DEPARTMENT OF BIOINFORMATICS SCHOOL OF BIOENGINEERING SRM UNIVERSITY LECTURE PLAN

Credits: 3

Subject code: BI0625 Subject: Molecular Dynamics Staff: Dr. S.K.M. Habeeb.

Semester: III

Hour	Contents	Learning Outcome
1 2 3 4	Unit 1: Introduction to Molecular Dynamics, Statistical Mechanics for Molecular Dynamics Energy Minimization, First order derivative methods, second order derivative methods, Steepest descent, and Conjugate Gradient method.	 .Basics of molecular dynamics Importance and methods of energy minimization.
5 6 7 8	Unit II: Equations of motions, Finite difference methods Predictor corrector method, Constant energy MD simulation. Constant temperature and pressure dynamics simulations.	 Integration of Newton's law of motion Exposure to performing simulation at different ensembles.
9 10	Unit III: Brownian Dynamics MD simulations, Introduction to molecular dynamics packages. GROMACS, AMBER, CHARMM & DESMOND.	 Exposure to various molecular dynamics packages
11 12	Unit IV: Energy calculations for complex interactions potentials. Energy Minimization for complex interaction potentials.	Thermodynamics properties from MDS.Binding Energy.
13 14 15	Unit V: Molecular Dynamics simulation of macromolecules. Free energy calculations & Analyzing molecular dynamics trajectories.	• Macromolecular dynamics & trajectories.

REFERENCES

1. Andrew R. Leach, *Molecular Modeling- Principles and applications*, Prentice hall, Hedition, 1996.

2. Alan Hinchliffe, Modelling Molecular Structures, John Wiley, 2000.

3. Charles R. Cantor, Paul ReinhardSchimmel, *Biophysical Chemistry: The Behavior ofBiological Macromolecules PART III*, W. H. Freeman, 1980.

Signature of the Subject in charge

Signature of the HOD