
 1

15EI302L-MICROCONTROLLER BASED

SYSTEM DESIGN LABORATORY

MANUAL

Department of Electronics and Instrumentation

Engineering

Faculty

of

Engineering

and

Technology
Department

of

Electronics

and

Instrumentation

engineering

SRM Institute of Science & Technology
SRM Nagar , Kattankulathur – 603203,

Kancheepuram District
Tamil Nadu

 2

CONTENTS

S.No. CONTENTS Page No.

1 Mark Assessment details 3

2 General Instructions for Laboratory classes 4

3 Syllabus 5

4 Introduction to the laboratory 7

5 List of Experiments

 5.1 Addition, Subtraction, Multiplication and Division 8

5.2 Finding the maximum value in an array. 28

5.3 Sorting of data. 36

 5.4 BCD-to-Hex conversion and Hex-to-BCD conversion. 44

 5.5 Block data transfer (forward and reverse) 52

 Interfacing with Application Boards 56

 5.6 Traffic light control using 8051 64

 5.7 Stepper motor control using 8051 controller 68

 5.8 Temperature control system using 8051 70

 5.9 LCD Display using 8051 71

 5.10 Seven segment display using nuvoTon (NUC140) board 74

 3

1. MARK ASSESSMENT DETAILS

ALLOTMENT OF MARKS:

Internal assessment = 60 marks

Practical examination = 40 marks

Total = 100 marks

INTERNAL ASSESSMENT (60 MARKS)

Split up of internal marks

Record 5 marks

Model exam 10 marks

Quiz/Viva 5 marks

Experiments 40 marks

Total 60 marks

PRACTICAL EXAMINATION (40 MARKS)

Split up of practical examination marks

Aim and

Procedure
25 marks

Circuit Diagram 30 marks

Tabulation 30 marks

Result 05 marks

Viva voce 10 marks

Total 100 marks

 4

2. GENERAL INSTRUCTIONS FOR LABORATORY CLASSES

1. . Enter the Lab with CLOSED TOE SHOES.

2. Students should wear lab coat.

3. The HAIR should be protected, let it not be loose.

4. Students should come with observation and record note book to the laboratory.

5. Students should maintain silence inside the laboratory.

6. TOOLS, APPARATUS and COMPONENT sets are to be returned before leaving the lab.

7. HEADINGS and DETAILS should be neatly written

i. Aim of the experiment

ii. Apparatus / Tools / Instruments

required

iii. Theory

iv. Procedure / Algorithm / Program

v. Model Calculations/ Design

calculations

vi. Block Diagram / Flow charts/ Circuit

diagram

vii. Tabulations/ Waveforms/ Graph

viii. Result / discussions

8. Experiment number and date should be written in the appropriate place.

9. After completing the experiment, the answer to pre lab viva-voce questions should be neatly

written in the workbook.

10. Be REGULAR, SYSTEMATIC, PATIENT, AND STEADY

 5

15EI302L Microcontroller based System Design Laboratory

L T P C

0 0 2 1

Co-requisite: 15EI302

Prerequisite: NIL

Data Book /

Codes/Standards
NIL

Course Category P PROFESSIONAL CORE ELECTRONICS ENGINEERING

Course designed by Department of Electronics and Instrumentation Engineering

Approval 32nd Academic Council Meeting held on 23rd July, 2016

PURPOSE To develop skills in programming and interfacing applications of microprocessors and

microcontrollers.

INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES

At the end of the course, student will be able to

1. Improve their ability in their programming skills b

2. Equip themselves familiar with interfacing concepts of microprocessors b c d

3. Equip themselves familiar with interfacing concepts of microcontrollers b c d

Session Description of Topic
Conduct

hours

C-D-

I-O
IOs Reference

 General Purpose Programming Exercises Using 8086

1 Addition, Subtraction, Multiplication and Division 3 C,I 1,2 1,2

2 Finding the maximum value in an array. 2 C,I 1,2 1,2

3 Sorting of data. 1 C,I 1,2 1,2

4
BCD-to-Hex conversion and Hex-to-BCD

conversion.
3 C,I 1,2 1,2

5 Block data transfer (forward and reverse) 3 C,I 1,2 1,2

 Interfacing with Application Boards

6 Traffic light control using 8051 3 C,D,I 1,3 1,3

 6

Session Description of Topic
Conduct

hours

C-D-

I-O
IOs Reference

7 Stepper motor control using 8051 controller 3 C,D,I 1,3 1,3

8 Temperature control system using 8051 3 C,D,I 1,3 1,3

9
LCD Display using 8051/ Nu-LB-NUC140

controller
3

10
8 bit ADC and 8 bit DAC. using nuvoTon

(NUC140) board
3

11
Seven segment display using nuvoTon (NUC140)

board

 30

LEARNING RESOURCES

Sl.

No.
REFERENCES

1. Laboratory Manual

2. N. Senthil Kumar, M. Saravanan and S. Jeevananthan, “Microprocessors and Microcontrollers”,

Oxford Publishers,2010..

3. nuvoTon Cortex M0 (Nu-LB-NUC100/140) Driver and Processor Reference Manual;

www.nuvoton.com

Course nature Practical

Assessment Method (Weightage 100%)

In-

semester

Assessment

tool
Experiments Record

MCQ/Quiz/Viva

Voce

Model

examination
Total Experiments

Weightage 40% 5% 5% 10% 60% 40%

End semester examination Weightage : 40%

http://www.nuvoton.com/

 7

4. Introduvction to the laboratory

AIM:

To study about the basic architecture of 8086 microprocessor.

APPARATUS:

8086 micro processor kit

Keyboard

THEORY:

A microprocessor is a multipurpose, programmed clock driven register based system which

takes the input in binary process (arithmetic, logical) and gives the output.

The 8086 is the first 16-bit microprocessor released by Intel which can execute 2.5 million

instructions per second. It has a 20-bit address bus.

The main feature of 8086 which makes it better than 8085 is the presence of a six-byte

instruction queue in which the instructions fetched from the memory are placed before they

are executed.

Architecture of 8086

Image - From Microprocessors and Microcontrollers by N.Senthil Kumar

1. Execution Unit – It includes the ALU (Arithmetic Logical Unit), eight 16-bit general-

 8

purpose registers, 16-bit flag register and a control unit.

Register Organisation ->

8086 consists of 2 types of register: general purpose and special purpose registers.

General purpose register is used for holding data, variables and intermediate results

temporarily and can also be used as counters.

The Execution Unit consists of eight 16-bit general purpose registers – AX, BX, CX, DX,

SP, BP, SI and DI. Among these registers, AX, BX, CX, DX can be divided into two 8-bit

registers – AH and AL, BH and BL, CH and CL and DH and DL. The general purpose

registers can be used to store 8-bit or 16-bit data during program execution.

General Purpose Registers --

(i) AX/AL: It is used as the accumulator with the lower 8-bit stored in AL and the

higher 8-bits stored in AH. It is used in the multiply, divide and input/output

operations.

(ii) BX: The BX register holds the offset address of a location in the memory. It is also

used to refer to the data in the memory using look-up table technique using XLAT

instruction.

(iii) CX/CL: It is used as default counter in string and loop instructions

(iv) DX: It is used to hold a part of the result during a multiplication operation and a

part of the dividend before a division operation.

Pointers and Index Registers –

The index registers are used as general purpose registers as well as for offset storage.

(i) SP: The stack pointer is used to hold the offset address of the data stored at the top

of the stack segment. It is used with the SS to decide the address at which the data

is to be pushed or popped.

(ii) BP: It is also called base pointer. It is also used to hold the offset address of the

data to be read from or written into stack segment.

(iii) SI: It is also called as source index register. It is used to hold the offset address of

the source data in the data segment, while executing string instructions.

(iv) DI: It is also called as destination index. It is used to hold the offset address of the

destination data in the extra segment, while executing string instructions.

Flag Registers –

The flags in the flag register can be classified into status flags and control flags. The flags

CF, PF, AF, ZF, SF and OF are called status flags, as they indicate the status of the result

that is obtained after the execution of an arithmetic or logic instruction. The flags DF, IF,

and TF are called control flags, as they control the operation of the CPU.

(i) CF: The carry flag holds the carry after an 8-bit or 16-bit addition or the borrow

after an 8-bit or 16-but subtraction operation.

(ii) PF: If the lower eight bits of the result have an odd parity (i.e., odd number of 1s),

parity flag is set is to 0. Otherwise, it is set to 1.

(iii) AF: The auxiliary flag holds the carry after addition or the borrow after subtraction

of the bits in the bit position 3.

(iv) ZF: The zero flag indicates that the result of an arithmetic or logic operation is

 9

zero. If z=1, the result is zero and if z=0, the result is not zero.

(v) SF: Sign flag holds the arithmetic sign of the result after an arithmetic or logical

instruction is executed.

(vi) TF: Trap flag is used to debug a program using the single-step technique. If TF=1,

the 8086 gets interrupted after the execution of each instruction in the program.

(vii) DF: Direction flag selects either the increment or decrement mode for the DI

and/or SI, during the execution of string instructions.

(viii) IF: Interrupt flag controls the operation of the INTR interrupt pin of the 8086.

(ix) OF: An overflow flag indicates that the result has exceeded the capacity of the

machine.

Image – Flag register in a 8086 microprocessor

2. Bus Interface Unit – It includes the adder for address calculations, four 16-bit registers

(CS, DS, SS, ES) and a 16-bit instruction pointer, a six-byte instruction queue and bus

control logic.

Special purpose registers are used as segment registers, pointers, index registers or as

offset storage registers for particular address modes.

The memory consists of 4 types of registers,

Code segment registers (CS), data segment register (DS), stack segment registers (SS) and

extra segment registers (ES). CS stores the executable program, DS stores the data. The

SS holds the stack of the program, which is needed while executing the CALL and RET

instructions and also to handle interrupts.

The CPU uses the stack for temporarily storing the important data. While addressing any

memory location, the physical address is detected from 2 parts, the first is segment

address and the second is offset address.

Pin Diagram and Explanation of 8086

(i) AD15-AD0: These pins act as the multiplexed address and data bus of the

microprocessor. Whenever the ALE (address latch enable) pin is HIGH, these pins

 10

carry the address, and whenever it is LOW, these pins carry data.

(ii) A19/S6-A16/S3: These pins are multiplexed to provide the address signals A19-A16

and the status bits S6-S3. When ALE =1, these pins carry the address and ALE=0,

they carry the status lines.

(iii) NMI: The non-maskable interrupt input is a hardware interrupt. It cannot be disabled

by software. It is a positive edge-triggered interrupt and when it occurs, the type 2

interrupt occurs in the 8086.

(iv) INTR: The interrupt request is a level triggered hardware interrupt, which depends on

the status of IF. When IF=1, INTR is held HIGH, the 8086 gets interrupted.

(v) CLK: The clock signal must have a duty cycle of 33% to provide a proper internal

timing for the 8086.

(vi) 𝑩𝑯𝑬̅̅ ̅̅ ̅̅ ̅/S7: The Bus High Enable pin is used in the 8086 to enable the most significant

data bus during a read/write operation. The state of the status line S7 is always logic

1.

(vii) MN/𝑴𝑿̅̅ ̅̅ ̅: This pin is used to select either the minimum mode or the maximum mode

operation in the 8086.

(viii) 𝑹𝑫̅̅̅̅̅: Whenever the read signal is at logic 0, the 8086 reads the data from the memory

or I/O device through the data bus.
(ix) READY: This input is used to insert waits states into the timing cycle of the 8086. If

the READY pin is at logic 1, it has no effect on the operation of the microprocessor.

If it is at logic 0, the 8086 enters the wait state and remains idle.
(x) M/𝑰𝑶̅̅̅̅ : This pin indicates whether the 8086 is performing memory read/write

operation (M/𝑰𝑶̅̅̅̅ = 𝟏) or I/O read/write operation (M/𝑰𝑶̅̅̅̅ = 𝟎).

(xi) HOLD: The Hold input requests a direct memory access and is generated by the DMA

controller. If the Hold signal is at logic 1, the 8086 completes the execution of the

current execution and places its address, data and control buses in the high impedance

state. If the Hold signal is at logic 0, the 8086 executes instructions normally.

Image – Pin diagram of 8086 microprocessor

 11

RESULT:

The assembly language program for 8 bit addition of two numbers was executed

successfully by using 8085 micro processing kit.

Prepared by

Dr. K. A. Sunitha

 12

Exercise Number 1a

Title of the Experiment: ADDITION OF TWO 8-BIT NUMBERS

Date of the Exercise:

AIM:

(a) To write and execute an assemble language program to add two 8-bit data.

(b) To write and execute an assemble language program to subtract two 8-bit data.

APPARATUS REQUIRED:

1. Microprocessor 8086 kit.

2. Keyboard

ALGORITHM:

Step 1 : Start the microprocessor

Step 2 : Initialize the carry as‘Zero’

Step 3 : Load the first 8 bit data into the accumulator

Step 4 : Copy the contents of accumulator into the register ‘B’

Step 5 : Load the second 8 bit data into the accumulator.

Step 6 : Add the 2 - 8 bit data and check for carry.

Step 7 : Jump on if no carry

Step 8 : Increment carry if there is

Step 9 : Store the added requesting accumulator

Step 10 : More the carry value to accumulator

Step 11 : Store the carry value in accumulator

Step 12 : Stop the program execution.

 13

FLOW CHART

START

Intialise the carry as zero

Load the 1st 8 bit number

Transfer the 1st number to register ‘B’

Load the 2nd 8 bit number

Move the contents of carry into accumulator

Increment carry by one

No

Checkfor

carry?
Yes

 END

END

Store the value of carry in accumulator

Transfer and Add the contents of A and B

Store the added value in accumulator

 14

PROGRAM:

Address Mnemonics Comments

4100 MOV AL,01 Initialize AL

4102 MOV BL, 02 Initialise BL

4105 MOV CL, 00 Initialise CL for carry

4106 ADD AL,BL Add AX and BX

4109 JNC100C

Checks for Carry at 100C

410A INC CL Increment CL

410D MOV[1300],A
L

Move AL to address

410E MOV AL,CL Move CL to AL

4111 MOV[1301],A
L

Move Al to 1301 location

4112 INT3 End program.

 15

Input Without

carry

Input Address Value

4300 04

4301 02

Output

Output Address Value

4302 06

4303 00 (carry)

With carry

Input Address Value

4300 FF

4301 FF

Output Address Value

4302 FE

4303 01 (carry)

Calculation 1111 1111

1111 1111

(1) 1111 1110

========

= F E

RESULT:

The assembly language program for 8 bit addition of two numbers was executed

successfully by using 8085 micro processing kit.

Prepared by

Dr. K. A. Sunitha

 16

Exercise Number 1b

Title of the Experiment: SUBTRACTION OF TWO 8-BIT NUMBERS

Date of the Exercise:

AIM:

To write an assembly language for Subtracting two 8 bit numbers by using

microprocessor kit.

APPARATUS:

8086 microprocessor

(05V) DC battery

ALGORITHM:

1. Load the first data from memory to accumulator.

2. Move the accumulator content to B register.

3. Load the second data from memory to accumulator.

4. Clear C register.

5. Subtract the content of B register to accumulator.

6. Check carry flag if carry is set go to step7 else to step8.

7. Increment C register.

8. Store the answer in memory.

9. Move the C register content to accumulator and store it in memory.

10. Stop.

 17

FLOW CHART

 YES

NO

MOVE TWO INPUTS INTO TWO REGISTERS

START

INITIALIZE A COUNTER (REGISTER C) AS 00

SUBTRACT THE TWO INPUTS

JUMP NO

CARRY

INCREMENT COUNTER

STORE ACCUMULATOR CONTENT (i.e. RESULT) IN MEMORY

LOCATION

STORE COUNTER CONTENT IN ANOTHER MEMORY LOCATION

END

 18

TABULATION:

ADDRESS MNEMONICS COMMENT

8000 MOV AX, 0080 ;MOVE 80 TO REGISTER AX

8001

8002 MOV BX, 0080 ;MOVE 80 TO REGISTER BX

8003

8004 MOV CL,00 ;MOVE 00 TO REGISTER CX

8005

8006 SUB AX,BX SUBTRACT BX FROM AX

8007 JNC100C ;JUMP NO CARRY TO 100C

8008

8009

800A INR CL ;INCREMENT REGISTER CL

800B MOV[1500],AL MOVE AX TO [1500]

800C

800D

800E MOVAX,CX ;MOVE CONTENTS OF CX TO AX

800F MOV[1501],AL MOVE AX VALUE TO 1501

8010

8011

8012 INT3 TERMINATE

 19

RESULT:

SUBTRACTION OF TWO 8-BIT DATA

INPUT OUTPUT

MEMORY LOCATION CONTENT MEMORY LOCATION CONTENT

8001 08 1500 00

8003 09 1501 01

Thus subtraction of two 8-bit numbers was done and results were verified.

Prepared by

Dr. K. A. Sunitha

 20

Exercise Number: 1c

Title of the Experiment: MULTIPLICATION OF TWO 8-BIT NUMBERS

Date of the Exercise:

AIM:

 To write and execute an assemble language program to multiply two 8-bit data.

APPARATUS REQUIRED:

1. Microprocessor 8085 kit.

2. Manual.

ALGORITHM:

1. Load the first data from memory to B register.

2. Load the second data from memory to C register.

3. Initialize A register with zero.

4. Add the content of B register to accumulator.

6. Decrement C register.

7. Check zero flag if zero is set go to step8 else to step5.

8. Store the sum in memory.

9. End the program and execute it to display the result.

 21

FLOW CHART

 NO

MOVE TWO INPUTS INTO TWO REGISTERS (B&C)

START

INITIALIZE THE REGISTER A AS 0

ADD B CONTENT WITH A CONTENT

CHECK FOR

ZERO

DECREMENT C REGISTER

END

STORE THE RESULT IN AN ADDRESS

 22

TABULATION:

ADDRESS MNEMONICS COMMENT

8000 MOV CL,00 CLEAR CL REGISTER FOR

CARRY

8001

8002 MOV AL,01 MOV

8003

8004 MVI A,00 ;MOVE 00 TO REGISTER C

8005

8006 ADD B ;ADD (A)+(B) AND STORE

IN A

8007 DCR C ;DECREMENT REGITER C

8008 JNZ ;JUMP NO ZERO TO 8006

8009 06

800A 80 ;INCREMENT REGISTER C

800B STA 8200 ;STORE (A) IN 8200

800C 00

800D 82

800E HLT ;HALT

 23

RESULT:

ADDITION OF TWO 8-BIT DATA

INPUT OUTPUT

MEMORY LOCATION CONTENT MEMORY LOCATION CONTENT

8001 03 8200 06

8003 02

Thus multiplication of two 8-bit numbers was done and result was verified.

Prepared by

Dr. K. A. Sunitha

 24

Exercise Number: 1d

Title of the Experiment:DIVISION OF TWO 8-BIT NUMBERS

Date of the Exercise:

AIM: To write and execute an assemble language program to divide two 8-bit data.

APPARATUS REQUIRED:

1. Microprocessor 8085 kit.

2. Manual.

3. Op code sheet.

ALGORITHM:

1. Load the first data from memory to accumulator.

2. Move the accumulator content to B register.

3. Load the second data from memory to accumulator.

4. Initialize C register with zero.

5. Compare the numbers to check for carry.

6. Subtract the two numbers

7. Increment C register if there is a carry.

8. Check whether repeated subtraction is over.

9. Store the difference in memory.

10. Move the C register content to accumulator and store it in memory.

11. Stop.

 25

FLOW CHART

STORE THE ACCUMULATOR VALUE IN AN

ADDRESS LOCATION AND COUNTER VALUE

IN NEXT ADDRESS LOCATION

MOVE TWO INPUTS INTO TWO REGISTERS

START

INITIALIZE A COUNTER (REGISTER C) AS 00

COMPARE THE NUMBERS IN B WITH A

CHECK FOR

CARRY

SUBTRACT A-B AND STORE IN A

INCREMENT C

INCREMENT C REGISTERAND JUMP TO 4006

END

 26

TABULATION:

ADDRESS LABEL MNEMONICS OP-CODE COMMENT

4000 MVI A,04 3E MOVE 04 TO

ACCUMULATOR

4001 04

4002 MVI B,02 06 MOVE 02 TO B REGISTER

4003 02

4004 MVI C,00 0E MOVE 00 TO REGISTER C

4005 00

4006 CMP B B8 COMPARE THE DATA IN

B WITH A

4007 JC 400F DA JUMP TO 400F IF CARRY

IS PRESENT

4008 0F

4009 40

400A SUB B 90 SUBTRACT A-B

400B INR C 0C INCREMENT C REGISTER

400C JMP4006 C3 JMP TO 4006

400D 06

400E 40

400F STA 4100 32 STORE THE DIFFERENCE

IN 4100

4010 00

4011 41

4012 MOV A,C 79 MOVE DATA IN C TOA

4013 STA 4101 32 STORE DATA IN A TO

4101

4014 01

4015 41

4016 HLT 76 STOP

 27

RESULT:

DIVISION OF TWO 8-BIT DATA

INPUT OUTPUT

MEMORY

LOCATION

CONTENT MEMORY LOCATION CONTENT

4001 04 4100 00

4003 02 4101 02

Thus division of two 8-bit numbers was done and results were verified.

Prepared by

Dr. K. A. Sunitha

 28

Exercise Number 2

Title of the Experiment: FINDING THE MAXIMUM VALUE OF AN ARRAY

Date of the Exercise:

AIM: To sort the numbers in 8086 and obtain

a) smallest number

b) largest number

APPARATUS REQUIRED:

1. 8086 Trainer Kit

2. Keyboard

A) Smallest Number:-

ALGORITHM:

1. Set the SI and DI values.

2. Set CL as counter.

3. Increment SI.

4. Move content to AL.

5. Decrement CL.

6. Increment SI.

7. Compare the content with that of AL.

8. If no borrow, JUMP.

9. If content present, move content to AL.

10. Decrement CL.

11. Jump if no zero.

12. On obtaining largest number, move to DI.

13. Stop the program.

 29

FLOW CHART

COMPARE SI

CONTENT WITH

AL

CHECK FOR

BORROW

MOVE SI CONTENT TO AL

DECREMENT

CL

CHECK FOR ZERO

MOVE AL TO DI

STOP

Start

LOAD 1500 IN SI

LOAD 1600 IN DI

MOVE SI CONTENT

IN CL

INCREMENT SI

MOVE SI CONTENT

TO AL

DECREMENT CL

INCREMENT SI

 30

;

PROGRAM:

Address Label Mnemonics Comments

1200

1204

1207

1209

120A

120C

120D

120E

1210

1213

1215

1216

1219

121B

Loop 2

Loop 1

MOV SI, 1580

MOV DI, 1680

MOV CL, [SI]

INC SI

MOV AL, [SI]

DEC CL

INC SI

CMP AL, [SI]

JNB

MOV AL, [SI]

DEC CL

JNZ

MOV[DI], AL

INT 3

SI becomes 1508

DI becomes 1608

Move [1508] to CL

Increment SI

Move [1509] to AL

Decrement CL

Increment SI

Compare

Jump if no borrows

Move [150A] to AL

Decrement CL

Jump if no zero

Move AL to [DI]

Stop

 31

RESULT:

Input Output

Address Input Address Output

1580

1581

1583

1584

1585

05

01

03

08

09

1600 09

Thus a set of numbers were sorted and the largest number was obtained.

Prepared by

Vibha.k

 32

B) Largest Number:-

ALGORITHM:

1. Load SI with 1500 and DI with 1600.

2. Move SI content to CL and increment it.

3. Move SI content to AL.

4. Decrement CL.

5. Increment SI.

6. Compare the content of SI with that in AL.

7. Jump if borrow, to 1016.

8. Move the SI content in AL.

9. Decrement CL.

10. Jump if no zero.

11. Move the AL content in the address of DI.

12. Stop the program.

 33

FLOW CHART

Start

Move 1580 to SI

Move 1680 to DI

Move [SI] to CL

INCREMENT

SI

MOVE [SI] TO

AL

DECREMENT

CL

INCREMENT SI

COMPARE SI

CONTENT WITH AL

CHECK FOR BORROW

MOVE SI CONTENT TO AL

DECREMENT

CL

CHECK FOR

ZERO

MOVE AL TO DI

STOP

 34

PROGRAM:

Address Label Mnemonics Comments

1000

1003

1006

1008

100A

100C

100D

100F

1011

1014

1016

1017

101A

101C

Loop 2

Loop 1

MOV SI, 1500

MOV DI,1600

MOV CL, [SI]

INC SI

MOV AL, [SI]

DEC CL

INC SI

CMP AL, [SI]

JB 1016 (loop 1)

MOV AL, [SI]

DEC CL

JNZ 100D(loop 2)

MOV[DI], AL

INT 3

Load SI with 1500

Load DI with 1600

Move SI content in CL.

Increment SI

Move SI content in AL

Decrement CL

Increment SI

Compare SI content with AL

Jump if no borrows

Move SI content in AL

Decrement CL

Jump if no zero

Move AL in DI

Stop

 35

RESULT:

Input Output

Address Input Address Output

1500

1501

1502

1503

1504

1505

05

01

02

03

04

08

1600 01

Thus a set of numbers were sorted and the smallest number was obtained.

 Prepared by

Vibha.k

 36

Exercise Number: 3

Title of the Experiment: SORTING OF DATA

Date of the Exercise:

AIM:

 To arrange the given set of numbers in ascending and descending order.

APPARATUS REQUIRED:

 8086 kit

 Keyboard

ASCENDING ORDER :-

ALGORITHM:

Step 1 : Set 1580 as SI

Step 2 : Move SI content to CH counter

Step 3 : Decrement CH

Step 4 : Move SI content to CL

Step 5 : Move 1500 to SI

Step 6 : Increment SI

Step 7 : Move SI content to AL

Step 8 : Increment SI

Step 9 : Compare the SI content with AL

Step 10 : If borrow jump

Step 11 : Move SI content to BL

Step 12 : Decrement SI

Step 13 : Move BL content to SI

Step 14 : Increment SI

Step 15 : Decrement CL

Step 16 : Jump if no zero

Step 17 : Decrement CH

Step 18 : Jump if no zero

Step 19 : Stop the program

 37

FLOW CHART

 38

TABULATION :

ADDRESS LABEL MNEMONICS COMMENTS

1001 MOV SI, 1580 Move 1580 to SI

1004 MOV CH, [SI] Move [SI] in CH

1006 DEC CH Decrement CH

1007 MOV CL, [SI] Move [SI] in CL

1009 Loop 3 MOV SI,1500 Move 1500 in SI

100C INC SI Increment SI

100D Loop 2 MOV AL, [SI] Move [SI] in AL

100F INC SI Increment SI

1012 CMP AL, [SI] Compare [SI] with AL

1014 JB 101C Jump if borrow

1017 MOV BL, [SI] Move [SI] to BL

1018 MOV [SI], AL Move AL in [SI]

1019 DEC SI Decrement SI

101A MOV [SI], BL Move BL in [SI]

101B INC SI Increment SI

101C Loop1 DEC CL Decrement CL

101D JNZ 100D Jump if no zero

1020 DEC CH Decrement CH

1021 JNZ Jump if no zero

1024 INT 3 Stop the program

 39

RESULT:

INPUT OUTPUT

ADDRESS INPUT ADDRESS OUTPUT

Thus sorting of numbers was done in ascending order successfully.

 Prepared by

Vibha.k

 40

DESCENDING ORDER :-

ALGORITHM:

 Move 1580 to SI

 Move the content of SI to CH

 Decrement CH

 Move SI content to CL

 Move 1500 to SI

 Increment SI

 Move SI content to AL

 Increment SI

 Compare the SI content with that in AL

 Jump if no borrow

 Move AL content to SI

 Decrement SI

 Increment SI

 Decrement CL

 Jump if no zero

 Decrement CH

 Jump if no zero

 Stop the program

 41

FLOW CHART

 42

TABULATION:

Address Label Mnemonics Comments

1001 MOV SI,1580 Move 1580 to SI

1004 MOV CH,[SI] Move [SI] to CH

1006 DEC CH Decrement CH

1007 MOV CL,[SI] Move [SI] to CL

1009 Loop3 MOV SI,1500 Move 1500 to SI

100C INC SI Increment SI

100D Loop2 MOV AL,[SI] Move [SI] to AL

100F INC SI Increment SI

1012 CMP AL,[SI] Compare AL with [SI]

1014 JB 101C Jump if borrow

1017 MOV BL,[SI] Move [SI] to BL

1018 MOV [SI],AL Move AL to [SI]

1019 DEC SI Decrement SI

101A MOV [SI],BL Move BL to [SI]

101B INC SI Increment SI

101C Loop1 DEC CL Decrement CL

101D JNZ 100D Jump if no zero

1020 DEC CH Decrement CH

1021 JNZ 1009 Jump if no zero

1024 INT3 Terminate

 43

RESULT:

INPUT OUTPUT

ADDRESS INPUT ADDRESS OUTPUT

Thus sorting of numbers in descending order was done successfully.

Prepared by

Vibha.k

 44

Exercise Number: 4

Title of the Experiment: CODE CONVERSIONS USING 8086

Date of the Exercise:

AIM:

(a)To write and execute an assemble language program to perform code conversion for

BCD to BINARY

(b)To write and execute an assemble language program to perform code conversion for

BINARY TO BCD

APPARATUS REQUIRED:

4. Microprocessor 8086 kit.

5. Manual.

(a) CODE CONVERSION FOR BCD TO BINARY:-

ALGORITHM:

Step 1 : Start the microprocessor.

Step 2 : Move data ax and bcd data to dx and ax

Step 3: Perform and operation between o7 and bcd input

Step 4 : Move data ax and bcd data bx and ax

Step 5 : Perform multiplication by 10

Step 6 : Add the content of B register to accumulator.

Step 7: Perform and operation

Step 8: Perform addition to get lsb

Step 9: Move ax value to bin and 4ch value to a register

Step10: Sto

 45

FLOW CHART

 YES

 NO

MOVE DATA AX AND BCD DATA TO DX

AND AX

START

PERFORM AND OPERATION BETWEEN O7

AND BCD INPUT

MOVE DATA AX AND BCD DATA BX AND AX

PERFORM

MULTIPLICA

TION BY 10

PERFORM AND OPERATION

MOVE AX VALUE TO BIN AND 4CH VALUE TO A REGISTER

 PERFORM ADDITION TO GET LSB

END

 46

TABULATION:

ADDRES

S

MNEMONICS COMMENT

1000 MOV

AX,DATA

STORE DATA AX

1001

1003 MOV DX,AX MOVE BCD DATA TO AX

1003

1005 MOV AX,BCD PERFORM AND OPERATION

BETWEEN

1005

1007 AND AX,07H 07 AND INPUT BCD

1009 MOV BX,AX MOVE DATA TO BX

1008

1009

100B MOV AX,BX MOVE THE BCD DATA TO AX

100D AND AX,0F0 PERFORM THE AND WITH

0F0H FOR SHIFTING

OPERATION

100C

100D

100F MOV CX,0AH 10 IN DECIMAL

1012 MUL CX PERFROM MULTIPILICATION

BY 10

1010

1011

1013 ADD AX,BX PERFROM ADD OPERATION

TO GET LSB

1015 MOV BIN,AX MOV RESULT TO BINARY

1017 MOV AH,4CH MOVE THE VALUE

1019 INT 21H STOP THE EXECUTION

 47

RESULT:

BCD to Binary

INPUT OUTPUT

MEMORY

LOCATION

CONTENT MEMORY

LOCATION

CONTENT

1001 80 1300 00

1003 80 1301 01

Thus BCD to BINARY conversion was verified.

Prepared by

Vibha.k

 48

(b) CODE CONVERSION FOR BINARY TO BCD:-

ALGORITHM:

Step 1 : Start the microprocessor.

Step 2: Move data to ax.

Step3: Move data of hexadecimal to binary cl register.

Step4: Move data ax and bcd data cl and ax.

Step5: Perform divison for register.

Step6: Perform addition operation for ax.

Step7: Perform division to get lsb.

Step8: Move ax value to 4ch and binary value to a register

Step9: Stop

 49

FLOW CHART

 YES

NO

MOVE DATA TO AX AND AX TO DS

START

MOVE DATA OF HEXADECIMAL TO BINARY

CL REGISTER

MOVE DATA AX AND BCD DATA CL AND AX

PERFORM

DIVISON

FOR

REGISTER

PERFORM ADDITION OPERATION FOR AX

MOVE AX VALUE TO 4CH AND BINARY VALUE TO A

REGISTER

 PERFORM DIVISION TO GET LSB

END

 50

TABULATION:

ADDRES

S

MNEMONICS COMMENT

1000 MOV

AX,DATA

MOVE DATA TO AX REGISTER

1002

1003 MOV DS,AX MOVE AX DATA TO DS

1004

1005 MOV AX,BIN MOVE THE BINARY TO AX

1005

1007 MOV CL,64H MOVE THE DATA OF

HEXADECIMAL TO CL

REGISTER

1009 DIV CL PERFORM DIVISON

OPERATION

1008

1009

100B MOV

BCD+1,AL

MOVE DATA TO

ACCUMULATOR

100D MOV AL,AH

100C

100D

100F MOV AH,00H MOVE THE DATA TO AH

REGISTER

1012 MOV CL,0AH MOVE OAH TO CL REGISTER

1010

1011

1014 DIV CL PERFORM DIVISON

OPERATION FOR CL

1015 MOV CL,04 MOVE 04 TO CL REGISTER

1017 ROR AL,CL ROTATE RIGHT CL TO AL

REGISTER

1019 ADD AL,AH PERFORM ADD OPERATION

1021 MOV AH,4CH MOVE HEXADECIMAL TO AH

REGISTER

1025 INT 21H STOP

 51

RESULT:

Binary to BCD

INPUT OUTPUT

MEMORY

LOCATION

CONTENT MEMORY

LOCATION

CONTENT

1001 80 1300 00

1003 80 1301 01

Thus Binary to BCD conversion was verified

 Prepared by

Vibha.k

 52

Exercise Number: 5

Title of the Experiment: BLOCK DATA TRANSFER IN 8086
Date of the Exercise:

AIM:

(a) To write and execute an assemble language program to block transfer in

forward order.

(b) To write and execute an assemble language program to block transfer in

reverse order.

APPARATUS REQUIRED:

 1. Microprocessor 8086 kit.

2. Manual.

a) BLOCK TRANSFER IN FORWARD ORDER

ALGORITHM:

1. Start the program

2. Initialization of segment register, counter and program

3. Move a byte from source to destination

4. Upgrade pointer, decrement counter

5. Continue the loop if count is not zero

6. Stop if count is not zero

 53

FLOW CHART

Start

Store Source Index values in SI and Destination

Source values DI

Store counter in CX

Take a source byte in AL and move it to destination

Increment source pointer,destination pointer,decrement counter

Repeat process until counter is zero

Stop

 54

TABULATION:

ADDRESS

MNEMONICS

COMMENT

1000 MOV SI,1500 Move pointer to string source

1003 MOV DI,1600 Move the pointer to

destination string

1006 MOV CX,05 Count for length of string

1008 MOV AL,[SI] Take a source byte in AL

100A MOV [DI],AL Move it to destination

100C INC SI Increment source pointer

100D INC DI Increment destination pointer

100E DEC CX Decrement count by 1

100F JNZ Continue if count is not zero

1010 INT3 Stop if count is zero

 55

RESULT:

DATA TRANSFER

INPUT OUTPUT

MEMORY LOCATION CONTENT MEMORY LOCATION CONTENT

1500 01 1600 01

1501 02 1601 02

1502 03 1602 03

1503 04 1603 04

1504 05 1604 05

Thus the block data transfer in forward order is done.

 56

b) BLOCK TRANSFER IN REVERSE ORDER

ALGORITHM:

1. Start the program and store the source address in the source index.

2. Store the destination address in destination index.

3. Set the counter value.

4. Set directional flag to 1 for decrement order.

5. Store counter value in CX.

6. Repeat the process until CX=0.

7. END of the program.

TABULATION:

ADDRESS

MNEMONICS

COMMENT

1000 MOV SI Store the source address in

source index

1001 00

1002 11

1003 MOV DI Store the destination in DI

1004 04

1005 12

1006 STD Set direction flag for

decrement

1007 01

1008 MOV CX Store the value in CX register

1009 05

100A REPE Repeat the process until CX=0

100B MOVSB

100C INT3 End the program

 57

RESULT:

DATA TRANSFER

INPUT OUTPUT

MEMORY LOCATION CONTENT MEMORY LOCATION CONTENT

1100 01 1200 05

1101 02 1201 04

1102 03 1202 03

1103 04 1203 02

1104 05 1204 01

Thus the block data transfer in reverse order is done.

 Prepared by

K.A.Sunitha

 58

Exercise Number: 6

Title of the Experiment: TRAFFIC LIGHT CONTROL USING 8051

Date of the Exercise:

Aim:

To interface traffic light controller with 8051 microcontroller using 8255.

Apparatus required:

Microcontroller 8051 kit

8255 peripheral device

Traffic Light Controller

Procedure:

Step 1 : Connect the 5V supply to the trainer kit.

 Step 2 : Connect the 26-pin FRC from the kit.

Step 3 : Switch ON the power supply.

Step 4 : Assemble the program.

 Step 5 : Execute it and output display by LED.

Step 6 : Switch OFF the power supply and remove the connectors.

 59

 60

Main Program:

Address Label Mnemonics Hex-Code Comment

9000 MOV A, #80H 74 80 ALL PORTS AS O/P

9002 MOV DPTR,#PPI+3 90 60 03

9005 MOVX@DPTR,A F0

For Starting Vehicles N-Direct(St) & Pedest Stopping:

Address Label Mnemonics Hex-Code Comment

9006 MOV A, #0FH 74 0F FOR PEDESTRIAN

9008 MOV DPTR,#PPI+1 90 60 01 SIGNAL

900B MOVX@DPTR,A F0

900C MOV A, #4DH 74 4D FOR GREEN LEDS

IN N-S

900E MOV DPTR,#PPI 90 60 00 DIRECTION

9011 MOVX@DPTR,A F0

9012 LCALL DELAY 12 90 7E SEQUENCE DELAY

9015 LCALL AMBER 12 90 72 AMBER DELAY

For Stop Vehicles In N-S Direct & Start In E-W Direction:

Address Label Mnemonics Hex-Code Comment

9018 MOV DPTR,#PPI 90 60 00 FOR STOPPING N-S

SIDES

901B MOV A, #8BH 74 8B STARTING E-W

SIDES

901D MOVX@DPTR,A F0

901E LCALL DELAY 12 90 7E SEQUENCY DELAY

9021 LCALL AMBER 12 90 72 AMBER DELAY

 61

For Straight Right Turn In N-S Sides & Stoping E-W Sides:

Address Label Mnemonics Hex-Code Comment

9024 MOV A, #49H 74 49 FOR FREE LEFT IN

ALL

9026 MOV DPTR,#PPI 90 60 00 SIDES & STOPPING

9029 MOVX@DPTR,A F0 IN E-W SIDES

902A MOV DPTR,#PPI+2 90 60 02 FOR RIGHT TURN

IN N-S

902D MOV A, #1H 74 01 SIDES

902F MOVX@DPTR,A F0

9030 LCALL DELAY 12 90 7E SEQUENCE DELAY

9033 MOV A, #0H 74 00 FOR AMBER

9035 MOVX@DPTR,A F0 SIGNAL

9036 LCALL AMBER 12 90 72 FOR AMBER DELAY

Stop Right Turn In N-S Sides & Start Right Turn In E-W:

Address Label Mnemonics Hex-Code Comment

9039 MOV A, #89H 74 89 FOR STOPPING

VEHICLES

903B MOV DPTR,#PPI 90 60 00 IN N-S SIDES

903E MOVX@DPTR,A F0

903F MOV DPTR,#PPI+2 90 60 02 FOR RIGHT TURN

IN

9042 MOV A, #2H 74 02 E-W SIDES

9044 MOVX@DPTR,A F0

9045 LCALL DELAY 12 90 7E SEQUENCE DELAY

9048 MOV A, #0H 74 00

904A MOVX@DPTR,A F0

904B MOVA, #30H 74 30

904D MOV DPTR,#PPI 90 60 00

9050 MOVX@DPTR,A F0

9051 MOV R1,#4H 79 04

9053 LCALL DELAYSUB 12 9084 FOR AMBER DELAY

 62

For Starting Pedestrain:

Address Label Mnemonics Hex-Code Comment

9056 MOV A, #0C00H 74 C0 FOR STOPPING

VEHICLE

9058 MOV DPTR,#PPI 90 60 00 IN ALL SIDES

905B MOVX@DPTR,A F0

905C INC DPTR A3 GREEN SIGNAL

FOR

905D MOV A, #0F00H 74 F0 PEDESTRAIN

905F MOVX@DPTR,A F0

9060 MOV R1,#10H 79 10 DELAY FOR

PEDESTRAIN

9062 LCALL DELAYSUB 12 90 84

9065 MOVA, #30H 74 30

9067 MOV DPTR,#PPI 90 60 00

906A MOVX@DPTR,A F0

906B MOV R1,#8H 79 08

906D LCALL DELAYSUB 12 90 84 AMBER DELAY

9070 AJMP CONTINUE 01 06

Amber:

Address Label Mnemonics Hex-Code Comment

9072 MOV DPTR,#PPI 90 60 00 FOR AMBER

SIGNAL

9075 MOV A, #39H 74 39 IN ALL SIDES

9077 MOVX@DPTR,A F0

9078 MOV R1,#8H 79 08 DELAY COUNT

907A LCALL DELAYSUB 12 90 84

907D RET 22

Delay:

Address Label Mnemonics Hex-Code Comment

907E MOV R1,#040H 79 40 DELAY COUNT FOR

9080 LCALL DELAYSUB 12 90 84 GREEN & RED

SIGNALS

9083 RET 22

 63

Delay Subroutine:

Address Label Mnemonics Hex-Code Comment

9084 MOV R2,#0FFH 7A FF

9086 MOV A,#0FFH 74 FF

9088 NOP 00

9089 DEC A 14

908A JNZ BACK 70 FC

908C DEC R2 1A

908D MOV A,R2 EA

908E JNZ BACK1 70 F6

9090 MOV A,R1 E9

9091 JZ OUT 60 03

9093 DEC R1 19

9094 JNZ BACK2 70 EE

9096 RET 22

Result:

Hence the Traffic Light Controller is interfaced with 8051 microcontroller.

 Prepared by

G.Y.Rajaa Vikhram

 64

Exercise Number: 7

Title of the Experiment: STEPPER MOTOR CONTROL USING 8051 CONTROLLER

Date of the Exercise:

Aim:

To interface stepper motor with 8051 microcontroller

Apparatus required:

Microcontroller 8051 kit

8255 peripheral device

Stepper motor

Algorithm:

Step 1 : Start the microcontroller.

 Step 2 : Input the key control words 0A, 06, 03, 09.

Step 3 : Move to the accumulator and given through output port.

Step 4 : Introduce the time delay routine.

Step 5 : Using jump condition continue from the beginning to get

continuous rotation.

Step 6 : Stop.

 65

Flow Chart: (Main Program)

END

Jump

Repeat Four Times

Out from Output Port A

Set Accumulator with code sequence for the motor to rotate

Send Control Word to 8255 Port A

START

Call Delay Subroutine

 66

Flow Chart: (Subroutine Program)

START

Initialize Two Counters

No Operation

Decrement Counters

Jump No

Zero

RETURN TO MAIN PROGRAM

 67

 68

Main Program:

Clockwise Direction:

Address Label Mnemonics Hex-Code Comment

9000 MOV DPTR, #6003H 906003 Control Port of 8255

9003 MOV A, #80H 7480

9005 MOVX@DPTR,A F0 All bits outputs

9006 MOV DPTR, #6000H 906000

9009 LOOP1 MOV A, #05H 7405 First Step Sequence

900B MOVX@DPTR, A F0

900C LCALL 9024(DELAY) 129024 Call delay

900F MOV A, #07H 7407 Second step sequence

9011 MOVX@DPTR,A F0

9012 LCALL 9024(DELAY) 129024 Delay

9015 MOV A, #06H 7406 Third step sequence

9017 MOVX@DPTR,A F0

9018 LCALL 9024(DELAY) 129024 Delay

901B MOV A, #04H 7404 Fourth sequence

901D MOVX@DPTR,A F0

901E LCALL 9024(DELAY) 129024 Delay

9021 LJMP 9009(LOOP1) 029009 Repeat

Anti Clockwise Direction:

Address Label Mnemonics Hex-Code Comment

9100 MOV DPTR, #6003H 906003 Control Port of 8255

9103 MOV A, #80H 7480

9105 MOVX@DPTR,A F0 All bits outputs

9106 MOV DPTR, #6000H 906000

9109 LOOP2 MOV A, #04H 7404 First Step Sequence

910B MOVX@DPTR, A F0

910C LCALL 9024(DELAY) 129024 Call delay

910F MOV A, #06H 7406 Second step sequence

9111 MOVX@DPTR,A F0

9112 LCALL 9024(DELAY) 129024 Delay

9115 MOV A, #07H 7407 Third step sequence

9117 MOVX@DPTR,A F0

9118 LCALL 9024(DELAY) 129024 Delay

911B MOV A, #05H 7405 Fourth sequence

911D MOVX@DPTR,A F0

911E LCALL 9024(DELAY) 129024 Delay

9121 LJMP 9109(LOOP2) 029109 Repeat

 69

Delay Subroutine:

Address Label Mnemonics Hex-Code Comment

9024 MOV R1, #0AH 790A Changing the speed of

rotation

9026 LOOP3 MOV A, #40H 7440

9028 LOOP4 NOP 00

9029 NOP 00

902A NOP 00

902B NOP 00

902C DEC A 14

902D JNZ 9028(LOOP4) 70F9

902F DJNZ R1,9026(LOOP3) D9F5

9031 RET 22

Result:

Hence the control of stepper motor using 8051 microcontroller is successfully submitted

and verified.

 Prepared by

G.Y.Rajaa Vikhram

 70

Exercise Number: 8

Title of the Experiment: TEMPERATURE CONTROL SYSTEM USING 8051

Date of the Exercise:

 71

Exercise Number: 9

Title of the Experiment: LCD DISPLAY USING 8051

Date of the Exercise:

Aim:

To interface LCD with 8051 microcontroller using 8255.

Apparatus required:

8051 micro controller kit

1 & 10K TRIM POT

26 PIN FRC

16 PIN RMC

2 PIN MOLEX

Procedure:

 Step 1 : Connect the 5V power supply to the LCD Interface card.

 Step 2 : Connect the 26-pin FRC from the kit to the LCD card.

 Step 3 : Switch ON the power supply.

 Step 4 : Assemble the program.

 Step 5 : Execute it and view the display in the LCD.

 Step 6 : Switch OFF the power supply and remove all the connections.

 72

Main Program:

Address Label Mnemonics Hex Code Comments

8900 LCALL INIT 12 89 42

8903 MOV DPTR,#6001H 90 60 01 PORT B

8906 MOV A,#01H 74 01

8908 MOVX @DPTR,A F0

8909 LCALL LCDENA 12 89 73

890C MOV DPTR,#6001H 90 60 01 PORT B

890F MOV A,#41H 74 41 CHAR “A”

8911 MOVX @DPTR,A F0

8912 LCALL LCD ENA DATA 12 89 83

8915 MOV A,#42H 74 42 CHAR “B”

8917 MOVX @DPTR,A F0

8918 LCALL LCD ENA DATA 12 89 83

891B MOV A,#43H 74 43 CHAR “C”

891D MOVX @DPTR,A F0

891E LCALL LCD ENA DATA 12 89 83

Second line:

Address Label Mnemonics Hex Code Comments

8921 MOV DPTR,#6001H 90 60 01 PORT B

8924 MOV A,#0C0H 74 C0 2nd LINE ADD

8926 MOVX @DPTR,A F0

8927 LCALL LCDENA 12 89 73

892A MOV DPTR,#6001H 90 60 01 PORT B

892D MOV A,#31H 74 31 NUM “1”

892F MOVX @DPTR,A F0

8930 LCALL LCD ENA

DATA

12 89 83

8933 MOV A,#32H 74 32 NUM “2”

8935 MOVX @DPTR,A F0

8936 LCALL LCD ENA

DATA

12 89 83

8939 MOV A,#33H 74 33 NUM “3”
893B MOVX @DPTR,A F0

893C LCALL LCD ENA

DATA

12 89 83

893F LCALL 00BBH 12 00 BB

 73

 LCD Initialisation:

Address Label Mnemonics Hex-Code Comment

8942 MOV DPTR, #6003H 90 60 03 CWR FOR 8255

8945 MOV A, #80H 74 80

8947 MOVX@DPTR,A F0

8948 MOV DPTR, #6001H 90 60 01 PORT B DATA

894B MOV A, #38H 74 38 FUNCTION TEST

894D MOVX@DPTR, A F0

894E LCALL LCDENA 12 89 73

8951 MOV A, #38H 74 38 FUNCTION TEST

8953 MOVX@DPTR,A F0

8954 LCALL LCDENA 12 89 73

8957 MOV A, #38H 74 38 FUNCTION TEST

8959 MOVX@DPTR,A F0

895A LCALL LCDENA 12 89 73

895D MOV A, #0FH 74 0F DIS ON/OFF

895F MOVX@DPTR,A F0

8960 LCALL LCDENA 12 89 73

8963 MOV A, #06H 74 06 ENTRY MODE

8965 MOVX@DPTR,A F0

8966 LCALL LCDENA 12 89 73

8969 MOV A, #01H 74 01 CLEAR SCREEN

896B MOVX@DPTR,A F0

896C LCALL LCDENA 12 89 73

896F LCALL LCDENA 12 89 73

8972 RET 22

 74

LCDENA:

Address Label Mnemonics Hex-Code Comment

8973 MOV DPTR, #6002H 90 60 02 PORT C

8976 MOV A, #02H 74 02 LCD ENA

8978 MOVX@DPTR,A F0

8979 MOV A, #00H 74 00 LCD DISA

897B MOVX@DPTR,A F0

897C LCALL DELAY 12 89 93

897F MOV DPTR,#6001H 90 60 01 PORT B

8982 RET 22

LCDENADATA:

Address Label Mnemonics Hex-Code Comment

8983 MOV DPTR, #6002H 90 60 02 PORT C

8986 MOV A, #03H 74 03 ENA DATA

8988 MOVX@DPTR,A F0

8989 MOV A, #00H 74 00 DISA DATA

898B MOVX@DPTR,A F0

898C LCALL DELAY 12 89 93

898F MOV DPTR,#6001H 90 60 01 PORT B

8992 RET 22

DELAY ROUTINE:

Address Label Mnemonics Hex-Code Comment

8993 MOV R5, #3FH 7D 3F

8995 D2 MOV A,#FFH 74 FF

8997 D1 NOP 00

8998 NOP 00

8999 NOP 00

899A NOP 00

899B NOP 00

899C DEC A 14

899D JNZ D1 70 F8

899F DJNZ, D2 DD F4

89A1 RET 22

 75

Result:

Hence the LCD display is interfaced with 8051 microcontroller.

 Prepared by

G.Y.Rajaa Vikhram

 76

Exercise Number: 10

Title of the Experiment: SEVEN SEGMENT DISPLAY USING nuvoTON BOARD

Date of the Exercise:

AIM: To interface a seven segment display with a NUC140 nuvoTON board.

APPARATUS REQUIRED: NUC140 nuvoTON board, 7 segment display

PROCEDURE:

 77

CODE:

#include
"NUC1xx.h"
void clr_segment(void)
{
unsigned char i;
for(i=0; i<4; i++)
{
GPIOC->DOUT &= ~(1<<(4+i));
}
}
void show_segment(unsigned char n, unsigned char number)
{
unsigned char i;
unsigned char number__[10] = {0x82 ,0xEE, 0x07, 0x46, 0x6A, 0x52, 0x12,
0xE6, 0x02, 0x62};
for(i=0; i<8; i++)
{
if((number__[number_]&0x01)==0x01)
GPIOE->DOUT |= (1<<i);
else
GPIOE->DOUT &= ~(1<<i);
number__[number_]=number__[number_]>>1;
}
GPIOC->DOUT |= (1<<(4+n));
}

Prepared by

K. A. Sunitha

