FILE TEST OPERATORS

if (-operator ‘filtename’) { print “filename exists!\n";)

if (-e "filename’) { print “filename exists!\n"; }

if ({{(—e "filename’)) { open “>filename”; }

-d if filename is a directory
-£ if file exists

-5 if file is non-empty

-2 if file is empty

-r if file is a readable file
- if file is a plain file

-T if file a text file

W if file is writable

X if file is executable

B if file is binary

open(IN, $file) or die “Error opening $file: $!\n";
while($line = <IN>){ print “$line\n";}

DEBUGGING

The Per] debugger is invoked with the -d option:
% perl =d script_name.pl

» 10rh b =for help page

» -0 continue down from current execution till the breakpaoint othenaise til the subroutine
narme ar line numher,

) -0 shaw the values of variables,

n) - 10 place the breakpoints,

n |- 10 see the breakpoints set,

o [- 10 delete the breakpoints,

® 5 — {0 5tep into the next line execution.

1 —10 step over the next ling execution, 5o if nextling is subroutine call, it would execute
subrouting but not descend into it for inspection.

® 5purce file — to take the debug commands fram the file.

n | subname —to see the execution statements available in a subroutine.

n (- toguit from the debugger mode.

/string/ do a forward string search in d program

?string?

S

f

w n

D
I
| n+m
| n-m
| sub
L

Do a reverese string search

dispays all sub routies in program one per line
execute d reminder of a sub routine

display lines sorrounding line n

all break points

Display lines b4 d current line

list d next few lines of code vth line no

display m lines starting frm nth line

display lines starting frm m to n

display code vthin sub routine

list all break points

REGULAR EXPRESSIONS

./ [pattern delimiter |
» =~ [binding operator |
.- [negation operator |
ms/// [substitution operator |
m tr/// [translation operator |

$gene == [ribonuclease/; #defaull (m not required)
$gene =~ mliribonuclease!; #m required
$gene == mitribonucleased; #m required
$gene =~ m%ribonucleased;; #m required

(0-9]

[a-Z]
|a-20-9]

[enable global substitutions

[enable case-insensitive matches
[enable matching a list of patterns in ()
|treat pattern as multiple lines

[treat pattern as a single line

|conditional positive matching
|conditional negative matching

[matches any single digit

[matches any single alphabet

[matches a single digit or alphabet in any order
imatches a single space or ; or :

ESCAPE CHARACTERS

Imatches any single character except \n

\d [matches any single digit

\D Imatches any single non-digit

\s [matches any single space

\S |matches any single non-white space
\w Imatches any single word

\W Imatches any single non-word

[x..y] |specifies a range of patterns

CHARACTER SET

.+ [match one or more instances of a given pattern

gt |match zero or more instances of a given pattern
"’ [match zero or one instance of a given pattern

' {1,
' [ﬂ.}
? (0,1)

fez{l, 5}/ matches ez, ezz, e22z, ez22z and ez2227

ANCHORS

Faa o, g
Nl L B

X
M

L

I

OPTIONS OF SUBSTITUTION OPERATOR

ignore white space in pattern
enable matching over multiple-lines

evaluate substitution string as expression

OPTIONS OF TRANSLATION OPERATOR
translate all characters that are not specified
delete all specified characters

replace identical oufput characters with a single character

/bkw/ matches only kw present at beginning of a word
/kw\b/ matches only kw present at end of a word
Nokw\b/ matches exactly kw

NBkw/ match only kw present at the end or within d word

Definition of CGl

CGI 15 the Common Gateway Interface. a standard for programs to interface with information
servers such as HI TP (web) servers. CGI allows the HTTP server to run an executable program or
sCript 1 response to a user request. and generate output on the fly. This allows web developers to
create dynamic and mteractive web pages.

CGI programs can be written in any language. Perl 15 a very common language for CGI programming
as 1t 15 largely platform independent and the language s features make 1t very easy to write powerful
applications. However, some CGI programs are written 1 C. shell script, or other languages.

It 15 important to remember that CGI 1s not a language m itself. CGI 1s merely a type of program
which can be written 1n any language.

A simple HTTP transaction, such as a request for a static HTML page. works as follows:

1. The user types a URL into his or her browser, or specifies a web address by some other means
such as clicking on a link. choosing a bookmark. etc

2. The user agent connects to port upon which the HT TP server 1s running (usually port 80)

3. The user agent sends a request such as GET /index.html

4. The user agent may also send other headers

5. The HTTP server recerves the request and finds the requested file 1n 1ts filesystem

6. The HTTP server sends back some HT TP headers, followed by the contents of the requested file
7. The HTTP server closes the connection

When a user requests a CGI program. however, the process changes shightly:

1. The user agent sends a request as above

2. The HTTP server recerves the request as above

3. The HTTP server finds the requested CGI program 1n 1ts file system
4. The HTTP server executes the program

3. The program produces output. including HTTP headers

6. The HTTP server sends back the output of the program

7. The HTTP server closes the connection

What is needed to run Perl CGIl programs?

There are several things vou need n order to create and run Perl CGI programs.

» a web server

+ web server configuration which grves you permission to run CGI
» a Perl interpreter

» appropriate Perl modules, such as CGLpm

» ashell account 1s extremely useful but not essential

Most of the above requirements will need your system administrator or ISP to set them up for vou.
Some will be wary of allowing users to mun CGI programs. and may require you to obey certain
security regulations or pay extra for the privilege.

BIOPERL

Bio:FPetl has a tumber of other easy-to-use fnctions, michiding

get Sequence

read sequence

read all sequences
Ney Sequence

WE1TE 3equence
translate
translate as string

blast sequence

mrite_hlast

gets a sequence from standard, internet accessible
databases

reads a sequence from a file

reads all sequences from a file

makez a Bioperl sequence just from a string

Writes a single an array of sedquence to a file

provides a translation of a sequence

provides a translation of a sequence, returning hack

Just the sequence as a string

ELLGT= & sequence against standard databases at

NCEBI

writes a blast report out to a file

Using Bioperl

Broperl prowides software modules for many of the typical tasks of bomformatics programmng, These mehide:

¢ Accessing sequence datafrom local and remote databases
¢ Transformmg formats of database/ fle records

¢ Manpulating mcmdual sequences

¢ searching for sirilar sequences

¢ Creating and manpulating sequence alignments

¢ searching for genes and other structures on genomic DNA
¢ Developmg machine readable sequence annotations

Accessing sequence data from local and remote databases

f2eq = Bio::Seqg-rnew|-3eq =» lactgtggogtogact',
-description =» 'Zample Bio::Seq ohject',
-display id =» 'something',
-—accession nuier => laccoum',
—alphabet => 'dna'):

Accessing remote databases (Bio::DB::GenBank, etc)

Sogb = new EBio::DE::GenEank:

this returns 3 Seg okbject
fzeql = S$gb->get Jeq by idi('MUSIGHELL'):

this 3lso returns 3 Seqg object
fzeqi = Sgbh->get Seq by acc (' AF3I03112');

thiz returns a Seglfl object, which can be used to get 3 Seqg object
$seqio = $gb->get Stresw by id(["JO0522", "AF303112","2951014"]) ;
fZeqli = §seqio-rnext sSedq:;

Another common sequence manipulation task for nucleic acid sequences
IS locating restriction enzyme cutting sites. Bioperl provides the
Bio::Restriction::Enzyme,

Bio::Restriction::EnzymeCollection,

Bio::Restriction::Analysis objects for this purpose.

These modules replace the older module Bio::Tools::RestrictionEnzyme.
A new collection of enzyme objects would be defined like this:

use Bio::Perl;
use Bio::Restriction::EnzymeCaollection;

my $ae = Bio::Restriction::EnzymeCollection->new();

my $six_cutter_collection = $ae->cutters(6);

for my $enz ($six_cutter_collection)

{ print $enz->name,"\t",$enz->site,"\t",$enz->overhang_seq,"\n";

prints name, recognition site, overhang

}

http://www.bioperl.org/wiki/Module:Bio::Restriction::Enzyme
http://www.bioperl.org/wiki/Module:Bio::Restriction::EnzymeCollection
http://perldoc.perl.org/functions/print.html

$seqgobj = Bio::Seqg->new(-seq => "AALLHHHHHHGGGGPPRTTTTTVVVVVVVVVVVVVVWV");
use Bio::Tools::Sigcleave;

$sigcleave _object = new Bio::Tools::Sigcleave (-seq => $seqobj,
-threshold => 3.5, -description => 'test sigcleave protein seq’,);

%raw_results = $sigcleave_object->signals;

$formatted output = $sigcleave _object->pretty print;

Running BLAST (using RemoteBlast.pin)

Bioper] supports remote execution of blasts at NCEI by means of the EemoteBlast object,

$remute_hlast = Bio::Tools::BEun::Bemoteblast->new |
-prog = 'blastp', -data =» 'ecolil', -expect => 'le-10" |;
ir = jremote blast-raubmit blast("t/data/ecolitat.fa”);
| Hrids = fremote hlast-reach rid | |
irid | fArids)
jrc = jremote blast-sretrieve hlast (§rid);

SBiD::Tnnls::Run::RethEBlast::HEADER{'HATRIK_NAHE'} = 'BLOSTUMZ5!' ;

Sinput = Bio::Seg-rnew(—-id =>"test gquery'™,
—geq =>"ACTAAGTGGGGEM™) ;

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

