SEMESTER-1

15MA103	Matrices and Calculus	L	Τ	P	С
		3	2	0	4
	Total contact hours = 60 hours	irs			
	(For Bio group)				

Purpose:

To impart analytical ability in solving mathematical problems as applied to the respective branches of Engineering.

Instructional objectives:		
1	To apply advanced matrix knowledge to Engineering problems.	
2	To improve their ability in trigonometry.	
3	To equip themselves familiar with the concepts of Differential calculus	
4	To expose to the concept of integral calculus	
5	To familiarize with the applications of differential and integral calculus	

UNIT I MATRICES

*Review types of matrices, properties. Inverse matrix Cramer's rule for solving a system of linear equations. – Rank of Matrix – Consistency and Inconsistency of a system of m linear equations in 'n' unknowns –Cayley Hamilton theorem – Eigen values and Eigen vectors of a real matrix. (12 Hours)

UNIT II TRIGONOMETRY

*Review of complex numbers. De Moiver's theorem and its applications. Expansion of $\sin n\theta$, $\cos n\theta$ in terms of $\sin \theta$ and $\cos \theta$. Expansion of $\tan n\theta$ in terms of $\tan \theta$. Expansion of $\sin^n \theta$ and $\cos^n \theta$ in terms of sines and cosines of multiples of θ . Hyperbolic functions and inverse hyperbolic functions. (12 Hours)

UNIT III DIFFERENTIAL CALCULUS

Differentiation and Derivatives of simple functions – Successive Differentiation – Various forms of Algebraic and Trigonometric functions – Problems. (12 Hours)

UNIT IV INTEGRAL CALCULUS

Methods of integration – Definite integrals and its properties-Reduction formula for $e^{ax} x^{n}$, $\sin^{n} x$, $\cos^{n} x$, $\sin^{n} x \cos^{m} x$ (without proof) - Problems (12 Hours)

UNIT V APPLICATIONS OF DIFFERENTIAL CALCULUS & INTEGRAL CALCULUS

Applications of differential calculus & integral calculus. Tangent & Normal-Radius of curvature – Velocity and acceleration. Integral calculus - Length & Area. (12 Hours)

*No questions should be asked in the Review part

TEXT BOOKS:

- 1. Kreyszig.E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10th edition, 2012.
- 2. K.Ganesan, Sundarammal Kesavan, K.S.Ganapathy Subramanian & V.Srinivasan, "*Matrices and Calculus*", Revised Edition, 2013.

REFERENCES:

- 1. Grewal B.S, Higher Engg Maths, Khanna Publications, 42nd Edition, 2012.
- 2. Veerajan, T., Engineering Mathematics I, Tata McGraw Hill Publishing Co., New Delhi, 5th edition, 2006.
- 3. Kandasamy P etal. Engineering Mathematics, Vol.I (4th revised edition), S.Chand &Co., New Delhi,2000.
- Narayanan S., Manicavachagom Pillay T.K., Ramanaiah G., Advanced Mathematics for Engineering students, Volume I (2nd edition), S.Viswanathan Printers and Publishers, 1992.
- 5. Venkataraman M.K., Engineering Mathematics First Year (2nd edition), National Publishing Co., Chennai,2000.
- 6. David E.Penney and C.Henry Edwards, Single Variable Calculus, Prentice Hall; 6th edition, 2002.