Lesson Plan - CE1101 - Geomatics Surveying Academic year 2015-16 (Semester commencing in February 2016)

Instructional objectives

Instructional Objective No.	Instructional objectives (IO)	
1	To know the basics, importance, and methods of Triangulation and Trilateration.	
2	To study the various Hydrographic Surveying Techniques.	
3	To study the Advance Surveying Instruments like EDM Total Station and GPS	
4	To Study the Concept of Aerial Photo Interpretation	
5	To learn the importance and different aspects of remote sensing.	

Student outcomes

Student outcomes				
Student Outcome No. Student outcome (SO)				
a	an ability to apply knowledge of mathematics, science, and engineering			
b	an ability to design and conduct experiments, as well as to analyze and interpret data.			
e	an ability to identify, formulate, and solve engineering problems.			
k	an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.			

Mapping of Instructional Objectives (IOs) with Student Outcomes (SOs) CE1101 - Geomatics Surveying

Instructional objectives		Student Outcomes					
		b	e	k			
1. To know the basics, importance, and methods of Triangulation and Trilateration.	X						
2. To study the various Hydrographic Surveying Techniques.	X	X	X	X			
3. To study the Advance Surveying Instruments like EDM Total Station and GPS	X	X	X	X			
4. To Study the Concept of Aerial Photo Interpretation	X	X	X	X			
5. To learn the importance and different aspects of remote sensing.	X		X	X			

CE1101	Geomatics Surveying	Lecture Hours (L)	Tutorial Hours (T)	Practical Hours (P)	Credits (C)
		3	0	0	3
	Prerequisites Nil				

Lesson Plan - 2015-16

Revision: 0 dated 01/02/2016

Lecture No.	Торіс	No. of hours	IOs	so	Reference		
UNIT - I TRIANGULATION AND TRILATERATION							
1.	Introduction-Horizontal and vertical control - methods – network/classification triangulation - Layouts	1	1	a,b,e,k	1,2,3,4,10		
2.	Base line – selection of site for base line, instruments – Colby Apparatus, Steel, Invar, Wheelers base line apparatus	1	1	a,b,e,k	1,2,3,4,10		
3.	Jaderins method, Hunters short base	1	1	a,b,e,k	1,2,3,4,10		
4.	Extension of base lines – corrections	1	1	a,b,e,k	1,2,3,4,10		
5.	Satellite station - Reduction to centre	1	1	a,b,e,k	1,2,3,4,10		
6.	Signals	1	1	a,b,e,k	1,2,3,4,10		
7.	Axis signal corrections	1	1	a,b,e,k	1,2,3,4,10		
	UNIT - II – HYDROGRAPHIC SURV	EYING					
8.	Shore line survey, Tides – Gauges	1	2	a,b,e,k	1,2,3,4,10		
9.	Sounding, Equipments- shore signals and Buoys - Sounding boat,	1	2	a,b,e,k	1,2,3,4,10		
10.	sounding Rod , Lead Lines, Sounding Machine, Fathometers, Sextants	1	2	a,b,e,k	1,2,3,4,10		
11.	Locating the sounding: observations from shore – transit and stadia, Range and one angle from shore Two angle from Shore	1	2	a,b,e,k	1,2,3,4,10		
12.	Observations from boat - Range and one angle from Boat, Two angle from Boat	1	2	a,b,e,k	1,2,3,4,10		
13.	Cycle Test I		1				
14.	Observations from shore and boat – range and time interval, Intersecting Ranges, Cross rope,	1	2	a,b,e,k	1,2,3,4,10		
15.	Plotting sounding – Mechanical , Graphical, Analytical Solutions	1	2	a,b,e,k	1,2,3,4,10		
16.	River/Stream Surveying— area velocity, weir method and chemical method	1	2	a,b,e,k	1,2,3,4,10		

No.	Торіс	hours	IOs	SO	Reference
	UNIT - III - EDM, TOTAL STATION, GPS	SURVEYI	NG		•
17.	Introduction to EMR – Introduction to EDM – Components	1	3	a,b,e,k	1,2,3,7,10
18.	Electro – Optical system – Working Principles and Errors	1	3	a,b,e,k	1,2,3,7,10
19.	Microwave EDM- Working Principles and Errors	1	3	a,b,e,k	1,2,3,7,10
20.	Total Station – Working Principles and Errors	1	3	a,b,e,k	1,2,3,7,10
21.	Coordinate system-Cartesian-rectangular and Geographic	1	3	a,b,e,k	1,2,3,7,10
22.	Introduction to GPS, Working Principle Segments of GPS – Space, Control, User	1	3	a,b,e,k	1,2,3,7,10
23.	Errors in GPS Surveying	1	3	a,b,e,k	1,2,3,7,10
24.	GPS Survey – Kinematics and static	1	3	a,b,e,k	1,2,3,7,10
	UNIT – IV PHOGRAMMETRY SURV	EYING		•	
25.	Introduction to photogrammetry-Metric and interpretative photogrammetry-History of Photogrammetry	1	4	a,b,e,k	5,6,8,9
26.	Types of photographs : Photo theodolite- Ballistic camera, terrestrial photographs ,	1	4	a,b,e,k	5,6,8,9
27.	Aerial photographs - vertical, Oblique photographs	1	4	a,b,e,k	5,6,8,9
28.	Marginal Information on Aerial Photo Graph, Flight Planning	1	4	a,b,e,k	5,6,8,9
29.	Scale-Types and its measurement-LSM, SSM, MSM, Relief displacement, Orthophoto,	1	4	a,b,e,k	5,6,8,9
30.	Elements of Photographic Interpretation- With Examples	1	4	a,b,e,k	5,6,8,9
31.	Cycle Test – II		l	1	
32.	Stereoscopy – Principles and uses	1	4	a,b,e,k	5,6,8,9
33.	Parallax types – height determination	1	4	a,b,e,k	5,6,8,9
34.	Applications of aerial photographs in Civil Engineering	1	4	a,b,e,k	5,6,8,9
	UNIT – V REMOTE SENSING	ř		•	
35.	Introduction to Remote Sensing, Historical background - Indian Remote Sensing Satellites	1	5	a,b,e,k	5,8
36.	Components of Remote Sensing - Ideal Remote Sensing System	1	5	a,b,e,k	5,8
37.	EMR Wavelength and wave frequency – Characteristics and specific applications	1	5	a,b,e,k	5,8
38.	EMR Interaction with Atmosphere, Earth surface feature- Scattering, Emissions and Absorption	1	5	a,b,e,k	5,8
39.	Platforms – Ground, Airborne and Space borne Sensors –Illumination - Orbit and Wavelength.	1	5	a,b,e,k	5,8
40.	Resolutions- Spatial, Spectral, Temporal, Radiometric	1	5	a,b,e,k	5,8
41.	Optical Remote Sensing – sensors -Characteristics	1	5	a,b,e,k	5,8
42.	Microwave Remote Sensing-bands divisions – Scatterometer, Radiometer and Radar- Characteristics	1	5	a,b,e,k	5,8
43.	Model Examination			3	
	Total hours	45			

The faculty members handling the course may conduct surprise test according to their convenience. However a question paper in hard copy as well as key shall be made available for the surprise test. The process shall be same as that of cycle tests.

TEXT BOOKS

Lecture

- Kanetkar .T.P, "Surveying and Leveling" Vols. I and II, United Bok Corporation, Pune, 1994.
- Kanetkar T P and Kulkarni S V., Pona Vidyagriha Prakashan, "Surveying and leveling Part I'II. 2.
- Punmia B.C, "Surveying, Vols". I and II, Laxmi Publications, 1999.

REFERENCE BOOKS

- Chandra .A.M "Plane Surveying and Higher Surveying", New Age International (P) Limited, Publishers, Chennai, 2002.

- Agarwal .C.S, Garg P.K, "Remote Sensing", Whekrs Publishing Co., 2000.
 Wolf, P.R. "Elements of Photogrammetry", Tata MaGrawHil Co., 1997.
 Burnside C. D, "Electromagnetic Distance Measurement," Bekman Publishers, 1971.
- Anji Redy .M, "Remote sensing and Geographical information system," B.S Publications,
- Leudr D. R., "Aerial Photographic Interpretation," McGrawHil, 1959.
 Arora K. P, "Surveying", Volume I, Standard Bok House, 2000.

Staff in Charge HOD/Civil