SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING

LESSON PLAN

B.Tech Civil Engineering VIII semester 2015-16 (Elective Subject)

Course Code	CE-EST5		
Course Name	PRESTRESSED CONCRETE STRUCTURES		
Prerequisites	Should have studied CE0201, CE0202, CE0301, CE0302,		
-	CE0204, CE0303, CE0304		
Category	(Structural Engineering)-P- Professional subject		

Instructional objectives

Instructional	Instructional objectives		
objectives no.			
	Prestressing methods, principles and concepts are essential for the basic		
1	concept of the subject. Analysis of prestress and the resultant stresses using		
	different concepts		
2	Determination of losses in concrete & Anchorage zone stresses in end block		
	can be brought out using IS method		
2	Determination of shear strength and ultimate shear resistance capacity as per		
5	IS code		
4	Design of prestresses concrete section, stresses at transfer, service load, limit		
4	state of collapse in flexure and shear		
5	Design of prestressed concrete slab		

Student outcomes

Student	Student outcome		
outcome as per ABET			
а	an ability to apply knowledge of mathematics, science, and engineering		
с	an ability to design a system, component, or process to meet desired needs		
	within realistic constraints such as economic, environmental, social, political,		
	ethical, health and safety, manufacturability, and sustainability		
e	an ability to identify, formulate, and solve engineering problems		
h	the broad education necessary to understand the impact of engineering		
	solutions in a global, economic, environmental, and societal context		
i	a recognition of the need for, and an ability to engage in life-long learning		
J	a knowledge of contemporary issues		

Section Lesson Plan

Lecture	Торіс	Instructional	Student	Reference
No		objectives	outcome	
	INTRODUCTION AND ANALY	YSIS FOR STR	ESS	
1-2	Introduction - Basic concepts - terminology -			
	system of prestressing - pretensioning - post	1	a,c,e	1-6
	tensioning - principle of prestressing - types	_		
	of prestressing. Assumptions.			
	Concentric & eccentric tendon - resultant			
3 -4	stresses - rectangle - Isection (symmetrical	1	a,c,e	1-3
	oncept - concepts of prestressing - stress			
5-6	Analysis of prestress	1	асе	1-3
5.0	Analysis of prestress (Stress) – Force	1	<i>a,</i> e,e	1.5
7 -8	concept	1	a,c,e	1-3
9 - 10	Strength concept – analysis	1	a.c.e	1-3
11 - 12	Load balancing concept Tutorial – Problems	1	a,c,e	1-3
	CYCLE TEST –I (On	e period)		
	LOSSES OF PRES'	TRESS		
10 14	Losses of prestress - types - losses due to	2	1 · ·	1.2
13 - 14	elastic deformation of concrete.	2	n,1,J	1-3
15 16	Loss due to shrinkage of concrete - creep of	2	hii	1.2
13-10	concrete - friction - anchorage slip.	Z	11,1,J	1-3
	Stress distribution in end block -			
17 -18	investigations on anchorage zone stresses -	2	a,c,h,i,j	1-5
	Indian code provision only.			
19 - 20	Investigations on anchorage zone stresses –	2	a,c,h,i,j	1-5
	Indian code provision only.			
	SHEAR STRENG	JIH		
21 22	Shear strength - principal stresses - Ultimate	2	oobii	126
21-22	shear resistance - mutan Standard code	3	a,c,e,n,1,J	1-3, 0
23 - 24	Determination of shear strength	3	acehii	1-3.6
23 - 24	FLEXURAL DES	SIGN	a,c,c,ii,i,j	1-3, 0
	Design of sections for flexure - stress			
25 - 26	condition - minimum section modulus -	4	acehii	1-3.6
25 20	stresses at transfer - service loads -		a,e,e,ii,i,j	, -
27 - 28	Design of section	4	a,c,e	1-3, 6
20, 20	Prestressing force - eccentricity - check for	4		1.2.6
29 - 30	stresses - initial and final conditions.	4	a,c,e	1-3, 6
	CYCLE TEST -	-I I		
31 - 32	Check for stresses	4	a,c,e	1-3, 6
33 - 34	Limit state of collapse in flexure - shear. (Rectangular Section only)	4	a,c,e	1-3, 6
35 - 36	Design of section	4	a,c,e	1-3, 6

SLABS						
37 -38	Types of prestressed concrete slab - design of one-way slab	5	a,c,e,h,i,j	1-3, 6		
39-40	Design of two-way slab	5	a,c,e,h,i,j	1-3, 6		
41-42	Design of two-way slab	5	a,c,e,h,i,j	1-3, 6		
43 - 45	Design of simple flat slab.	5	a,c,e,h,i,j	1-3, 6		
MODEL EXAMINATION (Three hours)						

Text Books

- 1. Krishna Raju. N, Prestressed Concrete 4th edition Tata McGraw Hill Company, New Delhi 1998.
- 2. N.C. Sinha and S.K.Roy, Fundamentals of prestressed Concrete, S. Chand and Co., 1985.
- 3. N.Rajagopalan, Prestressed Concrete, Narosa Publishing House, New Delhi-2002

Reference Books

- 4. T.Y.Lin Design of, Prestressed Concrete Structures, Asia Publishing House, Bombay 1995
- 5. Guyon. V., Limit State Design of Prestressed Concrete, Vol.I & II Applied Science Publishers, London, 1992
- 6. Dayarathnam.P, Prestressed Concrete Structures, Tata McGraw Hill Company, New Delhi, 1999

Faculty handling:

Dr. K. Gunasekaran
