SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY DEPARTMENT OF BIOINFORMATICS

BI0308- SYSTEMS BIOLOGY

LECTURE PLAN

SEMESTER: VI CODE: BI0308 Total Hours: 45

Course: Systems Biology Staff Handling: Dr. N. Rathankar

LECTURE	TOPIC		LEARNING OUTCOME	
1	UNIT I-INTRODUCTION Basic principles of Systems Biology.			
2	Approaches used in Systems Biology	0	Introduction to Systems Biology	
3	Uses of Systems Biology and introduction to modeling		blology	
4	Examples in systems Biology and differences between SB and Bioinformatics	0	Types of methods to study Systems Biology	
5	Restriction enzymes and gel electrophoresis	0	Review of Experimental	
6	Cloning vectors and DNA libraries		methods, their uses in biology	
7	1D and 2D protein gels, overview of separation techniques.			
8	Hybridization and Blotting techniques			
9	UNIT II- STANDARD MODELS AND APPROACHES Introduction to Metabolism, glycolysis pathway modeling	0	Mathematical modeling	
10	Enzyme kinetics introduction with modeling studies		techniques	
11	Reaction kinetics, Thermodynamics	0	Comportment models	
12	Parameter estimation	0	Compartment models	
13	Metabolic networks, Stoichiometric matrix	0	Sensitivity analysis	
14	Elementary flux modes and extreme pathways			
15	Flux balance analysis, conservation principles, types of approximations			
16	Metabolic control analysis, determining coefficients			
17	Elasticity and response sensitivity			
18	Applications			
19	UNIT III- BIOLOGICAL PROCESSES Introduction to signal transduction	0	Understanding Signal	

20	Functions and structure of inter cellular		transduction process
21	Modeling receptor-ligand interactions		
22	Structural components of signaling pathway	0	Understanding pathways, and motifs
23	G-proteins, ras proteins		
24	Phosphorelay systems, MAP Kinase cascades		
25	JAK-STAT pathways, motifs, adaptation motifs		
26	Biological oscillations		
27	Cell cycle		
28	Aging		
29	UNIT IV-EVOLUTION Introduction to evolution and self organization		
30	Quasispecies and hypercycles	0	Understanding evolution
31	Self replication without interactions, selection and the quasispecies models	0	Deriving mathematical models to understand
32	Genetic algorithm		evolution Constinue algorithms
33	Hypercycles	0	Data integration
34	Spin glass model	0	Applications of data integration in biology
35	Neutral theory of molecular evolution		0
36	Data integration, Database networks		
37	SRS, ENSMART, DISCOVER LINK		
38	UNIT V-APPLICATIONS Systems biology in medical research		
39	Experimental planning and publications	0	Applications of Systems
40	drug development	ο	Biology in other related fields Limitations of Systems
41	Computational limits and potential dangers of systems biology	0	Biology Databases used in systems
42	Databases needed for systems biology: Gene ontology, KEGG, BRENDA, NCBI, EBI	0	Biology Modeling tools used in systems biology
43	REACTOME, TRANSFAC	0	Usage of SIMBIOLOGY
44	Modeling tools: Mathematica and MATLAB		toonoox in systems bloiogy.
45	SIMBIOLOGY Toolbox in Matlab		

TEXT BOOK

- 1. Edda Klipp, Ralf Herwig, *Systems Biology in Practice-Concepts, Implementation and Application*, Wiley VCH, I Edition, 2005.
- 2. Lilia Alberghina, Hans V. Westerhoff, *Systems Biology: Definitions and Perspectives*, Springer, 2005.

REFERENCE BOOK

- Andrzej K. Konopka, Systems Biology: Principles, Methods, and Concepts, CRC Press, 2006.
 Darren James Wilkinson, *Stochastic Modelling for Systems Biology*, CRC Press, 2006.

E Mail ID: rathankarn@ktr.srmuniv.ac.in

Contact No: 9381702757