M A 0471	Linear Algebra and Statistics	L	Т	Р	С
MIA04/1		4	0	0	4
	(ECE)				

Purpose:

To develop an understanding of the methods of probability and statistics which are used to model engineering problems.

Instructional objectives:					
1	To learn about vector space and linear transformations				
2	To learn about inner product space				
3	To have knowledge in regression and correlation.				
4	To learn about testing of hypothesis				
5	To learn about ANOVA				

UNIT I VECTOR SPACE AND LINEAR TRANSFORMATION

Vector space-Subspaces-Linear combination,Linear span-Linear independence and dependence-Basis and Dimension-Algebra of linear transformations. .(Theorems without proof) (12 Hours) UNIT II INNER PRODUCT SPACE

Inner product space-Normed Vector Space-Orthogonality-Grahm-Schmidt Orthoginalisation Process. (Theorems without proof) (12 Hours)

UNIT III REGRESSION AND CORRELATION

Regression methods - Principle of least squares - Correlation - Multiple and Partial correlation - Linear and non-linear regression - Multiple linear regression. (12 Hours)

UNIT IV TESTING OF HYPOTHESES

Large sample tests based on Normal Distribution – Small sample tests based on t, F distributions – Chi square tests for goodness of fit and independence of attributes. (12 Hours)

UNIT V ANALYSIS OF VARIANCES

Introduction to test based on F-distribution - One way and Two way classification of ANOVA - Completely Randomised Design - Randomised Block Design - Latin square Design (**12 Hours**)

TEXT BOOKS:

- 1. S.C.Gupta & V.K.Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand and Sons, New Delhi,11th edition, 2007.
- 2. K.S.Narayanan and T.K.Manicavachagam Pillai, S.Viswanathan "Modern Algebra. Vo II"(Printers & Publisher)1983.

REFERENCES:

- 1. Dr.S.Kandasamy & others S.Chand,"Engineering Maths (Vol III)", Delhi, April-2005.
- 2. S.C.Gupta & V.K.Kapoor, Fundamentals of Applied Statistics, Sultan Chand and Sons, New Delhi, 2003.
- 3. W. Ewans & G.Grant, Statistical Methods in Bio informatics An Introduction

MA0471 - Linear Algebra and Statistics												
Course designed by			Department of Mathematics									
1	Student Outcome	a	b	с	d	e	f	g	h	i	j	k
		Х				Х						
2	Mapping of instructional objectives with student outcome	1-5				1-5						
3	Category	General (G)		Basic Sciences (B)			Engine Science Techr Ar (E	Pr	Professional Subjects (P)			
4	Broad Area	Structural Engineering		Geotechnical Engineering		al g	Water Resources Engineering		G Er	Geomatics Engineering		
5	Approval	23 rd meeting of academic council, May 2013										

Note:

1. Instructional objectives (IO) shall be to the point and numbered; not more than five IOs shall be listed and they shall be mapped with the student outcomes.

2. For reference, the list of student outcomes are given below. For each course appropriate outcomes shall be chosen

- (a) an ability to apply knowledge of mathematics, science, and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively

SEMESTER-7

- (h) the broad education necessary to understand the impact of engineering solutions in global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.