

SRM Institute of Science and Technology Faculty of Engineering and Technology Department of Chemical Engineering Course Code & Title: 15CH308 Process Dynamics, Control and Instrumentation Course Strategy Description

Course description:

This course enables the students to know about control methods and make the students knowledgeable in various types of measuring Instruments used in chemical process industries.

Compulsory/Elective course: Compulsory for B.Tech. Chemical Engineering

Credit hours: 4 credits

Course coordinator(s): Dr.P.Muthamilselvi, Assistant Professor (O.G.), Department of Chemical Engineering **Instructor(s):**

Name of the instructor	Room number	Email (@ktr.srmuniv.ac.in)	Consultations (day order/periods)
Dr.K.Sofiya	PGA 205	sofiya.k@ktr.srmuniv.ac.in	Day – 1: 10
Dr. P.Muthamilselvi	PGA 205	muthamilselvi.p@ktr.srmuniv.ac.in	Day – 3: 10
Ms.R.Thilakavathi	PGA 205	thilakavathi.r@ktr.srmuniv.a.cin	Day – 4: 1 and 2

Relationship to other courses

Course category: Professional core Prerequisite: 15MA202, 15CH303

Co-requisite: Nil

Following courses: Nil

Text book(s) and/or required materials:

1.Donald R. Coughanowr., Steven E. LeBlanc., "Process system Analysis & Control ", 3 rdedition., McGraw Hill, New york, 2009.

2. George Stephanopoulos, "Chemical Process Control: An Introduction to Theory and Practice", Prentice Hall, New Delhi, 1984.

Reference book(s):

3.Peter Harriott, "Process Control " Tata McGraw Hill, New Delhi, 1972.

4. Donald P. Eckman, "Industrial Instrumentation", Wiley Eastern Limited, 2004.

5. William L. Luyben, "Process modeling, simulation, and control for Chemical Engineers", 2 ndedition, McGraw Hill, New York, 1996.

Class schedule: D2 Slot; Four 50 minutes lecture sessions per week, for 15 – 16 weeks

DAY ORDER: HOUR	TIMING
DAY - 1: 10	4.10 PM – 5.00 PM
DAY - 3: 10	4.10 PM – 5.00 PM
DAY - 4: 1 &2	8.AM to 9.40 AM

Instructional Objectives (IOs) and Student Outcomes (SOs)

S.No.	Instructional Objectives	Student Outcomes			
1	Understand the importance of process control in industrial process plants.	а			
2	Understand the use of block diagrams & the mathematical basis for the design and stability of control systems.	а	e		
3	Understand the application of good instrumentation for the effective design of process control loops for process engineering plants.	а			
4	Draw a Process & Instrumentation Diagram and devise simple but effective plant wide control strategies using appropriate methods.	а	k		
5	Design and tune process controllers and specify the required final elements to ensure that well -tuned control is achieved.	а	k		

Teaching plan

Section	Topics	L / T	Text book/chapter	IOs	SOs	Problem solving (Y/N)
Unit – I: LINEAR OPEN LOOP SYSTEMS		13				
1	Basic Concepts of process control, Why process control, Modeling for process dynamics -mathematical tools for modeling, Laplace transform of simple functions, transforms of derivatives.	2	Text book [1] Chapter 1,2,3,4,5,6	1	a	Y
2	Solution of differential equations, inversion by partial fractions	2	Text book [1] Chapter 1,2,3,4,5,6	2	a	Y
3	Physical examples of first - order systems	3	Text book [1] Chapter 1,2,3,4,5,6	2	a	Y
4	Response of first -order systems	3	Text book [1] Chapter 1,2,3,4,5,6	2	a	Y
5	Response of first - order systems in series	1	Text book [1] Chapter 1,2,3,4,5,6	2	a	Y

6	Higher order systems: Second -order and transportation lag	2	Text book [1] Chapter 1,2,3,4,5,6	2	a	Y
UNIT II	: -LINEAR CLOSED LOOP SYSTEMS	12				
7	Introduction to controllers and final control element	1	Text book [1] Chapter 8,9,10,11,12	3	a,e,k	Y
8	Principles of pneumatic and electronic controllers and mechanism of control system & block diagram	2	Text book [1] Chapter 8,9,10,11,12	3	a,e,k	Y
9	Mechanism of controllers	3	Text book [1] Chapter 8,9,10,11,12	5	a,e,k	Y
10	Mechanism of control valves	3	Text book [1] Chapter 8,9,10,11,12	5	a,e,k	Y
11	Dynamic behavior of controllers	3	Text book [1] Chapter 8,9,10,11,12	5	a,e,k	Y
UNIT II AND DE	I: STABILITY, FREQUENCY RESPONSE ANALYSIS CSIGN	11				
12	Concept of stability, definition of stability, stability criterion	1	Text book [1],[2]	1	e,k	Y
13	Stability for linear system: Routh - Hurwitz stability criterion	2	Text book [1],[2]	2	e,k	Y
14	Root locus diagram	3	Text book [1],[2]	2	e,k	Y
15	Design of control system using frequency response: Bode diagram - stability criterion, phase and gain margins	3	Text book [1],[2]	2	e,k	Y
16	Tuning of controller settings: Ziegler Nichols controller settings	2	Text book [1],[2]	2	e,k	Y
UNIT IV: CONTROL SCHEMES AND MICRO PROCESSOR		12				
17	Control systems with single loops: Feedback control systems with examples	2	Text and Reference book [2] [3] [5]	4	k	Ν
18	Control systems with multiple loops: cascade control, selective control systems and split -range control with examples	4	Text and Reference book [2] [3] [5]	3,4	k	Ν
19	Feed forward and Ratio Control with examples	2	Text and Reference book	3,4	k	Ν

					(second to be delivering up only one only	-
			[2] [3] [5]			
20	Control of distillation column: control of composition and	2	Text and Reference book	3,4	k	N
20	pressure	2	[2] [3] [5]			1
	Microprocessor - based controllers: Introduction to PLC's and	-	Text and Reference book	4	k	
21	DCS	2	[2] [3] [5]			Ν
LINITT V	MEASUDINC DEVICES					
UNIT	WIEASURING DEVICES	12				
	Principles of measurements and classification of process			3	k	
22	control instruments	2	Text book [4]			Ν
				3	k	
23	Temperature measuring instruments	2	Text book [4]	5	R	Ν
	Liquid -level measuring instruments	_		3	k	
24		2	Text book [4]	C		Ν
				2	1.	
25	Pressure measuring instruments	2	Text book [4]	3	к	Ν
				2	1.	
26	Composition measuring instruments	2	Text book [4]	3	к	Ν
	Magnumenta of minoresitan all concentration thermol			2	1.	
	Measurements of viscosity, pH, concentration, thermal			3	к	
27	conductivity and humidity of gases.	2	Text book [4]			Ν

Evaluation methods

S.NO.	Test	Topics covered	Marks	Test/Exam duration (min)
1.	Cycle test – I	Unit I and II	15	100
2.	Cycle test – II	Unit III, IV and V	25	180
3.	Surprise test	Questions from any units	5	20
4.	Assignment	Questions from any units	5	-
5.	Final exam	All the units	50	180

Surprise test

The surprise test will not be announced. The questions for this test will be covered until the previous class.

Home assignments

A few units will have home assignment. All the assignments should be submitted on or before the last date of submission. **Teaching Methodology**

Chalk and talk for the entire course

 Prepared by: Dr. K. Sofiya, Assistant Professor (Sr.G.), Department of Chemical Engineering

 Dated:

 Revision no.: 1
 Date of revision:

 Revised by:

Course Coordinator

Academic Coordinator

HoD/Chemical