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Whenever we encounter missions requiring a large Av, we run the risk of not
being able to perform the missions with certain technologies. For example, from
Table 2.10 we find that a typical launch Avranges from about 8.8 km/s t0 9.3 km/s.
In Sec. 1.1.5, we find there is a “not feasible” condition that gives us a relationship
[Eq. (1.29)] between the mission Av, average specific impulse (Isp), and the inert-
mass fraction (f;,,,,). Figure C.1 shows the regions that are and are not feasible for
a launch mission using Eq. (1.29). The lower curve corresponds to the relation
between inert-mass fraction and specific impulse for Av = 8800 m/s. The upper
curve corresponds to Av = 9300 m/s. Specific impulses below the curve values for
a particular Av are not feasible. We have also overlaid discrete values for first
stages of existing launch vehicles [Isakowitz, 1991]. Table C.1 lists the data for
these stages. The systems above the line to the left of f;,,,; = 0.5 are the core first
stages for the Titan vehicles, and the system above the line at f;,,,,, = 0.088 is the Ari-
ane 5 core stage. Of these possibilities, only the Titan-II and the Ariane 5 have
enough Avto get themselves to orbit. To be conservative, we have assumed the sea-
level value for specific impulse for all of the “real” data. In some cases, Isakowitz
does not specify the sea-level Iy, so we simply reduce the vacuum I, by 5%.

There are at least two other considerations. First, the Titan-II and Ariane-5 can
get themselves to orbit but without much payload. For example, using Eq. (1.20),
we find the allowable payload is given by

m _ 3m3m —m
pay =~ Av inert

I8
mmwo

(C.1)

-1

We assume a conservative Av = 8800 m/s and the inert mass is the difference
between the gross mass and propellant mass in Table C.1 (this difference does not
include a payload mounting structure or a fairing). If so, we can find the payload
masses for Titan-II and Ariane-5 (payload masses for the other systems are
negative):

o Titan-II = 858 kg
* Ariane-5=2,224kg
The second consideration occurs when we are close to the feasible limit. As we
approach this limit, our design space becomes very sensitive to small changes in

key parameters. For example, Fig. 1.6 shows us that, for a given inert-mass frac-
tion, as our specific impulse decreases, the slope of the mass curve gets steeper.
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Fig. C.1. Feasible Regions for Launch Systems. The two curves shown here represent the min-

imum possible specific impuise, given a certain structural technology (finerp)» to perform
a launch mission. Data for existing or historical (real) first stages is overlaid [isakow-
itz,1991] and is listed in Table C.1. Several existing first-stage systems are feasible for a
launch mission alone, based only on specific impulse and inert-mass fraction (other con-
ditions may make these impractical or impossible).

This means that any small change or error in our design causes very large changes
in the system. This situation is undesirable!

So, what can we do to resolve the dilemma of having technology—such as spe-
cific impulse or inert-mass fraction—that cannot do a large Av mission? The
obvious answer is to find or develop a solution that allows us to increase specific
impulse or to decrease the inert-mass fraction. Looking again at Fig. 1.6, we find
that, if we can increase the specific impulse of our propulsion system above 700's,
the mass curves become very flat and almost independent of structural technology
(finery)- Two technologies that can achieve this level of specific impulse at high
thrust-to-weight ratios are nuclear fission (Chap. 8) and, perhaps, beamed-laser
propulsion (Sec. 11.3.2).

Finding technology that can lower the inert-mass fraction can relieve us from
a requirement for high specific impulse. This fact is also illustrated in Fig. 1.6,
where we see that lower f;,,;s shift our specific-impulse requirement, for a given
initial mass, to a lower number. But existing systems are pretty good, and it is dif-
ficult to drastically improve structural technology. Having said this, we can
drastically improve the “integrated inert-mass fraction” (the average mass frac-
tion, integrated over a mission) by discarding inert mass as it becomes
unnecessary. This approach is called staging. The basic philosophy behind staging
is presented in Sec. 2.6.1.
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Table C.1. Data on First Stages of Common Launch Vehicles. This is the basic data from
Isakowitz [1991) used in Fig. C.1. Inert-mass fraction = (Gross Mass — Propellant
Mass) / Gross Mass.

Propellant Gross Mass Sea-Level smb
Stage Mass (kg) (kg) (s) finert
Atlas-E 112,900 121,000 233 0.067 ]
Atlas-I 138,300 145,700 239.75 0.051
Atlas-ll 155,900 165,700 240.75 0.059
Atlas-l1A 155,900 166,200 241.7 0.062
Atlas-lIAS 155,900 167,100 2417 0.067
Delta 96,100 101,700 263.2 0.055
Titan-It 118,000 122,000 281 0.033
Titan-Ill 134,000 141,000 287 0.050
Titan-1V 155,000 163,000 287 0.049
Saturn S1-B 408,000 444,000 232 0.081
Saturn S1-C 2,080,000 2,210,000 264 0.059
Ariane-L33 233,000 251,000 248.5 0.072
Ariane-H150 155,000 170,000 409 0.088
Energia 820,000 905,000 354 0.094
Proton 410,200 455,600 285 0.100

Evaluating Staging

Having discussed the rationale for staging, how do we choose the number of
stages, and how do we size the individual stages? In Sec. 2.6.1, we see that increas-
ing the number of stages decreases the initial mass of our vehicle (Fig. 2.11).
However, increasing the number of stages usually increases the cost of our system,
if we have to design all of the stages from scratch. In fact, if we choose n stages, the
cost for this system can be greater than # times the cost of a single stage. This claim
assumes, of course, that doing a mission with a single stage is practical. The pro-
cess outlined in Table C.2 allows us to size a vehicle with a number of stages.

To illustrate how we can evaluate staging, we look at several launch-vehicle
systems as an example. We assume an average ascent Av=9000 m/s and a payload
of 1 kg. The choice of payload mass allows us to normalize all of the other masses.
This means we simply multiply all of the normalized masses by the payload mass
to get the actual design mass. In summary:

e Av=9000m/s

* payload mass (m,, ) =1kg

pay
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Table C.2. Sizing Process for Staged Vehicles. This process allows us to size individual stages
and the entire vehicle.

Step Comments

1. Choose the number of stages « Choose the minimum number of stages that is practical.
(Nstage) * Choose different values for N0, and compare the
marginal differences.

2. Choose propellants for each stage | * These trades are discussed throughout the book.

3. Choose the inert-mass fraction for | * Figs. 5.21, 5.22, and C.2 indicate reasonable choices.
each stage * There is a large dispersion in the numbers.

4. Allocate a fraction of Avto each eletf, o f
stage 1 Nstage
to the first stage, Ngiaqe refers to the last stage.

be the fraction for each stage; 1 refers

ef,+f,+...+f = 1
12 Nstage

o fLAV, o = ><A (Av on first stage)
9.»52 = ><~. (Av on ith stage)
f Av, . = Av (Av on last stage)
:ﬂmmm tot :mma

5. Size the stages and the vehicle « We start at the uppermost stage and work back to the first
stage.
« The payload for each succeeding stage includes the pre-

vious stages and the actual payload for the mission.

6. Minimize the vehicie mass by « We must vary f, through f, to determine the
optimizing the Av fraction ailotted to stage
each stage combination that minimizes the vehicle’s initial mass.

« Usually requires a numerical iteration or optimizing
algorithm which repeats steps 4 and 5 until we find a
minimum initial mass of the vehicle.

Choose Propellants for Each Stage

The process for choosing the propellants for a particular stage is discussed
throughout the rest of the book, where we have already discussed the usual con-
siderations of specific impulse, handling, toxicity, and others.

But one point needs to be stressed. There is a common perception that the
choice of propellants can be based on the density of the propellants. Further, this
perception drives us to choose denser, and usually lower-specific-impulse, propel-
lants (such as RP-1/LOx) for lower stages and less-dense, higher-specific-impulse
propellants (such as H,/LOx) for upper stages. We reason that higher-density pro-
pellants allow us a better (lower) inert-mass fraction, which leads us to a lighter
first stage. Although this reasoning may be correct (depending on the mission and
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requirements), the overall vehicle mass usually increases above what is achievable
with higher-performing propellants.

The Saturn family of launch vehicles used RP-1/L.Ox on the first stage and
H,/LOx on second and third stages. This approach is now universally accepted.
However, keep in mind that these vehicles were huge because they were intended
for the very large Av mission of going from the Earth’s surface to the Moon and
back. If designers had made the first stage with H,/LOx, it would have been too
big to transport to the launch site and would have made vertical assembly and
operation of the vehicle even more difficult than it was. Although the mix of pro-
pellants was appropriate for Saturn-V, it may not be appropriate for other
missions.

If we look at the vehicles listed in Table C.1 and plot the inert-mass fraction
versus the average propellant density, we get the result shown in Fig. C.2. We
determine the average propellant density as follows:

e From the oxidizer-to-fuel ratio (O/F) for the individual systems (see
Isakowitz [1991]), determine the mass of fuel and oxidizer based on the
propellant mass [use Egs. (5.29) and (5.30)]

e Determine the fuel and oxidizer volumes using Egs. (5.31) and (5.32) and
the density data given in Appendix B

¢ Add the volumes together to get the total volume

e Divide the total propellant mass by the total volume to determine the
average propellant density

In Fig. C.2, the propellants on the left are LH,/LOx (O/F range 5-6), the middle
band contains RP-1/LOx systems (O/Fs about 2.25) and the right-hand band
reflects values for hydrazine/N,Oy4 (O/Fs about 1.9). Clearly, inert-mass fraction
decreases as propellant density increases, but large dispersions indicate other
important factors are at play.

For our example problem, we look at several possibilities:

s The entire vehicle uses Hy/LOx, assuming 410 s I, for the first stages
(slightly worse than the space value) and 435 s for all other stages (see
Appendix B)

o The first stage uses RP-1, and the remaining stages use H,/LOx, assuming
a first stage I, of 290's (slightly better than the sea-level value for the S-1C
from Table C.1 or slightly worse than a space engine from Appendix B)

 The first stage uses hydrazine /NyOy, and the rest use H,/LOx, assuming
a first stage I, of 290 s (slightly worse than the vacuum value for Atlas
(Table C.1) and worse than a space engine from Appendix B)

e Allsolid propellants, assuming 260 s for the first stage (slightly better than
Scout at sea level—see Isakowitz [1991] or Chap. 6), and 290 s for all other
stages (see Table 6.3)
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Fig. C.2. Inert-mass Fraction versus Average Propellant Density for the Vehicles Listed in
Table C.1. As propellant density increases, inert-mass fraction decreases. But large dis-
persions indicate that other factors play a major role in these results. The density group-
ings indicated with text and arrow depend on the propellant combination used.

Choose the Inert-mass Fraction for Each Stage

Figures 5.29, 5.30, and C.2 show the trends in inert-mass fraction for liquid
rockets. Table 6.2 and Figs. 6.9 and 6.10 show trends for solids. But the large dis-
persions in these figures are frustrating. For example, the inert-mass fraction for
the Atlas family of vehicles ranges from 0.051 to 0.067 (see Table C.1). How can
fractions vary by 30% for similar technology and propellants?

The dispersion in mass fractions depends on all of the design requirements
and constraints that are part of any design. The Atlas-E is a simple vehicle that has
no parallel stages and does not have much mass stacked on top. By contrast, the
Atlas-IIAS first stage has solid rockets strapped to its side and has a large upper
stage (Centaur) and payload on top. It makes sense that this more complex vehicle
should have a larger mass fraction. When choosing an inert-mass fraction, we must
consider complexity, plus propellant type and mass, and then decide how aggres-
sive or conservative we want to be. :

For our example, we choose the following inert-mass fractions:

Single stage to orbit

¢ H,/LOx =0.075 (Fig.C.2)
e RP-1/LOx =0.055 (Fig. C.2)
¢ Hydrazine/N,O, =0.035 (Fig. C.2)

e Solids =(0.080 (Table 6.3)
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Multiple stages to orbit

e First stage, H,/LOx =0.095 (Fig. C-2 and Fig 5.29)
» First stage, RP-1/LOx =0.070 (Fig. C-2 and Fig. 5.29)
e First stage, hydrazine/N,0O, = 0.050 (Fig. C-2 and Fig. 5.29)
» First stage, solid =0.100 (Table 6.3)

e Others, H,/LOx =0.100 (Fig. 5.29)

e Others, RP-1/LOx = 0.085 (Fig. 5.29)

* Others, hydrazine/N,O, =0.075 (Fig. 5.29)

¢ Others, solid =0.08 (Fig. 6.9)

Allocate a Fraction of Av to Each Stage

How do we vary the proportions between stages? We want to divide up the Av
so the vehicle’s total mass is minimized! We define f; as the fraction of Avallocated
to the i-th stage. The constraint on f; is that the sum of all of the fractions equals one.
The Av for each stage becomes

Av, = fAv, (C2)

The best combination of these numbers minimizes the vehicle mass. In the special
case of inert-mass fractions and specific impulses being equal for all stages, the
fraction is

fi=— (€3)

:&a%m

For the more special case of a single-stage-to-orbit, the only fraction is f; = 1. For
all other situations, we must rely on results of numerical analysis. We discuss this
approach below.

Size the Stages and Vehicle

To size the vehicle, we start with the uppermost stage and work down the
vehicle stack, stage by stage. Given the payload mass, Av, specific impulse, and
inert-mass fraction for each stage, we can determine the propellant mass, inert
mass, and initial mass of that stage using Eqs. (1.27), (1.24), and (1.26) respectively.
This initial mass then becomes the payload mass for the succeeding stage, and we
repeat the analysis. As an example, consider a two-stage launch vehicle using all
H,/LOx propulsion. We assume the specific impulse and inert mass decisions as
listed above. We also assume the Avis divided, with 46% on the first stage and 54%
on the second stage. (This assumption is justified by the anafysis discussed in the
next section.) If our payload mass is 1 kg, the numbers for the second (upper) stage
are:
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Optimize the Av Fraction

So, how do we allocate Av between stages? For a two-stage vehicle, we can
vary one of the Av fractions over the range from 0 to 1. If we choose to vary f;, then
f> is determined from the requirement that both numbers add up to 1. As we vary
f1» we can calculate the initial mass of the vehicle. If we plot the result of f; versus
the initial mass, we can see the minimum value of initial mass, giving us our opti-
mum distribution of Av. The algorithm is as follows:

1. Choose arange of f; and divide this range into several increments that
are Af apart

Let f; be the lowest value in the range of f;

Letf=1-f;

LetAv, =fi XAV, and Av, =f, X Ay,

Calculate the initial mass of the vehicle with these Av fractions
Let f; = f; + Afy, if we have not reached the end of our range

7. Gobacktostep 3

SANRSLEE R A

To illustrate this algorithm, we look at the example from above for the two-stage
H, /0O, system. Figure C.3 shows how the initial mass varies as a function of ;. The
minimum initial vehicle mass is at f; = 0.46, as we used in our example above.
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Fig. C.3. Two-Stage Ho/O, Vehicle Initial Mass versus First-Stage Av Fraction. As we vary f;
between 0.2 and 0.8, we see a minimum at f; = 0.46.

Doing this analysis for more than two stages is more difficult. We need to vary
two Aws over some range to find a minimum. For a three-stage system, we repeat
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the above algorithm for a range of f, values, choosing the minimum f; value for
each f, (remember f; = 1 - f; - f,). We can then plot the initial vehicle mass (each
point being minimized for f;) and choose the f, with the minimum initial-mass
value.

Summary of Example Results

Let us now apply this analytical approach to our example problem. We start
by looking at the single-stage-to-orbit problem. No optimizing is required because
all of the Av goes onto the only stage. Only the H,/O, system and the hydrazine
system turn out to be feasible for this mission, given our assumed numbers. The
results are shown in Table C.3. The hydrogen-fueled vehicle is definitely lighter
than the hydrazine-fueled vehicle.

Table C.3. Resuits of the Single-Stage-to-Orbit Example. Based on the assumed parameters,
RP-1/0, and solids are not feasible. The H,/O, system is lighter than the
hydrazine/N,O, system. Remember, we have normalized our vehicle masses by
assuming a 1-kg payload. For other payloads, multiply these numbers by the payload
mass to get actual mass.

Hy /0, Hydrazine / NyO,4

Specific impulse (s) 410 290
Inert-mass fraction 0.075 0.035
Propellant mass (kg) 26.06 127.04

Inert mass (kg) 2.1 4.61

Final mass (kg) 3.1 5.61

Initial mass (kg) 29.17 132.64
Mass of payload / initial mass 3.43% 0.75 %
Minimum feasible /g, [Eq. (1.29)] 35425 27366s

Now, let us look at the four possibilities described above for two-stage vehi-
cles. Table C.4 shows the results of the analysis. Notice that the vehicle using pure
H,/0, is substantially lighter than the vehicle with RP-1 fuel on the first stage and
H, on the second stage. If we add up the mass for the first stage, we find that the
all-H,/O; vehicle has a first-stage mass of 10.018 kg, whereas the RP-1 first stage
has a mass of 13.256. From Isakowitz [1991] we can deduce that typical stage den-
sities are 256 kg/m? for H,/O, (from the S-1C stage) and 655 kg/m?3 for RP-1/0,
(from the Ariane-5 core stage). Using these numbers, we find that the volume of
the H,/O, stage is 0.04 m3 and the volume of the RP-1/0, stage is 0.02 m3. The
H, /0, stage is twice as big despite its being lighter. These numbers validate our
previous discussion concerning why we would choose a lower specific impulse
but denser propellant for a first stage, as was done for the Saturn-V.
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Table C.4. Results of Analysis for Two-Stage Vehicles. The vehicle made up completely of
propeliants with high specific impulse outperforms ali others. A two-stage, all-solid
vehicle seems impractical. Remember, we have normalized our vehicle masses by
assuming a 1-kg payload. For other payloads, multiply these numbers by the payload
mass to get actual mass.

All H;0, RP-1and H, | N;Hgand Hy | All Solids
Stage 1 - /g, () 410 290 290 260
Stage 2 - lsp (8) 435 435 435 290
Stage 1 - Inert-mass fraction 0.095 0.070 0.050 0.100
Stage 2 - Inert-mass fraction 0.100 0.100 0.100 0.080
Stage 1 - Av(m/s) 4140 2610 2880 3780
Stage 2 - Av (m/s) 4860 6390 6120 5220
Stage 1 - Propellant mass (kg) 9.066 12.328 12.558 63.179
Stage 1 - Inert mass (kg) 0.952 0.928 0.661 7.020
Stage 2 - Propellant mass (kg) 2.668 5.648 4.956 9.708
Stage 2 - Inert mass (kg) 0.296 0.628 0.551 0.844
Initial vehicle mass (kg) 14.106 20.531 19.726 81.752
Payload mass/Initial mass 71 % 49% 5.1% 12%

Performing similar analysis for three stages further lowers the masses of the
vehicles. We find an initial mass for the all-H, /0O, vehicle of 12.312 kg and 47.356
kg for the all-solids vehicle. However, for both the RP-1 and hydrazine first-stage
vehicles, we find that optimizing drives the first stage Av to zero. This means that
a two-stage vehicle using propellants with higher specific impulse is lighter than a
three-stage vehicle using one stage with a low specific impulse.

The mass of the all-solid vehicle is still quite high compared to the one using
liquids. This observation explains why existing vehicles, such as Scout and
Pegasus, have so many stages.

Conclusions

We have shown why staging can be a valuable tool, presented an example of
how staging can help in a launch mission (while hopefully dispelling some mis-
conceptions), and shown how to size a vehicle. However, we have limited our
discussion to fairly conventional approaches. It is very easy to quibble over the
design numbers chosen here, but a sensitivity analysis shows that our basic con-
clusions do not change much if we vary specific impulse by 10 seconds or inert-
mass fraction by a few percent.
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We choose the launch mission as an example, but this type of analysis applies
to any mission that requires a large Av. Another example is transferring from low-
Earth orbit to geostationary orbit. We typically use two stages for this mission—
one stage for the perigee kick and another stage for the apogee kick in a Hohmann
transfer. In the orbit-transfer example, the payoffs and sizing are a bit more
straightforward because we are not trying to accelerate continuously. Other exam-
ples include lunar or planetary missions.

Many studies deal with optimizing missions by minimizing initial vehicle
mass. But it is almost meaningless to minimize mass without including the cost of
the minimization. As previously mentioned, doubling or tripling the number of
stages may double or triple the cost. As designers, we would much rather try to get
away with designing fewer stages. Each additional stage drastically increases the
amount of work we must do and the probability that we might fail.
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