SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY DEPARTMENT OF BIOINFORMATICS

BI0500- APPLICATION OF MATLAB IN BIOINFORMATICS

LECTURE PLAN

SEMESTER: II, M. Tech Course: Application of MATLAB in

Bioinformatics

CODE: BI0500 Staff Handling: Dr. N. Rathankar

Total Hours: 45

LECTURE	TOPIC	LEARNING OUTCOME	
1	Introduction to MATLAB: Arithmetic, trigonometric operators, date and calendar, whos operator	0	Using MATLAB
2	Matrices and arrays in matlab, decision making statements	0	Basic constructs in MATLAB
3	Graphics in matlab, plotting, exporting, basics plotting functions	0	Analyzing numerical data in
4	Data analysis: loading data, locating outliers, smoothing and filtering, basic		MATLAB
5	statistics, 2D, 3D-Scatter plots, regression	0	Basic programming
6	Basic control statements: if, else, switch, for loop, while lop, continue, break		constructs
7	statements. Functions, handles, vectorization	0	Generating different kinds of plots and solving differential
8	Solutions for AX=B, solving differential equations, different types of solvers. Using symbolic math toolbox		equations using MATLAB
9	Bioinformatics toolbox: data formats, sequence analysis- basics		
10	Basic commands: nwalign, swalign, molviewer	0	Sequence analysis
11	Microarrays: Fundamentals and examples	0	Microarray analysis
12	Microarray toolbox basic commands: gprread, maimage, colormap, maskeddata	0	Mass spec data analysis
13	Mass spectroscopy: Fundamentals and examples	0	Graph theory applications
14	Mass spectroscopy basic commands: msnorm, msbackadj		
15	Graph Theory fundamentals: node, edge, strongly and weakly connected graphs		
16	Graph theory functions: Directed graph, unidirected graph, DAG and spanning tree		
17	MATLAB commands to use the above functions		
18	Gene Ontology: fundamentals.	0	Gene Ontology usage

19	Basic commands in GO: classperf, crossvalind, knnclassify		
20	Sequence analysis: Fundamentals	0	Sequence analysis using Bioinformatics toolbox
21	Basic Commands: seqconsensus, seqlogo, seqprofile, pdbplot	0	Data importing
22	Importing data and deploying applications: load, cftool,	O	Data importing
23	Viewing data, Smoothing data, and data exclusion	0	Image processing
24	Deploying applications from MATLAB		applications
25	Image processing: reading and displaying an image, image size variation, improving image contrast, digitizing the image	0	Filtering noise from the signal
26	Basic commands: imread, histeq, imwrite, iminfo		Signai
27	Understanding noise in images, noise removal, linear, median filtering, adaptive filtering		
28	Commands to alter signal to noise ratio		
29	Spatial transformation, gray scale, RGB scales		
30	Image registration, point mapping in detail with commands		
31	Introduction to simbiology: basics of GUI used to add elements in the compartment	0	Applications of Systems Biology
32	Chemical kinetics, types and uses, PTMs		5.
33	Simulations, odes, conditions	0	Modeling tools used in
34	Simulations, odes, conditions		systems biology
35	Systems approach to biology, advantages	0	Usage of SIMBIOLOGY
36	Model building strategies	Ŭ	toolbox in Systems Biology.
37	Model analysis using SIMBIOLOGY		
38	Model validation strategies		
39	Model of the Yeast Heterotrimeric protein- GPCR molecule	0	Case studies used in SIMBIOLOGY
40	Model conditions, simulations and analysis		
41	Explanation of kinetic laws		
TEXT BOOK	: 7		

TEXT BOOK

- 1. Edda Klipp, Ralf Herwig, *Systems Biology in Practice-Concepts, Implementation and Application*, Wiley VCH, I Edition, 2005.
- 2. MATLAB Bioinformatics, Simbiology, Mass spectroscopy Toolbox

REFERENCE BOOK

- 1. G. Alterovitz, M. F. Ramoni, Systems Bioinformatics: An Engineering Case-Based Approach,
- 2. Artech House, 2007.

- 3. 2. Semmlow, Biosignal and Biomedical Image Processing, Marcel Dekker, Inc., 2004.
- 4. 3. Hoppensteadt, Peskin, *Modeling and Simulation in Medicine and Life Sciences*, Springer, 2002.

E Mail ID

rathankarn@ktr.srmuniv.ac.in - 9381702757