

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

LAB MANUAL

Academic Year: 2015-16 ODD SEMESTER

Programme (UG/PG) : UG-B.Tech

Semester : 03

Course Code :CS1033

Course Title : MICROPROCESSOR & INTERFACING LAB

Prepared By

S.KIRUTHIKA DEVI
(A.P(O.G), Department of Computer Science and Engineering)

FACULTY OF ENGINEERING AND TECHNOLOGY
SRM UNIVERSITY

(Under section 3 of UGC Act, 1956)
SRM Nagar, Kattankulathur- 603203

Kancheepuram District

1

LIST OF EXPERIMENTS & SCHEDULE

COURSE CODE/TITLE: CS1033 - MICROPROCESSOR & INTERFACING LAB

Exp. No. Title Week No.

A 8085 Programs 1 - 5

1 8-bit Addition, Subtraction, Multiplication
and Division

1

2 16-bit Addition, Subtraction,
Multiplication and Division

2

3 Largest number in a data array 3

4 Smallest number in a data array 3

5 BCD to Hexadecimal and vice-versa 4

6 BCD to Binary Conversion and vice-versa 4

7 Move a data block without overlap 5

8 Counters and Time Delay 5

B 8086 Programs 6-8

9 Basic arithmetic and Logical operations 6

10 Code conversion, sorting and searching 7

11 Data transfer operations 8

12 Password checking 8

13 Print RAM size and system date 8

C. Peripherals and Interfacing Experiments 9-12

14 Traffic light control 9

15 Stepper motor control 10

16 Digital clock 11

17 Key board and Printer status 12

Course Coordinator HOD

2

HARDWARE AND SOFTWARE REQUIREMENTS

SYSTEM REQUIREMENTS

 8085 microprocessor kit.
 Jubin’s- 8085 simulator.
 MASM
 Stepper Motor
 Traffic Light Controller
 7 Segment LED Display

Operating system : Windows XP , Windows 7 - 32 and 64 bit editions, Windows 2000

Service Pack 3, Windows Server 2003, Windows XP Service Pack 2

INTERNAL ASSESSMENT MARK SPLIT UP

Observation : 20 Marks

Attendance : 5 Marks

Mini Project with the Report
(Max. 8 Pages & 3 Students per Batch) : 20 Marks

Model Exam : 15 Marks

TOTAL MARKS : 60 Marks

3

EXERCISE NO.1A
ADDITION OF TWO 8 BIT NUMBERS

AIM

To perform addition of two 8 bit numbers using 8085.

ALGORITHM

1) Start the program by loading the first data into Accumulator.
2) Move the data to a register (B register).
3) Get the second data and load into Accumulator.
4) Add the two register contents.
5) Check for carry.
6) Store the value of sum and carry in memory location.
7) Terminate the program.

SOURCE CODE

 MVI C, 00 Initialize C register to 00
 LDA 4150 Load the value to Accumulator.
 MOV B, A Move the content of Accumulator to B register.
 LDA 4151 Load the value to Accumulator.
 ADD B Add the value of register B to A
 JNC LOOP Jump on no carry.
 INR C Increment value of register C

LOOP: STA 4152 Store the value of Accumulator (SUM).
 MOV A, C Move content of register C to Acc.
 STA 4153 Store the value of Accumulator (CARRY)
 HLT Halt the program.

SAMPLE INPUT & OUTPUT
Input: 80 (4150)
 80 (4251)

Output: 00 (4152)
 01 (4153)

RESULT

Thus the program to add two 8-bit numbers was executed.

4

EX NO.1B
SUBTRACTION OF TWO 8 BIT NUMBERS

AIM

To perform the subtraction of two 8 bit numbers using 8085.

ALGORITHM
1. Start the program by loading the first data into Accumulator.
2. Move the data to a register (B register).
3. Get the second data and load into Accumulator.
4. Subtract the two register contents.
5. Check for carry.
6. If carry is present take 2’s complement of Accumulator.
7. Store the value of borrow in memory location.
8. Store the difference value (present in Accumulator) to a memory location
9. Terminate the program.

SOURCE CODE

 MVI C, 00 Initialize C to 00
 LDA 4150 Load the value to Acc.
 MOV B, A Move the content of Acc to B register.
 LDA 4151 Load the value to Acc.
 SUB B Subtract the value of register B to A
 JNC LOOP Jump on no carry.
 CMA Complement Accumulator contents.
 INR A Increment value in Accumulator.
 INR C Increment value in register C

LOOP: STA 4152 Store the value of A-reg to memory address.
 MOV A, C Move contents of register C to Accumulator.
 STA 4153 Store the value of Accumulator memory
 address.
 HLT Terminate the program.

SAMPLE INPUT & OUTPUT

Input: 06 (4150)

 02 (4251)

Output: 04 (4152)

 01 (4153)

RESULT

Thus the program to subtract two 8-bit numbers was executed.

5

EX. NO.1C
MULTIPLICATION OF TWO 8 BIT NUMBERS

AIM

To perform the multiplication of two 8 bit numbers using 8085.

ALGORITHM
1) Start the program by loading HL register pair with address of memory location.
2) Move the data to a register (B register).
3) Get the second data and load into Accumulator.
4) Add the two register contents.
5) Check for carry.
6) Increment the value of carry.
7) Check whether repeated addition is over and store the value of product and carry in

memory location.
8) Terminate the program.

SOURCE CODE

 MVI D, 00 Initialize register D to 00
 MVI A, 00 Initialize Accumulator content to 00
 LXI H, 4150
 MOV B, M Get the first number in B - reg
 INX H
 MOV C, M Get the second number in C- reg.
LOOP: ADD B Add content of A - reg to register B.

 JNC NEXT Jump on no carry to NEXT.
 INR D Increment content of register D
NEXT: DCR C Decrement content of register C.
 JNZ LOOP Jump on no zero to address
 STA 4152 Store the result in Memory
 MOV A, D Move the content of D register to Accumulator
 STA 4153 Store the MSB of result in Memory
 HLT Terminate the program.

SAMPLE INPUT &OUTPUT

 Input: FF (4150)
 FF (4151)

Output: 01 (4152)
 FE (4153)

RESULT

Thus the program to multiply two 8-bit numbers was executed.

6

EXERCISE NO.1D
DIVISION OF TWO 8 BIT NUMBERS

AIM

To perform the division of two 8 bit numbers using 8085

ALGORITHM
1) Start the program by loading HL register pair with address of memory location.
2) Move the data to a register (B register).
3) Get the second data and load into Accumulator.
4) Compare the two numbers to check for carry.
5) Subtract the two numbers.
6) Increment the value of carry.
7) Check whether repeated subtraction is over and store the value of product and carry

in memory location.
8) Terminate the program.

SOURCE CODE
 LXI H, 4150
 MOV B, M Get the dividend in B – reg.
 MVI C, 00 Clear C – reg for quotient
 INX H
 MOV A, M Get the divisor in A – reg.
NEXT: CMP B Compare A - reg with register B.
 JC LOOP Jump on carry to LOOP
 SUB B Subtract A – reg from B- reg.
 INR C Increment content of register C.
 JMP NEXT Jump to NEXT
LOOP: STA 4152 Store the remainder in Memory
 MOV A, C Move the Content of C register to Accumulator
 STA 4153 Store the quotient in memory
 HLT Terminate the program.

SAMPLE INPUT & OUTPUT

Input: FF (4150)
 FF (4251)

Output: 01 (4152) ---- Remainder
 FE (4153) ---- Quotient

RESULT

Thus the program to divide two 8-bit numbers was executed.

QUESTIONS RELATED TO THE NEXT EXPERIMENT:

1. What is XCHG instruction?
2. What is DAD instruction?
3. Explain about SBB instruction.
4. Explain about SPHL instruction.
5. Difference between SHLD and STA.

7

EX. NO.2A

ADDITION OF TWO 16-BIT NUMBERS

AIM
To write an Assembly Language Program (ALP) for performing 16 bit addition.

ALGORITHM

1. Initialize the MSBs of sum to 0
2. Get the first number.
3. Add the second number to the first number.
4. If there is any carry, increment MSBs of sum by 1.
5. Store LSBs of sum.
6. Store MSBs of sum

SOURCE CODE

 LHLD 7601H Get 1st no. in HL pair from memory 7601
 XCHG Exchange cont. of DE HL
 LHLD 7603H Get 2st no. in HL pair from location 7603
 MVI C, 00H Clear reg. C.
 DAD D Get HL+DE & store result in HL
 JNC LOOP If no carry move to loop/if carry then move to
 next step.
 INR C Increment reg C
LOOP: MOV A, C Move carry from reg. C to reg.A
 STA 7502H Store carry at 7502H
 SHLD 7500H Store result in 7500H.
 HLT

SAMPLE INPUT & OUTPUT

 Input: 7601 77
 7602 66
 7603 44
 7604 22

Output: 7502 BB
 7503 88
 7500 00

RESULT

Thus the program to add two 16-bit numbers was executed.

8

EX. NO.2B
SUBTRACTION OF TWO 16 BIT NUMBERS

AIM

To write an Assembly Language Program (ALP) for performing 16 bit subtraction.

ALGORITHM

1. Initialize the MSBs of difference to 0
2. Get the first number.
3. Subtract the second number from the first number.
4. If there is any borrow, increment MSBs of difference by 1.
5. Store LSBs of difference
6. Store MSBs of difference.

SOURCE CODE
 MVI C,00H Move immediate 00 value to C
 LHLD 5500H Load HL pair with value from address
 XCHG Exchange HL & DE values
 LHLD 5502 Load HL pair with value from address
 MOV A,E Move E to accumulator
 SUB L Subtract L
 JNC LOOP 1 If no carry exists, go to loop 1
 CMA Complement accumulator
 INR A Increment accumulator
LOOP 1 STA 5900 Store accumulator value in address
 MOV A,D Move D to accumulator
 SUB Subtract H
 JNC LOOP 2 If no carry exist go to LOOP 2
 CMA Complement accumulator
 INR A Increment accumulator
 INC C Increment C
LOOP 2 STA 5901H Store accumulator value in address
 MOV A,C Move C to accumulator
 STA 5902 Store accumulator value in address
 HLT End program

SAMPLE INPUT & OUTPUT

Input: 5500 44

 5501 22
 5502 77
 5503 66

Output: 5900 33
 5901 44
 5902 01

RESULT

Thus the program to subtract two 16-bit numbers was executed.

9

EXERCISE NO.2C
MULTIPLICATION OF TWO 16-BIT NUMBERS

AIM

To write an Assembly Language Program (ALP) for performing 16 bit multiplication.

ALGORITHM

1. Get the multiplier.
2. Get the multiplicand
3. Initialize the product to 0.
4. Product = product + multiplicand
5. Decrement the multiplier by 1
6. If multiplicand is not equal to 0, repeat from step (4) otherwise store the product.

SOURCE CODE

 LHLD 8500 Load HL pair with values from address
 SPHL Exchange stack pointer & HL
 LHLD 8502H Load HL pair with values from address
 XCHG Exchange DE & HL values
 LXI H, 0000 H Load immediate values in HL pair
 LXI B, 000 H Load immediate value in BC pair
 Next DAD SP Add stack pointer to HL
 JNC LOOP If no carry exists go to loop
 INX B Increment BC pair
LOOP : DCX D Decrement DE pair
 MOV A,E Move E to accumulator
 ORA D Perform OR with D & accumulator
 JNZ Next if not zero go to next
 SHL D 8504 Store HL pair value in address
 MOV L,C Move C to L
 MOV H,B Move B to H
 SHLD 8506H Store HL pair value in address
 HLT End Program

SAMPLE INPUT & OUTPUT

Input: 8500 01
 8501 F0
 8502 02

 8503 F0

Output: 8504 02
 8505 00
 8506 02

 8507 E1

RESULT
Thus the program to multiply two 16-bit numbers was executed.

10

EX. NO.2D
DIVISION OF TWO 16-BIT NUMBERS

AIM

To write an Assembly Language Program (ALP) for performing 16 bit division.

ALGORITHM

1. Get the dividend
2. Get the divisor
3. Initialize the quotient to 0.
4. Dividend = dividend – divisor
5. If the divisor is greater, store the quotient. Go to step g.
6. If dividend is greater, quotient = quotient + 1. Repeat from step (4) Store the dividend

value as remainder.

SOURCE CODE
LXI B, 0000H Load immediate value in BC pair
LHLD 4500 Load HL pair with value from memory
XCHG Exchange HL & DE vales
LHLD 4502H Load HL pair with value from memory
LOOP1 MOV A, L Move L to accumulator
SUB E Subtract E
MOV L, A Move accumulator to L
MOV A, H Move H to accumulator
SUB D Subtract D with borrow
MOV H, A Move accumulator to H
JM LOOP1 If minus go to LOOP1
INX B Increment BC pair
JMP LOOP2 Jump to LOOP2
LOOP2 DAD D Add DE to HL
SHLD 4602H Store HL pair at address
MOV L,C Move C to L
MOV H,B Move B to H
SHLD 4604 Store HL pair value at address
HLT End Program

SAMPLE INPUT & OUTPUT
Input: 4500 02
4501 02
4502 03
4503 03
Output :4602 02
 4603 02
4604 03
4605 03

RESULT

Thus the program to divide two 16-bit numbers was executed.

11

QUESTIONS RELATED TO THE NEXT EXPERIMENT:

1. Explain about CMP instruction.

2. Difference between INX and INR.

3. Difference between DCX and DCR.

4. What all are the conditional jump instruction in 8085.

5. What is LXI instruction?

12

EXP. NO: 3
LARGEST NUMBERS IN AN ARRAY OF DATA

OBJECTIVE
To find the largest number in an array of data using 8085 instruction set.

ALGORITHM

STEP 1: Load the address of the first element of the array in HL pair
STEP 2: Move the count to B – reg.
STEP 3: Increment the pointer
STEP 4: Get the first data in A – reg.
STEP 5: Decrement the count.
STEP 6: Increment the pointer
STEP 7: Compare the content of memory addressed by HL pair with that of A - reg.
STEP 8: If Carry = 0, go to step 10 or if Carry = 1 go to step 9
STEP 9: Move the content of memory addressed by HL to A – reg.
STEP 10: Decrement the count
STEP 11: Check for Zero of the count. If ZF = 0, go to step 6, or if ZF = 1 go to next step.
STEP 12: Store the largest data in memory.
STEP 13: Terminate the program.

SOURCE CODE

 LXI H,4200 Set pointer for array
 MOV B,M Load the Count
 INX H
 MOV A,M Set 1st element as largest data
 DCR B Decrement the count
LOOP: INX H
 CMP M If A- reg > M go to AHEAD
 JNC AHEAD
 MOV A,M Set the new value as largest
AHEAD: DCR B
 JNZ LOOP Repeat comparisons till count = 0
 STA 4300 Store the largest value at 4300
 HLT

SAMPLE INPUTS & OUTPUTS
Input: 05 (4200) ----- Array Size
 0A (4201)
 F1 (4202)
 1F (4203)
 26 (4204)
 FE (4205)
Output: FE (4300)

RESULT

Thus the program to find the largest number in an array of data was executed

13

QUESTIONS RELATED TO THE NEXT EXPERIMENT:

1. List the data transfer instructions.

2. List out the logical instructions.

3. What is difference between JC and JNC?.

4. What is the use of CMP instruction?

5. Write about increment and decrement Instruction.

14

EXP. NO: 4
SMALLEST NUMBERS IN AN ARRAY OF DATA

OBJECTIVE:
To find the smallest number in an array of data using 8085 instruction set.

ALGORITHM:

STEP 1: Load the address of the first element of the array in HL pair
STEP 2: Move the count to B – reg.
STEP 3: Increment the pointer
STEP 4: Get the first data in A – reg.
STEP 5: Decrement the count.
STEP 6: Increment the pointer
STEP 7: Compare the content of memory addressed by HL pair with that of A - reg.
STEP 8: If carry = 1, go to step 10 or if Carry = 0 go to step 9
STEP 9: Move the content of memory addressed by HL to A – reg.
STEP 10: Decrement the count
STEP 11: Check for Zero of the count. If ZF = 0, go to step 6, or if ZF = 1 go to next step.
STEP 12: Store the smallest data in memory.
STEP 13: Terminate the program.

SOURCE CODE

 LXI H,4200 Set pointer for array
 MOV B,M Load the Count
 INX H
 MOV A,M Set 1st element as largest data
 DCR B Decrement the count
LOOP: INX H
 CMP M If A- reg < M go to AHEAD
 JC AHEAD
 MOV A,M Set the new value as smallest
AHEAD: DCR B
 JNZ LOOP Repeat comparisons till count = 0
 STA 4300 Store the largest value at 4300
 HLT

SAMPLE INPUTS & OUTPUTS

Input: 05 (4200) ----- Array Size
 0A (4201)
 F1 (4202)
 1F (4203)
 26 (4204)
 FE (4205)
Output: 0A (4201)

RESULT
Thus the program to find the smallest number in an array of data was executed

15

QUESTIONS RELATED TO THE NEXT EXPERIMENT:

1. Write about BCD system.

2. How will you convert BCD to hexadecimal?

3. What is the use if INX instruction?

4. Write various JMP operations?

5. How will you convert hexadecimal to BCD?

16

EX.NO. 5A
BCD TO HEX CONVERSION

AIM:

To convert two BCD numbers in memory to the equivalent HEX number using 8085
instruction set

ALGORITHM:

STEP 1: Initialize memory pointer to 4150 H
STEP 2: Get the Most Significant Digit (MSD)
STEP 3: Multiply the MSD by ten using repeated addition
STEP 4: Add the Least Significant Digit (LSD) to the result obtained in previous step
STEP 5: Store the HEX data in Memory

SAMPLE INPUTS & OUTPUTS

RESULT
Thus the program to convert BCD data to HEX data was executed.

SOURCE CODE
LXI H,4150
MOV A,M Initialize memory pointer
ADD A MSD X 2
MOV B,A Store MSD X 2
ADD A MSD X 4
ADD A MSD X 8
ADD B MSD X 10
INX H Point to LSD
ADD M Add to form HEX
INX H
MOV M,A Store the result
HLT

Input: 4150 : 02 (MSD)
 4151 : 09 (LSD)
Output: 4152 : 1D H

17

EX.NO. 5B
HEX TO BCD CONVERSION

AIM

To convert given Hexa decimal number into its equivalent BCD number using 8085
instruction set

ALGORITHM

STEP 1: Initialize memory pointer to 4150 H
STEP 2: Get the Hexa decimal number in C - register
STEP 3: Perform repeated addition for C number of times
STEP 4: Adjust for BCD in each step
STEP 5: Store the BCD data in Memory

SOURCE CODE

 LXI H,4150
 MVI D,00
 XRA A
 MOV C,M
LOOP2: ADI 01
 DAA
 JNC LOOP1
 INR D
LOOP1: DCR C
 JNZ LOOP2
 STA 4151
 MOV A,D
 STA 4152
 HLT

SAMPLE INPUTS & OUTPUTS

Input: 4150: FF

Output: 4151: 55 (LSB)

4152: 02 (MSB)

RESULT

Thus the program to convert HEX data to BCD data was executed.

QUESTIONS RELATED TO THE NEXT EXPERIMENT

1. What is HEX number?
2. Explain steps to convert HEX number to BCD number?
3. Explain various addressing modes of 8086 used in HEX to BCD conversion program?
4. Explain different assembler directives used in HEX to BCD conversion program?
5. Explain various number systems used in digital electronics?

18

EX.NO.6A
BINARY TO BCD CODE CONVERSIONS

AIM

To write an assembly language program to convert an 8 bit binary data to BCD using
8085 microprocessor kit.

ALGORITHM

STEP 1: Start the microprocessor
STEP 2: Clear ‘D’ and ‘E’ register to account for hundred’s and ten’s load the binary data

 in Accumulator
STEP 3: Compare ‘A’ with 64 if cy = 01, go step C otherwise next step
STEP 4: Subtract 64 from (64+1) ‘A’ register
STEP 5: Increment ‘E’ register
STEP 6: Compare the register ‘A’ with ‘0A’, if cy=1, go to step 11, otherwise next step
STEP 7: Subtract (0AH) from ‘A’ register
STEP 8: Increment D register Step 9 : Go to step 7
STEP 10: Combine the units and tens to from 8 bit result
STEP 11: Save the units, tens and hundred’s in memory
STEP 12 : Stop the program execution

SOURCE CODE:

MVI E,00
MOV D,E
LDA 4200

HUND CPI 64
JC TEN
SUI 64
INR E
JMP HUND

TEN CPI 0A
JC UNIT
SUI 0A
INR D
JMP TEN

UNIT MOV 4A
MOV A,D
RLC
RLC
RLC
RLC
ADD
STA
HLT

19

SAMPLE INPUTS & OUTPUTS

Input: 4200 : 54
Output: 4250 : 84

RESULT

Thus the binary to BCD conversion was executed successfully

20

EX.NO.6B
BCD TO BINARY CODE CONVERSIONS

AIM
 To write an assembly language program to convert BCD data to Binary data using

8085 microprocessor kit

ALGORITHM

STEP 1 : Start the microprocessor
STEP 2 : Get the BCD data in accumulator and save it in register ‘E’
STEP 3 : Mark the lower nibble of BCD data in accumulator
STEP 4 : Rotate upper nibble to lower nibble and save it in register ‘B’
STEP 5 : Clear the accumulator
STEP 6 : Move 0AH to ‘C’ register
STEP 7 : Add ‘A’ and ‘B’ register
STEP 8 : Decrement ‘C’ register. If zf = 0, go to step 7
STEP 9 : Save the product in ‘B’
STEP 10 : Get the BCD data in accumulator from ‘E’ register and mark the upper nibble
STEP 11 : Add the units (A-ug) to product (B-ug)
STEP 12 : Store the binary value in memory
STEP 13 : End the program

SOURCE CODE

LDA 4200
MOV E,A
ANI F0
RLC
RLC
RLC
RLC
MOV B,A
XRA A
MVI C,0A
REP
DCR C
JNZ
MOV B,A
MOV A,E
ANI 0F
ADD B
STA 4201
HLT

SAMPLE INPUTS & OUTPUTS
Input : 4200 : 84
Output: 4201 : 54

RESULT

 Thus the BCD to binary conversion was executed successfully.

21

QUESTIONS RELATED TO THE NEXT EXPERIMENT:

1. What is a counter?
2. Explain how counters are used in loop instructions?
3. What is meant by time delay?
4. Explain how to calculate execution delay or delay sub-routine?
5. Difference between time delay in loop and nested loop?

22

EX.NO.7
COUNTER AND TIME DELAY (DECIMAL UPCOUNTER)

AIM

To write an ALP to implement a counter to count from ’00 – 99’ (UPCOUNTER)
in BCD by Using a subroutine to generate a delay of one second between the counts.

ALGORITHM
STEP 1: Initiate the minimum number in Accumulator
STEP 2: Display in the DATA field
STEP 3: Add 01 to the present value Displayed
STEP 4: Use decimal conversion Instruction.
STEP 5: Repeat the steps 2-4.
STEP 6: Provide proper display between Each display.
STEP 7: Terminating Point.

SOURCE CODE
MVI A,00H
LOOP1: MOV H,A
CALL OUT
CALL DELAY
MOV A,H
ADI 01H
DAA
JMP LOOP1
HLT
DELAY: LXI B, FFFFH
WAIT: DCX B
MOV A,C
ORA B
JNZ WAIT
RET
OUT: MVI A,02H
CALL 0005H
MVI A,0CH
MVI C,00H
MOV D,H
CALL 0005H
RET

23

SAMPLE OUTPUT

0 0
0 1
. .
. .
9 8
9 9

RESULT

It counts from 00 to 99 with the given delay in DATA field.

QUESTIONS RELATED TO THE NEXT EXPERIMENT

1. What is overlapping?
2. What is meant by a data block?
3. What is overlapped block transfer?
4. What is the difference between overlapped and non-overlapped block transfer?
5. Say some of the data transfer instructions?

24

EXP. NO: 8
MOVE A DATABLOCK WITHOUT OVERLAP

OBJECTIVE

To write an Assembly Language Program to transfer a data block without overlap using
8085

ALGORITHM:

STEP 1: Load the DE pair with the destination address.
STEP 2: Load the HL pair with the count of elements in the data block.
STEP 3: Load element in the data block.
STEP 4: Increment the source address.
STEP 5: Copy the element to the accumulator and then transfer it to the destination address.
STEP 6: Increment destination address.
STEP 7: Decrement the count.
STEP 8: If Count = 0 then go to the next step else go to step 3.
STEP 9: Terminate the program.

SOURCE CODE
 LABEL MNEMONIC COMMENT
 LXI D,4500 Load destination address in
DE pair
 LXI H,4100 Load the count in HL pair
 MOV C,M Copy the count to register C
 LOOP INX H Increment memory
 MOV A,M Copy element to Accumulator
 STAX D Store the element to the
address in the DE pair
 INX D Increment destination address
 DCR C Decrement count
 JNZ LOOP Jump on non-zero to the label
LOOP
 HLT Program ends

SAMPLE INPUTS & OUTPUTS

Input at 4100 : 04H
 4101 : 06H
 4102 : 07H
 4103 : 12H
 4104 : 03H
Output at 4500 : 06H
 4501 : 07H
 4502 : 12H
 4503 : 03H

RESULT

Thus the program to move data without overlap was executed

25

QUESTIONS RELATED TO THE NEXT EXPERIMENT

1. List out the arithmetic instructions of 8086.
2. List out the logical instructions in 8086.
3. What is difference between ADD and ADC?
4. Explain XOR operation.
5. Write about registers in 8086.

26

B.8086 PROGRAMS

27

EXP NO:9
BASIC ARITHMETIC & LOGICAL OPERATIONS

OBJECTIVE

To perform the basic arithmetic and logical operations using the 8086 Microprocessor
emulator

9A. ADDITION

ALGORITHM

Step 1. Allocate some space for the result in data segment
step 2. In code segment, store accumulator with some value
step 3. Store B register with some value
step 4. Add the register content with accumulator
step 5. Result is stored in accumulator
step 6. The result is stored in required memory location

SOURCE CODE
Start: mov AX, 05H
mov BX, 03H
ADD AX,BX

 end: HLT

SAMPLE INPUTS& OUTPUTS

Before Execution: After Execution:
AX = 0005H AX = 0008H
BX = 0003H

9B. SUBTRACTION

ALGORITHM
a) Start the program.
b) Allocate some space for the result in data segment
c) In code segment, store accumulator with some value
d) Store B register with some value
e) Subtract the register content from the accumulator
f) Result is stored in accumulator
g) The result is stored in required memory location
h) Stop the program.

SOURCE CODE

Start: mov AX, 05H
mov BX, 03H
SUB AX,BX

 end: HLT

28

SAMPLE INPUTS & OUTPUTS

INPUT: 0005H ,0003H
OUTPUT: 0002H

9.C MULTIPLICATION

ALGORITHM

a) Start the program
b) Allocate some space for the result in data segment
c) In code segment,store accumulator with some value
d) Store B register with some value
e) Multiply the register content with accumulator
f) Result is stored in accumulator
g) The result is stored in required memory location
h) Stop the program.

SOURCE CODE

Start: mov AX, 05H
mov BX, 03H
MUL AX,BX

 end: HLT

SAMPLE INPUTS & OUTPUTS

INPUT: 0006H, 0004H
OUTPUT: 0018H

9D.DIVISION

ALGORITHM:
a) Start the program.
b) Allocate some space for the result in data segment
c) Take 2 data as 2 inputs in 2 different registers
d) Perform the Division operation.
e) The quotient is stored in accumulator and the remainder is stored in D register
f) Store the remainder and quotient in required memory location.
g) Display the result.
h) Stop the program.

SOURCE CODE

Start: mov AX, 08H
mov BX, 02H
DIV AX,BX

 end: HLT

29

SAMPLE INPUTS & OUTPUTS

INPUT: 0008H ,0002H
OUTPUT: 0004H

9E.LOGICAL AND OPERATION

ALGORITHM
Step 1. Allocate some space for the result in data segment
step 2. In code segment, store accumulator with some value
step 3. Store B register with some value
step 4. Perform AND operation on the register content with accumulator
step 5. Result is stored in accumulator
step 6. The result is stored in required memory location

SOURCE CODE

Start: mov AX, 01H
 mov BX, 01H
 AND AX,BX

 End: HLT

SAMPLE INPUTS & OUTPUTS

Before Execution: After Execution:
AX = 0001H AX = 0001H
BX = 0001H

9F. LOGICAL OR OPERATION

ALGORITHM

Step 1. Allocate some space for the result in data segment
step 2. In code segment, store accumulator with some value
step 3. Store B register with some value
step 4. Perform OR operation on register content with accumulator
step 5. Result is stored in accumulator
step 6. The result is stored in required memory location.

SOURCE CODE

Start: mov AX, 01H
mov BX, 00H
OR AX,BX

 end: HLT

30

SAMPLE INPUTS & OUTPUTS
Before Execution: After Execution:
AX = 0001H AX = 0001H
BX = 0000H

RESULT

The machine programs for basic arithmetic and logical operations were successfully
implemented Using8086 emulator.

QUESTIONS RELATED TO THE NEXT EXPERIMENT

1.How to convert binary to BCD by giving the input in hexa?
2.What instruction is used to scan the character of string?
3.What is procedure ?
4.What is the use of data segment and how to get data as array?
5.How to display a msg?

31

EXP. NO: 10 A
CODE CONVERSIONS – BINARY TO BCD

OBJECTIVE
To convert a given binary to BCD.

ALGORITHM:
 Step 1: Initialize the data to the data segment.
 Step 2: Move the input to AX register.
 Step 3: Move 64 to CL register
 Step 4: Divide AL, CL value
 Step 5: Increment memory by 1 and move AL value
 Step 6: Move AH value to AL
 Step 7: Move 0A to CL register
 Step 8: Divide the AL, CL
 Step 9: Rotate CL register 4 times
 Step 10: Add AH, AL
 Step 11: Store the resultant in memory location.

SOURCE CODE
ASSUME CS: CODE, DS: DATA
DATA SEGMENT

BIN DW 01A9H
BCD DB 2 DUP (0)

DATA ENDS
CODE SEGMENT
START:

MOV AX, DATA
MOV DS, AX
MOV AX, BIN
MOV CL, 64H
DIV CL
MOV BCD+1, AL
MOV AL, AH
MOV AH, 00H
MOV CL, 0AH
DIV CL
MOV CL, 04
ROR AL, CL
ADD AL, AH
MOV AH, 4CH
INT 21H

CODE ENDS
END START

OUTPUT
INPUT : 01A9H
OUTPUT : 0425

RESULT

Thus the program to convert a binary to BCD was executed.

32

EX. NO: 10 B
SORTING

OBJECTIVE

To sort the given number in ascending order using 8086.

ALGORITHM

Step 1: Get the input number from memory and move it to AL register
Step2: Move the count value to DX register (outer loop)
Step3: Decrement the value of DX by one and move it to CX register (inner loop)
Step4: Compare the AL and the next element in the memory
Step5: If CY=1 then AL is less than next element
Step6: If CY=0 then AL is greater than next element so exchange both value
Step7: Continue the step3 to step7 until CX and DX goes to zero.
Step8: Store the resultant value

SOURCE CODE
ASSUME CS: CODE, DS:DATA
DATA SEGMENT
 SERIES DB 81H,82H,93H,95H,10H,56H,33H,99H,13H,44H
 COUNT DW 10H
DATA ENDS
CODE SEGMENT
START:
 MOV AX, DATA
 MOV DS, AX
 MOV DX, COUNT
 DEC DX
GO:
 MOV CX, DX
 LEA SI, SERIES
NXT_BYTE:
 MOV AL,[SI]

CMP AL,[SI+1]
JB NEXT
XCHG AL,[SI+1]
XCHG AL,[SI]

NEXT:
 INC SI

LOOP NXT_BYTE
DEC DX
JNZ GO
MOV AH, 4CH
INT 21H

CODE ENDS
END START

33

INPUT:

50000 81H
50002 82H
50004 93H
50006 95H
50008 10H
5000A 56H
5000C 33H
5000E 99H
50010 13H
50012 44H

OUTPUT:

50000 10H
50002 13H
50004 33H
50006 44H
50008 56H
5000A 81H
5000C 82H
5000E 93H
50010 95H
50012 99H

RESULT

Thus the program to Sort the given array in ascending order was executed
successfully.

34

EX . NO: 10 C
SEARCHING A STRING

OBJECTIVE

To search the character in a string using 8086.

ALGORITHM

Step 1: Load the source index register with starting address.
Step 2: Initialize the counter with the total number of characters.
Step 3: Clear the direction flag for auto incrementing mode of transfer.
Step 4: Use the string manipulation instruction SCASW to search a character from string.
Step 5: If a match is found (z=1), display the MSG1. Otherwise, display the MSG2.

SOURCE CODE
ASSUME CS: CODE, DS: DATA, ES:DATA
DATA SEGMENT

MSG DB 'HELLO'
CNT EQU $-MSG
SRC EQU 'E'
MSG1 DB 10,13,'CHARACTER FOUND$'
MSG2 DB 10,13,'CHARACTER NOT FOUND$'

DATA ENDS
CODE SEGMENT
START:
 MOV AX, DATA
 MOV DS, AX
 MOV ES, AX
 LEA SI, MSG
 MOV AL, SRC
 MOV CL, CNT
 MOV CH, 00H
 CLD
UP: SCASB
 JZ DOWN
 LOOP UP
 LEA DX, MSG2
 MOV AH, 09H
 INT 21H
 JMP EXIT
DOWN:
 LEA DX, MSG1
 MOV AH, 09H
 INT 21H
EXIT:
 MOV AH, 4CH
 INT 21H
CODE ENDS

END START

35

OUTPUT :

INPUT: HELLO
SEARCH: E

OUTPUT:
CHARACTER FOUND

RESULT

Thus the program to search the character in a string was executed.

LIST OF QUESTION FOR NEXT EXPERIMENT

1. What is the operation of XLAT instruction?
2. Compare LEA and LES instruction.
3. List out the steps how PUSH AX instruction stores the value in the stack(AX=324B).
4. What is the purpose of XCHG instruction?
5. What is the use of POPF instruction?

36

EXP. NO: 11
DATA TRANSFER OPERATIONS

OBJECTIVE

To write a Program using 8086 for Copying 12 Bytes of Data from Source to Destination
& Verify.

ALGORITHM:

STEP 1: Start the program
STEP 2: Clear the direction flag DF
STEP 3: Move source address to SI
STEP 4: Move destination address in DI
STEP 5: Increment the count and index register
STEP 6: Move Byte
STEP 7: Terminate the program

SOURCE CODE
Mnemonics Operands Comments

CLD Clear direction flag DF
MOV SI,0300 Source address in SI
MOV DI,0202 Destination address in DI
MOV CX,[SI] Count in CX
INC SI Increment SI
INC SI Increment SI
MOV SB Move byte
LOOP BACK Jump to BACK until CX becomes
 Zero
INT Interrupt program

SAMPLE INPUTS & OUTPUTS

INPUT DATA 030B : 0A

0300 : 0B 030C : 0B
0301 : 00 030D : 0E
0302 : 03
0303 : 04

OUTPUT DATA

0304 : 05
0305 : 06 0202 : 03
0306 : 15 0203 : 04
0307 : 07 0204 : 05
0308 : 12 0205 : 06
0309 : 08 0206 : 15
030A : 09 0207 : 07

RESULT

Thus the program Copying 6 Bytes of Data from Source to Destination was executed

37

FEW (MIN. 5) QUESTIONS RELATED TO THE NEXT EXPERIMENT

1. What are the DOS function calls?
2. How a CALL instruction will be executed?
3. What is the role of stack?
4. What is the difference between DOS and BIOS interrupts?
5. What is an interrupt vector table of 8086?

38

EXP. NO: 12
PASSWORD CHECKING

AIM

To write an ALP program for password checking using 8086.

ALGORITHM:
• Create a display micro
• Initialise a counter for max number of attempts available
• In the data segment store the password in a location
• In the code segment accept the string one by one and compare the stored value
• If the strings are equal display “valid password”
• If they are not equal then display invalid password
• Code ends

SOURCE CODE
disp macro x
 mov ah,09h
 lea dx,x
 int 21h
endm
data segment
 s db 13,10,"enter string:$"
 u db 13,10,"right password $"
 r db 13,10,"invalid $"
 m1 db '*$'
 m2 db 13,10,"try again $"
 pwd db "cmt $"
data ends
code segment
 assume cs:code,ds:data
 start:
 mov ax,data
 mov ds,ax
 mov ax,0003h
 int 10h
 mov bl,03h
 a1:
 mov cl,03h
 mov si,00h
 disp s
 a2:
 mov ah,08h
 int 21h
 cmp al,pwd[si]
 disp m1
 jne l1
 inc si
 loop a2
 disp u

39

 jmp l2
 l1: dec bl
 disp r
 disp m2
 cmp bl,00h
 je l2
 jne a1
 l2:
 mov ax,4c00h
 int 21h
code ends
end start

OUTPUT

enter the password ***
right password

RESULT

Thus the ALP program for password checking using 8086 was executed

FEW (MIN. 5) QUESTIONS RELATED TO THE NEXT EXPERIMENT:
1. Explain the assembler directives.
2. What are the flags in 8086?
3. What is SIM and RIM instructions?
4. What is the difference between 8086 and 8088?
5. Which is the tool used to connect the user and the computer?

40

EXP. NO: 13
PRINT RAM SIZE AND SYSTEM DATE

OBJECTIVE

To write a program to Print RAM size and system date using 8086.

ALGORITHM

STEP 1: Create a display micro
STEP 2: C Initialise a Initialise the necessary register with the required values.
STEP 3: In Use a macro to display system date.
STEP 4: Terminate the program.

SOURCE CODE

Print RAM size:
PRINT MACRO MSG
MOV AH,09H
LEA DX,MSG
INT 21H
ENDM
DATA SEGMENT
ML1 DB 13,10,’SIZE OF RAM IS $’
M2 DB ‘KILO BYTES $’
ENDS
CODE SEGMENT
ASSUME CS:CODE,DS:DAT
START:
MOV DX,DATA
MOV DS,DX
MOV AX,0003H
INT 10H
PRINT M1
INT 12H
MOV B1,64H
DIV B1
MOV CH,AH
ADD A1,’0’
MOV D1,A1
MOV AH,02H
INT 21H
MOV A1,CH
MOV AH,00H
MOV B1,0AH
DIV B1
ADD A1,’0’
ADD AH,’0’
MOV CH,AH
MOV AH,02H
INT 21H

41

MOV D1,CH
MOV AH,02H
INT 21H
PRINT M2
MOV AX,4C00H
INT 21H
CODE ENDS
END START

System Date:
DISP MACRO X
 PUSH DX
 MOV AH,09H

 LEA DX,X
 POP DX
 ENDM
 PRINT MACRO
 MOV BH,0AH
 MOV AH,00H
 DIV BH
 ADD AL,’0’
 ADD AH,’0’
 MOV BH,AH
 MOV DL,AL
 MOV AH,02H
 INT 21H
 ENDM
 MYDATE SEGMENT
 S DB 13,10,’THE DATE IS:’$’
 C DB,’/$’
 MYDATAE ENDS
 MYCODE SEGMENT
 ASSUME CS:MYCODE,DS:MYDATE

START: MOV AX,MYDATE
 MOV DS,AX
 MOV AX,0003H
 INT 10H
 DISP S
 MOV AH,2AH
 INT 21H
 MOV AL,DL
 MOV BL,DH
 PRINT
 DISP C
 MOV AL,BL
 PRINT
 DISP C
 MOV AX,CX
 MOV BX,03E8H
 MOV DX,0000H
 DIV BX

42

 MOV CX,DX
 MOV DL,AL
 ADD DL,’0’
 MOV AH,02H
 INT 21H
 MOV AX,CX
 MOV DX,0000H
 MOV BX,0064H
 DIV BX
 MOV CX,DX
 ADD AL,’0’
 MOV DL,AL
 MOV AH,02H
 INT 21H
 MOV AX,CX
 MOV BL,0AH
 DIV BL
 MOV BH,AH
 ADD AL,’0’
 MOV AH,02H
 INT 21H
 ADD BH,’0’
 MOV DL,BH
 MOV AH,02H
 INT 21H
 MOV AX,4C00H
 INT 21H
MYCODE ENDS
END START

SAMPLE INPUTS & OUTPUTS:
 The Date is : 07-08-2015
 The size of RAM is : 1 GB

RESULT

Thus the program to Print RAM size and system date using 8086 was executed

QUESTIONS RELATED TO THE NEXT EXPERIMENT

 1. What is the role of stack?
2. What is the role of Call delay?
3. What is an interrupt vector table of 8086?
4. Which Segment is used to store interrupt and subroutine return address registers?
5. Which microprocessor accepts the program written for 8086 without any changes?

43

C.PHERIPHERALS AND INTERFACING EXPERIMENTS

44

EX. NO: 14
TRAFFIC LIGHT CONTROLLER

OBJECTIVE
 To write and implement the program for traffic light controller using 8085.

ALGORITHM

STEP 1: Init PA &PB as output
STEP 2: Stop all four ends
STEP 3: GO STR signal of North & South, STOP signal of East &West
STEP 4: Alert signal for traffic
STEP 5: GO LEFT signal of North & South
STEP 6: STOP signal of North & South
STEP 7: GO STR signal of East & West
STEP 8: STOP signal of East &West

SOURCECODE:

Label Mnemonics Operands Comments

 MVI A,80H Init PA &PB as output

 OUT 03H

 MVI A,11H Stop all four ends

 OUT 00H

 OUT 02H

 CALL DELAY1

LOOP MVI A,44H

GO STR signal of
North & South,STOP
signal of East &West

 OUT 00H

 CALL DELAY1

 MVI A,22H Alert signal for traffic

 OUT 00H

 CALL DELAY2

 MVI A,99H

GO LEFT signal of
North & South

 OUT 00H

 CALL DELAY1

 MVI A,22H Alert signal for traffic

 OUT 00H

 CALL DELAY2

 MVI A,11H

STOP signal of North
& South

 OUT 00H

 MVI A,44H

GO STR signal of East
& West

 OUT 02H

 CALL DELAY1

 MVI A,22H Alert signal for traffic

45

 02H

 DELAY2

 MVI A,99H

GO Left signal of East
&West

 OUT 02H

 CALL DELAY1

 MVI A,22H Alert signal for traffic

 OUT 02H

 CALL DELAY2

 MVI A,11H

STOP signal of East
&West

 OUT 02H

 JMP LOOP Jump to loop

DELAY1: MVI B,25H Delay of 10 sec.

LP3: MVI C,0FFH

LP2: MVI D, 0FFH

LP1: DCR D

 JNZ LP1

 DCR C

 JNZ LP2

 DCR B

 JNZ LP3

 RET

DELAY2: MVI B,05H Delay of 2 sec

LP6: MVI C,0FFH

LP5: MVI D,0FFH

LP4: DCR D

 JNZ LP4

 DCR C

 JNZ LP5

 DCR B

 JNZ LP6

 RET

SAMPLE INPUTS & OUTPUTS
 Traffic Signal Timing observed for four lane.

RESULT :

Thus the program for traffic light controller using 8085 is implemented and executed
successfully

FEW (MIN. 5) QUESTIONS RELATED TO THE NEXT EXPERIMENT:

1. What is stepper motor?
2. What are the applications of stepper motor?
3. What are the values be given to rotate motor in clock wise direction?
4. What are the values be given to rotate motor in anti clock wise direction?
5. Whether Delay is used in the program of stepper motor are not and why?

46

EX. NO: 15
STEPPER MOTOR

OBJECTIVE

To write and implement the program for stepper motor using 8085

ALGORITHM:
STEP 1: For running stepper motor clockwise and anticlockwise directions Drive the

stepper motor circuitry and introduce delay
STEP 2: Get the first data from the lookup table.
 STEP 3: Initialize the counter and move data into accumulator.
 STEP 4: Decrement the counter is not zero repeat from step(iii)
 STEP 5: Repeat the above procedure both for backward and forward directions.

SOURCE CODE

LABEL MNEMONICS OPCODE COMMENTS

 MVI A,80

Initialize port A as output
port.

 OUT 3 OB

START MVI AFA

 OUT 0 Output code for step o.

 CALL DELAY delay between two steps.

 MVI A, F6

Location reserve for
current Delay

 OUT OO Output code for step 1.

 CALL DELAY delay between two steps.

 MVI A, F5

 OUT OO Output code for step 2.

 CALL DELAY between two steps.

 MVI A, F9.

 OUT OO Output code for step 3.

 CALL DELAY delay between two steps.

 JUMP START

DELAY: LXI D 00 00 Generates a delay.

 CALL DELAY

 LXI D 00 00 Generates a delay.

 CALL DELAY

 RET

47

SAMPLE INPUTS & OUTPUTS
Changing the following contents will change the motor speed.

ADDRESS DATA
2030 11 00 20 AND 2036 TO SIMILAR 11 00 20
CHANGE 11 00 10 TO 11 00 10
CHANGE 11 00 05 TO 11 00 05
CHANGE 11 00 03 TO 11 00 03.

The motor direction depends upon codes FA, F6 , F5 AND F9.Change in following codes
will change the motor direction.

ADDRESS DATA
2005 3E F9 TO 3E FA
200C 3E F5 TO 3E F6
2012 3E F6 TO 3E F5
2019 3E FA TO 3E F9.

RESULT

 Thus the program for stepper motor using 8085 is implemented and executed
successfully

QUESTIONS RELATED TO THE NEXT EXPERIMENT:

1. What is Digital Clock?
2. What are the applications of Digital Clock?
3. What is the formula for frequency?
4. Why clock is required?
5. What pins are used in 8085 to connect the clock?

48

EX. NO:16
DIGITAL CLOCK

AIM

To write an ALP program for displaying the Digital clock.

ALGORITHM
• Create the display macro for string
• Initialise the necessary register with the required values.
• Use a macro to display clock value.
• End the code.

SOURCE CODE
 assume cs: code
 code segment
extern get_time: near
.model small
.stack 100h
.data
time_buf db ‟00:00:00$‟
code
main proc
 mov ax,@data
 mov ds, ax
 lea bx, time_buf
 call get_time
 lea dx, time_buf
 mov ah, 09h
 int 21h
 mov ah, 4ch
 int 21h
main endp
end main

OUTPUT
 10:49:00

RESULT
 Thus the program for displaying the digital clock was executed.

QUESTIONS RELATED TO THE NEXT EXPERIMENT:

1.What is macros?
2.What is TEST instruction?
3.What is LEA instruction?
4.What are status keys in keyboard?
5.What operands we can declare?

49

EX. NO:17
KEYBOARD STATUS

OBJECTIVE

To write an ALP program to display the keyboard status using 8086.

ALGORITHM

Step1: Load the AH register with 02H and call int 11H.Now the 8bits will be set/reset
according to the key position

Step2: The one on every bit will indicate different keys on keyboard
Step3: Extract each bit by using bitwise AND operation and accordingly design code to

display the status.

SOURCE CODE:
PRINT MACRO MSG
 MOV AH, 09H
 LEA DX, MSG
 INT 21H
ENDM
AA MACRO
 MOV AL,Z
ENDM
ASSUME CS:CODE, DS:DATA
DATA SEGMENT
 MZ7 DB 13,10,’INSERT ON $’
 MZ6 DB 13,10,’CAPSLOCK ON $’
 MZ5 DB 13,10,’NUM LOCK ON $’
 MZ4 DB 13,10,’SCROLL LOCK ON $’
 MZ3 DB 13,10,’ALT KEY DOWN $’
 MZ2 DB 13,10,’CTRL KEY DOWN $’
 MZ1 DB 13,10,’LEFT SHIFT KEY DOWN $’
 MZ0 DB 13,10,’RIGHT SHIFT KEY DOWN $’
 Z DB 1
DATA ENDS
CODE SEGMENT
 ASSUME CS:CODE,DS:DATA
START:
 MOV AX, DATA
 MOV DS, AX ;INITIALIZING
 MOV AX, 003H
 INT 10H
 MOV AX, 0000H
 MOV DX, 0000H
 MOV AH, 01H
 INT 21H
 MOV AH, 01H
 INT 21H
 MOV AH, 02H ; GETTING KEYBOARD STATUS
 INT 16H

50

 MOV Z, AL
 TEST AL, 80H ; TESTING FOR KEY STATUS
 JZ LAL
 PRINT MZ7
LA1:
 AA
 TEST AL, 40H
 JZ LA2
 PRINT MZ6
LA2:
 AA
 TEST AL, 20H
 JZ LA3
 PRINT MZ5
LA3:
 AA
 TEST AL, 10H
 JZ LA4
 PRINT MZ4
LA4:
 AA
 TEST AL, 08H
 JZ LA5
 PRINT MZ3
LA5:
 AA
 TEST AL, 04H
 JZ LA6
 PRINT MZ2
LA6:
 AA
 TEST AL, 02H
 JZ LA7
 PRINT MZ1
LA7:
 AA
 TEST AL, 01H
 JZ LA8
 PRINT MZ0
LA8:
 AA
 MOV AX, 4C00H
 INT 21H

CODE ENDS

END START

51

OUTPUT

F:\2IT16>KEY
INSERT ON
CAPSLOCK ON
NUM LOCK ON
SCROLL LOCK ON
LEFT SHIFT KEY DOWN

RESULT:

Thus the program to display the keyboard status was executed.

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	Prepared By
	S.KIRUTHIKA DEVI
	1. What is a counter?
	4. Explain how to calculate execution delay or delay sub-routine?

