SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF CHEMICAL ENGINEERING <u>COURSE PLAN</u>

Course code	: CH0301	Course Title	: Computational methods in Chemical
Engineering			
Semester	: V	Course Time	: June 2011 – Dec 2011

Required Text Books:

- 1. Mickley H. S., Sherwood T.K. and Reed C.E., Applied Mathematics in Chemical Engineering, McGraw Hill, New York, 1957.
- 2. Alan L.Myers and Warren D Seider., Introduction to Chemical Engineering and Computer Calculations, Prentice Hall, Engle Wood Cliffs (N.J), 1976.

Web resources: 1) http://www.che.iitb.ac.in/faculty/scp/CL-701-Lecture-Notes-07.pdf 2) http://ocw.mit.edu/courses/#chemical-engineering

Prerequisite :

Engineering Mathematics, Basic chemical engineering concepts, Numerical methods

Objectives

To familiarize:

- 1. Numerical solution of algebraic transcendental equation.
- 2. Solution of linear simultaneous algebraic equations.
- 3. Numerical integration.
- 4. Solution of ordinary differential equations.
- 5. Unsteady state heat and mass transfer problems

Assessment Details

Cycle Test-I	: 10 Marks
Cycle Test-II	: 10 Marks
Model Exam	: 20 Marks
Surprise Test	: 05 Marks

Attendance : 05 Marks

Out comes

Students who have successfully completed this course will have full understanding of the following concepts

Course Outcome	Program outcome			
1. Students are able to apply	1. This subject increases the analytical			
numerical techniques to solve	thinking ability of the students			
chemical engineering problems	2. Students become familiar with			
2. This subject is useful to solve	various numerical techniques and			
simultaneous equation by various	will be able to apply it to chemical			
methods	engineering problems			
3. Students become familiar with	3. The course is useful when the			
numerical integration techniques	students carry out research activities			
4. Students gain the knowledge of	or when they pursue higher studies			
solving differential equation by				
various methods				
5. Students can become familiar with				
unsteady state problems and its				
solutions				

Detailed Lesson plan

NUMERICAL SOLUTION OF ALGEBRAIC TRANSCENDENTAL EQUATION					
Sess ion No	Topics to be covered	Time (Min)	Ref	Teaching method	Testing method
1	Introduction to iteration methods	50	1 & 2	GB	Discussion
2	Bisection method – transcendental equation	50	1 & 2	GB	Discussion
3	Regula falsi & Newton Raphson methods	50	1 & 2	GB	Discussion
4	Problems based on iteration methods	50	1 & 2	GB	Problems
5	Phase equilibrium – concepts	50	1 & 2	GB	Discussion
6	Equation of state concept and calculations	50	1 & 2	GB	Discussion
7	Dew point & bubble point calculations	50	1 & 2	GB	Problems

8	Differential distillation – an introduction	50	1 & 2	GB	Discussion
9	Minimum reflux ratio – calculations	50	1 & 2	GB	Problems
SOLU	JTION OF LINEAR SIMULTANEOUS ALG	EBRAIC	EQUAT	IONS	
1	Gauss method – an introduction		1 & 2	GB	Discussion
2	Application of Gauss method		1 & 2	GB	Problems
3	Gauss – siedel iteration method – concepts		1 & 2	GB	Discussion
4	Problems on Gauss – siedel iteration	50	1 & 2	GB	Problems
	method				
5	Jacobi's iteration method – introduction	50	1 & 2	GB	Discussion
6	Problems on Jacobi's iteration method	50	1 & 2	GB	Problems
7	Multi effect evaporators – introduction	50	1 & 2	GB	Discussion
8	Problems in multi effect evaporators	50	1 & 2	GB	Problems
9	Application of above methods for chemical	50	1 & 2	GB	Problems
	engineering problems				
NUM	ERICAL INTEGRATION		1		
1	Trapezoidal rule	50	1 & 2	GB	Discussion
2	Simpson's 1/3 and 3/8 rule	50	1 & 2	GB	Discussion
3	Weddle's rule – numerical integration		1 & 2	GB	Discussion
4	Rayleigh's equation solution – mass	50	1 & 2	GB	Problems
	transfer				
5	NTU calculation in absorption units	50	1 & 2	GB	Problems
6	Determination of drying time-batch drying	50	1 & 2	GB	Problems
7	Determination of reactor size	50	1 & 2	GB	Problems
8	Flux determination & interpolation	50	1 & 2	GB	Discussion
	concepts				
9	Estimation of thermodynamic properties	50	1 & 2	GB	Problems
SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS					
1	Taylor's series method	50	1 & 2	GB	Discussion
2	Euler's method for differential equations	50	1 & 2	GB	Discussion
3	Runge – Kutta method	50	1 & 2	GB	Discussion
4	Application of Runge – Kutta method	50	1 & 2	GB	Problems
5	Predictor – corrector method – introduction	50	1 & 2	GB	Discussion
6	Problems on Predictor – corrector method	50	1 & 2	GB	Problems

7	Heat conduction problems	50	1 & 2	GB	Problems
8	Problems on chemical reaction engineering	50	1 & 2	GB	Problems
9	Comparison of numerical and analytical	50	1 & 2	GB	Discussion
	solution				
UNS	TEADY STATE PROBLEMS	· · ·			
1	Unsteady state process - introduction	50	1 & 2	GB	Discussion
2	Heat transfer – an introduction	50	1 & 2	GB	Discussion
3	Unsteady state heat transfer	50	1 & 2	GB	Discussion
4	Numerical methods available for solving	50	1 & 2	GB	Problems
	unsteady state problems				
5	Boundary condition Problems in transient	50	1 & 2	GB	Discussion
	Heat transfer				
6	Mass transfer – basic concepts	50	1 & 2	GB	Discussion
7	Unsteady state mass transfer	50	1 & 2	GB	Discussion
8	Various numerical methods available for	50	1 & 2	GB	Discussion
	mass transfer problems				
9	Problems in unsteady state mass transfer	50	1 & 2	GB	Discussion