Lesson Plan- CE1022- COMPUTER AIDED STRUCTURAL ANALYSIS (CASA)

Academic year 2015-16

(Semester commencing in January 2016)

Instructional objectives	Instructional objectives (IO)					
no.						
1	Preparation of influence line diagrams for continuous beams and propped cantilevers					
2	Analysis of arches and suspension cables					
3	Plastic theory and its application in analysis of indeterminate structures					
4	Matrix methods of analysis - Flexibility method					
5	Matrix methods of analysis - stiffness method and to exposure of structural analysis software packages					

Student outcomes

Student outcome	Student outcome (SO)				
number					
a	an ability to apply knowledge of mathematics, science, and engineering				
e	an ability to identify, formulate, and solve engineering problems				
k	an ability to use the techniques, skills, and modern engineering tools necessary for				
	engineering practice.				

Mapping of Instructional Objectives (IOs) with Student Outcomes (SOs)

CE1022- COMPUTER AIDED STRUCTURAL ANALYSIS

	Student Outcomes		ies
Instructional objectives	a	e	k
Preparation of influence line diagrams for continuous beams and propped cantilevers	X	X	
2. Analysis of arches and suspension cables	X	X	
3. Plastic theory and its application in analysis of indeterminate structures	X	X	
4. Matrix methods of analysis - Flexibility method	X	X	X
5.Matrix methods of analysis - stiffness method and to exposure of structural analysis software packages	X	X	Х

CE1022	COMPUTER AIDED STRUCTURAL ANALYSIS	Lecture Hours	Tutorial Hours	Practical Hours	Credits
		(L)	(T)	(P)	(C)
		3	2	0	4

Lesson Plan – 2015-16

Lesson	1 Iaii – 2013-10	Revision. 0 dated 02/02/2010					
Lecture No.	Торіс	No. of hours	IOs	SO	Reference		
1.	Introduction -brief recap of SA, MOS, SM-	1	1,2,3	a,e,k	1-9		
	overview of syllabus		,4,5				
	UNIT-I- INFLUENCE LINES- STATICALLY INDETERMINATE STRUCTURES						
	-10 hrs.						
2.	Introduction - Maxwell Betti's Theorem -Muller	1	1	a,e	1,3,4,6,8,9		
	Breslau's Principles and its application to determine						
	the influence lines of reactions, S.F and B.M at a						
	section of continuous beams – propped cantilevers				101100		
3.	Influence line diagram for vertical reactions of end	1	1	a,e	1,3,4,6,8,9		
	and interior supports of two span continuous beams						
	with simple end supports				101100		
4.	Tutorials	2	1	a,e	1,3,4,6,8,9		
5.	Influence line diagram for support BM and span	1	1	a, e	1,3,4,6,8,9		
	BM of two span continuous beams with simple end						
	supports						
6.	Influence line diagram for span SF of two span	1	1	a,e	1,3,4,6,8,9		
	continuous beams with simple end supports						
7.	Tutorials	2	1	a,e	1,3,4,6,8,9		
8.	Qualitative IL diagrams for single bay, single storey	1	1	a,e	1,3,4,6,8,9		
	portal frames – vertical and horizontal reactions,						
	support moments – concept of pattern loading						
	UNIT-III -PLASTIC ANALYSIS OF STRUCTUR	ES-10 hrs					
9.	Introduction to Plastic Analysis -Plastic moment of	1	3	a,e	1,3,4,6,8,9		
	resistance - Plastic Modulus - Shape factor - Load						
	factor						
10.	Shape factor for circular, rectangular, triangular and	1	3	a,e	1,3,4,6,8,9		
	diamond shaped sections						
11.	Shape factor for Tee and I section	1	3	a,e	1,3,4,6,8,9		
12.	Method of plastic analysis – mechanism method	1	3	a,e	1,3,4,6,8,9		
	and equilibrium method – lower bound, upper						
	bound and uniqueness theorems						
13.	Plastic hinge- hinge length – simply supported and	1	3	a,e	1,3,4,6,8,9		
	fixed beam with full/partial udl /central/eccentric						
	point load				1.01.100		
14.	Plastic analysis of indeterminate beams using	1	3	a,e	1,3,4,6,8,9		
	mechanism method – continuous beams, fixed						
1.5	beams and propped cantilevers		2		121500		
15.	Tutorials	1	3	a,e	1,3,4,6,8,9		
1.6	Cycle Test –I	2	-	1	101500		
16.	Plastic analysis of indeterminate frames using	1	3	a,e	1,3,4,6,8,9		
	mechanism method – single bay, single storey						
	rectangular portal frames, Introduction to pushover						
17	analysis	2	2	1	124600		
17.	Tutorials	2	3	a,e	1,3,4,6,8,9		

Revision: 0 dated 02/02/2016

Lecture	Topic	No. of	IOs	SO	Reference
No.	UNIT-II- ARCHES AND SUSPENSION CABLES	hours			
10		1	Ι.	1	124600
18.	Arches- types of arches- load resisting mechanism-reactions and internal forces	1	2	a.e	1,3,4,6,8,9
19.	Linear arch- Eddy's theorem	1	2	a.e	1,3,4,6,8,9
20.	Analysis of parabolic three hinged arch	1	2	a,e	1,3,4,6,8,9
21.	Analysis of parabolic three hinged arch at different levels	1	2	a,e	1,3,4,6,8,9
22.	Tutorials	2	2	a,e	1,3,4,6,8,9
23.	Influence lines for horizontal thrust, bending moment, normal thrust and radial shear	1	2	a,e	1,3,4,6,8,9
24.	Analysis of circular three hinged arch with supports at same levels	1	2	a,e	1,3,4,6,8,9
25.	Tutorials	2	2	a,e	1,3,4,6,8,9
26.	Analysis of Two hinged parabolic arch- Rib shortening, support movements and temperature effects	1	2	a,e	1,3,4,6,8,9
27.	Tutorials	2	2	a,e	1,3,4,6,8,9
28.	Influence lines for horizontal thrust, bending moment, normal thrust and radial shear, absolute maximum bending moment	1	2	a,e	1,3,4,6,8,9
29.	Analysis methods for fixed arches-principle only	1	2	a,e	1,3,4,6,8,9
30.	Introduction to cables and suspension bridges	1	2	a,e	1,3,4,6,8,9
31.	Length of cable, Maximum tension - Types of supports - Forces in Towers – Cables anchored at different levels	1	2	a,e	1,3,4,6,8,9
32.	Tutorials	2	2	a,e	1,3,4,6,8,9
33.	Two hinged and three hinged stiffening girders- influence line diagrams for bending moment	1	2	a,e	1,3,4,6,8,9
34.	Cycle Test –II	2			
	UNIT-V- MATRIX STIFFNESS METHOD-20 hr	S.	*		
35.	Introduction to Matrix methods-Advantages over classical methods of structural analysis	1	4	a,e,k	2,5,7,10,11, 12
36.	Direct stiffness method - continuous beams	1	4	a,e,k	2,5,7,10,11, 12
37.	Tutorials	2	4	a,e,k	2,5,7,10,11, 12
38.	Direct stiffness method -portal frames – single bay single storey – with and without sway	2	4	a,e,k	2,5,7,10,11, 12
39.	Tutorials	2	4	a,e,k	2,5,7,10,11, 12
40.	Concepts -Element and Global stiffness matrices - Co-ordinate transformations - Rotation matrix – Derivation of global stiffness matrix from element stiffness matrix	2	4	a,e,k	2,5,7,10,11,
41.	Load vectors and displacement vectors	1	4	a,e,k	2,5,7,10,11, 12
42.	Analysis of Continuous Beams using element approach	2	4	a,e,k	2,5,7,10,11, 12
43.	Tutorials	2	4	a,e,k	2,5,7,10,11, 12
44.	Analysis of pin jointed and rigid jointed plane frames using element approach	2	4	a,e,k	2,5,7,10,11, 12

Lecture	Topic	No. of	IOs	SO	Reference
No.		hours			
45.	Tutorials	2	4	a,e,k	2,5,7,10,11,
					12
46.	Introduction to software packages of structural	1	4	a,e,k	2,5,7,10,11,
	analysis such as STAAD.Pro, SAP, ETABS, etc.				12
	TIME W. MARRING CORRESPONDE DE ENTRE	TT T/DX / 3 / 1		451	
	UNIT-IV -MATRIX FORCE METHOD- FLEXIB	ILITY MI	г		
47.	Introduction – flexibility method- concepts-co-	1	4	a,e,k	2,5,7,10,11,
	ordinates -element transformation approach				12
48.	Analysis of indeterminate pin- jointed and rigid-	1	4	a,e,k	2,5,7,10,11,
	jointed plane frames				12
49.	Analysis of continuous beams	1	4	a,e,k	2,5,7,10,11,
					12
50.	Tutorials	1	4	a,e,k	2,5,7,10,11,
					12
51.	Direct flexibility method for continuous beams	1	4	a,e,k	2,5,7,10,11,
					12
52.	Tutorials	1	4	a,e,k	2,5,7,10,11,
					12
53.	Direct flexibility method for frames	1	4	a,e,k	2,5,7,10,11,
					12
54.	Tutorials	1	4	a,e,k	2,5,7,10,11,
					12
	Model Examination	3			
	Total hours	75			
		l		l	

The faculty members handling the course may conduct surprise test according to their convenience. However a question paper in hard copy as well as key shall be made available for the surprise test. The process shall be same as that of cycle tests.

TEXT / REFERENCE BOOKS

- 1. Menon.D, "Structural Analysis", Alpha Science International Limited, 2009.
- 2. Pandit.G.S., Gupta.S.P., "Structural Analysis- A Matrix Approach", 2nd Edition, Tata McGraw-Hill Education, New Delhi, 2010.
- 3. Punmia.B.C, Ashok Kumar Jain, Arun Kumar Jain, "*Theory of Structures*", Laxmi Publications, New Delhi, 12th Edition, 2004.
- 4. Bhavikatti.S.S, "Structural Analysis", Vol-2, E-2, Vikas Publishing House Pvt Limited, 2009.
- 5. Vaidyanathan .R, Perumal .P, "Comprehensive Structural Analysis-Volume II", Laxmi Publications (P) Ltd., New Delhi, 2004.
- 6. Khurmi.R.S, "Theory of Structures", S. Chand and Company Ltd., New Delhi, 1994.
- 7. Sterling Kinney .J, "Indeterminate Structural Analysis", Narosa Publishing House, 1987.
- 8. Jr. William Weaver and James .M.Gere, "Matrix Analysis of Framed Structures", CBS Publishers and Distributors, Delhi, 1995.
- 9. Rajasekaran .S and Sankarasubramanian .G., "Computational Structural Mechanics", Prentice Hall of India, 2006.
- 10. Manickaselvam.V.K, "Elementary Matrix Analysis of Structures", Khanna Publishers, New Delhi, 1994
- 11. Thadani.B.N., Desai.J.P., "Structural Mechanics", Weinall Book Corporation, 1998
- 12. Thandavamurthy, "Structural Analysis", Oxford University Press, 2014.

Prof. G. Augustine Maniraj Pandian

10-02-2016