Lesson Plan- CE1011- Structural Design (Masonry and RCC) Academic year 2015-16 (Semester commencing in February 2016)

Instructional objectives no.	Instructional objectives (IO)
1	To design masonry structures like walls, columns, and foundationincorporating earthquake resistant features
2	To bring about an understanding of the behaviour of reinforced concrete , thedesign philosophies mix design
3	To design RCC beams and slabs, columns and footings including structuraldesign of piles and pile caps
4	To design RCC columns and footings including structural design of piles and pile caps
5	To design RCC footings including structural design of piles and pile caps

Student outcomes

Student outcome number	Student outcome (SO)				
а	an ability to apply knowledge of mathematics, science, and engineering				
С	an ability to design a system, component, or process to meet desiredneeds within realistic constraints such as economic, environmental, social,political, ethical, health and safety, manufacturability, and sustainability				
е	an ability to identify, formulate, and solve engineering problems				

Mapping of Instructional Objectives (IOs) with Student Outcomes (SOs) CE1011- Structural Design (Masonry and RCC)

Instructional objectives	Student Outcomes				
instructional objectives	a	С	е		
To design masonry structures like walls, columns, and foundationincorporating earthquake resistant features	Х	Х	Х		
2. To bring about an understanding of the behaviour of reinforced concrete , thedesign philosophies mix design	Х	Х	Х		
3. To design RCC beams and slabs, columns and footings including structuraldesign of piles and pile caps	Х	Х	Х		
4. To design RCC columns and footings including structural design of piles and pile caps	Х	Х	Х		
5. To design RCC footings including structural design of piles and pile caps	Х	Х	Х		

				1	
CE1011	Structural Design (Masonry	Lecture Hours (L)	Tutorial Hours	Practical Hours (P)	Credits
	and RCC)		(T)		(C)
		2	2	0	3
	Prerequisites				
	CE1004				

Lesson Plan – 2015-16 Revision: 1 dated 12/02/2016

Lecture	Topic	No. of	IOs	so	Reference		
No.	·	hours					
1.	Introduction-overview of syllabus	1	1,2,3,4, 5	a, c, e	1,2,3,4,5,6,7,8, 9,10		
	UNIT-IIMIX DESIGN AND BEHAVIOUR OF RCC SECTIONS						
2.	Grades of concrete- concrete mix design of nominal mix and design mix as perBIS codes	2	2	a,c,e	6		
3.	Theories of basic design concepts, working stress method, limit state method of design	1	2	а,с	1,2,3,4,5		
4.	Behaviour of RCC beams / slabs in flexure, shear	1	2,3	a,c	1,2,3,4,5		
5.	General codal recommendations for limit state method	1	2,3	а	1,2,3,4,5		
6.	Limit state method ofdesign of one-way slabs	2	2,3	a,c,e	1,2,3,4,5		
7.	Limit state method of design of two-way slabs	2	2,3	a,c,e	1,2,3,4,5		
8.	Limit state method of design of continuous slabs	2	2,3	a,c,e	1,2,3,4,5		
9.	Reinforcement detailing	1	2,3	a,c,e	1,2,3,4,5		
	Cycle Test -I	2	2,3				
	UNIT-III LIMIT STATE METHOD OF DESIGN OF BEAMS AND SLABS						
10.	Transfer of load from slab to beam	1	2,3	а	1,2,3,4		
11.	Limit state method of design of Singlyreinforced beams	2	2,3	a,c,e	1,2,3,4,5		
12.	doubly reinforced beams	2	2,3	a,c,e	1,2,3,4,5		
13.	Flanged beams (T and L beams)	4	2,3	a,c,e	`		
14.	Design for torsion	1	2,3	a,c,e	1,2,3,4,5		
15.	Design of Staircases	2	2,3	a,c,e	1,2,3,4,5		
16.	Use of Design Aids(SP16)	1	2,3	a,c,e	1,2,3,4,5,7		
17.	Use of SP34, reinforcementdetailing	2	2,3	a,c	1,2,3,4,5		

Lecture No.	Торіс	No. of hours	IOs	SO	Reference		
	UNIT-IV LIMIT STATE METHOD OF DESIGN FOR COLUMNS						
18.	Limit state method of design of short and long columns, effective length, braced and unbraced columns	2	2,3,4	a,c,e	1,2,3,4,5		
	Cycle Test - II	2					
19.	Uni-axial and biaxial bending using interaction curve(SP16)	4	2,3,4	a,c,e	1,2,3,4,5,7,9,1 0		
20.	shear in columns, ductile detaining of columns	2	2,3,4	a	1,2,3,4,5		
21.	Extension of design ofcolumns to piles, Use of SP34, reinforcement detailing at beam, column joints	1	2,3,4	a,e	1,2,3,4,5		
	UNIT-V LIMIT STATE METHOD OF DESIGN FOR FOUNDATIONS						
22.	Limit state method of design of foundations, individual footings	3	2,3,4,5	a,c,e	1,2,3,4,5		
23.	Combinedfootings	3	2,3,4,5	a,c,e	1,2,3,4,5		
24.	Column- Foundation junction	1	2,3,4,5	a,e	1,2,3,4,5		
25.	Pile foundation	2	2,3,4,5	a,c,e	1,2,3,4,5		
26.	pile caps (4 piles)	2	2,3,4,5	a,c,e	1,2,3,4,5		
27.	reinforcement detailing	1	2,3,4,5	a,c	1,2,3,4,5		
	UNIT-IMASONRY						
28.	Strength of bricks and masonry	1	1	а	8		
29.	design of walls, piers, columns	4	1	a,c,e	8		
30.	design offootings for walls and columns	2	1	a,c,e	8		
31.	use of nomograms, earthquake resistant featuresin masonry buildings as per BIS codes	1	1	a,e	8		
32.	Masonry retaining walls	2	1	a,c,e	8		
	Model Examination	3					
	Total hours	60					

The faculty members handling the course may conduct surprise test according to their convenience. However a question paper in hard copy as well as key shall be made available for the surprise test. The process shall be same as that of cycle tests.

TEXT BOOKS

- 1. Varghese .P.C, "Limit State Design Of Reinforced Concrete", 2Nd Ed, PHILearning Pvt. Ltd., 2004.
- 2. Unnikrishna Pillai .S and DeavadasMenon, "Reinforced Concrete Design," Tata MacGraw Hill Publishing Company Limited, Second Edition, New Delhi, 2003.
- 3. Krishnaraju .R, Pranesh .R.N, "Design of Reinforced concrete IS: 456-2000", New age International Publication (P) Ltd., New Delhi, 2003.

REFERENCE BOOKS

- 4. Gambhir .M.L, "Design of Reinforced Concrete Structures", Prentice Hall ofIndia, Pvt. Ltd., New Delhi, 2008.
- $5. \quad \textit{``Code of Practice for Plain and Reinforced Concrete''}, BIS, New Delhi, IS456-2000.$
- 6. "Recommended guidelines for Concrete Mix Design", BIS, New Delhi, IS10262 1982.
- 7. "Design Aids for Reinforced Concrete to IS 456", Special Publication(SP16), BIS New Delhi,1980.
- 8. "Code of Practice for Structural use of Unreinforced Masonry," BIS, NewDelhi, IS1905-1987.
- 9. "Code of practice for Earthquake Resistant Design and Construction of Buildings" IS4326-1976, BIS, New Delhi.
- "Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces Code of Practice"-IS3920:1993, BIS, New Delhi.

Course Coordinator

Dr. S. SenthilSelvan