

M. Tech (Full Time) – VLSI DESIGN (FULL TIME)

Curriculum & Syllabus

(2013-2014)

Faculty of Engineering & Technology, SRM University, SRM Nagar, Kattankulathur – 603 203.

M. Tech.	VLSI DESIGN (FULL TIME)
C	urriculum & Syllabus
Batch	2013 – 2014 and onwards

CT		No. of Cree	No. of Credits						
51. No	Category	Ι	Π	III	IV				
110,		Semester	Semester	Semester	Semester				
1	Core Courses	12	12	-	-				
2	Program Elective	3	6	0					
2	Courses	5	0	9	-				
3	Supportive Courses	3	-	-	-				
4	Interdisciplinary		2						
4	Course	-	5	-	-				
5	Seminar	-	-	1	-				
6	Project Work	-	-	6*	16**				
Credits per semester		18	21	16	16				
Tota	l Credits to be earned	for the awa	rd of degree-	- 71					

* Project Work -Phase I ** Project Work -Phase II

Course code	Course Title	L	Т	Р	С
VL2001	Digital Systems Design using Verilog	3	0	2	4
VL2002	CMOS Device Modeling	4	0	0	4
VL2003	Digital Signal processing structures for VLSI	3	2	0	4
VL2004	CMOS Analog VLSI	3	0	2	4
VL2005	VLSI Design Automation	4	0	0	4
	OR				
VL2006	VLSI Technology	4	0	0	4
VL2007	Testing of VLSI Circuits	3	2	0	4
	OR				
VL2008	Reconfigurable Architectures for VLSI	4	0	0	4

 \mathbf{c}

Course	Course Title	L	Т	Р	С
VL2101	Digital System Synthesis and Verification	3	0	0	3
VL2102	Nano Electronics	3	0	0	3
VL2103	Low Power VLSI Design	3	0	0	3
VL2104	Neural Networks for VLSI	3	0	0	3
VL2105	VLSI Digital Signal Processing systems	3	0	0	3
VL2106	ASIC Design	3	0	0	3
VL2107	CMOS Mixed signal Circuit Design	3	0	0	3
VL2108	DSP Architectures and Applications	3	0	0	3
VL2109	Design of Semiconductor Memories	3	0	0	3
VL2110	System-on-Chip design	3	0	0	3
VL2111	Genetic Algorithms and their Applications in VLSI	3	0	0	3
VL2112	Reliability Engineering	3	0	0	3
VL2113	Fundamentals and Applications of MEMS	3	0	0	3
VL2114	RF VLSI Design	3	0	0	3
VL2115	High Speed VLSI	3	0	0	3
VL2116	Magneto-electronics	3	0	0	3
VL2117	VLSI interconnects and its design techniques	3	0	0	3
VL2118	Digital HDL Design and Verification	3	0	0	3
VL2119	Computational Aspects of VLSI	3	0	0	3
VL2120	Computational Intelligence	3	0	0	3
VL2121	Chromatic Graph Theory	3	0	0	3

Program Elective Courses

Supportive Courses

Course code	Course Title	L	Т	Р	С
MA2010	Graph theory and optimization techniques	3	0	0	3
EM2101	Computer Architecture	3	0	0	3
CO2105	Electromagnetic Interference & Compatibility in System Design	3	0	0	3

Other Courses

Course code	Course Title	L	Т	Р	С
VL2047	Seminar	0	0	1	1
VL2049	Project Work – Phase – I	0	0	12	6
VL2050	Project Work – Phase – II	0	0	32	16

CONTACT HOUR/CREDIT:

L: Lecture Hours per week

P: Practical Hours per week

T: Tutorial Hours per week

C: Credit

			L	Т	Р	С		
		DIGITAL SYSTEMS DESIGN USING	3	0	2	4		
v	T 2001	VERILOG	5	U	-	-		
v	L2001	Total Contact Hours - 75						
		Prerequisites :						
		Nil				Ι		
P	URPOS	E						
Η	DL pro	gramming being fundamental for VLSI designation	gn 1	this	cou	irse		
co	oncentra	tes on delivering the necessary concepts and feature	s.					
I	NSTRU	CTIONAL OBJECTIVES						
1	The stu	dent will learn the different abstract levels in Veril	og fo	or m	odel	ing		
	digital circuits.							
2	2 The student will learn the basic CMOS circuit, characteristics and							
	performance.							
3	3 The student will learn the designing of combinational and sequential							
	circuits	in CMOS						

UNIT I - BASIC CONCEPTS - VERILOG

Operators, Basic concepts, Identifiers, System task and functions, Value set, Data types, Parameters, Operands, Operators, Modules and ports, Gate-level Modeling, Dataflow Modeling, Behavioral Modeling, Switch level modeling, Tri state gates, MOS Switches, Bidirectional switches, User defined primitives, Combinational UDP, Sequential UDP. Introduction to synthesis, Verilog HDL synthesis-Synthesis Design flow Test bench-lab exercise.

UNIT II – BASICS OF MOS TRANISTORS

MOS transistors- Threshold voltage- characteristics of MOS transistorchannel length modulation- short channel effects- Design of Logic gates using NMOS, PMOS and CMOS, Stick diagrams- Transfer characteristics of CMOS inverter- Power dissipation – Delay and sizing of inverters- Lab exercise.

UNIT III - CMOS – COMBINATIONAL CIRCUITS (9 hours) Static CMOS design-complementary CMOS - static propertiescomplementary CMOS design-Power consumption in CMOS logic gatesdynamic or glitching transitions - Design techniques to reduce switching activity - Radioed logic-DC VSL - pass transistor logic - Differential pass transistor logic -Sizing of level restorer-Sizing in pass transistor-Dynamic CMOS design-Basic principles - Domino logic-optimization of Domino

(9 hours)

logic-NPCMOS-logic style selection -Designing logic for reduced supply voltages.

Lab exercise in Switch level modeling.

UNIT IV - CMOS – SEQUENTIAL CIRCUITS

Timing metrics for sequential circuit - latches Vs registers -static latches and registers - Bistability principle - multiplexer based latches-master slave edge triggered registers- non-ideal clock signals-low voltage static latches-static SR flip flop - Dynamic latches and registers-C²MOS register - Dual edge registers-True single phase clocked registers-pipelining to optimize sequential circuit latch Vs register based pipelines-non-Bistable sequential circuit-Schmitt trigger-mono stable -Astable -sequential circuit - choosing a clocking strategy.. Lab exercise in Switch level modeling

UNIT V – SUB-SYSTEM DESIGN/ SYSTEM VERILOG (9 hours) Addition/Subtraction - Comparators- Zero/One Detectors- Binary Counters-ALUs Multiplication- Shifters- Memory elements- control: Finite-State Machines. Lab exercise.

Practical

(30 hours)

REFERENCES

- 1. Samir palnitkar, "Verilog HDL", Pearson education, Second Edition, 2003.
- 2. J. Bhasker, "A Verilog HDL Primer", Second Edition, Star Galaxy, 2005.
- 3. J. Bhasker, "A Verilog Synthesis: A Practical Primer", Star Galaxy, 1998
- 4. Jan.M.Rabaey., Anitha Chandrakasan Borivoje Nikolic, "*Digital Integrated Circuits*", Second Edition
- 5. Neil H.E Weste and Kamran Eshraghian, "*Principles of CMOS VLSI Design*", 2nd Edition, Addition ,Wesley, 1998.

		L	Т	Р	С		
VL2002	CMOS DEVICE MODELING	4	0	0	4		
	Total Contact Hours – 60						
	Prerequisites : Nil						
PURPOS	E						
This cou fundamen	rse deals with the modeling of MOS dev tal working concepts.	vices	an	d tł	neir		
INSTRU	CTIONAL OBJECTIVES						
1 To m semico	1 To make the student understand how MOSFET and other semiconductor devices are modeled						
2 To imprequire	2 To impart knowledge to simulate MOSFET for various operational requirements.						
3 To im SOIFE	3 To impart a knowledge on advanced structures of MOSFETs like SOIFET, FinFET						

UNIT I - ELECTRON AND HOLE DENSITIES IN EQUILIBRIUM (12 hours)

Fermi - Dirac Statistics, Carrier concentration, Fermi level at equilibrium, recombination, Mobility of carriers, charge transport in semiconductors.

UNIT II - PN JUNCTION

PN Junction under thermal equilibrium under applied bias, Transient Analysis, Injection and Transport model, Diode small signal and large signal model.

UNIT III – MOSFET

Operation of Ideal MOS diode, Effects of mobile Ionic charges, Oxide charges and Interface states, C-V Characteristics, Threshold voltage of MOSFET, Bulk charge model, square law method (Level 1 is SPICE), Level 3 model in SPICE, BSIM Models.

UNIT IV - SECOND ORDER EFFECTS IN MOSFET (12 hours)

Effect of Gate voltage on carrier mobility, Effect of Drain voltage on carrier mobility, Channel length modulation, Breakdown and punch through, Subthreshold current, Short channel effects., Meyer's model, Small signal model.

6

(12 hours)

(12 hours)

UNIT V - ADVANCED TOPICS

(12 hours)

MOSFET scaling, Non-uniform doping in channel, SOI MOSFET, Buried channel MOSFET, Fin FET.

REFERENCES

- 1. Nandita Das Gupta, Amitava Das Gupta, "Semiconductor devices, modeling and Technology", Prentice Hall of Indis, 2004.
- 2. Philip.E.Allen Douglas, R. Hoberg, "CMOS Analog circuit Design", second edition, Oxford Press, 2002.
- 3. S.M. Sze, "Semiconductor Devices-Physics and Technology", John Wiley and Sons, 1985.
- Kiat Seng Yeo, Samir R.Rofail, Wang-Ling Gob, "CMOS/BiCMOS VLSI-Low Voltage, Low Power", Pearson Education, Low price edition, 2003.

			L	Т	Р	С	
X / T	2002	DIGITAL SIGNAL PROCESSING STRUCTURES FOR VLSI	3	2	0	4	
٧L	2003	Total Contact Hours – 75					
		Prerequisite :					
		Nil					
PU	RPOS	E					
DS part sub	Ps are t of V ject is	used in many application areas and hence has bec LSIs. Hence to introduce the student about DSF included.	ome Stru	an e ictur	ssen es, 1	tial this	
INS	STRU	CTIONAL OBJECTIVES					
1.	To understand the fundamentals of DSP						
2.	To learn various DSP structures and their implementation.						
3.	To know designing constraints of various filters.						

UNIT I - INTRODUCTION TO DIGITAL SIGNAL PROCESSING (15 hours)

Linear System Theory- Convolution- Correlation - DFT- FFT- Basic concepts in FIR Filters and IIR Filters- Filter Realizations. Representation of DSP Algorithms-Block diagram-SFG-DFG.

UNIT II - ITERATION BOUND, PIPELINING AND PARALLEL PROCESSING OF FIR FILTER (15 hours)

Data-Flow Graph Representations- Loop Bound and Iteration Bound-Algorithms for Computing Iteration Bound-LPM Algorithm. Pipelining and Parallel Processing: Pipelining of FIR Digital Filters- Parallel Processing-Pipelining and Parallel Processing for Low Power. Retiming: Definitions-Properties and problems- Solving Systems of Inequalities.

UNIT III - FAST CONVOLUTION AND ARITHMETIC STRENGTH REDUCTION IN FILTERS (15 hours)

Cook-Toom Algorithm- Modified Cook-Toom Algorithm.Design of Fast Convolution Algorithm by Inspection. Parallel FIR filters-Fast FIR algorithms-Two parallel and three parallel. Parallel architectures for Rank Order filters-Odd Even Merge sort architecture-Rank Order filter architecture-Parallel Rank Order filters-Running Order Merge Order Sorter-Low power Rank Order filter.

UNIT IV - PIPELINED AND PARALLEL RECURSIVE FILTERS (15 hours)

Pipeline Interleaving in Digital Filters- Pipelining in 1st Order IIR Digital Filters- Pipelining in Higher- Order IIR Filters-Clustered Look ahead and Stable Clustered Look ahead- Parallel Processing for IIR Filters and Problems.

UNIT V - SCALING AND ROUNDOFF NOISE: (15 hours)

Introduction to Scaling and Roundoff Noise- State Variable Description of Digital Filters- Scaling and Roundoff Noise Computation-Round Off Noise Computation Using State Variable Description- Slow-Down- Retiming and Pipelining.

REFERENCES

- 1. K.K Parhi: "VLSI Digital Signal processing", John-wiley, 2nd Edition Reprint, 2008.
- 2. John G.Proakis, Dimitris G.Manolakis, "Digital Signal Processing", Prentice Hall of India, 1st Edition, 2009.

			L	Т	P	C
		CMOS ANALOG VLSI	3	0	2	4
V	L2004	Total Contact Hours – 75				
		Prerequisites :				
		Nil				
PU	JRPOSI	E				
Ar	nalog cir	cuits are essential in interfacing and building am	plifie	ers a	ınd 1	OW
pa	ss filters	. This course introduces design methods for CMOS	ana	log (circu	iit.
IN	STRUC	CTIONAL OBJECTIVES				
1.	To und	erstand CMOS analog circuits design				
2.	To simulate Analog circuits using H SPICE.					
3.	To learn noise modeling of CMOS analog circuits					

UNIT I - ANALOG CMOS SUB-CIRCUITS

Introduction to analog design, Passive and active current mirrors, band-gap references, Switched Capacitor circuits - basic principles, sampling switches, switched capacitor integrator, switched capacitor amplifier, simulation of CMOS sub circuits using SPICE.

UNIT II - CMOS SINGLE STAGE AMPLIFIERS

Common-Source stage (with resistive load, diode connected load, currentsource load, triode load, source degeneration), source follower, common-gate stage, cascode stage, folded cascode stage. Frequency responses of CS stage, CD stage, CG stage, cascode stage, simulation of CMOS amplifiers using SPICE.

UNIT III - DIFFERENTIAL AMPLIFIER & OPERATIONAL AMPLIFIERS (9 hours)

Single-ended and differential operation, basic differential pair – qualitative and quantitative analyses, common-mode response, differential pair with MOS loads, Performance parameters of op-amp, one stage op-amp, two-stage CMOS op-amp, Gain boosting, slew rate, power supply rejection, Simulation of differential amplifiers using SPICE.

UNIT IV - OSCILLATORS

General considerations, Ring oscillators, LC oscillators - cross-coupled oscillators, Colpitts oscillator, One-port oscillator, and voltage controlled oscillators. Simulation of oscillators using SPICE.

9

(9 hours)

(9 hours)

UNIT V - NOISE CHARACTERISTICS

Statistical characteristics of noise, Types of noise - thermal noise, flicker noise, Representation of noise in circuits, noise in single-stage amplifiers (CS, CD and CG stages), noise bandwidth.

Practical

(30 hours)

REFERENCES

- 1. Razavi, "Design of analog CMOS integrated circuits", McGraw Hill, Edition 2002.
- 2. Gray, Meyer, Lewis, Hurst, "Analysis and design of Analog Integrated Circuits", Willey International, 4th Edition, 2002.
- 3. Allen, Holberg, "*CMOS analog circuit design*", Oxford University Press, 2nd Edition, 2012.

			L	Т	Р	С		
		VLSI DESIGN AUTOMATION	4	0	0	4		
VI	2005	Total Contact Hours – 60						
		Prerequisite						
		MA2010						
PU	JRPOS	E						
Th co	ere is a urse int	a great need for methods to automate VLSI desig roduces the automation techniques.	n me	ethoo	ls. T	ĥis		
IN	STRU	CTIONAL OBJECTIVES						
1.	To im	To impart knowledge on implementation of graph theory in VLSI						
2.	To impart knowledge on automation methods for VLSI physical design							
3.	To impart knowledge on automation methods on VLSI interconnects.							

UNIT I - DATA STRUCTURES AND BASIC ALGORITHMS

(12 hours)

Basic terminology – Complexity Issues and NP-Hardness: algorithms for NPhard problems-Basic algorithms: Graph algorithms, computational Geometry algorithms- Basic data structures-Graph algorithms for physical design: classes of graphs in physical design, relationship between graph classes,

11

graph problems in physical design, algorithms for Interval graphs, permutation graphs and circle graphs.

UNIT II - PARTITIONING AND CLUSTERING (12 hours) Partitioning and Clustering Metrics -Move-Based Partitioning Methods -Mathematical Partitioning Formulations -Clustering :Hierarchical Clustering Agglomerative Clustering -Multilevel Partitioning.

UNIT III - FLOORPLANNING AND PLACEMENT

Floorplanning: Early research-Silicing floorplan - Floorplan representation-Packaging floorplan representation-Recent advances in floorplanning.

Placement-Introduction- Problem formulation- Simulation based placement algorithms- Partitioning based placement algorithms-cluster growth-Quadratic assignment-resistive network optimization.

UNIT IV – ROUTING and COMPACTION

Global Routing- Detailed routing- Over the cell routing and via minimization- clock and power routing. Problem Formulation - Classification of Compaction algorithms- 3/2 dimensional compaction-2D compaction-Hierarchical compaction- Recent trends in Compaction.

UNIT V - ISSUES ON INTERCONNECTS

Timing driven Interconnect synthesis-Buffer insertion basics-Generalised buffer insertion-Buffering in layout environment-Global interconnect planning. Introduction to physical design for 3D circuits.

REFERENCES

- 1. N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwar Academic Publishers, 2002.
- S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & 2. Sons. 2008.
- Sung Kyu Lim, "Practice Problems in VLSI physical design 3. Automation", Springer, 2008.
- charles J. Alpert, Dinesh P. Mehta, Sachin S. Sapatnekar, "Hand book 4. of algorithms of Physical design Automation ", CRC press, 2009.
- Jeffrey D Ullman"Computational aspects of VLSI", Computer Science 5. Press. 1984.
- Sadiq M .Sait, Habib Youssef, "VLSI Physical design automation 6. theory and Practice", World Scientific Publishing, 1999.

(12 hours)

(12 hours)

(12 hours)

VL2006 VLSI TECHNOLOGY 4 0 0 4 Total Contact Hours - 60 Image: Contact Hours -			L	Т	Р	С	
VL2006 Total Contact Hours – 60 Image: Second		VLSI TECHNOLOGY	4	0	0	4	
VL2006 Prerequisite Nil Nil PURPOSE It will focus on micro-fabrication process such as lithography, thermal oxidation, Si/SiO2 interface, dopant diffusion, ion implantation, thin film deposition, etching, and back-end technology. His paper deals with manufacturing of VLSI devices. INSTRUCTIONAL OBJECTIVES After going through this course student will know about various technologies used for fabricating VLSI devices. To understand the impact of the physical and chemical processes of integrated circuit fabrication technology on the design of integrated circuits. 2 To understand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers 3 To learn the various lithography techniques and concepts of wafer exposure system 4 To understand Concepts of thermal oxidation and Si/SiO2 interface. 5 point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystal structures, heating		Total Contact Hours – 60					
Nil Nil PURPOSE It will focus on micro-fabrication process such as lithography, thermal oxidation, Si/SiO2 interface, dopant diffusion, ion implantation, thin film deposition, etching, and back-end technology. His paper deals with manufacturing of VLSI devices. INSTRUCTIONAL OBJECTIVES After going through this course student will know about various technologies used for fabricating VLSI devices. To understand the impact of the physical and chemical processes of integrated circuit fabrication technology on the design of integrated circuits. 2. To understand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers 3. To learn the various lithography techniques and concepts of wafer exposure system 4. To understand Concepts of thermal oxidation and Si/SiO2 interface. 5. point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, for basic properties of ion implantation, role of the crystal structures, for basic properties of ion implantation, role of the crystal structures, for basic properties of ion implantation, role of the crystal structures, for basic properties of ion implantation, role of the crystal structures, for basic properties of ion implantation, role of the crystal structures, for basic properties of ion implantation, role of the crystal structures, for basic properties of ion implantation, role of the crystal structures, for basic propertis of ion implantation, role	VL2006	Prerequisite					
PURPOSE It will focus on micro-fabrication process such as lithography, thermal oxidation, Si/SiO2 interface, dopant diffusion, ion implantation, thin film deposition, etching, and back-end technology. His paper deals with manufacturing of VLSI devices. INSTRUCTIONAL OBJECTIVES After going through this course student will know about various technologies used for fabricating VLSI devices. 1 To understand the impact of the physical and chemical processes of integrated circuit fabrication technology on the design of integrated circuits. 2 To understand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers 3 To learn the various lithography techniques and concepts of wafer exposure system 4 To understand Concepts of thermal oxidation and Si/SiO2 interface. 5 To learn concepts of dopant solid solubility, diffusion macroscopic point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. 6 high-energy implants ultralow energy implants and ion beam beating		Nil					
PURPOSE It will focus on micro-fabrication process such as lithography, thermal oxidation, Si/SiO2 interface, dopant diffusion, ion implantation, thin film deposition, etching, and back-end technology. His paper deals with manufacturing of VLSI devices. INSTRUCTIONAL OBJECTIVES After going through this course student will know about various technologies used for fabricating VLSI devices. To understand the impact of the physical and chemical processes of integrated circuit fabrication technology on the design of integrated circuits. 2 To understand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers 3 To learn the various lithography techniques and concepts of wafer exposure system 4 To understand Concepts of thermal oxidation and Si/SiO2 interface. 5 point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. 6 high-energy implants, ultralow energy implants and ion beam heating							
It will focus on micro-fabrication process such as lithography, thermal oxidation, Si/SiO2 interface, dopant diffusion, ion implantation, thin film deposition, etching, and back-end technology. His paper deals with manufacturing of VLSI devices. INSTRUCTIONAL OBJECTIVES After going through this course student will know about various technologies used for fabricating VLSI devices. To understand the impact of the physical and chemical processes of integrated circuit fabrication technology on the design of integrated circuits. 2 To understand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers 3 To learn the various lithography techniques and concepts of wafer exposure system 4 To understand Concepts of thermal oxidation and Si/SiO2 interface. 5 point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. 6 high-energy implants ultralow energy implants and ion heam heating	PURPO	SE					
 oxidation, Si/SiO2 interface, dopant diffusion, ion implantation, thin film deposition, etching, and back-end technology. His paper deals with manufacturing of VLSI devices. INSTRUCTIONAL OBJECTIVES After going through this course student will know about various technologies used for fabricating VLSI devices. To understand the impact of the physical and chemical processes of integrated circuit fabrication technology on the design of integrated circuits. 2 To understand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers 3 To learn the various lithography techniques and concepts of wafer exposure system 4 To understand Concepts of thermal oxidation and Si/SiO2 interface. 5 point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. 6 high-energy implants ultralow energy implants and ion beam heating 	It will f	ocus on micro-fabrication process such as litho	grap	hy,	theri	nal	
 deposition, etching, and back-end technology. His paper deals with manufacturing of VLSI devices. INSTRUCTIONAL OBJECTIVES After going through this course student will know about various technologies used for fabricating VLSI devices. To understand the impact of the physical and chemical processes of 1 integrated circuit fabrication technology on the design of integrated circuits. 2 To understand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers 3 To learn the various lithography techniques and concepts of wafer exposure system 4 To understand Concepts of thermal oxidation and Si/SiO2 interface. 5 point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, 6 high-energy implants ultralow energy implants and ion heam heating 	oxidation	, Si/SiO2 interface, dopant diffusion, ion implan	tatio	n, th	in f	ilm	
INSTRUCTIONAL OBJECTIVES After going through this course student will know about various technologies used for fabricating VLSI devices. To understand the impact of the physical and chemical processes of integrated circuit fabrication technology on the design of integrated circuits. 2 To understand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers 3 To learn the various lithography techniques and concepts of wafer exposure system 4 To understand Concepts of thermal oxidation and Si/SiO2 interface. 5 point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, for high-energy implants, ultralow energy implants and ion hearn heating	manufact	n, etching, and back-end technology. His pa uring of VLSI devices.	per	dea	IS W	/1th	
Aftergoingthrough this course student will know about various technologies used for fabricating VLSI devices.Tounderstand the impact of the physical and chemical processes of integrated circuit fabrication technology on the design of integrated circuits.Tounderstand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafersTolearn the various lithography techniques and concepts of wafer exposure systemTounderstand Concepts of thermal oxidation and Si/SiO2 interface.Tolearn concepts of dopant solid solubility, diffusion macroscopic point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods.Tolearn concepts of ion implantation, role of the crystals structures, high-energy implants, ultralow energy implants and ion heam heating	INSTRU	CTIONAL OBJECTIVES					
 technologies used for fabricating VLSI devices. To understand the impact of the physical and chemical processes of integrated circuit fabrication technology on the design of integrated circuits. To understand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers To learn the various lithography techniques and concepts of wafer exposure system To understand Concepts of thermal oxidation and Si/SiO2 interface. To learn concepts of dopant solid solubility, diffusion macroscopic point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, for high-energy implants, ultralow energy implants and ion heam heating 	After go	ing through this course student will know	abo	out	vario	ous	
 To understand the impact of the physical and chemical processes of integrated circuit fabrication technology on the design of integrated circuits. To understand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers To learn the various lithography techniques and concepts of wafer exposure system To understand Concepts of thermal oxidation and Si/SiO2 interface. To learn concepts of dopant solid solubility, diffusion macroscopic point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, high-energy implants, ultralow energy implants and ion heam heating 	technolog	gies used for fabricating VLSI devices.					
 integrated circuit fabrication technology on the design of integrated circuits. To understand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers To learn the various lithography techniques and concepts of wafer exposure system To understand Concepts of thermal oxidation and Si/SiO2 interface. To learn concepts of dopant solid solubility, diffusion macroscopic point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, high-energy implants ultralow energy implants and ion hearn heating 	To ur	derstand the impact of the physical and chemic	cal p	roce	sses	of	
 2 To understand physics of the Crystal growth, wafer fabrication and basic properties of silicon wafers 3 To learn the various lithography techniques and concepts of wafer exposure system 4 To understand Concepts of thermal oxidation and Si/SiO2 interface. 5 To learn concepts of dopant solid solubility, diffusion macroscopic point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, high-energy implants, ultralow energy implants and ion hearn heating 	1. integr	is.	gn of	[1nt	egra	tea	
 properties of silicon wafers To learn the various lithography techniques and concepts of wafer exposure system To understand Concepts of thermal oxidation and Si/SiO2 interface. To learn concepts of dopant solid solubility, diffusion macroscopic point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, high-energy implants ultralow energy implants and ion beam heating 	2 To un	derstand physics of the Crystal growth, wafer fabri	catio	on ar	nd ba	isic	
 To learn the various lithography techniques and concepts of water exposure system To understand Concepts of thermal oxidation and Si/SiO2 interface. To learn concepts of dopant solid solubility, diffusion macroscopic point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, high-energy implants ultralow energy implants and ion beam heating 	² prope	ties of silicon wafers					
 4. To understand Concepts of thermal oxidation and Si/SiO2 interface. To learn concepts of dopant solid solubility, diffusion macroscopic point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, 6 high-energy implants ultralow energy implants and ion beam heating 	$3. \frac{\text{To le}}{\text{expos}}$	arn the various lithography techniques and course system	icept	ts of	f wa	ter	
 To learn concepts of dopant solid solubility, diffusion macroscopic point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, high-energy implants ultralow energy implants and ion beam heating 	4. To un	derstand Concepts of thermal oxidation and Si/SiC	2 int	erfa	ce.		
 5. point, different solutions to diffusion equation. Design and evaluation of diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, high-energy implants ultralow energy implants and ion beam heating 	To le	arn concepts of dopant solid solubility, diffusi	on r	nacr	osco	pic	
diffused layers and its measurement methods. To learn concepts of ion implantation, role of the crystals structures, high-energy implants ultralow energy implants and ion beam heating	5. point,	different solutions to diffusion equation. Design a	nd e	valu	ation	of	
To learn concepts of ion implantation, role of the crystals structures, 6 high-energy implants ultralow energy implants and ion beam heating	diffus	diffused layers and its measurement methods.					
THE HIGH AND A HIGH AND A HIGH AND A HIGH AND	To le	arn concepts of 10n implantation, role of the cry	stals	s str	uctui	res,	
methods.	methods.					mg	

UNIT I - CRYSTAL GROWTH, WAFER PREPARATION, EPITAXY AND OXIDATION (12 hours)

Electronic Grade Silicon, Czochralski crystal growing, Silicon Shaping, processing consideration, Vapor Phase Epitaxy, Molecular Beam Epitaxy, Silicon on Insulators, Epitaxial Evaluation, Growth Mechanism And kinetics, Thin Oxides, Oxidation Techniques and Systems, Oxide properties, Redistribution of Dopant At interface, Oxidation of Poly Silicon, Oxidation inducted Defects.

UNIT II - LITHOGRAPHY AND RELATIVE PLASMA ETCHING (12 hours)

Optical Lithography, Electron Lithography, X-Ray Lithography, Ion Lithography, Plasma properties, Feature Size control and Anisotropic Etch mechanism, relative Plasma Etching techniques and Equipments,

UNIT III - DEPOSITION, DIFFUSION, ION IMPLEMENTATION AND METALLIZATION (12 hours)

Deposition process, Polysilicon, plasma assisted Deposition, Models of Diffusion in Solids, Flick's one Dimensional Diffusion Equation – Atomic Diffusion Mechanism – Measurement techniques – Range Theory- Implant equipment. Annealing Shallow junction – High energy implantation – Physical vapors Deposition – Patterning.

UNIT IV - PROCESS SIMULATION AND VLSI PROCESS INTEGRATION (12 hours)

Ion implantation – Diffusion and oxidation – Epitaxy – Lithography – Etching and Deposition- NMOS IC Technology – CMOS IC Technology – MOS Memory IC technology - Bipolar IC Technology – IC Fabrication.

UNIT V - ANALYTICAL, ASSEMBLY TECHNIQUES AND PACKAGING OF VLSI DEVICES (12 hours)

Analytical Beams – Beams Specimen interactions - Chemical methods – Package types – banking design consideration – VLSI assembly technology – Package fabrication technology.

REFERENCES

- 1. S.M.Sze, "VLSI Technology", McGraw Hill, 2nd Edition. 2008.
- 2. James D Plummer, Michael D. Deal, Peter B.Griffin, "Silicon VLSI Technology: fundamentals practice and Modeling", Prentice Hall India, 2009.
- 3. Wai Kai Chen, "VLSI Technology" CRC press, 2003.

			L	Т	Р	С
		TESTING OF VLSI CIRCUITS	3	2	0	4
VL	2007	Total Contact Hours – 75				
		Prerequisite				
		Nil				
PU	RPOS	Ε				
The fabr	e purp ricatio	ose of testing a design is twofold: 1. To ensu- n, the circuit behavior satisfies the intent of the	ure des	that, signe	bef er.2.	ore To
INS	INSTRUCTIONAL OBJECTIVES					
1.	To gain knowledge on digital testing as applied to VLSI design.					
2.	To acquire knowledge on testing of algorithms for digital circuits					
3.	. To learn various testing methods for digital circuits.					

UNIT I - BASICS OF TESTING AND FAULT MODELING (15 hours) Introduction- Principle of testing - types of testing - DC and AC parametric tests - fault modeling - Stuck-at fault - fault equivalence - fault collapsing fault dominance - fault simulation

UNIT II - TESTING AND TESTABILITY OF COMBINATIONAL CIRCUITS (15 hours)

Test generation basics - test generation algorithms - path sensitization - Boolean difference - D-algorithm - PODEM - Testable combinational logic circuit design.

UNIT III - TESTING AND TESTABILITY OF SEQUENTIAL CIRCUITS (15 hours)

Testing of sequential circuits as iterative combinational circuits - state table verification - test generation based on circuit structure - Design of testable sequential circuits - Ad Hoc design rules - scan path technique (scan design) - partial scan - Boundary scan

UNIT IV - MEMORY, DELAY FAULT AND I_{DDQ} **TESTING** (15 hours) Testable memory design - RAM fault models - test algorithms for RAMs – Delay faults - Delay test- I_{DDQ} testing - testing methods - limitations of I_{DDQ} testing

UNIT V - BUILT-IN SELF-TEST

(15 hours)

Test pattern generation of Built-in Self-Test (BIST) - Output response analysis - BIST architectures.

REFERENCES

- 1. P. K. Lala, "*Digital Circuit Testing and Testability*", Academic Press, 2002.
- 2. M.L. Bushnell and V.D. Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwar Academic Publishers, 2004.
- 3. N.K. Jha and S.G. Gupta, "*Testing of Digital Systems*", Cambridge University Press, 2003.
- 4. Zainalabe Navabi, "Digital System Test and Testable Design: Using HDL Models and Architectures", Springer, 2010.

		L	Т	Р	С
	RECONFIGURABLE ARCHITECTURES	4	Δ	0	1
VL2008	FOR VLSI	r	U	v	۲
112000	Total Contact Hours – 60				
	Prerequisite :				
	Nil				
PURPOS	E				
The purpo	ose of reconfigurable architectures for VLSI ensur	es to	und	lersta	ind
the different	ent configuration patterns, high speed computing a	and 1	he u	sage	of
optical an	d run time configuration.			-	
INSTRUCTIONAL OBJECTIVES					
1. To gain knowledge on run time computing and its applications to VLSI.					
2. To learn optical reconfigurable models.					

3. To know the knowhow of various multi core architectures.

UNIT I - RECONFIGURABLE COMPUTING HARDWARE (12 hours) Logic- computational fabric, Array and interconnect-Extended logic-Configuration-Reconfigurable processing fabric architectures-RPF integration into traditional computing systems- operating system support for reconfigurable computing- Evolvable FPGA

UNIT II - MAPPING DESIGNS INTO RECONFIGURABLE PLATFORMS (12 hours)

Structural mapping- integrated mapping- mapping for heterogeneous resources-Placement problem – clustering- simulated annealing – partition based placement – analytical placement- partitioning for granularity-partitioning of parallel programs- instance specific design

UNIT III - COMPUTATIONAL ARCHITECTURES FOR FP(12 hours)

Precision analysis for fixed point computation- Distributed arithmetic for FPGA – CORDIC architectures for FPGA- Boolean satisfiability – SAT solvers

UNIT IV - OPTICAL RECONFIGURATION MODELS (12 hours) Simulation and scalability- Models, Basic algorithmic techniques- optical models – complexities of optical models- run time reconfigurability- Design and implementation

UNIT V - MULTI CORE ARCHITECTURES (12 hours)

Multi core and many core architectures-state of the art multi core operating systems-parallelism and performance analysis

REFERENCES

- 1. Scott Hauck, André Dehon , "Reconfigurable computing: the theory and practice of FPGA-based computation", Morgan Kaufmann publishers, 2008.
- Ramachandran Vaidhyanathan and Jerry. L. Trahan "Dynamic Reconfiguration: Architectures and Algorithms", Kluwer Academic publishers, 2003.
- 3. Andras Vajda, "Programming many core chips", Springer, 2011.

		L	Т	Р	С
VI 2101	DIGITAL SYSTEM SYNTHESIS AND VERIFICATION	3	0	0	3
VL2101	Total Contact Hours – 45				
	Prerequisite :				
	Nil				
PURPOSE					
HDL progra	mming is fundamental for VLSI design and hene	ce th	is co	ourse	e is
given.					
INSTRUCTIONAL OBJECTIVES					

1. To gain knowledge on Verilog HDL language

2 To get an insight on system C

3 To understand the object oriented features on Verilog

UNIT - I VERILOG - BASIC CONCEPTS

Operators, Basic concepts, Identifiers, System task and functions, Value set, Data types, Parameters ,Operands, Operators, Modules and ports, Gate-level Modeling, Dataflow Modeling, Behavioral Modeling, Test bench-lab exercise.

UNIT-II VERILOG - ADVANCED FEATURES (9 hours)

Tasks and Functions, Timing and delays, Switch level modeling, Tri state gates, MOS Switches, Bidirectional switches, User defined primitives, Combinational UDP, Sequential UDP, lab exercise. Introduction to synthesis, Verilog HDL synthesis-Synthesis Design flow -lab exercise.

UNIT-III SYSTEM VERILOG – INTRODUCTION (9 hours)

Introduction to System Verilog – Literal values-data Types, Arrays, Data Declarations-attributes-operators, expressions, procedural statements and control flow. Processes in System Verilog - Task and functions.

UNIT-IV OBJECT ORIENTED ANALYSIS IN SYSTEM VERILOG

(9 hours)

Introduction to objects, its properties, methods, constructors- casting chaining - Data hiding and encapsulation - polymorphism. Random constraints - randomization method. Inline constraints, Disabling random variables, controlling constraint, In-line random variable controlrandomization of scope variable.

UNIT- V SYSTEM VERILOG – ADVANCED FEATURES (9 hours) Interprocessor synchronization - communication- scheduling semanticsclocking blocks- assertions- Hierarchy-Interfaces- System Tasks & functions – system Verilog assertion API and coverage API.

REFERENCES

- 1. Samir palnitkar, "Verilog HDL", Pearson education, Second Edition, 2003.
- 2. J. Bhasker, "A Verilog HDL Primer, Second Edition", Star Galaxy, 1999.
- 3. J. Bhasker, "A Verilog Synthesis: A Practical Primer", Star Galaxy, 1998.
- System Verilog 3.1a –Language Reference Manual (Accellera Extensions to Verilog 2001), 2004.

		L	Т	Р	С
	NANO ELECTRONICS	3	0	0	3
VI 2102	Total Contact Hours - 45				
VL2102	Prerequisite				
	Nil				

PURPOSE

As a new and expanding field, with many implications, nanotechnology and nano electronics is going to pave way for new technologies. Hence this course introduced.

INSTRUCTIONAL OBJECTIVES

1 To learn the various limitation on MOSFETS and the alternates.

- 2 To gain knowledge on SET and Carbon nano tubes in the design of transistors
- 3 To learn the basics of molecular electronics and spintronics.

UNIT I - LIMITATION OF MOSFETS

Classical mechanics and its drawbacks, Quantum mechanics, 1D problem particle in a box, electron tunneling., MOSFET scaling, Non-uniform doping in channel, high K dielectrics, SOI MOSFET, Buried channel MOSFET, Fin FET.

UNIT II - SINGLE ELECTRONICS

(9 hours)

Coulomb blockade, Electron tunnelling devices, Single electron transistors, Resonant Tunneling Diodes- principle and applications, Quantum computing, Quantum cellular automata

UNIT III- CARBON NANO TUBES

Carbon nano tubes - Basic structures, CNTFETs, Applications.

UNIT IV - MOLECULAR ELECTRONICS

Molecular wire conductance - Theories of Coherent Electron Transport in molecular junctions, Evaluation of the conductance for coherent transport, Incoherent transport and vibronic coupling, Molecular circuit elements, Circuits.

UNIT V - SPINTRONICS

Spin Vs charge, AMR, GMR, TMR, Spin devices- Spin valves, Magnetic tunnel junctions, Applications – memories (MRAM, STRAM), Logic device, and microwave oscillators.

REFERENCES

- 1. Rainer Waser, "Nano Electronics and Information Technology: Advanced Electronic Materials and Novel Devices", 2nd Edition, Wiley-VCH, 2012.
- 2. Chonles P.Poole Jr., Frank. J. Owens, "Introduction to Nano technology", John Wiley and Sons, 2009.
- 3. T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
- 4. Mark A. Ratner, Danill Ratner, "Nano Technology: A Gentle Introduction to the Next Big Idea", Prentice Hall, 2003.

VL2103		L	Т	Р	С
	LOW POWER VLSI DESIGN	3	0	0	3
	Total Contact Hours – 45				
	Prerequisite				
	VL2001				
PURPOSE					
As there is always a need for power efficient circuits and devices, this course explain the methods for low power VLSI design.					
INSTRUCTIONAL OBJECTIVES					

(9 hours)

(9 hours)

2.	To gain knowledge on low power circuit design styles for VLSI circuits.
1.	To design Low power CMOS designs, for digital circuits.

3. To understand software power estimation and optimization methods for VLSI circuits.

UNIT I - INTRODUCTION TO LOW POWER VLSI DESIGN AND ANALYSIS (9hours)

Introduction to low power VLSI design-Need for low power-CMOS leakage current-static current- Basic principles of low power design-probabilistic power analysis-random logic signal-probability and frequency-power analysis techniques-signal entropy.

UNIT II - CIRCUIT LEVEL AND LOGIC LEVEL DESIGN TECHNIQUES (9hours)

Circuit - transistor and gate sizing - pin ordering - network restructuring and reorganization - adjustable threshold voltages - logic-signal gating - logic encoding. Pre-computation logic.

UNIT III - SPECIAL LOW POWER VLSI DESIGN TECHNICQUES (9 hours)

Power reduction in clock networks - CMOS floating node - low power bus - delay balancing Switching activity reduction - parallel voltage reduction - operator reduction - Adiabatic computation - pass transistor logic

UNIT IV - LOW VOLTAGE LOW POWER MEMORIES (9 hours)

Basics of SRAM- Memory cell –Pre-charge and equalization circuit decoder-ATD Sense amplifier-Output latch-Low power SRAM technologies-types of DRAM –Basics of DRAM-Cell refresh circuit-HVG-BBG-BVG-RVG-VDC

UNIT V - SOFTWARE DESIGN AND POWER ESTIMATION(9 hours)

Low power circuit design style - Software power estimation - co design, for low power.

REFERENCES

- 1. Gary Yeap "*Practical Low Power Digital VLSI Design*", Springer US, Kluwer Academic Publishers, 2002.
- 2. Kaushik Roy, Sharat C. Prasad, "Low power CMOS VLSI circuit design", Wiley Inter science Publications", 1987.

3. Kiat-Seng Yeo, Kaushik Roy, "Low Voltage Low Power VLSI Subsystems", Tata Mc-Graw Hill, 2009.

			L	Т	Р	С
		NEURAL NETWORKS FOR VLSI	3	0	0	3
v	F 210 4	Total Contact Hours - 45				
VL2104		Prerequisite				
		VL2002				
PU	JRPOS	E				
Th	e purpo	se of this course is				
1.	To in	roduce neural network concepts to the student				
2.	To ap	ply artificial neural network concepts in VLSI				
IN	STRU	CTIONAL OBJECTIVES				
1.	1. To gain knowledge on neural networks, its theory and various types.					
2.	2. To acquire knowledge on implementation of neural networks for VLSI				LSI	
	problems.					
3	To learn Pulse stream technique in neural networks.					

UNIT I - INTRODUCTION AND BASIC CONCEPTS (9 hours)

Introduction- Humans and Computers, the structure of the brain, learning in machines, the differences. The basic neuron- Introduction, modeling the single neuron, learning in simple neurons, the perception: a vectorial perspective, the perception learning rule, proof, limitations of perceptrons.

UNIT II - MULTILAYER NETWORKS

The multi layer perceptron: Introduction, altering the perception model, the new model, the new learning rule, multi layer perception algorithm, XOR problem.

Multi layer feed forward networks, error back propagation training algorithm: problems with back propagation, Boltzman training, Cauchy training, combined back propagation, Cauchy training.

UNIT III - NEURAL VLSI

Hopfield memories - the first generation of neural network VLSI, Pattern classification using neural networks, Computational requirement, MOSFET equations - a crash course, Digital accelerators, Op-amps and resistors, Superthreshold circuits for neural networks, Analogue/Digital combinations, MOS transconductance multiplier, MOSFET analogue multiplier, Imprecise low-area multiplier, Analogue, programmable - Intel Electronically

(9 hours)

Trainable Artificial Neural Network (ETANN) chip, Analogue synaptic weight storage – Dynamic weight storage, Metal Nitride Oxide Silicon(MNOS) networks, Floating-gate technology, Amorphous silicon synapses

UNIT IV - PULSE STREAM TECHNIQUE (9 hours)

Pulse encoding of information, Pulse stream arithmetic – addition and multiplication, Pulse stream communication, Pulse stream case studies – Edinburg SADMANN/ EPSILON work, The EPSILON chip, Process invariant summation and multiplication – the synapse, Pulse frequency modulation neuron, Pulse width modulation neuron, Switched-capacitor design, Per-pulse computation, EPSILON – The chosen neuron/synapse cells and results

UNIT V - APPLICATIONS OF NEURAL VLSI (9 hours) Real time speech recognition, Applications of neural VLSI – dedicated systems, Hardware co-processors, Embedded neural systems, The future -Hardware learning with multi-layer perceptrons, The top-down approach: Virtual Targets, The bottom-up approach : weight perturbation, Test problem, Weight perturbation for hardware learning, Noisy synaptic arithmetic – an analysis, Noise in training, On-chip learning.

REFERENCES

- 1. R Beale & T Jackson, "Neural Computing, An Introduction", Adam Hilger, 1990.
- 2. Freeman J.A. and Skapura B.M, "Neural Networks, Algorithms Applications and Programming Techniques", Addison Wesely, 1991.
- 3. Alan Murray & Lionel Tarassenko , "Analogue Neural VLSI", Chapman&Hall, 1994.

		L	Т	Р	С
	VLSI DIGITAL SIGNAL PROCESSING SYSTEMS	3	0	0	3
VL2105	Total Contact Hours - 45				
	Prerequisites				
	VL2003				
PURPOSE					
As DSP has become an essential component of VLSI applications, this					

l Clockin	g Styl	es-
Pipelined	VLSI	D

Parallel Multipliers- Interleaved Floor-plan and Bit-Plane-Based Digital Filters- Bit-Serial Multipliers- Bit-serial Filter Design and Implementation-Canonic Signed Digit Arithmetic- Distributed Arithmetic.

(9 hours)

Algorithm for Unfolding- Properties of Unfolding- Critical Path- Unfolding and Retiming- Applications of Unfolding. Folding: Folding Transformation-Register Minimization Techniques- Lifetime analysis-Data Allocation using forward-Backward register Allocation- Register Minimization in Folded Architectures- Folding of Multirate Systems.

Course discusses implementation methods and problems in optimization algorithm of VLSI DSP Systems.

INSTRUCTIONAL OBJECTIVES

- To know the various methods for implementation of DSP systems. 1
- 2 To understand the various implementations of VLSI DSP architectures for Arithmetic operations
- To gain knowledge on low power DSP architectures. 3

UNIT II - DIGITAL MULTIPLIER ARCHITECTURES

UNIT I - UNFOLDING

UNIT III - REDUNDANT ARITHMETIC

Redundant Number Representations- Carry-Free Radix-2 Addition and Subtraction- Hybrid Radix-4 Addition- Radix-2 Hybrid Redundant Multiplication Architectures- Data Format Conversion- Redundant to Non redundant Converter . Numerical Strength Reduction: Sub expression Elimination- Multiple Constant Multiplication- Sub expression sharing in Digital Filters- Additive and Multiplicative Number Splitting.

UNIT IV - SYNCHRONOUS AND ASYNCHRONOUS PIPELINING (9 hours)

Clock Skew and Clock Synchronous Pipelining and Distribution in Bit-Level I esigns- Wave Pipelining-Constraint Space Diagram and Degree of Wave Pipelining- Implementation of Wave-Pipelined Systems- Asynchronous Pipelining- Signal Transition Graphs- Use of STG to Design Interconnection Circuits- - Implementation of Computational Units.

UNIT V - LOW POWER VLSI DSP SYSTEMS

(11 hours)

(8 hours)

(8 hours)

Theoretical Background- Scaling Versus Power Consumption- Power Analysis- Power Reduction Techniques- Power Estimation Approaches.-Simulation Based Approach.

REFERENCES

- 1. K.K Parhi, "VLSI Digital Signal processing", John-Wiley 2008.
- Behrooz Parhami, "Computer Arithmetic : Algorithms & Hardware 2. Designs", Oxford University Press, 2nd Edition, 2010.

			L	Т	Р	С
		ASIC DESIGN	3	0	0	3
VL2106		Total Contact Hours - 45				
		Prerequisite				
		Nil				
PU	RPOSE					
As	VLSI ir	nplementation is largely in ASIC this subject is i	ntro	duce	d he	re.
INS	STRUC	TIONAL OBJECTIVES				
1	To learn the fundamentals of ASIC and its design methods					
2.	To gain knowledge on programmable architectures for ASICs					
3.	To unc	lerstand the physical design of ASIC.				

UNIT I - INTRODUCTION TO ASIC'S

Types of ASICs - Design flow - CMOS transistors CMOS Design rules -Combinational Logic Cell - Sequential logic cell - Data path logic cell -Transistors as Resistors - Transistor Parasitic Capacitance- Logical effort -Library cell design - Library architecture .

UNIT II - PROGRAMMABLE ASIC'S

Anti fuse - static RAM - EPROM and EEPROM technology - PREP benchmarks - Actel ACT - Xilinx LCA - Altera FLEX - Altera MAX DC & AC inputs and outputs - Clock & Power inputs - Xilinx I/O blocks.

UNIT III - PROGRAMMABLE ASIC LOGIC CELLS (9 hours)

24

(7 hours)

Actel ACT -Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX -Design systems - Logic Synthesis - Half gate ASIC -Schematic entry - Low level design language - PLA tools -EDIF-CFI design representation.

UNIT IV - ASIC FLOOR PLANNING, PLACEMENT AND ROUTING (11 hours)

ASIC Construction: Physical Design- System Partitioning- FPGA Partitioning- Partitioning Methods. Floorplanning and Placement: Floorplanning- Placement- Physical Design Flow. Routing: Global Routing -Detailed Routing- Special Routing. Design checks

UNIT V - OPTIMIZATION ALGORITHMS

Planar subset problem(PSP) -single layer global routing single layer detailed routing wire length and bend minimization technique-over the cell(OTC) Routing-multichip modules(MCM)-Programmable logic arrays-Transistor chaining-Weinberger Arrays-Gate Matrix Layout-1D compaction-2D compaction

(9 hours)

REFERENCES

- 1. M. J. S. Smith, "Application Specific Integrated Circuits", Addison Wesley Longman Inc., 1997.
- 2. Farzad Nekoogar and Faranak Nekoogar, "From ASICs to SOCs: A Practical Approach", Prentice Hall PTR, 2003.

VL2107		L	Т	Р	С	
	CMOS MIXED SIGNAL CIRCUIT DESIGN	3	0	0	3	
	Total Contact Hours – 45					
	Prerequisite					
	VL2002,VL2004					
PURPOSE						
As many real life applications involve both analog and digital circuits, this						
course aims to introduce the problems in implementing Analog & Digital						
Circuits in a single silicon wafer.						

INSTRUCTIONAL OBJECTIVES

1.	To know mixed signal circuits like DAC, ADC, PLL etc.
2.	To gain knowledge on filter design in mixed signal mode.

To acquire knowledge on design different architectures in mixed signal 3. mode.

UNIT I - PHASE LOCKED LOOP

Characterization of a comparator, basic CMOS comparator design, analog multiplier design, PLL - simple PLL, charge-pump PLL, applications of PLL.

UNIT II - SAMPLING CIRCUITS

Basic sampling circuits for analog signal sampling, performance metrics of sampling circuits, different types of sampling switches. Sample-and-Hold Architectures- Open-loop & closed-loop architectures, open-loop architecture miller capacitance, multiplexed-input architectures, with recycling architecture, switched capacitor architecture, current-mode architecture.

UNIT III - D/A CONVERTER ARCHITECTURES (9 hours)

Input/output characteristics of an ideal D/A converter, , performance metrics of D/A converter, D/A converter in terms of voltage, current, and charge division or multiplication, switching functions to generate an analog output corresponding to a digital input. Resistor-Ladder architectures, currentsteering architectures.

UNIT IV - A/D CONVERTER ARCHITECTURES (9 hours)

Input/output characteristics and quantization error of an A/D converter, performance metrics of pipelined architectures, Successive approximation architectures, interleaved architectures.

UNIT V - INTEGRATOR BASED FILTERS (9 hours) Low Pass filters, active RC integrators, MOSFET-C integrators,

transconductance-c integrator, discrete time integrators. Filtering topologies bilinear transfer function and biquadratic transferfunction.

REFERENCES

- Razavi, "Design of analog CMOS integrated circuits", McGraw Hill, 1. Edition 2002.
- Razavi. "Principles of data conversion system design", Wiley IEEE 2. Press, 1st Edition, 1994.
- Jacob Baker, "CMOS Mixed-Signal circuit design", IEEE Press, 2009. 3.
- 4. Gregorian, Temes, "Analog MOS Integrated Circuit for signal processing", John Wiley & Sons, 1986.

(9 hours)

Baker, Li, Boyce, "CMOS : Circuit Design, layout and Simulation", 5. PHI, 2000.

			L	Т	Р	С
VL	2108	DSP ARCHITECTURE AND APPLICATIONS	3	0	0	3
		Total Contact Hours – 45				
		Prerequisite				
		VL2003				
PU	RPOS	E				
Thi	s cours	se introduces Digital Signal processors.				
INS	STRU	CTIONAL OBJECTIVES				
1.	To kı	now various DSP architectures and their application	ons.			
2.	To ga	in technical knowhow of various DSP processors				

UNIT I - OVERVIEW OF DIGITAL SIGNAL PROCESSING (9 hours) Advantages of DSP over analog systems, salient features and characteristics of DSP systems, applications of DSP systems. Common features of DSP processors, numeric representations in DSP processor, data path of a DSP processor, memory structures in DSP processors, VLIW architecture, special addressing modes in DSP processors, pipelining concepts, on-chip peripherals found in DSP processors.

UNIT II - TMS320C5X PROCESSORS

Architecture of TMS320C5X Processors- Assembly Instructions- Addressing Modes- Pipelining and Peripherals-Lab exercises

UNIT III - TMS320C3X PROCESSORS

Architecture of TMS320C3X- Instruction Set- Addressing Modes- Data Formats- Floating Point Operation- Pipelining and Peripherals- Lab exercises

UNIT IV - BLACK FIN PROCESSOR

Introduction to Black fin processor- Architecture overview-processor coreaddressing modes-instruction sets-Targeted applications - Lab exercises.

UNIT V - SHARC PROCESSOR

VLIW Architecture- SHARC- SIMD- MIMD Architectures- Application: Adaptive filters-DSP based biometry receiver-speech processing-position control system for hard disk drive-DSP based power meter.

27

(9 hours)

(9 hours)

(9 hours)

REFERENCES

- 1. B.Venkatramani & M.Baskar, "*Digital Signal Processor*", Tata McGraw Hill, 4th Edition, 2008.
- 2. Avatar Singh and S.Srinivasan, "Digital signal processing", Thomson books, 2004.
- 3. K.K Parhi, "VLSI DSP Systems", John Wiley, 2008.

			L	Т	Р	С
		DESIGN OF SEMICONDUCTOR MEMORIES	3	0	0	3
VL	.2109	Total Contact Hours - 45				
		Prerequisites				
		VL2002				
PU	RPOSI	E				
Me Thi and	mory is is cours l making	an important part in many digital circuits and r e discusses implementation methods and proble g semiconductor memories.	nicro ms i	n de	trolle sign	ers. ing
INS	STRUC	TIONAL OBJECTIVES				
1.	1. To know the design of MOS memories and the various precautionary methods to be used in their design.					
2.	To ga memo	in knowledge on various testing methods of ries.	ser	nico	nduc	tor
3.	To get	To get an overview on reliability of semiconductors.				

UNIT I - RAM

(9 hours)

SRAM Cell Structures-MOS SRAM Architecture-MOS SRAM Cell and Peripheral Circuit Operation-Bipolar SRAM Technologies-Silicon On Insulator (SOI) Technology-Advanced SRAM Architectures and Technologies-Application Specific SRAMs.

DRAM Technology Development-CMOS DRAMs - DRAMs Cell Theory and Advanced Cell Strucutures - BiCMOS, DRAMs - Soft Error Failures in DRAMs - Advanced DRAM Designs and Architecture-Application Specific DRAMs.

UNIT II - NONVOLATILE MEMORIES

Masked Read-Only Memories (ROMs)-High Density ROMs-Programmable Read-Only Memories (PROMs)-BipolarPROMs-CMOS PROMs-Erasable (UV) - Programmable Road-Only Memories (EPROMs)-Floating-Gate EPROM Cell-One-Time Programmable (OTP) Eproms-Electrically Erasable PROMs (EEPROMs)-EEPROM Technology And Architecture-Nonvolatile SRAM-Flash Memories (EPROMs or EEPROM)-AdvancedFlash Memory Architecture.

UNIT III- MEMORY FAULT MODELING AND TESTING (9 hours) RAM Fault Modelling, Electrical Testing, Peusdo Random Testing-Megabit DRAM Testing-Non-volatile Memory Modelling and Testing-IDDQ Fault Modelling and Testing-Application Specific Memory Testing

UNIT IV - SEMICONDUCTOR MEMORY RELIABILITY (9 hours) General Reliability Issues-RAM Failure Modes and Mechanism-Non-volatile Memory Reliability-Reliability Modelling and Failure Rate Prediction-Design for Reliability-Reliability Test Structures-Reliability Screening and Qualification.

UNIT V- ADVANCED MEMORY TECHNOLOGIES (9 hours) Ferroelectric Random Access Memories (FRAMs)-Gallium Arsenide (GaAs) FRAMs - Analog Memories-Magneto-resistive Random Access Memories (MRAMs)-Experimental Memory Devices. Memory Hybrids and MCMs (2D)-Memory Stacks and MCMs (3D)-Memory MCM Testing and Reliability Issues-Memory Cards-High Density Memory Packaging Future Directions.

REFERENCES

- 1. Ashok K. Sharma, "Semiconductor Memories", Two-Volume Set, Wiley-IEEE Press, 2003.
- Brent Keeth, R. Jacob Baker, Brian Johnson, Freng Lin, "DRAM Circuit Design : Fundamental and High Speed Topics", Wiley-IEEE Press, 2nd Edition, 2008.
- 3. Betty Prince, "High Performance Memories: New Architecture DRAMs and SRAMs Evolution and Function", Wiley, Revised Edition, 1999.

		L	Т	Р	С
	SYSTEM ON CHIP DESIGN	3	0	0	3
VL2110	Total Contact Hours – 45				
	Prerequisite				
	Nil				
PURPOS	E				

IP cores and application specific design is becoming the order of the day. Because of usefulness of this for both VLSI and embedded students this subject is provided.

INSTRUCTIONAL OBJECTIVES

To learn System on chip fundamentals, their applications. 1.

- 2. To gain knowledge on NOC design.
- 3. To learn the various omputation models of SOCs

UNIT I - INTRODUCTION

(9 hours)

Introduction to SoC Design., Platform-Based SoC Design., Multiprocessor SoC and Network on Chip, Low-Power SoC Design

UNIT II - SYSTEM DESIGN WITH MODEL OF COMPUTATION AND CO-DESIGN (9 hours)

System Models, Validation and Verification, Hardware/Software Codesign Application Analysis, Synthesis.

UNIT III - COMPUTATION-COMMUNICATION PARTITIONING AND NETWORK ON CHIP-BASED SOC (9 hours)

Communication System: Current Trend, Separation of Communication and Computation. Communication-Centric SoC Design, Communication Synthesis, Network-Based Design, Network on Chip, Architecture of NoC

UNIT IV - NOC DESIGN

Practical Design of NoC, NoC Topology-Analysis Methodology, Energy Exploration, NoC Protocol Design, Low-Power Design for NoC: Low-Power Signaling, On-Chip Serialization, Low-Power Clocking, Low-Power Channel Coding, Low-Power Switch, Low-Power Network on Chip Protocol

UNIT V - NOC /SOC CASE STUDIES

Real Chip Implementation-BONE Series-,BONE 1-4. Industrial Implementations-.Intel's Tera-FLOP 80-Core NoC. Intel's Scalable

(9 hours)

Communication Architecture, Academic Implementations-FAUST, RAW; design case study of SoC –digital camera **REFERENCES**

- 1. Hoi-jun yoo, Kangmin Lee, Jun Kyoung kim, "Low power NoC for high performance SoC desing", CRC press, 2008.
- 2. Vijay K. Madisetti Chonlameth Arpikanondt, "A Platform-Centric Approach to System-on-Chip (SOC) Design", Springer, 2005.

			L	Т	Р	С
V	3111	GENETIC ALGORITHMS AND THEIR APPLICATIONS IN VLSI		0	0	3
V	4111	Total Contact Hours - 45				
		Prerequisite				
		VL2005, VL2007				
PU	RPOSE					
Op	timizatio	on methods are necessary for making circuits and	d ma	king	dev	rice
lay	outs. Th	his course deals with Genetic Algorithm as	an c	ptin	nizat	ion
app	olication	for VLSI design.				
INS	STRUC	TIONAL OBJECTIVES				
1.	To gain	n knowledge on Genetic algorithms				
	_					
2.	To lea	rn implementation of genetic algorithms for	VL	SI p	hysi	cal
	design	problems				
3	To un	derstand implementation of genetic algorithms	s foi	tes:	ting	of
	VLSI circuits and technology mapping.					

UNIT I - FUNDAMENTALS OF GENETIC ALGORITHM (9 hours) Terminologies – Simple Genetic algorithms – steady state algorithm – Genetic operators-types of GA-Genetic algorithms vs. Conventional algorithms – GA example – GA for VLSI design, layout and test automation.

UNIT II - PARTITIONING

Problem description – Circuit partitioning by genetic algorithms – hybrid genetic algorithms for ratio-cut partitioning.

UNIT III - PLACEMENT AND ROUTING

(9 hours)

Placement: Standard cell placement – Macro cell placement – Standard cell placement on a network of workstations Routing: Steiner problem in graph – macro cell global routing

UNIT IV - GENETIC ALGORITHMS IN VLSI TESTING (9 hours)

Problem description – test generation frame work – test generation for test applications time reduction – deterministic/genetic test generators sequences-dynamic test sequence compaction – parallel algorithms for ATPG

UNIT V - FPGA TECHNOLOGY MAPPING AND PEAK POWER ESTIMATION (9 hours)

FPGA technology mapping: Circuit segmentation and FPGA mapping-circuit segmentation for Pseudo-Exhaustive testing. Peak power estimation: Problem description – application of GA – Estimation of peak single cycle and n-cycle powers-peak sustainable power estimation.

REFERENCES

- 1. Pinaki mazumder and Elizabeth M Rudnick,"*Genetic algorithms for VLSI design layout and test automation*", Pearson Edition, 2011.
- David E Goldberg, "Genetic algorithms in search, optimization and machine learning", Addison-Wesley, Longman Publishing Co., Inc. Boston, MA, USA, 2009.

				L	Т	Р	С
		RELIABILITY ENGINEERING	Ĵ	3	0	0	3
V	L2112	Total Contact Hours - 45					
		Prerequisites :					
		Nil					
PUI	RPOSE						
For relia	any sy ability of	stem reliability is an essential param designs, it is necessary to know reliability	eter. Fo analysi	ore sme	evalı etho	uati ds.	ng
INS	TRUCT	IONAL OBJECTIVES					
1.	To learn	basics of reliability evaluation methods					
2.	To unde	rstand its application to electronic circuit.					
3.	To uno	lerstand the various Failure modes	of man	ny	elec	tror	nic
	compon	ents.					

33

UNIT IV - RELIABILITY TESTING

Test environments, testing for reliability and durability, failure reporting, Pareto analysis, Accelerated test data analysis, CUSUM charts, Exploratory data analysis and proportional hazards modeling, reliability demonstration, reliability growth monitoring.

UNIT V - RELIABILITY IN MANUFACTURE AND MAINTENANCE (9hours)

Control of production variability, Acceptance sampling, Quality control and stress screening, Production failure reporting; preventive maintenance strategy, Maintenance schedules, Design for maintainability, Integrated reliability programmes, reliability and costs, standard for reliability, quality and safety, specifying reliability, organization for reliability.

REFERENCES

1. Lewis. "Introduction to Reliability Engineering", Wiley International.2nd Edition, 1996.

UNIT II - STATISTICAL EXPERIMENTS

UNIT I - RELIABILITY AND RATES OF FAILURE

Statistical design of experiments and analysis of variance Taguchi method, Reliability prediction, Reliability modeling, Block diagram and Fault tree Analysis ,petric Nets, State space Analysis, Monte Carlo simulation, Design analysis methods - quality function deployment, load strength analysis, failure modes, effects and criticality analysis.

Statistical distribution, statistical confidence and hypothesis testing

UNIT Ш ELECTRONIC SYSTEMS AND SOFTWARE -RELIABILITY (9 hours)

Reliability of electronic components, component types and failure mechanisms, Electronic system reliability prediction, Reliability in electronic system design; software errors, software structure and modularity, fault software reliability. prediction tolerance. and measurement. hardware/software interfaces.

probability plotting techniques - Weibull, extreme value ,hazard, binomial data; Analysis of load - strength interference, Safety margin and loading roughness on reliability.

(9 hours)

(9 hours)

2. Patrick D.T. O'Commer, David Newton and Richard Bromley, "Practical Reliability Engineering", John Wiley & Sons, 4th Edition, 2002.

			L	Т	Р	С	
VI A	F	UNDAMENTALS AND APPLICATIONS OF MEMS	3	0	0	3	
VL2		Total Contact Hours - 45					
	Р	rerequisites :					
	N	il					
PUR	POSE						
MEN	IS techno	logy offers many exciting opportunities in m	iniat	uriza	ation	of	
eleme	ents in a	wide range of applications. MEMS based sense	ors a	nd a	ctuat	ors	
are co	onstantly	introduced into new products and new markets	are are	expe	ected	l to	
becon	ne affect	ed by MEMS technology in the near future. T	he d	ivers	sity :	and	
comp	lexity of	this technology demands a wide knowled	ge b	ase	fron	n a	
prosp	ect resea	rcher. The goal of this course is to provide	the	stud	lent	the	
neede	ed backgi	ound to comprehend existing technology, the	tool	s to	exec	ute	
MEM	IS fabric	ation and the expertise to approach the deve	lopm	lent	of r	lew	
MEN	IS tools.						
INST	RUCTI	ONAL OBJECTIVES					
1.	To fam	liarize with MEMS Materials and Sca	ling	La	aws	in	
	Miniatura	tion.					
2.	To revive	various concepts of Engineering Mechanics a	nd T	hern	no fl	uid	
	Engineering for Microsystems Design.						
3.	To study	Microsystems Fabrication Process.					
4.	To famili	arize with Microsystems Design, Assembly and	d Pac	ckag	ing.		
5.	To explo	e on various Case Study of MEMS Devices.					

UNIT I - OVERVIEW OF MEMS AND MICROSYSTEMS, MEMS MATERIALS AND SCALING LAWS IN MINIATURATION (9 hours)

MEMS and Microsystems - Microsystems and microelectronics, Microsystems and miniaturization, Working principle of micro system -Micro sensors, Micro actuators, MEMS with Micro actuators.

Materials For MEMS - Substrate and wafer, silicon as a substrate material, silicon compound, silicon Piezo-resistors, Gallium Arsenide, quartz, Piezoelectric crystals, polymers and packaging Materials.

Scaling Laws in Miniaturization-Scaling in Geometry, Scaling in Rigid-Body Dynamics, Scaling in Electrostatic Forces, Scaling in Electromagnetic Forces, Scaling in Electricity, Scaling in Fluid Mechanics, Scaling in Heat Transfer

UNIT II - ENGINEERING MECHANICS AND THERMOFLUID ENGINEERING FOR MICROSYSTEMS DESIGN (9 hours)

Atomic structure of matter, Ions and ionization, Molecular theory of matter and intermolecular forces, Doping of semiconductors, Diffusion process, Plasma physics, Electrochemistry, Static bending of thin plates, Mechanical vibration analysis, Thermo mechanical analysis, Overview of finite element analysis,

Thermo fluid Engineering-Characteristics of Moving Fluids, The Continuity Equation, The Momentum Equation, Incompressible Fluid Flow in Microconduits, Overview of Heat Conduction in Micro Structures.

UNIT III - MICROSYSTEMS FABRICATION PROCESS (9 hours) Fabrication Process - Photolithography, Ion implantation, Oxidation, Chemical vapor deposition (CVD), Physical vapor deposition, Deposition by Epitaxy,

Etching. Manufacturing Process - Bulk Micromachining, Surface Micromachining and LIGA Process.

UNIT IV - MICROSYSTEMS DESIGN, ASSEMBLY AND PACKAGING (9 hours)

Micro system Design - Design consideration, process design, Mechanical design, Mechanical design using MEMS. Mechanical packaging of Microsystems, Microsystems packaging, interfacings in Microsystems packaging, packaging technology, selection of packaging materials, signal mapping and transduction.

UNIT V - CASE STUDY OF MEMS DEVICES (9 hours)

Case study on strain sensors, Temperature sensors, Pressure sensors, Humidity sensors, Accelerometers, Gyroscopes, RF MEMS Switch, phase shifter, and smart sensors. Case study of MEMS pressure sensor Packaging.

REFERENCES

- 1. "*MEMS and Microsystems: design , manufacture, and nanoscale Engineering,*" 2nd Edition, by Tai-Ran Hsu, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.
- 2. Chang Liu, "Foundations of MEMS", Pearson Indian Print, 1st Edition, 2012.
- 3. Gabriel M Rebeiz, "*RF MEMS Theory Design and Technology*", John Wiley and Sons, 2004.
- 4. Julian W Gardner, "*Microsensors MEMS and smart devices*", John Wiley and sons Ltd, 2001.

		L	Т	Р	С		
	RF VLSI DESIGN	3	0	0	3		
VL2114	Total Contact Hours - 45						
	Prerequisites						
	VL2004						

PURPOSE

The explosive growth in wireless telecommunications, expects the design of RF circuits with low power consumption and Low noise. This course aims to introduce the design of CMOS RF circuits suitable for transmitter and receiver architectures.

INTRUCTIONAL OBJECTIVES									
1.	To explore the various performance measures of RF circuits.								
2.	To acquire knowledge on the design of RF filters, amplifiers and								
	oscillators								

UNIT I -PERFORMANCE PARAMETERS OF RF CIRCUITS(9 hours)

Gain Parameters, Non-linearity parameters, Noise figure, Phase Noise, Dynamic range, RF front end performance parameters, performance trade offs in an RF circuit.

UNIT II - FILTER DESIGN

Modern filter design, Frequency and impedance scaling, High Pass filter design, Band pass filter design, Band reject filter design, the effects of finite Q.

(9 hours)

UNIT III - HIGH FREQUENCY AMPLIFIER DESIGN (9 hours)

Zeros as Bandwidth enhances, Shunt-series Amplifier, Bandwidth enhancement with frequency Doublers, Tuned amplifiers, Neutralization and unilateralization, cascaded Amplifiers, LNA Topologies.

UNIT IV - MIXERS AND OSCILLATORS

Mixer fundamentals, Non linear systems as Linear mixers, multiplier based mixers, Subsampling mixers.

Problems with purely linear oscillators, Tuned oscillator, Negative Resistance oscillators, frequency synthesis.

UNIT V - RF POWER AMPLIFIERS

General considerations, Class A, AB, B & C Power amplifier, Class D, E & F amplifiers, modulation of power amplifiers, RF Power amplifier design examples.

REFERENCES

- 1. Aleksandar Tasic, Wouter.A.Serdijn, John.R.Long, "Adaptive Low Power Circuits for Wireless Communication (Analog Circuits and Signal Processing)", Springer, 1st Edition, 2006.
- 2. Chris Bowick, "*RF Circuit design*", Newnes (An imprint of Elesvier Science), 1st Edition, 1997.
- 3. Thomas.H. Lee, "*The design of CMOS Radio-Frequency Integrated Circuits*", Cambridge University Press, 2nd Edition, 2004.

			-	m	-	~	
			L	Т	P	C	
		HIGH SPEED VLSI	3	0	0	3	
VI	L2115	Total Contact Hours - 45					
		Prerequisites					
		VL2001					
PU	RPOSE						
Thi	is course	e is aimed at providing high speed design techn	ique	s for	r use	e in	
VL	SI desig	n	-				
INS	STRUC	TIONAL OBJECTIVES					
1.	To gai	n knowledge on circuits and techniques involve	ed in	hig	h sp	eed	
	VLSI o	circuits.					
2.	To exp	olore various design strategies to be followed	for	desig	gnin	g a	
	high speed VLSI circuits.						
3.	To und	lerstand the logic styles for designing a high spec	ed V	LSI	circu	uit.	
	37						

(9 hours)

UNIT III - LATCHING STRATEGIES

Latching Strategies, Basic Latch Design, Latching Differential Logic, Race Free Latches for Pre-charged Logic, Asynchronous Latch Techniques.

UNIT IV - INTERFACE TECHNIQUES

Signaling Standards, Chip-to-Chip Communication Networks, ESD Protection, Skew Tolerant Design

UNIT V - CLOCKING STYLES

Clocking Styles, Clock Jitter, Clock Skew, Clock Generation, Clock Distribution, Asynchronous Clocking Techniques.

REFERENCES

- 1. Kerry Bernstein, Keith M. Carrig, "High Speed CMOS Design Styles", Kluwer Academic Publishers, 2002.
- 2. Evan Sutherland, Bob Stroll, David Harris," Logical Efforts, Designing Fast CMOS Circuits", Kluwer Academic Publishers, 1999
- David Harris, "Skew Tolerant Domino Design", IEEE Journal of Solid 3. State Circuits, 2001..

		L	Т	Р	С
	MAGNETO-ELECTRONICS	3	0	0	3
VL2116	Total Contact Hours - 45				
	Prerequisite :				
	Nil				
PURPOS	PURPOSE				

38

UNIT I - CLOCKED LOGIC STYLES

Clocked Logic Styles, Single-Rail Domino Logic Styles, Dual-Rail Domino Structures, Latched Domino Structures, Clocked pass Gate Logic Non Clocked Logic Styles, Static CMOS, DCVS Logic, Non-Clocked pass Gate Families.

UNIT II - CIRCUIT DESIGN MARGINING AND DESIGN VARIABILITY (9 hours)

Circuit Design Margining, Design Induced Variations, Process Induced Variations, Application Induced Variations, Noise.

(9 hours)

(9 hours)

(9 hours)

To impart the applications of magnetism in the filed of electronics

INSTRUCTIONAL OBJECTIVES

- 1. To gain knowledge on nanomagnetics
- 2. To obtain skill of nanomagnetism in various applications like Memory, Digital Logic, etc.
- 3. To acquire knowledge on software skills in n-mag simulation tool for micro magnetics.

UNIT I - INTRODUCTION TO MAGNETOELECTRONICS (9 hours) Introduction – What is magnetoelectronics –Key Engineering Issues Magnetoelectronics must solve –Spin vs Charge – Transport in Semiconductors, Metals- Spin-Polarized Current – Spin-Dependent Tunneling in Magnetic Tunnel Junction

UNIT II - SPIN VALVES

Introduction – Giant magneto resistance – Semi classical theory of CIP Giant Magnetoresistance – Current Perpendicular to Plane Giant Magnetoresistance – Spin Valve – Magnetic Properties - Spin Valves in Magnetoresistive Read Heads – Current Distribution and Magnetic Field due to Sense Current Acting on the Free Layer – Signal-to-Noise Ratio in Spin-Valve element - GMR MRAM.

UNIT III - MAGNETIC TUNNEL JUNCTION

Introduction – Superconductive Tunneling – Spin Effects is Superconductors – Superconductor-ferromagnet Tunneling – Spin-Filter Effect =Ferromagnetic-Ferromagnetic Tunneling – Early Experiments by Julliere and others – Recent Experiments and Basic Properties – Bias Voltage Dependence – Exchange Biasing of Tunnel Junctions – Temperature Effects – Barrier Dopant Effects - Observation of Resonant Effect in MTJs -Tunneling and the role of the Interface .

UNIT IV - MAGNETORESISTIVE RANDOM ACCESS MEMORY (9 hours)

Introduction to MRAM – Pseudo-Spin valve MRAM – Magnetic Tunnel Junction MRAM - MRAM Development-– Programming – MRAM Bit Cell Architecture – Improving Write Select Margins – Extending Density/Reducing Write Currents - Savtchenko Switching – Toggle MRAM.

UNIT V - MICROMAGNETIC SIMULATION

(9 hours)

(9 hours)

Nmag – Over view of Nmag – Command Line Launching– The 2D Micromagnetic Solver - Command Line Utilities – Nmag for simulation of MTJs.

REFERENCES

- 1. Mark Johnson, "*Magnetoelectronics*", Academic Press (An Imprint of Elsevier), 2005.
- 2. Sadamichi Maekawa and Teruya Shinjo, "Spin Dependent Transport in Magnetic Nanostructure", Taylor & Francis Inc, CRC Press, 2010.
- 3. John C. Mallinson, "Magneto-Resistive and Spin Valve Heads Fundamentals and Application", Academic Press, 2002.
- 4. J. St"ohr H.C. Siegmann, "Magnetism From Fundamentals to Nanoscale Dynamics", Springer, 2006.

			L	Т	Р	С
		VLSI INTERCONNECTS AND ITS DESIGN TECHNIQUES	3	0	0	3
V	L2117	Total Contact Hours – 45				
		Prerequisites				
		Nil				
PU	RPOSE					
VL	SI interco	onnects modeling is playing vital role in the IC de	esign	•		
INS	STRUCI	TIONAL OBJECTIVES				
1.	To gain	knowledge on VLSI Interconnects				
2	To get a	n insight on Transmission line parameters of VL	SI in	terco	onne	cts
3	3 To understand the novel solutions on interconnects.					

UNIT -I PRELIMINARY CONCEPTS OF VLSI INTERCONNECTS (9hours)

Interconnects for VLSI applications-copper interconnections –method of images- method of moments- even and odd capacitances- transmission line equations- miller's theorem- Resistive interconnects as ladder network-Propagation modes in micro strip interconnects- slow wave propagations-Propagation delay.

Lumped capacitance approximation- coupled multi conductor MIS micro strip line model for single level interconnects- frequency domain level for single level interconnects- transmission line level analysis of parallel multi level interconnections.

UNIT-V NOVEL SOLUTIONS FOR PROBLEMS IN INTER (9 hours)

Optical interconnects - carbon Nano tubes / Graphenes vs. Copper wires.

REFERENCES

- 1. H B Bakog Lu, Circuits, "Interconnections and packaging for VLSI", Addison Wesley publishing company.
- J A Davis, J D Meindl, "Interconnect technology and design for 2. Gigascale integration", Kluwer academic publishers.
- Nurmi J, Tenhumen H, Isoaho J, Jantsch A, "Interconnect Centric 3. deisgn for advanced SOC and NOC", Springer.
- C K Cheng, J Lillis, S Lin, N Chang, "Interconnect analysis and 4. synthesis", Wiley inter-science.
- 5. Hall S H, G W Hall and J McCall, High speed digital system design, Wiley inter-science
- Askok K Goel, "High speed VLSI interconnections", Wiley inter-6. science, second edition, 2007.

UNIT-II PARASITIC **RESISTANCES.** CAPACITANCE AND **INDUCTANCES** (9 hours)

Parasitic resistances, capacitances and inductances- approximate formulas for inductances- green's function method: using method of images and Fourier integral approach- network Analog method- Inductance extraction using fast Henry- copper interconnections for resistance modelling.

Metal insulator semiconductor micro strip line- transmission line analysis for

UNIT- III INTERCONNECTION DELAYS (9 hours)

single level interconnections- transmission line analysis for parallel multilevel interconnections- analysis of crossing interconnections- parallel interconnection models for micro strip line- modelling of lossy parallel and crossing interconnects- high frequency losses in micro strip line- Expressions for interconnection delays- Active interconnects. UNIT-IV CROSS TALK ANALYSIS

		L	Т	P	С
	DIGITAL HDL DESIGN AND	2	•	•	2
VT 0110	VERIFICATION	3 0	U	U	3
VL2118	Total Contact Hours – 45				
	Pre-requisites				
	VL2001				
PURPOSE					

HDL programming is fundamental for VLSI design and hence this course is given.

INSTRUCTIONAL OBJECTIVES

To gain knowledge on VHDL 1.

- To get an insight on Advanced VHDL 2
- 3 To understand the System C

UNIT-I VHDL- BASIC CONCEPTS

Operators, Basic concepts, Entity and Architecture design, System task and functions, Value set, Data types, Operands, Operators, Entity and ports, Gatelevel Modeling, Dataflow Modeling, Behavioral Modeling, Test Bench- lab exercise.

UNIT-II VHDL- ADVANCED FEATURES (9 hours) and Functions, Sub-Program, User Defined Attributes. Packages Specifications and Configurations, Delay modeling- pin-to-pin delay & distributed delay modeling- Timing delay analysis- FSM design and Synthesis-UART -lab exercise.

UNIT- III SYSTEM C – INTRODUCTION

Introduction to System C- Design methodology - Data Types - Bit, Logic, Integer, Precision signed type & resolved types, user defined data type- Data operators - Logical, arithmetic, relational operators, vectors and rangessequential statements - IF, LOOP,SWITCH statements- methods - structures

UNIT-IV COMBINATIONAL & SYNCHRONOUS LOGIC DESIGN IN SYSTEM C (9 hours)

SC module – File Structure, Reading and writing port signals. Miscellaneous logic - modeling basic combinational logic circuits (Multiplexer, Decoder, encoder, memory model, modeling an FSM- Moore's and Mealy FSM -Universal Shift Register.

UNIT-V SYSTEM C – ADVANCED FEATURES

SC THREAD process, dynamic sensitivity- constructors - arguments, Filter design - ports, interfaces and channels. Advanced Topics - shared data

42

(9 hours)

(9 hours)

members, fixed point types - Module- simulation algorithm -Runtime Environment.

REFERENCES

- 1. Ben Cohen, "VHDL: Coding Styles and Methodologies", Kluwer Academic Publisher (1999), Reprint 2004
- 2. J. Bhaskar, "A System C Primer", Galaxy Publications, 2004.
- 3. Z. Navabi , "VHDL: Modular Design and synthesis of cores and systems", McGraw Hill Publications, Reprint 2005 .

			L	Т	Р	С
VI		COMPUTATIONAL ASPECTS OF VLSI	3	0	0	3
	.2119	Total Contact Hours - 45				
		Prerequisites				
		Nil		T 0		
PU	IRPOS	E				
Th	e purpo	ose of this course is to make the student understan	d the	e alge	orith	ms
use	ed for the	ne VLSI design tools.				
IN	STRU	CTIONAL OBJECTIVES				
1.	To understand the concept of design and analysis of algorithms					
2.	. To learn the different models in VLSI					
3.	To know the design languages in VLSI design tools					
4.	To understand the algorithms for VLSI Design tools					

UNIT I - ANALYSIS AND DESIGN OF ALGORITHMS (9 hours) Abstract Data Types - Time and Space Analysis of Algorithms - Big Oh and Theta Notations - Average, best and worst case analysis - Simple recurrence relations and use in algorithms – Mappings. Algorithms Analysis - Sorting -Searching - Design Techniques- Greedy Methods - Dynamic Programming -Divide and Conquer - Back Tracking – Applications.

UNIT II - VLSI MODELS

Integrated circuits and the mead Conway rules-VLSI implementation of logic-Abstraction of VLSI circuits. **Lower bounds on area and time:** Introduction to lower bound arguments- information and crossing sequence-probabilistic circuits and algorithms – circuits with repetitive inputs.

UNIT III - ALGORITHM FOR VLSI Design (9 hours) Algorithms for layout –organization with high area- Compilation and optimization algorithms.

UNIT IV - OVERVIEW OF VLSI DESIGN SYSTEMS (9 hours) Design languages- CIF –CHISEL –ESIM –LGEN- LAVA- SLIM- A regular expression language.

UNIT V - ALGORITHMS FOR VLSI DESIGN TOOLS (9 hours) Reporting Intersections of Rectangles-Circuit Extraction Algorithms-Design Rule Checking-An Algorithm for Simulation of Switch Circuits-The PI Placement and Routing System-Optimal Routing.

REFERENCES

- 1. Jeffrey D. Ullman, "Computational aspects of VLSI", Computer Science Press (1984).
- 2. Alfred .V. Aho, John .E. Hop croft, Jeffrey .D. Ullman, "Data Structures and Algorithms", Addison-Wesley Publications., 1985

			L	Т	Р	С	
		COMPUTATIONAL INTELLIGENCE	3	0	0	3	
VI	L2120	Total Contact Hours - 45					
		Prerequisites			P 0 vario		
		: Nil					
PU	JRPOS	E					
Th op	e purpo timizati	ose of this course is to make the student unders on techniques and the evolutionary algorithms.	tand	the	vari	ous	
IN	INSTRUCTIONAL OBJECTIVES						
1.	To understand the concept of computational intelligence						
2.	To explore genetic and evolutionary algorithms						
3.	To learn the knowhow of differential evolution						
4.	To understand the concept of Particle swarm optimization and ant colony algorithms						

UNIT I - INTRODUCTION TO COMPUTATIONAL INTELLIGENCE (9 hours)

Computational intelligence paradigms: Artificial Neural networks, evolutionary Computation, swam intelligence, artificial immune systems and fuzzy systems. **Introduction to Evolutionary computation**: Genetic evolutionary algorithms, Representation, Initial population, fitness function, selection, reproduction of operators, stopping conditions and evolutionary computation versus classical optimization.

UNIT II - GENETIC ALGORITHMS AND PROGRAMMING(9 hours)

Genetic algorithms: Canonical GA, crossover, mutation, control parameters, GA variants, applications **Genetic programming:** Tree based representation, initial population, fitness function, cross over operators, mutation operators, building block in Genetic programming.

UNIT III - EVOLUTIONARY PROGRAMMING AND ITS STRATEGIES (9 hours)

Basic of Evolutionary programming- operators- strategy parametersimplementations- Genetic evolutionary strategy algorithms-strategy parameters and self adoption- evolution strategy variants.

UNIT IV - DIFFERENTIAL EVOLUTION

Basic differential evolution-Variations to basic DE- DE for discrete valued problems. **Coevolution:** Coevolution types- competitive Coevolution – co-operative Coevolution.

UNIT V - COMPUTATIONAL SWAM INTELLIGENCE (9 hours)

Particle swarm optimization: Basics- social network structures- Basic variations- PSO parameters- single solution PSO- applications

Ant algorithms: ant colony optimization Meta-Heuristic- Cemetery organization and brood care- division of labor-Applications

REFERENCES

- 1. Andries P Engel Brecht, "*Computational intelligence an introduction*", Wiley publications, 2nd Edition, 2007.
- 2. Goldberg," *Genetic algorithms in search, optimization and machine learning*" Pearson Education India, 2007 Edition.

		L	Т	Р	С
171 0101	CHROMATIC GRAPH THEORY	3	0	0	3
VL2121	Total Contact Hours – 45				
	Prerequisites				
	MA2010				
PURPOSE					

The purpose of this course is to make the student understand the basic concepts of graph theory and the coloring of graphs and role of it in VLSI CAD.

INSTRUCTIONAL OBJECTIVES

1. To understand the concept of vertex coloring and edge coloring

2. To understand the concept of coloring on surfaces

UNIT I - INTRODUCTION TO GRAPHS

(9 hours)

Trees and connectivity, Eulerian and Hamiltonian Graphs- Matching and factorization.

UNIT II - INTRODUCTION TO VERTEX COLORING (9 hours)

Chromatic number of a graph, applications of coloring, perfect graphsrestricted vertex coloring: uniquely colorable graphs, list coloring, precoloring extensions of graphs.

Case studies: VLSI Partitioning as vertex coloring problem, a chaotic neural network for the graph coloring problem in VLSI channel routing and on rectangle intersection and overlap graphs for VLSI floor planning

UNIT III - BOUNDS OF CHROMATIC NUMBERING (9 hours)

Bounds for the chromatic number: color-critical graphs, upper bounds and greedy coloring, upper bounds and oriented graphs, the chromatic number of Cartesian product.

Coloring graphs on surfaces: four color problem, conjecture of Hajos and Hadwiger, chromatic polynomials, Heawood map-coloring.

UNIT IV - EDGE COLORING OF GRAPH (9 hours)

Edge coloring of graphs- monochromatic and rainbow colorings-complete coloring-distinguish coloring.

Case study: Fast approximation algorithms on max cut, k-coloring, and kcolor ordering for VLSI applications and interval graph algorithms for 2D multiple folding of array based VLSI circuits

UNIT V - SPECIAL TYPES ON COLORING

(9 hours)

Coloring, distance and domination: T-coloring, Radio coloring, Hamiltonian coloring, domination coloring.

Case study: A new graph coloring algorithm for constrained via minimization in VLSI circuits and Hybrid symbolic-explicit techniques for the graph coloring problem

REFERENCES

- 1. Gary chartrand, Ping Zhang, "Chromatic Graph theory", CRC Press, Edition 2009.
- 2. Narsingh Deo, "Graph theory with applications to engineering and computer science", PHI Learning Pvt. Ltd., 2004.

			L	Т	Р	С
		GRAPH THEORY AND OPTIMIZATION TECHNIQUES	3	0	0	3
M	A2010	Total Contact Hours - 45				
		Prerequisite				
		: Nil				
PU	RPOSE					
Thi	is cours	se is aimed at providing graph theory an	nd c	optin	nizat	ion
tecl	hniques	for use in VLSI design.				
INS	INSTRUCTIONAL OBJECTIVES					
1.	To impart a knowledge on basics of graph theory and its algorithms					
2	To impart a knowledge on basic optimization techniques.					
3	To impart a knowledge on various statistical methods in analyzing a sample.					

UNIT –I BASICS OF GRAPH THEORY

graphs –data structures for graphs-sub graphs – operations on graph connectivity- networks and the maximum flow- minimum cut theorem- trees-spanning trees- Rooted trees- matrix representation of graphs.

UNIT –II CLASSES OF GRAPH

Eulerian graphs and Hamiltonian graphs - standard theorems- planar graphs-Euler's formula – five color problem- coloring of graphs- chromatic number (vertex and edge) properties and examples- directed graphs

UNIT -III GRAPH ALGORITHMS

Computer representation of graphs-Basic graph algorithms- minimal spanning tree algorithm - Kruskal and prim's algorithm- shortest path algorithms- Dijsktra's algorithm- DFS and BFS algorithms.

UNIT -IV OPTIMIZATION TECHNIQUES

Linear programming- graphical methods- simplex method (Artificial variables not included) - transportation and assignment problems.

UNIT -V STATISTICS

Tchebyshev's inequality – Maximum likelihood estimation- correlationpartial correlation- multiple correlations- regression- Multiple regressions.

REFERENCES

- 1. S C Gupta, V K Kapoor," *Fundamentals of Mathematical statistics*", Sultan Chand & sons, 2002.
- 2. Narsngh Dev, "Graph theory with applications to engineering and computer science", Prentice Hall of IndiaLtd, 1998.
- 3. Hoffmann and Kunze," Linear algebra", PHI, 1994.
- 4. Rao S.S, "*Engineering optimization : Theory and practice*", New age International Pvt. Ltd, #rd edition ,1998.

		L	Т	Р	С	
	COMPUTER ARCHITECTURE	3	0	0	3	
EM2101	Total Contact Hours – 45					
	Prerequisite					
	NIL					
PURPOSE						
To introduce students with general concepts of computer architecture basics						

(9 hours)

(9 hours)

(9hours)

to enable them to use the processors effectively.			
INSTRUCTIONAL OBJECTIVES			
1.	To familiarize with fundamentals of computer design.		
2.	To learn parallel and pipeline architectures.		
3.	To learn principles of parallel programming.		

UNIT I - PROCESSOR AND MEMORY HIERARCHY (9 hours) Multiprocessors and Multicomputer – Multivector and SIMD computers – Architectural Development Tracks – Processors and Memory Hierarchy – Advanced Processor Technology – Superscalar and vector Processor – Memory Hierarchy technology-Virtual memory technology.

UNIT II - FUNDAMENTALS OF COMPUTER DESIGN (9 hours) Elements of modern computers-System attributes to performance-Bus, Cache and Shared memory-Bus Systems – Cache Memory Organizations – Shared memory Organization – Sequential and weak consistency models.

UNIT III - PARALLEL AND SCALABLE ARCHITECTURES(9 hours) Multiprocessor System Interconnects – Cache Coherence and Synchronization Mechanisms – Message-Passing Mechanisms – Vector Processing Principles – Multivector Multiprocessors – Performance-Directed Design Rules – Fujitsu VP2000 and VPP500 – SIMD Computer Organizations – Implementation models – The MasPar MP-1 Architecture-Latency - Hiding Techniques – Principles of Multithreading – Scalable and Multithreaded Architectures - The Tera Multiprocessor System.

UNIT IV-PIPELINING AND SUPER SCALAR TECHNIQUES (9 hours) Introduction – Basics of a RISC Instruction set – Implementation of five stage Pipeline for a RISC processor – Performance issues – hurdle of pipelining – simple implementation of MIPS – extending the MIPS pipeline to handle multicycle operations – cross cutting issues.

UNIT V - SOFTWARE FOR PARALLEL PROGRAMMING (9 hours) Parallel programming models – parallel languages and compliers – code optimization and scheduling – scalar optimization with basic blocks – code generation and scheduling – trace scheduling compilation – parallelization and wave fronting – software pipelining – parallel programming environments – Y-MP, Paragon and CM-5 environments – synchronization and multiprocessing modes – principles of synchronization - multiprocessor execution modes – shared-variable program structures – locks for protected access - semaphores and applications - message-passing program development.

REFERENCES

- 1. Kai Hwang & Naresh Jotwani, "Advanced Computer Architecture", McGraw-Hill, Inc. 2011.
- 2. John L. Hennessey and David A. Patterson, "*Computer Architecture: A Quantitative Approach*", 3rd Edition, Morgan Kaufmann, 2003.

EMI/ EMC concepts and definitions, Sources of EMI, conducted and radiated EMI, Transient EMI, Time domain Vs Frequency domain EMI, Units of measurement parameters, Emission and immunity concepts, ESD.

UNIT II - TYPES OF ELECTROMAGNETIC COUPLING (9 hours) Conducted, Radiated and Transient Coupling, Common Impedance Ground Coupling, Radiated Common Mode and Ground Loop Coupling, Radiated Differential Mode Coupling, Near78 Field Cable to Cable Coupling, Power Mains and Power Supply coupling.

UNIT V - EMC SYSTEM DESIGN

PCB Traces Cross Talk, Impedance Control, Power Distribution Decoupling, Zoning, Motherboard Designs and Propagation Delay Performance Models.

REFERENCES

- 1. W. Prasad Kodali, "Engineering Electromagnetic Compatibility: Principles, Measurements and Technologies and Computer Models", Wiley, IEEE Press, 2nd Edition, 2001.
- 2. Henry W. Ott, " *Electromagnetic Compatibility Engineering*", John Wiley and Sons, 2009.
- 3. Clayton. R. Paul, "Introduction to Electromagnetic Compatibility", John Wiley and Sons. 2nd Edition. 2006.
- 4. Bernhard Keiser, "Principles of Electromagnetic Compatibility", Artech house, 3rd Ed, 1998.

		L	Т	Р	С	
VL2047	SEMINAR	0	0	1	1	
PURPOS	E					
To train th	e students in preparing and presenting technica	ıl topi	ics.			
		_				
INSTRU	CTIONAL OBJECTIVE					
The student shall be capable of identifying topics of interest related to the						
program of study and prepare and make presentation before an enlightened						
audience.						

UNIT III - EMI MEASUREMENTS

EMI Shielded Chamber. Open Area Test Site, TEM Cell, GTEM cell Sensors/ Injectors/ Couplers, LISN, voltage probe, Current probeTest beds for ESD and EFT.

UNIT IV - EMI MITIGATION TECHNIOUES

Shielding, Filtering, Grounding, Bonding, Isolation Transformer, Transient Suppressors, Cable Routing, Signal Control, Component Selection and Mounting.

(9 hours)

(9 hours)

Every student will be required to present a seminar talk on a topic approved by the Department. The Committee constituted by the Head of the Department will evaluate the presentation and will award the marks based on

- Comprehensible arguments and organization.
- Accessible delivery
- Accessible visuals in support of arguments.
- Question and Answers.

		L	Т	Р	С
VL2049	PROJECT WORK PHASE I (III semester)	0	0	12	6
VL2050	PROJECT WORK PHASE II (IV semester)	0	0	32	16
DUDDASE					

To undertake research in an area related to the program of study

INSTRUCTIONAL OBJECTIVE

The student shall be capable of identifying a problem related to the program of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for the benefit of the society.

M.Tech projects should be socially relevant and research oriented ones. Each student is expected to do an individual project. The project work is carried out in two phases – Phase I in III semester and Phase II in IV semester. Phase II of the project work shall be in continuation of Phase I only. At the completion of a project the student will submit a project report, which will be evaluated (end semester assessment) by duly appointed examiner(s). This evaluation will be based on the project report and a viva voce examination on the project. The method of assessment for both Phase I and Phase II is shown in the following table:

Assessment	Tool	Weightage
In- semester	I review	10%
	II review	15%
	III review	35%
End semester	Final viva voce	40%
	examination	

Student will be allowed to appear in the final viva voce examination only if he / she has submitted his / her project work in the form of paper for presentation / publication in a conference / journal and produced the proof of acknowledgement of receipt of paper from the organizers / publishers.

AMENDMENTS

S. No.	Details of Amendment	Effective from	Approval with
			uate