Launch vehicle optimization

1.Orbital Mechanics for engineering students Chapter – 11: Rocket vehicle dynamics

2. Space Flight Dynamics
By William E Wiesel
Chapter 7 – Rocket Performance

Restricted staging in field-free space

No gravity and no aerodynamics

$$\Delta v = I_{sp}g_0 \ln \frac{m_0}{m_f} \qquad \frac{m_0}{m_f} = e^{\frac{\Delta v}{I_{spg_0}}}$$

$$\Delta m = m_0 - m_{f_f}$$

 $\frac{\Delta m}{m_0} = 1 - e^{-\frac{\Delta v}{I_{spg_0}}}$

Let gross mass of a launch vehicle m0 = empty mass mE + propellant mass mp + payload mass mPL

Empty mass mE = mass of structure + mass of fuel tank and related system + mass of control system

Let us divide the above by m0 We can write as

 $\pi_E + \pi_p + \pi_{PL} = 1$

 $\pi_E + \pi_p + \pi_{PL} = 1$

structural fraction , $\pi E = mE / mO$

Propellant fraction, $\pi p = mp / m0$

payload fraction, $\pi PL = mPL / mO$

Alternately we can define

Payload ratio $\lambda = \frac{m_{PL}}{m_E + m_p} = \frac{m_{PL}}{m_0 - m_{PL}}$

Structural ratio
$$\varepsilon = \frac{m_E}{m_E + m_p} = \frac{m_E}{m_0 - m_{PL}}$$

Mass ratio $n = \frac{m_0}{m_f}$
uning all the propellant $n = \frac{m_E + m_p + m_{PL}}{m_f}$

Assuming all the propellant $n = \frac{1}{m_E + m_{PL}}$ Is consumed

 λ , ε and n are not independent

From
$$\varepsilon = \frac{m_E}{m_E + m_p}$$
 we can write as
 $m_E = \frac{\varepsilon}{1 - \varepsilon} m_p$
From $\lambda = \frac{m_{PL}}{m_E + m_p}$ we can write as
 $m_{PL} = \lambda(m_E + m_p) = \lambda \left(\frac{\varepsilon}{1 - \varepsilon} m_p + m_p\right)$
 $= \frac{\lambda}{1 - \varepsilon} m_p$

Given any two of the ratios λ , ε and n, we can obtain the third

Velocity at burn out is

$$v_{bo} = I_{sp}g_0 \ln n = I_{sp}g_0 \ln \frac{1+\lambda}{\varepsilon+\lambda}$$

For a given empty mass, the greatest possible Δv occurs when the payload is zero.

To maximize the amount of payload while keeping the structural weight to a minimum.

Mass of load-bearing structure, rocket motors, pumps, piping, etc., cannot be made arbitrarily small.

Current materials technology places a lower limit on ε of about 0.1.

Performance of multistage rocket

Restricted staging - all stages are similar Each stage has the same specific impulse Isp same structural ratio ε same payload ratio λ. Hence mass ratios n are identical

Final burnout speed vbo for a given payload mass mPL

Overall payload fraction
$$\pi_{PL} = \frac{m_{PL}}{m_0}$$

m0 is the total mass of the tandem-stacked vehicle.

For a single-stage vehicle, the payload ratio is

$$\lambda = \frac{m_{PL}}{m_0 - m_{PL}} = \frac{1}{\frac{m_0}{m_{PL}}} = \frac{\pi_{PL}}{1 - \pi_{PL}}$$

$$\lambda = \frac{\pi_{PL}}{1 - \pi_{PL}}$$

From the equation $n = \frac{1 + \lambda}{\varepsilon + \lambda}$
The mass ratio is $n = \frac{1}{\pi_{PL}(1 - \varepsilon) + \varepsilon}$
 $v_{bo} = I_{sp}g_0 \ln n = I_{sp}g_0 \ln \frac{1 + \lambda}{\varepsilon + \lambda}$
 $v_{bo} = I_{sp}g_0 \ln \frac{1}{\pi_{PL}(1 - \varepsilon) + \varepsilon}$

For a single-stage vehicle burnout speed $v_{\rm bo}$ for a given payload mass $m_{\rm PL}$

$$v_{bo} = I_{sp}g_0 \ln \frac{1}{\pi_{PL}(1-\varepsilon) + \varepsilon}$$

In the book "Space Flight Dynamics" by William E Wiesel The above expression is given as

$$v_{bo} = -v_e \ln[\epsilon + (1 - \epsilon)\pi]$$

Let m0 be the total mass of the two-stage rocket

$$m_{E_1} = \frac{\left(1 - \pi_{PL}^{\frac{1}{2}}\right)\varepsilon}{\pi_{PL}} m_{PL} \qquad m_{E_2} = \frac{\left(1 - \pi_{PL}^{\frac{1}{2}}\right)\varepsilon}{\pi_{PL}^{\frac{1}{2}}} m_{PL}$$

$$m_{p_1} = \frac{\left(1 - \pi_{PL}^{\frac{1}{2}}\right)(1 - \varepsilon)}{\pi_{PL}} m_{PL} \qquad m_{p_2} = \frac{\left(1 - \pi_{PL}^{\frac{1}{2}}\right)(1 - \varepsilon)}{\pi_{PL}^{\frac{1}{2}}} m_{PL}$$

For a multi stage rockets

$$v_{bo} = \sum -v_{ek} \ln \left[\epsilon_k + (1 - \epsilon_k) \pi_k \right]$$

$$k = 1$$

Calculate the Ve (go * Isp), $\epsilon_{k_{j}}$ for π_{k} each stage Sequentially and sum up

Example 11.2 – Page No: 566

The following data is given

$$m_{PL} = 10\,000 \,\text{kg}$$

 $\pi_{PL} = 0.05$
 $\varepsilon = 0.15$ (a)
 $I_{sp} = 350 \,\text{s}$
 $g_0 = 0.00981 \,\text{km/s}^2$

Calculate the payload velocity v_{bo} at burnout, the empty mass of the launch vehicle and the propellant mass for (a) a single stage and (b) a restricted, two-stage vehicle.

Example 11.3 Repeat Example 11.2 for the restricted three-stage launch vehicle.

Zeroth stage – combined I stage And strapped on boosters

Boosters burn out fast and separated

Balance propellant of the core I stage burns

How to calculate???????

Assignment!!

