			
1.	Introduction - Need for advanced wastewater treatment - Advanced oxidation	3	С	1	1,2
2.	Non-photochemical oxidation:selected systems and applications - photochemical oxidation	2	С	1	1,2
3.	UV photolysis –adsorption – advanced treatment applications	2	С	1	1,2
4.	Advanced wastewater technologies	2	С	1	1,2
	UNIT II DESIGN OF WASTE WATER TREATMENT UNITS	9			
5.	Design of sewage treatment plant units - screen chamber, Grit chamber withproportional flow weir, sedimentation tank	3	D	1	2,3
6.	Trickling filters, Rotating Biological contactor, activated sludge process & variations	2	D	1	2,3
7.	Aerated lagoons, waste stabilization ponds - reclamation and reuse	2	D	1	2,3
8.	Flow charts, layout, hydraulic profile.	2	С	1	2,3
	UNIT III - DESIGN OF BIOLOGICAL UNITS	9			
9.	Attached and suspended growth, Design of units	3	D	2	2,4
10.	UASB, up flow filters, Fluidized beds	3	D	2	2,4
11.	Septic tank and disposal - Layout and Hydraulic profile	2	D	2	2,4
12.	Recent advances.	1	С	2	2,4
	UNIT IV - DESIGN OF SLUDGE UNITS	9			
13.	Design of Sludge management facilities, sludge thickening, sludge digestion	3	D	1-2	2,4
14.	Biogas generation, sludge dewatering (mechanical and gravity)	3	D	1-2	2,4
15.	Upgrading existing plants - ultimate residue disposal - Recent Advances.	3	D	1-2	2,4
	UNIT V - PRACTICAL APPLICATIONS	9			
16.	Operational problems - Trouble shooting,	3	C,I	3	1-4

	Planning, Organizing and Controlling of plant operations				
17.	Capacity building - Case studies on sewagetreatment plants	3	C,I	3	1-4
18.	Sludge management facilities.	3	C,I	3	1-4
	Total contact hours			45	

LEAR	NING RESOURCES
Sl. No.	TEXT BOOKS
1.	"Manual on Water Supply and Treatment", CPHEEO, Ministry of Urban Development, GOI, New Delhi, 2009.
2.	Arceivala, S.J., "Wastewater treatment for pollution control", TMH, New Delhi, 2001
3.	Qasim, S.R, "Wastewater Treatment Plant, Planning, Design & Operation", Technomic Publications, New York, 2004.
SI. No.	REFERNECE BOOK
4.	METCALF & EDDY, INC. " <i>Wastewater Engineering, Treatment and Reuse</i> ", Third Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2012.

Course nature					Theory				
Assessment Method (Weightage 100%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	le Test III Surprise Quiz				
semester	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage :									

15CE225E	DESIGN OF ENVIRONMENTAL ENGINEERING					P	С
ISCESSSE		STRUCTURES		3	0	0	3
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book /	IS: 337	70-2009					
Codes/Standards							
Course Category	P PR	ROFESSIONAL ELECTIVE	ENVIRONMENTA	L			
			ENGINEERING				
Course designed by	Depart	Department of Civil Engineering					
Approval	32 nd Ac	cademic Council Meeting, 2016					

PURPOSE		To develop a basic knowledge about the environmental engineering structures and							
10		apply the same in the field application.							
IN	STRUCTI	ONAL OBJECTIVES	STUDENT OUTCOMES						
At	the end of t	he course, student will be able to							
1.	Know the	e design principles of environmental engineering	0	0					
	structures		t	U					
2.	Learn abo	ut Treatment units and about corrosion in pipes	а	С					
3.	Design er	vironmental engineering structures such as pipes,							
	water tan	ks, special structures, repair and rehabilitation of	a						
	structures	and maintenance.							

Session	Description of Topic	Contact hours	C- D-I- O	IOS	Reference
	UNIT I – INTRODUCTION TO WASTEWATER TREATMENT	9			
1.	Material used for piping machines-Pre-stressed concrete, mild steel, cast iron ductile iron	3	С	1	1-4
2.	Material characteristics and comparison. Anchorage for pipes necessity-principle	3	C,D	1	1-4
3.	design force to be considered including hydro dynamic forces. Pipe laying technology.	3	C,D	1	1-4
	UNIT II-DESIGN OF ELEVATED TANKS	9			
4.	Capacity calculation of overhead water tanks and sumps-use of mass curve. Types of water tanks- RCC and pre-stressed concrete	3	C,D	1	1-5
5.	Strucutral efficiencies of different shapes of RCC tank- Circular- Rectangular and Intze types- Suitablity for different capacities	2	C,D	1	1-5
6.	Use of PVC tanks with conventional shapes and aesthetic ones – advantages and disadvantages	1	С	1	1-5
7.	Exposure to design codes-Use of handbooks for the design economy of different types of tanks.	3	C,D	1	1-5
	UNIT III-DESIGN OF TREATMENT UNITS	9			
8.	Function of underground reservoirs-intake towers	3	C,D	2	1-5
9.	settling tanks – Clari-flocculator - Aeration tanks.	3	C,D	2	1-5
10.	Functional design of intake tower- Nature of design forces-Hydraulic pressure	2	C,D	2	1-5
11.	Earth pressure-Uplift forces.	1	C,D	2	1-5
	UNIT IV-MECHANISM OF CORROSION	9			
12.	Mechanism of corrosion-Proneness of environmental structures to corrosion	3	С	3	1-4
13.	Precautions to be taken to prevent corrosion in planning, design, executionand maintenance stages including material selection	3	C,I	3	1-4
14.	Rehabilitation measures for distress due to corrosion.	3	С	3	1-4

	UNIT V-MAINTENANCE OF STRUCTURES	9			
15	Importance of maintenance-Schedule of	2	C	22	1.4
15.	maintenance-Checklist formaintenance	3	5 C		1-4
16.	Manpower for maintenance	3	С	2,3	1-4
17	Proactive maintenance- Consequence of non-	2	C	22	1.4
17.	maintenance.	5	C	2,5	1-4
	Total contact hours			45	

LEARN	LEARNING RESOURCES								
Sl.No.	TEXT BOOKS								
1.	Ramaswamy, G.S., "Design and Construction of Concrete shell roofs", CBS Publishers,								
	India, 2006.								
2	"Manual on Sewerage and Sewage Development", CPHEEO, Ministry of Urban								
2.	Development, GOI, New Delhi, 2003.								
3.	Krishna Raju, "Prestressed Concrete", Tata McGraw Hill Publishing Co, 2nd Edition 2008.								
	REFERENCE BOOK								
4	IS 3370-2009, "Code of practice Concrete structures for the storage of liquids"BIS, New								
4.	Delhi, 2009.								
5	Hulse R., and Mosley, W.H., "Reinforced Concrete Design by Computer", Macmillan								
5.	Education Ltd., 2006.								

Course nature					Theory				
Assessment Method (Weightage 100%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	e Test III Surprise Quiz 1				
semester	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage :									

15CE226E	NOISE DOLLUTION CONTROL				Т	Р	С
ISCESSOE		NOISE FOLLUTION CONTROL				0	3
Co-requisite:	NII						
Prerequisite:	NII						
Data Book /	NII	NIL 1					
Codes/Standards							
Course Category	Р	PROFESSIONAL ELECTIVE	ENVIRONMENTA	L			
			ENGINEERING				
Course designed by	Dep	partment of Civil Engineering					
Approval	32 ⁿ	^d Academic Council Meeting, 2016					

PU	PURPOSE To learn the fundamental concepts in the field of Noise pollution and control.								
IN	STRUCTIO	ONAL OBJECTIVES	STUDENT OUTCOMES						
At	At the end of the course, student will be able to								
1.	Know the	basics, importance of noise pollution measurement.	а	С					
2.	Study the	various effects of noise pollution.	a	e					
3.	. Learn the importance of methods of control of noise.		а	С					
4.	Study the	various noise pollution regulations	а	С					

Session	Description of Topic	Contact hours	C- D- I-O	IOs	Reference
	UNIT I – SOURCES OF NOISE POLLUTION	9			
1.	Sources of noise – Units and Measurements of Noise – Noise Power level, Intensity level	3	С	1	1,2,3
2.	Pressure level – Relationship, Noise level meter – Weightednetworks – Decibel addition – Octave Band – Noise spectrum	3	С	1	1,2,3
3.	EquivalentNoise – Day and night time –Standards, Equations and Application.	3	С	1	1,2,3
	UNIT II – CHARACTERIZATION OF NOISE POLLUTION	9			
4.	Characterization of Noise from Construction, Mining, Transportation and Industrial Activities	3	C	2	1,2,3
5.	Airport Noise – General Control Measures – Effects ofnoise pollution	3	C	2	1,2,3
6.	Auditory effects, non-auditory effects.	3	С	2	1,2,3
	UNIT III – PREVENTION & CONTROL OF NOISE POLLUTION	9			
7.	Noise Menace – Noise and the Fetus – Prevention and Control of NoisePollution –	3	C,I	3	1,2,3
8.	Control of noise at source, control of transmission, protection of exposed person	3	C,I	3	1,2,3
9.	Control of other types of Noise Sound Absorbent – NoisePollution Analyzer	2	C,I	3	1,2,3
10.	Auditorium Designing – Anti Noise Device.	1		3	1,2,3
	UNIT IV – ACOUSTICS OF NOISE	9			
11.	Designing out Noise – Industrial Noise Control – effects of noise on workersefficiency	3	C,I	3	3,4
12.	Acoustic quieting – mechanical isolation technique, acoustical absorption, constrained layer damping	3	C,I	3	3,4
13.	OSHA Noise standards – public education – other non-legislative measures	3	C,I	3	3,4
	UNIT V – REGULATORY ASPECTS OF NOISE POLLUTION	9			
14.	Legislation Noise and the Administrative Function – Planning against Noise– Noise and the Law – The Rajasthan noise control Act 1963	3	Ι	4	1,2,3

Session	n Description of Topic		C- D- I-O	IOs	Reference
15.	Railway Act 1890 (Related to noise only), The Aircraft Act 1934 (Related to noise only)	3	Ι	4	1,2,3
16.	Factories Act 1948 (Related to noise only), The Environmental ProtectionAct 1986 – Noise pollution remedies.	3	Ι	4	1,2,3
	Total contact hours			45	

LEAR	LEARNING RESOURCES								
SI.	TEXT BOOKS								
No.									
1.	Peterson and E.Gross Jr., "Hand Book of Noise Measurement", 7thEdn, 2003.								
2.	Agarwal, "Noise Pollution", APH Publishers, 2009								
3.	S.P.Singal. "Noise Pollution and Control", Narosa Publishing House, 2000								
	REFERENCE BOOK								
4.	Antony Milne, "Noise Pollution: Impact and Counter Measures", David & Charles PLC,								
	2009								

Course nature					Theory							
Assessment Method (Weightage 100%)												
In-	Assessment tool	Cycle test I	Cycle test II	Cycle	Quiz	Total						
semester	Weightage	10%	15%	15	5%	5%	5%	50%				
End semester examination Weightage :												

15CE227E		MARINE POLLUTION MONIT	L	Т	Р	С	
15CE557E		MODELING	3	0	0	3	
Co-requisite:	NII	- -					
Prerequisite:	NII						
Data Book /	NII	NIL					
Codes/Standards							
Course Category	Р	PROFESSIONAL ELECTIVE	ENVIRONMENTA	L			
			ENGINEERING				
Course designed by	Dep	partment of Civil Engineering					
Approval	32 ⁿ	^d Academic Council Meeting, 2016					

PU	RPOSE	To develop a basic knowledge about the marine pollution monitoring and apply the same in the field application.								
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES										
At	At the end of the course, student will be able to									
1.	Know abo	ut wave characteristics and living resources	а	с						
2.	Learn abo	ut concept of Marine surveying and its application	а	с						
3.	Get educa water qual	ted on aspects of marine pollution and methods of ity assessment and marine pollution control.	a							

Session	Description of Topic	Contact hours	C- D- I- O	IOS	Reference
	UNIT I-INTRODUCTION	9			
1.	General features of ocean - Conservation laws - Wave characteristics and theories	3	C	1	1-3
2.	Sediment transport - Tides - Ocean Currents – Thermocline circulation - General circulation of ocean waters	3	С	1	1-3
3.	Tsunamis, Storm surge - Principles of Marine geology.	3	С	1	1-3
	UNIT II-LIVING RESOURCES	9			
4.	Living resources - coral reefs, mangroves, sea grass, seaweeds, fisherypotential	3	С	1	1-3
5.	Nonliving resources - manganese nodules, heavy minerals	3	C	1	1-3
6.	Beaches, Estuaries, Lagoons - Shoreline changes.	3	С	1	1-3
	UNIT III-MARINE SURVEYING	9			
7.	Sea surveying planning and preparation - Oceanographic instrumentation	3	C,I	2	1-3
8.	Hydrographic Surveying - Underwater surveying	3	C,I	2	1-3
9.	Measurement of physical properties of ocean water	2	C,I	2	1-3
10.	Sea bed sampling	1	C,I	2	1-3
	UNIT IV-SOURCES & PROPERTIES OF MARINE POLLUTION	9			
11.	Physiochemical properties of sea water - Sources of marine pollution and impacts on coastal ecosystems, Oil pollution	3	C,I	3	1-3
12.	Oil spill detection, dispersion, impacts on adjacent area - Oil spill modeling, mitigation measures – Oil exploration and their effects	2	C,I	3	1-3
13.	Marine outfalls - Impacts of Ports and Harbour on marine water quality - dredging - Human intervention in estuarine ecosystem - sea water classification	2	C,I	3	1-3
14.	Physical modeling in Coastal Engineering - Ocean monitoring satellites - Applications of Remote sensing and GIS in marine studies.	2	C,I	3	1-3

Session	Description of Topic	Contact hours	C- D- I- O	IOS	Reference
	UNIT V-MODELING AND REGULATIONS	9			
15.	Modelling pollution dispersion, the ecosystem and water quality in coastal waters	3	C,I	1-3	1-3
16.	CASE STUDY. National and International treaties, protocols in marine pollution	3	C,I	1-3	1-3
17.	Economic Zone - Sustainable development.	3	C,I	1-3	1-3
	Total contact hours			45	

LEARN	LEARNING RESOURCES										
Sl.No.	TEXT BOOKS										
1	Kennish, M.J., "Pollution impacts on Marine Biotic Communities", CRC press New York,										
1.	2008.										
2.	U.S. Army Corps of Engineers, "Shore Protection Manual", Washington D.C., 2002.										
Sl.No.	REFERENCE BOOK										
2	Newman, M.C., Roberts Jr. M.H., Male R.C. (Editors), "Coastal and Estuarine Risk										
5.	Assessment", Lewis Publishers, Washington, D.C., 2002.										

Course nature					Theory						
Assessment Method (Weightage 100%)											
In-	Assessment tool	Cycle test I	Cycle test II	st Cycle Test III Surprise Test Quiz							
semester	Weightage	10%	15%	15%		5%	5%	50%			
End semester examination Weightage :											

15CE338E		MASS TRANSFER IN AIR-WATER-SOIL					С
		INTERACTION	3	0	0	3	
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	NI	L					
Codes/Standards							
Course Category	Р	PROFESSIONAL ELECTIVE	ENVIRONMENTA	L			
			ENGINEERING				
Course designed by	De	Department of Civil Engineering					
Approval	32 ⁿ	^{ad} Academic Council Meeting, 2016					

PURPOSE		To develop a basic knowledge about the mass transfer in air water soil interaction and apply the same in the field application.							
IN	STRUCTI	ONAL OBJECTIVES	STUDENT OUTCOMES						
At the end of the course, student will be able to									
1.	Learn abo	ut Basics of heat and mass transfer	а						
2.	Get educa	ted on the concept of liquid and gases	а						
3.	Get educa	ted on the mechanism of material transfer	2	с	e				
	betweener	vironmental components - air, water and soil.	d						

Session	Description of Topic	Contact hours	C- D- I- O	IOS	Reference
	UNIT I-INTRODUCTION	9			
1.	Ideal solutions - air - water equilibrium occurrences - pure gases in contactwith water-pure liquid in contact with air - partition coefficient for the air - water system	3	С	1	1-2
2.	Earthen solid - waste equilibrium occurrences - pure solid andliquid chemicals in contact with water and earthen solids	3	C	1	1-2
3.	Earthen solid – air equilibrium occurrences - water - liquid chemical equilibrium occurrences - thermal equilibrium at environmental interfaces.	3	С	1	1-2
	UNIT II-HEAT & MASS TRANSFER	9			
4.	Diffusion and mass transfer - molecular diffusion - eddy diffusion – masstransfer theories - mass transfer coefficients - binary mass transfer	3	С	1	1-2
5.	Coefficients in two phases and two resistance theory of interphase masstransfer turbulence in the environment	3	С	1	1-2
6.	Fundamentals of heat transfer - analogy theories of momentum, heat and mass transfer	3	С	1	1-2
	UNIT III-CONCEPT OF LIQUID & GASES	9			
7.	Desertion of gases and liquids from aerated basins and rivers – completelymixed basin	3	С	2	1-2
8.	Plug flow basin - gas exchange rates between the atmosphereand the surface of rivers	3	С	2	1-2
9.	Exchange of chemical across the air – waterinterface of lakes and oceans	3	С	2	1-2
	UNIT IV-DISSOLUTION OF CHEMICALS	9			
10.	Dissolution of chemicals on the bottom of flowing streams - geometric forms- stream bottom mass transfer coefficients - natural convection dissolution	3	С	2	1-2
11.	The upsurge of chemicals from the sediment - water interface of lakes – aFikian analysis - annual upsurge rate at sediment - water interface –	3	С	2	1-2
Session	Description of Topic	Contact hours	C- D- I- O	IOS	Reference
---------	---	------------------	---------------------	-----	-----------
	masstransfer coefficients at the sediment				
12.	Water interface – mass transfer coefficients at the sediment - water interface. Flux of chemicals between sediment and the overlying seawater - movement of chemicals through the benthic boundary layer.	3	С	2	1-2
	UNIT V-AIR & SOIL INTERFACE	9			
13.	Turbulence above the air - soil interface - the Richardson number – chemicalflux rates through the lower layer of the atmosphere	3	С	3	1-2
14.	14. Thronthwaite -Holzman equation - evaporation of liquid chemicals spilled on land		С	3	1-2
15.	15. Chemical flux rates through the upper layer of earthen material.		С	3	1-2
	Total contact hours			45	

LEAR	LEARNING RESOURCES							
Sl. No.	TEXT BOOKS							
1.	Thibodeaux, L.J, "Environmental Chemo dynamics: Movement Of Chemicals In Air, Water and Soil", edition 2., Wiley – Inter science, New York, 2006.							
Sl. No.	REFERENCE BOOK							
2.	Cusssler, E.L, "Diffusion: Mass Transfer In Fluid Systems", Cambridge University press, 2004.							

Course nature					Theory				
Assessment Method (Weightage 100%)									
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total		
semester	Weightage	10%	15%	15%	5%	5%	50%		
End semester examination Weightage :									

15CE220E	INSTRUMENTAL MON	L	Т	Р	С	
15CE559E	ENVIRONMENT AND	3	0	0	3	
Co-requisite:	NIL					
Prerequisite:	NIL					
Data Book /	NIL					
Codes/Standards						
Course Category	P PROFESSIONAL	ENVIRONMENTALE	VGIN	JEEF	RING	
	ELECTIVE					
Course designed	Department of Civil Engineering					
by						
Approval	32 nd Academic Council Meeting, 2016					

PU	PURPOSE To develop a basic knowledge about the instrumental monitoring of environment and apply the same in the field application.						
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES						
At	At the end of the course, student will be able to						
1.	Know the	v the basics, importance of Soil Pollution a					
2.	Get educa water and	ted on the various instruments used for analysis ofair soil.	а	с			

Session	Description of Topic		C- D-	IOs	Reference
			1- 0		
	UNIT I-INTRODUCTION	9			
1.	Instrumental Methods, Selection of method,	3	С	1	1
2.	Precision and Accuracy, Erosion measuring	3	C	1	1
	signals,		9		
3.	Noise/ signal ratio, base line drift, Indicator tubes.	3	C	I	1
	UNIT II-INSTRUMENTAL METHODS	9			
4.	Electromagnetic radiation, matter radiation interactions; Colorimetry and spectrophotometry,	3	C	1,2	2
	fluorimetry, nephelometry and turbidimetry,				
5.	Flame photometry Atomic Absorption	3	C	1,2	2
	Spectrophotometry (AAS), Atomic Emission				
	Spectrophotometry (AES)				
6.	Inductively coupled plasma (ICP) and Direct	3	C	1,2	2
	Current Plasma (DCP) spectrometry. ICP - MS				
	(Mass spectrometry).				
	UNIT III-CLASSICAL METHODS	9			
7.	Classical methods, Column, Paper and thin layer	3	С	2	1,2
	chromatography (TLC)				
8.	Gas Chromatography (GC), GC-MS,	3	С	2	1,2
9.	High performance liquid chromatography (HPLC)	2	С	2	1,2
	and Ion chromatography (IC).				
10.	Introduction to Scanning Electron Microscope-	1			
	type- uses and advantages				
	UNIT IV-METHODS BASED ON RAYS	9			
11.	Conductometry, potentiometry, coulometry,	3	С	2	1,2
	amperometry				
12.	Paleography, Neutron Activation Analysis (NAA),	3	С	2	1,2
13.	X-ray Fluorescence (XRF) and X-ray Diffraction	3	C	2	1,2
	(AKD) memous.	0			
14	Non diaparaina infra rad (NDIP) analyzar for CO	2	C	1.2	1.2
14.	Chemiluminessent englyzer for NOy. Elyeressent	2		1,2	1,2
15.	analyzer for SO2,	3	C	1,2	1,2
16.	Auto analyzer for water quality using flow	3	С	1,2	1,2
	injection analysis; permeation devices.				

Session	Description of Topic	Contact hours	C- D- I- O	IOs	Reference
	Total contact hours	45			

LEAR	LEARNING RESOURCES							
Sl. No.	TEXT BOOKS							
1.	Willard. H., Merritt, L., Dean, D.A. and Settle. F.A. "Instrumental methods of analysis", 7th Edn. Words Worth, New York, 2004.							
	REFERENCE BOOKS							
2.	Ewing, "Instrumental Methods of Chemical Analysis", 5th Edn., Mc Graw-Hill, New York, 2005.							

Course nature				Theory				
Assessment	Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
semester	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage : 50%								

15CE240E	RS AND GIS FOR ENVIRONMENTAL					Р	С
ISCES4VE		ENGINEERING		3	0	0	3
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	NI	L					
Codes/Standards							
Course Category	Р	PROFESSIONAL ELECTIVE	ENVIRONMENTA	L			
			ENGINEERING				
Course designed by	De	partment of Civil Engineering					
Approval	32 ^r	nd Academic Council Meeting, 2016					

PURPOSETo develop a basic knowledge about the Remote Sensing and GIS forenvironment engineering and apply the same in the field application.							
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES							
At	At the end of the course, student will be able to						
1.	Know the	he basics of environment such as water, air and land a					
2.	Learn abo	ut concept of geology	a	с			
3. Study the RS And GIS application for Environmental			0	0			
	Engineerii	ıg.	a	C			

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference		
	UNIT I-ENVIRONMENT	9					
1.	Water - Air-Land	3	С	1	1-3		
2.	Marine Environment Global Climatologic	3	С	1	1-3		
3.	Urban Environment:	3	С	1	1-3		
	UNIT II-INTRODUCTION TO REMOTE SENSING	9					
4.	Role of RS in different types of Environments - Air, Water	3	С	1	1-3		
5.	Land.GIS for marine environment	3	С	1	1-3		
6.	urban environment	3	С	1	1-3		
	UNIT III-CONCEPT OF GEOLOGY	9					
7.	Introduction - spectral characteristics of water	3	С	2	1-3		
8.	Soil, rock-water parameter	3	С	2	1-3		
9.	Pollution studies.	3	С	2	1-3		
	UNIT IV-INTRODUCTION TO GIS	9					
10.	GIS-introduction-role of GIS - data analysis	3	С	1,2	1-3		
11.	Thematic maps preparation	3	С	1,2	1-3		
12.	Modeling.	3	С	1,2	1-3		
	UNIT V-APPLICATION OF GIS	9					
13.	GIS for - soil erosion-Land degradation-	3	Ι	3	1-3		
14.	Ecology-degradation-Coastal marine studies	3	Ι	3	1-3		
15.	Water Quality, monitoring and management.	3	Ι	3	1-3		
	Total contact hours	45					

LEARNING RESOURCES Sl. TEXT BOOKS 1. Lilliesand, T.M. and Kiefer, R, W., "Remote Sensing and Image Interpretation", John Wily and sons, 2004. 2. Burrough, P.A. and, McDonnell, R.A., "Principles of Geograj1JhicaJ Information Systems", Oxford University Press, 2009. Sl.No REFERENCE BOOK 3. Lintz, J. and Simonet, "Remote Sensing of Environment", AddisonWesley Publishing Company, 2004.

Course nature					Theory			
Assessment Method (Weightage 100%)								
In-	Assessment	Cycle test	Cycle test	Cycle Test III	Surprise	Ouiz	Total	
10-	tool	Ι	II	Cycle Test III	Test	Quiz	10141	
semester	Weightage	10%	15%	15%	5%	5%	50%	
	End semester examination Weightage : 50%					50%		

15CE2/1E	AIR POLLUTION CONTROL AND MANAGEMENT				Т	Р	С	
15CE541E					0	0	3	
Co-requisite:	NI	L						
Prerequisite:	NI	L						
Data Book /	NIT	NII						
Codes/Standards	INIL .							
Course Category	р	DDOEESSIONAL ELECTIVE	ENVIRONMENTA	L				
Course Calegory	Р	PROFESSIONAL ELECTIVE	ENGINEERING					
Course designed by	Department of Civil Engineering							
Approval	321	nd Academic Council Meeting, 2016						

PU	JRPOSE To develop a basic knowledge about the Air Polluti	on and its control ar	nd management	
IN	STRUCTIONAL OBJECTIVES	STUDENT OUTCOMES		
At	the end of the course, student will be able to			
1.	Know the basics of air pollutants and its measurement	a		
2.	Get educated on control methods on air pollution a e			
3.	Learn various methods of control of particulate and gaseous air pollutants.	a	L	

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
	UNIT I-SOURCES AND CLASSIFICATION OF AIR POLLUTANTS	9			
1.	Sources and classification of Air Pollutants: Natural air pollutants-aerosolgases and vapour	2	С	1	1-3
2.	Meteorology and Air pollution: Atmospheric stability and inversions-mixing height-plume behaviour-plume rise estimation	2	С	1	1-3
3.	Impact of air pollutants on human/structure/vegetation/global warming	2			
4.	Effluent dispersion theories-Isokinetic sampling- Modeling.	3	С	1	1-3
	UNIT II-AIR QUALITY MEASURES	9			
5.	Objectives-Filters, gravitational, centrifugal- multiple type cyclones, prediction of collection efficiency	3	С	1	1-3
6.	Pressure drop, wet collectors, Electrostatic Precipitation theory	2	С	1	1-3
7.	Particle charging collection-ESP design procedure.	2	C,D	1	1-3
8.	Ambient air quality monitoring – respirable dust sampler and fine dust sampler	2	C,D	1	1-3
	UNIT III-THEORY OF ADSORPTION	9			
9.	Absorption: principles, impingements-description of equipment-packed and plate columns, design and performance equations	3	С	1,2	1-3
10.	Adsorption: principles adsorbents, equipment descriptions-PSA-adsorption cycle-solvent recovery system	2	С	1,2	1-3
11.	Continuous rotary bed-fluidized bed, Design and performance equations. Condensation: contact condensers-shell and tube condensers, design and performance equation	2	С	1,2	1-3
12.	Incineration: hydrocarbon incineration kinetics, equipment description, design and performance equations.	2	С	1,2	1-3
	UNIT IV-CONTROL METHODS	9			

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
13.	Control methods-Processes based control mechanisms-mineral products asphaltic concrete, cement plants and glass manufacturing plants	3	С	2	1-3
14.	Thermal power plants, Petroleum refining and storage plants, Fertilizers	3	С	2	1-3
15.	Pharmaceuticals and wood processing industry. Field study	3	С	2	1-3
	UNIT V-AIR QUALITY STANDARDS	9			
16.	Air quality and emission standards	3	С	3	1-3
17.	Air pollution indices, and air qulity monitoring in chimnies using stack monitoring kit	3	С	3	1-3
18.	Disaster management in case of failure of control equipment	3	С	3	1-3
	Total contact hours			45	

LEAR	LEARNING RESOURCES						
Sl. No	TEXT BOOKS						
1.	Richard W.Boubel et al, "Fundamentals of Air Pollution", Academic Press, New York, 2004.						
2.	M.N. Rao et al, "Air Pollution", Tata McGraw Hill, 2009						
SI.	REFERENCE BOOK						
No							
3.	Noel de Nevers, "Air Pollution control Engg." McGraw-Hill, New York, 2005						

Course nature					Theo	ory	
Assessment Method (Weightage 100%)							
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total
semester	Weightage	10%	15%	15%	5%	5%	50%
End semester examination Weightage : 50%					50%		

15CE242E	ENVIRONMENTAL HEALTH ENGINEERING				Т	Р	C		
15CE542E					0	0	3		
Co-requisite:	NI	NIL							
Prerequisite:	NI	NIL							
Data Book /	NII								
Codes/Standards	INI	NIL							
Course Category	Course Category D DECESSIONAL ELECTIVE ENV		ENVIRONMENTA	L					
	P PROFESSIONAL ELECTIVE ENGINEERING								
Course designed by	Department of Civil Engineering								
Approval		nd Academic Council Meeting, 2016							

PU	RPOSE	To develop a basic knowledge about the environmental health and safety in work place					
IN	INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES						
At	the end of t	he course, student will be able to					
1.	Develop a	knowledge on environmental safety and hygiene.	а	с			
2.	Get educa	ted on workplace safety	а	с			
3.	Get trainin	ng on Environmental Health engineering	a				

Session	Description of Topic	Contact hours	C- D- I-O	IOS	Reference
	UNIT – I Introduction	9			
1.	Need for developing Environment, Health and Safety systems in work places.	3	С	1	1-3
2.	Status and relationship of Acts, Regulations and Codes of Practice. Role of trade union safety representatives.	3	С	1	1-3
3.	International initiatives. Ergonomics and work place.	3	С	1	1-3
	UNIT II- Occupational Health and Hygiene	9			
4.	Definition of the term occupational health and hygiene. Categories of health hazards. Exposure pathways and human responses to hazardous and toxic substances	3	C,I	1	1-3
5.	Advantages and limitations of environmental monitoring and occupational exposure limits. Hierarchy of control measures for occupational health risks. Role of personal protective equipment and the selection criteria	3	C,I	1	1-3
6.	Effects on humans, control methods and reduction strategies for noise, radiation and excessive stress.	3	C,I	1	1-3
	UNIT III- Workplace Safety	9			
7.	Features of the satisfactory design of work premises HVAC, ventilation. Safe installation and use of electrical supplies. Fire safety and first aid provision	3	C,I	2	1-3
8.	Significance of human factors in the establishment and effectiveness of safe systems. Safe systems of work for manual handling operations	2	C,I	2	1-3
9.	Control methods to eliminate or reduce the risks arising from the use of work equipment. Requirements for the safe use of display screen equipment.	2	C,I	2	1-3
10.	Procedures and precautionary measures necessary when handling hazardous substances. Contingency arrangements for events of serious and imminent danger.	2	C,I	2	1-3
	UNIT IV - Techniques of Environmental Safety	9			
11.	Elements of a health and safety policy and	3	C,I	3	1-3

Session	Description of Topic	Contact hours	C- D- I-O	IOS	Reference
	methods of its effective implementation and				
	review. Functions and techniques of risk				
	assessment, inspections and audits.				
	Investigation of accidents Principles of quality				
12.	management systems in health and safety	3	C,I	3	1-3
	management				
	Relationship between quality manuals, safety				
12	policies and written risk assessments. Records and	2	CI	2	1.2
15.	other documentation required by an organization	3	С,1	5	1-5
	for health and safety. Industry specific EHS issues.				
	UNIT V- Education and Training	9			
14	Requirements for and benefits of the provision of	2	т	12	1.2
14.	information, instruction, training and supervision	5	1	1,5	1-5
15	Factors to be considered in the development of	2	т	12	1.2
15.	effective training programmes	5	1	1,5	1-5
16	Principles and methods of effective training.	2	т	12	1.2
10.	Feedback and evaluation mechanism.	5	1	1,5	1-3
	Total contact hours			45	

LEAR	NING RESOURCES
SI. No.	TEXT BOOKS
1.	Brian Gallant, "Facility Manager's Guide to Environmental Health and Safety", by Government Inst Publ., 2007.
2.	Bill Taylor, "Effective Environmental, Health, and Safety Management Using the Team Approach", by Culinary and Hospitality Industry Publications Services 2005.
Sl.No	REFERENCE BOOK
3.	Nicholas P. Cheremisinoff and Madelyn L. Graffia, William Andrew, "Environmental and Health and Safety Management", by Inc. New York, 1995.

	Course nature				Theory			
Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	e Test III Surprise Quiz			
semester	Weightage	10%	15%	15%	5%	5%	50%	
	End semester examination Weightage :							

15CE2/2E		ENVIRONMENTAL IMPACT ASSESSMENT					С
15CE545E		ENVIRONVIENTAL INFACT A	3	0	0	3	
Co-requisite:	NII						
Prerequisite:	NII						
Data Book /	NII	ſ					
Codes/Standards	1111						
Course Category	D	DDOFESSIONAL ELECTIVE	ENVIRONMENTA	L			
Course Calegory	Г	FROFESSIONAL ELECTIVE	ENGINEERING				
Course designed by	Dep	partment of Civil Engineering					
Approval	32 ⁿ	^d Academic Council Meeting, 2016					

PU	RPOSE	To develop a basic knowledge about the environmental impact assessment and apply the same in the field application.					
IN	STRUCTIO	DNAL OBJECTIVES	STUDENT	OUTCOMES			
At	the end of th	he course, student will be able to					
1.	Know the	basics of environmental impact assessment	а				
2.	Learn about	ut evaluation for EIA	а	e			
3.	Get educat various m impact due	ted the students on the scope, steps involved and ethods related to assessment of environmental e to development projects.		a			

Session	Description of Topic	Contact hours	C- D- I-O	IOS	Reference
	UNIT I-INTRODUCTIONTOEIA	9			
1.	Environmental Impact Assessment (EIA) - Environmental Impact Statement -Environmental Risk assessment	3	С	1	1,3
2.	Legal and Regulatory aspects in India - Types and limitations of EIA	3	С	1	1,3
3.	Terms of reference in EIA - Issues in EIA - National - Cross sectoral - social and cultural	3	С	1	1,3
	UNIT II-ASSESSMENT TECHNIQUES IN EIA	9			
4.	Components - screening - setting - analysis - Prediction of impacts -mitigation.	3	С	1	1,3
5.	Matrices - Networks - Checklists - Importance assessment techniques	3	С	1	1,3
6.	Cost benefit analysis - Analysis of alternatives - methods for prediction and assessment of impacts - air - water - soil - noise	2	С	1	1,3
7.	Biological -cultural - social - economic environments.	2	С	1	1,3
	UNIT III-EVALUATION OF EIA	9			
8.	Standards and guidelines for evaluation Public participation in environmental decision making trends in EIA practice and evaluation criteria	3	С	2	1,3
9.	Capacity building for quality assurance. Expert system in EIA	3	С	2	1,3
10.	Use of regulations and AQM.	3	С	2	1,3
	UNIT IV-EVALUATION OF EIA	9			
11.	Document planning - collection and organization of relevant information -use of visual display materials team writing	3	С	2,3	1-3
12.	Reminder checklist .Environmental monitoring - guidelines - policies - planning of monitoring programmes.	3	С	2,3	1-3
13.	Environmental management plan. Post project audit.	3	С	2,3	1-3

Session	Description of Topic	Contact hours	C- D- I-O	IOS	Reference
	UNIT V-CASE STUDIES OF EIA	9			
14.	Case studies of EIA of developmental projects	9	Ι	3	4
	Total contact hours			45	

LEAR	NING RESOURCES
Sl.No	TEXT BOOKS
1	Petts, J., "Handbook of Environmental Impact Assessment", Vol., I and II, Conwell Science
1.	London. 2009.
2.	Canter, L.W., "Environmental Impact Assessment", McGraw-Hill, New York. 2006
2	Biswas, A.K. and Agarwala, S.B.C., "Environmental Impact Assessment for Developing
э.	Countries", Butterworth Heinemann, London. 2004
Sl.No	REFERENCE BOOK
4	Lawrence, D.P., "Environmental Impact Assessment – Practical solutions to recurrent
4.	problems". Wiley-Interscience, New Jersev2003.

Course nature					Theory				
Assessment Method (Weightage 100%)									
In	Assessment	Cycle test	Cycle test	Cycle Test III	Surprise	Quiz	Total		
III-	tool	Ι	II	Cycle Test III	Test	Quiz	Total		
semester	Weightage	10%	15%	15%	% 5%		50%		
	End semester examination Weightage : 5								

15CE344E INDUSTRIAL WASTE MANAGEM			ACEMENT	L	Т	Р	С	
15CE344E		INDUSTRIAL WASTE MANAGEMENT 3 0 0 3						
Co-requisite:	NIL							
Prerequisite:	NIL							
Data Book /	NII							
Codes/Standards	THE							
Course Category	P	PROFESSIONAL ELECTIVE	ENVIRONMENTA	L				
Course Culegory	1	TROLESSIONAL LEECTIVE	ENGINEERING					
Course designed	Depa	rtment of Civil Engineering						
by								
Approval	$32^{nd}A$	Academic Council Meeting, 2016						

PU	RPOSE	OSE To develop a basic knowledge about the concept of industrial wastewater management and apply the same in the field application.							
IN	STRUCTIO	NAL OBJECTIVES	STUDENT OU	JTCOMES					
At	the end of the	e course, student will be able to							
1.	Know the c	oncept and reasons for industrial pollution		a					
2.	Learn about	treatment methods and disposal of effluent.	a	e					
3.	Get Educat	ed on complete management principles related to							
	individual	wastewater starting from wastewater source		a					
	identificatio	n up to reuse concepts.							

Session	Description of Topic	Contact hours	C-D- I-O	IOS	Reference
	UNIT I-INTRODUCTION	9			
	Industrial scenario in India- Industrial and				
1.	Environment-Uses of water by industry-Sources	3	С	1	1-5
	and types of industrial wastewater				
	Industrial wastewater and environmental impacts-				
2	regulatory requirements for treatment of	3	C	1	15
۷.	industrial wastewater-Industrial waste survey-	5	C	1	1-5
	Industrial Wastewater generation rates.				
	Characterization and variables-Population				
3.	equivalent-Toxicity of Industrial effluents and	3	С	1	1-5
	Bioassay tests.				
	UNIT-II INDUSTRIAL POLLUTION	0			
	PREVENTION	9			
	Prevention Vs control of Industrial Pollution-				
4.	Benefits and Barriers-Source reduction techniques	3	C	1	1-5
	Waste audit				
5	Evaluation of Pollution Prevention options-	3	С	1	1-5
5.	Environmental statement as a tool for Pollution	5	Ű		1.5
6.	Prevention-Waste minimization Circles.	3	С	1	1-5
	UNIT-III INDUSTRIAL WASTEWATER	Q			
	TREATMENT	,			
	Equalization- Neutralization- Oil separation-				
7.	Flotation-Precipitation-Heavy metal Removal -	3	C	12	1-5
	Refractory organics separation by adsorption.				
	Aerobic and anaerobic biological treatment				
8.	Sequencing batch reactors-High Rate reactors-	3	C	1,2	1-5
	Chemical Oxidation –Ozonation.				
	Photo catalysis Wet Air Oxidation-Evaporation-	-			
9.	Ion Exchange-Membrane Technologies - Nutrient	3	C	1,2	1-5
	removal.				
	UNIT-IV WASTEWATER REUSE AND	9			
	RESIDUAL MANAGEMENT				
10.	Individual and Common Effluent Treatment	3	С	2	1-5
10.	Plants-Joint treatment of industrial Wastewater-		Ŭ	-	

Session	Description of Topic	Contact hours	C-D- I-O	IOS	Reference	
	Zero effluent discharge Systems-Quality					
	requirements for Wastewater reuse.					
	Industrial reuse-Disposal on Water and land-					
11.	Residuals of industrial Wastewater treatment-	3	С	2	1-5	
	Quantification and Characteristics of Sludge-					
	Thickening, digestion, conditioning, dewatering					
12.	and disposal of sludge-Management of RO	3	С	2	1-5	
	rejects.					
	UNIT-V CASE STUDIES	9				
	Industrial manufacturing Process description,					
13	wastewater characteristics, source reduction	3	т	3	15	
15.	options and waste treatment flow sheet for	5	1	. 5	1-5	
	Textiles.					
	Tanneries-pulp and paper-metal finishing					
14.	Petroleum Refining-Pharmaceuticals-Sugar and	3	Ι	3	1-5	
	Distilleries					
15	Food Processing-fertilizers-Thermal Power Plants	3	т	3	1-5	
15.	and Industrial Estates.	5	1	5	15	
	Total contact hours			45		
LEARN	ING RESOURCES					
Sl. No.	TEXT BOOKS					
1.	Eckenfelder, W.W., "Industrial Water Pollution Con	trol", McGr	aw-Hill,	1999		
2.	Arceivala, S.J., "Wastewater Treatment for Pollution	n Control", T	fata Mc	Graw-H	ill. 1998.	
3	Frank Woodard.," Industrial Waste treatment Handl	book", Butte	rworth H	Heinema	ann,New	
5.	Delhi, 2001.					
Sl.No	REFERENCE BOOK					
4	World Bank Group, "Pollution Prevention and Abat	ement Hand	book-To	wards (Cleaner	
4.	Production", World Bank and UNEP, Washington I	D.C.1998.				
5	Paul L.Bishop "Pollution Prevention; - Fundamental	ls and practi	<i>ce</i> ", Mc	Graw-H	ill	
э.	International, 2000					

	Course nature				Theory			
Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle Tes	Test III Surprise Quiz			
semester	Weightage	10%	15%	15%	5%	5%	50%	
	End semester examination Weightage : 5							

15CE245E		MUNICIDAL SOLID WASTE MANACEMENT			Т	Р	С
15CE545E	ISCES45E MUNICIFAL SOLID WASTE MANAGEMENT					0	3
Co-requisite:	NI	L					
Prerequisite:	NI	L					
Data Book /	NII	NII					
Codes/Standards		NIL					
Course Category	D DECESSIONAL ELECTIVE ENVIRONMENTA			L			
	P	PROFESSIONAL ELECTIVE	ENGINEERING				
Course designed by	De	partment of Civil Engineering					
Approval	32 ⁿ	^{ad} Academic Council Meeting, 2016					

PU	RPOSE	To learn the collection, storage, transport, treatment, disposal and recycling options for solid waste.				
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES						
At	the end of th	ne course, student will be able to				
1.	Know the sources, types and characterization of solid waste.		с			
2.	Learn the importance of methods of collection, storage and transport of solid waste.		С	e		
3.	Understan of solid wa	d the various treatment methods and disposal aste	c			

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
	UNIT I: SOURCES AND TYPES OF MUNICIPAL SOLID WASTES	9			
1.	Introduction -Sources and types of solid wastes	2	С	1	1-5
2.	quantity – factors affecting generation of solid wastes	2	С	1	1-5
3.	Need for solid waste management – public health effects	2	С	1	1,3,4
4.	Salient features of Indian Legislations on management and handling of municipal solid wastes	ons on cipal solid 2 C 1			1,3,4,5
5.	Elements of Integrated waste management - public awareness.	1	C,I	1	1,3,4,5
	UNIT II: WASTE CHARACTERIZATION AND SOURCE REDUCTION	9			
6.	Waste generation rates and variation-composition	2	С	1	1,3,4,5
7.	Physical, chemical and biological properties of solid waste	3	С	1	1,3
8.	Waste sampling and characterization plan	2	С	1	1,3
9.	Source reduction of wastes-recycling and reuse	2	C,I	1	3,4
	UNIT III –STORAGE,COLLECTION AND TRANSPORT OF WASTES	9			
10.	Handling and segregation of wastes at source	2	С	2	1
11.	Storage and collection of municipal solid wastes	2	C,I	2	1,4,5
12.	Analysis of collection systems –HCS-SCS systems types of vehicles	2	C,D	2	4,5
13.	Need for transfer and transport - transfer stations	2	С	2	1,2
14.	Preparation of master schedule- collection routes- manpower requirement	1	С	1,2	1,2
	UNIT IV - WASTE PROCESSING TECHNOLOGIES	9			
15.	Objectives of waste Processing- Processing techniques and Equipment	2	С	3	4
16.	Biological conversion technology – energy recovery - Incineration	3	С	3	1

Session	Description of Topic	Contact hours	C- D-I- O	IOs	Reference
17.	Composting- methods and controls of composting	2	С	3	4,5,6
18.	Resource recovery from solid wastes	2	C	3	4,5,6
	UINT V – DISPOSAL OF SOLID WASTE	9			
19.	Dumping of solid waste- sanitary landfills- waste disposal options	3	C	3	1,3,4
20.	site selection- design and operation of sanitary landfills	3	D,C	3	5,6
21.	Leachate collection & treatment-landfill remediation	3	C	3	3,4,6
	Total contact hours			45	

LEARNING RESOURCES

	In this hebothces					
Sl.No	TEXT BOOKS					
1.	George Tchobanoglouset.al., "Integrated Solid Waste Management", McGraw-Hill					
	Publishers, 2003.					
2.	Al. Ramanathan, and Jagbir Singh, "Solid Waste Management", S.K.Kataria & Sons, New					
	Delhi, 2010					
	REFERENCE BOOKS/OTHER READING MATERIAL					
3.	Bilitewski .B, HardHe .G, Marek .K, Weissbach.A, and Boeddicker .H, "Waste					
	Management", Springer, 2004.					
4.	Manual on Municipal Solid Waste Management, "CPHEEO", Ministry of Urban					
	Development, Government of India, New Delhi, 2010.					
5.	Landreth .R.E and Rebers .P.A, "Municipal Solid Wastes - problems and Solutions", Lewis					
	Publishers, 2002.					
6.	Bhide .A.D. and Sundaresan .B.B, "Solid Waste Management in Developing Countries",					
	INSDOC, 2003.					

Course nature Theory								
Assessment Method (Weightage 100%)								
In- semester	Assessment tool	Cycle test I	Cycle test II	Cycle Test III	Surprise Test	Quiz	Total	
	Weightage	10%	15%	15%	5%	5%	50%	
End semester examination Weightage :							50%	