

SRM Institute of Science and Technology

Faculty of Engineering and Technology

Department of Chemical Engineering

Course Code & Title: 15CH307 TRANSPORT PHENOMENA FUNDAMENTALS

Course Strategy Description

Course description:

This course deals with the fundamentals of transport processes, governing equations and the physics and mathematics of momentum, heat, and mass transfer in Chemical Engineering processes.

Compulsory/Elective course: Compulsory for B.Tech. Chemical Engineering

Credit hours: 3 Credits

Course coordinator(s): Dr. Ashish Kapoor, Associate Professor, Department of Chemical Engineering

Instructor(s):

Name of the instructor	Room number	Email (@ktr.srmuniv.ac.in)	Consultations (day order/periods)
Dr.Ashish Kapoor	PGA 201	ashishkapoor.o	Day – 2: 4 and 5
Ms.R.Thilakavathi	PGA 205	thilakavathi.r	Day – 2: 4 and 5
Ms.E.Poonguzhali	PGA 205	poonguzhali.e	Day – 2: 4 and 5

Relationship to other courses

Course category: Professional core

Prerequisite: 15CH302, 15CH303 Co-requisite: Nil

Following courses: Nil

Text book(s) and/or required materials:

1. Byron R.Bird., Warren E. Stewart and Edwin N. Lightfoot, "Transport Phenomena", 2nd edition, John Wiley & Sons, New York, 2007.

Reference book(s):

- 1. Christie John Geankoplis"Transport Processes and Separation Process Principles (Includes Unit Operations)", 4thEdition,Pearson Education, Prentice Hall, 2003.
- 2. James R. Welty., Charles E. Wicks., Robert E. Wilson. and Gregory L. Rorrer "Fundamentals of Momentum, Heat, and Mass Transfer", 5nd edition, John Wiley &Sons, New York, 2007.
- 3. Robert S. Brodkeyand Harry C.Hershey., Transport Phenomena A Unified Approach, Volume 2, Brodkey Publishing, Columbus, 2001.

Class schedule: B Slot; Four 50 minutes lecture sessions per week, for 15 – 16 weeks

DAY ORDER: HOUR	TIMING
DAY - 2: 1 AND 2	8.00 AM – 9.40 AM
DAY - 4: 3	9.45 AM – 10.35AM
DAY - 5: 9	3.15 PM - 4.05 PM

Instructional Objectives (IOs) and Student Outcomes (SOs)

S.No.	Instructional Objectives	Student Outcomes				es
1	Understand the chemical and physical transport processes and their mechanism.	a				
2	Familiarize various aspects of velocity, temperature and concentration distribution in laminar and turbulent flow.	a				
3	To do heat, mass and momentum transfer analysis.	a	e			
4	Analyze industrial problems along with appropriate approximations and boundary conditions.	a	e			

5	Formulate the differential forms of the equations of change for momentum,	2	٩		
	heat and mass transfer problems for steady-state flows.	а	C		

Teaching plan

Section	Topics	L/T	Text book/chapter	IOs	SOs	Problem solving (Y/N)
UNIT I: VELOCITY DISTRIBUTION IN LAMINAR FLOW		9				
1	Introduction - Generalization of Newton's Law of Viscosity, Pressure and Temperature Dependence of Viscosity.	1	1	1	a	N
2	Introduction - Molecular Theory of the Viscosity of Gases at Low Density, Molecular Theory of the Viscosity of Liquids.	1	1	1	a	N
3	Shell Momentum Balances and Velocity Distributions in Laminar Flow: Shell momentum balances and boundary conditions, Flow of a falling film.	2	1, 2	2-5	a	Y
4	Shell Momentum Balances and Velocity Distributions in Laminar Flow: Flow through a circular tube	2	1, 2	2-5	a	Y
5	Shell Momentum Balances and Velocity Distributions in Laminar Flow: Flow through an annulus	1	1, 2	2-5	a	Y
6	Shell Momentum Balances and Velocity Distributions in Laminar Flow: Flow of two adjacent immiscible fluids, Laminar flow in a narrow slit	2	1, 2	2-5	a	Y
UNIT II:	EQUATION OF CHANGE FOR ISOTHERMAL PROCESS	9				
7	The equation of continuity, The equation of motion	3	1, 2	3,4	a	Y
8	The equations of change in terms of the substantial derivative	1	1	3	a	Y
9	Use of the equations of change to solve flow problems	4	1, 2	4,5	a	Y
10	Dimensional analysis of the equations of change	1	1, 2	3	a	N
	: VELOCITY DISTRIBUTION IN TURBULENT FLOW AND HASE TRANSPORTINISOTHERMAL SYSTEMS	9				
11	Comparisons of laminar and turbulent flows	1	1, 2	2,3	a,e	N

12	Time-smoothed equations of change for incompressible fluids	2	1, 2	2,3	a,e	N
13	The time-smoothed velocity profile near a wall, Empirical expressions for the turbulent momentum flux	1	1	2,3	a,e	N
14	Definition of friction factors, Friction factors for flow in tubes	2	1	2,3	a,e	Y
15	Friction factors for flow around spheres	1	1, 2	2,3	a,e	Y
16	Friction factors for packed columns	2	1, 2, 3, 4	4,5	a,e	Y
UNIT IV	: ENERGY TRANSPORT	9				
17	Thermal Conductivity and the mechanisms of Energy Transport, Temperature and pressure dependence of Thermal conductivity	1	1, 2	3	a,e	N
18	Shell Energy Balances and Temperature Distributions in Solids and Laminar Flow: Shell energy balances; boundary conditions, Heat conduction with an electrical heat source	1	1	3,4	a,e	Y
19	Heat conduction with a nuclear heat source, Heat conduction through composite walls	2	1, 2	3,4	a,e	Y
20	Heat conduction in a cooling fin	1	1	3,4	a,e	Y
21	The Equations of Change for Non isothermal Systems: The energy equation, Special forms of the energy equation	2	1	3,4	a,e	N
22	Steady state heat conduction problem	2	1, 2, 3, 4	5	a,e	Y
UNIT V:	MASS TRANSPORT	9				
23	Diffusivity and the Mechanisms of Mass Transport: Fick's law of binary diffusion (Molecular Mass Transport), Temperature and pressure dependence of diffusivities	1	1, 2	3	a,e	N
24	Concentration Distributions in Solids and in Laminar Flow : Shell mass balances; boundary conditions, Diffusion through a stagnant gas film	2	1	3, 4	a,e	Y
25	Diffusion with a heterogeneous chemical reaction , Diffusion with a homogeneous chemical reaction	2	1	3, 4	a,e	Y
26	Diffusion and chemical reaction inside a porous catalyst	1	1	3, 4	a,e	Y
27	Equations of Change for Multicomponent Systems: The equations of continuity for a multicomponent mixture, Use of the equations of change for mixtures	1	1, 2	3, 4	a,e	Y
28	Analogies between momentum, heat and mass transport	2	1, 2	4	a,e	N

Evaluation methods

S.NO.	Test	Topics covered	Marks	Test/Exam duration (min)
1.	Cycle test – I	Unit I and II	15	90
2.	Cycle test – II	Unit III, IV and V	25	180
3.	Surprise test	Questions from any units	5	20
4.	Assignment	Questions from any units	5	-
5.	Final exam	All the units	50	180

Surprise test

The surprise test will not be announced. The questions for this test will be covered until the previous class.

Home assignments

A few units will have home assignment. All the assignments should be submitted on or before the last date of submission.

Teaching Methodology

Challe	o n d	40112	for	4ha	antina	0011#00
Chair	anu	taik	IOI	uie	enure	course

Prepared by: E.Poonguzhali, Assistant Professor, Department of Chemical Engineering

Date of revision:

Dated: 02/01/2018

Revision no.:

Revised by:

Course Coordinator Academic Coordinator HoD/Chemical