# VISCOMERTRY

# What is viscosity

- Viscosity is a measure of the resistance of a fluid which is being deformed by either shear stress or tensile stress.
  Example:
- viscosity is "thickness" or "internal friction".
- water is "thin", having a lower viscosity
- honey is "thick", having a higher viscosity



the less viscous the fluid is, the greater its ease of movement (fluidity)

# <u>Definition of viscosity:</u>

Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction



### For normal (Newtonian) flow behaviour:

 $\eta = \tau/(dv/dy)$ 

units: (dyn/cm<sup>2</sup>)/sec<sup>-1</sup> At 20.0°C, η(water) ~ 0.01P > When a fluids moves slowly, its flow is orderly and we call it **LAMINAR FLOW**,



Fast moving fluids do not flow orderly – the streamlines become chaotic & unstable, producing TURBULENT FLOW



This creates friction, and this increases if a liquid is more viscous. The flow forms loops, whirls and eddies, wasting energy, causing more 'drag' and heating the fluid up:

# Viscosity of bio molecules

Why viscometry?

 Simple, straightforward technique for assaying
Solution conformation of biomolecules & volume/ solvent association
Molecular weight of biomolecules

□ Flexibility of biomolecules

### **Viscosity of biomolecular solutions:**

A dissolved macromolecule will <u>INCREASE</u> the viscosity of a solution because it disrupts the <u>streamlines</u> of the flow:



Relative viscosity- $h_r = h/h_o$ Reduced viscosity- $h_{red} = (h_r - 1)/c$ Intrinsic Viscosity [h] -[h] =  $Lim_{c^{\rightarrow o}}(h_{red})$ 

#### 

00000 00000 - 00000  $\square_{\square}$  $(\Box\Box\Box)$ 00000000 (0 0/0<sup>2</sup>),U  $\Box) = \Box \Box \Box$  $\square_{\square}$  $(\Box\Box\Box\Box/\Box)$ 

# **Types of Viscometer:**





1. "U-tube" (Ostwald or Ubbelohde)

### 2. "Cone & Plate" (Couette)

## The Physical Basis of Viscosity

- Viscosity is a measure of the ease with which molecules move past one another
- It depends on the attractive force between the moleculees
- It depends on whether there are structural features which may cause neighboring molecules to become "entangled"
- Viscosity decreases with increasing temperature the increasing kinetic energy overcomes the attractive forces and molecules can more easily move past each other



# **GENERAL CONFORMATIONS**

The three extremes of macromolecular conformation (<u>COMPACT SPHERE</u>, RIGID ROD, <u>RANDOM COIL</u>) are conveniently represented at the corners of a triangle, known as the <u>HAUG TRIANGLE</u>:



# Conclusion :

Thereby using the measurement of resistance of a fluid which is being deformed by either shear stress or tensile stress

> We could derive the conformation of the molecules by means of viscosity

