
Particles, Rigid Bodies and “Real Bodies”

Real bodies are normally idealized either as particles or as rigid bodies.

Particle - body of negligible dimensions - dimensions of the body are 
unimportant to the description of its motion – In planetary motion, 
the planets are considered as particles.  

Rigid body - body that has a finite size but it does not deform. useful 
approximation when the deformation of a body is negligible compared 
to the overall motion – Aircraft and launch vehicle motion

Real bodies - finite size and are always deformable under loading –
dynamic behavior - mainly used while carrying out detailed design and 
analysis of structures, navigation, guidance, control systems, 
vibration analysis and so on. 



NEWTON’S LAWS
1. A particle in isolation moves with constant velocity
A particle in isolation - particle does not interact with any other particle. 
Constant velocity - particle moves along a straight line with constant 
Speed - can be at rest 
Motion (e.g. velocity and acceleration) we observe depends on the 
reference frame we use - law can not be verified in all reference frames. 
The reference frames for which this law is satisfied are called inertial 
reference frames - Newton’s first law postulates that inertial reference 
frames exist. 

2. The acceleration of a particle relative to an inertial reference frame is 
equal to the force per unit mass applied to the particle.
F represents the (vector) sum of all forces acting on a particle of mass 
‘m’, any inertial observer will see that the particle has an acceleration 
‘a’ which is given by,

F = m. a (1)
.



Equation (1) is a vector equation - force and the acceleration always 
have the same direction and the ratio of their magnitudes is ‘m’. 

3. The forces of action and reaction between interacting bodies are equal 
in magnitude and opposite in direction 
Clearly satisfied when the bodies are in contact and in static equilibrium
Situation for bodies in motion interacting at a distance - e.g. 
electromagnetic or gravity interactions - Newton’s third law breaks down 
Electromagnetic signals travel at a finite speed and therefore there is a 
time delay whenever two bodies interact at a distance 
Error made by assuming that these interactions are instantaneous is 
Negligible - Newton’s third law is applicable in many cases



LAW OF UNIVERSAL ATTRACTION
Force of attraction between any two particles, of masses M and m, 
respectively, has a magnitude, F, given by
F = GMm / r2 (2)
where r is the distance between the two particles, and 
G = 6.673 x 10−11 m3/(kg · s2) is the universal constant of gravitation 
law of gravitation is strictly valid for point masses 
When the size of the masses is comparable to the distance between the 
masses one would observe deviations to the above law. It turns out that
if the mass M is distributed uniformly over a sphere of radius R, the 
force on a mass m, outside M, is still given by (2), with r being 
measured from the sphere’s center. 



WEIGHT
The gravitational attraction from the earth to any particle located near the 
surface of the earth 
weight, W of mass m at sea level 

Me ≈ 5.976×1024 kg and Re ≈ 6.371×106 m, are the mass and radius of the 
earth, respectively, and g0 = −(GMe/R2

e) e r is the gravitational 
acceleration vector at sea level. The average value of its magnitude is g0 
= 9.825 m/s2. 

weight at an altitude h above sea level is given by

Earth is not quite spherical - weight does not exactly obey the inverse –
squared law - g0, at the poles and at the equator, is slightly different.
Earth is also rotating - introduces an inertial centrifugal force which has
the effect of reducing the vertical component of the weight.



CURVILINEAR MOTION - CARTESIAN COORDINATES
Velocity Vector

Average velocity of the particle over this small increment of time

Instantaneous velocity vector always tangent to the path



Acceleration Vector

The acceleration vector will, in general, not be tangent to the trajectory (in fact it is 
only tangent when the velocity vector does not change direction).

To visualize the acceleration vector is to translate the velocity vectors, at different times, 
such that they all have a common origin, say, O′. Then, the heads of the velocity vector 
will change in time and describe a curve in space called the hodograph



Acceleration vector is tangent to the hodograph at every point



Cartesian Coordinates



Equations of Motion in Cartesian Coordinates

Rectangular Cartesian coordinates, xyz, F = Fxi + Fyj + Fzk and
a = axi + ayj + azk.

In component form

The initial position r0 and velocity v0. 
r(0) = x(0)i+y(0)j+z(0)k = r0,
v(0) = x˙ (0)i + y˙(0)j + z˙(0)k = v0.



Analytical Integration – Some General Cases

Analytical solution is possible - F is either constant or depends on t only



Numerical Integration

The most general way of solving the equations of motion is by numerical 
integration. In this case we do not compute the solution of the problem 
but an approximation to it. It is typically useful to work only with first
order equations, so we write,

This is a set of 6 first order ODE’s, 
with initial conditions
x(0) = x0
y(0) = y0
z(0) = z0
vx(0) = vx0,
vy(0) = vy0, 
vz(0) = vz0 .



Intrinsic Coordinates - Tangential, Normal and Bi-normal components

where r(t) is the position vector, v = 
s˙ is the speed, et is the unit tangent 
vector to the trajectory, and s is
the path coordinate along the 
trajectory.

The unit tangent vector can be written as,

Acceleration vector is the derivative of
the velocity vector with respect to time

vector et is the local unit tangent 
vector to the curve which changes 
from point to point. Consequently,
the time derivative of et will, in 
general, be nonzero.



In order to calculate the derivative of et, we note that, since the 
magnitude of et is constant and equal to one, the only changes that et can 
have are due to rotation, or swinging.

When we move from s to s + ds, the tangent vector changes from et to et
+ de t. The change in direction can be related to the angle dβ.
The direction of det, which is perpendicular to et, is called the normal 
direction. On the other hand, the magnitude of de t will be equal to the 
length of et (which is one), times d β. Thus, if en is a unit normal
vector in the direction of det, we can write



Dividing by ds yields,

Here, κ = dβ/ds is a a local property of the curve, called the curvature, 
and ρ = 1/ κ is called the radius of curvature.

we have that

The acceleration can be written as

at = vdot , is the tangential component of the 
acceleration, and an = v2/ ρ, is the normal 
component of the acceleration. an is the 
component of the acceleration pointing 
towards the center of curvature, it is
sometimes referred to as centripetal 
acceleration.



When at is nonzero, the velocity vector changes magnitude, or stretches.
When an is nonzero, the velocity vector changes direction, or swings. 
The modulus of the total acceleration can be calculated as

The vectors et and en, and their respective coordinates t and n, define two 
orthogonal directions. The plane defined by these two directions, is 
called the osculating plane. This plane changes from point to point, and
can be thought of as the plane that locally contains the trajectory 
(Tangent is the current direction of the velocity, and the normal is the 
direction into which the velocity is changing).
Define a right handed set of axes - an additional unit vector which is 
orthogonal to et and en. This vector is called the bi-normal, and is defined 
as eb = et × e n.



At any point in the trajectory, the position vector, the velocity and 
acceleration can be referred to these axes. 
velocity and acceleration take very simple forms

Component of the acceleration along the binormal is always zero.
When the trajectory is planar, the binormal stays constant (orthogonal 
to the plane of motion). However, when the trajectory is a space 
curve, the binormal changes with s. Derivative of the binormal is 
always along the direction of the normal. The rate of change of the 
binormal with s is called the torsion, τ.



Whenever the torsion is zero, the trajectory is planar, and whenever the 
curvature is zero, the trajectory is linear

Equations of Motion

In tangent, normal and bi-normal components, t-n-b, we write 
F = Ft et + Fn en and a = at et + an en
positive direction of the normal coordinate is that pointing towards the 
center of curvature

component of the acceleration along the bi-normal direction, eb, is always
zero. Consequently the bi-normal component of the force must also be 
zero



Other Coordinates Systems
Polar Coordinates (r - θ)

trajectory of a particle will be determined if we know r and  θ as a 
function of t, i.e. r(t),θ (t). The directions of increasing r and θ are 
defined by the orthogonal unit vectors er and eθ.

position vector of a particle has a magnitude 
equal to the radial distance, and a direction 
determined by er.

Since the vectors er and e θ are clearly different from point to point, their 
variation will have to be considered when calculating the velocity and 
acceleration. Over an infinitesimal interval of time dt, the coordinates of 
point A will change from (r, θ ), to (r + dr, θ +d θ)



The vectors er and e θ do not change when the coordinate r changes. 
Thus, der/dr = 0 and de θ /dr = 0. On the other hand, when θ changes to θ
+ dθ, the vectors er and eθ are rotated by an angle dθ. From the diagram, 
we see that der =  dθ eθ, and that deθ = −dθ er. This is because their 
magnitudes in the limit are equal to the unit vector as radius times dθ in 
radians. Dividing through by dθ, we have,



Multiplying these expressions by

we obtain,

Alternative calculation of the unit vector derivatives



Velocity vector

v r = r dot is the radial velocity component, and v θ = r θdot is the 
circumferential velocity component. We also have that 
v = SQRT (v r 2 +  vθ2)
The radial component is the rate at which r changes magnitude, or 
stretches, and the circumferential component, is the rate at which r 
changes direction, or swings.



Acceleration vector

Differentiating again with respect to time, we obtain the acceleration

is the circumferential acceleration component

is the radial acceleration component



Change of basis

Polar coordinates to Cartesian coordinates and vice versa.

Equations of Motion



Relative Motion

Types of observers - three different types (or reference
frames) depending on their motion with respect to a fixed frame:
• observers who do not accelerate or rotate, i.e. those who at most have 
constant velocity.
• observers who accelerate but do not rotate
• observers who accelerate and rotate

Relative motion using translating axes

consider a fixed reference frame xyz with origin O and with unit 

vectors i, j and k. Consider another translating reference frame attached 

to particle B, x′y′z′, with unit vectors i′, j′ and k′. Angles between the 

axes xyz and x′y′z′ do not change during the motion.



position vector r A/B defines the 
position of A with respect to point B 
in the reference frame x’y’z’.
The subscript notation “A/B” means 
“A relative to B”. The positions of A 
and B relative to the absolute
frame are given by the vectors rA and 
rB, respectively. Thus, we have

r A = r B + r A/B .



Relative Motion using Translating/Rotating Axes

A particle at rest with respect to the fixed frame xy, i.e. vA = 0, aA = 0, is 
observed by an observer, B, who is standing at the center of
a turn table. The table rotates with a constant angular velocity of  Ώ
rad/s.



Assuming that the platform only rotates about its center and does not 
move translationally, the position of B will not change, and therefore 
vB = 0 and aB = 0. 
Relative to B, A will not be at rest. 
B will see A rotating about B with a constant angular velocity of −. 
Motion of A as observed by B (rotating with x′y′)
velocity and acceleration in local polar coordinates

( · )x′y′ , is used to indicate the velocity, or acceleration, experienced by 
an observer that rotates with the axes x′y′. 
Assumption - The directions x′y′, as seen by a rotating observer do not 
change.



v A/B and a A/B denote the relative velocity and acceleration of A with 
respect to B, experienced by a non-rotating observer. 

Angular velocity and angular acceleration vectors

Let us consider a rigid body, which 
is spinning about an axis C − C with 
an angular velocity of  Ώ rad/s.
consider a unit vector, eC, along the 
direction of the axis, and define the 
angular velocity vector, Ώ , as
a vector having magnitude Ώ and 
direction eC.



the convention between the direction of rotation 
and that of Ώ is determined by the right hand 
rule. If the body were to rotate in the direction 
opposite to that shown in the diagram, then we 
would simply have  Ώ = − Ώ eC.

Angular velocity vector is useful to express 
the velocity due to rotation of any point A in 
the rigid body. Let r be the position vector of 
A relative to an origin point, O, located on the 
axis of rotation. It turns out that the velocity 
of A, v, can be simply expressed as

v = Ώ × r

HOW?



v = Ώ × r
When the body spins, A describes a circular 
trajectory around the axis of radius d = r sin φ , 
where φ is the angle between r and the axis of 
rotation. Since the body is spinning at a rate of Ώ
rad/s, the magnitude of the velocity vector will be 
v = Ώ d = r sin φ. The direction of the velocity 
vector v will be tangent to the trajectory at A, 
which means that it will be perpendicular to r and 
eC. By the definition of the vector product, the 
above is satisfied.
angular acceleration vector



Time derivative of a fixed vector in a rotating frame

We consider a reference frame 
x′y′z′ rotating with an angular 
velocity  with respect to a fixed 
frame xyz.
Let V be any vector, which is 
constant relative to the frame x′y′z′. 
That is, the vector components in 
the x′y′z′ frame do not change, and, 
as a consequence, V rotates as if it 
were rigidly attached to the frame.

In the absolute frame, the time derivative will be equal to



The above expression applies to any 
vector which is rigidly attached to the 
frame x′y′z′. In particular, it applies to 
the unit vectors i′, j′ and k′. 
Therefore, we have that



Time derivative of a vector in a rotating frame: Coriolis’ theorem

Vbe an arbitrary vector (e.g. velocity, magnetic field, force, etc.), which 
is allowed to change in both the fixed xyz frame and the rotating x′y′z′ 
frame.
vector V in the x′y′z′ frame  

The time derivative of V , as seen by the fixed frame



is the time derivative of the vector V      
as seen by the rotating frame.

Hence, for this derivative, the vectors i′, j′ and k′ remain unchanged. 

This is the change in V due to the rotation

The above expression is known as Coriolis’ theorem. Given an 
arbitrary vector, it relates the derivative of that vector as
seen by a fixed frame with the derivative of the same vector as seen by 
a rotating frame



Relative Motion using translating / rotating axes
we consider the relationship between the motion 
seen by an observer B that may be accelerating as
well as rotating, and the motion seen by a a fixed 
observer O. Let a B be the acceleration of B with 
respect to O, and let
denote the angular velocity and 
angular acceleration, respectively, of 
the frame x′y′z′ rigidly attached to B. 

Vectors i, j and k are the unit vectors 
corresponding to the fixed frame xyz, 

i′, j′ and k′ - unit vectors 
corresponding to the rotating frame 
x′y′z′.



The position vector of A with respect to 
the fixed frame  at any instance  is   
r A = r B + r A/B

r A and r B expressed in xyz components, and 
r A/B in x′y′z′ components

Velocity vector

Using Coriolis’ theorem the derivative of r A/B

v A and v B - velocities of A and B, relative to the fixed frame. 
(vA/B) x′y′z′ is the velocity of A measured by the rotating observer, B. 
Ώ - angular velocity of the rotating frame, 
r A/B is the relative position vector of A with respect to B.

va



Acceleration vector

Differentiating velocity vA once again, and 
making use of Coriolis’
theorem

vA =

Like, 



aA and aB are the accelerations of A and B observed by xyz.  
(a A/B) x′y′z′ is the acceleration of A measured by an observer B that 
rotates with the axes x′y′z′.

this acceleration always points
towards the axis of rotation, and is 
orthogonal to Ώ

2 Ώ × (v A/B) x′y′z′  -- Coriolis’ acceleration

---- Tangential acceleration



angular acceleration vector Ώdot is the derivative taken with respect to 
the fixed observer, O, or with respect to the rotating observer, B.
The time derivatives of vectors which are parallel to Ώ are the same 
for both observers. This can be easily seen if we go back to Coriolis’ 
theorem and apply it to Ώ . That is,

Non-rotational observers

for this case where Ώ = Ώ dot˙ = 0, the x′y′z′ axes only have 
translational motion relative to  the fixed axes xyz, and therefore the 
equations reduce to



Helicopter Blades motion problem

To determine the instantaneous velocity and acceleration of a 
point A, which is located at the tip of the blade of the helicopter. 
The blades are rotating with an angular velocity p, and, at the 
same time, the helicopter is pitching downwards at an angular 
velocity q. At the instant considered, the velocity and
acceleration of the center of mass of the helicopter, G, are zero.



To determine the angular acceleration of the disc D as a function of 
the angular velocities and accelerations given in the diagram. The 
angle of ω1 with the horizontal is φ .



Newton’s Second Law for Non-Inertial Observers  -- Inertial Forces

Inertial reference frames

Expression that related the accelerations observed using two reference
frames, A and B, which are in relative motion with respect to each other.

a A is the acceleration of particle A observed by one observer 
(a A/B)x′y′z′ is the acceleration of the same particle observed the other 
(moving) observer.

The acceleration of particle A will be different for each observer, unless 
all the other terms in the above expression are zero.

This means that if one of the observers is inertial, the other observer will 
be inertial if and only if ˙ Ώ = 0, Ώdot = 0 and a B = 0.



we conclude that,
• inertial frames can not rotate with respect to each other, i.e., Ώ = 0, 
Ώdot = 0 and,
• inertial frames can not be accelerating with respect to each other, i.e. 
aB = 0.
Thus, inertial frames can only be at most in constant relative velocity 
with respect to each other. In practical terms, the closest that we are 
able to get to an inertial frame is one which is in constant relative 
velocity with respect to the most distant stars.

The earth as an inertial reference frame

Given that the earth is rotating about itself and at the same time is 
rotating about the sun, it is clear that the earth can not be an inertial 
reference frame. However, we shall see that, for many applications, 
the error made in assuming that the earth is an inertial reference frame 
is small



Translating/Rotating observers



Effect of earth’s rotation.

Consider for instance two reference frames xyz and x′y′z′. The first 
frame is fixed and the second frame rotates with the earth.

Ώdot= 0, since the earth rotates with a constant angular 
velocity, and aB = 0.

Centripetal acceleration, ac = Ώ × Ώ × r 
A/B, will depend on the point considered 
and is directed towards the axis of 
rotation.
modulus is given by ac = R Ώ 2 cos (Lat).

For the earth, Ώ = 7.3× 10−5 rad/s,
R = 20 × 106 ft, and, if we consider, for instance, 
a point located at a latitude of L = 40o, then,
ac  0.08ft/s2 .



Coriolis acceleration, acor = 2 Ώ × (vA/B)x′y′z′ , depends on the 

velocity of A relative to the rotating earth and is zero if the point is not 

moving relative to the earth. On the other hand, for an aircraft flying 

in the east–west direction, at a speed of 250 m/s ( 718 ft/s), acor 

would be in the radial direction at A (local vertical) and pointing away 

from the center of the earth (upwards). The magnitude will be

acor  0.10ft/s2 .

We see that these values, although not negligible in many situations, 

are still small when compared with the acceleration due to gravity of 

g = 32.2 ft/s2.



Gravity variations due to Earth rotation

where L is the latitude of the point considered and g is given in 

m/s2. The coefficient 0.005279 has two components: 0.00344, due 

to Earth’s rotation, and the rest is due to Earth’s oblateness (or lack 

of sphericity).



gravitational acceleration at the poles is about 0.5% larger than at the 
equator. Furthermore, the deviations due to the Earth’s rotation are 
about three times larger than the deviations due to the Earth’ 
oblateness



Gravity variations due to Earth rotation

Influence of Earth’s rotation on the gravity measured by an observer 
rotating with the Earth.
Consider two reference frames. A fixed frame xyz, and a frame x'y'z' 
that rotates with the Earth. Both the inertial observer, O, and the 
rotating observer, B, are situated at the center of the Earth, and are
observing a mass m situated at point A on the Earth’s surface.

The forces on the mass will be the 
gravitational force, mg0, and the reaction 
force, R, which is needed to keep the mass at 
rest relative to the Earth’s surface

F = R + mg0



Since the mass m is assumed to be 
at rest, ÿ  = 0, and, O = B

An observer at rest on the surface of the Earth will observe a 

gravitational acceleration given by g = g0 – Ω x (Ω x r A/B). The 

term - Ω x (Ω x r A/B) has a magnitude Ω2 d = 2 Ω2 Re cosL, and is 

directed normal and away from the axis of rotation.



Angular deviation of g

Consider a spherical Earth, and we want to determine the effect of 
Earth’s rotation on the direction g.
An observer rotating with the Earth will observe a gravity vector

g = g0 – Ω x (Ω x r)

where g0 is the geocentric gravity, and g is the modified gravity.

From the triangle formed by g0, g, 
and Ω2RcosL, we have g sin δ = 
Ω2RcosL sinL = (Ω2R/2) sin 2L. 
We expect δ to be small, and, 
therefore, sin δ ≈ δ , and g  ≈ g0. 



which is maximum when L = ±45o. In this case, we have 
Ω = 7.29(10-5) rad/s, Re = 6370 km, and max δ = 1.7(10-3) rad ≈ 0.1o.
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