Lesson Plan - CE1020 – Hydraulic and Irrigation Structures Design Academic year 2015-16 (Semester commencing in June 2015)

Instructional objectives number	Instructional objectives (IO)			
1	To learn about the hydrologic cycle, precipitation and rain-gauge network design.			
2	To study the seepage under structures through Bligh's theory, Lane's theory, and Khosla's theory; types of dams and the hydraulic design of dams.			
3	To know about the types of reservoir and the methods to design reservoir capacity.			
4	To understand the features of canal alignment and canal design capacity,			
5	To study the features of canal regulator, canal fall, canal escape, aqueduct, super-passage, and canal siphon.			

Student outcomes

Prerequisites

Student outcome number	Student outcome (SO)			
а	an ability to apply knowledge of mathematics, science, and engineering			
b	an ability to design and conduct experiments, as well as to analyze and interpret data			
С	an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability			
е	an ability to identify, formulate, and solve engineering problems			
h	the broad education necessary to understand the impact of engineering problems in a global, economic, environmental, and social context			

Mapping of Instructional Objectives (IOs) with Student Outcomes (SOs)

					Student Outcomes				
Instructional objectives					а	b	С	е	h
1. To learn about the hydrologic cycle, precipitation and rain-gauge network design.					Х	Х	Х	Χ	Х
2. To study the seepage under structures through Bligh's theory, Lane's theory, and Khosla's theory; types of dams and the hydraulic design of dams.					Х		Х	Х	Х
3. To know about the types of reservoir and the methods to design reservoir capacity.					Х		Х	Χ	Х
4. To understand the features of canal alignment and canal design capacity,					Х		Х	Х	Χ
•	the features of canal regulator and canal siphon.	r, canal fall, canal es	cape, aqueduct, super-		Х				
CE1020	Hydraulic and Irrigation Structures Design	Lecture Hours (L)	Tutorial Hours (T)	Practical (P)		S		edits	

0

0

3

3

Lesson Plan – 2015-16		Revision: U dated 29/06/2015					
Lecture No.	Topic	No. of hours	IOs	so	Reference		
1.	Introduction	1	1,2,3,4,5	a,b,c,e,h	1,2,3,4,5		
	UNIT I – NETWORK DESIGN						
2.	Hydrologic cycle- Precipitation - Types	1	1	a	2,3		
3.	Rain gauge - Types	1	1	а	2,3		
4.	Average depth of precipitation - Estimation of missing precipitation records	1	1	a,b,c,e,h	2,3		
5.	PMP – Rain-gauge network –Optimum rain gauge network design	2	1	a,b,c e,h	2,3		
	Cycle Test –I						
	UNIT II – DIVERSION AND IMPOUNDING STRUCTURES						
6.	Theories of seepage – Bligh's creep theory	1	2	а	1,2		
7.	Lane's weighted creep theory – Khosla's theory	1	2	а	1,2		
8.	Design of apron	1	2	a,c,e	1,2,5		
9.	Simple design problems on weirs and barrages	2	2	a,c,e	1,2,5		

Lecture No.	Topic	No. of hours	IOs	so	Reference
10.	Gravity dams, Earth dams	2	2	а	1,2
11.	Spillways – Factors affecting location and type of dams	1	2	а	1,2
12.	Forces on a dam – Hydraulic design of dams	2		a,c,h	1,2,5
	Cycle Test - II				
	UNIT III – RESERVOIR PLANNING AND MANAGEMENT				
13.	Reservoir - Types	1	3	а	1,2
14.	Storage capacity of reservoir - Storage zones	1	3	a,e	1,2
15.	Designing reservoir capacity	2	3	a,c,h	1,2,5
16.	Flow duration curves – Mass curves of Inflow and outflow	1	3	a,e	1,2
17.	Reservoir Losses	1	3	а	1,2
18.	Reservoir sedimentation - Silt control	1	3	a,e	1,2
19.	Design of flood-levees and flood walls	3	3	а	1,2,5
	UNIT IV – IRRIGATION CANALS				
20.	Irrigation – Advantages and disadvantages	1	4	a	1,4
21.	Alignment of canals	1	4	a,h	1,4
22.	Canal distribution system	2	4	a,h	1,4
23.	Design capacity of an irrigation canal	3	4	a,c,e,h	1,2,3
24.	Canal losses – Canal regulation	2	4	а	1,2,3
	UNIT V – CANAL REGULATION AND TRANSMISSION STR	RUCTURES			
25.	Canal regulators – Canal falls – Canal Escapes	4	5	а	2,4
26.	Metering flumes	1	5	а	2,4
27.	Cross- drainage works – Aqueduct – Syphon aqueduct – Super-passage – Canal siphon	4	5	a	2,4
28.	Types and Selection	1	5	а	2,4
	Model Examination				
	Total hours	45			

The faculty members handling the course may conduct surprise test according to their convenience. However a question paper in hard copy as well as key shall be made available for the surprise test. The process shall be same as that of cycle tests.

TEXT BOOKS

- 1. Modi .P.N, 'Irrigation, Water Resources and Water Power Engineering", Standard Book House, New Delhi, 2008.
- 2. Santosh Kumar Garg, "Irrigation Engineering and Hydraulic Structures", Khanna Publishers, Delhi, 2007.

REFERENCE BOOKS

- 3. Raghunath .H.M, "Hydrology", New Age International Publishers, New Delhi, 2007.
- 4. Asawa .G.L, "Irrigation and Water Resources Engineering", New Age International Publishers, New
- 5. Sharma .R.K, "Irrigation Engineering and Hydraulic Structures", Oxford and IBH Publishing Company, New Delhi, 2002., 2010.

Course Coordinator

Dr.G.Baskar

Faculty handling the courses

SI.	Faculty name		
No.			
1	Dr.G.Baskar		
2	Dr.R.Sathyanathan		
3	Mr.Shaik Niyazuddin Guntakal		
4	Mrs.N.A.Sreemanthra Rupini		
5	Mr.S.Ramesh		
6	Mrs.D.Jaishree		
7	Ms.Golda Percy		
8	Mr.G.Prem Kumar		