SRM INSTITUTE OF SCIENCE AND TECHNOLOGY FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MATHEMATICS Ph.D. ENTRANCE EXAMINATION

Durat	tion: 2 hrs.		Maximum Marks:					
		Each Questi	r All Questions ion Carries 2 Marks . (MATHEMATICS))				
		(25×	2=50 MARKS)					
1.	$\lim_{n\to\infty}\frac{1}{\sqrt[n]{n!}}$ is							
	(A) 0	(B) ∞	(C) 1	(D) e				
2.	A subset in \mathbb{R} is compact if and only if it is							
	(A) both open and bounded							
	(B) open and unbounded							
	(C) closed and unbounded							
	(D) both closed and	l bounded						
3.	A finite set is							
	(A) Compact only							
	(B) Closed only							
	(C) Both Compact and Closed							
	(D) Neither Compa	ct nor Closed						
4.	Let <i>X</i> be a topological space, then union of finitely many closed sets is							
	(A) open (C) neither open ne	or closed	(B) open as (D) closed	well as closed				
5.	Let <i>X</i> be a topologi	cal space. Let E	$8d A = \bar{A} \cap \overline{(X - A)} 1$	for $A \subset X$. Then				
	$(A) \ \bar{A} = \operatorname{Int} A \cup B$	d A	(B) $\bar{A} = In$	$t A \cap Bd A$				
	(C) Int A and Bd A	are not disjoint	(D) Int <i>A</i> a	nd <i>Bd A</i> are separate	d			
6.	Let X be a normed $(A) \le x - y $	space with	on it. For all $x, y \in X$ (B) $\geq x - y $					
	(C) > x - y		$(D) = x \cdot$	- <i>y</i>				
7.	Let $X = \mathbb{R}^4$ be the Banach extension to (A) $P = \infty$		with norm $ _P$, $1 \le$	$P \le \infty$. Then the Hall $(D) P = 4$	hn-			

8.	The residue of $\frac{1}{z^2+1}$ a	z = i is						
	(A) <i>i</i>	(B) $\frac{i}{2}$		$(C)\frac{-i}{2}$	(D) 1			
9.	The singularity of the	e function $\frac{\sin z^2}{z^2}$	$\frac{z}{z}$ at $z = 0$ i					
	(A) Pole of order 2		(B) A remov	able sing	ularity			
	(C) An essential singularity			(D) A simple	pole			
10.	Which of the followi	ng is quasi g	roup only					
	$(A)(\mathbb{Z},+)$			$(B)(\mathbb{Z},-)$				
	$(C)(\mathbb{Z},\times)$			$(D)(\mathbb{N},+)$				
11.	The number of group	homomorph	nisms from	\mathbb{Z}_{10} to \mathbb{Z}_{20} is				
	(A) 10	(B) 5		(C) 1		(D) 0		
12.	Let $A = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$. The	nen the small	lest positive		ich that A	$I^n = I$ is		
	(A) 1	(B) 2		(C) 4		(D) 6		
13.	Let A be a $(m \times n)$ Then (A) AB is always not		be a $(n \times 1)$	m) matrix ov	er real nu	mbers with	<i>m</i> < <i>n</i>	
	(B) AB is always sing	gular						
(C) BA is always singular								
	(D) BA is always nor	n-singular						
14.	The trace of the matrix $(A) 2 \cdot 2^{20} + 3^{20}$	$\operatorname{ix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$	$\binom{0}{0}^{20}$ is					
				(C) 7	20	(D) $2^{20} + 3$	3 ²⁰ + 1	
13.	The initial value pro	Diem $x \frac{d}{dx} =$	y, y(0) =	$0, x \leq 0$ has				

(D) two solutions

(B) uncountable number of solutions

(A) no solution

(C) a unique solution

16.	Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$	$y = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}$ satisfy $\frac{dy}{dt}$	$\frac{y}{t} = Ay; t > 0; y(0) =$	$\binom{1}{1}$. Then	
	$(A) y_1(t) = 1, y_2(t) =$		(B) $y_1(t) = 1, y_2(t)$		
	(C) $y_1(t) = 1 + t, y_2$	(t) = 1 + t	(D) $y_1(t) = 1 + t, y_2$	t(t) = 1	
17.	The partial differential (A) $py + x^2 = qx - \frac{1}{2}$ (C) $qy + x^2 = px + \frac{1}{2}$	•	+ $f(x^2 + y^2)$ is (B) $py + x^2 = qx +$ (D) $qy - x^2 = px +$		
18.		ar integral. al which is linear in <i>x</i> al which is a quadratic	and y. polynomial in x and y	<i>.</i>	
19.	For the linear program Max. $Z = 2X_1 + 4X_2$ optimum solution is		≤ 5 , $X_1 + X_2 \leq 3$ and	$X_1, X_2 \ge 0.$	[] Γhe
	(A)(1,2)	(B) (1,3)	(C) (0,0.25)	(D) (2,1)	
20.	A graph G that has a G(A) an Eulerian graph	circuit that contains all	the vertices of G is ca (B) an Euclidean grap		
	(C) a Hamiltonian gra	ph	(D) a lagrangian grap	h	
21.	continuity equation ∇	v = 0 implies	the velocity in terms of $(\nabla \times \varphi) = 0 (D) \nabla^2$	-	1
22.	The value of $(1 + \Delta)$ (A) 1	$(1 - \nabla)$ is (B) 0	(C) µ	(D) Δ	
23.	Given $\frac{dy}{dx} = x + y$, y 0 equals to 1.1103	(1) = 0, by using Ta $(B) 0.1103$	(C) 0.01103	(D) 0.0113	
24.	If λ is the angle of friction λ	etion then the coefficient (B) $\sec \lambda$	ent of friction $\mu =$ (C) $\tan \lambda$	(D) cosec λ	
25.	=	A is called normal who	as $h(A) = \sup A(x)$ when $f(A) = 1$	where x below $(D) h(A) < 0$	

PART B (Research Methodology)

 $(50 \times 1 = 50 \text{ MARKS})$

ANSWER KEY

Q.No.	Ans								
1	A	6	A	11	A	16	D	21	D
2	D	7	С	12	D	17	В	22	A
3	С	8	С	13	С	18	D	23	В
4	D	9	D	14	A	19	В	24	C
5	A	10	В	15	В	20	С	25	С