
DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

LAB MANUAL

 Academic Year: 2015-16 ODD SEMESTER

Programme (UG/PG) : UG

Semester : I

Course Code : 15CS101L

Course Title : PROGRAMMING LAB

Prepared By

G. SIVAGAMI
(Assistant Professor, Department of Computer Science and Engineering)

FACULTY OF ENGINEERING AND TECHNOLOGY

SRM UNIVERSITY
(Under section 3 of UGC Act, 1956)
SRM Nagar, Kattankulathur- 603203

Kancheepuram District

2

LIST OF EXPERIMENTS & SCHEDULE

Course Code: 15CS101L

 Course Title: PROGRAMMING LAB

Exp.
No. Title Week No.

1 STUDY OF BASIC SCILAB COMMANDS

2 MATRIX CONSTRUCTORS AND OPERATIONS

3 MATRIX BITWISE, RELATIONAL & LOGICAL OPERATIONS

4 CONTROL STRUCTURES (If-Else, If-elseif –else, Select)

5 CONTROL STRUCTURES (for, while, break and continue)

6 GRAPHICS - 2D PLOTS

7 SCILAB – CIVIL APPLICATION PROGRAM (1)

8 SCILAB – CIVIL APPLICATION PROGRAM (2)

9 SCILAB – ELECTRONICS APPLICATION PROGRAM (1)

10 SCILAB – ELECTRONICS APPLICATION PROGRAM (2)

COURSE COORDINATOR HOD

3

HARDWARE AND SOFTWARE REQUIREMENTS

HARDWARE REQUIREMENTS:

No Specific Hardware Requirements

SOFTWARE REQUIREMENTS:

SCILAB Software – Version 5.5.2

4

INTERNAL ASSESSMENT MARK SPLIT UP

Observation : 20 Marks

Mini Project with the Report
(Max. 8 Pages & 3 Students per Batch) : 20 + 5 (Report) Marks

Model Exam : 15 Marks

TOTAL MARKS : 60 Marks

5

STUDY OF BASIC SCILAB COMMANDS

EXP. NO: 1

i. OBJECTIVE: Practicing MATLAB environment with simple exercises to familiarize

Command Window, History, Workspace, Current Directory, Figure window, Edit

window, Shortcuts, Help files.

ii. SOURCE CODE :
Working on general commands on scilab environment

Help – detailed help menu for scilab commands

Who – list all the variables from the variable browser window
Whos - list all the variables with byte size, variable type etc.
Clc – Clears command window
Clear – Removes the variable from memory
Quit – to close the session
Pwd – present working directory
Ls – list the files
Ls -ltr – list the detailed view on the files
Cd - to change the directory
Mkdir – to create a new directory

To work on Special variables / Pre-Defined Variables
%pi – 3.14
Ans
% e = 2.718
%eps – epsilon
%inf – infinity

Basic Scalar & Vector Operations

Creation of Scalar Elements
 Y = [1 4 6]  Declares a row vetor
 yT = [1; 4; 6]  Declares a Column vector
Creation of Vector Elements
 Y = [1 4 6; 2 7 3; 4 1 1]
  Creates a 3*3 matrix

To determine the size / order of the vectors.
 Size(y)

To change the elements in the given vector
vector(i,j) = value

 Performing element by element operations using dot operator

 .*, ./, .^,

6

Linspace[a,b,N]  Vector can be created by evenly spaced points. From a to

b the vector is created by ‘N’ evenly spaced points

 Eg: linspace[0,1,5]  0 0.25 0.5 0.75 1

Transpose of a matrix – y’

ans =

 1. 2. 4.

 4. 7. 1.

 6. 3. 1.

RESULT

Study of basic SCILab commands are worked and executed

7

MATRIX CONSTRUCTORS AND OPERATIONS

EXP. NO: 2

i. OBJECTIVE: To study on basic Matrix Constructors and Operations.

ii. SOURCE CODE :

Zeros(m,n) – creates m rows with n cols

zeros(3,2)

 ans =

 0. 0.

 0. 0.

 0. 0.

 Eye(m,n) – creates identity matrix

eye(2,3)

 ans =

 1. 0. 0.

 0. 1. 0.

 Ones(m,n) – creates matrix with all 1’s for all m rows and n cols

ones(2,2)

 ans =

 1. 1.

1. 1.

 rand(m,n) – creates matrix with random numbers

rand(4,4)

 ans =

 0.2113249 0.6653811 0.8782165 0.7263507

 0.7560439 0.6283918 0.0683740 0.1985144

 0.0002211 0.8497452 0.5608486 0.5442573

 0.3303271 0.6857310 0.6623569 0.2320748

 Max(z) -- returns the largest element in a vector.

Y =

 1. 4. 6.

8

 2. 7. 3.

 4. 1. 1.

max(Y)

 ans =

 7.

 Min(z) - returns the smallest element in a vector.

min(Y)

 ans =

 1.

Sum(z) – returns the sum of elements in a vector

sum(Y)

 ans =

 29.

prod(z) – returns the product of all elements in a vector.

prod(Y)

 ans =

 4032.

Mathematical operations

Sin(z) – Retrieve the sine value for the given matrix / vector

sin(Y)

 ans =

 0.8414710 - 0.7568025 - 0.2794155

 0.9092974 0.6569866 0.1411200

 - 0.7568025 0.8414710 0.8414710

Similar operation can be obtained for Cos, tan, sec, csc, cot. The hyperbolic for sine, cosine

etc can be retrieved using sinh, cosh etc.

9

Inverse of cosine, sine can be obtained using the acos, asin etc

Exp(z) – Returns the exponential, element wise

exp(Y)

 ans =

 2.7182818 54.59815 403.42879

 7.3890561 1096.6332 20.085537

 54.59815 2.7182818 2.7182818

Log10(z) and log(z) provides the base 10 & natural logarithm for the given vector and matix

log(Y)

 ans =

 0. 1.3862944 1.7917595

 0.6931472 1.9459101 1.0986123

 1.3862944 0. 0.

Sqrt(z) provides the square root for the matrix elements.

sqrt(Y)

 ans =

 1. 2. 2.4494897

 1.4142136 2.6457513 1.7320508

 2. 1. 1.

Performing addition, subtraction, multiplication and division for array vectors or matrix

elements

Floating Point operations

Working on floating point operations like ceil, floor, fix, round for both vectors and matrices

nthroot(x,n) -- Is the real vector/matrix of the nth root of the x elements

nthroot(Y,4)

 ans =

 1. 1.4142136 1.5650846

10

 1.1892071 1.6265766 1.316074

 1.4142136 1. 1.

Sign(z) -- returns the matrix made of the signs of z(i,j)

sign(Y)

 ans = 1. 1. 1.

 1. 1. 1.

 1. 1. 1.

Modulo(n,m) – computes n\m and gives the remained.

pmodulo(n,m) – positive arithmetic remainder modulo .

Cat -- Concatenate several arrays

Cat(1,y,z) – concatenates the array / vector ‘y’ with ‘z’ row wise

Y = 1. 4. 6.

 2. 7. 3.

 4. 1. 1.

Z =

 9. 8. 7.

 5. 6. 4.

 3. 2. 1.

cat(1,Y,Z)

ans =

 1. 4. 6.

 2. 7. 3.

 4. 1. 1.

11

 9. 8. 7.

 5. 6. 4.

 3. 2. 1.

Cat(2,y,z) – concatenates the array / vector ‘y’ with ‘z’ column wise

Matrix Analysis Commands

It helps in finding determinant, Rank and sum of eigen values

y = [1 -2; -2 0]

det(y) = -4

rank(y) = 2

trace(y) = 1 [sum(diag(x))]

spec(y)  will provide the eigen values of matrix

 = -1.5615528

 2.5615528

RESULT :

Thus the Matrix constructors and operations are successfully executed

12

MATRIX BITWISE, RELATIONAL & LOGICAL OPERATIONS

EXP. NO: 3

i. OBJECTIVE: To study on Matrix Bitwise operations, Relational Operations and
Logical Operations.

ii. SOURCE CODE :

Relational operators: < <= > >= == ~=
X=5; % X=5*ones(3,3);

X >=[1 2 3;4 5 6;7 8 9];
Output:
T T T
T T F
F F F

x<=[1 2 3; 4 5 6; 7 8 9];
Output:

F F F
F T T
T T T

x<[1 2 3; 4 5 6; 7 8 9];
Output:

F F F
F F T
T T T

x~=[1 2 3; 4 5 6; 7 8 9];
 Output:

T T T
T F T
T T T

LOGICAL OPERATORS:

a=0;b=10;
if a and b
 disp("Condition is true");
else
 disp("Condition is false");
end

13

if a or b
 disp("Condition is true");
end
if (~a)
 disp("Condition is true");
end

exec('C:\Users\admin\Documents\relational.sce', -1)

 Condition is false

 Condition is true

BITWISE OPERATORS:

U = [0 0 1 1 0 1];
V= [0 1 1 0 0 1];
>> U |V
Output:

Ans =
F T T T F T

a = 60; % 0011 1100
b = 13; % 0000 1101

c=bitand(a,b); % 12 = 0000 1100
ans =

 12.

d=bitor(a,b); % 61 = 00111101
ans =

 61.

e= bitxor(a,b); % 49 = 00110001
ans =

 49.

RESULT :

 The study on Relational, logical and bitwise operations on matrices is performed.

14

CONTROL STRUCTURES (If-Else, If-elseif –else, Select)

EXP. NO: 4

i. OBJECTIVE: To write and execute programs that demonstrate on Control
Structures (If-Else, If-elseif –else, Select) using SCI Notes.

ii. ALGORITHM:

STEP 1: Start the program

STEP 2: Get the input from user using input() method.

STEP 3: pmodulo()_gives the positive remainder of the number.

STEP 4: pmodulo(number,2) tells if the number is divisible by 2. By which the the given
number odd or even is determined.

STEP 5: Using select statement multiple cases are executed.

STEP 6: The dayNum returns the number for the given system date ie. Sun is considered
1, Mon = 2 , Tue = 2 etc.

STEP 7: The dayString returns the day ie. Mon,Tue etc.

STEP 8: Using dayString, the different cases are dealt and the statements are dealt
accordingly.

STEP 9: A number is taken as input and checked for positive or negative or zero using the
if-elseif – else condition.

iii. SOURCE CODE :

If- Else Program

To find whether a number is an even number or not

 a=input("Enter a number:");
 if pmodulo(a,2)==0
 disp("Number is even");
 else
 disp("Number is odd");
 end

15

SELECT STATEMENTS:
 To print on what day we are in a week

[dayNum,dayString]=weekday(datenum());
 select dayString

 case "Mon" then
 disp("Start of work week");

 case "Tue" then
 disp("Day2");

 case "Wed" then
 disp("Day3");

 case "Thu" then
 disp("Day4");

case "Fri" then
 disp("Last day of work week");

 else
disp("Weekend");

 end

If-elseif –else condition:
 To determine whether a number is +ve or –ve or zero

number = input("Enter a number:");
if number >0
 disp("positive");
elseif number< 0
 disp("negative");
else
 disp("Zero");
end

iv. SAMPLE INPUTS & OUTPUTS:

If- Else Program

exec('C:\Users\admin\Documents\if.sce', -1)
Enter a number:5

 Number is odd

-->exec('C:\Users\admin\Documents\if.sce', -1)
Enter a number:6

 Number is even

SELECT STATEMENTS:
-->exec('C:\Users\admin\Documents\select.sce', -1)

 Start of work week

16

If-elseif –else condition:

exec('C:\Users\admin\Documents\nestedif.sce', -1)
Enter a number:4

 positive

-->exec('C:\Users\admin\Documents\nestedif.sce', -1)
Enter a number:0

 Zero

-->exec('C:\Users\admin\Documents\nestedif.sce', -1)
Enter a number:-7

 negative

RESULT :

The programs are executed using if-else, select, if-elseif-else statements.

17

CONTROL STRUCTURES (for, while, break and continue)

EXP. NO: 5

i. OBJECTIVE: To write and execute programs that demonstrate on Control
Structures (for, while, break and continue) using SCI Notes.

ii. ALGORITHM:

STEP 1: Start the program.

STEP 2: For the given user input number, the factorial is to be found.

STEP 3: The variable fact is initialized to 1 and the input is stored in variable n.

STEP 4: The for loop is executed till and is multiplied with fact variable repeatedly.

STEP 5: The same functionality is executed using while loop.

STEP 6: For break and continue statement execution, the input is got from the user.

STEP 7: If the input is a positive number, the sum is calculated repeatedly, else it
prompts for input if a negative number is entered.

 STEP 8: If the input is zero, the program is stopped by printing the final sum.

iii. SOURCE CODE :

 FOR LOOP:

To find factorial of given number
function fact = factorial(n)
fact =1;
for i=1:n

fact=fact*i;
end
fprintf('Factorial of %d is %d\n',n,fact);
end

WHILE LOOP:
To find factorial of given number
function fact = factorial(n)
fact =1;
i=1;
while i<=n
 fact=fact*i;
 i=i+1;
end
fprintf('Factorial of %d is %d\n',n,fact);
end

18

BREAK AND CONTINUE STATEMENTS:
 To find sum of all positive numbers entered by user (enter ‘0’ to terminate)

a=1;
sum=0;
while a
 n=input('Enter a number:');
 if n>0
 sum=sum+n;
 elseif n<0
 disp('Enter a positive number.');
 continue;
 else
 break;
 end
end

printf('Sum of all positive numbers is %d',sum);

iv. SAMPLE INPUTS & OUTPUTS:

For loop:

>> factorial(5)

ans =

 120.

While loop:

>> factorial(5)

ans =

 120.

BREAK AND CONTINUE STATEMENTS:
Enter a number:2

Enter a number:-2

 Enter a positive number.

Enter a number:1

Enter a number:0

Sum of all positive numbers is 3

RESULT:

The programs are executed using for, while and break-continue statements.

19

GRAPHICS - 2D PLOTS

EXP. NO: 6

i. OBJECTIVE: To work on basic graphics -- 2D Plots

ii. ALGORITHM:

STEP 1: The x-axis and y-axis range is defined.

STEP 2: Using plot function, the values are plotted.

STEP 3: The title for the graph, x-axis and y-axis label can also be provided.

STEP 4: On top of the previous, various graphs can also be plotted using multiple
plot commands.

STEP 5: The graph gets populated in the figure window.

STEP 6: The sub plots can also be plotted such that the figure window can be
divided either row or column wise and the graphs can be populated.

STEP 7: The pie chart can be generated using the command pie.

iii. SOURCE CODE :

Plotting a single plot on the graph
Defining the x axis range

X = 0:1:10
Y = X.^2-10.*X+15

Plotting the graph
plot(X,Y);

 Providing title, x & y axis label
 title(“X^2-10X+15”);
 xlabel(“X”);
 ylabel(“Y”);

Multiple plots on the same graph

x = 0:1:10;
 y = cos(x);
 y1 = sin(x);
 plot(x,y,x,y1);
 plot(x,y,'ys:',x,y1,'gd--');

20

SUB PLOTS:

f=input('enter the frequency');
a=input('enter the amplitute');
t=0:.01:2;
y=a*sin(2*%pi*f*t);
y1=a*cos(2*%pi*f*t);
y2=t;
subplot(3,1,1);
plot(t,y);
subplot(3,1,2);
plot(t,y1);
subplot(3,1,3);
plot(t,y2);

Pie:

pie([1 2 5]);

iv. SAMPLE INPUTS & OUTPUTS:

PLOTTING A SINGLE PLOT ON THE GRAPH

21

MULTIPLE PLOTS ON THE SAME GRAPH

22

SUBPLOTS:

enter the frequency 2
enter the amplitude 4

PIE:

RESULT :

Thus the two dimensional graphs are plotted using SCILAB commands.

23

SCILAB – CIVIL APPLICATION PROGRAM (1)

EXP. NO: 7

i. OBJECTIVE To develop a program that finds out whether a tank is overflowing or not
wrt the shape of the tank, its dimensions and rate of flow.

ii. ALGORITHM

STEP 1: Assume tank of shape rectangular, cylindrical or any other shape. Assume its
dimensions also.

STEP 2: Calculate volume of the tank. For e.g. Assuming the tank is cylindrical, then
*V_tank = h Where ‘r’ – radius of tank (m) Where ‘h’ – height of tank (m)

STEP 3: Calculate volume of liquid. V_liq = F x t Where ‘F’ - rate of flow (m3 /min)
Where ‘t’ – time taken (min)

STEP 4: Conditions If V_liq > V_tank Tank is Overflow If V_liq < V_tank Tank is not
Overflow

iii. SOURCE CODE

F=input('Enter the Value of Flow Rate:');
t=input('Enter the time to fill the Tank:');
r=input('Enter the Radius of the Tank:');
h=input('Enter the Height of the Tank:');
Vtank=%pi*r*r*h;
disp('Vtank:');
disp(Vtank);
Vliquid=F*t;
disp('Vliquid');
disp(Vliquid);
if Vliquid>Vtank then
 disp('Tank is Overflow');
else
 disp('Tank is not Overflow');
end

iv. SAMPLE INPUTS & OUTPUTS

INPUT
Enter the Value of Flow Rate: 10
Enter the time to fill the Tank: 2
Enter the Radius of the Tank: 3
Enter the Height of the Tank: 4

24

OUTPUT
Vtank:

 113.09734
Vliquid

20.
Tank is not Overflow

RESULT :

Thus the program is executed for checking if the tank is over flown or not.

25

SCILAB – CIVIL APPLICATION PROGRAM (2)

EXP. NO: 8

i. OBJECTIVE: Write a program to find the structural stability of the given truss.

ii. ALGORITHM:

STEP 1: Assume any definite shape (shapes made of straight lines). Examples are: M

STEP 2: Stability of the truss shall be determined using the formula, m = 2j-3

Where ‘m’ – No. of members in the given structure (nos.)

 ‘j’ – No. of joints in the given structure (nos.)

STEP 3: Conditions

m < 2j-3 Unstable [Deficient Truss]

m = 2j-3 Stable or Statically determinate [Perfect Truss]

m > 2j-3 Statically indeterminate [Redundant Truss]

iii. SOURCE CODE :

M=input('Enter the Number of Members:');

J=input('Enter the Number of Joints:');

N=2*J-3;

if M==N then

 disp('The Given Struture is Stable:');

elseif M>N then

 disp('The Given Struture is Indetermine:');

else

 disp('The Given Struture is Unstable:');

end

26

iv. SAMPLE INPUTS & OUTPUTS:

INPUT (Assuming triangle)

Enter the Number of Members:3

Enter the Number of Joints:3

OUTPUT: The Given Structure is Stable

RESULT :

For any given structure, the stability of the structure will be calculated and displayed

27

SCILAB – ELECTRONICS APPLICATION PROGRAM (1)

EXP. NO : 9

Write a scilab program to find the nodal voltages V1, V2 and V3 for the circuit shown below.

ii: ALGORITHM:

STEP 1: using Kirchhoff’s current law the algebraic sum of all the currents at any

node in the circuit equals zero.

STEP2: In nodal analysis, if there are n nodes in a circuit select a reference node, the
other nodes can be numbered from V1 through Vn-1.

STEP3: With one node selected as the reference node, there will be n-1 independent

equations. If we assume that the admittance between nodes i and j is given as
Yij , we can write the nodal equations:

STEP4: Y11 V1 + Y12 V2 + … + Y1m Vm = ∑I1

Y21 V1 + Y22 V2 + … + Y2m Vm = ∑I2
Ym1 V1 + Ym2 V2 + … + Ymm Vm = ∑Im (4.1)
Where m = n – 1

V1, V2 and Vm are voltages from nodes 1, 2 and so on ..., n with respect
to the reference node.

STEP5: ∑Ix is the algebraic sum of current sources at node x.

Equation (4.1) can be expressed in matrix form as

YV I  (4.2)
The solution of the above equation is

V YI where (4.3)

Y is an inverse of Y.

28

In MATLAB, we can compute [V] by using the command

V inv(Y) * I (4.4)
where
inv(Y) is the inverse of matrix Y
The matrix left and right divisions can also be used to obtain the nodal voltages.
The following Scilab commands can be used to find the matrix [V]

V=I\Y (4.5)
or
V Y \ I (4.6)

iii. SOURCE CODE :

PROGRAM
 Y = [0.15 -0.1 -0.05;-0.1 0.145 -0.025;-0.05 -0.025 0.075];
 I = [5; 0; 2];
 V = inv(Y)*I
 fid= mopen('volatage.txt','w');
 mfprintf (fid, 'Nodal voltages V1,V2 and V3 are\n');
 mclose(fid);

iv: SAMPLE INPUTS & OUTPUTS:

INPUT: Y, I (the inputs are there in the program)

OUTPUT: (to see the output just type V and enter in console screen)

V =

 404.28571
 350.
 412.85714

RESULT

The nodal voltages V1, V2 and V3 for the circuit using KCL is verified .

29

SCILAB – ELECTRONICS APPLICATION PROGRAM (2)

EXP. NO: 10

i : OBJECTIVE: Write a scilab program to find the nodal voltages V1, V2 and V3 for the

circuit shown below.

ii: ALGORITHM:

STEP 1: using Kirchhoff’s current law the algebraic sum of all the currents at any node in
the circuit equals zero.

STEP2: In nodal analysis, if there are n nodes in a circuit select a reference node, the other

nodes can be numbered from V1 through Vn-1.

STEP3 : With one node selected as the reference node, there will be n-1 independent

equations. If we assume that the admittance between nodes i and j is given as Yij , we
can write the nodal equations:

STEP4: Y11 V1 + Y12 V2 + … + Y1m Vm = ∑I1

 Y21 V1 + Y22 V2 + … + Y2m Vm = ∑I2
 Ym1 V1 + Ym2 V2 + … + Ymm Vm = ∑Im (4.1)
 Where m = n – 1

V1, V2 and Vm are voltages from nodes 1, 2 and so on ..., n with respect
to the reference node.

STEP5: ∑Ix is the algebraic sum of current sources at node x.

Equation (4.1) can be expressed in matrix form as

30

YV I  (4.2)
The solution of the above equation is

V YI where (4.3)

Y is an inverse of Y.

In MATLAB, we can compute [V] by using the command

V inv(Y) * I (4.4)
where
inv(Y) is the inverse of matrix Y
The matrix left and right divisions can also be used to obtain the nodal voltages.
The following Scilab commands can be used to find the matrix [V]

V=I\Y (4.5)
or
V Y \ I (4.6)

iii. SOURCE CODE :

PROGRAM
 Y = [0.75 -0.2 0 -0.5;-5 1 -1 5;-0.2 0.45 0.166666667 -0.0666666667;0 0 0 1];
 I = [5 ;0 ;0 ;10];
 V = inv(Y)*I
 fid= mopen('volatage.txt','w');
 mfprintf (fid,'Nodal voltages V1,V2,V3 and V4 are\n');
 mclose(fid);

iv: SAMPLE INPUTS & OUTPUTS:

INPUT: Y, I (the inputs are there in the program)

OUTPUT: (to see the output just type V and enter in console screen)
OUTPUT
 Nodal voltages V1,V2,V3,V4 are
V =

 18.110749
 17.915309
 - 22.638436
 10.

RESULT :

 The nodal voltages V1, V2, V3 and V4 for the circuit using KCL is verified .

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	Prepared By
	G. SIVAGAMI

