SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY DEPARTMENT OF BIOINFORMATICS

BI0354 – COMPUTATIONAL NEUROSCIENCE

LESSON PLAN

SEMESTER: VI CODE: BI0354

Course: Computational Neuroscience Staff Handling: Mr. P.P. Karthikeyan

Day	Торіс	Learning outcome
1.	UNIT IINTRODUCTIONDomains in Computational Neuroscience	
2.	Brain metaphors-computer and brain	Introduction to Computational
3.	Basic neuroscience	 Neuroscience Hodgkin – Huxley equation
4.	Basic synaptic mechanisms and the generation of action potentials	applicationMechanism of Action and
5.	Nernst Potential	Nernst potential initiation in Brain.
6.	Hodgkin-Huxley equations	
7.	The propagation of action potentials	
8.	UNIT II SPIKING NEURONS AND RESPONSE VARIABILITY Spiking neurons- concept neurons- the neural code	
9.	Spike trains- cable theory- Spike time variability	
10.	Post synaptic potential(PSP)	• Various models and their
11.	firing threshold and action potential	mechanism of action.
12.	Neurons in a Network- Population Dynamics	 Spiking Neuron models, Integrate and firing models,
13.	Rate code and Information in spike trains	 Noise in spiking neuron models, Compartmental modeling.
14.	Population coding and decoding- single neuron models	 Knowledge on the importance of Hodgkin – Huxley model
15.	Hodgkin-Huxley Model, spiking neuron models	
16.	Integrate and firing model	
17.	Noise in spiking neuron models- compartmental modeling	
18.	UNIT III FEED-FORWARD MAPPING NETWORKS From artificial neural network to realistic neural	• Application of Hebian plasticity.

	networks	•	Study of mapping networks
19.	Perception, function representation, and look-up tables		and then advantages.
20.	The sigma node as perception		
21.	Multi-layer mapping networks		
22.	Learning, generalization and biological interpretations		
23.	Self-organizing network architectures and genetic algorithms		
24.	Mapping networks with context units		
25.	Probabilistic mapping networks		
26.	Associators and synaptic plasticity		
27.	Associative memory and Hebbian learning		
28.	Hebian plasticity- features of associators and Hebbian learning.		
29.	UNIT IV AUTO-ASSOCIATIVE MEMORY AND NETWORK DYNAMICS Associative memory networks- Short-term memory and reverberating network activity	•	Application of Grossberg –
30.	Long-term memory and auto-associators	·	Hopfield model in neuronal activity.
31.	Point attractor networks	•	
32.	The Grossberg-Hopfield model		Chaotic and Competitive networks occurrence in brain.
33.	sparse attractor neural networks		
34.	Chaotic networks, biologically more realistic variations of attractor networks		
35.	Continuous attractor and competitive networks		
36.	UNIT V SUPERVISED LEARNING AND REWARDS SYSTEMS Motor learning and control, supervised learning		
37.	The delta rule and back propagation		
38.	Generalized delta rules, plasticity and coding	•	Various learning systems in Computational neuroscience
39.	Reward learning, System level organization and coupled networks	•	Hypothesis and their
40.	System level anatomy of the brain, Modular mapping networks		application in models.
41.	Coupled attractor networks, working memory		
42.	Attentive vision, an interconnecting workspace hypothesis		
43.	UNIT VI CASE STUDY Introduction to the MATLAB programming environment	•	Introduction to MATLAB programming
44.	A MATLAB guide to computational neuroscience	٠	Simple programming in

TEXT BOOKS

- Thomas Trappenberg, *Fundamentals of Computational Neuroscience*, oxford University Press, June 2002
- Lytton, William W, From Computer to Brain Foundations of Computational Neuroscience, Springer publications, 2002

REFERENCE BOOKS

- Gerstner and Kistler, *Spiking Neuron Models. Single Neurons, Populations, Plasticity* -Cambridge University Press, 2002
- Eric L. Schwartz, Computational Neuroscience, MIT Press, 1993

E Mail ID

ppkarthikeyan@gmail.com - 9790008796