SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY DEPARTMENT OF BIOINFORMATICS

BI0510- MICROARRAY BIOINFORMATICS

LECTURE PLAN

Class & Sem: M.Tech & II sem Subject code: BI0 510 Staff Name:Mrs. S.Shobana Subject: MicroarrayBioinformatics

Lecture	Contents	Learning Outcome
Hour		
1.	INSTRUCTIONAL OBJECTIVES	
	DNA MicroArray:	• Introduction to the
	The Technical Foundations	student about microarray
	Why are MicroArray Important?	technology and its uses.
	What is a DNAMicroArray	• It gives a brief
		description about the making
2.	Microarray-Introduction	and using of microarrays.
3.	types of Microarray	• Also the different databases
4.	Making microarrays	used for creating probes are
5.	Spotted arrays	taught.
6.	Insitu synthesized oligonucleotide arrays	
7.	Steps involved in use of microarray	
8.	Sample preparation and labeling,	
	Hybridisation	
9.	Washing, image aquisition	
10.	Filtering of low complexity sequences	• In the method "insitu
11.	cross-hybridization prediction	synthesized oligonucleotides"
12.	Prediction of melting temperature	certain rules have to be
13.	Secondary structure prediction of probe	followed for preparing probes
14.	Feature extraction steps	which has been discussed in
15.	Identifying positions of features	this unit.
16.	Types of segmentation & Background pixel	• Also feature extraction
	identification	methods are discussed
		• DNA Microarray and
		its statistical analysis
		• Analysis of RNA data
		• Statistical computing
17	Data algoning and they former they	and Statistical Genetics
17.	Data cleaning and transformation	• Normalization techniques
10	within array normalization-	to correct systemic and
18.	Loess regression	spatial effects • Quantify non systemic
19.	Correcting Spatial effects	variability
20.	between array normalization steps	
21.	measuring and quantifying microarray variability	
22.	Calibration experiments and pilot studies	
۲۷.	Canoration experiments and phot studies	

-		
23.	Method for measuring variability	
24.	Analysis of differentially expressed genes	
25.	fundamental concepts and hypothesis rules	
26.	Classic parametric tests- paired and unpaired.	
27.	Non parametric tests- bootstrap analysis	o Differentially expressed
28.	Multiplicity of testing- bonferroni adjustment and ANOVA	genes can be obtained from the numerical data and can
29.	Similarity analysis of relationships between genes using correlation coefficient, rank coefficient and Euclidean distance	be done using clustering algorithms.
30.	Hierarchial clustering & Linkage methods for clustering	• Classification of tissues and genes using different
31.	Machine learning methods of clustering	algorithms and its validation. • Also microarray data is a high dimensional data- thus dimension reduction is
32.	classification of tissues and samples- methods	
33.	Validation and cross validation	
34.	Dimensionality reduction- PCA &Individual gene selection	
35.	Pairwise gene selection, Voting algorithms, genetic algorithms	discussed
36.	UNIT V-EXPERIMENTAL DESIGN Blocking	
37.	randomization & blinding-	
38.	choice of technology using experimental designs	• The basic experimental design for a
39.	Power analysis and confidence	microarray experiment o The ways and means to store large microarray data is discussed.
40.	data standards- LIMS	
41.	storage and sharing- MIAME, MAGE, Ontologies	
42.	Future direction of microarray approach,	1
43.	Pharmacogenomics,	1
44.	Toxicogenomics	1
45.	Data mining	

REFERENCES

- 1. Arun Jogota, Microarray Data Analysis and Visualization, The Bay Press, 2001.
- 2. Ernst Wit and John McClure, *Statistics for Microarrays Design, Analysis and Inference*, John Wiley & Sons, 2004.
- 3. Steen Knudsen, Guide to analysis of DNA Microarray data, John Wiley & Sons, 2004.
- 4. Dov Stekel, Microarray Bioinformatics, Cambridge University Press, 2003.
- 5. S. Draghic, Chapman, Data Analysis tools for DNA Microarray, Hall/ CRC Press, 2002.

E Mail ID: shobanas@ktr.srmuniv.ac.in

Contact No: 9841988577