# Faculty of Engineering & Technology, SRM University, Kattankulathur – 603203 School of Mechanical Engineering

# **Department of Mechanical Engineering** Course plan

Course code

: ME1011

Date : 04 Feb 2016

Course title

: Applied Thermal Engineering

Semester

Academic year /

: 2015-'16 / Even

semester

(FEB - MAY 2016)

# Section details:

|         |                               | Details of Faculty me | mber           |                                 |                                    |             |
|---------|-------------------------------|-----------------------|----------------|---------------------------------|------------------------------------|-------------|
| Section | no Name Com com No. e-mail id |                       | e-mail id      | Studen<br>t<br>contac<br>t time |                                    |             |
| 1       | H301F                         | Dr. G. Kasiraman      | MEC107         |                                 | kasiraman.g@ktr.srmuniv.ac.in      |             |
| 2       | H301B                         | Mr. V.Mathanraj       | MEB101<br>B    | 1832                            | madhanraj.v@ktr.srmuniv.ac.in      |             |
| 3       | H302F                         | Mr.G.Manikanda raja   | MEB101<br>B    |                                 | manikandaraja.g@ktr.srmuniv.ac.in  |             |
| 4       | Н303В                         | Mrs. V. Praveena      | MEB305         |                                 | praveena.v@ktr.srmuniv.ac.in       |             |
| 5       | H309                          | Mr. A. Satishkumar    | MH 208         |                                 | sathishkumar .ja@ktr.srmuniv.ac.in | Wed         |
| 6       | H310                          | Mr. M. Ijas ahmed     | MH 208         |                                 | ijasahmed.m@ktr.srmuniv.ac.in      | 12:45<br>To |
| 7       | H303F                         | Mr.S. Rajendrakumar   | MEB208         |                                 | rajendrakumar.s @ktr.srmuniv.ac.in | 1:30P<br>M  |
| 8       | H311                          | Mr. S. Arulkumar      | MH 101         |                                 | arulkumar.s@ktr.srmuniv.ac.in      |             |
| 9       | H306                          | Mr. M. Sivashankar    | H313           |                                 | sivashankar.mktr.srmuniv.ac.in     |             |
| 10      | H307                          | Mr. D. Kathirkaman    | MEC111         |                                 | kadhikaman.d@ktr.srmuniv.ac.in     | 1           |
| 11      | H302B                         | Mr. S. Ponshankar     | H502           | _                               | ponshankar.s@ktr.srmuniv.ac.in     | 1           |
| 12      | H308                          | Mr. A. Karthik        | H315<br>MECITI |                                 | karthik.a M@ktr.srmuniv.ac.in      | 1           |

# Direct assessment details:

| Name of assessment       | Marks | Topics (Tentative)                                                                    | Tentative date | Duration    |
|--------------------------|-------|---------------------------------------------------------------------------------------|----------------|-------------|
| Cycle test - I           | 10    | Gas Power Cycles & Simple<br>Rankine Cycle                                            | 24/02/2016     | 100 minutes |
| Surprise test            | 05    | Brayton cycle, Concept of Reheat and Regeneration in Brayton cycle.                   | 10/03/2016     | 30 – 45 min |
| Cycle test - II          | 10    | Reheat Rankine cycle,<br>Regenerative rankine cycle,<br>Binary cycle, Air Compressors | 23/03/2016     | 100 minutes |
| Model exam               | 20    | Entire Syllabus                                                                       | 25/04/2016     | 3 hours     |
| End semester examination | 50    | Entire Syllabus                                                                       |                | 3 hours     |
| Attendance               | 05    |                                                                                       | N/A            |             |

|                              |            |                                                                                                                                                                             |                            |                                                                    | L         | T    | P           | С                                                          |
|------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------|-----------|------|-------------|------------------------------------------------------------|
| ME1011                       | Applied    | l Thermal Enginee                                                                                                                                                           | ring                       | -                                                                  | 3         | 2    | 0           | 4                                                          |
|                              | Prerequi   | isite                                                                                                                                                                       |                            |                                                                    |           | ı    |             |                                                            |
|                              | Nil        | <del></del>                                                                                                                                                                 | <del></del>                |                                                                    |           |      |             |                                                            |
| Student outco                | omes       |                                                                                                                                                                             | Program Edi                | ucational Object                                                   | ctiv      | es   |             |                                                            |
| (a) an ability t             | o annly    | I. Apply / improve their knowledge in basic sciences for excelling in various disciplines of Mechanical Engineering with the emphasis on Design, Thermal and Manufacturing. | standards with ethical and | environment<br>al problems<br>with modern<br>engineering<br>tools. | in<br>int | elle | tea<br>ctua | o skills to work ams, think ams, think and pursue earning. |
| (a) an ability the knowledge | o apply of | X                                                                                                                                                                           |                            | X                                                                  |           |      |             |                                                            |
| mathematics, scie            |            |                                                                                                                                                                             |                            |                                                                    |           |      |             |                                                            |

| (e) an ability to identify, formulate, and solve engineering problems |                                       | X                 |       |          |        |            |      |              |       | X                            |   |                           |
|-----------------------------------------------------------------------|---------------------------------------|-------------------|-------|----------|--------|------------|------|--------------|-------|------------------------------|---|---------------------------|
| Cour                                                                  | se designed by                        | De                | parti | men      | t of N | lecha      | nica | l Engir      | ieeri | ng                           |   |                           |
| 1 Student outcome                                                     |                                       | a                 | b     | c        | D      | e          | f    | g            | h     | i                            | j | K                         |
|                                                                       |                                       | ×                 |       |          |        | ×          |      |              |       |                              |   |                           |
| 2                                                                     | Category                              | GI<br>L           | ENEI  | RA<br>—— | SCIE   | (C<br>ENCE | S    | SCIE         | NCE   | NEERING<br>ICES AND<br>NICAL |   | DFESSIONAL<br>EJECTS<br>X |
| 3                                                                     | Broad area (for professional          | Manufactur<br>ing |       | Design   |        | Design Th  |      | ermal Genara |       | •                            |   |                           |
|                                                                       | courses only, i.e 'under P' category) |                   |       |          |        |            |      | X            |       |                              |   |                           |
| 4                                                                     | Course<br>Coordinator                 | Dr                | .G.Ka | asira    | aman   |            |      |              |       |                              |   |                           |

,

#### **SYLLABUS**

|                          | APPLIED THERMAL ENGINEERING                                               | L      | T       | Р       | C      |  |  |  |  |
|--------------------------|---------------------------------------------------------------------------|--------|---------|---------|--------|--|--|--|--|
| ME1011                   | Total contact hours - 75                                                  | 3      | 2       | 0       | 4      |  |  |  |  |
| INCIVIA                  | Prerequisite                                                              |        |         |         |        |  |  |  |  |
|                          | Thermodynamics                                                            |        |         |         |        |  |  |  |  |
| PURPOS                   | Ē                                                                         |        |         |         | •      |  |  |  |  |
| On comp                  | On completion of this course, the students are expected to understand the |        |         |         |        |  |  |  |  |
|                          | and working of gas, vapour power cycles, air comp                         | presso | org, re | efriger | ration |  |  |  |  |
| and air co               | onditioning systems.                                                      |        |         |         |        |  |  |  |  |
| INSTRUCTIONAL OBJECTIVES |                                                                           |        |         |         |        |  |  |  |  |
| 1. To ur                 | To understand various gas power cycles.                                   |        |         |         |        |  |  |  |  |
| 2. To str                | 2. To study vapour power cycles with reheat and regeneration.             |        |         |         |        |  |  |  |  |
| 3. To st                 | 3. To study the performance of air compressors.                           |        |         |         |        |  |  |  |  |
| 4. To str                | . To study the refrigeration and air conditioning systems                 |        |         |         |        |  |  |  |  |

#### UNIT I - GAS POWER CYCLES (15 hours)

Air standard cycles - Assumptions - Otto, Diesel, Dual - Air standard efficiency - Mean effective pressure and power; Brayton cycle - Reheat and regeneration.

#### UNIT II - VAPOUR POWER CYCLES (15 hours)

Rankine cycle - Performance - Comparison between Rankine cycle and Carnot cycle - Simple, reheat and regenerative cycle - Introduction to binary vapour cycle - Combined cycle.

### **UNIT III - AIR COMPRESSORS (15 hours)**

Reciprocating air compressors - Types - Compression without clearance - Effect of clearance - multistage compression - Optimum intermediate pressure for perfect inter-cooling - Compressor efficiencies and mean effective pressure.

Rotary compressors - Vane compressor, roots blower - Comparison between reciprocating compressors and rotary compressors.

#### UNIT IV - REFRIGERATION SYSTEMS (15 hours)

Vapour compression systems - Working principle, refrigerants - Classifications - Properties - Eco friendly refrigerants. Analysis of vapour compression refrigeration cycle, use of P-h chart, effect of sub cooling and superheating - Calculations of COP. Vapour absorption systems - types - Working principle, comparison.

### UNIT V - PSYCHROMETRY AND AIR CONDITIONING (15 hours)

Properties of atmospheric air - Psychrometric chart, relations. Psychrometric processes - Sensible heating and cooling, cooling and dehumidification, heating and humidification, adiabatic mixing of two air streams.

Air conditioning - Classifications - summer, winter, year round air conditioning system, window, split and centralized - Introduction to heat load calculations.

# TOTAL: 75 TEXT BOOKS

- 1. RajputR.K, "Thermal Engineering", Laxmi Publications, 8th Edition, New Delhi, 2010.
- 2. Kothandaraman.C.P, Domkundwar.S, Anand Domkundwar, "A Course in Thermal Engineering", Dhanpat Rai & Co. (P) Ltd., 2010.

### **DATA BOOKS**

- 1. Ramalingam.K.K, "Steam Tables", SciTech Publishers, 2009.
- 2. Mehta.F.S, Mathur.M.L, "Refrigeration & Psychrometric Properties Tables & Charts", 2nd Edition, Jain Publishers, 2007.

#### REFERENCES

- 1. Sarkar.B.K, "Thermal Engineering", 3rd Edition, Tata McGraw Hill, New Delhi, 2009.
- 2. Rudramoorthy.R, "Thermal Engineering", Tata McGraw Hill, New Delhi, 2003.
- 3. Eastop.T.D, Mcconkey.A, "Applied Thermodynamics for Engineering Technologists", 5th Edition, Pearson Edition Publications, 2009.

# LESSON PLAN

COURSE CODE : ME 1011

COURSE TITLE : APPLIED THERMAL ENGINEERING

YEAR/SEMESTER : 11/1V

COURSE TIME – SEMESTER: EVEN

YEAR 2015-16

| SL  | Date/Hr | No. Of | Title / Details of the chapter                        | References (Code |
|-----|---------|--------|-------------------------------------------------------|------------------|
| No  | Date/HI | Hours  | Title / Details of the chapter                        | of the Text /    |
| 140 |         | Hours  |                                                       |                  |
|     |         |        |                                                       | Reference Book)  |
| 1   | 1       | 1      | Unit I Gas power cycles: Introduction, Air standard   | T1 – Chapter 2 I |
|     |         |        | cycles, assumptions. Otto cycle description           |                  |
|     | 0       |        |                                                       |                  |
| 2   | 2       | 1      | Derivation of expression for Otto cycle efficiency.   | T1 – Chapter 21  |
|     |         |        | Mean effective pressure, Compression ratio, Power     |                  |
| 3   | 3       | 1      | Problems on Otto cycle.                               | T1 – Chapter 21  |
|     |         |        |                                                       |                  |
| 4   | 4       | 1      | Problems on Otto cycle                                | T1 – Chapter 21  |
| 5   | 5       | 1      | Problems on Otto cycle.                               | T1 Chapter 21    |
| ,   | ]       | 1      | 1 Toblems on Otto cycle.                              | 11 Chapter 21    |
| 6   | 6       | ]      | Diesel cycle - Efficiency- derivation, mean effective | T1 – Chapter 21  |
|     |         |        | pressure, Compression ratio, cut off ratio, Power     | ·                |
|     | _       |        |                                                       |                  |
| 7   | 7       | 1      | Problems on diesel cycle.                             | T1 – Chapter 21  |
| 8   | 8       | 1      | Problems on diesel cycle                              | T1 – Chapter 21  |
|     |         |        |                                                       |                  |
| 9   | 9       | 1      | Problems on diesel cycle                              | T1 – Chapter 21  |
| 10  | 10      | 1      | Dual cycle- Efficiency – derivation, mean effective   | T1 – Chapter 21  |
| 10  | 10      | 1      | pressure, constant volume pressure ratio, compression | 11 - Chapter 21  |
|     |         |        | ratio, cut off ratio, Power                           |                  |
|     |         |        | Tatio, cut off fatio, Power                           |                  |
| 11  | 11      | 1      | Problems on dual cycle                                | T1 – Chapter 21  |
|     | 10      |        |                                                       |                  |
| 12  | 12      | 1      | Problems on dual cycle                                | T1 – Chapter 21  |
| 13  | 13      |        | Problems on dual cycle                                | T1 – Chapter 21  |
|     |         |        |                                                       |                  |
| 14  | 14      | 1      | Components and working of gas turbine power plant,    | T1 – Chapter 21  |
|     |         |        | Brayton cycle – efficiency - problems                 |                  |
|     |         |        |                                                       |                  |

| 15 | 15 | I | Reheat and regeneration on brayton cycle,                                                                                                        | T1 – Chapter 21 |
|----|----|---|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 16 | 16 | 1 | Unit II Vapour Power cycles: Steam power plant layout, Components, functions, processes.                                                         | T1 - Chapter 15 |
| 17 | 17 | 1 | Rankine cycle, T-S diagram, H-S diagram (Mollier chart), Three conditions of steam at turbine entry – simple saturated, super heated, wet steam. | T1 – Chapter 15 |
| 18 | 18 | 1 | Problems on rankine cycle – wet steam at turbine entry                                                                                           | T1 – Chapter 15 |
| 19 | 19 | 1 | Problems on rankine cycle – dry steam at turbine entry                                                                                           | T1 – Chapter 15 |
| 20 | 20 | 1 | Problems on rankine cycle – super heated steam at turbine entry                                                                                  | T1 – Chapter 15 |
| 21 | 21 | 1 | Problems on rankine cycle – super heated steam at turbine entry,                                                                                 | T1 – Chapter 15 |
| 22 | 22 | 1 | Solving problems using Mollier diagram                                                                                                           | T1 – Chapter 15 |
| 23 | 23 | 1 | Reheat rankine cycle – concept with diagrams                                                                                                     | T1 – Chapter 15 |
| 24 | 24 | 1 | Problems on reheat rankine cycle                                                                                                                 | T1 – Chapter 15 |
| 25 | 25 | 1 | Regenerative rankine cycle – concept with diagrams                                                                                               | T1 – Chapter 15 |
| 26 | 26 | 1 | Problems on regenerative rankine cycle.                                                                                                          | T1 – Chapter 15 |
| 27 | 27 | 1 | Problems on combined Reheat and regenerative rankine cycle                                                                                       | T1 – Chapter 15 |
| 28 | 28 | 1 | Introduction to binary vapour cycle.                                                                                                             | T1 – Chapter 15 |
| 29 | 29 | 1 | Introduction to Combined cycle                                                                                                                   | T1 – Chapter 15 |
| 30 | 30 | 1 | Discussion of Assignment / Cycle Test I                                                                                                          | T1 – Chapter 15 |
| 31 | 31 | 1 | Unit III Air Compressors: Types of compressors - Reciprocating air compressor – construction and working                                         | T1 – Chapter 24 |
| 32 | 32 | 1 | Expression for work without clearance- Single stage, problem                                                                                     | T1 – Chapter 24 |
| 33 | 33 | 1 | Problems on Compression work                                                                                                                     | T1 – Chapter 24 |
| 34 | 34 | 1 | Effect of clearance volume, Volumetric efficiency,                                                                                               | T1 – Chapter 24 |
|    |    |   |                                                                                                                                                  | 1               |

|    |    |   | problem                                                                                                                                                 |                 |
|----|----|---|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 35 | 35 |   | Problems on volumetric efficiency                                                                                                                       | T1 – Chapter 24 |
| 36 | 36 | 1 | Power required and efficiency of a single stage compressor, problem                                                                                     | TI – Chapter 24 |
| 37 | 37 | 1 | Multistage compression, Two stage compressor with complete intercooling, without intercooling,                                                          | T1 – Chapter 24 |
| 38 | 38 | 1 | Minimum work required for a two stage compressor with perfect intercooling (Optimum intermediate pressure for perfect intercooling.)                    | T1 – Chapter 24 |
| 39 | 39 | 1 | Problems on reciprocating compressors                                                                                                                   | T1 – Chapter 24 |
| 40 | 40 | 1 | Problems on reciprocating compressors                                                                                                                   | T1 – Chapter 24 |
| 41 | 41 | I | Problems on reciprocating compressors                                                                                                                   | TI – Chapter 24 |
| 42 | 42 | 1 | Rotary Compressors: Vane compressor- construction and working                                                                                           | T1 – Chapter 24 |
| 43 | 43 | 1 | Roots blower – Construction and working                                                                                                                 | T1 – Chapter 24 |
| 44 | 44 | 1 | Comparison between Reciprocating and Rotary compressors                                                                                                 | T1 – Chapter 24 |
| 45 | 45 | 1 | Discussion of Cycle test II question paper                                                                                                              |                 |
| 46 | 46 | ì | Unit IV Refrigeration systems: Applications- Unit of refrigeration – Coefficient of performance(COP) Review of heat engine, heat pump and refrigerators | T1 – Chapter 26 |
| 47 | 47 | 1 | Vapour compression refrigeration systems – working principle, T-s and P-h diagrams, COP in terms of enthalpy                                            | T1 – Chapter 26 |
| 48 | 48 | 1 | Different cases – 1. Vapour compression cycle with dry saturated vapour after compression, 2. with wet vapour after compression,                        | T1 – Chapter 26 |
| 49 | 49 | 1 | Vapour compression cycle with super heated vapour after compression, and with super heated vapour before compression                                    | T1 – Chapter 26 |
| 50 | 50 | 1 | Vapour compression cycle with under cooling or sub-                                                                                                     | T1 – Chapter 26 |

|    |    |   | cooling of refrigerant.                                                                                       |                 |
|----|----|---|---------------------------------------------------------------------------------------------------------------|-----------------|
| 51 | 51 | 1 | Analysis, use of p-h chart, Problems on calculation of COP (ammonia, R134a, R12 and R22 only)                 | TI – Chapter 26 |
| 52 | 52 | 1 | Problems on vapour compression cycles for (R12)                                                               | TI – Chapter 26 |
| 53 | 53 | 1 | Problems on vapour compression cycles for (R12)                                                               | T1 – Chapter 26 |
| 54 | 54 | ī | Problems on vapour compression cycles for (R22)                                                               | T1 – Chapter 26 |
| 55 | 55 | 1 | Problems on vapour compression cycles for (R22)                                                               | T1 – Chapter 26 |
| 56 | 56 | 1 | Problems on vapour compression cycles for (R 134 a)                                                           | T1 – Chapter 26 |
| 57 | 57 | 1 | Refrigerants – essential properties, eco friendly refrigerants.                                               | T1 – Chapter 26 |
| 58 | 58 | 1 | Vapour absorption systems -Aqua ammonia, working                                                              | T1 – Chapter 26 |
| 59 | 59 | 1 | Comparison between VC and VA system                                                                           | T1 – Chapter 26 |
| 60 | 60 | 1 | Discussion / Assignment on Refrigeration                                                                      | T1 – Chapter 26 |
| 61 | 61 | 1 | Unit V Psychrometry and Air Conditioning: Properties of atmospheric air                                       | T1 – Chapter 9  |
| 62 | 62 | 1 | Psychrometric chart- different curves                                                                         | T1 – Chapter 9  |
| 63 | 63 | 1 | Psychrometric processes – sensible heating, cooling, cooling and dehumidification, heating and humidification | TI – Chapter 9  |
| 64 | 64 | 1 | Problems on Sensible heating and cooling                                                                      | T1 – Chapter 9  |
| 65 | 65 | 1 | Problems on cooling and dehumidification                                                                      | T1 – Chapter 9  |
| 66 | 66 | 1 | Problem on heating and humidification                                                                         | T1 – Chapter 9  |
| 67 | 67 | 1 | Adiabatic mixing of two streams                                                                               | T1 – Chapter 9  |
| 68 | 68 |   | Problems on mixing of two streams                                                                             | T1 - Chapter 9  |
| 69 | 69 | 1 | Description of summer and winter air conditioning systems                                                     | T1 – Chapter 27 |
| 70 | 70 | 1 | Year round air conditioning systems                                                                           | T1 – Chapter 27 |
| 71 | 71 | 1 | Window and split air conditioning systems                                                                     | T1 – Chapter 27 |

| 72 | 72 | I | Centralized Air conditioning plant                        | T1 – Chapter 27 |
|----|----|---|-----------------------------------------------------------|-----------------|
| 73 | 73 | J | Visit to Central Air conditioning plant inside the campus | TI – Chapter 27 |
| 74 | 74 | I | Cooling load calculations – Problem                       | T1 – Chapter 27 |
| 75 | 75 | 1 | Discussion / Revision/ Assignment                         | T1 – Chapter 27 |

#### **TEXT BOOKS**

- T1 Rajput, R. K., Thermal Engineering, Laxmi Publications, 6th Edition, New Delhi, 2010.
- T2 Domkundwar, A., A Course in Thermal Engineering, Dhanpat Rai & Co., New Delhi, 2010.

#### REFERENCES

- 1. Sarkar.B.K, "Thermal Engineering", 3rd Edition, Tata McGraw Hill, New Delhi, 2009.
- 2. Rudramoorthy.R, "Thermal Engineering", Tata McGraw Hill, New Delhi, 2003.
- 3. Eastop.T.D, Mcconkey.A, "Applied Thermodynamics for Engineering Technologists", 5th Edition, Pearson Edition Publications, 2009.

Signature of the faculty members:

M. Swashantar &M- Govaldon

purse Coordinator: Dr. G. Kasiraman

M. RSAS AHMED HT S. RAJENDRA KUMBR G. N.