UNDERGRADUATE DEGREE PROGRAMMES

Bachelor's Degree in Technology
(B.Tech - Four Years)
(Choice Based Flexible Credit System)

Regulations - 2018

Volume - 3
(Detailed Syllabus for Second Year Courses)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram 603203, Tamil Nadu, India

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Kattankulathur, Kancheepuram District 603203, Tamil Nadu, India

Contents (Volume -III)

<u>No</u>			<u>Detailed Syllabus – Second Year Courses</u>	Page No
1	Humani	ities and Social	Sciences including Management courses	6
	1.1	18PDH102T	Management Principles for Engineers	7
	1.2	18PDH103T	Social Engineering	9
2	Basic S	cience courses		11
	2.1	18BTB101T	Biology	12
	2.2	18BTB103T	Human Physiology and Health	14
	2.3	18MAB201T	Transforms and Boundary Value Problems	16
	2.4	18MAB202T	Numerical Methods for Engineers	18
	2.5	18MAB203T	Probability and Stochastic Processes	20
	2.6	18MAB204T	Probability and Queueing Theory	22
3	Engine	ering Science co	Durses	24
	3.1	18CHS201J	Physical and Analytical Chemistry	25
	3.2	18CHS251T	Basic Chemical Engineering	27
	3.3	18CHS252T	Chemical Engineering Principles	29
	3.4	18CHS204T	Engineering Thermodynamics	31
	3.5	18CSS201J	Analog and Digital Electronics	33
	3.6	18CSS202J	Computer Communications	35
	3.7	18ECS201T	Control Systems	37
	3.8	18MES201T	Engineering Mechanics	39
	3.9	18MHS201T	Thermodynamics and Heat Transfer	41
	3.10	18PYS201T	Materials Science	43
	3.11	18NTS101T	Nanoscience and Nanotechnology	45
4	Mandat	ory Courses		47
	4.1	18PDM201L	Competencies in Social Skills	48
	4.2	18PDM202L	Critical and Creative Thinking Skills	50
	4.3	18PDM203L	Entrepreneurial Skill Development	52
	4.4	18PDM204L	Business Basics for Entrepreneurs	54
	4.5	18CYM101T	Environmental Science	56
5	Open E	lective Courses		58
	5.1	18ASO101T	Elements of Aeronautics	59
	5.2	18ASO102T	Creativity, Innovation and New Product Development	61
	5.3	18ASO103T	Aviation and Airline Maintenance Management	63
	5.4	18ASO104T	Aircraft General Engineering and Maintenance Practices	65
	5.5	18ASO105T	Flow Visualization Techniques	67
	5.6	18ASO106T	Airport Engineering	69

	5.7	18BTO101T	Human Health and Diseases
	5.8	18BTO102T	Modelling of Biomolecules
	5.9	18BTO103T	Activated Carbon Technology
	5.10	18BTO104T	Defense Forces in our Body
	5.11	18BTO105T	Animal Models for Research
	5.12	18BTO106T	Waste to Wealth to Wheels
	5.13	18BTO107T	Fundamental Neurobiology
	5.14	18ECO106J	PCB Design and Manufacturing
	5.15	18ECO108J	Embedded System Design using Arduino
	5.16	18ECO121T	Basic Biomedical Engineering
	5.17	18ECO122T	Hospital Information Systems
	5.18	18ECO123T	Biomedical Imaging
	5.19	18ECO124T	Human Assist Devices
	5.20	18ECO125T	Quality Control for Biomedical Devices
	5.21	18ECO131J	Virtual Instrumentation
	5.22	18ECO132T	Analytical Instrumentation
	5.23	18ECO133T	Sensors and Transducers
	5.24	18ECO134T	Industrial Automation
6	Profession	onal Core Cour	ses
	Aerospa	ace Engineering	
	6.1	18ASC101T	Applied Engineering Mechanics
	6.2	18ASC102J	Applied Fluid Mechanics
	6.3	18ASC103T	Aero Engineering Thermodynamics
	6.4	18ASC104J	Aircraft Materials and Production Techniques
	6.5	18ASC105T	Aircraft Systems and Instruments
	6.6	18ASC201J	Applied Solid Mechanics
	6.7	18ASC202J	Incompressible Aerodynamics
	6.8	18ASC203T	Air Breathing Propulsion
	Automo	bile Engineering	
	6.9	18AUC201J	Manufacturing Technology for Automotive Engineers
	6.10	18AUC204L	Automotive Components and Assembly drawing
	6.11	18AUC203T	Applied Thermal Engineering for Automotive Engineers
	Biotechr	nology	
	6.12	18BTC101J	Biochemistry
	6.13	18BTC102J	Cell Biology
	6.14	18BTC103J	Microbiology
	6.15	18BTC104T	Genetics and Cytogenetics
	6.16	18BTC105J	Molecular Biology
	6.17	18BTC106J	Immunology
	6.18	18BTC107J	Bioprocess Principles
	6.19	18BTC108J	Plant Biotechnology
	Chemica	al Engineering .	

6.20	18CHC203T	Chemical Process Calculations
6.21	18CHC205T	Chemical Engineering Fluid Mechanics
6.22	18CHC206T	Mechanical Operations
6.23	18CHC207T	Heat Transfer
6.24	18CHC208T	Principles of Mass Transfer
6.25	18CHC209L	Chemical Engineering Lab I
Civil E	ngineering	
6.26	18CEC201T	Engineering Geology
6.27	18CEC202T	Fluid Mechanics
6.28	18CEC202L	Fluid Mechanics Laboratory
6.29	18CEC203T	Mechanics of Structures
6.30	18CEC203L	Strength of Materials Laboratory
6.31	18CEC204T	Engineering Surveying
6.32	18CEC204L	Engineering Surveying Laboratory
6.33	18CEC205T	Structural Analysis
6.34	18CEC205L	Computer Aided Structural Analysis Laboratory
6.35	18CEC206T	Hydraulic Engineering and Design
6.36	18CEC206L	Hydraulic Engineering Laboratory
6.37	18CEC207T	Design of RC and Steel Structures
6.38	18CEC208T	Environmental Engineering and Design
6.39	18CEC208L	Environmental Engineering Laboratory
Compu	uter Science and	Engineering
6.40	18CSC201J	Data Structures and Algorithms
6.41	18CSC202J	Object Oriented Design and Programming
6.42	18CSC203J	Computer Organization and Architecture
6.43	18CSC204J	Design and Analysis of Algorithms
6.44	18CSC205J	Operating Systems
6.45	18CSC206J	Software Engineering and Project Management
6.46	18CSC207J	Advanced Programming Practice
Electric	cal and Electronic	cs Engineering
6.47	18EEC201J	Analysis of Electric Circuits
6.48	18EEC202T	Electromagnetic Theory
6.49	18EEC203J	Digital System Design
6.50	18EEC204J	Electrical Machines I
6.51	18EEC205J	Electrical Machines II
6.52	18EEC206J	Analog Electronics
6.53	18EEC207J	Electrical and Electronics Measurements and Instrumentation
6.54	18EEC208T	Generation, Transmission and Distribution
Electro	nics and Commu	unication Engineering
6.55	18ECC102J	Electronic Devices
6.56	18ECC103J	Digital Electronic Principles
6.57	18ECC104T	Signals and Systems
6.58	18ECC105T	Electromagnetics and Transmission Lines

	6.59	18ECC201J	Analog Electronic Circuits
	6.60	18ECC202J	Linear Integrated Circuits
	Mechan	ical Engineering	
	6.61	18MEC101T	Thermodynamics
	6.62	18MEC102T	Fluid Mechanics
	6.63	18MEC103T	Manufacturing Technology
	6.64	18MEC104L	Fluid Dynamics Laboratory
	6.65	18MEC105L	Manufacturing Process Laboratory
	6.66	18MEC106T	Mechanics of Solids
	6.67	18MEC107T	Applied Thermal Engineering
	6.68	18MEC108T	Materials Technology
	6.69	18MEC109L	Strength of Materials Laboratory
	6.70	18MEC110L	Heat Power Laboratory
	6.71	18MEC111L	Materials Technology Laboratory
	Mechatr	onics Engineerir	ng
	6.72	18MHC101J	Mechanics of Solids and Fluids
	6.73	18MHC102T	Electrical Machines and Actuators
	6.74	18MHC103T	Solid State Devices and Circuits
	6.75	18MHC104L	Electrical and Electronics Laboratory
	6.76	18MHC105J	Fluid power system and Automation
	6.77	18MHC106T	Kinematics and Dynamics of Rigid Bodies and Mechanisms
	6.78	18MHC107T	System Dynamics
	6.79	18MHC108J	Digital Systems and Microprocessors
	Nanoted	hnology	
	6.80	18NTC101T	Nanoscale Chemistry
	6.81	18NTC102T	Quantum Mechanics for Nanotechnologists
	6.82	18NTC103L	Nanoscale Materials Laboratory
	6.83	18NTC104T	Thermodynamics and Statistical Mechanics
	6.84	18NTC105T	Biological Principles for Nanoscale Science
	6.85	18NTC106T	Design and Synthesis of Nanomaterials
	6.86	18NTC107J	Advanced Characterization of Nanomaterials
	6.87	18NTC108T	Modeling and Computational Tools
	6.88	18NTC109T	Solid State Engineering
ļ	Profession	onal Elective Co	Durses
•			nication Engineering
			Electronic Systems Engineering
	7.1	18ECE203T	Semiconductor Device Modeling
	7.2	18ECE206J	Advanced Digital System Design
			Communication Systems Engineering
	7.3	18ECE222T	Adhoc and Sensor Networks
	7.4	18ECE224T	Cryptography and Network Security
	7.5	18ECE321T	RF and Microwave Semiconductor Devices

7

	Sub-stream-3:	Signal Processing	
7.6	18ECE240T	Wavelets and Signal Processing	299
7.7	18ECE241J	Signal Processing for Auditory System	301
7.8	18ECE242J	Pattern Recognition and Neural Networks	303
	Sub-stream-4:	Bio-Medical Engineering	
7.9	18ECE260J	Biomedical Instrumentation	305
7.10	18ECE261T	Medical Imaging Techniques	307
7.11	18ECE262T	Biomaterials and Artificial Organs	309
7.12	18ECE263T	Biosensors	311
7.13	18ECE264T	Diagnostic and Therapeutic Equipment	313
7.14	18ECE265J	Biomedical Signal Processing	315
7.15	18ECE266T	BioMEMS	317
7.16	18ECE267J	Biomechanics	319
	Sub-stream-5:	Instrumentation Engineering	
7.17	18ECE180J	Transducer Engineering	321
7.18	18ECE181T	Measurements and Instrumentation	323
7.19	18ECE182T	Automotive Instrumentation Systems	325
7.20	18ECE183T	Safety Instrumented System	327

Humanities and Social Sciences including Management Courses

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Course Code	18PDH102T	Course Name		MANAGEMENT PRINCIPLES FOR ENGINEERS			Course Category	Н	Humanities and Social Sciences including Management	2	T 0	P 0	2 2
Pre-requis Courses	INII		0	Co-requisite Courses	Nil		Progre Cour		Nil				
Course Offering Department Caroor Dovolonment		Dovolonment Con	ntro	Data Book	/ Codoc/Standarde	Nil							

Course Le	Course Learning Rationale (CLR): The purpose of learning this course is to:						Program Learning Outcomes (PLO)												
CLR-1:	Acquire knowledge about the fundamental concepts of organization and management	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Make decision strategies, planning process, tools and techniques										Ŋ								
CLR-3:	Inculcate the traits needed to be an effective leader and familiarize with the organizational structures and design	(mo	(%)					arch			abili								
CLR-4:	Gain valuable insights into strategic process, formulation and implementation	Ō		Attainment (%)	dge		ent	ese			Sustainability		Work		92				
CLR-5:	Utilize the intricacies involved in cultural and ethical issues of people	g (Bi	iency	mer] we	.00	mdc	٦, R	Tool Usage	æ	Sus		eam V		Finance	ing			
CLR-6:	Utilize the dimensions of the planning-organizing-leading-controlling (P-O-L-C) framework	Thinking	rofici	.tai	ᇫ	Analysis	svel	esign,	SO	Culture	∞		Теа	tion	∞ర	arı			
		Ē			ring	Ä	& Development	٥,		⊙ ≪	neu		<u>∞</u>	ig.	Mgt.	g Fe			
Course Lo	earning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design {	Analysis	Modern	Society	Environment	Ethics	Individual	Communication	Project I	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1:	Observe and evaluate the various influencing factors on the current practice of organization and management	3	80	75	-	Н			-	L		Н	Н	М	-	М	-	-	-
CLO-2:	Use the techniques and tools of planning and make prudent decisions	2	80	75	-	М	-		-	Н		Н	Н	М	-	Н	-	-	-
CLO-3:	Identify how organizations adapt to uncertain environment, identify techniques managers use to influence and control the	2	80	75	١.	,		_	_	14		Н	Н	н		М			
internal environment			00	75		L	_	_		IVI	_	11	11	"		IVI	_		-
CLO-4: Apply and execute management goals					-	L	-	-	-	М	-	Н	Μ	Н	-	М	-	-	-
							-		-	Н	-	Н	Н	Н	-	Н	-	-	-
CLO-6:	Utilize the basic fundamentals of managing organizations and utilize optimal resources	3	80	75	-	Н	-	-	-	Μ	-	М	М	Н	-	Μ	-	-	-

Durati	on (hour)	6	6	6	6	6
S-1	SLO-1	Organization	Information technology and the new workplace	Organisational control	Strategic management	People Management
3-1	SLO-2	The Individual and the Organization	Precautious Measures	Control in the Business Setting	Role of Strategy in Management	Importance of people
S-2			Information and decision making	Motivation	Evaluating the Business Environment	Attracting a Quality Workforce
3-2	SLO-2	Primary Functions of Management	Styles of Decision Making	Importance of Employee Motivation	Common Frameworks for Situational Analysis	Recruiting process
S-3	SLO-1	Role of management in organisation	The decision-making process	Leadership	Goals and Process	Employee Diversity
3-3	SLO-2	Advantages of Managing People Well	Barriers to Individual Decision Making	Effective Leader	strategic competitiveness	Conflict Management
S-4	SLO-1	Types of Managers	Planning	Organising	Different Strategies	Organisational Culture
3-4	SLO-2	Role of managers	Planning and Mission	Purpose of Organization	Stages and Types of Strategy	Influences on Organizational Culture
S-5	SLO-1	management Thought	The planning process	organisational design	Strategy formulation	Initiating and Fostering Cultural Change
3-3	SLO-2	Management Roles	The Planning Cycle	Common Organizational Structures	Bridging the Gaps	Putting It Together: Culture and Diversity
S-6	SLO-1	Environmental Factors	tools, techniques and processes	Factors Impacting Organizational Design	Strategy implementation	Ethics
3-0	SLO-2	Internal and External Factors	ernal Factors Putting It Together: Planning and Mission Contingencies		Overcoming Hindrances	Cultural Issues

Learning Resources	1. 2.	Schermerhorn, J.R., Introduction to Management, 13th ed., Wiley; 2017 Harold Koontz, Heinz Weihrich, Essentials of management: An International & Leadership Perspective, 10th ed., Tata McGraw -Hill Education, 2015		Stephen Robbins, Mary Coulter, Fundamentals of Management, 9th ed., Pearson Education, 2016 Samuel C. Certo, Tervis Certo, Modern management: concepts and skills, 12th ed., Pearson, 2012 Charles W. L. Hill, Steven Mcshane, Principles of Management McGraw Hill Education, 2017
-----------------------	----------	--	--	---

Learning Ass	sessment												
	Bloom's				Final Evamination	(50% weightage)							
	Level of Thinking	(1 \) 1 (10%)		CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage			
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	40%	-	30%	-	30%	-	30%	-	30%	-		
Level 2	Apply Analyze	40%	-	40%	-	40%	-	40%	-	40%	-		
Level 3	Evaluate Create	20%	-	30%	-	30%	-	30%	-	30%	-		
	Total	100	0 %	100	100 %		0 %	100	0 %	100 %			

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Pratap Iyer, Study Abroad Mentors, Mumbai, pratap.iyer30@gmail.com	1. Dr. A.K. Sheik Manzoor, Anna University, sheikmanzoor@annauniv.edu	1. Mr. Mohamed Ibrahim. A. U., SRMIST
2. Mr. Ajay Zenner, Career Launcher, ajay.z@careerlauncher.com	2. Dr. Devamainthan, University of Madras	2. Mr. Muthu Manivannan, SRMIST

Course Code	18PDH103T	Course Name	SOCIAL	SOCIAL ENGINEERING			Humanities and Social Sciences including Management	2	T 0	P 0	2 2
Pre-requis Courses	ite _{Nil}		Co-requisite Courses		Prog Co	ressive urses	Nil				
Course Offe	ring Department	Career Dev	velopment Centre	Data Book / Codes/Standards	Nil						

Course Offering Department	Career Development Centre Data Book / Codes/Standar	ds	Nil																	
Course Learning Rationale (CLR):	The purpose of learning this course is to:		L	.earni	ng					Progr	ram L	_earn	ing C	utco	mes (I	PLO)				
CLR-1: create personal awareness	and responsibility		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: learn about environment a	nd approach towards social issues											у								
CLR-3: train students on social con	mpetencies to become self reliant, resourceful and industrious		=		<u> </u>				arch			Sustainability								
CLR-4: understand social entrepre	neurship		(Bloom)	y (%)	ıt (%)	Knowledge		ent	ese			aina		Work		92				
CLR-5: develop a mindset to contri	ibute to the society		9 (B	Proficiency	Attainment) We	S	elopment	Ä,	age	Ф	Sust		۶ 2		inance	ng			
CLR-6: apply knowledge, passion	and skills in the pursuit of humanitarian goals		Thinking	ofici	Taj.		Analysis	skelc	Design,	l Us	Culture	t & S		Team	Į.	∞ ⊥	earning			
			喜	P P	d At	ing	Añ	x Dev	, De	T00	S C	nen		∞	<u>.</u>	Mgt.				
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:		Level of	Expected I	Expected	Engineering	Problem	Design 8	Analysis,	Modern	Society &	Environm	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PS0 - 2	PS0 - 3
CLO-1: identify and addresses nee	ds of social responsibilities		2	80	75	-	-	-	-	-	М	М	Н	Н	Н	-	-	-	-	-
CLO-2: resolve social problems			3	80	75	-	-	-	-	-	Н	L	М	Н	М	-	-	-	-	-
CLO-3: understand social responsi	ibility competencies and CSR activities		2	80	75	-	-	-	-	-	Μ	L	L	Н	Н	-	-	-	-	-
CLO-4: build a business plan to me			3	80	75	-	-	-	-	-	М	L	Н	Н	М	-	-	-	-	-
CLO-5: gain real time experience to	hrough student social responsibility project and presentation		3	80	75	-	-	-			Н	М	Н	Н	М	-	-	-	1	-
CLO-6: possess an in-depth knowl	edge of social engineering and effect a social change in the society		3	80	75	-	-	-	-	-	Н	М	М	М	М	-	-	-	-	-

Durati	on (hour)	6	6	6	6	6
S-1	SLO-1	Introduction	Environment and society	Social responsibility competencies	Social entrepreneurship	Student Social responsibility
3-1	SLO-2	Importance of Social Engineering	Contribution towards environment	Social responsibility competencies	Social entrepreneurship	Student Social responsibility
S-2	SLO-1	Personal awareness	Social issues	Social responsibility competencies- Profiles	Social Entrepreneur	Project Presentation
3-2	SLO-2	Types of responsibilities	Social issues	Social responsibility competencies- Facets	Types of Social Entrepreneurs	Project Presentation
S-3	SLO-1	Social Change	Group discussion on social Issues	Contributing to community	Success stories of social entrepreneur	Project Presentation
5-3	SLO-2	Social Change	Group discussion on social Issues	Contributing to community	Impact of social entrepreneurs in society	Project Presentation
S-4	SLO-1	Vision towards society	Group discussion on social Issues	Value diversity and Building relationships	Business Plan	Project Presentation
3-4	SLO-2	Mission towards society	Group discussion on social Issues	Value diversity and Building relationships	Business Plan	Project Presentation
S-5	SLO-1	Individual social responsibility(ISR)	Social Marketing	Corporate social responsibility	Business Plan	Report Analysis
5-3	SLO-2	Individual social responsibility(ISR)	Social Marketing	Types of CSR	Business Plan	Report Analysis
S-6	SLO-1	Case study	Non profitable organizations	Government Policies on CSR	Business Plan	Report Analysis
3-0	SLO-2	Case study	Types of NGO	Government Policies on CSR	Business Plan	Report Analysis

Learning	
Resources	i

- Joel Makeower, Beyond The Bottom Line: Putting Social Responsibility to work for your Business and the World, Oct, 1995
- 2. Simen Sinek, Start with Why, How great leaders Inspire Everyone to Take Action, Penguin UK, 2011
- 3. Adam Grant, Give and Take: Why Helping others drives our success, Orion Publishing Group, 2014
- 4. David Bornstien, How to change the world, Oxford University Press, 2007

- Nicholls, Alex, ed., Social Entrepreneurship New Models of Sustainable Social Change, Oxford University Press, 2008
- 6. Ronald R. Sims, Ethics and Corporate Social Responsibility: Why Giants fall, 2003
- 7. Robert A. Rohm, Positive Personality Profiles, Personality Insights, Inc, 2006

Learning Ass	essment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	FIIIai Examinatio	i (50 % weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40%		30%		30%		30%		30%	
Level I	Understand	4070	-	30%	-	30%	-	30%	-	30%	-
Level 2	Apply	40%		40%		40%		40%		40%	
Level 2	Analyze	40%	-	40%	-	40%	-	40%	-	40%	-
Level 3	Evaluate	20%		30%		30%	_	30%		30%	
revel 2	Create	2070	_	30%	_	3070	-	3070	_	30%	_
	Total	100	0 %	100	0 %	10	0 %	100	0 %	10	0 %

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Vijay Nair – Director, Education Matters, vijayn@edmat.org	1. Dr. A.K. Sheik Manzoor, Anna University, sheikmanzoor@annauniv.edu	Mrs. Kavitha Srisaran, SRMIST
2. Mr. Ajay Zenner, Career Launcher, ajay.z@careerlauncher.com	2. Dr Vanitha. J., Loyola College, vanithaj@loyolacollege.edu	Mr. Priyanand P., SRMIST

Basic Science Courses

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Cou		18BTB101T	Course Name			BIOLOGY		Course Categor		В					Ва	sic Sc	cience	s					L 2	T 0	P 0	C 2
	equisite ourses	Nil			Co-requisite Courses	Nil			ogres Cours		Nil															
Course	e Offering	Department	Biotech	nology		Data Book	c / Codes/Standards	Nil																		
Course	e Learnin	g Rationale (CLI	R): The pur	pose of learni	ng this course is to:			ı	Learn	ing] [Progr	ram L	earni	ing Oı	utcor	nes (PLO)				
CLR-1		ll the cell structure						1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2		ss molecular and			ganism										ч			Ξź								
CLR-3 CLR-4		oare enzyme reac in different types						— (mo	(%)	(%)		ge		Ħ	searc			Sustainability		충		e				
CLR-5		ze the different ty							Suc	nent		wlec	"	bme	8,	age	a)	nsta		γ		Finance	б			
CLR-6					n pertaining to disea	ases		of Thinking (Bloom)	roficie	tain		Kno	alysis	evelo	esign	I Usa	ulture	t & S		Tear	tion	∞ŏ	earnir			
									P P	A be		ering	n An	8 D	s, D	70	∞ ⊗	mer		al &	nice	Mgt	ng Le	_	2	3
Course	e Learnin	g Outcomes (CL	O): At the e	end of this cou	rse, learners will be	able to:		evel o	Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment &	Ethics	Individual & Team Work	Communication	Project Mgt.	Life Long Learning	PS0 - 1	PSO - 2	PSO - 3
CLO-1	: Desci	ribe the cell growt	th, metabolisr	n and reprodu	ction.			1	80			L	Н	Н	Н	-	M	L	Н	Н	Н	-	Н	L	Н	Н
CLO-2	: Expla	in the concepts a	nd experimer	nts in biochem	istry			2	85	75		М	Н	Н	М	-	-	Μ	Н	L	Н	-	Н	L	Н	Н
CLO-3	: Reco	gnize the significa	ance of photo	synthesis				2	75	80		М	Н	М	Н	М	М	-	М	Н	Н	-	Н	L	Н	Н
CLO-4		ss the different m		, ,				2	85			L	Н	Н	Н	-	-	Н	L	L	Н		Н	М	Н	Н
CLO-5	,	ze the role of bio						3	85			L	Н	Н	М	-	М	Н	Н	Η	L	-	Н	Н	Н	Н
CLO-6	: Expla	in the concepts o	f nervous sys	tem disorder a	and the diseases as	sociated with it		2	80	80		М	Н	Η	Η	L	Н	М	Μ	Η	Η	-	Н	Н	Н	Н
Duratio	on (hour)		6			6	6	<u> </u>						6								6	<u> </u>			
6.4	SLO-1	Basics of cell bid Engineers	ology: Releva	nce to	Biochemistry: Mac Biodiversity and its		Bioenergetics and me	tabolism			Molecu	ılar ma	achin	es ar	d mo	tors			Nervo	us sy	stem.	:Histo	ry of I	neuro	scien	се
S-1	SLO-2	Cell basic unit of theory	f life, Evidenc	e for cell	Chemistry of life		Enzymes as biological Significance of enzym				Proper machir	ies			•				Glial c							
S-2	SLO-1	Cell structure an	d function		Biochemistry and I replication	numan biology, DNA	Thermodynamics of ea	nzymes			F0F1 A coordii	ATP sy nation	ntha of m	se mo	otors,	Coup	oling a		Action systen	n .		•				us
3-2	SLO-2	Genetic Informat	tion, Protein s	structure	Transcription, Prot		Factors affecting enzy inhibitors on enzyme a		, Effe	ct of	Bacter	ial flag	ellar	moto	r, Cyt	oskel	eton		Centra nervol				em, Pe	eriphe	ral	
S-3	SLO-1	Cell metabolism			Eukaryotic and pro synthesis difference		Mechanism of enzyme	action			Microtu	ıbules							Diseas	ses o	f nerv	ous s	systen	1		
3-3		Carbohydrate mi	etaholism Fa	ttv acid																						

Carbohydrate metabolism, Fatty acid

Pathways that alter homeostasis, Cell

Concept of genetic code, Stem cells

Source of stem cells, Classification of stem

Human embryonic stem cell, Importance

and applications of stem cells

Therapeutic cloning

Regenerative medicine

Bone tissue engineering

Gene therapy

SLO-2

SLO-1

SLO-2

SLO-1

SLO-1

SLO-2 Neural crest

S-4

S-5

S-6

metabolism

Homeostasis

Reproduction

SLO-2 Eukaryotic cell division, Mitosis

Meiosis, Cell differentiation

Metabolism, Glycolysis

Enzyme strategies, Restriction enzymes

NMP kinases, Photosynthesis

Light reactions, Photosystems

ATP synthesis in chloroplasts

Significance of photosynthesis

Calvin cycle

Microfilaments, Intermediate filaments

Resonant biosensors, Glucose biosensors

Bio detectors, Biosensor detection in

Bioventing and bio augmentation

Kinesin linear motor, Dynein motor

Biosensor

pollutants

Bioremediation

Computer- based neural networks

Fluid systems of the body, Innate immune

Cells of innate immune system, Adaptive

Diseases of immune system, Immune

Immune system

immunity

engineering

Cell signaling

Cell- surface receptors

Learning Resources	1.	S. Thyagarajan, N.Selvamurugan, R.A.Nazeer et.al., Biology for engineers McGraw Hill Education. 2012	2. Norman Lewis, Gabi Nindl Waite, Lee R. Waite et.al., Applied Cell and Molecular Biology for Engineers. McGraw-Hill Education. 2007
-----------------------	----	--	--

Learning Assess	sment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	o (E00/ waightaga)
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	ł (10%)#	Filiai Examinatio	n (50% weightage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40%	-	30%	-	30%	-	30%	-	30%	-
Level 2	Apply Analyze	40%	-	40%	-	40%	-	40%	-	40%	-
Level 3	Evaluate Create	20%	-	30%	-	30%	-	30%	-	30%	-
	Total	100	0 %	100) %	100	0 %	100	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences,ramchand@saksinlife.com	1. Dr. K Subramaniam, IITM Chennai, subbu.iitm.ac.in	Dr. S. Thyagarajan, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Dr. R. B. Narayanan, SVCE Chennai, rbn@svce.ac.in	Dr.S.Barathi, SRMIST

Cou		18BTB103T	Course Name	HUMAN PHYSIOLOGY AND HEAL	ТН	Cou Cate	ırse gory	,	В				Ва	sic S	cienc	es					L 3	T 0	P 0	C 3
	requisite	Nil		Co-requisite Nil				gressi		18BTC102J	-Cell	l biol	logy,	18BT	C106	3J -Im	muno	logy						
		Department	Biotechnology		k / Codes/Standards	٨	lil	Juises	•															
						7 [_										
		g Rationale (CLI		· ·		_		earnin	_		•	•					ing O		•	•		40		
CLR-1	: Devis	e understanding : an understandi	of human physiological sy na about nanyous system	stems for a better comprehension of the prob that controls and maintains homeostasis	olems faced by human	4 -	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3			ory and respiratory system			1	<u>(</u> -	_	_				ırch			bility								ì
CLR-4	: Analy.	ze about digestiv	e and excretory system				Sloon	%) %	٦t (%	edge		ent	esea			taina		Nork		nce				1
CLR-5			ng about endocrine and re			4	ng (E	cienc	nmer	nowle	Sis.	Hopm	gn, R	sage	ale	Sus		am V	_	Finance	ning			1
CLK-0	: Creati	e an unuerstanun	ng about how human bod	runctions		_	hinki	Profi	Attai	ng Kı	Analy	Deve	Desi	n loo	Culture	ent &		& Te	catio	gt. &	Lear			1
Cours	e Learnin	g Outcomes (CL	.O): At the end of this co	ourse, learners will be able to:			evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & (Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. &	Life Long Learning	PSO - 1	PSO-2	PSO - 3
CLO-1	: Descri	ribe the structure	e and function of cell, co	mmunication and gene expression and ho							Н	Н	Н	-	М	L	Н	Н	Н		Н	H	H	H
CLO-2				, function and diseases associated with it	ction and diseases associated with it 2 80 70							Н	Н	-	Н	М	Н	Н	Н		Н	Н	Н	Н
CLO-3			and function of heart, lung, abnormal functioning 2 80 70						Н	М	Н	М	М		М	Н	Н	-	Н	Н	Н	Н		
CLO-4				ystem and urinary system and its disturbar le in maintaining homeostasis and reprod			2	80	70 70		H	H	H	-	L M	H	H	H	H	-	H	H	H	H
CLO-6				uce with maintaining homeostasis and reproduction	uctive biology		2	80	70		Н	H	Н	L	M	М	M	Н	Н	-	Н	Н	<u> </u>	Н
Durati	on (hour)		6	6	6							6								6	3			
S-1	SLO-1	Cell structure an	d function	Classification of Nervous System	Heart: Structure, Chamb	ers, v	alve		,	Anatomy of D	Digest	tive s	syster	n			Endo	crine	organ	s and	l struc	ture		
	SLO-2	Adaptation, Deg	eneration and aging	Neuron structure and function	Cardiac cycle and Electr		Ŭ	ram		Mouth and Sa							Pituita	ary gla	and: P	Parts				
S-2	SLO-1	Cell junctions – 0	Gap, Tight and contact	Nerve fibers classification and properties.	chronotropic, ionotropic a dromotropic, bathmotrop					Stomach: Pai Functions, Pr			ure, (Gland	S,						ation,		• • • • • • • • • • • • • • • • • • • •	
0-2	SLO-2	Active, Passive t	transport	Glial cells types, structure and function	Blood vessels – thrombo	embo	olism	1		composition a	and fu	uncti	ons o	f gas	tric ju	ice	Pituita functi		and: H	lormo	ones s	ecrete	ed,	
S-3	SLO-1	Types of transpo	ort	Synapse – Classification	atherosclerosis and arte	ioscl	erosi	s		Pancreas, Liv	ver						Thyro	id gla	nd: H	istolo	gy an	d fund	ction	
3-3	SLO-2	Special type of to across biological	ransport of molecules I membranes	Synapse - Anatomy	Septal and valvular defe	ralvular defects. Gall bladder – Role in digestive system Thyroid				id gla	nd: H	ormo	nes											
C 4	SLO-1	Homeostasis– C	hemical equilibrium	Synapse - Functions (IPSP and EPSP	Circulation – Systemic a	nd Pu	ılmor	nary		Small intestin	ne, lar	rge ii	ntestii	пе			Synth	esis (of Thy	roxin	е			
S-4	SLO-2	Tonicity and osn	nolality	Synapse - properties	Properties of cardiac mu electrical potential and a				/-	Digestion of E	Biomo	olecu	ıles				Parat	hyroid	d gland	d stru	ıcture	and f	unctio	n
0.5	SLO-1	control of homeo	ostasis	Neurotransmitters synthesis	Rhythmicity – Natural an pacemakers		d artificial			Movements o	of gas	stroin	testir	al tra	cts aı	nd	Mode	of ac	tion a	nd fu	nction	- disc	order	S
S-5	SLO-2	Role of ions in h	omeostasis	Neurotransmitters – Types and function	Conductivity, Contractilit	and and	l Refr	ractory	y	Digestion of a	carbo	hydr	ates _l	orotei	in and	1	Adren	al gla	and sti	ructui	re			
C 6	SLO-1	Positive feedbac Homeostasis	k regulation of	Action potential	Cardiac cycle and heart disease	sound	ds an	nd Hea	art	Gastrointestir	nal ho	ormo	nes				Cortic	al an	d med	lullary	y - fun	ctions	3	

S-6

SLO-2

Negative feedback regulation of Homeostasis

graded potential

Respiratory system: Introduction

Digestive system disorders

Endocrine functions of pancreas

S-7	SLO-1	Acid-Base Balance: Hydrogen Ion and pH.	Brain anatomy and function	Types – external and internal respiration	Kidney structure and function	Insulin and glucagon
5-7	SLO-2	Regulation by buffer systems	Spinal cord anatomy– Grey and White matter	Inspiration and expiration, Anatomy, functional unit	nephron structure	Diabetes
S-8	SLO-1	Acidosis	Limbic system: Autonomic Nervous System	Non-respiratory functions of respiratory tract	Role of hormone in urinary system.	Male reproduction organ structure
3-0	SLO-2	Alkalosis.	Effects on various organ systems.	Mechanics of respiration, Pulmonary function tests: Lung volume – Tidal	Juxtaglomerular apparatus functions	Female reproduction organ structure
	SLO-1	Regulation of gene expression	Nervous system disease and disorders	Inspiratory, Expiratory, Residual volumes; Lung capacities	Process of urine formation	Oogenesis
S-9	SLO-2	Cell signaling and Signal transduction	Parkinson's disease,	Inspiratory, vital, Functional residual, Total lung capacities.	Factors affecting urine formation	Spermatogenesis

Learning Resources	K. Sembulingam, Prema Sembulingam, Essentials of Medical Physiology, Jaypee brothers medical publishers, 7th ed., 2016	2. Guyton and Hall, Textbook of Medical Physiology, (Guyton Physiology), Saunders, 13 th ed., 2015)
-----------------------	--	--

Learning Ass	sessment														
_	Bloom's		Continuous Learning Assessment (50% weightage)												
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	Filiai Examination	n (50% weightage)				
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember	40%		30%		30%		30%		30%					
Level I	Understand	40%	-	30%	-	30%	-	30%	-	30%	-				
1 1 0	Apply	40%		40%		40%		40%		40%					
Level 2	Analyze	40%	-	40%	-	40%	-	40%	-	40%	-				
1 2	Evaluate	20%		30%		30%		30%		30%					
Level 3	Create	20%	-	30%	-	30%	-	30%	-	30%	-				
Total 100 % 100 % 100 % 100 %											100 %				

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences, ramchand@saksinlife.com	1. Dr. K Subramaniam, IITM Chennai, subbu.iitm.ac.in	Dr. S. Thyagarajan, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Dr. Tamil Selvan, Anna University, Chennai, tamilselvan@annauniv.edu	Dr. S. Nageswaran, SRMIST

Course Code	18MAB201T	Course Name	TRANSFORMS AND BOUNDAR	RY VALUE PROBLEMS	Course Category	В	Basic Sciences	3	1	P 0	C 4
Pre-requisi Courses	18MAB102T		Co-requisite Courses		Progre Cour		Nil				
Course Offer	ring Department	Mathema	atics	Data Book / Codes/Standards	Nil						

Course Offering Department	Mathematics	Data Book / Codes/Standards	NII																	
Course Learning Rationale (CLR):	The purpose of learning this course is to:		L	earni	ng				F	rogra	am L	earni	ng Oı	utcon	nes (F	PLO)				
CLR-1: Describe types of Partial di	fferential equations interpret solutions relate PDE to the	e respective branches of engineering	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Relate Fourier series expan	nsion in solving problems under RMS value and Harmor	nic Analysis.										>								
CLR-3: Infer the most general form	to the PDE and relate to half range sine and cosine ser	ries, as the case may be	=		<u></u>				일			stainability								
CLR-4: Evaluate the various types	of integral transforms	·	(moo	(%) /	t (%)	dge		ie e	Sec			aina		Work		e G				
CLR-5: Conclude that the purpose	of studying z transform is to solve linear difference equa	ations having constant coefficients	Thinking (Blo	Proficiency	Attainment	Knowledge	S	opment	8	age	ao	Sust		E S		inance	Б			
CLR-6: Predicting the importance of	of PDE, Fourier series, Boundary value problems and Fo	ourier ,Z – transform applications	i <u>š</u>	je je	ai.	호	alysis	Vel Vel	Design,	ΠS	ulture	∞		Team	on	∞	arning			
		_	<u>≒</u>	4	Ŧ	ering	Ans	De	De	8	ಶ	Jeut			unication	Mgt.	e			
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:		Level of ⁻	Expected	Expected	Engineer	Problem	Design &	Analysis,	Modern 7	Society 8	Environn	Ethics	Individual &	Commun	Project N	Life Long	PS0 - 1	PS0-2	PSO - 3
CLO-1: Determine Partial differentia	al equation		2	85	80	М	Н	L	-	-	-	-	-	М	-	-	Н	-	-	-
CLO-2: Explain the expansion of a	discontinuous function as an infinite form of trigonometr	ric sine and cosine series.	2	85	80	М	Н	-	М	М	-	-	-	М	L	-	Н	-	-	-
CLO-3: Decide a proper form of soil	lution for the differential equations which are of hyperbo	olic and parabolic type	2	85	80	М	Н	-	-	-	-	-	-	М	-	-	Н	-	-	-
CLO-4: justify the relationship betw	een aperiodic signals and linear combination of expone	entials.	2	85	80	Μ	Н	-	М	-	-	-	-	М	L	-	Н	-	-	-
CLO-5: Relate signal analysis with	that of z transform		2	85	80	М	Н	L	-	-	-	-	-	М	-	-	Н	-	-	-
CLO-6: Relate PDE. Fourier series.	. Boundary value problems. Fourier and Z transforms		2	85	80	L	L	L	Н	Н	Н	L	Н	Н	Н	-	Н	-	-	-

Durat	on (hour)	12	12	12	12	12
S-1	SLO-1	Formation of partial differential equation by eliminating arbitrary constants	Introduction of Fourier series - Dirichlet's conditions for existence of Fourier Series	Classification of second order partial differential equations	Introduction of Fourier Transforms	Introduction of Z-transform
3-1	SLO-2	Formation of partial differential equation by eliminating two or more arbitrary constants	Fourier series –related problems in $(0,2\pi)$	Method of separation of variables	Fourier Transforms- problems	Z-transform-elementary properties
	SLO-1	Formation of partial differential equation by eliminating arbitrary functions	Fourier series –related problems in $(-\pi,\pi)$	One dimensional Wave Equation and its possible solutions	Properties of Fourier transforms	Z-transform- change of scale property, shifting property
S-2	SLO-2	•	Fourier series –related problems in (0,2 <i>l</i>)	One dimensional Wave Equation-initial displacement with zero initial velocity-type 1 Algebraic function	Standard results of Fourier transform	Z-transform of $a^n, \frac{1}{n}, \frac{1}{n+1}$
S-3	SLO-1	Formation of partial differential equation by eliminating arbitrary functions of the form $\phi(u,v)=0$	Fourier series –related problems in $(-l,l)$	One dimensional Wave Equation-initial displacement with zero initial velocity-type 2 Trigonometric function	Fourier Sine Transforms - problems	Z-transform of $\frac{1}{n^2}$, $\frac{1}{(n+1)^2}$
3-3	SLO-2	Solution of first order non-linear partial differential equations-standard type I F(p,q)=0	Fourier series –half range cosine series related problems $(0,\pi)$	One dimensional Wave Equation-initial displacement with zero initial velocity-type 3 – Midpoint of the string is displaced	Fourier Cosine Transforms - problems	Z-transform of $r^n\cos n heta$
S-4	SLO-1 SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
S-5		Solution of first order nonlinear partial differential equations-standard type –II Clairaut's form	Fourier series –half range cosine series related problems(0, l)	One dimensional Wave Equation-initial displacement with non-zero initial velocity Type 1 Algebraic function	Properties of Fourier sine Transforms	Z-transform of $r^n \sin n\theta$
3-3	SLO-2	Solution of first order non-linear partial differential equations-standard type III F(z, p, q)=0	Fourier series –half range sine series related problems $(0,\pi)$	One dimensional Wave Equation-initial displacement with non-zero initial velocity Type 2 Trigonometric function	Fourier sine Transforms applications	Initial value theorem

					T	
S-6	SLO-1	Solution of first order non-linear partial differential equations-standard type-IV separation of variable $f(x, p) = g(y, q)$	Fourier series –half range sine series related problems(0, l)	Wave Equation-initial displacement with non-zero initial velocity Type 3 split function	Properties of Fourier cosine Transforms	Finial value theorem
		Lagrange's linear equation: Method of grouping	Parseval's Theorem (without proof)-related problems in Fourier series	One dimensional heat equation and its possible solutions	Fourier cosine Transforms applications	Inverse Z-transform- long division method
S-7		Lagrange's linear equation: Method of multipliers	Parseval's Theorem (without proof)-related problems in cosine series	One dimensional heat equation related problems	Convolution of two function	Inverse Z-transform, related problems, long division method
5-1		More problems in Lagrange's linear equation: Method of multipliers	Parseval's Theorem (without proof)-related problems in sine series	One dimensional heat equation -Steady state conditions	Convolution Theorem	Inverse Z-transform, Partial fraction method
S-8	SLO-1 SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
S-9	SI O 1	Linear Homogeneous partial differential equations of second and higher order with constant coefficients-CF and PI Type 1: e^{ax+by}	Introduction to Harmonic Analysis	One dimensional heat equation -Steady state conditions more problems	Parseval's Identity for Fourier transform	Inverse Z-transform, Partial fraction method related problems
	SLO-2	PI Type2.: sin(ax+by) or cos(ax+by)	Harmonic Analysis for finding harmonic in $(0,2\pi)$	One dimensional heat equation -Steady state conditions with zero velocity	Parseval's Identity for Fourier sine & cosine transforms	Inverse Z-transform - residue theorem method
S-10	SLO-1	Type 3: PI of polynomial	Harmonic Analysis for finding harmonic in $(0,2l)$	One dimensional heat equation -Steady state conditions with zero velocity more problems	Parseval's Identity for Fourier sine & cosine transforms applications	Inverse Z-transform - residue theorem method-problems
3-10		Type 4 Exponential shifting $e^{ax+by}f(x,y)$	Harmonic Analysis for finding harmonic in periodic interval $(0,T)$	One dimensional heat equation -Steady state conditions with zero velocity more related problems	Fourier Transforms Using Differentiation property	Convolution theorem (without proof)
S-11	SLO-1	Linear Homogeneous partial differential equations of second and higher order with constant coefficients type 5 General rule	Harmonic Analysis for finding cosine series	Steady state conditions and Non-zero boundary conditions- related problems	Solving integral equation	Convolution theorem applications
	SLO-2	Applications of Partial differential equations in Engineering	Harmonic Analysis for finding sine series	Steady state conditions and Non-zero boundary conditions- more problems	Self-reciprocal using Fourier Transform, sine and cosine transform	Solution of linear difference equations with constant coefficients using Z-transform
0.40	SLO-1	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
S-12		Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
	•			* *		

Learning Resources	 B. H. Erwin kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons, 2006 B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43rd Edition, 2015 Veerarajan T., Transforms and Partial Differential Equations, Tata McGraw-Hill, New Delhi, 2012 	 Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 3rd Edition, 2010 N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, for third semester, Laxmi Publications. 3rd Edition. 2014

Learning Ass	earning Assessment Continuous Learning Assessment (50% weightage)														
	Bloom's		Final Evamination	n (50% weightage)											
	Level of Thinking	(10.21710%)													
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-				
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-				
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-				
Total 100 % 100 % 100 % 100 %											0 %				

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. V. Maheshwaran, CTS, Chennai, maheshwaranv@yahoo.com	1. Dr. K. C. Sivakumar, IIT, Madras, kcskumar@iitm.ac.in	1. Dr. A. Govindarajan, SRMIST
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Nanjundan, Bangalore University, nanzundan@gmail.com	2. Prof. Ganapathy Subramanian K S, SRMIST

Course Code	18MAB202T	Course Name	NUMERICAL METHODS	FOR ENGINEERS	Course Category	В	Basic Sciences	3	1 1	P 0	4
Pre-requis Courses	118MAR1021		Co-requisite Courses		Progre Cour	ssive ses	Nil				
Course Offe	ring Department	Mathematics		Data Book / Codes/Standards	Nil						

Course Offering Department Imameriancs Data Book / Codes/Standards	IVII																	
Course Learning Rationale (CLR): The purpose of learning this course is to:	L	.earni	ng					Progr	ram L	.earn	ing O	utcor	nes (F	PLO)				
CLR-1: Acquire ability in solving mathematical problems numerically as applied to the respective branches of Engineering	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Apply the concept of interpolation for finding intermediate values of a well-known data										y								
CLR-3: Study the concept of numerical differentiation and integration	(mo		<u></u>				arch			pilit					1	, !	ı !	
CLR-4: Apply the numerical techniques for solutions of ordinary differential equations	00	(%) A	t (%)	Knowledge		opment	sse			Sustainability		Work		ge	ı	, ,	ı	
CLR-5: Apply the numerical techniques for solutions of partial differential equations) (Bloc	Proficiency	Attainment	Ne We	Sis.	md	~ ~	age	Φ	Sust		E		Finance	E E	, !	ı !	
CLR-6: Acquire analytical ability in solving mathematical problems numerically applied to the respective branches of Engineering	Thinking	ofici	ai.	Α'n	alysi	Nel C	Design,	Ns	ulture	∞5		Team	.io	∞	earning	, !	ı !	
	洁			ering	A	, De		Tool	ನ ಶ	nent		∞ర	icat	Mgt.				
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineel	Problem	Design 8	Analysis	Modern	Society &	Environn	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PS0-2	PS0-3
CLO-1: Solve the algebraic, transcendental and simultaneous equations.	2	85	80	L	-	L	-	-	-		-	М	-	-	Н	- 1	-	-
CLO-2: Find the finite differences and interpolation.	2	85	80	L	-	-	М	Μ	-		-	-	-	-	- 1	- 1	- 1	-
CLO-3: Solve numerical Differentiation and integration.	2	85	80	-	М	-	-	-	-	-	-	М	-	-	Н	- 1	-	-
CLO-4: Solve the numerical solutions of ordinary differential equations.	2	85	80	L	М	-	М	-	-		-	Μ	-	-	Н	- 1	- 1	-
CLO-5: Solve the numerical solutions of partial differential equations	2	85	80	-	М	L	-	-	-	-	-	М	-	-	Н	ı - T	-	-
CLO-6: Solve the problems numerically in science and engineering	2	85	80	Н	-	Н	-	-	-	-	-	Н	-	-	Н	- T	- 1	-

Durat	ion (hour)	12	12	12	12	12
S-1	SLO-1	Method of Least Squares – Curve fitting.	First and Higher order differences.	Numerical Differentiation.	,	Numerical solutions for partial differential equations.
3-1	SLO-2	Fitting a straight line.	Forward differences and backward differences.	Newton's forward difference formulae to compute first and higher order derivatives.	LSOILIION DV TAVIOUS SERIES MEINON	Classification of partial differential equations.
S-2	SLO-1	Fitting a parabola.	Central Differences.	Newton's backward differences formulae to compute first and higher order derivatives.	Solutions of First order simultaneous differential equations by Taylor's series method.	Solution of Elliptic Equations.
	SLO-2	Calculation of the sum of the squares of the residuals of straight line and parabola.	Operators– Relations between the operators.	Problems by Newton's forward and backward differences formulae.	Euler's method.	Solution of Laplace Equations by Leibmann's Iterative process.
S-3	SLO-1	Solution of Algebraic and Transcendental equations.	Interpolation – Newton-Gregory Forward Interpolation formulae.	Applications of Newton's forward difference formulae to compute first and higher order derivatives.	Applications of Fuler's method	Solution of Laplace Equations by Leibmann's Iterative process.
3-3	SLO-2	Newton-Raphson method.	Interpolation – Newton-Gregory Backward Interpolation formulae.	Applications of Newton's backward difference formulae to compute first and higher order derivatives.	Improved Euler's method.	Solution of Poisson Equations.
S-4	SLO-1 SLO-2	Problem solving using tutorial sheet 1.	Problem solving using tutorial sheet 4.	Problem solving using tutorial sheet 7.	Problem solving using tutorial sheet 10. Modified Euler's method	Problem solving using tutorial sheet 13.
S-5	SLO-1	Bisection method and its applications.	Additional problems using Newton-Gregory Forward Interpolation formulae.	Additional problems for Newton's forward formulae to compute the application problems.	Applications of Improved and Modified Euler's method.	Problems for Poisson Equations.
3-3	SLO-2	Problems using bisection method.	Additional problems using Newton-Gregory Backward Interpolation formulae.	Additional problems for Newton's backward formulae to compute the application problems.	Runge-Kutta method of fourth order.	Additional problems for Poisson Equations.
S-6	SLO-1	Regula-Falsi method.	Divided differences.	Numerical Integration.	Solution by Runge-Kutta method of fourth order.	Solution of Parabolic equations.

	SLO-2	Problems using false position method.	Formation of divided difference table.	Trapezoidal rule.	Additional problems using Runge-Kutta method of fourth order.	Bender-Schmidt formula
S-7	SLO-1	Solution of system of equations Direct Method - Gauss Elimination method.	Properties of Divided differences.	Simpson's one third rule.	Predictor-Corrector Methods.	Bender-Schmidt formula
3-1	SLO-2	Solution of system of equations Direct Method – Gauss-Jordan method.	Properties of Divided differences.	Simpson's three eighth rule.	Milne-Thomson Method.	Bender-Schmidt formula
S-8	SLO-1 SLO-2	Problem solving using tutorial sheet 2.	Problem solving using tutorial sheet 5.	Problem solving using tutorial sheet 8.	Problem solving using tutorial sheet 11. Problems for Milne-Thomson Method.	Problem solving using tutorial sheet 14.
S-9	SLO-1	Solution of system of equations Iterative Method – Gauss- Jacobi method.	Newton's Divided difference formula.	More problems using Trapezoidal rule.	Application of Milne-Thomson Method.	Crank-Nicolson formula.
3-3	SLO-2	Problems using Gauss-Jacobi method.	Problems by Newton's Divided difference formula.	More problems using Simpson's one third rule.	Adam's Bashforth method.	Crank-Nicolson formula.
	SLO-1	Solution of system of equations Iterative Method – Gauss-Seidal method.	Additional problems by Newton's Divided difference formula.	More problems using Simpson's three eighth rule.	Problems using Adam's Bashforth method.	Crank-Nicolson formula.
S-10	SLO-2	Problems using Gauss- Seidal method.	Lagrange's Interpolation formula.	Applications of Trapezoidal rule – Simpson's one third rule and Simpson's three eighth rules.	Application of Adam's Bashforth method.	Solution of Hyperbolic equations.
S-11	SLO-1	Power method.	Problems by Lagrange's Interpolation formula.	Application problems for Trapezoidal rule – Simpson's one third rule and Simpson's three eighth rules.		Solution of Hyperbolic equations by Explicit formula.
3-11	SLO-2	Finding Eigen values by power method.	Inverse interpolation.	Applications problems for Trapezoidal rule – Simpson's one third rule and Simpson's three eighth rules.	Additional problems for Adam's Bash forth Method	More problems in Hyperbolic equations using Explicit formula.
	SLO-1	Problem solving using tutorial sheet 3.	Problem solving using tutorial sheet 6.	Problem solving using tutorial sheet 9.	Problem solving using tutorial sheet 12.	Problem solving using tutorial sheet 15.
S-12	SLO-2	Applications of numerical techniques to solve algebraic, transcendental and simultaneous equations	Application of interpolation for finding intermediate values of a well-known data	Applications of Numerical integration.	Applications of ordinary differential equation.	Applications of partial differential equation.

Learning	 B.S. Grewal, Numerical Methods in engineering and science, Khanna Publishers, 42nd edition, 2012 S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, 4th edition, 2005
Resources	 S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, 4th edition, 2005 F. Balagurusamy, Computer Oriented Statistical and Numerical Methods – Tata McGraw Hill 2000

- 4. M.K.Jain, SRK Iyengar and R.L.Jain, Numerical Methods for Scientific and Engineering Computation, Wiley Eastern Ltd., 4th edition, 2003
- 5. Dr. M.K. Venkataraman, Numerical Methods in Science and Engineering, National Publishing Co., 2005

Learning Ass	sessment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(E00/ weightege)	
	Level of Thinking	CLA -	CLA – 1 (10%)		CLA – 2 (15%)		3 (15%)	CLA – 4	(10%)#	FIIIdi Examination	n (50% weightage)	
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %		30 %		30 %		30 %		30%		
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%		
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	100) %	100	0 %	10	0 %	100) %	100 %		

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1. Mr. V. Maheshwaran, CTS, Chennai, maheshwaranv@yahoo.com	1. Dr. K. C. Sivakumar, IIT, Madras, kcskumar@iitm.ac.in	1. Dr. A. Govindarajan, SRMIST							
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Nanjundan, Bangalore University, nanzundan@gmail.com	2. Dr. Sundarammal kesavan, SRMIST							

Course Code	18MAB203T	Course Name	PROBABILITY AND STOCH	ASTIC PROCESSES	Course Category	В	Basic Sciences	3	1	0	4
Pre-requisit Courses	te 18MAB102	Т	Co-requisite Courses		Progre Cour		Nil				
Course Offeri	ing Department	Mathemat	tics	Data Book / Codes/Standards	Nil						

Course Offering Department	матиеттансѕ	Data Book / Codes/Standards	IVII																		
Course Learning Rationale (CLR):	The purpose of learning this course	e is to:	L	_earni	ng						Prog	ram L	_earn	ing O	utco	mes (PLO)				
CLR-1: Describe the applications	on discrete and continuous random ve	ariables.	1	2	3	Ī	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Assess the applications of	of two dimensional random variables.												>								
CLR-3: Infer the various modes of	of convergence of random variables an	nd their limit theorems.	=							ırch			ability								
CLR-4: Relate the specialized kn	owledge in random processes in signa	als and systems.	(Bloom)	(%)	t (%)		dge		ent	ses			staina		Work		ce				
CLR-5: Determine the application	ns of spectral density functions and line	ear time invariant systems	<u>B</u>	enc	nen		we.	s	elopment	, Re	sage	ω	nst		N W		Finance	ē			
CLR-6: Interpret random variable	s and stochastic processes in the app	lication of practical engineering problems.	Thinking	roficiency	Attainment		Kno	Analysis	velc	sign,	\cap	Culture	∞ ∞		Team	ation	8 F	ar.			
			를				ing	Ana	, Dev	De	Tool	s C	Jeut		∞ర	icat	Mgt.	9			
Course Learning Outcomes (CLO)	: At the end of this course, learners	will be able to:	Level of :	Expected	Expected		Engineering Knowledge	Problem	Design &	Analysis,	Modern -	Society &	Environn	Ethics	Individual	Communic	Project N	Life Long	PS0 - 1	PS0-2	PS0-3
CLO-1: Compare the fundamenta	als between discrete and continuous ra	andom variables.	3	85	80		М	Н	L	-	-	-	-	-	М	L	-	Н	-	-	-
CLO-2: Choose the model and ar	nalyze systems using two dimensional	random variables.	3	85	80		М	Н	-	М	М	-	-	-	М	-	-	Н	-	-	-
CLO-3: Describe limit theorems u	sing various inequalities.		3	85	80		М	Н	-	-	-	-	-	-	М	-	-	Н	-	-	-
CLO-4: Interpret the characteristic	cs of random processes.		3	85	80		М	Н	-	М	-	-	-	-	М	L	-	Н	-	-	-
CLO-5: Evaluate problems on spe	ectral density functions and linear time	invariant systems.	3	85	80		Μ	Н	L	-	-		-	-	М	-	-	Н	-	-	-
CLO-6: Explain how random varia	ables and stochastic processes can be	e described and analyzed.	3	85	80		М	Н	-	-	-	-	-	-	М	-	-	Н	-	-	-

Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	One dimensional random variable: Discrete Case-Probability function, Cumulative Distribution Function	Two dimensional random variables- Discrete case	Limit theoremsMarkov's inequality	Random Processes-Introduction	Power spectral density function- properties
	SLO-2	Continuous random variable-Probability density function	Probability function of (X,Y)-Marginal probability distribution	Chebyshev's inequality without proof	Classification of random processes	Proof of properties
S-2	SLO-1	Cumulative distribution function-properties	Conditional probability distribution of (X,Y)	Chebyshev's inequality - Applications	Distribution of the process	Problems on power spectral density function
3-2	SLO-2	Problems on one dimensional random variables	Problems on discrete random variables using Binomial distribution		Averages of the process	Problems on power spectral density function
S-3	SLO-1	Exponential distribution		Stationary, SSS,WSS processes	Power density spectrum	
3-3	SLO-2	Moments-raw and central moments			Problems on stationary and SSS processes	Problems based on power density spectrum
S-4	SLO-1 SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
0.5	SLO-1	Characteristic function - properties	Conditional probability distribution of (X, Y)	Central limit theorem without proof	Problems on WSS process	Linear system with random inputs
S-5	SLO-2	Characteristic function	Problems on continuous two dimensional random variables	Central limit theorem - Applications	Problems on WSS process	Representation of system in the form of convolution
S-6	SLO-1	Binomial distribution -moments	Independent random variables	Central limit theorem- Applications using Poisson random variables	Autocorrelation function -properties	Unit impulse response of the system
3-0	SLO-2	Binomial distribution-Applications	Cumulative distribution function-properties of <i>F</i> (<i>x</i> , <i>y</i>)	Central limit theorem- Applications using Exponential random variables	Proof of properties	Properties
S-7	Experted values of two dimensional		Problems on autocorrelation function	Applications of unit impulse function		

	1					T
	SLO-2	Poisson distribution -Applications	Covariance and correlation	The strong law of large numbers	Application of autocorrelation function	Einstein Weiner- Khinchine Relationship
S-8	SLO-1 SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
	SLO-1	Exponential distribution-moments	Conditional expected values	One sided Chebychev's inequality	Cross correlation- properties	Problems on Khinchine relationship
S-9	SLO-2	Exponential distribution-Applications	Problems on uncorrelated random variables	Cauchy Schwartz inequality	Proof of properties	Cross power density spectrum-properties
S-10	SLO-1	Normal Distribution-moments	Functions of two dimensional random variables	Chernoff bounds	Problems on cross correlation function	Properties of Power Spectral Density
3-10		Normal Distribution-Applications	Probability density functions of the type Z=XY	Chernoff bounds for the standard normal variate	Ergodicity	Cross power density spectrum-problems
S-11	SLO-1	Function of a random variable	Probability density functions of the type Z=X-Y	Chernoff bounds for the Poisson random variate	Mean ergodic process	Cross power density spectrum
3-11	SLO-2	Function of a random variable	Probability density functions of the type Z=X/Y	Jenson's inequality	Mean ergodic theorem	Cross power density spectrum
	SLO-1	Problem solving using tutorial sheet 3	Problem solving using sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
S-12	SLO-2	Applications of random variables in engineering	Application of two dimensional random variables in Engineering	Applications of Central limit Theorem in engineering	Applications of random process in engineering	Applications of Power spectral density functions in engineering

	1.	A. Papoulis, S. Uniikrishna Pillai, Probability, Random Variables and Stochastic Processes 4th ed.,		
Learning		Mcgraw Hill, 2002	4.	S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, 11th ed., 2015
	2.	Henry Stark, Probability and Random Processes with Applications to Signal Processing, 3rd ed.,	5.	Veerarajan T., Probability, Statistics and Random Processes with Queueing Theory and Queueing
Resources		Pearson, 2002		Networks, 4th ed., McGraw-Hill Education, 2015
	3.	Sheldon Ross, A first course in Probability, 6th ed., 2011		

Learning Assess	Learning Assessment											
	Bloom's	Continuous Learning Assessment (50% weightage)									n (E0% woightage)	
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4 (10%)#		Final Examination (50% weightage)		
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	100) %	100	0 %	100) %	10	0 %	10	0 %	

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1. Mr. V. Maheshwaran, CTS, Chennai, maheshwaranv@yahoo.com	1. Dr. K. C. Sivakumar, IIT, Madras, kcskumar@iitm.ac.in	1. Dr. A. Govindarajan, SRMIST							
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Nanjundan, Bangalore University, nanzundan@gmail.com	2. Dr. V. Srinivasan, SRMIST							

Course Code	18MAB204T	Course Name	PROBABILITY AND QUEUEING THEORY	Course Category	В	Basic Sciences	3	T 1	P 0	C 4
Pre-requisi Courses	118MAR1021		Co-requisite Courses	Progre Cou		Nil				
Course Offer	ring Department	Mathematics	Data Book / Codes/Standards	Nil						

Oddiaca		Oddiaca		•	ouise	, ,																
Course Offering Department	Mathematics		Data Book / Codes/Standards	Nil																		
							-															
Course Learning Rationale (CLR):	The purpose of learning	g this course is to:		L	_earni	ng					Р	rogr	am L	earni	ing O	utcor	mes (l	PLO)				
CLR-1: Apply and evaluating prol	bability using random varia	ables		1	2	3	Ī	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Gain the knowledge and	acquire the application of	distribution to find the probabili	ty using Theoretical distributions											>								
CLR-3: To Assess the appropriate	e model and apply and so	ling any realistic problem situat	tion to determine the probability	(F)		<u> </u>					arch			Diit.								
CLR-4: To interpret the decision to	using Markov queueing ap	plications	·	(Bloom)	Proficiency (%)	t (%)		dge		eut	Seg			stainability		Work		ce				
CLR-5: To construct chain of dec	isions from the past situat	ions using Monrovians		<u>B</u>	enc	Attainment		₩.	S	elopment	~ ~	sage	Φ	nst		M ×		Finance	Ð			
CLR-6: Interpret random variable	s and Queuing theory in	engineering problems.		iş.	ofici	ai.		ž	Analysis	Vel	Design,	\supset	Culture	∞		Team	l e	δF	a.			
				Thinking	Ę			ing.	Ans	& Dev	De l	<u>1</u> 00	ಶ	Jent		∞ర	icat	∕lgt.	9			
Course Learning Outcomes (CLO)	: At the end of this cour	se, learners will be able to:		Level of	l ě	Expected		Engineering Knowledge	Problem	Design 8	Analysis	Modern -	Society &	Environn	Ethics	Individual	Communication	Project Mgt.	Life Long	PS0 - 1	``	PSO-3
CLO-1: Solving problems on Disc	rete and Continuous Ran	dom variables		3	85	80		М	Н	L	-	-	-	-	-	М	i - I	-	Н	-	-	-
		Discrete and Continuous Distri	bution	3	85	80	Ī	М	Н		М	М	-	-	-	Μ	L	-	Н	-	-	-
CLO-3: Decision Models using sa	mpling techniques in Larg	e and Small samples		3	85	80	Ī	М	Н	-	-	-	-	-	-	Μ	-	-	Н	-	-	-
CLO-4: Solving Queuing problem	s using Kendall's notation	·		3	85	80		М	Н	-	-	-	-	-	-	М	L	-	Н	-	-	-
CLO-5: To Evaluate the probability	ty in uncertain situations u	sing Markov chain rule		3	85	80		М	Н	L	М	-	-	-	-	М	- 1	-	Н	-	-	-
CLO-6: Solving and analyzing the	problems in random varia	ables and Queuing theory.		3	85	80		М	Н	-	-	-	-	-	-	М	- 1		Н	-	-	-

Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Probability Basic concepts and Axioms	Discrete Probability distribution	Sampling distribution, Null Hypothesis, Alternate Hypothesis	Introduction to F-test	Markov Process and Introduction of a Markov Chain
3-1	SLO-2	Conditional probability, Multiplication theorem	Introduction to Binomial distribution	One tailed test, two tailed test	Problems on F-test	Past and Future - Step and State
S-2	SLO-1	Discrete and continuous Random variables	MGF, Mean, Variance of Binomial distribution	Level of significance, Critical region		One step Transition Probability N step transition Probability
3-2	SLO-2	Probability mass function, cdf	Applications of Binomial distribution	Large samples test	Problems on Chi square test -Goodness of fit	Chapman-kolmogorov theorem definition
S-3	SLO-1	Continuous Random variables	Fit a Binomial distribution.	Student - t test Single Proportion	Problems on Chi-square test Independent- Attributes	Initial Probability distribution problems Using Markov Chain
3-3	SLO-2	pdf and cdf applications	Introduction to Poisson Distribution	Two Sample proportions		Initial Probability distribution problems Using Markov Chain
S-4	SLO-1 SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
S-5	SLO-1	Expectation and Variance	MGF , Mean , Variance of Poisson distribution	Large sample test- Single Mean	Introduction to Queueing Theory and Applications. Kendall, notation	Classification of States of a Markov Chain
3-3	SLO-2	Problems on Expectation and Variance	Applications of Poisson Distribution	Difference of Means	Introduction to M/M/1 : infinity/ FIFO	Irreducible, Non irreducible, a period, Persistent, Non null Persistent
S-6	SLO-1	Moment Generating Function	Fit a Poisson Distribution	Problems on difference of Means	Ls, Lq, Ws,Wq	Problems on Classification of a Markov Chain
3-0	SLO-2	Problems on MGF	Introduction , MGF Mean, Variance of Geometric distribution	Applications of Difference of Means	M/M/1 :Infinity /FIFO problems	Problem on Classification of a Markov Chain
S-7	SLO-1	Functions of Random variables	Applications of Geometric Distribution, problems on Memory less property	Introduction to small samples	M/M/1 :Infinity /FIFO problems	Classification of states of a Markov Chain
3-1	SLO-2	Problems on Functions of Random variable	Introduction , MGF, Mean, Variance of Uniform Distribution	Introduction to small Samples	M/M/1 :Infinity /FIFO problems	Stationary and steady state

		1		II	1	1
S-8	SLO-1 SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
S-9	SLO-2	Tchebycheffs inequality	Applications of Uniform Distribution problems	Problems on single mean -small samples	Single Server Model with Finite System Capacity, Characteristics of the Model (M/M/1): (K/FIFO)	Problems on Classification-State-stationary using Markov Chain
	SLO-2	Introduction to theoretical distribution	Introduction , MGF, Mean, Variance of Exponential distribution	Problems on single mean -small samples	Effective arrival rate	Problems on Stationary and steady state
S-10	SLO-1	Formula and application of Tchebycheffs inequality	Applications of Exponential distribution problems	Problems on difference of mean-small samples	Problems on Model (M/M/1) : (K/FIFO)	Problems on Ergodicity using Markov Chain
3-10	SLO-2	Applications of chebychevs inequality	Introduction to Normal distribution	Problems on difference of mean-small samples	Problems on Model (M/M/1) : (K/FIFO)	Problems on Ergodicity using Markov Chain
S-11	SLO-1	Applications of chebychevs inequality using distribution	Applications of Normal distribution problems	Applications of paired - t test	Problems on Model (M/M/1) : (K/FIFO)	Problems on Ergodicity
3-11	SLO-2	Problems practice using chebychevs inequality	Practical applications of Normal distribution	Problems of paired - t test.		Problems on Ergodic and Non Ergodic Using Markovchains
	SLO-1	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
S-12	SLO-2	Applications of random variables in engineering		Applications of solving any realistic problem situation to determine the probability	Applications of Queueing decision models	Applications of constructing chain of decisions from the past situations using Monrovians

Learning Resources	1. 2. 3.	Veerarajan T, Probability , Statistics and Random Processes, Tata Mc. Graw Hill, 1st Reprint 2004 S.C. Gupta, V.K.Kapoor, Fundamentals of Mathematical Statistics, 9 th ed.,, Sultan Chand & Sons, 1999 Gross. D and Harri.C.M. Fundamentals of Queuing theory, John Wiley and Sons, 1985		Trivedi K S, Probability and Statistics with reliability, Queueing and Computer Science Applications, prentice Hall of India, New Delhi, 1984 Allen .A.O., Probability Statistics and Queueing theory, Academic Press
-----------------------	----------------	--	--	---

Learning Assess	ment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	ł (10%)#	Filiai Examination	i (50 % weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		30 %		30%	
Level I	Understand	40 /0	-	30 76	,	30 %	-	30 /6	-	30%	-
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%	
Level 2	Analyze	40 /0	-	40 70	-	40 /0	-	40 /0	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
LEVEI 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100) %	100) %	100	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. V. Maheshwaran, CTS, Chennai, maheshwaranv@yahoo.com	1. Dr. K. C. Sivakumar, IIT, Madras, kcskumar@iitm.ac.in	1. Dr. A. Govindarajan, SRMIST
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Nanjundan, Bangalore University, nanzundan@gmail.com	2. Dr. V. Srinivasan, SRMIST

Engineering Science Courses

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Cou		18CHS201J	Course Name	PHYSICAL AND ANALYTICAL CHEMI	STRY		ourse tegor		S				E	ngine	ering	Scie	nces					L 3	T 0	P 2	C 4
	equisite urses	Nil		Co-requisite Nil			С	gres ours	ssive ses	Nil															
Course	Offering	g Department	Chemical Engineer	ng Data Book	k / Codes/Standards		Nil																		
Course	e Learnin	g Rationale (CLF	R): The purpose of learn	ning this course is to:			L	earn	ning					P	rogra	ım L	earni	ing O	utcon	nes (F	PLO)				
				ids; learn colligative properties and their appl			1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 CLR-3				nd the effect of various factors on equilibrium ates of matter essential for separation operat			=	<u> </u>						ırch			bility								
				ids; Understand the kinetics of photochemica	l reactions		Bloor	%) ASI	ant (%	-	ledge		ment	Sese	Ф		staina		Work		ance	_			
CLR-5 CLR-6			of analytical instruments a vavior of atoms and molec	long with their limitations ules at the microscopic scale			king (oficien	ainme		Know	lysis	velopr	sign, F	Usag	lture	& Su		Feam	uo	& Fins	arning			
		, ,		,			T Hi	M Pro	A Att		ering	אר ר Ana	& De	s, De	_00 _00	& Cu	ment		a &	nicati	Mgt.	ig Lea			က
Course	e Learnin	g Outcomes (CL	O): At the end of this co	ourse, learners will be able to:			evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	_	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modem Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt. & Finance	ife Long Learning	PS0 - 1	PSO - 2	PS0 - 3
				colligative properties to find the molecular w	unds		80 75	75		Н	Н	L	Ĺ	-	-	-	-	-	-	-	-	Н	-	-	
				and equilibrium constants	of one- and three-component systems						H	H H	L M		-	-	-	-	-	-	-	-	M M	-	-
CLO-4	: Analy	ze the distinct pro	pperties of colloids and ph	otochemical reactions	hemical reactions						Н	Н	-	L	-	-	-	-	-	-	-	-	L	-	-
			ole analytical technique for analyzing various types of compounds ts of physical chemistry to various processes in chemical engineering								H	<u>-</u> Н	- М		L H	- М	L M	-	-	-	-	- М	L	-	-
CLU-6	: Арріу	r the concepts of p	<i>'</i>	1	1		2	75	70		П	П			П	IVI	IVI	-	-	-			П	-	ᆜ
Duration	on (hour)		15	15	15		15 Introduction to Colloids Instrumental II								111-4	15 Methods of Analysis									
S-1	SLO-1	Introduction to so	olutions, Raoult's law	Introduction to Chemical equilibria	Introduction to Phase ed	quilib	ria			introa	uction	to Co	oliolas				ľ	instrui	menta	ii iviet	noas	ot An	aiysis		
0-1	SLO-2	Vapour pressures	s of ideal solutions	Gibbs' free energy and Chemical potential	Component, phase and	deg	rees o	f free	edom	General properties of colloids: Tyndall effect and Brownian movement (system/manual) Electrical properties of colloids: electrical						sion, common errors I)									
	SLO-1	Vapour pressures	s of non-ideal solutions	Free energy of a spontaneous reaction	Conditions for equilibrium	m be	etweer	n pha	ases	Electr double		,			s: ele	ctrica	al	Calibr	ation	curve	S				
S-2	SLO-2	Deviations from i	deality of Type I, Type II tions	Law of mass action	Derivation of Gibbs' pha	ule							s of co ctro-os				Classi spectr chrom	oscoj	y, ele					-	
S-3	SLO-1	Vapor pressure-C point-Compositio solutions	ible binary solutions: Composition and Boiling n curves of Type I	Law of chemical equilibrium	Representation of one ousing phase diagrams	comp	onent	syst	tems	Gels a	and er	nulsic	ins					Electro Intera						atter	
		point-Compositio solutions	Composition and Boiling on curves of Type II	Thermodynamic derivation of the law of chemical equilibrium	One component system - wate		ater sy	sten	n	Applic								Genei source introdi	e/ mo	nochr / det	omat ector	or / sa / sign	ample al gei	nerato	
S 4-5	SLO-1 SLO-2	Lab 1: Determine	e critical solution T) of phenol-water system	Lab 4: Estimate aspirin drug in tablets	Lab 7: Repeat class	_		_						rate co an est		nt of a		Lab 13 using					d meti	ıyl es	ter
7-0		Vapor pressure-0	Composition and Boiling	uong pri meter					Jaialy	Lou II	y ai Oiy	515 UI	un vol	UI .			using Princij				<u> </u>	Vorkii	ıg,	-	
S-6	SLO-1	solutions	n curves of Type III	Problems on Gibbs' free energy	ms on Gibbs' free energy One component system -						Introduction to Photochemistry					Applications, and Limitations of analytic techniques						cal			
	SLO-2 Fractional distillation of binary liquid systems; The Lever rule Problems on Gibbs' free energy One component systems							syst	em	Laws	of pho	otoche	emistr	/				UV – V	is sp	ectro	scopy	<i>y</i>			
S-7	SLO-1	Distillation of imn	niscible liquids	Significance of equilibrium constant	Three component system phase diagram	systems -Triangular				Quan	tum yi	eld		-				Infra-r	ed sp	ectro	scopy				
J-1	SLO-2	Steam ditillation		Equilibrium constants: K _p , K _c , and, K _x Three component system chloroform-water system.						Photo	chem	ical re	action	s			,	Atomi	c abs	orptio	n spe	ectros	сору		

S-8	SLO-1	,		Three component system: two salts and water system	Photochemical rate law	Chromatographic techniques: General principle
3-0	SLO-2	Critical solution temperature; Phenol-water system		The Nernst distribution law and distribution co-efficient	Determination of quantum yields	Column chromatography
S 9-10	SLO-1 SLO-2	Lab 2: Determine molecular weight by Rast method	Lab 5: Estimate sulphate by nephelometry		manganese in the given sample of the	Lab 14: Repeat class
S-11	SLO-1	,	Pressure dependence of equilibrium constants	Conditions for the validity of the distribution law	Problems on Beer Lambert's law	Paper chromatography
3-11	SLO-2	Colligative Properties	Problems on equilibrium constants	Association of the solute in one of the solvents	Problems on quantum yield	Thin layer chromatography
S-12	SLO-1	Relative lowering of vapour pressure, Osmosis and osmotic pressure	Problems on equilibrium constants	Dissociation of the solute in one of the solvents	Kinetics of hydrogen-chlorine reaction: Mechanism	Gas chromatography
3-12	SLO-2	Elevation in boiling point, Depression in freezing point	Le Chatelier's Principle	Applications of Nernst distribution law	Kinetics of hydrogen-chlorine reaction: Derivation	High Performance Liquid Chromatography
S-13	SLO-1	Determination of molecular weight from colligative properties	Effect of change in concentration, temperature, and pressure	Problems on Nemst distribution law	Kinetics of hydrogen-bromine reaction: Mechanism	Open-ended problems on choice and usage of analytical instruments
3-13	SLO-2	Effect of association/dissociation on colligative properties	Le Chatelier's principle and physical equilibria	Problems on Nemst distribution law		Open-ended problems on choice and usage of analytical instruments
S 14-15	SLO-1 SLO-2	Lab 3: Determine strength of the given acid mixture by conductometric titration			Lab 12: Determine the amount of reducing sugar by DNS method	Lab 15: Practical Model Examination

Learning	1. B. R. Puri, L. R. Sharma, Madan S. Pathania, Principles of Physical Chemistry, 47th ed., Vishal Publishing Co., 2015	
Resources	2. Arun Bahl, B. S. Bahl, G. D. Tuli, Essentials of Physical Chemistry, S. Chand & Company Ltd., 2009.	

3. Douglas A. Skoog, F. James Holler, Timothy A. Nieman. Principles of Instrumental Analysis, Thomson Learning Inc., 1998

Learning Assessi	ment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Filiai Examination	i (50 % weightage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100) %	100) %	100	0 %	100	0 %	10	0 %

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.	1. Dr. Lima Rose Miranda, Anna University email: limamiranda2007@gmail.com	1. Dr. M.P. Rajesh, SRMIST 3. Dr. S. Prabhakar, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College,	2. Dr. K. Deepa, SRMIST

Cou		18CHS251T Cours		BASIC CH	i	_	ourse		S			E	Enginee	ering	Scienc	es				L 3	T 0	P 0	C 3			
	equisite	Nil		Co-requisite	Nil					gress		Nil														
	urses Offering	Department Ch	nemical Engineering	Courses	n	ata Rook	/ Codes/Standards	,	Nil	ourse	es														-	
Ours	, Oncomi	g Department on	ioniicai Engineening			utu Doon	7 Oodes/Otaridards		/ ***			1 -														
Cours	Learnin	g Rationale (CLR): The	e purpose of learning	g this course is to:					L	earni	ing				Pr	ogra	ım Lea	rning (utcor	nes (l	PLO)					
		ribe the basic principles of							1	2	3	1	2	3	4	5	6 7	8	9	10	11	12	13	14	15	
CLR-2 CLR-3		in the concepts of Stoichic ate the basics of Engineer													등		i	È								
CLR-3		are the Second law of ther					emical process		(moc	(%)	(%)	ge		Ħ	Research		1	<u>a</u>	ork		99					
CLR-5		the rate equation and read							<u>B</u>	ency	ment	wec .	s	bme	, Re	age	a) .	900	M W		inan	gu				
CLR-6	: Form	ulate the material and ene	ergy balance for proc	esses and carry o	ut thermodynar	mic and ki	netic analysis.		inking	rofici	tain	Ž.	ıalysi	evelc	Design,	S	ultur.	<u>ś</u>	Теа	ation	∞.⊤	earni				
	ourse Learning Outcomes (CLO): At the end of this course learners will be able to:								− £	ted P	led A	ering	a A	0 % L	is, D	٥	8	<u> </u>	ual 8	unica	t Mgt	ng L	-	2	- 3	
Cours	urse Learning Outcomes (CLO): At the end of this course, learners will be able to:									Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, I	Modern Tool Usage	Society & Culture	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PS0 - 1	- OSA	- OSd	
CLO-1	1: Do unit conversions and stoichiometric calculations								1	90	85	H	Н	-		-			١.		-	-	-	-		
CLO-2	: Perfo	Perform material balance for different process								80	75	Н	Н	-				-	-	-	-	-	Н	-	-	
		alculate the heat and work requirement for processes								80		Н	Н	-	-	_	- .		-	-	-	-	Н	-	-	
		Analyze the feasibility of processes Write the basic rate equation and basic design of ideal gas								75 80		H	H	-		-			-	-	-	-	H	-	-	
		e material and energy bala			s parameters a	and kinetic	parameters.		2	80		H		-		-		-	-	-	-	-	Н	М	-	
Duration	n (hour)	9		•	9			9		•				9							9)	•	·		
	SLO-1	Units and dimensions	F	- -undamentals of s	toichiometry		Chemical Engineeri	ng Then	modyn	amics	s I	Ideal Gas Processes							Basic Terminology in reaction kinetics – Reaction rate							
S-1	SLO-2	Unit conversions		imiting reactant, e. conversion, selecti			System, surroundin Energy, Heat, Intern								nically			Facto equa		ecting	action rate, Rat					
S-2	SLO-1	Problems solving on unit	conversions	Problems solving or eactant			Intensive and Exten	sive pro	perties	3		Problems						Cond Equa		ion –L	Deper	ndent t	erm c	of a R	Rate	
3-2	SLO-2	Problems solving on unit	conversion	Problems solving of selectivity	on conversion a	ind	State and path func					Problems						Rate reac		ant, o	rder a	and mo	olecula	arity	of	
S-3	SLO-1	mole, mole fraction (or pe fraction (or percent)	ŕ	Introduction to ma			First Law of Thermo Mathematical staten	,	cs-			Statement Thermody		aw of			Clas	sificati	on of	Reac	tions					
	SLO-2	Problems solving on mol mass fraction	L	Steady state and u balance		material	Limitations of First L			dynaı									sificati							
S-4	SLO-1	concentrations		material balance -			Reversible process,		rium			Concept o						_				ate Ac			~	
	SLO-2	molarity, molality, normali	1 11	Problems solving o			Types of Equilibrium					Mathemat				ropy						ate Ac deper				
S-5	SLO-1	Density calculation		Problems solving	on drying		Energy balance for	closed s	system		1	Problems	solving	g on er	itropy					,		s equa		, 011		
3-3	SLO-2	Problems solving on dens	sity calculation F	Problems solving o	on drying with re	ecycle	Energy balance for	closed s	system		I	Problems	solving	g on								deper s equa		y on		
S-6	SLO-1	concentrations		material balance -			Reversible process,		rium			Concept o		1.7								ate Ac				
	SLO-2	molarity, molality, normali	1 11	Problems solving o	on arying with re	есусіе	Types of Equilibrium	7				Mathemat Entropy cl					lergoin		iems -	- 10 C	alcula	ate Ac	iivatio	n En	ergy	
S-7	SLO-1 Problems solving on molarity, molality and normality Problems solving on extraction Derivation for continuous problems.							ant volu	me pro	cess	es a	a mechan closed sys	cal rev tem	versible	e proce	ss in	a	Read	tor de	sign -	basic	S				
							Derivation for consta	Entropy change of an ideal gas undergoing a mechanical reversible process in a closed system					ideal	eal reactors for single												

	SLO-1	Problems solving on Normality	material balance - Crystallization		Problems solving on entropy change of an ideal gas	
S-8	SLO-2 Problems s	Problems solving on ppm		Heat capacity: Derivation for heat capacity at constant volume and constant pressure processes	Problems solving on entropy change of an ideal gas in a closed system	Design of Ideal Batch Reactor
	SLO-1		redicting P-V-T properties of gases using Problems solving on crystallization with leal gas law		Problems solving on entropy change of system	Space-Time and Space -velocity
S-9 SI O-2 Pro				Energy Balance for Steady state flow processes	I I nira I aw of I nermoavnamics	Steady state mixed flow and plug flow reactor

ſ	Lagraina	1. David M. Himmelblau, Basic Principles and Calculations in Chemical Engineering, 6th ed., Prentice-Hall of	3. Smith, J.M., Van Ness, H.C., Abbott, M.M., Introduction to Chemical Engineering Thermodynamics, 6th ed.,,
_ I.	Learning	India,1998	McGraw Hill International Edition, 2001
ľ	Resources	2. Bhatt B.I., Vora S.M., Stoichiometry, 3rd ed., Tata McGraw-Hill Publishing Company, 1996	4. Octave Levenspiel, Chemical Reaction Engineering, 3 rd ed., John Wiley & Sons India, 2011

Learning Ass	sessment											
	Bloom's		Final Evamination	n (50% weightage)								
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	FIIIai Examination	i (50% weightage)	
Level of Thinking		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %		30 %		30 %	_	30 %		30%		
Level I	Understand	40 /0	_	30 70	-	30 /0	_	30 %	-	30%	-	
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%		
Level 2	Analyze	40 /0	-	40 //	-	40 /0	-	40 /0	,	40%	-	
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%		
Level 3	Create	20 70	-	30 70	-	30 /0	-	30 %	,	30%	-	
	Total	100	0 %	100 %		10	0 %	100) %	100 %		

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1 Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.	1. Dr. Lima Rose Miranda, Anna University email: limamiranda2007@gmail.com	1. Mr. K. Selvam, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College,	2. Ms. S. Kiruthika, SRMIST

Course Code	18CHS252T	Course Name		CHEMICAL E	NGINEERIN	G PRINCIPLES	ourse tegory	S		Engineering Sciences	L 3	T 0	P 0	C 3
Pre-requis Courses	ite _{Nil}			Co-requisite Courses	Nil		Progre Cour	ssive ses	Nil					
Course Offe	ring Department	Chemic	al Engineering			Data Book / Codes/Standards	Nil							
									-					
Course Lear	Course Learning Rationale (CLR): The purpose of learning this course is to					Lear	ning		Program Learning Outcomes (PLO)				

Course O	te Offering Department Chemical Engineering Data Book / Codes/Standards																					
Course L	rse Learning Rationale (CLR): The purpose of learning this course is to:										F	Progr	am L	earni	ing O	utcon	nes (F	PLO)				
CLR-1:	LR-1: Describe the various modes of heat transfer and evaluate the rate of steady state heat transfer						3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Explain and analyze the ba	sic concepts of natural and forced c	onvection as applied	to various flows and geometry																		
CLR-3:	calculate mass transfer rate) (E	(%)	(%	0			arch			Sustainability		~						
CLR-4:		lrying, different types of driers and c		for different drying periods	(Bloom)	5	Attainment (%)	Knowledge		Development	Rese	0		tain		Work		Finance				
CLR-5:		ation and various types of distillation			9	Proficiency	ig i	JWC	<u>.v</u>	obu	, R	age	Ð	Sus		E		.ii	earning			
CLR-6:	Introduce the basic principle	es of heat and mass transfer proces	ses, and its applicat	ions	Thinking	ofic	tai	호	Analysis	s ve	Design,	ı ĭ	Culture	∞		Team	ţį	∞ŏ	aL			
	Course Learning Outcomes (CLO): At the end of this course, learners will be able to:					Expected	Expected	Engineering	Problem An	Design & De	Analysis, De	Modern Tool	Society & Cl	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long Le	PS0 - 1	PSO - 2	PSO - 3
CLO-1:	Calculate the rate of heat to	ansfer, and analyze steady state he	at conduction.		2	80	75	H	Н	-	-	-	-	-	-	-	-	-	-	Μ	М	-
CLO-2:	Apply the basic concepts ar	nd calculate the heat transfer coeffic	ient		2	80	75	Н	Н	-	-	-	-	-	-	-	-	-	-	Μ	М	-
CLO-3:	CLO-3: Use mass transfer principles to solve simple diffusion problems						70	Н	Н	-	-	-	-	-	-	-	-	-	-	Μ	Μ	-
CLO-4:	CLO-4: Calculate drying time for different types of dryer					80	70	Н	Н	Н	-	-	-	-	-	-	-	-	-	М	М	-
CLO-5:	.0-5: Differentiate the various types of distillation and the basics of extraction					80	75	Н	Н	-	-	-	-	-	-	-	-	-	-	М	-	-
CLO-6:	O-6: Explain the basic principles of heat and mass transfer processes, and its applications					80	75	Н	Н	М	-	-	-	-	-	-	-	-	-	М	М	-

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Introduction to various modes of heat transfer	Concept of heat transfer by convection. Natural and forced convection	Introduction to Mass Transfer operations	Introduction, Importance of drying in processes	Introduction to Distillation, principle
	SLO-2	Concept of rate of heat transfer, heat flux.	Newton's law of cooling	Diffusion, Types, Ficks I law of Diffusion.	principles of drying, wet Basis, dry basis	Raoult's law
S-2	SLO-1	Concept of resistance to heat transfer	Application of dimensional analysis for natural convection	Steady – state molecular diffusion in fluids at rest and in laminar flow: molecular diffusion in gases.	Free moisture, equilibrium moisture, bound and unbound moisture	relative volatility
	SLO-2	Fourier's law of heat conduction	Significance of dimensionless numbers used in natural convection	Molecular diffusion in gases: steady state diffusion of A through non-diffusing B	Mechanism of drying	Methods of distillation: With reflux and without reflux condition
S-3	SLO-1	Thermal conductivity	Application of dimensional analysis for forced convection	Problems solving using molecular diffusion	Constant and falling rate period	Types of distillation
	SLO-2	Steady state heat conduction through a plane wall	Significance of dimensionless numbers used in forced convection	Gas phase equimolar counter diffusion. Diffusion in Multicomponent gas mixtures	Rate of drying curve, critical moisture content	Mechanism of batch distillation
	SLO-1	Tutorial	Empirical correlations for natural convection	Problems solving using equimolar counter diffusion	Calculation of drying time under constant drying conditions: constant rate period	Rayleigh's equation
S-4	SLO-2	Steady state heat conduction through a hollow cylinder	Problems solving using empirical correlations	Problems solving on diffusion in multicomponent gas mixtures	Calculation of drying time under constant drying conditions: falling rate period. Total drying time	Mechanism of flash distillation
S-5	SLO-1	Problems solving on conduction	Problems solving using empirical correlations	Molecular diffusion in liquids: steady state diffusion of A through non-diffusing B	Problems solving using constant rate of drying condition	Operating line equation for flash distillation
3-3	SLO-2	Problems solving on conduction	Empirical correlations for forced convection	Problems solving using molecular diffusion	Problems solving using falling rate of drying condition	Mechanism of steam distillation
S-6	SLO-1	Steady state heat conduction through a composite plane wall	Problems solving using empirical correlations	Problems solving using molecular diffusion	Problems solving using total drying rate of drying condition	Mechanism of vacuum distillation
	SLO-2	Problems solving on composite plane wall	Problems solving using empirical	Liquid phase equimolal counter diffusion		Mechanism of extractive distillation

			correlations		dryers	
S-7		Problems solving on hollow cylinder	Individual and overall heat transfer coefficient concept	Problems solving on equimolar counter diffusion	equipments for batch and continuous drying processes	Mechanism of azeotropic distillation
SLO-2	SLO-2	Problems solving on concentric hollow cylinder	Fouling coefficients	Problems solving on equimolar counter diffusion	Working principle of tray drier	Comparison between extractive and azeotropic distillation
S-8	SLO-1	Steady state heat conduction through coaxial cylinders	Problems solving on individual heat transfer coefficient	Effect of temperature and pressure on diffusivity	Working principle of rotary drier	Mechanism of Continuous distillation
3-8	SLO-2	Problems solving on coaxial cylinder		Problems solving on effect of temperature and pressure on diffusion	Working principle of spray drier	General principles of extraction
S-9	SLO-1	Problems solving on coaxial cylinder	Problems solving on overall heat transfer coefficient	Introduction to Mass transfer coefficients	Working principle of fluidized bed drier	Choice of a solvent
3-9	SLO-2	Problems solving on coaxial cylinder	Problems solving on overall heat transfer coefficient	Types of mass transfer coefficients	Concept of freeze drying	Working principle of mixer-settler

Learning	
Resource	5

- 1. Warren L. McCabe, Julian C. Smith, Peter Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw Hill Education, 2014
- Christie John Geankoplis, Transport Processes and Separation Process Principles (Includes Unit Operations), 4th ed., Pearson India, 2015
- 3.Binay K Dutta, Heat Transfer: Principles and Applications, PHI Publishers, Delhi,2010 4.Robert E. Treybal, Mass-Transfer Operations, 3rd ed., McGraw Hill Education, 2012
- 5. Binay K. Dutta, Principles of Mass transfer and Separation Processes, Prentice-Hall of India, 2007

Learning Asses	sment										
	Bloom's			Final Evamination	n (50% weightage)						
	Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4	(10%)#	Filiai Examination	ii (50 % weigiilage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		30 %		30%	
Level I	Understand	40 70	-	30 76	-	30 /0	-	30 //	-	30%	-
Level 2	Apply	40 %	_	40 %		40 %	_	40 %		40%	
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100 %		10	0 %	10	0 %	10	0 %

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
1 Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.	1. Dr. Lima Rose Miranda, Anna University email: limamiranda2007@gmail.com	1. Ms. E. Kavitha, SRMIST								
2. Mr. S. T. Kalaimani, CPCL, Chennai	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College,	2. Ms. E. Poonguzhali, SRMIST								

Course Code	18CHS204T	Course Name		ENGINEER	ING THERM	IODYNAMICS	urse egory	S		Engineering Sciences	L 3	T 0	P 0	C 3
Pre-requis Courses	INII			Co-requisite Courses	Nil		Progres	ssive ses	Nil					
Course Offe	ring Department	Chemi	cal Engineering			Data Book / Codes/Standards	Nil							
Course Learning Deticate (CLD). The surgest of learning				a this source is to:			Laar			Droggem Loogning Outcomes (DLO)	`			

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng					Prog	ıram l	_earn	ing O	utcon	nes (P	LO)				
CLR-1: Describe the basic concepts and laws of thermodynamics, as applied to various systems and processes	1	2	3		2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Illustrate the PVT behavior and various equation of state.										,								
CLR-3: Explain the second law of thermodynamics and the concept of entropy	-	_					뒫			Sustainability								
CLR-4: Demonstrate the thermodynamic properties and relations, and thermodynamic diagrams	(Bloom)	%)	t (%		5	tu	Sea			aina		Work		8				
CLR-5: Elucidate the applications of thermodynamics concepts.	<u>=</u>	enco	neu	-	<u>d</u>	, l ž	, Re	age	0	usta		٦.		Finance	Б			
CLR-6: Elucidate the concept of Energy balance and its applications	i i i	Proficiency (%)	Attainment (%)		Niowiedge Sysie	Develonment	Design,	- NS	ulture	∞		Team	on O	i⊑ ≪	earning			
	Thinking	P			work gray			Tool Usage	& Cu	ent		∞ _	icat					
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of ⁻	Expected	Expected			Design &	Analysis,	Modern 7	Society 8	Environm	Ethics	Individual &	Communication	Project Mgt.	Life Long	PS0 - 1	PSO - 2	PSO - 3
CLO-1: Comprehend the basic concepts and laws of thermodynamics as applied for different processes.	1	90	85	I	<i>l</i> -	L	Н	Н	Н	М	-	-	-	-	Н	-	-	-
CLO-2: Understand the volumetric behavior and calculate the properties using equation of state.	1	90	85	1	l N	! M	M	Н	Н	М	-	Н	-	-	Н	-	-	-
CLO-3: Comprehend the second law of thermodynamics and the concept of entropy	1	90	85	I	l N	l M	M	Н	Н	Н	Н	L	L	Н	М	М	L	Μ
CLO-4: Derive the thermodynamic properties and relations and interpret the thermodynamic diagrams	2	90	85	I	l L	L	L	L	М	Н	L	L	L	L	М	М	L	М
CLO-5: Apply the thermodynamic principles to various flow processes and refrigeration.	2	90	85	1	l L	M	L	М	L	L	L	L	L	L	М	М	L	М
CLO-6: Apply the conservation of energy in various chemical engineering processes.	2	90	85	1	ł L	L	L	L	М	Н	L	L	L	L	М	М	L	Μ

Durat	ion (hour)	9	9	9	9	9
S-1	SLO-1	Basic concepts of Engineering Thermodynamics.	PVT behavior of pure substances: PT diagram	Introduction to second law of thermodynamics	Fundamental Property relations for a homogeneous fluid of constant composition in a closed system	Duct flow of compressible fluids.
3-1	SLO-2	Work, heat and energy. Internal energy	PV diagram	Statements of second law of thermodynamics	Fundamental Property relations for a homogeneous fluid of constant composition in a closed system	Pipe flow
S-2	SLO-1	Thermodynamic properties and its classification.	Ideal gas, equations for process calculations (mechanically reversible process in closed system)	Heat Engine, Heat pump	Maxwell's relations and property estimation.	Nozzles
	SLO-2	Process and its characterization	Isothermal process, isobaric process, isochoric process	Carnot's theorem	Maxwell's relations and property estimation.	Throttling process
S-3	SLO-1	Equilibrium	Adiabatic process, and polytropic heat capacity	Carnot's cycle	Enthalpy and entropy as functions of T and P	Turbines
3-3	SLO-2	Reversible process	Problems solving on PVT behavior	Ideal-gas temperature scale	I P	Compression processes: Compressors
S-4	SLO-1	First law of thermodynamics	Problems solving on PVT behavior	Carnot's equation	Internal energy and entropy as functions of T and V.	Pumps
3-4	SLO-2	Energy balance for closed systems	Introduction to cubic equations of state:	Concept of entropy	Internal energy and entropy as functions of T and V.	Introduction to ejectors
S-5	SLO-1	Problem solving on closed systems	Vander Waals equation	Entropy changes of an ideal gas in a closed system	Two-phase systems: temperature dependence of the vapor pressure of liquids	Power cycles
3-3	SLO-2	Problem solving on closed systems	Redlich/Kwong equation	Entropy changes of an ideal gas in a closed system	Two-phase systems: temperature dependence of the vapor pressure of liquids	Rankine cycle.

S-6	SLO-1	Constant volume processes and Constant pressure processes.	Problems solving on equation of state	Problems solving on Carnot's equation	Problems solving on fundamental properties	Otto engine
3-0	SLO-2	Enthalpy, heat capacity	Problems solving on equation of state	Problems solving on entropy	Problems solving on fundamental properties	Diesel engine
S-7	SLO-1	Problems solving on enthalpy	Virial equations of state,	Problems solving on entropy	Thermodynamic diagrams.	Principles of refrigeration
3-1	SLO-2	Problems solving on heat capacity	Application of the virial equations	Mathematical statement of the second law	Joule Thomson expansion	Heat Pump
S-8	SLO-1	Energy balance for steady-state flow processes	Problems solving using Virial equation	Entropy balance for open systems	Joule Thomson expansion - applications.	Carnot refrigerator
3-0	SLO-2	Energy balance for steady-state flow processes	I Problems solving Lising Virial equation	Statement of the third law of thermodynamics.	Liquefaction processes	Vapor-compression cycle
S-9	SLO-1	Problems solving for open system	Theorem of corresponding states, acentric factor	Problems solving using third law of Thermodynamics	Linde liquefaction process	Absorption refrigeration
3-9		Problems solving for open system	Problems solving using acentric factor	Problems solving using third law of Thermodynamics	Claude liquefaction process	Absorption refrigeration

Learning Resources	1. Smith, J.M., Van Ness, H.C., Abbott, M.M., Introduction to Chemical Engineering Thermodynamics, 7th ed., McGraw Hill	2. Rao .Y.V.C, Chemical Engineering Thermodynamics, University Press (I) Ltd.,1997
-----------------------	---	--

Learning Ass	sessment										
	Bloom's		Final Examination (50% weightage)								
	Level of Thinking	CLA –	1 (10%)	CLA – :	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	FIIIai Examinatio	ii (50% weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100	0 %	10	0 %	100	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.	1. Dr. Lima Rose Miranda, Anna University email: limamiranda2007@gmail.com	1. Mr. V. Ganesh, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College,	2. Dr. S. Sam David, SRMIST

Cou		18CSS201J	Course Name	ANALOG AND DIGITAL ELECTRONI	cs		ourse tegor		S				Er	gineer	ing So	eiences	3				L 3	T 0	P 2	C 4
	equisite urses	Nil		Co-requisite Courses				ogress		Nil														
		Department	Computer Science ar		/ Codes/Standards		Nil	ourse																
Course	e Learnin	g Rationale (CLR	The purpose of learning	ng this course is to:			L	_earni	ing	Program Lea					Learr	earning Outcomes (PLO)								
			of analog electronics				1	2	3		1	2	3	4 5	6	7	8	9	10	11	12	13	14	15
	CLR-2: Identify the applications of digital logic families CLR-3: Design the combinational and sequential logic circuits													딛		oility								
CLR-4	CLR-4: Implement the combinational and sequential logic circuits						3loom	%) Kc	nt (%)		adge		nent	esea		tainat		Nork		nce				
CLR-5 CLR-6			ounters and registers eal time scenarios				ding (E	ficien	inme		nowle	ysis	elopn	ign, r	Culture	& Sus		eam	E	Fina	rning			
OLIV-0	· Othizo	the concepts in it	car time scenarios				Thirk	d Pro	d Atta		ring K	Anal	& Dev	Tool I	S Cul	ment &		al & T	nicatio	Mgt. 8	g Lea			
		` `	<i>'</i>	rse, learners will be able to:			Level of Thinking (Bloom)		Expected Attainment (%)		Engineering Knowledge	Problem Analysis		Analysis, Design, Research Modern Tool Usage	Society & (Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO-2	PSO - 3
			digital components in circu nal and sequential logic cir				2				H	Н		 	-	-	-	-	-	-	-	-	-	-
CLO-3	: Apply	gates and flip-flop	os in circuit design	cuns			2	75	70		Н	-	Н	Н -	-	-	-	-	-	-	-	-	-	-
		imulation package HDL code and sy					2		80 75		H	H -		Н Н Н Н		-	-	-	-	-	Н	-	-	-
			ad board and demonstrate	and FGPA			3				-	-		т тт Н -	Н		-	Н	-	Н	-	-	-	
		Introduction	to Analog electronics	Logic Families	Combinational L	ogic	Circ	uits		Sequential Logic circuits						F	Regist	ters &	& Cou	nters				
Duratio	on (hour)		15	15	15								15							1	-			
S-1	SLO-1	Characteristics of configurations) ar	FBJT (CB, CE and CC nd DC biasing	Transistor as a Switch	Quine-McCluskey minim	nizati	ion te	chniqu	ue	Sequential circuits, Latch and Flip-Flops				ps	Registers and Types of Registers- Serial In - Serial Out, Serial In - Parallel out									
0-1	SLO-2	BJT Uses		Characteristics of Digital ICs	Combinational Circuits	mbinational Circuits RS Flip-Flops,						Parallel In - Serial Out, Parallel In - Paralle Out				allel								
S-2	SLO-1	Characteristics ar Common Drain a	nd uses of JFET (CS, nd Common Gate)	DL, RTL	Multiplexer					Gated Flip-Flops						Universal Shift Register								
0.2	SLO-2	Differences betwe	een BJT and JFET	DTL,TTL	Demultiplexer					Edge-	trigger	ed RS	S FLIP	FLOP			Applio	cation	s of S	hift R	egiste	rs		
S-3	SLO-1	Transistor Amplifi	ier: CE amplifier	ECL	Decoder					Edge-	trigger	ed D I	FLIP-F	LOPs			Synci	hrono	us Co	unter	S			
0-3		•	ier: CC ,CB amplifier	IIL	Encoder					Edge-	trigger	ed T F	FLIP-F	LOPs			Asyno							
S 4-5		Lab 1: Design and Wave Rectifiers u		Lab 4: Design and implement transistor as a switch	Lab 7: Design and imple converters using logic ga					Lab 1	0: HDL	imple	ementa	tion of	Flip-F	Тор					SO, SI sing Fl			and
	SLO-2	Power Amplifiers:		Characteristics and uses of MOSFET (CS, Common drain and Common gate)	Binary adder		Siriu	.30011		Edge-	trigger	ed JK	FLIPE	LOPs							Modu			
5-6	S-6 SLO-2 Class B, AB and C MOSFET Logic			,	Binary adder as subtrac	tor					aster-si						Deca	de Co	unter	S				
S-7	SLO-1 Operational Amplifiers: Ideal v/s practical Op-amp PMOS,NMOS			Carry look ahead adder									Seque State ta			Presettable counters								
3-1	SLO-2 Performance Parameters CMOS Logic			Decimal adder	simal adder State Diagram				Counter Design as a Synthesis problem															
S-8	SLO-1 Applications: Peak detector, Comparator, Inverting, Non-Inverting Amplifiers Propagation delay			Magnitude Comparator						- Seven segment Display and A Digital Clock.														
3-0	SLO-2 Problem solving session Problem solving session				Problem solving session)				Problem solving session Problem solving session				on										

S 9-10	SLO-1 SLO-2			Lab 8: Design and implement using simulation the combinational circuits	Lab 11: Design and implement using simulation; Synchronous sequential circuits	Lab 14: HDL for Registers and Counters
S-11		Effect of positive and Negative Feedback Amplifiers,	Tristate Logic	Read Only Memory	Asynchronous sequential circuit	D/A Conversion
3-11	SLO-2	Analysis of Practical Feedback Amplifiers	Tristate Logic Applications	Arithmetic Logic Unit	Transition Table	Types of D/A Converters
S-12	SLO-1	Oscillator Operation	FPGA Basics	Programmable Logic Arrays	State table	Problem
3-12	SLO-2	Crystal Oscillator	Introduction to HDL and logic simulation	HDL Gate and Data Flow modeling	Flow table	A/D Conversion
S-13	SLO-1	Overview of UJT, Relaxation Oscillator,555 Timer	HDL System primitives, user defined primitives, Stimulus to the design	HDL Behavioral modeling	Analysis of asynchronous sequential circuits	Types of A/D conversion
3-13	SLO-2	Problem solving session	Problem solving session	Problem solving session	Problem solving session	Problem solving session
S		Lab 3: Design and implement using simulator a rectangular waveform	Lab 6: HDL Program to realize delay and	Lab 9: HDL program for combinational	Lab 12: HDL program for Sequential	Lab 15: Design and Implement an A/D
14-15	SLO-2	generator (Op-Amp relaxation oscillator)	stimulus in simple circuit	circuits	circuits	Converter.

	1. Robert L. Boylestad& Louis Nashelsky, Electronic Devices & Circuit Theory, 11th ed., Pearson, 2013	4. Douglas A, G.K. Kharate, Digital Electronics, Oxford university Press, 2012
Learning	2. Anil K Maini, Varsha Agarwal: Electronic Devices and Circuits, Wiley, 2012	5. M. Morris R. Mano, Michael D. Ciletti, Digital Design: With an Introduction to the Verilog HDL, VHDL, and
Resources	3. Paul Tuinenga, SPICE: A Guide to Circuit Simulation and Analysis Using PSpice, 3rd ed., Prentice-Hall,	SystemVerilog, 6 th ed., Pearson, 2018
	1995,	6. A.P. Malvino, Electronic Principles,7th Edition, Tata Mcgraw Hill Publications, 2013

Learning Assess	ment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(50% woightage)	
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	Final Examination (50% weightage)		
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Total	100	0 %	100	0 %	100	0 %	100	0 %	10	0 %	

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers			
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts	
1. Dr. Devi Jayaraman , Virtusa, devij@virtusa.com	1. Dr. J. Dhalia Sweetlin, Anna University, jdsweetlin@mitindia.edu	1. Dr. Annapurani Panaiyappan.K, SRM	MIST
2. Dr. Viswanadhan, Teken BIM Technologies, viswanathan_alladi@yahoo.com	2. Dr. B. Latha, Sairam Engineering College, hod.cse@sairam. edu.in	2. Dr. D. Anitha, SRMIST	3. Ms. Kayalvizhi J, SRMIST

Course Code	18CSS202J	Course Name	COMPUT	ER COMMUNICATIONS	Course Category	S	Engineering Sciences
Pre-requis Courses	Nii		Co-requisite Courses	Nil	Progre Cour		Nii
Course Offe	ring Department	Computer	Science and Engineering	Data Book / Codes/Standards	Nil		

Comparer Colonec	but book / Coucsionalida de	1 411																	
Course Learning Rationale (CLR): The purpose of learning this course is to:			Learning Program Learning Outcomes (PLO)																
CLR-1: Understand the basic services and concepts related to Internetwork			2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Understand the layered network architecture											>-								
CLR-3: Acquire knowledge in IP addressing				<u></u>				arch			illiq								
CLR-4: Exploring the services and techniques in physical layer				ıt (%)	dae		ent	ese			stainability		Work		ce				
CLR-5: Understand the functions of Data Link layer					Knowlec	S	elopment	, <u>R</u>	Usage	go.	Sust		eam V		Finance	g			
CLR-6: Implement and analyze the different Routing Protocols				Attainment	X	Analysis	Se Se	sign	Ns	Į.	∞ ∞		Lea	.e.	∞ŏ	earning			
<u></u>		of Thinking	d Proficiency	d At	ring	Ä	& De	, De	T00	S S	men		<u>∞</u>	nica	Mgt.				က
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:			Expected	Expected	Engineering	Problem	Design	Analysis	Modern	Society	Environ	Ethics	Individual	Communication	Project	Life Long	PS0 - 1	PS0-2	PS0 - 3
CLO-1: Apply the knowledge of communication		2	80	70	Н	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CLO-2: Identify and design the network topologies		3	85	75	Н	-	Н	-	-	-	-	-	-	-	-	-	М	-	-
CLO-3: Design the network using addressing schemes			75	70	Н	Н	-	-	-	-	1	-	-	-	-	-	М	-	М
CLO-4: Identify and correct the errors in transmission				80	Н	Н	-	-	-	-	-	-	-	-	-	-	-	-	-
CLO-5: Identify the guided and unguided transmission media			85	75	Н	-	-	Н	-	-	-	-	-	-	-	-	-	-	-
CLO-6: Design and implement the various Routing Protocols			80	70	Н	Н	Н	Н	Н	-	1	-	-	-	-	-	М	-	М

Durati	ion (hour)	12	12	12	12	12			
S-1	SLO-1	Evolution of Computer Networks, Network categories	IPv4 Addressing, Address space	Line coding: Unipolar scheme	Framing, Flow Control Mechanisms	Forward Techniques, Forwarding Process			
3-1	SLO-2		Dotted Decimal Notation. Classful Addressing	Polar schemes, Bipolar schemes	Sender side Stop and Wait Protocol, Receiver side Stop and Wait Protocol	Routing Table			
S-2	SLO-1	Circuit Switching and Packet Switching	Subnet Mask	Amplitude shift keying, Frequency shift keying	Goback N ARQ, Selective Reject ARQ	Intradomain Routing and Interdomain Routing			
3-2	SLO-2	Protocols and standards	Subnetting	Phase shift keying, Pulse code Modulation, Delta Modulation	CRC, Checksum	Static Routing and Dynamic Routing			
S 3-4	SLO-1 SLO-2		Lab 4: Router Configuration (Creating Passwords, Configuring Interfaces)	Lab 7: RIP v1	Lab 10: EIGRP Authentication and Timers	Lab 13: Examining Network Address Translation (NAT)			
S-5	SLO-1	Layers in the OSI model, Functions of Physical layer, data link layer	Special Addresses	Multiplexing: FDM	Types of Errors	Distance Vector Routing, Problem Solving			
3-3	SLO-2	Functions of Network layer, Transport layer	Special Addresses	Multiplexing: FDM	Types of Errors	Link state Routing			
S-6	SLO-1	Functions of Session, Presentation layer and Application layer	Classless Addressing	TDM	Forward Error correction	Problem solving			
3-0	SLO-2	TCP/IP protocol suite , Link layer protocols	Problem Solving	WDM	CSMA, CSMA/CD	Path vector Routing			
S 7-8	SLO-1 SLO-2	Lab 2: Subnetting (VLSM)	Lab 5: Basic Switch Configuration: Vlan	Lab 8: RIP v2	Lab 11: Single-Area OSPF Link Costs and Interface	Lab 14: BGP Configuration			
S-9	SLO-1	Network layer protocols	Private Address, NAT, Supernetting	Guided Media: Twisted Pair, Coaxial Cable Fiber optic cable	Hamming Distance	RIP v1,RIP v2			
3-9	SLO-2	Transport layer protocols	Hub, Repeaters, Switch	Unguided media: Radio waves	Correction Vs Detection	OSPF			
S-10	SLO-1	Serial and Parallel Transmissions	Bridge	Microwaves	HDLC	EIGRP			

	SLO-2	Addressing	Structure of Router	Infrared	PPP	BGP
S 11-12		Lab 3: LAN Configuration using straight through and cross over cables	n an h' Static and Detault Routing	, , , , , , , , , , , , , , , , , , , ,	Lab 12: Multi-Area OSPF with Stub Areas and Authentication	Lab 15: Configuring Static and Default Routes

Learning	1.	Behrouz A. Forouzan, "Data Communications and Networking" 5th ed., 2010	3.	William Stallings, Data and Computer Communications, 9th ed., 2010
Resources	2.	Bhushan Trivedi," Data Communication and Networks" 2016	4.	Todd Lammle, CCNA Study Guide, 7th ed. 2011

Learning Assess	sment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Filiai Examination	ii (50% weightage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	% 15% 15%			15%	15%
	Total 100 % 100 % 100 % 100 %								10	0 %	

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers			
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts	
1. Dr. Viswanadhan, Teken BIM Technologies, viswanathan_alladi@yahoo.com	1. Dr. J. Dhalia Sweetlin, Anna University, jdsweetlin@mitindia.edu	1. Mrs. T. Manoranjtham , SRMIST	
2. Dr. Devi Jayaraman , Virtusa, devij@virtusa.com	2. Dr. B. Latha, Sairam Engineering College, hod.cse@sairam. edu.in	2. Mr. J. Godwin Ponsam, SRMIST	Dr. J.S. Femilda Josephin, SRMIST

Cours		18ECS201T	Course Name			CONTROL S	YSTEMS			ourse					Eng	gineeri	ng So	cience	es .				L 3	-	P 0	C 3
	quisite irses	Nil			Co-requisite Courses	18ECC1047	-			gress ourse		lil														
Course	Course Offering Department Electronics and Communication Engineering Data Book / Codes/Standards Nil																									
Course	Course Learning Rationale (CLR): The purpose of learning this course is to: Learning Program Learning Outcomes (PLO) Learning 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15																									
CLR-1:	Learn	about mathema	tical modeling	techniques of med	chanical and el	ectrical syster	ns		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Impar	t knowledge abo	ut the transie	nt and steady state	e error and ana	lysis												>							ent	ch Ch
CLR-3:				stem in time doma		cus technique	9		=						년 년			<u>≅</u>							Project Management 35	Research
CLR-4:				nain analytical tecl					lool	/ / /	t (%	ge		ent	See			aina		/ork		99	١.	=	an ag	Re
CLR-5:				er for specific appli	cations				3 (B	enc	neu	wle	S	Development	~ ~	age	Φ	snst		S E		inan	ĝ.	euo :	t ⊠	Analyze &
CLR-6:	Impar	t knowledge on d	controller tunir	ng methods					, i	ofici	tai	Ā	alysi	, kelc	sign	l Us	Culture	∞ ∞		Tea	ion	8 Ε	arni	t t	ole	alyz
									<u>i</u>	d Pr	d At	ring	Añ	~ D	ä	Tool Usage	∞ŏ	nen		<u>∞</u>	ica	√gt.	g Le	ᅩᆮ	≅	3: An
Course	Learnin	g Outcomes (CI	L O): At the e	end of this course,	learners will be	able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design &	Analysis, Design, Research	Modem	Society	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	9 1	Achiever	PSO – 2: Technique	PSO - 3
CLO-1:	Deter	mine Transfer fu	nction of a sys	stem by mathemat	ical modeling,	block diagran	reduction and signa	al flow graphs	1,2	80	80	H	H	H	Ĥ	1	-	-	-	-	-	-	Н	Н	-	H
CLO-2:	Identi	fy the standard to	est inputs, tim	ne domain specifica	ations and calc	ulate steady s	state error		1,2	85	80	Н	Н	Н	Η	Н	-	-	-	-	-	-	Н	Н	-	Н
CLO-3:	Plot a	root locus curve	and analyze	the system stability	using Routh a	rray			2,3	90	85	Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	Н	-	Н
CLO-4:	Analy	ze the frequency	domain spec	ifications from bod	e and polar plo	ts			2,3	90		Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	Н	-	Н
CLO-5:				n for specific appli	cation				1,2,3			Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	Н	Н	Н
CLO-6:	Identi	fication of contro	ller parameter	s and tuning					1,2,3	85	85															
	Duration (hour) 9 9 9 9																									
	SLO-1 Open and closed loop control system Standard test signals and their expression Poles and zeros of											Frequ	ency (lomair	n ana	lysis			Conti	rollers	s-Sign	ifican	ce an	d Nee	ed	

	ration hour)	9	9	9	9	9
	SLO-1	Open and closed loop control system	Standard test signals and their expression	Poles and zeros of a system	Frequency domain analysis	Controllers-Significance and Need
S-1	SLO-2	Feedback and Feed forward control systems	Type number and order of a system	Pole zero plot and concept of s plane	Frequency domain specifications	Stability of closed loop systems
S-2	SLO-1	Transfer function of a system and basis of Laplace transforms	Transfer function of First order system for Step and ramp signal	Proper, Strictly Proper and Improper systems	Frequency domain plots, minimum and non minimum phase systems	SISO and MIMO control systems
3-2	SLO-2	Need for mathematical modeling	Transfer function of First order system Impulse and parabolic signal	Characteristic equation	Correlation between time and frequency domain	Types of controllers-ON-OFF,P,I,D
S-3	SLO-1	Representation of mechanical translational systems using differential equation and	General transfer function of second order system	Concept of stability from pole zero location	Bode plot approach and stability analysis	Composite Controller-PI,PD and PID
	SLO-2	determination of transfer function	Identification of damping factor and classification based on it	Need for Stability analysis and available techniques	Rules for sketching bode plot	Controller parameters and tuning methods
S-4	SLO-1	Representation of mechanical rotational systems	Step response of critically damped second order system	Necessary and sufficient Condition for stability	Bode plot of typical systems	Design Specification, controller
0-4	SLO-2	and determination of transfer function	Step response of under damped second order system	Significance of Routh Hurwitz Technique	Dode plot of typical systems	configurations- ON-OFF controller
S-5	SLO-1	Conversions of Mechanical system to Electrical system	Step response of over damped second order system	Computation of Routh array	Pada plat of typical ayatama	Design Specification, controller
3-3	SLO-2	f-V and f-I electrical analogies	Step response of undamped second order system	Routh array of stable systems	Bode plot of typical systems	configurations-PID controller

S-6	SLO-1	Block diagram reduction rules and methodology	Time domain specifications and their significance	Routh array of Unstable systems	Polar plot and significance	Design of speed control system for DC motor
	SLO-2		Numerical solution	Routh array of Unstable systems	Nyquist stability criterion	11110101
S-7	SLO-1	Evaluation of transfer function using block diagram	ing block diagram Transient and steady state error analysis Root locus technique Sketching of p		Sketching of polar plot on polar graphs	Design of control system for Twin Rotor Multi input Multi output System(TRMS)
3-1	SLO-2	reduction	Static and dynamic Error coefficients Rules for sketching			with one degree of freedom
S-8	SLO-1	Signal flow graphs and evaluation of transfer	Static error constants and evaluation of	Root locus plot of typical systems	Polar plot of typical systems	Case study 1
3-0	SLO-2	function	steady state error	TOOL locus plot of typical systems	r olai piot oi typicai systems	Case study i
S-9	SLO-1	Block diagram to signal flow conversion Dynamic error constants and evaluation of Root locus plot of typical systems Possible of the control of the contro		Polar plat of typical gyptama	Case study 2	
3-9	SLO-2	DIOCA diagram to signal now conversion	steady state error	noot locus plot of typical systems	Polar plot of typical systems	Case study 2

Learning Resources		3. Gopal.M, "Control System Principles and Design", 2 nd Edition, TMH, 2002 4. Sivanandam and Deepa, "Control system Engineering using MATLAB", 2 nd edition, Vikas publishers, 2007
resources	2. Benjamin o Naci, Natematic Control System, 5 Catton, Bonn Wiley & Cons, 2010	T. Givarian and Beepa, Gonton System Engineering using Witten B., 2 Gonton, Vikas publishers, 2007

Learning Assess	ment														
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Examination	n (50% weightage)				
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Filiai Examination	i (50 % weightage)				
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember	40 %		30 %		30 %	_	30 %		30%					
Level I	Understand	40 70	-	30 70	,	30 %	-	30 /0	-	30%	-				
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%					
Level 2	Analyze	40 70	-	40 70	,	40 /0	-	40 /0	-	4070	-				
Level 3	Evaluate	20 %		30 %		30 %	_	30 %		30%					
Level 3	Create 20 % - 30						-	30%	-						
	Total 100 % 100 % 100 % 100 %								0 %	100 %					

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	Dr. T. Deepa, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	Mrs. R. Bakhya Lakshmi, SRMIST

Cou		18MES201T Course Name	ENGINEERING MECHANICS			urse egory		S				Engin	eering	g Scie	ences					L 3	T 1	P 0	C 4
	requisite ourses	Nil	Co-requisite Nil				gressi		Nil														
		g Department Mechanical Engine		k / Codes/Standards	I	Nil																	
Cours	e Learnin	ng Rationale (CLR): The purpose of lead	ning this course is to:			L	earnin	ng					Progi	ram L	.earn	ing O	utcon	nes (F	PLO)				
CLR-1			solve static equilibrium problems in engineerir	ng and its applications		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2		e theory of dry friction in Mechanical Engin	eering applications ertia in engineering problems and its applicati	iono.								5			Ϊξ								
CLR-4		e the concept of centrold and moment of the problems on kinematics and kinetics of p		UIIS		(moo	(%)	(%) t	9	g.	ju t	sear			ainab		ork		9				
CLR-5		problems on kinematics and kinetics of ri				lg (Bl	ienc	men	a division of	sis sis	opme	n, Re	sage	Ð	Susta		M W		Finance	ing			
CLR-6	: Apply	static and dynamic equilibrium of particle	s and rigid bodies		┚╽	hinkir	Profic	Attair	ž Š	nalys	Devel	Desig	ool Us	Cultu	ant &		& Te	ation	t. & I	Геаш			
Cours	e Learnin	ng Outcomes (CLO): At the end of this o	ourse, learners will be able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt. &	ife Long Leaming	- OSc	-SO - 2	PSO - 3
CLO-1	: Solve	statically determinate equilibrium problen	s in the field of Engineering			2	80	75	Н	H	М	M	М	Ĺ	Ĺ	Ĺ	L	Ľ	Ĺ	L	Ĺ	Ĺ	Ĺ
		e problems related to dry friction and analy rmine centroid and moment of inertia for co	ze machines that are functioning based on the	theory of friction		2	85 85	75 75	H		M	M	M	L	L	L	L	L	L	L	L	L	L
			curvilinear motions, solve dynamic equilibrium	problems in particles		2	80	75	H		М	М	М	L	L	L	L	L	L	L	L	L	L
			on, rotation, general plane motion, solve dyna	mic equilibrium in rigid bodi	es	2	80	75	Н		М	М	М	L	L	L	L	L	L	L	L	L	L
CLO-6	: Solve	e static and dynamic equilibrium of particle	and rigid body problems			2	75	70	Н	Н	М	М	М	L	L	L	L	L	L	L	L	L	L
Durati	on (hour)	12	12	12							1:	2							12	2			
	SLO-1	Introduction to Mechanics, classification	21 .	Centre of Gravity and Cer	itroi	ids of	lines,		Rectilinea		. , .			rm	Kinematics of rigid bodies: Translation and rotation of rigid bodies,								
S-1	020 .	mechanics	coefficient of friction	areas					elocity a												nation	of.	
	SLO-2	Fundamental concepts and principles of engineering mechanics	Angle of Friction, Angle of repose, limiting friction	Centre of Gravity and Cer				ies	Jniform v notion							angula	Fixed axis rotation - determination of angular displacement, velocity and acceleration						
	SLO-1	Concurrent forces in a plane, Coplanar forces	Equilibrium of a block resting on a rough inclined plane	Determination of centroid integration	of li	ine by	,		Curvilinea adial	ar moti	on, No	rmal,	tange	ential,		Gene	ral pla	ne m	otion				
S-2	SLO-2	Vector approach on addition, subtraction forces	of Range of force required to maintain equilibrium of block on rough inclined plane	Determination of area by	nteg	gratio	n	t	ransvers	e com _l	oonen	ts of	accele	eratio	n	Relati	ve mo	otion n	netho	od			
	SLO-1	Resolution of forces	Example problems on dry friction	Centroid of composite line	s			1	Projectile	motio	n, tern	ninolog	gy			Veloci relativ				gid bod od	lies us	sing	
S-3	SLO-2	Resultant of several concurrent forces in plane (vector approach)	Applications of friction in wedges	Centroid of composite are	as				Derivation projectile	of eq	uation	of tra	iector	y of a			ity an	alysis	of rig	gid boo	lies us	sing	
S-4	SLO-1	Tutorial on resultant of several concurren	Tutorial on dry and wedge friction	Tutorial on centroid of con	про	site li	ne and	٨	Tutorial on Projectile motion						Tutori	als or	ı velo	city a	nalysis				
F-	SLO-2	forces Equilibrium of Particle, Free body diagrar	7	area Determination of centroid	of v	olum	e hv											lative v of rigic					
S-5	SLO-1	Forces in planes, Lami's theorem	Application of friction in Ladder	integration			-	I	Relative r	notion						relativ	e acc	elerat	ion m	nethod			Ü
	SLO-2	Problems on equilibrium of particle in planes	Example problems	Determination of centroid integration			•	constrained motion re				relativ	e acc	elerat	ion m	of rigio nethod			•				
	SLO-1	Forces in space: resultant of concurrent forces in space	Application of friction in flat and V-belts, Ratio of belt tensions	Determination of centroid volume	ermination of centroid of composite Newton's second law of motion, Instantaneous cente motion D'Alembert's principle motion					nter (of rota	tion in	n plar	е									
S-6	Theorems of Pappus & G	uldir	nus			Problems			on's se	econd	law		exam										

S-7	SLO-1	Statics of rigid body, Principle of transmissibility	LADDIICATION OF TRICTION IN SCREW JACK	Determination of moment of inertia of area by integration	Principle of work and energy	Velocity analysis of rigid bodies using Instantaneous center method
3-1	SLO-2	Moment of a force, Varignon's Theorem and its applications	Terminology in screws, self-locking of screw jack	Determination of moment of inertia of area by integration	conservative forces, law of conservation of energy	Velocity analysis of rigid bodies using Instantaneous center method
S-8	SLO-1 SLO-2	Tutorials on Moment of force and couple system	Tutorial on Screw and belt friction	Tutorial on area moment of Inertia of composite section	Tutorial on principle of work energy	Tutorial on Velocity analysis of rigid bodies using Instantaneous center of rotation
S-9	SLU-1	Reduction of system of forces into single force and couple system	Effort, Mechanical advantage of a screw jack	Radius of gyration	Principle of impulse and momentum	kinetics of rigid bodies, Angular momentum
3-3	SLO-2	Reduction of system of forces into single force and couple system	efficiency of a screw jack	Parallel and perpendicular axis theorems	problems on Impulsive motion	Newton's second law
0.40		Resultant of non-concurrent forces in plane	Problems on simple screw jack	Derivation of Mass moment of inertia of plate, prism	Problems on impulse	Problems using Newton's second law
S-10	SLO-2	Types of supports and reactions	Problems on simple screw jack	Derivation of Mass moment of inertia of cylinder	Problems on momentum principle	Problems using Newton's second law
S-11	SLO-1	Equilibrium of rigid bodies in two dimensions	Problems on differential screw jack	Derivation of Mass moment of inertia of cone	Impact of elastic bodies, direct central	Kinetics of rigid bodies using work energy principle
3-11	SLO-2	Equilibrium of rigid bodies in two dimensions	Problems on differential screw jack	Derivation of Mass moment of inertia of sphere	oblique central impact of elastic bodies	Kinetics of rigid bodies using work energy principle
S-12	SLO-1 SLO-2	Tutorial on Equilibrium of a two-force body	Tutorial on simple and differential screw jack	Tutorial on determination of mass moment of inertia of composite bodies	Tutorial on oblique central impact of elastic bodies	Tutorial on rigid bodies using work- energy principle

	1.	Ferdinand.P. Beer. E, Russell Johnston Jr., David Mazurek, Philip J Cornwell, Vector Mechanics for
Learning		Engineers: Statics and Dynamics, McGraw - Hill, 10th ed., 2013
Resources	2.	Meriam J.L and Kraige L.G., Engineering Mechanics, Volume I - statics, Volume II - dynamics, John
		Wiley & Sons, 7 th ed., 2012

- Russel C Hibler, Engineering Mechanics: Statics, Dynamics, Pearson, 14th ed., 2015
 Shames.I.H, Krishna MohanaRao.G, Engineering Mechanics (Statics and Dynamics), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), 2006
 Timoshenko, Young, Engineering Mechanics, Tata Mc-Graw Hill, 5th ed., 2013

Learning Assess	arning Assessment Continuous Learning Assessment (50% weightage) Final Functional (50% uninhteen)														
	Bloom's				Final Evamination	n (50% weightage)									
	Level of Thinking	CLA –	CLA – 1 (10%)		CLA – 2 (15%)		3 (15%)	CLA – 4	1 (10%)#	Filiai Examination	1 (50 % weightage)				
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember	40 %		30 %		30 %		30 %		30%					
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-				
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%					
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	40%	-				
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%					
Level 3	Create	20 /0	-	30 /0	-	30 /0	-	30 /0	-	30%	-				
	Total	Total 100 % 100 % 100 % 100 %								100 %					

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1.Dr. Shankar Krishnapillai, IIT Madras, skris@iitm.ac.in	1. Dr P. Nandakumar, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2.Dr. K. Jayabal, IIITDM, Kancheepuram, jayabal@iiitdm.ac.in	2. Dr. S. H. Venkatasubramanian, SRMIST

Course Code	18MHS201T	Course Name	THERMODYNAMICS AND	HEAT TRANSFER	Course Category	S	Engineering Sciences	3	T 0	P 0	C 3
Pre-requisite Courses Course Offerin	NII	Mechatr	Co-requisite Courses Nil ronics Engineering	Data Book / Codes/Standards	Progre Cour Nil		Nil				

Course Offering Department	Mechatronics Engineering	Data Book / Codes/Standards	Nil																	
Course Learning Rationale (CLR):	The purpose of learning this course is to):	L	.earni	ng	Program Learning Outcomes (PLO)														
CLR-1: Utilize the thermodynamic	processes with the help of P-V and T-S of	liagram	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3: Utilize the properties of air CLR-4: Solve the basic calculation CLR-5: Identify applications of hea	odynamics and the performance of Heat and the working principle of different air of s involving conduction and convection in t transfer in mechatronics systems, study rmodynamics and its application in Mech	conditioning and refrigeration system Mechatronics system I heat requirements of gas turbines and IC engines.	Thinking (Bloom)		d Attainment (%)	ering Knowledge	Analysis	. Development	Design, Research	Tool Usage	& Culture	nent & Sustainability		ıl & Team Work	ommunication	Mgt. & Finance	l Learning			
Course Learning Outcomes (CLO):	At the end of this course, learners will be	pe able to:	Level of	Expected	Expected	Engineel	Problem	Design 8	Analysis	Modern	Society 8	Environn	Ethics	Individual	Commur	Project N	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Identify and describe the e	nergy exchange processes in engineering	g systems.	2	75	70	Н	Н	М	М	L	L	L	L	L	L	L	Н	М	М	Μ
CLO-2: Understand the second law	v of thermodynamics and its application to	o a wide range of systems	2	75	70	Н	Н	М	М	L	L	L	L	L	L	L	Н	М	М	Μ
CLO-3: Extrapolate the psychrome	tric properties and performance of refrige	eration and air conditioning systems	2	75	70	Н	Н	М	М	L	L	L	L	L	L	L	Н	М	М	Μ
CLO-4: Extrapolate the different m	odes of heat transfer like conduction, con	vection and radiation.	2	75	70	Н	Н	М	Н	М	М	L	L	L	L	L	Н	М	М	М
CLO-5: Analyze the heat transfer in	n refrigeration and air-conditioning systen	ns, internal combustion engine and heat exchangers.	3	75	70	Н	Н	М	Н	М	Μ	Μ	L	L	L	L	Н	М	М	М
CLO-6: Understand the basic laws	of thermodynamics and its applications is	n different engineering systems	3	75	70	Н	Н	Н	М	L	L	L	L	L	L	L	Н	М	М	М

Durat	on (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to thermodynamics	Second law of thermodynamics	Introduction to psychrometric properties	Introduction to heat transfer	Introduction to IC engine and engine components
3-1	SLO-2	Statistical and classical approach.	Kelvin Planck statement, Clausius statement	Dry air, moist air, dry bulb temperature.	Modes of heat transfer: Conduction, convection and radiation	Working principle of two and four stroke of SI and CI engine
S-2	SLO-1	Thermodynamic system, properties, processes and cycles.	Reversible and irreversible processes	Wet bulb temperature, dew point temperature, specific humidity	Fourier law of conduction	Modes of Heat transfer in IC engine
3-2	SLO-2	Thermodynamic equilibrium: Mechanical, chemical and thermal equilibrium.	Second law aspects of heat engine	Calculations of vapor mixtures	General heat conduction equation in Cartesian co-ordinates.	Heat transfer and Engine energy balance
S-3	SLO-1	Quasi-static process, Work and heat transfer	Performance of heat engine	Introduction to Psychrometric chart	Heat stored in the element, heat Conduction with internal heat generation	Problems on heat transfer in IC engine
3-3	SLO-2	Problems on Work and heat transfer	Second law aspects of refrigerator	Psychrometric processes.	Plane wall and cylinder with uniform heat generation	Principle of Heat flux measurement in IC engine
S-4	SLO-1	zeroth law of thermodynamics	CoP of refrigerator	Sensible heating process	Heat Conduction through plane wall	Introduction to turbine, Classifications of turbines
3-4	SLO-2	First law of thermodynamics.	Second law aspects of heat pump	Sensible cooling process	Heat Conduction through composite wall	Merits, demerits and its applications of gas turbine
S-5	SLO-1	First law of thermodynamics applied to closed systems	CoP of heat pump	Humidification and dehumidification	Heat Conduction through hollow Cylinder	Evaluation of Thermodynamics model in pneumatic cylinder
3-3	SLO-2	Isobaric process	Problems on combination of heat engine, heat pump and refrigerator	Cooling and dehumidification	Heat Conduction through composite cylinder	Analysis of heat transfer between the air and the cylinder wall
S-6	SLO-1	Isochoric process	Clausius inequality	Adiabatic mixing	Heat Conduction through hollow Sphere	Conduction heat transfer in Electronics equipment heat sink
3-0	SLO-2	Isothermal process	concept of entropy	Solving problems by using psychrometric chart	Heat Conduction through composite Sphere	Convection heat transfer in electronics equipment heat sink

S-7	SLO-1	Isentropic process	Entropy changes in different thermodynamics processes	Solving problems on sensible heating process	Introduction about convection	Introduction to heat exchanger and its types
3-1	SLO-2	Polytropic process	Entropy changes in isobaric process	Solving problems on sensible cooling process	Characteristics parameters in free convection	Heat transfer analysis in heat exchangers
S-8	SLU-1	First law of thermodynamics applied to open systems	Entropy changes in Isochoric process	Solving problems on adiabatic mixing Elements of refrigeration systems.	Empirical correlations for free convection with horizontal plate	Analysis of heat transfer in refrigeration
3-0		Steady flow energy equation for boiler, turbine and heat exchanger	Entropy changes in Isothermal process	Coefficient of performance	Empirical correlations for free convection with horizontal Cylinder	Analysis of heat transfer in Air conditioning system
S-9	SLO-1	Steady flow energy equation for turbine.	Problems on Entropy changes in different thermodynamics processes	Air-conditioning systems	Forced convection with laminar flow over a flat plate	Heat transfer problems on refrigeration system
3-9	SLO-2	Limitations of first law of thermodynamics	Problems on Entropy changes in combined processes	Open and closed system.	Forced convection with Turbulent flow over a flat plate	Heat transfer problems on Air conditioning system
S-10	SLO-1	Introduction to thermodynamics	Second law of thermodynamics	Introduction to psychrometric properties	Introduction to heat transfer	Introduction to IC engine and engine components.
3-10	SLO-2	Statistical and classical approach.	Kelvin Planck statement, Clausius statement	Dry air, moist air, dry bulb temperature.	Modes of heat transfer: Conduction, convection and radiation.	Working principle of two and four stroke of SI and CI engine
S-11	SLO-1	Thermodynamic system, properties, processes and cycles.		Wet bulb temperature, dew point temperature, specific humidity.	Fourier law of conduction	Modes of Heat transfer in IC engine
3-11	SLO-2	Thermodynamic equilibrium: Mechanical, chemical and thermal equilibrium.	Second law aspects of heat engine	Calculations of vapor mixtures	General heat conduction equation in Cartesian co-ordinates.	Heat transfer and Engine energy balance
S-12	SI ()-1	Quasi-static process, Work and heat transfer	Performance of heat engine	Introduction to Psychrometric chart	Heat stored in the element, heat Conduction with internal heat generation	Problems on heat transfer in IC engine
J-12	SLO-2	Problems on Work and heat transfer	Second law aspects of refrigerator	Psychrometric processes	Plane wall and cylinder with uniform heat generation	Principle of Heat flux measurement in IC engine

Learning
Learning Resources
Resources

- 1. Rajput. R. K. Engineering Thermodynamics, 4th ed., Laxmi Publications (P) Ltd., 2015
- Kumar. D. S, Engineering Thermodynamics, 2nd ed., S.K. Kataria and Sons, 2013
 Holman.J.P, Heat Transfer (In SI Units), 10th edition, McGraw Hill Education, 2016

- Yunus a Cengel Michael a Boles, Thermodynamics, 7th ed., Tata McGraw-Hill, 20115
- Nag.P.K., Engineering Thermodynamics, 5th ed., Tata McGraw-Hill, 2013
- Mechanics Laboratory Manual.

Learning Asse	earning Assessment														
	Bloom's		Continuous Learning Assessment (50% weightage)												
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	I IIIai Lxaiiiiialioi	n (50% weightage)				
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember	40 %		30 %		30 %	_	30 %		30%					
Level 1	Understand	40 /0	-	30 70	-	30 70	-	30 /0	-	3070	-				
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%					
Level 2	Analyze	40 70	-	40 /0	-	40 //	-	40 /0	-	4070	-				
Level 3	Evaluate	20 %		30 %		30 %	_	30 %		30%					
Level 3	Create	20 70	-	30 /0	-	30 //	-	30 %	-	30%	-				
	Total	100	0 %	100	0 %	10	0 %	100) %	100 %					

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1.Mr. S. Senthi Kumar, Grundfos pumps India(p) Ltd, senthel.s@gmail.com	1. Dr.C.Jegadheesan, Associate Professor, Kongu Engineering College, cjegadheesan.auto@kongu.ac.in	1. Mr.M. Thirugnanam, SRMIST
2. Mr.G,Vijayaram, TAFE, vijayaram@tafe.com	2. Dr.M.Baskaran, Associate Professor, KSR College of Technology, baskaranm@ksrct.ac.in	2. Dr.S. Senthil Raja, SRMIST

Cou		18PYS201T			ourse	,	S				Ε	ngine	eering	Scie	nces					L 3	T 0	P 0	3				
Co	equisite ourses	Nil			Co-requisite Courses	Nil			C	gress ourse		Nil															
Cours	e Offering	g Department	Physics			Data Book	/ Codes/Standards		Nil																		
Cours													earni	rning Outcomes (PLO)													
		rstand the structu							1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2					es, properties and str																						
CLR-3					rs and non-crystalling		a and damedation of									ے			. <u>≥</u> .								
CLR-4	: mate	rials		•		materials and corrosio	n and degradation of		(mool	y (%)	t (%)		dge		ent	searc			ainabil		/ork		90				
CLR-5					rization techniques				g (B	ienc	men		Ne	<u>.v.</u>	mdc	, R	age	ø	Sust		E		inan	ng			
CLR-6	: Unde	rstand the structu	ire of crystallin	e materials					i X	ofic	ttain		χŽ	alys	evel	esigr	SO IC	in tr	t & S		Tea	ation	∞. F	Learning			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:									Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modem Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long L	PS0 - 1	PS0 - 2	PSO - 3
		ire the knowledge							2	80	85	_	Н	-	-	-	-	-	-	-	-	-	-	-	-	-	-
						nation, fatigue, fracture	and creep of materials		2	75	80		Н	Н	-	-	-	-	-	-	-	-	-	-	-	-	_
CLO-3 CLO-4					ners and non-crystalli	ine solids neters and uses of vario	vuo nonocompositos		2	85 80	80 75	-	H	- Н	-	-	-	-	-	-	-	-	-	-	-	-	-
CLO-4					oic characterization o		ous nanocomposites.		2	75	85	-	Н	П	-	H	-	-	-	-	-	-	-	-	-	-	-
CLO-6		ire the knowledge				or materials			2	80	85	-	Н	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1.1040								1 -																		
Duration	on (hour)		9			9	9								9								9				
S-1	SLO-1	Introduction to mamorphous	•		Imperfections in soli	ds: point defects	Semi-crystalline mater classification	ials: in	itrodu	ction a	and I	ntrodu	ction	to coi	mposi	tes						to ex	oerim	nental	techn	iques	i
0-1	SLO-2	Single crystalline materials	e and polycrys	alline	Equilibrium concentr	ration of vacancies	Structure and configur	ation o	of cera	mics	(Classif	icatio	n of c	отро	sites					le Cry	rstal m					
SLO-1 Concept of basis and lattice Interstitial impurities in solids Advanced ceramics-function							ceramics-functional pr					Polyme	er nan	ocon	nposite	es ma	aterials	S	ı	orincip	ole	n Con					
J-2	SLO-2	Lattice translatio	nal vectors		Substitutional impuri	ities in solids	Mechanical behavior of strength				F	Polyme	er-ma	trix co	ompos	sites							Conductance Microscopy- and working			-	
S-3	SLO-1	Primitive cell and	d Bravais lattic	е	Line defects: edge d	lislocations	Fabrication and proces ceramics	•			,	Fiber-re			,			_		Molec introdu		nd sp	ectros	scopio	anal	ysis-	
	SLO-2	Seven types of E	Bravais lattices		Screw dislocations							FTIR spectroscopy															
							Glass ceramics-introd	introduction Ceramic-matrix composites Concept of Raman spectrosco					сору														

SLO-2 Rotational and translational symmetry

SLO-2 Miller indices -directions and planes

Packing of atoms inside solids- packing

SLO-1 Various planes in cubic structure

SLO-2 Directions in cubic structure

fraction calculation

SLO-2 | Ionic solids-NaCl crystal structure

SLO-1 Indexing of crystal planes

S-5

S-6

S-7

SLO-1

Interfacial defects, stacking faults

Elastic properties-Hooke's law

Ductile and brittle materials

Stress strain behavior of metals

Stress strain behavior of ceramics and

Yield strength

polymers

Tensile strength

Glass forming and glass tempering

Mechanical behavior of polymers-

Polymer synthesis-addition and

condensation polymerization

Thermoplastic and thermosetting polymers

Polymers-classification

macroscopic deformation

Concept of copolymers

Applications of polymers

Carbon–carbon composites

Corrosion of metals, forms of corrosion

Degradation of polymers

Recycling of polymers

Corrosion prevention

Biomaterials-introduction

Classification of biomaterials

Raman spectroscopy- instrumentation

XPS spectroscopy- instrumentation

Nuclear Magnetic Resonance (NMR)-

Introduction to Nuclear Magnetic

Introduction to Thermal analysis

Thermo Gravimetric Analyzer-

XPS spectroscopy-concept

Resonance (NMR)

instrumentation

instrumentation

•	8 5	SLO-1	Hexagonal close packed (HCP) structure	Tensile test, plastic deformation	Types of liquid crystals	Surface properties of biomaterials	Differential Thermal Analyses (DTA)
3-	9	SLO-2	Estimation of packing fraction in HCP	Concept of necking	Construction and working of LCD	Mechanical properties of biomaterials	Differential Scanning Calorimetry (DSC)
S-		SLO-1	Diamond structure-APF	Fatigue	, ,	rivaroaeis	Dynamic light scattering
3-	- 1	SLO-2	Cubic Zinc-Sulfide structure	Creep behavior	Glass transition-melting and glass transition temperature	Applications of biomaterials	Particle Size Analysis

earning 1. V. Raghavan, Materials Science and Engineering: A First Course, 5th ed., Prentice Hall India, 2004. 2. William D. Callister, Materials Science and Engineering, An Introduction, John Wiley & Sons, 2007	 Kingery, W. D., Bowen H. K., Uhlmann, D. R., Introduction to Ceramics, 2nd ed., John Wiley & Sons, 1976. Upadhyaya and A. Upadhyaya, Material Science and Engineering, Anshan Publications, 2007
---	--

Learning Ass	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	FIIIdi Examinatio	ii (50 % weigiilage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100	0 %	10	0 %	100) %	10	0 %

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Narayanasvamy Vijayan, National Physical Laboratory, nvijayan@nplindia.org	1. Prof. V. Subramaniam, IITM Chennai, manianvs@iitm.ac.in	1. Dr. C. Preferencial Kala, SRMIST
2. Dr. M. Krishna Surendra, Saint-Gobain Research, Krishna.muvvala@saintgobain.com	2. Prof. D. Arivuoli, Anna University, arivuoli@annauniv.edu	2. Sandeep Kumar Lakhera, SRMIST

Cou		18NTS101T	Course Name	NANOSCIENC	CE AND NANOTECHNOL	.OGY		ourse tegor		S				Engii	neerin	ng Scie	ences	3				L 3			C 3
	equisite ourses	Nil		Co-requisite Courses	Nil				gres		Nil														
		Department	Nanotechnology	0001000	Data Book	c / Codes/Standards		Nil	70410																
Course	a I earnin	g Rationale (CLR)	The nurnose of lead	rning this course is to					_earni	ina	1 [Program Learning Outcomes (PLO)													
		• ,		· ·	als and their size and dim	nensionality dependence		1	2	3	 	1 2	3	4	5	6	7	8	9	•	11	12	13	14	15
CLR-2	: Obtai	n knowledge on ph	ysical properties of nar	nostructured materials	and their size and dimer	sionality dependence											-								
CLR-3			and chemistry-based e basic principles of char		nes to synthesize various	types of nanomaterials		Œ	(%	(%		Φ	_	earch			abili		¥						
CLR-5			applications of the nan		is at Halloscale			(Bloc) Jucy	ent (ledg	men	Rese	e de		ıstair		Wo.		Finance	D			
CLR-6					ce and nanotechnology			king	oficie	tainm		Knov	velop	sign,	Usa	Ilture	S S		Теап	ion	∞ŏ	arnin			
			1					ŢĒ	P.	ed Att		ering Ang	& De	s, De	T00	8 C	ment		al &	ınicat	Mgt.	g Le		0.1	က
Course	e Learnin	g Outcomes (CLO): At the end of this o	course, learners will be	e able to:				Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge Problem Analysis	Design & Development	Analysis, Design, Research	Modem Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt.	Life Long Learning	PS0 - `	PS0 - 2	- 1
CLO-1	: Analy	ze fundamentals of	f nanotechnology, diffe	rent classes of nanom	naterials and their sizes a	nd dimensions		2	80	<u>û</u>	1	ਸ਼ੂ H M	H	Η		Н	Н	H	<u> </u>	В Н	M	는 H		Н	PSO.
CLO-2	: Desci	ribe various physic	al properties of nanom	aterials				2	80	70		н н	Н	М	М	Н	Н	М	Н	Н	М	Н	Н	Н	Н
			sical methods to synthe					2	75			н н		Н		Н	Н	Н	Н	Н	Н	Н			Н
CLO-4 CLO-5			acterization techniques of nanotechnology	involved in nanotech	nology			2	80			H M M M		H		H	H	H	H	H	H M	H	M H		H
CLO-6			l research in nanoscier	nce/nanotechnology				2	80			и и		Н		М	Н	Н	Н	Н	М	Н			Н
		ľ				1			•			•		•				1		•		·	·		
Duratio	on (hour)		9		9	9							,)							9				
S-1	SLO-1		scales, Moore's Law	Mechanical prope	rties of nanomaterials	Chemical methods: Me reduction		•		by	Introduc	tion to	electro	n mic	rosco	ру			of nar ersion		nolog	gy in s	olar ei	nergy	′
0-1	SLO-2	Nanosystems – cla time and length sc	assification based on ale	Size dependence	of material properties	Synthesis of metal nan chemical reduction me				rties	SEM op	erating	princi	oles				Catal	ytic a _l	oplica	tion o	f nano	oartici	les	
S-2	SLO-1	dots, wells and wir		Nanodispersions,	nanocrystalline solids	Hydrothermal and solv	otheri	mal sy	ynthes	sis	Field em				ectron					ology lectroi		olecula	r elec	tronic	cs
3-2	SLO-2		mission of different nt size quantum dots		rials: Nanocrystalline led in amorphous matrix	Photochemical synthes	is				Environi microsco			ng ele	ectron			Printe	d ele	ctronic	cs				
	SLO-1	Surface to volume	ratio	Thermal propertie	s of nanomaterials	Sonochemical routes					High res				n ele	ctron		Polyr	ners v	vith a	speci	al nan	o-arch	nitect	ure
S-3	SLO-2	Fraction of surface energy	e atoms and surface		d law of thermodynamics and short timescale	Ball milling, Grinding					Scannin				сору	(STM))					aterial	s bas	ed liq	juid
	SLO-1	Surface stress and	d surface defects	Thermal transport		Electrodeposition techn	niques	S			SPM ima	age processing and image analysis Nanotechnology						od stor	age						
S-4	SLO-2	Quantum confinen		Melting point- size	dependence	Fabrication of nanotube	es, na	anowii	res ar	nd	Dynamic samples		magin	g of b	iologi	cal		Nano	techn	ology	in im	provin	g envi	ronm	nent
C E	SLO-1	Carbon-based nam	no materials	Electronic propert	ies of nanomaterials	Spray Pyrolysis					Nanome	chanic	al chai	acteri	zatio	า		Conc	ept of	data	stora	ge			
S-5	SLO-2	Fullerenes and but	ckyballs	Electronic States: dimensionality	Dependence of size and	Flame pyrolysis					Nanoind	entatio	1					Nano	mater	ials fo	r data	a stora	ge		
	SLO-1	Carbon nanotubes	3	The electron dens	sity of states D(E)	Physical Vapor Deposi evaporation	tion:	Therm	nal		Raman	scatteri	ng					Chen	nical s	ensor	s				
S-6				Luttinger liquid he	havior of electrons in 1D																				

DC/RF magnetron sputtering

Surface enhanced -Raman scattering

Biosensors

Luttinger liquid behavior of electrons in 1D metals

SLO-2 Graphene

S-7	SLO-1	Metal based nano materials	Magnetic properties of nanomaterials: Particle size and magnetic behavior		UV-Vis - absorption spectra of nanoparticles of different sizes	Nanomedicine
3-1	SLO-2	Nanogold and nanosilver	Superparamagnetism: Langevin function, surface effects, magnetoresistance	Chemical vapor deposition(CVD)	Semiconductor nanoparticles	Nanobiotechnology
S-8	SLO-1	Metal-oxide based nano materials		Metal organic chemical vapor deposition (MOCVD)	Metal nanoparticle: Surface plasmons	Nanotoxicology
3-0	SLO-2	Nanocomposites and nanopolymers	Layer-hy-layer growth		Surface plasmon resonance	Challenges in nanotoxicology
S-9	SLO-1	Nanoglasses and nanoceramics	Phenomenon of light absorption, light emission- quantum yield	Nanofabrication: Concept of lithography	Magnetic measurements	Nanotechnology in cosmetics
3-9	SLO-2	Biological nanomaterials		Photo and electron beam lithography techniques	Vibrating sample magnetometer (VSM)	Nanotechnology in aviation industry

		1.	T. Pradeep, A Textbook of Nanoscience and Nanotechnology, Tata McGraw Hill Education Pvt. Ltd., 2012 Hari Singh Nalwa, Nanostructured Materials and Nanotechnology, Academic Press, 2008
	Learning	3	Edward L. Wolf, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience.
	Resources	٥.	2nd ed., Wiley-VCH, 2004
		4.	Hans-Eckhardt Schaefer, Nanoscience: The Science of the Small in Physics, Engineering, Chemistry,
l			Biology, and Medicine, Springer-Verlag Berlin Heidelberg, 1st Edition, 2010.

- M. F. Ashby, P.J. Ferreira, D. L. Schodek, Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects, BH Publishers of Elsevier, 2009
 A. P. Guimaraes, Principles of Nanomagnetism, Spinger, 1stedition, 2009
 B. Zhang, Physical Fundamentals of Nanomaterials, Elsevier, 1st Edition, 2018.

Learning Asse	essment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	FIIIai Examination	i (50 % weightage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %	_	40 %	_	40 %	_	40 %	_	40%	_
LOVOIZ	Analyze	40 70		40 70		40 70		40 70		4070	
Level 3	Evaluate	20 %	_	30 %	_	30 %	_	30 %	_	30%	_
LOVOIO	Create			00 70		00 70		00 70		0070	
	Total	100) %	100) %	10	0 %	100) %	10	0 %

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Sunil Varughese, CSIR-NIIST, s.varughese@niist.res.in	1. Prof. M. Ghanashyam Krishna, HCU Hyderabad, mgksp@uohyd.ernet.in	1. Dr. Kiran Mangalmpalli, SRMIST
2. Dr. M. Krishna Surendra, Saint-Gobain Research, Chennai, krishna.muvvala@saint-gobain.com	2. Prof. S. Balakumar, University of Madras, balakumar@unom.ac.in	2. Dr. Debabrata Sarkar, SRMIST

ACADEMIC CURRICULA

Mandatory Courses

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Course Code	18PDM201L	Course Name	COMPETENCIES	S IN SOCIAL SKILLS	Course Category		М					Mand	datory	,					L 0	T 0	P 2	0
Pre-requ	INII		Co-requisite Courses			gres ours	ssive ses	Vil														
Course Of	ffering Department	Career	Development Centre	Data Book / Codes/Standards	Nil		•															
Course Le	earning Rationale (CL	.R): The pur	pose of learning this course is to:		Le	earn	ing					Prog	ıram l	_earni	ing Oı	utcor	nes (l	PLO)				
CLR-1:	enable students under	rstand subtle r	neanings of words used in academic te	xts	1	2	3		1 2	3	4	5	6	7	8	9	10	11	12	13	14	15
			cal, and logical accuracy of sentences											Ą							ı	
CLR-3:	comprehend an argun	nent's line of re	easoning		e e						arch			ability							.	

CLK-3:	comprehend an argument's line of reasoning	- E		· ·
CLR-4:	understand the structure, organization, tone, and main idea behind the passage	(Bloom)	y (%)	t (%)
CLR-5:	recognize the logical coherence of ideas in a text	9	enc	l eu
CLR-6:	give the right knowledge, skill and aptitude to face any competitive examination	hinking	Proficiency	Attainment
		Į.	Ę	
Course L	earning Outcomes (CLO): At the end of this course, learners will be able to:	Level of .	Expected	Expected
CLO-1:	build vocabulary through methodical approaches and nurture passion for enriching vocabulary	3	80	75
CLO-2:	detect and correct any grammatical, syntactical, and logical fallacies	2	80	75
CLO-3:	hone critical thinking skills by analyzing arguments with explicit and implicit premises to validate the author's point of view	3	80	75
CLO-4:	analyze and evaluate texts critically in multifarious ways	3	80	75
CLO-5:	identification of relationships between sentences based on their function, usage and characteristics	2	80	75
CLO-6:	ace competitive examinations	2	80	75

				Prog	ram L	.earn	ing O	utco	mes (PLO)				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO – 3
L	Н	-	М	-	-	-	-	М	Н	-	Н	-	-	-
L	Н	-	М	-	-	-	-	М	Н	-	Н	-	-	-
L	Н	-	М	-	-	-	-	М	Н	-	Н	-	-	-
L	Н	-	М	-	-	-	-	М	Н	-	Н	-	-	-
L	Н	-	М	-	-	-	-	М	Н	-	Н	-	-	-
L	Н	-	М	-	-	-	-	М	Н	-	Н	-	-	-

Durati	on (hour)	6	6	6	6	6
S-1	SLO-1	Synonyms in Isolation and Context	Spotting Errors – Level I	Critical Reasoning – Weakening	Reading Comprehension – Main Idea	Para Jumble-Type I
3-1	SLO-2	Practice	Practice	Practice	Practice	Practice
S-2	SLO-1	Antonyms in Isolation and Context	Spotting Errors – Level II	Critical Reasoning – Inference	Reading Comprehension – Tone	Para Jumble-Type II
3-2	SLO-2	Practice	Practice	Practice	Practice	Practice
S-3	SLO-1	Common Confusables	Spotting Errors – Level II	Critical Reasoning – Conclusion	Reading Comprehension – Inference	Para Jumble-Type III
5-3	SLO-2	Practice	Practice	Practice	Practice	Practice
S-4	SLO-1	Cloze Passage	Sentence Correction-Type I & II	Critical Reasoning - Explain the paradox	Reading Comprehension – Summary	Para Completion
5-4	SLO-2	Practice	Practice	Practice	Practice	Practice
S-5	SLO-1	Word Analogy	Sentence Correction-Type III & IV	Critical Reasoning – Miscellaneous	Reading Comprehension – Conclusion	Para Completion
3-3	SLO-2	Practice	Practice	Practice	Practice	Practice
S-6	SLO-1	Sentence Completion	Sentence Correction-Type V& VI	Critical Reasoning – Miscellaneous	Reading Comprehension – Miscellaneous	Para Summary
3-6	SLO-2	Practice	Practice	Practice	Practice	Practice

Learning Resources	 Charles Harrington Elstor, Verbal Advantage: Ten Easy Steps to a Powerful Vocabulary, Random House Reference, 2002 Merriam Webster's Vocabulary Builder, Merriam Webster Mass Market, 2010 Norman Lewis, How to Read Better and Faster, Goyal, 4th Edition Franklin GRE Word List, 3861 GRE Words, Franklin Vocab System, 2014 Wiley's GMAT Reading Comprehension Grail, Wiley, 2016 	 Manhattan Prep GRE: Reading Comprehension and Essays, 5th Edition Martin Hewings, Advanced Grammar in Use. Cambridge University Press, 2013 Manhattan GMAT - Critical Reasoning, GMAT Strategy Guide, 12th Edition Joern Meissner, Manhattan Review, GRE Analytical Writing Guide, Manhattan Review Inc, 2011 GRE Analytical Writing, Solutions to the Real Essay Topics (Test Prep. Series), Vibrant Publishers, 2011
-----------------------	--	--

Learning Asse	essment										
	Bloom's			Contin	nuous Learning Asse	essment (100% wei	ghtage)			Final Ev	amination
	Level of Thinking	CLA –	1 (20%)	CLA –	2 (30%)	CLA -	3 (30%)	CLA – 4	(20%)#	FIIIdi EX	ammauom
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember		40%		30%		30%		30%		
Level I	Understand	-	4070	-	30%	-	30%	-	30%	-	-
Level 2	Apply		40%		40%	_	40%	_	40%	_	
Level 2	Analyze	-	40%	,	4070	•	4070	,	4070	-	-
Level 3	Evaluate		20%		30%		30%		30%		
Level 3	Create	-	20%	-	30%	-	30%	-	30%	-	-
	Total	100	0 %	100	0 %	10	0 %	100	0 %		-

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers			
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts	
1. Mr. Vijay Nayar, Director, Education Matters, vijayn@edumat.com	1. Dr. Dinesh Khattar, Delhi University, dinesh.khattar31@gmail.com	1. Dr. M. Snehalatha, SRMIST	3. Dr. P. Madhusoodhanan, SRMIST
2. Mr. Ajay Zenner, Career Launcher, ajay.z@careerlauncher.com	2. Mr. Nishith Sinha, due North India Academics LLP, nsinha.alexander@gmail.com	2. Mr Jayapragash J., SRMIST	4. Mr. Clement A, SRMIST

Cou		18011/0/101	Course Name	KING SKILLS	Course Category	,	М	Mandatory											D 0	T 0	P 2	O		
	requisite ourses	Nil		Co-requisite Courses	Nil			gress ourse		Nil														
Cours	e Offering	g Department	Career Development	Centre	Data	Book / Codes/Standards	Nil																	
Cours		ng Rationale (CLR):	The purpose of learning	ng this course is to:			L	earni	ng					Progi	ram L	earni	ing Οι	utcom	nes (F	PLO)				
CLR-1		ify problems					1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 CLR-3 CLR-4 CLR-5 CLR-6	R-2: recognize the logical coherence of ideas R-3: understand the structure and principles of writing R-4: interpret the structure, organization, tone, and main idea of the content R-5: hone comprehension skills							Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Culture	Environment & Sustainability		ndividual & Team Work	ication	lgt. & Finance	Learning			
Cours	e Learnin	ng Outcomes (CLO):	At the end of this cou	ırse, learners will be	able to:		Level of Thinking (Bloom)	Expected	Expected	Engineer	Problem ,	Design &	Analysis,	Modern T	Society &	Environm	Ethics	Individua	Communication	Project Mgt. &	Life Long	PS0 - 1	PSO-2	PSO-3
CLO-1		problems	•				3	80	75	L	H	-	M	-	-	-	-	М	Ĺ	-	Н	-	-	-
CLO-2			strategies to find soluti	ons			2	80	75	L	Н	-	М	-	-	-	-	М	L	-	Н	-	-	-
CLO-3		nize and articulate ide					2	80	75	L	Н	-	М	-	-	-	-	М	L	-	Н	-	-	-
CLO-4			ents critically in multifar				2	80	75	L	Н	-	М	-	-	-	-	М	L	-	Н	-	-	-
CLO-5 CLO-6			nd provide logical cond		rooruitmont		3	80	75 75	L	H	-	M M	-	-	-	-	M M	H	-	H	-	-	-
CLU-0	0-6: gain appropriate skills to succeed in preliminary selection process for recruitment						3	00	13	L	П	ļ -	IVI	-	-	-	- 1	IVI	П	-	П	-	-	-
Duration	ration (hour) 6 6										6								6					
S-1	SLO-1 Ages Permutations-Types Probability-Intro					Probability-Intro				Logical Rea Directions	asonii	ng – B	lood i	relatio	ns,		Inform	ation	Orde	ring -	Anai	ogy		
	SLO-2 Solving Problems Solving Problems Solving Problems					Series completion Math operations																		

	1. Dinesh Khattar-The Pearson Guide to Quantitative Aptitude for competitive exa	minations
Learning	2. Hari Mohan Prasad, Verbal Ability for Competitive Examinations, Tata McGraw	Hill Publications
Resources	3. Edgar Thrope, Test of Reasoning for Competitive Examinations, Tata McGraw	Hill, 4th Edition, 2012
	4. Norman Lewis, Word Power Made Easy, W.R. Goyal Publications, 2011	

- Ellet William, The Case Study Handbook: How to read, discuss, and write persuasively about cases Manhattan GMAT Critical Reasoning, GMAT Strategy Guide, 12th Edition Wiley's GMAT Reading Comprehension Grail, Wiley, 2016 Manhattan Prep GRE: Reading Comprehension and Essays, 5th Edition

Learning Ass	sessment										
_	Bloom's			Contir	nuous Learning Asse	essment (100% weig	jhtage)			Final Ev	amination
	Level of Thinking	CLA –	1 (20%)	CLA – 2 (30%)		CLA – :	3 (30%)	CLA – 4	1 (20%)#	FIIIdi EX	ammauom
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	-	40%	-	30%	-	30%	-	30%	-	-
Level 2	Apply Analyze	-	40%	-	40%	-	40%	-	40%	-	-
Level 3	Evaluate Create	-	20%	-	30%	-	30%	-	30%	-	-
	Total	10	0 %	10	0 %	100	0 %	10	0 %		-

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers			
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts	
1. Mr. Vijay Nayar, Director, Education Matters, vijayn@edumat.com	1. Dr. Dinesh Khattar, Delhi University, dinesh.khattar31@gmail.com	1. Dr. M. Snehalatha, SRMIST	3. Dr. P. Madhusoodhanan, SRMIST
2. Mr. Ajay Zenner, Career Launcher, ajay.z@careerlauncher.com	2. Mr. Nishith Sinha, due North India Academics LLP, nsinha.alexander@gmail.com	2. Mr Jayapragash J., SRMIST	4. Mr. Clement A, SRMIST

Cou		18PDM203L	Name								М					Λ	/land	atory						L 0	_	P 2	O 0
Co	requisite ourses e Offerin	Nil g Department	Career	Development	Co-requisite Courses * Centre	IVII	Book / Codes/Standards			gres: ours		Nil															
Cours	e Learnir	ng Rationale (CL	R): The pur	pose of learni	ng this course is to);		Learning Program Learning Outcomes								s (Pl	LO)										
CLR-1		knowledge about		ship					1	2	3		1	2	3	4	5	6	7	8	9 1	0	11	12	13	14	15
CLR-2		mindsets of Entr														h			ity								
CLR-3 CLR-4		nilate skills and be rate creative and			reneurship				(mc	(%)	(%)		e		=	Analysis, Design, Research			Environment & Sustainability		¥		d)				
CLR-4	J	ire knowledge abo			20220				(B)	ncy	ent		yledc		me	Res	ge		ıstai		٨		anc	D			
CLR-6		lop entrepreneuria		reneunai proc	763363				king	ficie	ain m		Ş V	lysis	/elop	ign,	Usa	ture	S S		eam	5	Ë	ini			
		T. T							Thi	P	l Att		ing	Ana	De	Des	00	J.	ent		~	200	ığt.	Les			
C		Out (CI	0). 4446-		اللاب معموم المعالم				Level of Thinking (Bloom)	Expected Proficiency (%)	Sy Expected Attainment (%)		Engineering Knowledge	Problem Analysis	Design & Development	ysis	Modern Tool Usage	Society & Culture	ronn	χ	Individual & Team Work	Collination	Project Mgt. & Finance	Life Long Learning	PS0 - 1	PSO-2	PSO-3
Cours	e Learnir	ig Outcomes (Ci	At the 6	ena oi unis cou	ırse, learners will b	e able to:			Leve	Expe	- X		Engi	Prob	Desi	Anal	Mod	Soci	Envi	Ethics		3	Proje	Life	PSC	PSC	PSC
CLO-1		erstand the conce			Entrepreneur				2	80	75		L	Н	-	М	-	-	-		M L	-	-	Н	-	-	-
CLO-2		prehend the mind							2	80			L	Н	-	М	-	-	-		M L		-	Н	-	-	-
CLO-3					uired in Entreprene				3	80	75		L	Н	-	М	-	-	-		M L	-	-	Н	-	-	-
CLO-4					eir Entrepreneurial	journey			3	80		-	L	Н	-	М	-	-	-		M L	-	-	Н	-	-	-
CLO-5		te and present the ire entrepreneuria		лоаеі					3	80		-	L	H	-	M M	-	-	-		M H		-	Н	-	-	-
CLU-0	. Acqu	ше епшергепециа	di Skilis						,	00	10		L	п	-	IVI	-	-	-	-	IVI T	1	-	П	-	-	
Durati	on (hour)		6			6		6					6									6					
0.4	SLO-1	Introduction			Motivation		Self Analysis					Vegotia	ating s	kill						Busine	ss Mod	lel C	anva	ıs			
S-1	SLO-2	Benefits of entre	preneurship		External and inte	rnal	SWOT					People	Mana	geme	ent					Busine	ss Mod	lel C	anva	ıs			
	SLO-1	Origin of Entrep	reneurship		Theories of Entre	epreneurship	Communication					Creativ	ity							Busine	ss Opp	ortu	nity l	dentif	icatio	n	
S-2 SLO-2 Evolution of Entrepreneurship Theories of Entrepreneurship Networking							Networking					dea Ge	enera	tion						Busine	ss Opp	ortu	nity l	dentif	icatio	n	
						s Interpersonal skills					Probler	n Solı	ving						Busine	ss Mod	lel ca	anvas	s pres	sentat	tion		
S-3	SLO-2 Environment and Psychological factors Influencing Entrepreneurship Success Stories – Case Study Solution Collaborative					Collaborative skills	Collaborative skills Problem solving Business Mc					Business Model canvas presentation															
						Team management s	nagement skills Decision Making Business Model canva				anvas	s pres	sentat	tion													
S-4	S-4						n Team management s	ment skills Six Thinking hats Business Model canvas p					s pres	sentat	tion												

Leadership

Prioritisation

Shared leadership

Time Management

SLO-1

SLO-1

S-5

S-6

Entrepreneurship Failures

Entrepreneurship in India – A Preview

SLO-2 Entrepreneurship Failures

SLO-2 Indian Entrepreneurships

Risk-taking Behavior

Global Markets for Entrepreneurs

Understanding the cross cultural behaviors

Resilience

and differences

Inventions

Inventions

Innovations

Innovations

Business model presentation

Business model presentation

Business model presentation

Business model presentation

Learning Resources	 Elon Musk – Ashley Vance- Virgin Books-2015 Think and Grow Rich – Napolean Hill - The Ralston Society – 1937 The Lean Startup – Eric Ries - Crown Publishing Group (USA) – 2011 The \$100 Startup – Chris Gullibreau - Crown Business- 2012 Creativity, Innovation, and Entrepreneurship: The Only Way to Renew Your Organization - H. James Harrington - Productivity Press- December 2018 	6. www.wfnen.org; National Entrepreneurship Network – Wadhwani Foundation 7. https://www.forbes.com/sites//2017//top-entrepreneur-stories-to-inspire-you-in-2017/ 8. https://bizztor.com/in/successful-indian-entrepreneurs-stories 9. https://www.entrepreneur.com/article/299214 10. https://www.fundera.com/blog/young-entrepreneurs 11. The Entrepreneurs: Success and Sacrifice - by Kip Marlow cbseacademic.nic.in/web material/Curriculum19/Main/20_Entrepreneurship.pdf
-----------------------	---	---

Learning Asse	essment										
	Bloom's			Contir	nuous Learning Asse	essment (100% weig	htage)			Final Ev	amination
	Level of Thinking	CLA –	1 (20%)	CLA –	2 (30%)	CLA –	3 (30%)	CLA – 4	1 (20%)#	FIIIdi EX	ammation
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	-	40%	-	30%	-	30%	-	30%	-	-
Level 2	Apply Analyze	-	40%	-	40%	-	40%	-	40%	-	-
Level 3	Evaluate Create	-	20%	-	30%	-	30%	-	30%	-	-
	Total	100) %	100	0 %	100	0 %	10	0 %		-

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers			
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts	
Mr. Vijay Nayar, Director, Education Matters, vijayn@edumat.com	Mr. Ashok Kumar V, NITTE School of Management Entrepreneurship Development, ashokkumarvv2007@gmail.com	1. Dr. Shantanu Patil, SRMIST	3. Dr. W. Richard Thilagaraj, SRMIST
2. Mr. Ajay Zenner, Career Launcher, ajay.z@careerlauncher.com	2. Dr. A.K. Sheik Manzoor, Anna University, sheikmanzoor@annauniv.edu	2. Mr. Ananth Kumar, SRMIST	4. Mrs. Deepa Narayanan. SRMIST

Course Code	18PDM204L	Course Name	BUSINESS BAS	SICS FOR ENTREPRENEURS		urse egory	М	Mandatory	0	T 0	P 2	0
Pre-requis Courses	Nil		Co-requisite Courses	Nil		Progres		Nil				
Course Offe	ring Department	Career D	Development Centre	Data Book / Codes/Stand	ards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng					Prog	ram L	earn	ing O	utcor	nes (l	PLO)				
CLR-1: Provides a base of Managerial application skills that enable students to understand practical managerial concepts	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Comprehend business models										у								
CLR-3: Understand different accounting concepts	<u></u>		_				arch T			stainability								
CLR-4: Understand the taxation and tax laws	(Bloom)	(%) A	t (%)	dge		ent	Seg			aina		Work		8				
CLR-5: Understand the process of design thinking	(B)	ency	nent	We we	S	ű.	Ã,	Usage	a)	Sust		Α .		Finance	Б			
CLR-6: Acquire knowledge on business skills	ķ.	ofici	Attainme	X	ılysi	Development	Design,	Us	ulture	8		Team	ion	⊗ E	aming			
	Thinking	₫.	THE I	ing	Analysis	& De	De	Tool	& CL	nent		∞ _	icat	Mgt.	۳			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design 8	Analysis,	Modern -	Society &	Environn	Ethics	Individual &	Communication	Project N	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Explain the nature and purpose of marketing; understand the fundamentals of each of the most important marketing tasks	1	80	75	L	Н	-	М	-	-	-	-	М	L	-	Н	-	-	-
CLO-2: Use the Business Models in their startups	1	80	75	L	Н	-	М	-	-	-	-	М	L	-	Н	-	-	-
CLO-3: Identify and appreciate the strong linkages between finance and globalization	2	80	75	L	Н	-	М	-	-	-	-	М	L	-	Н	-	-	-
CLO-4: Implement tax process	2	80	75	L	Н	-	М	-	-	-	-	М	L	-	Н	-	-	-
CLO-5: Acquire Design Thinking concepts to implement in the startup	1	80	75	L	Н	-	М	-	-	-	-	М	Н	-	Н	-	-	-
CLO-6: Implement the essential business basics	3	80	75	1	Н	_	М	-	-	-	-	М	Н	-	Н	-	-	-

		Marketing Management	Business Models	Financial Management	Costing and Taxation	Design Thinking
Durati	on (hour)	6	6	6	6	6
0.4	SLO-1	Introduction to Marketing Management	Business Models for startups	Introduction to Finance Management	Pricing Strategies	Design Thinking
S-1	SLO-2	Understand the market	Introduction to SAAS	Effective and efficient management of money	Pricing for market penetration	Developing design concepts
S-2	SLO-1	6 P's of Marketing	Business model	Accounting Process	Types of Pricing	Five stages of design concepts
3-2	SLO-2	5 P's of Marketing	Introduction to PAAS	Four steps in business transactions	Pricing strategies	Super charging with design thinking
S-3	SLO-1	Introduction to Consumer Behavior	Revenue Models	Basic Accounting Procedures	Introduction to MIS	Creating concepts
5-3	SLO-2	Create value proposition	Application of revenue models	Basic book keeping for financial transactions	Data Analysis	Creating concepts
S-4	SLO-1	Types of Marketing	Outsourcing Models	Financial Statements	Taxation	Hackathon / Challenge Labs
5-4	SLO-2	Business marketing concepts	Partnership Models	Profit and Loss account, Balance sheet Statement of cash flow	Taxation	Hackathon / Challenge Labs
S-5	SLO-1	Market Segmentation	Profitability	Working Capital Management	Tax laws	Hackathon / Challenge Labs
5-5	SLO-2	Market Positioning	Business Metrics	Utilizing current assets and current liabilities for efficient operation	Tax laws	Hackathon / Challenge Labs
S-6	SLO-1	Branding	Business Model Analysis	Financial Ratios	Case studies and Problem Solving	Hackathon / Challenge Labs
3-0	SLO-2	Creating USP	Practical Implementation	Profitability, Liquidity, Operating, Leverage	Case studies and Problem Solving	Hackathon / Challenge Labs

Learning Resources	Elon Musk – Ashley Vance- Virgin Books-2015 Think and Grow Rich – Napolean Hill - The Ralston Society – 1937 The Lean Startup – Eric Ries - Crown Publishing Group (USA) – 2011 The \$100 Startup – Chris Gullibeau - Crown Business- 2012 Creativity, Innovation, and Entrepreneurship: The Only Way to Renew Your Organization - H. James Harrington - Productivity Press- December 2018	 www.wfnen.org; National Entrepreneurship Network – Wadhwani Foundation https://www.forbes.com/sites//2017//top-entrepreneur-stories-to-inspire-you-in-2017/ https://bizztor.com/in/successful-indian-entrepreneurs-stories https://www.entrepreneur.com/article/299214 https://www.fundera.com/blog/young-entrepreneurs The Entrepreneurs: Success and Sacrifice - by <u>Kip Marlow</u> cbseacademic.nic.in/web material/Curriculum19/Main/20_Entrepreneurship.pdf
-----------------------	--	---

Learning Ass	sessment											
	Bloom's			Contir	nuous Learning Asse	essment (100% weig	ghtage)			Final Ev	amination	
	Level of Thinking	CLA –	1 (20%)	CLA –	2 (30%)	CLA -	3 (30%)	CLA – 4	(20%)#	FIIIdi Ex	ammauom	
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	-	40%	-	30%	-	30%	-	30%	-	-	
	Understand		, .		****		****					
Level 2	Apply Analyze	-	40%	-	40%	-	40%	-	40%	-	-	
Level 3	Evaluate Create	-	20%	-	30%	-	30%	-	30%	-	-	
	Total	100	0 %	100	0 %	10	0 %	100	0 %	-		

#CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers			
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts	
1. Mr. Vijay Nayar, Director, Education Matters, vijayn@edumat.com	Mr. Ashok Kumar V, NITTE School of Management Entrepreneurship Development, ashokkumarvv2007@gmail.com	1. Dr. Shantanu Patil, SRMIST	3. Dr. Revathi Venkataraman, SRMIST
2. Mr. Ajay Zenner, Career Launcher, ajay.z@careerlauncher.com	2. Dr. A.K. Sheik Manzoor, Anna University, sheikmanzoor@annauniv.edu	2. Mr. Ananth Kumar, SRMIST	4. Mrs. Kavitha Srisarann. SRMIST

Cou		18CYM101T	Course Name		ENVIRO	DNMENTAL SCIENCE		_	ourse		М						Mand	atory						1		P C 0
	requisite ourses	Nil			Co-requisite Courses	Nil				gress ourse		Nil														
Cours	e Offerin	g Department	Chen	nistry		Data Book	/ Codes/Standards		Nil																	
		•	, , ,	•	ng this course is to:				L	earni	ng						Progi	ram L	earni	ing O		٠,	,			
CLR-3: Utilize processes involved in waste water treatment and study the cause of a local polluted site CLR-4: Analyze impacts, disposal methods and treatments involved in biomedical waste management CLR-5: Identify impacts, disposal methods, treatments involved in biomedical waste management CLR-6: Analyze the environmental issues and identify appropriate solutions CLR-6: Analyze the environmental issues and identify appropriate solutions												13	7- 05 05 05 05 05 05 05 05 05 05 05 05 05													
Durati	on (hour)		3			3		3							3								3			
S-1	SLO-1	Environmental se atmosphere	egments Sti	ructure of	Determination of B	OD, COD	Waste water treatmen	nt- Intro	oducti	on		Solid w		mana	ageme	ent: T	ypes			Biome Defini				nagem	nent	
•	SLO-2	Composition of a	atmosphere		Determination of T	DS and trace metals	Primary treatment					Effects Proces		vaste	e man	agen	nent			Categ	ories	of bio	medi	ical wa	ste	
S-2	SLO-1	Air Pollution Sou	rces		Sources, effects ar Soil pollution	nd control measures of	Secondary treatment				I	Dispos Engine	al me	ethod	s, Op			g		Proce	ss of	biom	edical	waste	man	agemen
SLO-2 Effects – acid rain, ozone layer depletion Sources, effects and control measures of Thermal pollution Tertiary treatment											1	Compo Inciner	ation										'	al meti		
S-3	SLO-1	Control measure			Sources and effect	ts of: Radiation pollution	Activity: Visit to a loca Urban/Rural/Industria	l/Agric	ultura		I	Activity manag	emer	nt in Id	ocal a	reas			ı	biome	dical	waste	man	nageme	ent	and the
3-3	SLO-2	Sources, Effects Water pollution	and control	l measures of	Control measures	of Radiation pollution	Activity: Visit to a loca Urban/Rural/Industria					Activity manag					ste							al to un nageme		and the
	1. Erach Bharucha, Textbook of Environmental Studies for Undergraduate Courses, 2 nd ed., UGC 2. Kamaraj. P, Arthanareeswari. M, Environmental Science–Challenges and Changes, 6 th ed., Sudhandhira Publications, 2013 3. R. Jeyalakshmi, Principles of Environmental Science, 2 nd ed., Devi publications, 2008 4. Helen P Kavitha, Principles of Environmental Science, 1 st ed., Shine Publications and Distributors, 2013																									

Learning As	sessment										
	Bloom's			Contir	nuous Learning Asse	essment (100% wei	ghtage)			Final Ev	amination
	Level of Thinking	CLA –	1 (20%)	CLA -	2 (30%)	CLA -	3 (30%)	CLA – 4	1 (20%)#	FIIIdi EX	ammauom
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40%	-	30%	-	30%	-	30%	-	-	-
Level 2	Apply Analyze	40%	-	40%	-	40%	-	40%	-	-	-
Level 3	Evaluate Create	20%	-	30%	-	30%	-	30%	-	-	-
	Total	100	0 %	10	0 %	10	0 %	10	0 %		-

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Sudarshan Mahapatra, Encube Ethicals Pvt. Ltd, sudarshan.m@encubeethicals.com	1. Prof. G. Sekar, IIT Madras, gsekar@iitm.ac.in	1. Prof. M. Arthanareeswari, SRMIST
2. Dr. Shanmukhaprasad Gopi, Dr. Reddy's Laboratories, shanmukhaprasadg@drreddys.com	2. Prof. Vivek Polshettiwar, TIFR Mumbai, vivekpol@tifr.res.in	2. Dr. K. K. R. Datta, SRMIST

ACADEMIC CURRICULA

Open Elective Courses

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Cou		18ASO101T	Course Name		ELEMEN	TS OF AERONAU	JTICS		_	ourse		0				O _i	pen E	Elective					1	_ T	P 0	C 3
	equisite urses	Nil			Co-requisite Courses	Nil					gres		Nil													
		g Department	Aeros	pace Engineering		Data	Book /	Codes/Standards		Nil	ours	E 5														
Course	Learnin	g Rationale (CLF	R): The pu	rpose of learning	this course is to:					L	earni	ing					Progr	ram Le	arnir	ng Ou	tcom	es (Pl	_0)			
		rstand the art of fl								1	2	3		1 2	3	4	5	6	7	8	9	10 ′	11	12 1	3 14	1 15
CLR-2 CLR-3					sity in the layers o working of Engin	f atmosphere and t	their effe	ct on the flying obj	ects							등			iit							
CLR-4					ects and the opera					(moo	(%)	(%)		e Ge	ŧ	sear			inab		ork		8			
CLR-5		the working of va				.				g (Bi	ency	ment		S S	bmdc	, Re	age	Φ	Susta		≥ E		inan	<u>B</u>		
CLR-6	: Get a	bird's eye view o	f Aerospace	Engineering						nking	rofici	ttain	2	J Nnc	evelc	esigr	ol Us	alt.	# & S		Tea	tion	∞.	earni		
		ng Outcomes (CL	•		se, learners will be	able to:				Level of Thinking (Bloom)	S Expected Proficiency (%)	%) Expected Attainment (%)		Engineering knowledge Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	- Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	- 000	
					perties, aircraft flig	ght and different sp	peed regi	mes		2	85			1 H	Н	-	-	-	-	-	-	-	-			-
		ain the basics of a								2	85			- H	Н	Н	-	-	-	-	-		-			-
CLO-4		ain the basics of a			ts					2	85			H		-	-	-	-	-	-		-	- :	· -	
		ribe the basic Spa ify the various con		0, ,	craft and describe	its working mechar	niem			2	85 85			1 - 1 H	H	- Н	-	-	-	-	-	_	-			_
OLO-0	· Indone	ny the various con	npononto un	a systems in and	statt and describe	no working meenar	illioill				00	70	,			, , ,										
Duratio	n (hour)		9			9			9						ę)							9			
S-1	SLO-1	History of Aviatio	on	li.	nternational Stand	lard Atmosphere	li	ntroduction to aircr	aft cons	structio	n	,	Aircraft c	ontrols	:				В	Basic principle of rocket propulsion						
3-1	SLO-2	Imitation of birds	, Ornithopter	rs F	Hydrostatic equation	on	H	listory of Aircraft C	onstruc	tion			Function	s of ail	eron, e	elevato	r and	rudde	: A	Applica	itions	of Ro	ckets			
S-2	SLO-1	Lighter than air v	rehicles		Temperature, pres elationships	sure and altitude	7	russ and Monocoq	ue con	structio	n		Seconda	ry fligh	t contr	ols			T	ypes	of Ro	ckets				
3-2	SLO-2	Hot air balloons		C	Gradient and isoth	ermal region	S	Semi-monocoque c	onstruc	tion.			High lift o	devices	1				S	Solid p	ropuls	sion ro	ckets	3		
S-3	SLO-1	George Cayley's	contribution	E	Bernoulli's equation	n for incompressibl	ole flow T	ypical wing Structu	ires				Types of	contro	l syste	ms			L	iquid _l	oropu	lsion r	ocke	s Wor	king	
3-3	SLO-2	Otto Lilienthal Co	ontribution	A	Application		F	uselage Structures	3				History o	f Conti	ol sys	tem ev	olutio	n		iquid į Disadv			ocke	's Adv	antage	es and
6.4	SLO-1	Wright Brothers	contribution	F	orces acting on a	ircraft	٨	faterials used in Ai	rcraft				Mechani	cal cor	trol sy	stems			Н	lybrid	and c	ryoge	nic ro	ckets		
5-4	S-4 SLO-2 History Moments acting on aircraft						E	xplanation with ex	amples				Powered	contro	l syste	ems				lybrid and Dis		, ,		ckets.	Advan	tages
S-5	SLO-1 Effects of 1st world war How does an aircraft wing generate						lift? T	ypes of power plai	nts				Fly by wi	re con	rol sys	stems			Н	listory	of IS	RO				
3-3	SLO-2	Effect of 2 nd world	d war	F	Preliminary explan	ation	F	Fundamental Classification Basic Operation					Е	stabli	shme	nt of I	SRO									
S-6	SLO-1	Classification of	airplanes	E	Basic characteristi	cs of airfoils	A	In insight into air bi	eathing	g engin	es		Basic ins	trumei	nts for	flying			Launch vehicles designed and developed by ISRO				loped			
3-0	SLO-2	Detailed classific	ation	^	NACA nomenclatu	re	F	Piston Engines					Pitot stat	ic instr	ument	s			Е	хатр	les ex	plana	tion			
S-7	S-7 SLO-1 Components of a simple conventional aircraft Introduction to high speed flight Gas turbine engines Altimeter Principle of Satellite Operation									1																

	SLO-2	Functions of each component of a simple conventional aircraft	propagation of sound, Mach number	Types of Gas turbine engines	ASI, VSI	Types of Satellites
S-8	SLO-1	Introduction to Unmanned aerial vehicles		Relative merits of piston-prop, turboprop, and jet engines	Gyroscopic instruments	Satellite applications
3-0	SLO-2	Applications of UAV	I Sunarconic and hyparconic flows		Turn and slip indicator Artificial horizon.	Space Debris
S-9	SLO-1	Aviation for society	Supersonic flows	Relative merits of jet engine	Turn and slip indicator	Case study-I on successful launches
5-9	SLO-2	Aviation for socio economic development		Comparison based on performance characteristics	Artificial horizon	Case study-2 on launch failures

Lograina	1.	Charles Harrington Kermode, A.C., Flight Without Formulae, 5th ed., Pearson Education, 1970	4.	Shevell R.S., Fundamentals of flights, 2nd ed., Pearson education 2004
Learning	2.	Anderson, J.D., Introduction to Flight, 8 th ed., Tata McGraw Hill,1996	5.	Kermode.A.C., Mechanics of Flight, 12th ed. Pearson Education 1972
Resources	3.	Clancy L.J, Aerodynamics, 2 nd ed., Sterling book house 1975	6.	McKinley, J.L., R.D. Bent, Aircraft Power Plants, McGraw Hill 1993

Learning Asses	sment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	FIIIai Examination	i (50 % weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100) %	100	0 %	100	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
1. Dr. S. Raja, National Aerospace Laboratories, Bangalore, raja@nal.res.in	1. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	1. Mr.Abdur Rasheed, SRMIST								
2. Dr. A. Sakthivel, CEMILAC, Bangalore, asakthironika@gmail.com	2. Dr.A.P.Haran, Park College of Engineering & Technology, email: ap_haran@rediffmail.com	2. Mr. S. Chandra Sekhar, SRMIST								

Cou		18ASO102T Course Name CREATIVITY, INNOVATION AND NEW PRODUCT DEVELOPMENT Course Category O Open Elective									_ T	P 0	C 3													
Co	equisite urses	Nil g Department	Aerospa	ace Engineerin	Co-requisite Courses	Nil	Data Book	k / Codes/Standar	ds		gressiv ourses															
Cours	Onemi	g Department	Легозра	ice Engineenii	9		Data Door	k / Codes/otandar	us	IVII																
Cours	Learnin	g Rationale (CLI	R): The purp	ose of learnin	g this course is to:					Le	earning	3				F	rogr	am Le	arnir	ıg Ou	tcom	s (Pl	LO)			
		ove creativity and								1	2	3	1	2	3	4	5	6	7	8	9	10 1	11	12 1	3 14	4 15
CLR-2		ove the knowledge o students the skill			ach to issues											5			<u>F</u>							
CLR-3		rstand patent law			1					(moc	(%)	(%)	ge		Ħ	sear			inab		충		8			
		expose to design) (B)	ency	ment) wed	S	bme	, Re	age	gs.	Suste		≽ ≽		Finance	DG .		
CLR-6	: Set th	ne quality standar	ds in developii	ng a prototype	of any engineering	g product				inkin	rofici	ttain	Kng	ıalysi	evelc	esign	SI IS	Ħ	ıt & S		Tea	ation	∞ಶ	eami		
										of Th	ted F	ted A	erin (m Ar	۵% ۱	is, D	n To	y S	nme		lual 8	in i	t Mgt	J Bu		-3
Cours	Learnin	g Outcomes (CL	O): At the e	nd of this cour	se, learners will be	able to:					Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Jesign & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt.	ife Long Leaming	PSO - 1	PSO-
CLO-1	: Unde	rstand the importa	ance of thinkin	ng ability in the	field of engineerin	g				2		80	Н	Н	١.	-	-	Н	Н	Н			_	Н		
		te the skills to sol								2		80	Н	Н	-	-	-	Н		Н	-		_	Н		-
		rtake better proje rm better researc		be helpful for r	nation developmen	t				2		80 80	H	- Н	-	Н	-	H		H	Н		_	H H	- -	-
		and analyze the		in the technica	l wav					2		80	Н	-	Н	-	-	Н		Н	H			Н		
		ort for the design								2		80	Н	Н	Н	Н	-			Н	-	-		Н		
Duration	n (hour)		9			9			9	9								9								
S-1	SLO-1	Introduction			Collection of ideas	1		Introduction to pr	oject eval	uation		Eva	luation	of IPF	7				D	Design of product prototype						
3-1	SLO-2	The process of te	echnological ir	nnovation	Categories of idea	s		Preliminary meth	ods			4 tra	aditiona	l form	s				F	actors	s of de	sign				
S-2	SLO-1	Factors contribut technological inn		sful	Different routes for	r collecting	ideas	Screening metho	ds			Defi	inition c	of IPR					R	Requir	emen	of de	esign			
0-2	SLO-2	Examples for the	e factors		Examples			Examples				Dev	elopme	ent of	7 type	s of IP	R		D	esign)	proce	ss				
S-3	SLO-1	Technological m	ilestones		Taking different vie unusual	ews, Combi	ining the	Product life cycle				Nee	d for IF	PR in I	ndia				F	unctio	onal d	esign				
3-3	SLO-2	Technological ev			Examples			Different organiza	ations			Pate	entable	innov	ation				F	unctio	onal m	argins	S			
S-4	SLO-1	The need for cre nation	ativity for indiv	idual and	Adapt, adopt & imp	orove		Product Evaluation profile Obligations						T	est ar	nd Qu	alifica	tion								
3-4	SLO-2	The need for innation	ovation for ind	lividual and	Breaking the rules.			Stability factors	ability factors Enforcement measurement			asures	S			T	ypes	of test	s and	l their	signif	icance)			
S-5	SLO-1	Creativity -Obsta	ncles		Challenge the assi	umptions		Growth factors Patent search and its advantages Test plan				an														
0-0	SLO-2	Problem solving-	-Obstacles		Asking searching o	questions		Marketability fact	tors IP Council Issues in concluding a te			est	_													
S-6	SLO-1	Creativity -keys a	and questions		Increasing the yiel	d		Research factors			International Treaties Quality standards															
3-0	SLO-2	Problem solving-	-keys and que	stions	Implementation me	ethods		Development factors Conventions Product Strategy				Product Strategy														

S-7	SLO-1	Brain Storming	Purpose and types, Indian National Technology Missions	Position factors	WIPO	Six-sigma Practice Procedure		
0-7	SLO-2	Examples	Detailed explanation	Production factors	TRIPS	Implementation		
S-8	SLO-1	Different techniques for creative intelligence	Project selection criteria	Value Engineering	WTO	Marketing- methods		
3-0	SLO-2	Detailed explanation with examples	Analysis methods	Need for value engineering	PCT	Marketing- research		
S-9	SLO-1	Case Study-1on technology innovation	Case Study-2 on project selection	Case Study-3 on project evaluation	Case Study-4 on IPR	Case Study -5 on product development		
5-9	SLO-2	Example	Example	Example	Example	Example		

Learning
Resources

- 1. Keleen A.L., New Product Planning and Development, International Correspondence Schools Division, Scraton, Pennsyvania, 1969
- 2. Paul Sloane, The Leader's Guide to Lateral Thinking Skills, 2nd ed., Kogan Page India, New Delhi, 2008
- Department of Space: IPR Manual, Bangalore, 2007
 Osho, Creativity Unleashing the Forces Within, St Martin's Griffin, New York, March, 2007

- 5. Abdul Kalam.A.P.J., Arun Tiwari, "Wings of Fire", Universities Press, Hyderabad, 1999
- 6. Edward de Bono, How to have a beautiful mind, Vermilon, London, 2004
- 7. Khandwalla, R.N., Fourth Eye (Excellence through creativity), Wheeler Publishing, Allahabad, 1992.
- 8. Rajiv.V.Dharaskar, Innovation-Growth Engine for Nation. Nice Buzzword but often Misunderstood, www.dharaskar.com
- 9. Annamalai.N., www.creativitysphere

Learning Ass	Learning Assessment												
	Bloom's Continuous Learning Assessment (50% weightage)												
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)			
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	100	0 %	100	0 %	10	100 %		00 %		100 %		0 %

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Raja, National Aerospace Laboratories, Bangalore, raja@nal.res.in	1. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	1. Mr.Abdur Rasheed, SRMIST
2. Dr. A. Sakthivel, CEMILAC, Bangalore, asakthironika@gmail.com	2. Dr.A.P.Haran, Park College of Engineering & Technology, email: ap_haran@rediffmail.com	2. Mr. S. Chandra Sekhar, SRMIST

	Course Code 18ASO103T Course Name AVIATION AND AIRLINE MAINTENANCE MANAGEMENT						_	ourse tegor		0				С)pen E	Electiv	e					L 3	•		3
	Pre-requisite Courses Nil Co-requisite Courses Nil Nil								gres		Nil														
Course	Course Offering Department Aerospace Engineering Data Book / Codes/Standards							Nil																	
	turse Learning Rationale (CLR): The purpose of learning this course is to:							L	earni	ing					Prog	ram L	.earn	ing O	utcor	nes (F	PLO)				
CLR-1			oncepts of Air transportation		gement			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Familiarize the concept of Airline forecasting and fleet planning CLR-3: Identify the significance of airline scheduling and equipment maintenance CLR-4: Create insights to the concepts of Aircraft reliability and aging aircraft maintenance CLR-5: Familiarize the aviation supporting organization and state regulatory CLR-6: Familiarize with aviation maintenance and management					Thinking (Bloom)	Proficiency (%)	Attainment (%)	Engineering Knowledge	Analysis	Development	Design, Research	l Usage	Culture	t & Sustainability		Team Work	tion	& Finance	Learning						
Course	e Learnin	g Outcomes (CLC	O): At the end of this cou	ırse, learners will be	e able to:			Level of Thir	Expected Pr	Expected At	Fngineering	Problem An		Analysis, De	Modern Tool Usage	Society & Cl	Environment	Ethics	Individual & -	Communication	Project Mgt.	Life Long Le		PS0 - 2	PSO-3
CLO-1			the organization details in	air-transportation				2	85	75	H		L	L	М	М	Μ	Н	М	М	L	L	М	М	Н
CLO-2		fy the forecasting r						2	85	75			L	L	М	L	L	L	М	М	L	L	М	М	Н
CLO-3			ling process and maintena	ince of aircraft				2	85 85	75 75			-	-	M	M M	М	M M	M M	M	L	M	H M	M	M H
CLO-4: Understand the aging aircraft maintenance CLO-5: Understand the aviation supporting organizations and state regulatory						2	85	75			L	M	Н	M	M	M	М	М	Н	М	M	M	<u>п</u>		
CLO-6: Understand the concept of aviation maintenance and management					2	85	75			L	L	М	М	М	М	М	М	Ĺ	L	М	М	Н			
Duratio	on (hour)		9		9)						g	١							9				
Durall	, ,		-		J									'							9	1			
SLO-1 Air Transportation Airline Economics Introduction to airline sche					sched	luling	g Aircraft reliability Aviation supporting organisations																		
S-1 Sign of Airling cohoduling Mission of Airling cohoduling				odulin	~			Parameters to manifer World trade arganization																	

Durat	ion (hour)	9	9	9	9	9
S-1	SLO-1	Air Transportation	Airline Economics	Introduction to airline scheduling	Aircraft reliability	Aviation supporting organisations
3-1	SLO-2	Development of Air Transportation	Airline Forecasting	Mission of Airline scheduling	Parameters to monitor	World trade organisation
S-2	SLO-1	Comparison of Air Transportation with other Modes of Transport	Fleet Planning	Equipment maintenance	Maintenance schedule	World tourism organisation
3-2	SLO-2	International Aviation Association	Aircraft Selection Process	Maintenance system of a jet aircraft	Maintenance program	State regulatory
S-3	SLO-1	ICAO	Operating Cost	Flight operations and crew scheduling	Schedule determination	Responsibilities and functions of CAA
3-3	SLO-2	IATA	Passenger Capacity	Objective of ground service	Condition monitoring maintenance	Responsibilities and functions of FAA
S-4	SLO-1	Aviation Classification	Load Factor	Ground operations and facility limitations	ETOPS and EROPS	DGCA
3-4	SLO-2	Factors Affecting General Aviation Industry	Passenger Fare and Tariffs	Schedule planning and coordination	Aircraft depressurization	functions of DGCA
S-5	SLO-1	Aircraft Uses	Influence of Geographical, Economic and Political Factors	Traffic flow	Aging Aircraft	Turbine engine monitoring
3-3	SLO-2	airport classification	On Routes And Route Selection	Schedule salability	Maintenance in aging aircraft	Turbine engine vibration monitoring
S-6	SLO-1	Airline Management	Fleet Commonality	Schedule Adjustment	Operating cost associated with maintenance	Onboard maintenance system
	SLO-2	Levels of Management	Factors Affecting Fleet Choice	Chain reaction effect	Helicopter maintenance	Life usage monitoring
S-7	SLO-1	Functions of management	Valuation and Depreciation	Load factor leverage	Maintenance schedule	Technology in aircraft maintenance

	SLO-2	Management by Objective	Budgeting	Equipment's and types of schedule	Current Capabilities of NDT	Airline financing
	SLO-1	Principle of organization planning	Cost planning	Preparing flight plans	Applications of NDT in maintenance	Sources of fund
S-8	SLO-2	Organizational Chart		Aircraft scheduling in line with aircraft maintenance practice	Equipment and tools for maintenance	Globalization
	SLO-1	Line management	Route Analysis	Hub and spoke scheduling	Spare maintenance	Globalization of airlines
S-9	SLO-2	Staff Management	Aircraft evaluation	Advantages and Disadvantages	Future aircraft maintenance	Future Challenges

Learning	1. John G Wensveen, Air Transportation – A Management Prespective, Ashgate Publications, 8th ed., 2015	3. Indian Aircraft Manual, DGCA, sterling book House, Mumbai, reprint 2014
Resources	2. Friend C.H., Aircraft Maintenance Management, Longman aviation technology. 2 nd ed., 1992	4. PS Senguttuvan, Fundamentals of air transport management, excel books, reprint 2010

Learning Ass	Learning Assessment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination (50% weightage		
	Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	ł (10%)#	FIIIdi Examination	i (50% weightage)	
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	100	0 %	100	0 %	100	0 %	10	0 %	10	0 %	

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Wg .Cdr K. Manoharan (Retd), Blue Dart Aviation Ltd., manoharank@bluedart.com	1. Mr. D. Balaji, Professor, KPRIET, Coimbatore, dbalajideva@gmail.com	1. K.lynthezhuthon, SRMIST
2. Dr. Raja S, CSIR-NAL, Bangalore, raja@nal.res.in	2. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	2. Mr .G. Mahendra Perumal, SRMIST

Course		Course	AUDODAET OFFICDAL FAIGUREEDING AND MAINTENANGE DRAGTICES	Course			L	T	Р	С
Code	18ASO104T	Name	AIRCRAFT GENERAL ENGINEERING AND MAINTENANCE PRACTICES	Category	0	Open Elective	3	0	0	3

	Nil	Co-requisite Courses	Progressive Nii	
Course Offering D	Department Aerospace Engineering	Data Book / Codes/Standards	Nil	

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	.earni	ng					Progi	ram L	.earn	ing O	utcon	nes (F	PLO)				
CLR-1: Identify ground handling tools and equipments to perform ground handling operation of aircraft	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Maintain the aircraft ground servicing units										·y								
CLR-3: Upkeep the safety aspects and improve the human relations in working environment.	Ē	(%)	<u></u>				arch			pillit							, ,	
CLR-4: Work in the planning process environment of maintenance industry.	00		ıt (%)	dge		ent	ese			aina		Work		92			, ,	
CLR-5: Maintain the tools, accessories, components ,minor & major assemblies	Thinking (Bloom)	Proficiency	Attainment)wle	S	Development	, Re	Usage	go.	Sustainability		ъ Р		inance	ng		, ,	
CLR-6: Utilize the knowledge acquired to work as an efficient maintenance engineer.	iž	ofici	Tai.	Ā	alysis	svelc	Design,	l Ns	Culture	∞		Team	ţio	∞	earning		, ,	
	를	P.		ring	An	& De		T00	& Cl	nen		య	ica	Mgt.			, ,	
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Understand the operation of various ground handling equipments & procedures	2	85	75	Н	-	L	L	М	М	М	М	М	М	L	L	М	М	Н
CLO-2: Acquire knowledge on utility of aircraft ground servicing units and their maintenance	2	85	75	Н	-	L	L	М	L	L	L	М	М	L	L	М	М	Н
CLO-3: Know the safety aspects of usage of fluids & the human performance factors	2	85	75	Μ		-		L	М	Μ	М	Μ	М	L	L	Н	М	М
CLO-4: Acquire knowledge on different maintenance operational procedures	2	85	75	Н	L	L	М	М	М	L	М	М	М	М	М	М	М	Н
CLO-5: Acquire knowledge on various maintenance practices.	2	85	75	Н	L	L	L	Н	М	М	М	М	М	Н	М	М	М	М
CLO-6: Acquire comprehensive knowledge about ground handling & operational procedure of aircraft & its servicing units.	2	85	75	Н	L	L	L	М	М	Μ	М	Μ	Μ	L	L	М	М	Н

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Introduction to Aircraft Ground Handling Procédures.	Introduction to Maintenance and handling of ground equipment	Safety aspects when working with electricity	Introduction to Maintenance Procedure	Hand Tools
3-1	SLO-2	Aircraft Taxing Procedure	Maintenance and handling of Compressor	Safety aspects when working with oil, gases, oxygen and chemicals	Maintenance Planning	Care of Tools
S-2	SLO-1	Aircraft Towing Operations	Maintenance of Portable Hydraulic Test Stand.	Remedial action during an incident	Modification Procedure	Calibration of tools and equipment
3-2	SLO-2	Safety Precautions during Towing Operations	Handling of Portable Hydraulic Test Stand	Remedial action during an accident.	Stores Procedure	Calibration standards
S-3	SLO-1	Aircraft Jacking Procedure	Maintenance of Electric power supply equipment	Human Factors	Certification Procedure	Control Cables
3-3	SLO-2	Safety Precautions during Jacking Procedure	Handling of Electric power supply equipment	Human Error, Murphy's Law	Release Procedure	Pipes and Unions
S-4	SLO-1	Chocking & Mooring Operations	Maintenance of Charging Trolley	Human performance and limitations – Vision& Hearing	Interface with aircraft operation	Transmissions
3-4	SLO-2	Safety Precautions during Chocking & Mooring Operations	Handling of Charging Trolley	Information Processing	Maintenance, Inspection	Bearing & Hoses
S-5	SLO-1	Aircraft Storage Methods	Maintenance of Air-conditioning and Heating Unit	Attention & Perception	Quality control	Springs
3-3	SLO-2	Storage of Rotables	Handling of Air-conditioning and Heating Unit	Memory & Physical Access	Quality assurance	NDT Techniques
S-6	SLO-1	Refueling Procedures	Maintenance of Ground Support Air Starter Unit	Claustrophobia	Publications	Engineering drawing diagrams
	SLO-2	Defueling Procedures	Handling of Ground Support Air Starter Unit	Factors affecting human performance – Workload	Bulletins	Standards
S-7	SLO-1	Aircraft Deicing Procedures	Maintenance of Oil Pressure Unit	Stress	Airworthiness Directives	Fits and Clearance

	SLO-2	Aircraft Anti-icing Procedures	Handling of Oil Pressure Unit	Time Pressure & Deadlines	Structural Repair Manual	Welding & Swaging
S-8		Effect of environmental condition on aircraft handling and operation	Maintenance of Fire extinguishers	Medication	Overhaul Manual	Brazing & Soldering
3-0	SLO-2	Aircraft cleaning and Maintaining	Handling of Fire extinguishers	Noise & Fumes	Log Books	Bondings
	SLO-1	Ground signaling, Marshaling of aircraft in day time	Maintenance of Jacks, Cranes, Ladders, Platforms, Trestles & Chocks	Climate & Temperature	Introduction to ATA	Corrosion and its removal
S-9	SLO-2		Handling of Jacks, Cranes, Ladders, Platforms, Trestles & Chocks	Working Environment	ATA Specifications	Trouble shooting techniques.

	1.	Airframe and Power plant Mechanics, General Hand Book, Federal Aviation Administration, AC65 – 9A	5.	Michael J.Kroes, William A.Watkins ad Frank Delp, Aircraft Maintenance and Repair, 7th ed.,
Learning	2.	Airframe and Power plant Mechanics, Airframe Hand Book, Federal Aviation Administration, AC65 – 15A		Tata McGraw Hill, New Delhi, 2013
Resources	3.	Civil Aviation Inspection(CAP 459) Part – II	6.	CAP 715 – An Introduction to Aircraft Maintenance Engineering Human Factors for JAR 66,
	4.	Acceptable Methods, Techniques & Practices (FAA) – EA-AC43.13-1A & 2A		Civil Aviation Authority, UK

Learning Asses	sment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	FIIIai Examination	i (50 % weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Loyal 1	Remember	40 %		30 %		30 %		30 %		30%	
Level 1	Understand	40 %	-	30 %	1	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%	
Level 2	Analyze	40 /0	-	40 /0		40 /0	-	40 /0	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
Level 3	Create	20 70	-	30 76	,	30 /0	-	30 //	-	30%	-
	Total	100	0 %	100) %	100	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Wg .Cdr K. Manoharan (Retd), Blue Dart Aviation Ltd., manoharank@bluedart.com	1. Dr.A.P.Haran, Park College of Engineering & Technology, email: ap_haran@rediffmail.com	1. Dr. S. Sivakumar, SRMIST
2. Dr. Raja S, CSIR-NAL, Bangalore, raja@nal.res.in	2. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	2. Mr .G. Mahendra Perumal, SRMIST

Cou		18ASO105T	Course Name		FLOW VISU	ALIZATION TECHN	IIQUES	_	ourse	, ()				Ор	en El	ective)					L 3		_	C 3
Co	requisite ourses	IVII			Co-requisite Courses	Nil			C	gressiv ourses	e _{Nil}															
Cours	e Offering	g Department	Aeros	pace Engineering	9	Data	Book / Codes/Standards		Nil																	
Cours	e Learnin	g Rationale (CLF	R): The pu	rpose of learning	this course is to:				L	earning	ı				F	rogra	am Le	earnii	ng Oı	ıtcom	es (P	LO)				
CLR-1	: Identi	fy the type of flow	visualizatio	n used in air flow	/				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2		fy the type of flow fy the type of flow													등			E.								
CLR-4	: Asses	ss the need of ima	age-based n	neasurement like	Particle Image Ve				mool	34 (%)	(%)	gge		ent	eseal			ainat		Vork		90				
CLR-5					alization technique	es proving the aerodyr	amino		ng (B	icienc	nmer	nowle	Sis	mdole	Design, Research	Sage	e n	Sus		am V	_	& Finance	ning			
CLK-0	. Othize	e ine knowledge a	счиней аво	iut various now vi	isualization ioi iiij	proving the aerodyn	annes		Think:	Prof	Atta	ing K	Analy	Deve	Desi	00	Cult	ent 8		1 & Te	icatio	lgt. &	Lear			
Cours	e Learnin	a Outcomes (CL	O): At the	end of this cours	se, learners will be	able to:				Expected Proficiency (%)	Expected Attainment (%)	H Engineering Knowledge	Problem Analysis	Design & Development	Analysis,	Modern Tool Usage	Society & Culture	Environment & Sustainability	<u>S</u>	ndividual & Team Work	Communication	Project Mgt.	ife Long Leaming	PS0 - 1	PS0 - 2	7 PSO - 3
		rstand Flow Visua	<u> </u>						2	80 EX	X	ЭÙ Ц	- Pro	H	L A	€ .	Soc	M M	Ethics	밀	S -	- P	Life	PS	M M	- PS
		ire knowledge on							2		70	H	-	Н	L	-	-	-	-	-	-	-	-	_	M	М
					sualization techni				2		70	Н	-	Н	L	-	-	-	-	-	-	-	-		М	М
		eciate the usefuine knowledge on var				ing and its applicati	ons		2		70 70	H	-	H	L	H M	-	-	-	-	-	-	-		H M	H M
						chniques and their	applications		2		70	Н	-	М	L	-	-	М	-	-	-	-	-	_		М
Durati	on (hour)		9			9		9						9								9				
S-1	SLO-1	Introduction to FI	low Visualiza	ation S	Safety requiremen	ts	Skin Friction Visuali	zation			Holo	graphi	c Inte	rferom	neter			7	Tracei	r Meth	ods					
3-1	SLO-2	Need for Flow Vi	sualization	S	Safety procedures		Requirements for Si	kin Fric	tion		Арр	lication	s of H	lologra	aphic II	nterfe	rome	ter H	Hydro	gen B	ubble	Meth	nod			
S-2	SLO-1	Applications of F	low Visualiz	ation C	Chemical Safety		Interferometer				Part	icle Im	age V	elocim	netry (F	PIV)		Ĺ	Dye In	jectio	n					
J-2	SLO-2	Types of Flow Vi	sualization	F	Human Safety		Fringe Imaging				PIV	and its	Туре	s				7	Types	of dy	е					
S-3	SLO-1	Flow Visualizatio	n in Water	S	Surface Visualizati	on	Compressible Flow	Visualiz	zation		PIV	Setup						5	Spark	Trace	r Tec	hniqu	ie			
3-3	SLO-2	Laminar Flow Vis	sualization	٨	Need for Surface \	/isualization	Gladstone Dale Rela	ation			PIV	Proced	lure					5	Spark	Trace	r Seti	ир				
S-4	SLO-1	Hele-Shaw Appa	ıratus	17	Surface Visualizati Measurements	on versus Surface	Requirements for O	ptics			Puls	e Sign	als					٨	Molec	ular T	aggin	g Vel	ocime	try (M	ITV)	
3-4	SLO-2	Dye Injection Me	thod	A	Advantages of Sur	face Visualization	Optics and Setup pr	rocedur	es		Syn	chroniz	er					3	Setup	for M	TV					
S-5	SLO-1	Flow Visualizatio	n in Air	V	Wall Shear Stress		Shadowgraph				lma	ging for	PIV					7	Therm	omet	у					
3-3	SLO-2 Usage of Tufts Need for Wall Shear Stress Study					Shadowgraph proce	Shadowgraph procedure			Image Correlation					ſ	Devices for Thermometry										
S-6	SLO-1 Smoke Generators Surface Pressure Visualization					Schlieren	Video Recording Lo				Low density flow visualization															
3-0	SLO-2	Smoke Injection	Methods	F	Pressure Sensitive	Paints (PSP)	Schlieren procedure)			Vide	o Imag	ing					(Challe	nges	for lov	w der	sity fl	ow stu	ıdy	

S-7	SLO-1	Light Sources	Application of PSP on Surfaces	Mach Zehnder Interferometer	Postprocessing PIV data	Electron Beam Flow visualization
3-1	SLO-2	Light Diffuser	Time resolved PSP	Mach Zehnder Interferometer Setup	Post processing PIV software	Glow Discharge visualization
	SLO-1	Laser Sources	Surface Flow Visualization	Fresnel Equation	Error Sources in PIV	Surface Temperature Visualization
S-8	SLO-2	Laser Sheet for smoke visualization	Shear Sensitivity	Applications of Mach Zehnder Interferometer	Applications of PIV	Temperature Sensitive Paints (TSP)
S-9	SLO-1	Photographic Equipment	Liquid Crystal Coating	Holography	3D PIV	3D Imaging
3-9	SLO-2	Photographic Techniques	Choice of Liquid Crystals	Holography setup	Setup for 3D PIV	3D Image processing

	1.	Alexander J Smits, TT Lim, Flow Visualization: Techniques and Examples, 2nd ed., Imperial Co
Learning	2.	Rathakrishnan E, Instrumentation, Measurements, and Experiments in Fluids, 1st ed., CRC Pre-
Resources	3.	Settles G S, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent
		Springer, 2001

- College Press, 2012
 Press, 2007
 nt Media, 1st ed.,

 Merzkirch W (Ed Gersten K), Techniques of flow visualization, AGARDograph No. 302, 1984
 5. Journal of Visualization, Springer
 6. Journal of Visualization and Image processing, Begell House

Learning Ass	sessment										
_	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(E00/ weightege)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Filiai Examination	n (50% weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		30 %		30%	
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%	
Level 2	Analyze	40 /0	_	40 /0	-	40 /0	-	40 /0	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100	0 %	10	0 %	100	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, VSSC,ISRO, r_kalimuthu@iprc.gov.in	1. Dr .Arun Kumar Perumal, Mechanical Eng, IIT Jammu, arun.perumal@iitjammu.ac.in	1. Mr .S Senthil Kumar, SRMIST
2. Dr. Raja S, CSIR-NAL, email: raja@nal.res.in	2. Dr. Parammasivam K M, MIT, Chennai, email: mparams@mitindia.edu	2. Dr. Kannan B T, SRMIST

Course Code	-	18ASO106T	Course Name	AIRPOR	RT ENGINEERING			ourse tegory	,	0				(Open E	Electiv	⁄e					L 3	T 0	P 0	C 3
Pre-rec		Nil		Co-requisite Courses	Nil				gress		Nil														
Course C	Offering	Department	Aerospace Engineer	ring	Data Bool	k / Codes/Standards		Nil																	
Course Learning Rationale (CLR): The purpose of learning this course is to: Learning Program Learning Outcomes (PLO)																									
CLR-1:		arize about airpo						1	2	3		2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:			ort planning and forecastin	g													⋧		1	.					
CLR-3:			runway and taxiways					Ê	9	@		10		<u>a</u>			apill		~	.					
CLR-4:	_		raffic control tower and ten	minal areas				Thinking (Bloom)	Proficiency (%)	Attainment (%)	-	50	Development	Research			Sustainability		Work	.	Finance				
CLR-5:			pads and STOL ports] G	ienc	me			2 2	, E	Tool Usage	உ	Sus		mg/		-ina	ing			
CLR-6:	Utilize	the knowledge a	acquired to work as an airp	ort engineer				돌	ofic	tai	1		Develop	esig		Culture	∞ ∞		& Team	ligi I	∞ŏ	Learning			
Course L	_earning	g Outcomes (CL	O): At the end of this co	urse, learners will be a	able to:			Level of Th	Expected P	Expected		Erigineering Kriowiedge			Modern Too	Society & C	Environment	Ethics	Individual 8	Communication	Project Mgt.	Life Long L	PS0 - 1	PSO-2	PSO-3
CLO-1:	Identif	y airports and su	rveys involved					2	85	75	1	1 -	L	L	М	М	М	М	М	М	L	L	М	М	Н
CLO-2:	Identif	y airport planning	g and forecasting					2	85	75	1	1 -	L	L	М	L	L	L	М	М	L	L	Μ	М	Н
CLO-3:	Under	stand and design	n runway and taxiways					2	85	75	1	1 -	-	-	L	Μ	М	М	М	М	L	L	Н	М	Μ
CLO-4:	Under	stand about air tr	raffic control tower and ten	minal areas				2	85	75	1	1 L	. L	М	М	Μ	L	М	М	М	М	М	Μ	М	Н
CLO-5:	Under	stand about helip	pads and STOL ports					2	85	75	1	1 L	. L	L	Н	М	М	М	М	М	Н	М	Μ	М	Μ
CLO-6:	Acquii	re comprehensive	e knowledge about airport	and the utilities.				2	85	75	ı	1 L	. L	L	М	М	М	М	М	М	L	L	М	М	Н
Duration	(hour)		9		9	9								9						—	9)			
S	SLO-1	International airp	ort authority of India	Airport Planning		Runway design					Planning	and o	lesign	of terr	ninal a	rea		Helip	ort					-	

Durat	ion (hour)	9	9	9	9	9
S-1	SLO-1	International airport authority of India	Airport Planning	Runway design	Planning and design of terminal area	Heliport
3-1	SLO-2	Civil aviation department	Improvement of existing Airport	Runway orientation	Terminal building	Advantages of helicopter
S-2	SLO-1	Airport Authority of India	Airport site selection	Change in direction of runway	Passenger Flow	Characteristics of helicopter
3-2	SLO-2	Open sky policy	Factors influence location	Basic runway length	Sequence of activity	Planning of heliport
S-3	SLO-1	Airport terminology	Airport size	Corrections to basic runway length	Size of apron	Site Selection
3-3	SLO-2	Aircraft Classification	Factors affecting size of airport	Runway patterns	Hangars	Obstruction clearance requirements
S-4	SLO-1	Components parts of Aeroplane	Aviation Forecasting	Comparison of runway patterns	Typical airport layout	Elevated heliport
3-4	SLO-2	Aircraft Characteristics	Important aspects	Taxiway design	Air Traffic Control	Marking and lighting of heliport
S-5	SLO-1	Jet Aircraft Characteristics	Airport obstructions	Layout of taxiways	Significance of ATC	Heliport in airport
3-3	SLO-2	Civil and military aircrafts	Imaginary surface	Geometric standards for taxiway	Flight Rules	STOL ports
S-6	SLO-1	Classification of aerodrome	Objects with actual height	Exit taxiways	ATC Network	Characteristics of STOL Aircraft
3-0	SLO-2	Classification of airports	Clear Zone	Location of exit taxiway	ATC Aids	Advantages of STOL Aircraft

S-7	SLO-1	Flying Activities	Turning zone	Design of exit taxiways	Classification	Planning of STOL Port
3-1	SLO-2	Scheduled and non-scheduled flights	Zoning Laws	Loading aprons	Automation in ATC Aids	Aspects of the planning
S-8	SLO-1	Airport Survey	Environmental considerations	Holding Aprons	GPS ATC	Obstruction clearance requirements
3-6	SLO-2	Objectives and types of survey	Factors influenced by airport activity	Fillets	Free Flight ATC	Runway and taxiway of STOL port
	SLO-1	Drawings to be Prepared	Pollution factor	Separation Clearance	Free flight types	Lighting of STOL Port
S-9	SLO-2	Types of plan	Social factor	Bypass or turnaround taxiway	Approaches of free flight	Marking of STOL Port

Learning 1. Rangwala	ala. Airport Engineering, Charotar Publishing House Pvt., 15 th ed., 2015		Norman J. Ashford, Saleh A. Mumayiz, Paul H. Wright. Airport Engineering: Planning, Design and Development of 21St - Century Airports", 4th ed., CBS Publishers & Distributors. April 2011
----------------------	--	--	--

Learning Assess	ment												
	Bloom's		Final Evamination	o (E00/ weightege)									
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	1 (10%)#	Final Examination (50% weightage)			
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	40 %		30 %		30 %		30 %		30%			
Level I	Understand	40 /0	-	30 /6	-	30 /0	-	30 //	-	30%	-		
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%			
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-		
Level 3	Evaluate	20 %		30 %	_	30 %		30 %		30%	_		
Level 3	Create	20 /0	-	30 /0	-	30 /0	-	30 //	-	30%	-		
	Total 100 % 100 %						0 %	10	0 %	100 %			

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Wg.Cdr K.Manoharan (Retd), Blue Dart Aviation Ltd, email: manoharank@bluedart.com	1. Mr. D. Balaji, KPRIET, Coimbatore, email: dbalaji.deva@gmail.com	1. K. lynthezhuthon, SRMIST
2. Dr. Raja S, CSIR-NAL, Bangalore, raja@nal.res.in	2. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	2. Mr .G. Mahendra Perumal, SRMIST

Course Code	18BTO101T	EASES	Course Category		0					Oį	pen E	lectiv	е				;	L 1	Γ F		C 3		
	Pre-requisite Courses Nil Co-requisite Courses Nil Progressive Courses Nil Nil																						
Course Of	ffering Department	Biotech	nology Data	Book / Codes/Standards	Nil																	_	
Course Le	earning Rationale (CL	R): The purp	ose of learning this course is to:		L	earni	ng						Progr	am L	earni	ing O	utcom	nes (P	LO)				
CLR-1:	State the basic structu	ıral organizatio	n of human health system		1	2	3	Ī	1	2	3	4	5	6	7	8	9	10	11	12 1	13 1	14	15
CLR-2:	Summarize the etiolog	y of human in	ectious diseases									_			≥								
			body and immune disorders		_ F	9	(9)					arch			Sustainability		J						
CLR-4:	Impart information abo				Thinking (Bloom)	()	nt (%		agbe		Development	Rese			tain		Work		Finance				
			ciated with modern society			ien	in el		9We	<u>.დ</u>	obu	'n,	sage	உ	Sus		Team		-ina	ja ja			
CLR-6:	State about disease di	iagnosis and tr	eatment strategies		_ 達	iofic	ttair		조	Analysis	evel	Design,	Š	Culture	¥ ¥		ĕ	igi Jo	∞ಶ	Learning			
Course Le	earning Outcomes (Cl	LO): At the e	nd of this course, learners will be able to:		Level of Th	Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	Problem Ar	Design & D	Analysis, D	Modern Tool Usage	Society & C	Environment	Ethics	Individual &	Communication	Project Mgt.	ong	1	1	PSO - 3
			netic, cellular, and physiological levels		2	80	70		-	-	-	L	-	М	-	-	-	Н	-	Н	- 1	L	Н
			ains a healthy balance, and how disturbances of th		2	85	75		-	-	-	L	-	М	-	-	-	Н		Н	- 1		Н
			and understand defense mechanism of our human	body	2	75	70		-	-	-	L	-	М	-	-	-	Н		• •	- 1		Н
	Describe disease cau				2	85	80		-	-	-	L	-	М	-	-	-	Н		Н	- 1		Η
			scientific approaches to treat disease.		2	85	75		-	-		L	-	М	-	Μ	-	Н			H I		Н
CLO-6:	Demonstrates the imp	oortance of ta	king responsibility for one's own health		2	80	70		-	-	-	L	-	М	-	Н	-	Н	-	Н	- 1	H	Н

Durati	ion (hour)	9	9	9	9	9
S-1	SLO-1	Introduction to human heath	Concepts of human disease	Immune system	Mendelian genetics	Disease Diagnosis
3-1	SLO-2	Anatomy and physiology	Disease Disorder and syndrome	Physical chemical and cellular barrier	Genetics of simple and complex traits	Treatment strategy
•	SLO-1	Respiratory system	Pathology of disease	Types of Immune cell	Hereditary disease	Biomedical Instruments
S-2	SLO-2	Circulatory system	Mechanism of disease	Humoral and cell mediated immunity	Karyotype preparation and analysis Chromosome abnormality	Biosensors
S-3	SLO-1	Digestive system	Infectious disease	Cells Involved in inflammation	Thalassemia	Drug designing and development
3-3	SLO-2	Execratory system	Causative agents Bacteria, virus and parasites	Inflammatory Process	Cystic fibrosis	Computer aided drug designing
	SLO-1	Reproductive system	Bacteria: Introduction Pathogenesis	Immune disorders	Duchene Muscular dystrophy	Drug metabolism
S-4	SLO-2	Fertilization and embryogenesis	Bacterial toxins	Abscesses, ulcer, cellulitis And Allergy	Sickle cell anemia	ADME property of a drug
S-5	SLO-1	Cell structure	virulence of bacterial infection	Autoimmunity	Indian genetic disease database	Sources of drug- plants and microbes
3-3	SLO-2	Tissue types	Antibiotic resistance strains	Immunodeficiency	Human gene mutation database	Route of administration
S-6	SLO-1	How body gets energy	Virus: An overview of replication cycle of virus	High risk disease of modern society	Principle class of metabolic disorders	Bulk Drugs and processing
3-0	SLO-2	ATP Synthesis	Effect of virus infection in the host cell Obesity, Hypertension and diabetics		Inherited Metabolic disorders	Active pharmaceutical ingredient

6.7			Epidemiology	Neoplasm	Metabolic syndrome	Vaccines types, Recommendation by age
S-7	SLO-2	Cell cycle	Roots of spreading, Emerging and reemerging virus	Oncogenes and tumor suppressor genes	Risk factors	Vaccines – Recent advancement
S-8	SLO-1	Checkpoints in cell division	Parasitosis, common parasites of human	Types of cancer	Lysozyme storage disease: Molecular basis	Immunotherapy
3-0	SLO-2	Cell division -Mitosis and Meiosis	Plasmodium – life cycle and disease	Stages of cancer	List of proteins involved in LSD	Immunotherapeutic approaches currently in use
6.0	SLO-1	Growth factors- overview	g		Balanced nutrition and Malnutrition	Stem cell therapy
SLO-2 Ty		Types and function	Endemic mycoses in immunocompromised patients	Life style and cancer risk	Deficiency disease	Gene therapy

Learning Resources	 Goodenough and McGuire, Biology of Humans: Concepts, Applications and issues, 4th ed., Benjamin Cummins/Pearson Publisher, 2011 	Marianne Neighbors, Ruth Tannehil, Human Diseases, 4 th ed.,Jones Cengage learning, 2015
-----------------------	---	---

Learning Assess	sment													
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Evamination	2 (E0% woightage)			
	Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)				
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	40 %		30 %		30 %		30 %		30%				
Level I	Understand	40 /0	-	30 %	-	30 /0	-	30 //	-	30%	-			
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%				
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-			
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%				
Level 3	er 3 Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-			
	Total	100	0 %	100	0 %	100 %		10	0 %	100 %				

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	1. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. Lilly M Saleena, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr.Priya Swaminathan, SRMIST

Course Code	18BTO102T	Course Name	MODELLING OF BIOMOLECULES		urse egory	,	0				()pen E	Electiv	е					L 3	-	P 0	C 3	
Pre-requ Cours			Co-requisite Nil			gress ourse		Vil															
Course Of	fering Department	Biotechnology	Data Book / Codes/Standards	i	Nil																		
Course Le							ng					Prog	ram L	.earni	ng O	utcon	nes (F	PLO))				
CLR-1:	State the basic structu	ral organization of hur	man health system		1	2	3		1 2	! 3	4	5	6	7	8	9	10	11	12	13	14	15	
CLR-2:	Summarize the etiolog	y of human infectious	diseases								_			Ą									
	Describe immune sys		nd immune disorders		æ	(9)					Research			Sustainability									
	Impart information abo				Thinking (Bloom)	Proficiency (%)	Attainment (%)		g	4	ese	_		taing		Vor		Finance					
	Indicate the high risk of				g (E	enc	mer		₩ .	2 8	, A	age	æ	Sus		Ξ		in a	<u>B</u>				
CLR-6:	State about disease di	agnosis and treatmen	nt strategies		ķ	ofic	tai		ž	Alianysis Datolog	sign	l ns	Culture	∞		Lea	ioi	∞ŏ	Learning				
Course Le	arning Outcomes (CI	.O): At the end of the	is course, learners will be able to:		Level of Thir	Expected Pr	Expected At		Engineering Knowledge		Analysis, Design,	Modern Tool Usage	Society & Cl	Environment	Ethics	Individual & Team Work	Communication	Project Mgt.	Life Long Le	PS0 - 1	PS0 - 2	PSO-3	
CLO-1:	Recall basic human bi	ology at the genetic, c	ellular, and physiological levels		2	80	70				L	-	М	-	-	-	Н	-	Н	-	L	Н	
CLO-2:	Interpret how the hum	an body maintains a h	healthy balance, and how disturbances of this balance underlie diseases		2	85	75			-	L	-	М	-	-	-	Н	-	Н	-	L	Н	
CLO-3:	Discuss about infection	ous organism and und	derstand defense mechanism of our human body		2	75	70			-	L	-	М	-	-	-	Н	-	Н	-	L	Н	
CLO-4:	Describe disease cau	sing agents			2	85	80			-	L	-	М	-	-	-	Н	-	Н	-	L	Н	
			c approaches to treat disease.		2	85	75				L	-	М	-	М	-	Н	-	Н	Н	Н	Н	
CLO-6:	Demonstrates the imp	ortance of taking res	sponsibility for one's own health		2	80	70		- -	-	L	-	М	-	Н	-	Н	-	Н	-	Н	Н	

Durati	on (hour)	9	9	9	9	9
0.4	SLO-1	Introduction to human heath	Concepts of human disease	Immune system	Mendelian genetics	Disease Diagnosis
S-1	SLO-2	Anatomy and physiology	Disease Disorder and syndrome	Physical chemical and cellular barrier	Genetics of simple and complex traits	Treatment strategy
	SLO-1	Respiratory system	Pathology of disease	Types of Immune cell	Hereditary disease	Biomedical Instruments
S-2	SLO-2	Circulatory system	Mechanism of disease	Humoral and cell mediated immunity	Karyotype preparation and analysis Chromosome abnormality	Biosensors
S-3	SLO-1	Digestive system	Infectious disease	Cells Involved in inflammation	Thalassemia	Drug designing and development
3-3	SLO-2	Execratory system	Causative agents Bacteria, virus and parasites	Inflammatory Process	Cystic fibrosis	Computer aided drug designing
0.4	SLO-1	Reproductive system	Bacteria: Introduction Pathogenesis	Immune disorders	Duchene Muscular dystrophy	Drug metabolism
S-4	SLO-2	Fertilization and embryogenesis	Bacterial toxins	Abscesses, ulcer, cellulitis And Allergy	Sickle cell anemia	ADME property of a drug
S-5	SLO-1	Cell structure	virulence of bacterial infection	Autoimmunity	Indian genetic disease database	Sources of drug- plants and microbes
3-3	SLO-2	Tissue types	Antibiotic resistance strains	Immunodeficiency	Human gene mutation database	Route of administration
S-6	SLO-1	How body gets energy	Virus: An overview of replication cycle of virus	High risk disease of modern society	Principle class of metabolic disorders	Bulk Drugs and processing
3-0	SLO-2	ATP Synthesis	Effect of virus infection in the host cell	Obesity, Hypertension and diabetics	Inherited Metabolic disorders	Active pharmaceutical ingredient

S-7	SLO-1	Cell metabolism	Epidemiology	Neoplasm	Metabolic syndrome	Vaccines types, Recommendation by age
3-1	SLO-2	Cell cycle	Roots of spreading, Emerging and reemerging virus	Oncogenes and tumor suppressor genes	Risk factors	Vaccines – Recent advancement
S-8	SLO-1	Checkpoints in cell division	Parasitosis, common parasites of human	Types of cancer	Lysozyme storage disease: Molecular basis	Immunotherapy
3-0	SLO-2	Cell division -Mitosis and Meiosis	Plasmodium – life cycle and disease	Stages of cancer	List of proteins involved in LSD	Immunotherapeutic approaches currently in use
6.0	SLO-1	Growth factors- overview	g		Balanced nutrition and Malnutrition	Stem cell therapy
SLO-2 Ty		Types and function	Endemic mycoses in immunocompromised patients	Life style and cancer risk	Deficiency disease	Gene therapy

Learning Resources 1. Goodenough and McGuire, Biology of Humans: Concepts, Applications and issues, 4th ed., Benjamin Cummins/Pearson Publisher, 2011 2. Marianne Neighbors, Ruth Tannehil, Human Diseases, 4th ed., Jones Cengag	leaming, 2015
---	---------------

Learning Assess	sment													
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Evamination	2 (E0% woightage)			
	Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)				
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	40 %		30 %		30 %		30 %		30%				
Level I	Understand	40 /0	-	30 %	-	30 /0	-	30 //	-	30%	-			
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%				
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-			
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%				
Level 3	er 3 Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-			
	Total	100	0 %	100	0 %	100 %		10	0 %	100 %				

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	1. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. Lilly M Saleena, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr.Priya Swaminathan, SRMIST

Course Code	18BTO103T	Course Name	ACTIVATED CARBON TEC	HNO OCY	ourse egory	0	Open Elective	L 3	T 0	P 0	C 3
Pre-requisi Courses	Nil		Co-requisite Courses		Progres Cours		Nil				
Course Offer	ring Department	Biotechn	ology	ata Book / Codes/Standards	Nil	•					

Course Offering Department	ыосестногоду	Data Book / Codes/Standards	IVII																	
Course Learning Rationale (CLR):	The purpose of learning this course is to:		L	earnin	g				ı	Progr	am L	.earn	ing O	utcon	nes (l	PLO)				
CLR-1: State a basic understandi	ing of activated carbon and its industrial applications.		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Demonstrate the preparat	tion of the material from different sources of waste											y								
CLR-3: Apply the engineering asp	pects of the adsorbents		_	<u></u>	<u> </u>				arch L			pilit								
CLR-4: Prepare the adsorbents for	or the waste water treatment plants		(Bloom)	y (%)	t (%)	dge		ent	ese			aina		Work		ance				
CLR-5: Analyze the problems of the	the industrial effluents that are hazardous to the environ	nment	9 (B	Proficiency	Attainment	Knowledge	S	opment	, Re	age	ω	Sustainability		S E		inar	Б			
CLR-6: Apply a solution to solve t	he industrial effluent problems		hinking	ofici	ai.	Knc	Analysis	velc	Design,	Us	ulture	∞ ∞		Team	io	∞	earning			
		_	Ξ	Ę.		ering	Ana	, De	De	00	s C	nent		∞ర	icat	Mgt.				
Course Learning Outcomes (CLO)	At the end of this course, learners will be able to:		Level of	Expected	Expected	Engineer	Problem	Design 8	Analysis	Modern -	Society &	Environn	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PS0-2	PSO - 3
CLO-1: Discuss about the activate	ed carbon from different sources and subsequent know	ledge to apply industrially	1	80	80	Н	Н	Н	Н	-	Μ	L	Н	Н	Н	Н	Н	Н	Н	Н
CLO-2: Prepare the activated carl	bon from different sources		2	85	75	Н	Н	Н	Н	-	-	Μ	Н	Н	Н	Н	Н	Н	Н	Н
CLO-3: Explain the kinetics on the	e adsorption of heavy metals, dyes and toxic substance	98	2	75	80	М	Н	М	Н	М	Μ		М	Н	Н	Н	Н	Н	Н	Н
CLO-4: Evaluate mechanism of a	ctivated carbon that is ultimately responsible for removi	ing the toxic substance from the effluent	2	85	80	Н	Н	Н	Н	-	-	Н	L	Н	Н	Н	Н	Н	Н	Н
CLO-5: Design an alternative ads	corption process and present the solution to adsorption p	problems.	3	85	75	Н	Н	Н	Н	-	Μ	Н	Н	Н	L	Н	Н	Н	Н	Н
CLO-6: Formulate the activated ca			2	80	80	Н	Н	Н	Н	L	М	М	М	Н	Н	Н	Н	Н	Н	Н

Durat	ion (hour)	9	9	9	9	9
S-1	SLO-1	Activated Carbon and Its Surface Structure	Principle of Adsorption Kinetics	Activated adsorption from solutions	Principle of AAS and its applications	Application of activated adsorption technology in the waste water treatment
3-1	SLO-2	Basics of activated carbon	Effect of contact time on the adsorption characteristics	Types of isotherms for solution phase	AAS analysis of dyes adsorption by activated carbon	Application of Activated Carbon in Environmental Pollution
S-2	SLO-1	Historical Perspective ofActivated Carbon Adsorption and its Integration with Biological Processes	Effect of pH on the adsorption characteristics	Types of adsorption isotherm sorbent selection	Characterizing the pore structure of the carbon by SEM	Integration of Activated Carbon Adsorption with Biological Processes in Wastewater and Water Treatment
SIO 2 A		Activated carbon-crystalline structure, porous structure and chemical structure	Effect of agitation and adsorbent dosage on the adsorption characteristics e	Regeneration of activated carbon	Proximate analysis of activated carbon prepared from various raw materials	Industrial waste water treatment using natural material as an adsorbent
S-3	SLO-1	Types of materials from different sources	Thermodynamic parameters like change in free energy, enthalpy and entropy for the process of removal	Batch adsorption kinetics	Principles of FTIR analysis for the prepared activated carbon	AC on the removal of hazardous organic and inorganic compounds from industrial waste water
	SLO-2	Preparation of granulated and powder activated carbon	Contact Oxidation Process Followed by Activated Carbon	Factors influencing adsorption from binary solution	X-ray refractive diffraction (XRD) studies for activated carbon	AC on the removal of hazardous gases and vapors from industrial flue gases
S-4	SLO-1	Influence of carbon-oxygen surface groups of adsorption properties	Models, and types of adsorption	Transport processes in adsorption from liquid phase on activated carbon	X-ray photoelectron spectroscopy (XPS) studies for activated carbon	Application of activated adsorption technology in pharmaceutical industries
5-4	SLO-2	Influence of other surface groups of adsorption properties	Influencing factors for adsorption properties	Capillary transport in adsorption from liquid phase on activated carbon	Interpretation of results	Application of activated adsorption technology in leather industries
Q F	SLO-1	Chemical activation using acids	Influencing factors for the Adsorption equilibrium	Adsorption behaviour of Low-Bio- degradable Organics on Activated Carbon Surfaces	X-ray absorption spectroscopy (XAS) studies for activated carbon	Application of activated adsorption technology in food industries
S-5 SL	SLO-2	Chemical activation using alkalis	Development of adsorption isotherms	Adsorption behaviour of Non-Bio- degradable Organics on Activated Carbon Surfaces	Interpretation of analysis	Application of activated adsorption technology in paint industries

	SLO-1	Preparation of carbon from agricultural wastes	Linear, Freundlich, Langmuir adsorption isotherms	Design for packed columns	BET Principle and analysis	Adsorption for Textile Wastewater Treatment
S-6		Preparation of activated carbon from agricultural waste using chemical agents	Temkin and Dubinin–Radushkevich isotherm models	Process design factors of fixed-bed adsorption columns	Interpretation of BET analysis	Improved Control of Pollutants through Integrated Adsorption and Biological Treatment
S-7	SI ()-1	Preparation of activated carbon from lower cost materials	Adsorption Equilibria of the Light Hydrocarbon Gases on the Activated Carbon and Silica Gel	Phenol wastewater treatment by a two-step adsorption—oxidation process on activated carbon	Analysis and design of GAC and PAC Contactors	Application of activated adsorption technology in plating industries
	SLO-2	Effect of activating agents	Adsorption Equilibria of the heavy Hydrocarbon Gases on the Activated Carbon and Silica Gel	Hydrocarbon wastewater treatment process on activated carbon	Interpretation of results	Application of activated adsorption technology in dye industries
S-8	SLO-1	Activated carbon from e-waste such as PCB, Metallic and non-metallic components	Simulated Binary Isothermal Adsorption on Activated Carbon in Periodic Countercurrent Column Operation	Scale-up laboratory adsorption column	Thermal analysis of prepared activated carbon	Application of activated adsorption technology in drug industries
		Using physical and chemical methods for the preparation of AC from e waste	Solving problems	Criteria for scale up	Interpretation of results	Application of activated adsorption technology in brewing industries
6.0	SLO-1	pH, solubility and lodine number of activated carbon	A Liquid-Phase Adsorption and rate of diffusion of phenol from aqueous solution into Activated Carbon	Adsorption of phenols onto granular activated carbon in a liquid–solid fluidized bed	Differential Scanning Calorimetry for the analysis of activated carbon	Adsorption of Normal Paraffins and Sulfur Compounds on Activated Carbon
S-9		Different types of carbon Nano-materials: CNT, CNF, CNB, their structure	Solving problems	Desorption of phenols onto granular activated carbon in a liquid–solid fluidized bed	Interpretation of results	Application of activated adsorption technology in dairy industries

Learning	
Resources	

- Bansal, R.C. and M. Goyal, Activated Carbon Adsorption, Boca Raton, FL: CRC Press, 2013
 Harry Marsh Francisco Rodríguez Reinoso, Activated Carbon, I Edition, Elsevier Science, June 2006
 Douglas M. Ruthven, Principles of Adsorption and Adsorption Processes, Wiley, 1984
 - Jean Rouquerol, Francoise Rouquerol, Kenneth S.W.Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Academic Press, 1998 Richard I. Masel, Principles of Adsorption and Reaction on Solid Surfaces, Wiley, 1996

Learning Assess	sment													
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(50% woightage)			
	Level of Thinking	CLA -	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)				
	Level of Thirking	Theory Practice Theory Practice		Theory	Practice	Theory	Practice	Theory	Practice					
Level 1	Remember	40 %		30 %		30 %		30 %		30%				
Level I	Understand	40 %	-	30 %	ı	30 %	-	30 %	-	30%	-			
Level 2	Apply	40 %		40.0/		40 %		40 %		40%				
Level 2	Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-			
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%				
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-			
	Total	100) %	100) %	100) %	100) %	100 %				

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers											
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts									
1. Mr. Prabhakaran M, CK & Industries, ck_prabhu@yahoo.co.in	1. Dr. Swarna V Kanth, CLRI, Anna University, chord@clri.res.in	1. Dr. M. Pandimadevi, SRMIST									
2. Mr.Vinod Kanth, Consultant,svkuvk71@yahoo.com	2. Dr. R. Aravindan, CLRI, Anna Universwity, aravindhan@clri.res.in	2. Dr. B.Samuel Jacob, SRMIST									

Course Code	18BTO104T	Name				ourse tegory		0				Oį	pen Ele	ctive					L 3	T 0	P 0	C 3
	Pre-requisite Courses Nil Co-requisite Courses Nil								lil													
Course Offering Department Biotechnology Data Book / Codes/Standards																						
Course Le	earning Rationale (CLF	R): The purpose of	f learning this course is to:			Le	arnin	g				I	Progra	n Lea	rning (Outco	mes (l	PLO)				
	Analyze the various co					1	2	3	1	2	3	4	5	ŝ 7	8	9	10	11	12	13	14	15
CLR-2: Discuss the innate immune cells and their role in fighting against pathogens CLR-3: Demonstrate the adoptive immune system and their function CLR-4: Illustrate the methods and techniques used in immunology CLR-5: Discuss how the human body respond to pathogens CLR-6: Apply immunotherapy Course Learning Outcomes (CLO): At the end of this course, learners will be able to:							Expected Proficiency (%)	Expected Attainment (%)	Fnaineering Knowledge		Design & Development	Analysis, Design, Research	Modern T	Society & Culture	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO -	PSO-3
CLO-1: Explain about the basic concept of immune system							80	80	Н	Н	Н	Н		И L	. H	Н	Н	Н	Н	Н		Н
CLO-2: Describe the different type of immune cells and organs						2	85	75	Н	Н	Н	Н		٨		Н	Н	Н	Н	Н		Н
CLO-3:	· · · · · · · · · · · · · · · · · · ·						75	80	М	Н	М	Н	M	И .	M	Н	Н	Н	Н	Н		Н
							85	80	Н	Н	Н	Н		ŀ	_	Н	Н	Н	Н	Н		Н
						2	85	75	H	Н	П	Н		A F	H	Н	L	Н	Н	Н		H
CLU-6:	LO-6: Describe immunotherapy					2	80	80	Н	Н	Н	Η	L	ИΛ	i M	Н	Н	Н	Н	Н	Н	П

Durat	ion (hour)	9	9	9	9	9
S-1	SLO-1	Introduction to the immune system	Introduction to innate immune system	Introduction to adaptive immune system	Antigen –antibody interaction	What is an infection?
3-1	SLO-2	History of modern immunology	Components of the innate immune system	Components of the adaptive immune system	Forces in antigen-antibody interaction	Human infectious agents
S-2	SLO-1	What is immunity?	Anatomical barriers- Chemical and mechanical	Types of adaptive response	Affinity and avidity	Bacterial diseases
0-2	SLO-2	Concept of self and non-self	Anatomical barriers- Biological	Innate versus adaptive immune response	Cross-reactivity and specificity	Immunity to bacteria
S-3	SLO-1	Primary lymphoid organ Blood marrow	Humoral components-complements	Antibody mediated immune response	Antibody as Immunoassays	Viral diseases
0-0	SLO-2	Primary lymphoid organ Thymus	Humoral components-coagulation factors	What are antibodies and antigens?	Agglutination	Immunity to viruses
S-4	SLO-1	Hematopoietic stem cell	Cytokines	Immunoglobulin structure	Blood typing	Fungi and human diseases
0-4	SLO-2	Development of blood cell lineage	Properties and functions of cytokines	Role of antibodies	Immuno electrophoresis	Immunity to fungi
S-5	SLO-1	Red blood cells and platelets	Phagocytosis and macrophages	Effect of antigen-antibody binding	Principle of ELISA Clinical utility	Protozoan and worms
3-3	SLO-2	White Blood cells	Neutrophil granules and killing	Types of antibodies	Types of ELISA	Immunity to protozoan
S-6	SLO-1	The myeloid cells- granulocytic	NK cell cytotoxicity	Cell mediated immunity- T cells	Western Blot and confirmation	Vaccination-how does it work?
5-6	SLO-2	The myeloid cells- monocytic	Dendritic cells and its action	Different types of T cells and their functions	ELISPOT- detection of virus	Different types of vaccination

S-7	SLO-1	The lymphoid cells- T and B cells	Pathogen recognition	T cell receptor	Tissue sectioning	Immunodeficiency
3-1	SLO-2	The lymphoid cells- NK cells	Innate immune receptors	How does a T cell recognize antigen?	Immunohistochemistry	Autoimmune diseases
S-8	SLO-1	Secondary lymphoid organs-Spleen	Inflammation and its process	Antigen presenting cells	Fluorescence and its utility in immunoassays	Introduction to cancer
3-0	SLO-2	Secondary lymphoid organs-Lymph nodes	Signs of inflammation	Interaction of APC with the T cells	Flow cytometry	Immunity to cancer
SLO-1 The	The lymph	Mechanism of inflammation	Clonal selection	Isolation of immune cells	Strategies of cancer treatment	
S-9	SLO-2	The lymphatic system	Role of inflammation in diseases	Primary and secondary immune response	Activation of immune cells	Immunotherapy

Learning Resources	A.K. Chakravarty, Immunology and Immunotechnology, Oxford University Press, 2006 Peter Wood, Understanding Immunology, 2 nd ed., Pearson Education, 2006	 Sudha Gangal, Shubhangi Sontakke, Textbook of basic and clinical immunology, Universities Press, 2013 Richard Coico, Geoffrey Sunshine, Immunology: A short course, 6th ed., Wiley-Blackwell, 2009
-----------------------	---	---

Learning Asses	ssment													
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	2 (50% weightage)			
	Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4	1 (10%)#	Final Examination (50% weightage)				
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	40 %		30 %		30 %		30 %		30%				
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-			
Level 2	Apply	40 %		40 %	_	40 %		40 %		40%				
LEVEI Z	Analyze	40 /0	_	40 /0	-	40 /0	-	40 /0	-	4070	-			
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%				
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-			
	Total	100 % 100 %			10	0 %	10	0 %	100 %					

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	1. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. E.Berla Thangam, SRMIST							
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr.Oindrilla.M, SRMIST							

Course Code	18BTO105T	Course Name	ANIMAL MODELS FOR RESEARCH				ourse tegory	() ()nen Elective							L 3	T 0	P 0	C 3						
Pre-requisite Courses Nil Co-requisite Courses Nil Course Nil Course Data Book / Codes/Standards							Co	ressi	1/\	lil													'	
Course Offering	Department	Bioleci	inology		Data Book / Codes/Stand	arus	Nil																	
Course Learnin	Course Learning Rationale (CLR): The purpose of learning this course is to:					Le	arnin	ng				P	rogra	ım Le	earnir	ng Out	come	s (PL	O)				7	
	the basics of ani						1	2	3	1	2	3	4	5	6	7	8 !	9 1	0 1	1 12	2 13	3 14	15	;
CLR-2: Apply	the concept of liv	ring model or	ganism and selection	n of appropriate model												×								
CLR-3: Use of various animal models available						(mo	(%	<u></u>				arch			<u>a</u>									
CLR-4: Analyze the different alternatives and ethical issues						loo	\sim	t (%)	dge		eut	Se			ain		ğ	9	2					
CLR-5: Use pilot experiments to evaluate their working/living environment) (Blo	ency	neu	Ne Ne	S	elopment	, R	age	Ф	Sustainability		Š E		rinance	20				
CLR-6: Analyze animal experiment data and correlate with human case reports						nking	ofici	tainment	Knowledge	alysis	e e	sign,	I Usage		\$		eam		۾ <u>ب</u>	≣				

Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of Thin	Expected Pro	Expected Atta
CLO-1:	Describe about the fundamentals of animal experiments				
CLO-2:	Recognize the similarities between anima models and humans				
CLO-3:	Discuss the knowledge on different animal models available				
CLO-4:	Explain the functions that can be studied in animal models				80
CLO-5:	Analyze the animal alternatives and ethical issues				75
CLO-6:	: Interpret pilot experiments to study animal model experiment				80

				Prog	ram L	earn	ing O	utco	nes (PLO)				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO – 3
L	М	Н	Н	Н	L	М	Н		М	Н	Н	Н	Н	Н
М	Μ	Н	Н	Н	Μ	М	Н		М	Н	Н	Μ	L	Μ
М	Н	М	Н	Н	L	L	Н		L	Н	Н	Н	М	L
М	Н	Н	Н	Н		Н	Н		L	Н	Н	М	М	М
Н	М	Н	Н	Н		Н	Н	L	Н	Н	Н	Н	L	М
Н	Н	Н	Н	Н	М	М	М	L	Н	Н	Н	Н	М	Н

Durati	on (hour)	9	9	9	9	9		
S-1	SLO-1	Introduction to biology of animals	Selection of animal models	Transgenesis and transgenic animal models	Drugs and compound administration	Animals in laboratory environment		
3-1	SLO-2	Structure and organs	Mammals, bovine, aquatic, insect	Knockout, Knockin, Mutation models	Need for animal models to test new compounds prior clinical study	Light cycle, temperature and humidity		
	SLO-1	Classification of animals	Mammal biology – life cycle	CRISPR cas 9	Oral administration	Pathogen free environment lab		
S-2	SLO-2	Vertebrate and Invertebrate	Rats, mice, sheep and bovine	UAS gal 4 systems	Nasal dosage	Precautions and protective gear to be followed by researchers		
S-3	SLO-1	Human evolution	Rats – types of rats	Animal models for cataracts and retinitis pigmentosa	Inhalation	Housing and Animal husbandry		
3-3	SLO-2	Darwinism theory	Genetic background among different sub species	Animal models for Atherosclerosis and myocardial infarction	Inhalation related experiment animal models	Animal husbandry training		
S-4	SLO-1	Human diseases	Mice – types of mice	Animal models for cardiac and cardiovascular disease	Inhalation related experiment animal models and issues that can be replicated	3 R's and Alternative for animal models		
3-4	SLO-2	Need for animal models	Genetic background among different sub species	Animal models for metabolic syndrome	Invasive administrations – intravenous	Tissue culture – cell lines		
S-5	SLO-1	Experimental animal models	Sheep and cow as animal models	Animal models for diabetes and obesity	Invasive administrations – intravenous and intra-peritoneal	Primary tissue culture		
3-3	SLO-2	Monkey, rat, rabbit - living animals models	Disease research on sheep and cow	Animal models for liver diseases	Invasive administrations – intraocular	3D cell culture reconstructing and replacing organs		
S-6	SLO-1	Chicken, pig tissues – non living animal models	Aquatic animals models	Animal models for skin disorders and regeneration	Invasive administrations – intraocular and intramuscular	Limitation and ethical issues in research on humans		
3-0	SLO-2	Pig heart as cardiovascular model	Life cycle of zebra fish and Japanese rice fish and research	Animal models for stroke, olfactory and neuromuscular dysfunction	Invasive administrations – Subcutaneous	Lower order animal models		

S-7		· · · · · · · · · · · · · · · · · · ·	Hydra as an aquatic animal model	Animal models for schizophrenia	Invasive administrations – Subcutaneous	Ethical issues in using humans samples		
3-1	SI O-2	Nervous system in squid and early evidences		Animal models for Alzheimer`s and Huntington disease	Non invasive drug administration	Ethical issues in using experiments animals		
S-8		Classical animal models used – cats	Computer science – simulations and animal models					
3-0		Visuals tracks in cats and early evidences	Life cycle of C. elegans and research	Animal models for Mood disorders	Selecting appropriate drug administration route	Heart diseases and simulation		
6.0		Classical animal models – primates	Life cycle of Drosophila as evolution models	Animal disorder for mania	Understand route of exposure in toxicity cases	Computational models		
5-9	SLO-2	Behavioral assays in primates.	Li irosonniia denetics	, 0	Human-animal equivalent dose calculation and problems	Computational models to repalce animal cognition		

Resources Practices" 2 nd ed., CRC Press: Boca Raton, FL, 2003 2. Michiel Colin P, Animal Models of Neuro-developmental Disorders, Human Press, 2015	Learning Resources	1.	Hau J, Van Hoosier GL Jr, Handbook of Laboratory Animal Science, Volume I: Essential Principles and Practices" 2 nd ed., CRC Press: Boca Raton, FL, 2003	2. 3.	Micheal Conn P, Animal Models for the Study of Human Disease,2 nd ed., Academic Press, 2017 Jerome Y Yager, Animal Models of Neuro-developmental Disorders, Human Press, 2015	
---	-----------------------	----	---	----------	--	--

Learning Ass	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	o (EOO/ waightaga)
	Level of Thinking	CLA –	1 (10%)	CLA – :	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	FIIIai Examination	n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100	0 %	10	0 %	100	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	1. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. S. Sahabudeen, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr.R.A. Nazeer, SRMIST

Course Code	18BTO106T	Course Name	WASTE TO WE	EALTH TO WHEELS	Course Category	0	Open Elective	3	T 0	P 0	C 3
Pre-requisi Courses Course Offer	NII	Biotechnolo	Co-requisite Courses	Data Book / Codes/Standards	Progre Cour Nil		Nil				

0001000					_	04.00	-															
Course Offering Department	urse Offering Department Biotechnology Data Book / Codes/Standards				Nil		,															
Course Learning Rationale (CLR):	purse Learning Rationale (CLR): The purpose of learning this course is to:			L	earnir	ng				F	rogr	am L	earni	ing O	utcon	nes (P	PLO)					
CLR-1: Identify the applications of	engineering concepts for	r sustainable waste	management		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Identify the applications of	energy conversion techn	nology									_			≥								
CLR-3: Identify the significance of	eco-friendly process				=		<u></u>				arch			iii q								
CLR-4: Create insights to the cond	cepts of zero-waste proce	ess			(Bloom)	(%) k	t (%)	dge		eut	Se			ain		Work		ance				
CLR-5: Analyze the important fuel	properties of wastes and	l biomass			(B)	Proficiency	Attainment	Knowledge	S	opment	~ ~	age	Φ	Sustainability		E		Finar	g.			
CLR-6: Utilize the concepts basic	engineering calculations	(mass and heat ba	lances) for biomass based energy systems		ķ.	ofici	aiu	Α	Analysis	velo	Design,	ns	ulture	رن «ک		Team	.o	∞ŏ	earning			
					Thinking		H Aff	ering	Ana	De l	De	00	ನ ಶ	nent		∞ŏ	unication	Mgt.				
Course Learning Outcomes (CLO):	At the end of this cours	se, learners will be	able to:		Level of .	Expected	Expected	Engineer	Problem	Design 8	Analysis	Modern -	Society &	Environn	Ethics	Individual	Commun	Project N	Life Long	PS0 - 1	PS0-2	PSO - 3
CLO-1: Formulate the methodolog	y for waste segregation b	based on internation	nal policy		1	80	70	Н	Н	М	М	М	Н	Н	Н	М	Н	М	Н	М	Н	Н
CLO-2: Analyze calorific paramete	rs of wastes and biomas	S			2	85	75	Н	М	М	Μ	Μ	Н	Н	Н	Μ	L	Н	Н	Μ	Н	Н
CLO-3: Apply thermo-chemical con	nversion process for was	te to energy conve	rsion		2	75	70	Н	Н	М	М	М	Н	Н	Н	Н	М	Н	Н	Н	М	Н
CLO-4: Apply bioprocessing techn	iques to convert waste to	biofuel and value	added chemicals		2	85	80	Н	Н	М	М	М	Н	Н	Н	Н	М	Н	Н	Н	Н	Н
CLO-5: Identify the applications of	mass and energy balance	e for making comn	nercially viable Waste to wealth process		2	85	75	Н	Н	М	М	М	Н	Н	Н	М	Н	М	Н	Н	Н	Н
CLO-6: Describe the National policy towards biofuel production and Energy security				1	80	70	Н	М	М	М	М	Н	Н	Н	М	Н	М	Н	Н	М	Н	

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Sources of industrial wastes	Thermal processing of wastes: Combustion, Co-generation/co-firing	Catalytic depolymerization of biomass- derived oxygenated feedstocks	Treatment based on aerobic and anaerobic waste bioprocessing	Energy content estimation of wastes and products by bomb (solid and liquid)(ASTM)
3-1	SLO-2	Sources of agro and MSW wastes	Pyrolysis and torrefecation	Biosynthetic pathway for lignin synthesis	Vermi-composting of solid wastes for bio- fertilizer; Vermi-wash	For gaseous fuel (ASTM)
S-2	SLO-1	Impact of wastes on biodiversity	Hydrolysis and plasma treatment for waste to energy conversion	Hydrolysis of cellulose from lignocellulosic wastes over novel solid acids	Production of hydrocarbons (bioalkanes) from lignocelluloses	Process calculations for energy and mass balance of waste and by product recovery
3-2	SLO-2	Effect on food chain/food web	Catalytic conversion process	Inhibitory compounds of lignin degradation that impedes bioprocessing	Quality comparison between conventional and bio-based chemicals	Software hands on training for mass and energy balance
S-3	SLO-1	Waste segregation methodologies	Syngas production	Synthesis of polyols by hydrogenation / hydrogenolysis of cellulose and sugar	Production of biodiesel (Oil seeds/Algae)	Case : non-conventional transportation fuels and their manufacturers obtained by processing of wastes
	SLO-2	Hazardous and non-hazardous wastes	Flue gas filters and value addition from particulate matter	Role of green solvents and ionic liquids in fuel production	Whole crop biorefinery approach	Municipal leachate processing and value product development
S-4	SLO-1	Recalcitrant and non-recalcitrant wastes	Waste heat recovery	Hybrid energy system using biological routes	Oleagenous organisms (Fungi and yeast)	Management of post-energy recovery residues (bottom ash, fly ash, digestate)
3-4	SLO-2	Xenobiotics and Rationale for bioprocessing	Hydrothermal electricity production	Clean coal technologies bioleaching and biosorption	Enzymatic transesterification Vs. Chemical methods	Bioenergy-Biochar energy cycle
S-5	SLO-1	Waste characterization		Unified oils and biodiesel from oil seeds and algae by chemical catalysis		R& D scope in WWW Gas to liquids (GTL) technology
3-3	SLO-2	Calorific value estimation: Bomb and Junker's calorimeter	Case study on India's potential on second generation bioethanol	Case study on India's potential on second generation biodiesel from Jatropha	Biopolymers and plastics (PHA, PHB and PLA)	CO ₂ sequestration by biological modes
S-6	SLO-1	Point source collection and non-point source wastes collection	Distillation technology for bioethanol	Fischer–Tropsch process – Gas to liquid fuels	Gaseous fuels: Biomethane	Landill fill emission control
3-0	SLO-2	Role of smart dustbins	Adsorption technology for ethanol fractionation	Comparison of fuel quality standards from FT and fossil fuel		Land fill and flue gas recovery for its commercial application

S-7	SLO-1	Energy crops – Terrestrial	Bio refinery demonstration projects on Biodiesel	generation bioluer: For transportation		Current and Emerging Challenges to Renewable Energy Development
3-1		Energy crops – Aquatic		3 rd generation biofuel: For value added hydrocarbons	Ethanol)	Government policies for energy security
S-8	SLO-1	Potential Benefits of Replacing Fossil Fuels with Biofuel, Biomass and Biogas		Genetically modified (GM) organisms for improved fuel production		Community Participation in Renewable Energy Development
3-8		Implication of fossil fuel on National economy, environment and energy security		GM bioenergy crops and its implication for developing countries		Contract farming strategy for non-edible feedstock production
	SLO-1	Political Drivers for Biofuel Development			l	Combined industrial waste treatment for energy recovery
S-9	SLO-2	Activities of MNRE, Government of India and International Energy Agency	Conversion of de-oiled cake into value added products		transportation fuels in Global context	Urban and rural integration system for sustainable waste utilization for value added product generation

Learning	1.	David M. Mousdale, Biofuels: Biotechnology, Chemistry, and Sustainable Development, CRC Press, 2008
_		

A.H.Scragg, Biofuels, Production, Application and Development, CAB International, 2009
 Robert C. Brown, Tristan R.Brown, Biorenewable Resources: Engineering New Products from Agriculture, 2nd ed., Wiley, 2014

Learning Ass	sessment												
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)		
	Level of Thinking	CLA –	1 (10%)	CLA –	CLA – 2 (15%)		3 (15%)	CLA – 4	(10%)#	FIIIai Examination	i (50 % weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	40 %		30 %		30 %		30 %		30%			
Level I	Understand	40 /0	-	30 70	-	30 /0	-	30 /0	-	30%	-		
Level 2	Apply	40 %	_	40 %	_	40 %	_	40 %	_	40%	_		
Level 2	Analyze	40 /0	_	40 /0	_	40 /0	_	40 /0	_	7070	_		
Level 3	Evaluate 20 % - 30 % -		30 %		30 %		30%						
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	100 % 100 %			0 %	10	0 %	100	0 %	100 %			

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	1. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. Samuel Jacob, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr. K.Ramani, SRMIST

	irse de	18BTO107T	Course Name	FUNDAMENTAL NEUROBIOLOGY	(ourse tegory	,	0				-	Open	Electi	ve					L 3		P 0	C 3
	requisite ourses	Nil		Co-requisite Nil				gress ourse		Nil														
Cours	e Offering	Department	Biotechnology	Data Book	/ Codes/Standards		Nil																	
Cours	e Learnin	g Rationale (CLI	R): The purpose of lea	rning this course is to:			L	earnir	ng					Prog	gram	Learı	ning O	utcor	nes (F	PLO)				
_			on from its organization				1	2	3		1 2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2		ss Molecular sigr pare Neural basis	naling in neurons										5			£								
			ods for studying neuro-ir	nmune functions			(moc	(%)	(%)		ge	ŧ	searc			inabi		ork		99				
CLR-5	: Analy	ze genetic variati	ions in brain developme	nt) (B)	ency	ment		owlec s	bmgc	. Re	age	, as	Susta		m W		Finance	bu			
CLR-6	: Analy	ze genetic variati	ion and inheritance perta	aining to nervous system disorders			inking	rofici	ttain	:	y Kno	evelc	esign) I o	l Itr	ıt & S		Теа	ation	∞	earni			
		•		course, learners will be able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		T Engineering Knowledge H Problem Analysis	Design & Development	T Analysis, Design, Research	Modern Tool Usage				Individual & Team Work	H Communication	Project Mgt. &	Life Long Learning	PS0 - 1	PS0 - 2	PSO - 3
CLO-2			ntal organization of brain and experiments in the i				1 2	80 85	80 75		L H M H				M	L M	H	H	H	H	H	L L	H	H
CLO-3			and experiments in the f of brain energy metabo				2	75	80		M H		_			IVI	M	Н	Н	Н	Н	L	Н	Н
CLO-	: Discu	iss the different r	methods in the neuroend	locrine and immune interactions			2	85	80	_	L H	Н	Н		-	Н	L	L	Н	Н	Н	М	Н	Н
CLO-			nes in brain developme				3	85	75		L H			-	М	Н		Н	L	Н	Н	Н	Н	Н
CLO-	: Expla	in the concepts o	of nervous system disord	ler and the diseases associated with it			2	80	80		М	Н	Н	L	Н	М	М	Н	Н	Н	Н	Н	Н	Н
Durat	on (hour)		9	9	9							!	9							9)			
S-1	SLO-1	Basics of Neurol	biology	Membrane potential	Brain energy metabolis level	m at	the ce	llular	ı	Nature of central systems							Disorders of the nervous system							
	SLO-2	Understanding b	orain function	Action potential	Sensory systems				,	Survey methods							Developmental disorder:							
S-2	SLO-1	Orientation of Ce	entral nervous system	Resting potential	Receptors to perception	ns				Neuroen	docrine	e circu	iits				Autis	m, Dy	slexia	, ADF	HD			
3-2	SLO-2	Peripheral nervo	ous system	Electrochemical basis of nerve function	Chemical and somatic	sense	es			unction	s of ne	uroen	docrii	ne sys	stem		Ment	al Dis	order					
S-3	SLO-1	Levels of Neural	organization	Electrical and Thermodynamic Forces in Passive Distribution of lons	Molecular and neural b perception	asis (of visu	al		Veuroen	ndocrine	e tumo	ors				Schiz	ophre	nia					
3-3	SLO-2	Concept of funct	tional units	Hyperpolarization or Depolarization	Organization of autono and functions	mic n	nervou	s syst		Global e umors	pidemi	ology	of ne	ıroen	docrin	е	Dege	nerati	ve dis	order	S			
S-4	SLO-1	Cellular basis of	Neurobiology	Chemical basis for neuronal communication	Nature of motor system	and	its fur	ction	s	Neuro-in	nmune	circuit	ts				Alzhe	imer's	s disea	ase				
3-4	SLO-2	Clinical issues in	neurobiology	Ion pumps and Ion gradients	Reflexes and fixed mot	or res	sponse	es		Neuro-in	nmune	functi	ons				Parki	nson's	s disea	ase				
٥.	SLO-1	Ion channels	Locomotion					Neuroendocrine-immune interactions in neurological disorders						in	Psychiatric disorder									
S-5	SLO-2	rents Food intake and metabolism				Neuroen autoimm	docrine	e-imm	une ir	nterac	tions	in	Depression and anxiety											
	SLO-1	Water intake and body	fluids	S			Develop	mental	genet	tics of	the b	rain.		Vasc	ular di	sorde	rs							
S-6	SLO-2	Structural neuros	science methods: A brie	f Neuropeptides	Sleep, dreaming and w	akefu	ulness			Genes fo	or hum	an bra	in de	/elopr	ment		Strok	е						

S-7		Sensorimotor, autonomic and enteric divisions	Receptors of neurotransmitters	Reward and motivation	Genes in neurological disorders.	Other disorders
3-1	SLO-2	Synapses and spines	Non-classical neurotransmitters	Emotion and addiction	Epigenetics of the brain.	Epilepsy
	SLO-1	Inhibitory circuit neurons	Synthesis of neurotransmitters and neuropeptides	Cognitive development and aging	Epigenetics in brain disorders	Drug addiction
S-8	SLO-2	Inhibitory projection neurons	Release and metabolism of neurotransmitters	Cognitive impairment	Role of Environmental factors in neurodevelopment.	Neural Plasticity, Goat Brain Dissection
	SLO-1	Excitatory neurons	Molecular mechanisms nerve terminal	Learning and memory		Understanding brain by Artificial Intelligence
S-9	SLO-2	Neuroglia and glial sheaths	IMOJECHIAT SIGNAIING IN NEUTONS	Language, communication and consciousness	INGUIDINAINS	Neural network for analyzing brains network

Learning 1. Larry Squire, Darwin Berg,Floyd E. Bloom,Sascha du Lac,Anirvan Ghosh,Nicholas C. Spitzer, Fundamental Neuroscience, 4th ed., Academic Press, 2012	Michael Aschner, Lucio G. Costa, Environmental factors in Neurodevelopmental and neurodegenerative disorders, Academic Press, 2015
---	--

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA -	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	Filiai Examinatio	i (50 % weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Laural 1	Remember	40 %		30 %		30 %		30 %		30%	
Level 1	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %		40 %		40%	
Level 2	Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate	20 %		30 %		30 %	_	30 %		30%	
Level 3	Create	20 /0	_	30 /0	-	30 /0	-	30 /0	-	30%	-
	Total	100	0 %	10	0 %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	1. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. S. ThyagaRajan, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr. R. VasanthaRekha, SRMIST

	Course	18ECO106J	Course		DCB DESIG	N AND MAN	LIEACTUDING	C	ourse	0	Open Elective	L	Τ	Р	С
	Code	10ECO 1003	Name		PCB DESIGN AND MANUFACTURING		Ca	Category		Open Elective	2	0	2	3	
	Pre-requis Courses	INII			Co-requisite Courses	Nil			Progre	ssive ses	Nil				
ſ	Course Offer	ring Department	Electro	nics and Comm	unication		Data Book / Codes/Standards		Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	.earni	ng					Prog	ram L	_earni	ing O	utcor	nes (PLO)				
CLR-1: Explore the terminologies of PCB design and Electronic components				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Design consideration involved in PCB design										À								
CLR-3: Utilize the PCB design consideration for special application circuits	=	<u></u>	_				arch T			ability								
CLR-4: Design a PCB layout using CAD tool	(Bloom)	(%) k	t (%)	dge		ent	Seg			staina		Work		ce				
CLR-5: Explore various PCB manufacturing techniques	8	enc	neu	wle	s	md	, Re	sage	a)	nst		E		Finance	g			
CLR-6: Equip the learners to explore and understand PCB design technology, design constraints and manufacturing technique	ki.	oficiency	Attainment	Knc	Analysis	Development	sign,	\neg	Culture	∞ ∞		Team	ation	∞ ⊥	a.			
	Thinking	<u>~</u>		ing	Ans	& De	De	Tool	ನ ಶ	nent		∞ŏ	icat	Mgt.	Ę.			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowle	Problem	Design 8	Analysis	Modern -	Society &	Environn	Ethics	Individual	Communic	Project N	Life Long	PS0 - 1	PS0-2	PS0-3
CLO-1: Identify the various types of PCB and electronics components packaging	2	80	70	Н	-	-	L	-	-	-	-	-	-	-	-	-	-	-
CLO-2: Select suitable design and consider appropriate parameters involved in PCB design	3	80	70	М	-	L	-	-	-	-	-	-	-	-	-	-	-	-
CLO-3: Apply the appropriate design rules in designing PCB for special application circuits	2	80	70	М	-	-	L	-	-	-	-	-	-	-	-	-	-	-
CLO-4: Design and develop a PCB layout using CAD tool	3	80	70	М	-	-	М	Н	-	-	-	-	-	-	-	-	-	-
CLO-5: Identify and select the required PCB manufacturing technology	3	80	70	L	-	-		Н	-	-	-	-	-	-	-	-	-	-
LO-6: Develop PCB layout using PCB design CAD (Computer Aided Design) tool and proficiency in PCB fabrication				Н	-	L	L	Н	-	-	-	-	-	-	-	-	-	-

Durat	ion (hour)	12	12	12	12	12
S-1	SLO-1	Nomenclature of a Printed Circuit Board	PCB Design Considerations - Important Design Elements	Design Rules for Analog Circuits	Schematic Capture - Introduction schematic capture tool	Image Transfer Techniques- Screen Printing, Pattern Transferring Techniques
3-1	SLO-2	Classification of Printed Circuit Boards	PCB Design Considerations - Important Performance Parameters	Design Rules for Analog Circuits		
	SLO-1	Manufacturing of basic PCB - Single-and Double-sided Plated Through-holes	PCB Design Considerations - Mechanical Design Considerations	Design Rules for Digital Circuits	Schematic Capture - Simulation of simple electronic circuit	Image Transfer Techniques- Printing Inks, Photo Printing, Laser Direct Imaging (LDI)
S-2	SLO-2	Manufacturing of Multi-Layer Boards - Flexible Boards, Challenges in modern PCB Design and Manufacture, Standards	PCB Design Considerations - Mechanical Design Considerations	Design Rules for Digital Circuits	Schematic Capture - Schematic to layout transfer	Copper Clad Laminates - Properties of Laminates, Types of Laminates, Evaluation of Laminates
S 3-4	SLO-1	Study of electronic components- Passive electronic components	Design and analysis of RL and RC time constants. Schematic in CAD tool	Schematic and PCB Layout in CAD tool. Regulated power supply design Full wave rectifier circuit design with fixed	PCB Layout Design of single digit pulse counter using PCB design tool.	Mini Project - PCB Layout Design of electronic turn ON/OFF timer using IC555
•	SLO-2	·	constants. Consmalls in One too	voltage regulator	dounter doing i ob dooign toon.	using PCB design tool.
S-5	SLO-1	Types, Symbols, Packaging shapes and terminal details of Electronic Components –Resistors, Thermistors Capacitors, Inductors	PCB Design Considerations - Electrical Design Considerations	Design Rules for High Frequency Circuits	PCB Layout Design - Conception Level Introduction	Etching Techniques – wet Etching chemicals
	SLO-2	Diodes, Light Emitting Diodes (LED), Photodiode,	PCB Design Considerations - Conductor Patterns	Design Rules for Fast Pulse Circuits	PCB Layout Design - Specifying Parts, Packages and Pin Names, Libraries	Etching Techniques - Mechanical Etching
S-6	SLO-1	Transistors, Field-effect Transistors, Insulated Gate Bipolar Transistor (IGBT), Thyristor	Component Placement Rules	Design Rules for Microwave Circuits	PCB Layout Design - Checking foot prints of the components, Part list, Net list, Making Net list Files	PCB Assembly Process
3-0	SLO-2	Integrated Circuits (ICs), Three-terminal Voltage Regulator	Fabrication and Assembly Considerations	Design Rules for Microwave Circuits	PCB Layout Design – Placing Parts, Routing Traces, Modifying Traces	Through-hole

s	SLO-1	Study of electronic components- active devices, analog and digital integrated	Design and analysis of RLC circuits.	Schematic and PCB Layout in CAD tool. Regulated power supply designFull wave rectifier circuit design with fixed voltage	PCB Design of single digit pulse counter:	Mini Project - Manufacture the PCB for electronic turn ON/OFF timer using
7-8		circuits (IC)		rectifier circuit design with fixed voltage regulator	design tool.	IC555and construct and test the designed circuit.
S-9	SLO-1	Digital Integrated Circuits, Random Access Memory	Environmental Factors	Design Rules for High-density Interconnection Structures	PCB Layout Design - Mounting Holes	PCB Assembly Process
3-3	SLO-2	Read Only Memory	Cooling Requirements	Design Rules for High-density Interconnection Structures	Adding Text, PCB Layout	Surface Mount, Mixed Technologies
S-10		Microcontrollers, Surface Mount Devices	Packaging Density	Electromagnetic Interference (EMI)	PCB Layout Design - DRC,	PCB Assembly Process
3-10		Transformer, Relays, Connectors	Layout Design	Electromagnetic Compatibility (EMC)	Pattern Transfer, Layout printing	Soldering
	SLO-1	Study of testing and measuring		Schematic and PCB Layout in CAD tool.	I Mini Project - PL.B i avolit Design of	Mini Project - Manufacture the PCB for
S 11-12	SLO-2	Instruments: Logic analyzer, spectrum analyzer, IC tester (Analog and Digital), LCR meters	PCB Layout Design - of RL, RC and RLC circuits	Regulated power supply design. Full wave rectifier circuit design with fixed voltage regulator	alactronic turn ON/OFF timor using IC555	electronic turn ON/OFF timer using IC555and construct and test the designed circuit.
		A Death Office When down Driet of Office	" Decade Decim Febrication and Assemb	h. M. Corres I ill Floritornia		ata d Cinneit Daniel Daniel Daniel Daniel Daniel

	1.	Raghbir Singh Khandpur, Printed Circuit Boards: Design, Fabrication, and Assembly, McGraw-Hill Electronic
		Engineering, 2006
Learning	2.	Charles A. Harpe, High Performance Printed Circuit Boards, McGraw Hill Professional, 2000
Resources	3.	Bruce R. Archambeault, James Drewniak, PCB Design for Real-World EMI Control, Volume 696 of The Springer
		International Series in Engineering and Computer Science, Springer Science & Business Media, 2013
	4.	Kraig Mitzner, Complete PCB Design Using OrCAD Capture and PCB Editor, Newnes / Elsevier, 2009

- 5. Douglas Brooks, Signal Integrity Issues and Printed Circuit Board Design, Prentice Hall PTR, 2003
- Mark I. Montrose, Printed Circuit Board Design Techniques for EMC Compliance: A handbook for designers, 2nd ed., Wiley, 2015
- 7. Esim open source tool: http://esim.fossee.in/
 8. TINA/Orcad User manual

Learning Assessment													
	Bloom's		Continuous Learning Assessment (50% weightage)										
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA – :	3 (15%)	CLA – 4	(10%)#	FIIIai Examination	n (50% weightage)		
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total	100) %	100	0 %	100 %		100	0 %	10	0 %		

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. P. Eswaran, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. D. Malathi, SRMIST

Course Code	18ECO108J	Course Name	EMBEDDED SYSTEM DESIG	ON USING ARDUINO		ourse tegory		0	Open Elective								L .	٨	P 2	C 3		
	Pre-requisite Courses Nil Co-requisite Courses Nil Courses								Vil													
	ing Department	Electro	nics and Communication	Data Book / Codes/Standard	ls	Nil	ırses	5														
Course Learn	Course Learning Rationale (CLR): The purpose of learning this course is to:					Lea	arnin	g				Pr	ograr	n Lear	ning O	utcor	nes (P	LO)				
CLR-1: Get	t to know about ARI	DUINO hardv	vare details and environment			1	2	3	1	2	3	4	5 6	3 7	8	9	10	11	12	13	14	15
CLR-2: To	understand the core	e elements of	ARDUINO programming language											>								
CLR-3: Cre	10000						_	_				L L		i i								
CLR-4: To	CLR-4: To use common input and output devices					(moo	(%)	ent (%)	dge		aut	ses		an a		Work		e Ce				
CLR-5: App	LR-5: Apply the ARDUINO programming into real time applications) (Bloc	enc	neu	- €		elopment	~ ~	Usage	re Sustainability		Έ		Finance	Б			
CLR-6: App	LR-6: Apply the ARDUINO programming into real time applications					king	oficiency	tainm	X Sp	alysis	velc	sign,	Š :	S Su		Teal	O	∞ ≅	ari			

OLIV-U.	Apply the Artbonio programming into real time applications						
Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of 1	Expected	Expected		
CLO-1:					70		
CLO-2:			2	85	75		
CLO-3:	117				70		
CLO-4:	· · · · · · · · · · · · · · · · · · ·		2	85	80		
CLO-5:	LO-5: Use and modifying the existing libraries		2	85	75		
CLO-6:	LO-6: Use and modifying the existing libraries			85	80		

Program Learning Outcomes (PLO)														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO – 3
Н		-	-	-	•	-	-	-	-	-	-	-	Н	Н
Η	Н	Н	Н	Н	-	-	-	Н	-	Н	-	-	Н	Н
Н	-	Н	Н	Н	-	-	-	Н	-	Н	-	Н	Н	-
Н	Н	Н	Н	Н	1	1	ı	Н	1	Н	ı	Н	Н	1
Н	-	Н	Н	Н	-	-	-	Н	-	Н	-	Н	Н	-
Н	Н	Н	Н	Н	-	-	-	Н	-	Н	-	Н	Н	Н

Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to arduino platform	Introduction to Arduino C	Analog and Serial Communication	IO Programming	Case Studies
3-1	SLO-2	Block diagram	Arduino C Data Types	Introduction to Analog Communication	Introduction to Timer/Counters	Wireless Communication Using Zigbee
	SLO-1	AT mega 328p architecture	Decision Making in C	Pulse Width Modulation	Introduction to Timer/Counters	Bluetooth
S-2	SLO-2	AT mega 328p architecture	Decision Making in C	RS232	Timer programming	Robotics -Motor and Sensor
S	SLO-1	Lab 1 Getting Started with Adriano	Lab 4 -Sensor Interfacing for Temperature Monitoring	Lab 7: Actuators – Stepper Motor	Lab10: Interrupt Programming	Lab 13: Mini Project
3-4	SLO-2	CCS and AVR Studio 7 Blinking Led	Lab 4 -Sensor Interfacing for Displacement Measurement	Lab 7: Actuators – Stepper Motor	Lab10: Interrupt Programming	Lab 13: Mini Project
S-5	SLO-1	Pin function	Program Loops in C	12C	Timer programming	Security-RFID, Infrared
3-3	SLO-2	Overview of main features-I/O ports	Functions in C	I2C	Timer programming	Security-RFID, Infrared
S-6	SLO-1	Features-timers,interrupts	Introduction to Pointers	I2C	Timer programming	Bio medical application
3-0	SLO-2	Features-timers,interrupts	Introduction to Pointers	I2C	Timer programming	Bio medical application
s	SLO-1	Lab 2 GPIO LED	Lab 5: PWM BASED SERVO MOTOR INTERFACING	Lab 8: DC MOTOR	Lab11: Watch Dog Timer	Lab14: Model Practical
7-8	SLO-2	Switch Based Led Control	Lab 5: PWM Based Servo Motor Interfacing	Lab 8: DC MOTOR	Lab11: Watch Dog Timer	Lab14: Model Practical

S-9	SLO-1	Features-PWM,SERIAL PORT	Using Pointers Effectively	SPI Protocol	Interrupts	Bio medical application
3-9	SLO-2	Features-ADC	Structures, Unions, and Data Storage	SPI Protocol	Interrupt programming	Bio medical application
S-10	SLO-1	Introduction to Arduino IDE	Arduino Libraries	Interfacing with sensors	External interrupt	GPS Navigation
3-10	SLO-2	Writing ,saving,compiling with IDE.	Arduino Libraries	Interfacing with sensors	External interrupt	GPS Navigation
S	SLO-1	Lab 3: DISPLAY INTERFACE-7 SEGMENT	Lab 6: SERIAL COMMUNICATION	Lab 9: Repeat/Revision of Experiments	Lab 12 : I2C	Lab:15 University Practical
11-12	SLO-2	LCD 16x2 Matrix	Lab 6: Serial Communication	Lab 9: Repeat/Revision of Experiments	Lab 12: I2C	Lab:15 University Practical

Learning Resources	1. Michael-Margolis,Ardulno-Cookbook., Revised edition, O Relliy, I st edition, 2011 2. D.Dale Wheet Ardulno Internals TIA publication, 5th edition, 2011	James M. Fiore, Embedded Controllers Using C and Arduino, ARDUINO open source community, 2018 Jack Purdum ,Beginning C for Arduino , Apress, 2012
-----------------------	--	---

Learning Assessment													
	Bloom's				Final Evamination	n (50% weightage)							
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	Filiai Examination	ii (50% weightage)		
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total	10	0 %	100	0 %	100 %		100	0 %	10	0 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1.Mrs. S. Suhasini,, SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECO121T	Course Name	BAS	BASIC BIOMEDICAL ENGINEERING				urse egory	0	Open Elective L T P C 3 0 0 3
Pre-requisi Courses	NII	- ·	Co-req Cour	rses	Nil			Progres Cours		Nii
Course Offering Department Electronics and Communication					ט	ata Book / Codes/Standards		Nil		
Course Learning Rationale (CLR): The purpose of learning this course is to:							Learn	ing	Program Learning Outcomes (PLO)	

Course Learning Rationale (CLR): The purpose of learning this course is to:	Learning			Program Learning Outcomes (PLO)														
CLR-1: Analyze the scopes and roles of Biomedical Engineering	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Utilize biomedical instrumentation modules										у								
CLR-3: Utilize medical imaging principles and its applications	<u>_</u>	<u></u>	_				arch			bilit								
CLR-4: Analyze the scope of biomechanics and its applications	00	%	t (%)	ge		ent	Se			aina		Work		9				
CLR-5: Utilize biomaterials and its applications	Thinking (Bloom)	Proficiency (%)	Attainment	× e	S	Development	, Re	Usage	Ф	Sustainability		E		Finance	Б			
CLR-6: Gain the knowledge about Biomedical Engineering	ķi	ofici	tain	출	Analysis	skelc	Design,	Πs	Culture	∞		Team	ioi	& Ε	earning			
	ੂੰ ੂ	Ę.		ring	Ans	& De	, D	Tool	ಶ	nent		∞ —	ig	∕lgt.				
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:		Expected	Expected	Engineering Knowledge	Problem	Design 8	Analysis,	Modern	Society &	Environm	Ethics	Individual &	Communication	Project Mgt.	Life Long	PS0 - 1	PS0-2	PSO - 3
CLO-1: Analyze the areas in which biomedical engineers can work	2	85	75	-	-	-	-	-	-	-	-	-	-	-	L	-	-	L
CLO-2: Analyze the basic biomedical instrumentation unit	3	85	75	L	-	-	-	-	-	1	-	-	-	-	-	-	-	L
CLO-3: Analyze basic medical imaging principles	3	85	75	М	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LO-4: Apply the concepts of biomechanics on human body				L	-	-	-	-	-	-	-	-	-	-	-	-	-	L
CLO-5: Identify domains where biomedical engineers can work				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
.O-6: Analyze the applications of Biomedical Engineer				М	-	-	-	-	-	-	-	-	-	-	L	-	-	L

		Introduction to Biomedical Engineering	Biomedical Instrumentation	Medical Imaging system	Biomechanics	Biomaterials		
Durati	on (hour)	9	9	9	9	9		
S-1	SLO-1	Evolution of the modern health care system	Introduction: Bioinstrumentation	X-Ray production	Introduction: Principal Areas of Biomechanics	Biomaterials Introduction		
		Modern Healthcare system	Basic Bioinstrumentation System	X-Ray Imaging principle	Fundamentals of biomechanics and qualitative analysis	Classification of Biomaterials		
S-2	SLO-1	What is Biomedical Engineering	Physiological Systems of the body	Application of X-ray imaging	Kinematics of Human Body Models	Properties of Biomaterials: Mechanical		
3-2	SLO-2	Roles played by the Biomedical Engineers	Sources of Biomedical Signals	CT-Imaging principle	Kinetics of Human Body Models	Properties of Biomaterials: Chemical		
S-3	SLO-1	Types of Biomedical Engineering	Origin of Bioelectric Signals	CT-Imaging Applications	Modelling of Bio systems	Properties of Biomaterials: Biological		
3-3	SLO-2	Surgical instruments and medical devices	Origin of Bioelectric Signals	MRI- Introduction	Tissue Biomechanics	Biomedical alloys and its medical applications- titanium		
S-4	SLO-1	Biomaterials	Various Electrodes used for picking the biomedical signals	MRI Imaging principles	Modelling in Cellular Biomechanics	Biomedical alloys and its applications- Stainless steel, Cobalt-Chromium alloys		
3-4	SLO-2	Biomechanics	Various Electrodes used for picking the biomedical signals	MRI Imaging principles	Fluid mechanics	Introduction to ceramics		
S-5	SLO-1	Tissue Engineering	ECG Introduction	MRI Imaging Applications	Mechanics of the musculoskeletal system impact	Alumina, Zirconia		
	SLO-2	Neural Engineering	ECG system Block diagram and its uses	Ultrasound basics	Mechanics of Blood Vessels	Titanium, Hydroxyapatite		
S-6	SLO-1	Telehealth	EEG Introduction	Ultrasound Imaging	Cardiac Biomechanics	Glass ceramics		
3-0	SLO-2	Bio signal processing	EEG system Block diagram and its uses	Ultrasound Application	Biomechanics of Chest and Abdomen	Introduction to polymers		

0.7	SLO-1	Medical Imaging	EMG Introduction	fMRI Imaging	Cochlear Mechanics	Types of polymers
S-7	SLO-2	Computational modelling	EMG system Block diagram and its uses	fMRI Imaging Application		Biodegradable polymers and its applications
S-8	SLO-1	BioMEMS	Cardiac pacemakers and its uses	PET- Imaging	Gait analysis	Composites and its applications
3-6	SLO-2	Mobile POCT	Cardiac Defibrillators and its uses	PET Imaging Application	Biomechanics in physical education	Wound-Healing process
	SLO-1	Professional Status of Biomedical Engineering	Patient Monitoring System Introduction	SPECT Imaging	Biomechanics in strength and conditioning	Biomaterials for artificial valve, Ear
5-9	SLO-2	Professional Societies	Patient Monitoring System Block diagram and its uses	SPECT Imaging Application	Biomechanics in sports medicine and rehabilitation	Biomaterials for artificial Skin, Eye

	1	Anthony Y. K. Chan, Biomedical Device Technology: Principles and Design, Charles C Thomas		
	١.		4	4
Learning		publisher, 2008	1	5
Resources	2.	R.S Khandpur, Handbook of Biomedical Instrumentation, 3 rd ed., McGraw Hill, 2014		0
	2	Joseph J. Carr. John M. Prayin, Introduction to Rigmodical Equipment Technology, 4th ed., Regreen, 2002	- (b

- John Enderle, Joseph Bronzino, Introduction to Biomedical Engineering, Academic Press, 2011 Andrew R Webb, Introduction to Biomedical Imaging, Wiley-IEEE Press, 2003 Sujata V. Bhat, Biomaterials, 2nd ed., Alpha Science International, 2005

Learning Ass	sessment													
	Bloom's		Continuous Learning Assessment (50% weightage)											
		CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination	i (50% weightage			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-			
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-			
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-			
	Total	100 % 100 %		10	0 %	100) %	100 %						

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Ms. Oinam Robita Chanu, SRMIST
2. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	2. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	2. Dr. D. Kathirvelu, SRMIST

Course Code	18ECO122T	Course Name	HOSPITAL I	NFORMATION SYSTEMS		ourse tegory	,	0				Op	en El	ective)					3 ·	'	P 0	C 3
Pre-requisi Courses			Co-requisite Courses	Nil			gressi ourse:		Vil														
Course Offering Department Electronics and Communication Data Book / Codes/Standards																							
Course Learning Rationale (CLR): The purpose of learning this course is to:								ıg				F	rogr	am Le	earni	ng Oı	utcon	nes (P	LO)				
CLR-1: Uti	LR-1: Utilize the planning and organizational activities of Hospitals							3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1
CLR-2: Analyze the concepts in clinical and diagnostic services CLR-3: Utilize the policies and procedures about support services and material management CLR-4: Utilize the features in staff and safety management in hospital CLR-5: Analyze the reporting system and recent advancement in hospital administration CLR-6: Apply all the advanced application the field of telemedicine							Expected Proficiency (%)	ted Attainment (%)	Engineering Knowledge	Problem Analysis	& Development	sis, Design, Research	n Tool Usage	y & Culture	Environment & Sustainability		ndividual & Team Work	nicatio	t Mgt. & Finance	Long Learning	-	2	c
Course Learr	ning Outcomes (CL	. O) : At the	end of this course, learners will be	able to:		Level of	Expec	Expected	Engin	Proble	Design	Analysis,	Modern	Society	Enviro	Ethics	Indivic	Comn	Project	Life Lo	PSO-	PSO-	
CLO-1: An	alyze the role of hos	pitals and en	sure proper healthcare delivery			2	85	75	L	-	-	-	-	М	-	-	-	-	-	-	L	-	
CLO-2: Su	ggest appropriate te	chnologies a	nd services in clinical and diagnos	tic field		3	85	75	М	-	-	-	-	-	-	-	-	-	-	-	L	-	
CLO-3: Analyze the supportive services and the use of proper material management							85	75	М	-	-	-	-	-	М	L	-	-	-	-	М	_	
			nent and ensure safety manageme			3	85	75	М	-	-	-	-	-	-	L	-	-	-	L	L	-	
			s and effectively evaluate the hear	thcare information		3	85	75	L	-	-	-	-	М	-	L	L	-	-	-	L	L	L
CLO-6 : Imp	plement the various	standards in	hospital and healthcare services			3	85	75	L	-	-	-	-	М	-	-	-	-	-	-	L	-	L

		Planning and designing of hospitals	Inpatient and Outpatient services	Material management services	Management services in hospitals	Patient record and advancement in healthcare services
Durat	ion (hour)	9	9	9	9	9
S-1	SLO-1	Hospital as a social system	Design and planning of emergency department	Pharmacy services- goals of hospital pharmacy services	Human resource management- Human resource development	Medical record management- Importance of medical record
3-1	SLO-2	Primary health care and hospitals	Health information and counselling	Staff organization and divisions of hospital pharmacy services	· ·	Methods of record keeping
S-2	SLO-1	Hospital planning and design-Guiding principles in planning	Outpatient services –Types and functions of outpatient department	Benefits of formulatory system	Nursing management-Functions of nursing management	Electronic medical record-Benefits and drawbacks
3-2	SLO-2	Regionalization of Hospital service	Physical features of outpatient department	Other services of hospital pharmacy	Nursing management- organizational structure	Record retention and disposal
S-3	SLO-1	Role of health promotion approach in hospitals	Ward/Indoor services-Components of the ward system	Transport services-Types of ambulance	Biomedical waste management- Types and Composition of Biomedical Waste	Office management -skills required by the office staff
3-3	SLO-2	Health promoting hospital system	Design of special units	Communication and physical facilities of ambulance service	Categories of biomedical waste	Functions of office management
S-4	SLO-1	Healthy hospital environment	Operation theatre services-Planning and designing of Operation theatres	Staff transport services	Concept of total quality management	Operations research in hospitals-Phases of operation research
3-4	SLO-2	Components of healthy hospital environment	Types of Operation theatres	Other transport services in hospitals	Types of approaches in quality management	Operations research in hospitals- Tools and techniques of operations research
S-5	SLO-1	Creating manpower services	Policies and procedures of operation theatres	Medicolegal services- Steps for Medicolegal Examination	Quality assessment and management tools	Emerging health insurance – components of health insurance
3-3	SLO-2	Hospital engineering: Key to efficient healthcare services	Assessing operation theatre utilisation	Problems faced by healthcare professionals in medicolegal service	Clinical audit	Emerging health insurance-Types of health insurance
S-6	SLO-1	Designing disabled friendly hospitals- Barriers faced and implications in Persons with disabilities	Clinical laboratory services-Introduction and role of laboratory medicine	Food safety in hospitals-Need of food safety	Quality improvement-Cause and effect method	Advantages and common problems of health insurance schemes
	SLO-2	Need for disabled-friendly health services	Testing procedure in clinical laboratory	Sources of food contamination	Pareto analysis	Role of health and hospital administrators in Health insurance

S-7	SLO-1	Barrier-Free Environment to Universal Design		Materials management- Principles of material management		Telemedicine clinic –functions and classification of telemedicine
	SLO-2	Overcoming the barriers	Advancement in radiology service	Concepts of Inventory control	Triggers of quality improvement strategy in a hospital	Challenges for telemedicine
S-8		Energy conservation- Classification	Radiation oncology service-Radiotherapy facilities	Modern techniques for inventory control	, ,	Growth of mobile phones and potential of mobile health
3-0	SLO-2	Types of energy streams in hospitals	Nuclear medicine services-Categorization and nuclear medicine department	Integrated concept for materials management	Prevention of hazards specific to health sector	Mobile health and its applications
S-9	SLO-1	Need for energy conservation	Planning of nuclear medicine department	Purchase and procurement system- Essentials for procurement process	Hospital security-Physical security	Challenges in implementing information and Communication technology in healthcare
		Energy conservation opportunities in hospitals	Ancillary requirements	Purchase system	I Urganizational chart of Security Wing	Information and communication technology applications in healthcare

Learning Resources	1.	SonuGoel, Anil Kumar Gupta, Amarjeet Singh, Hospital administration A problem- solving approach, 1st ed., Elsevier, 2014	Sakharkar B M, Principles of hospital administration and planning, 2 nd ed., Jaypee Brothers Medical Publishers, 2009 Kunders G D, Hospitals: Facilities planning and management, 1 st ed., Tata Mcgraw Hill, 2008

Learning Ass	sessment											
	Bloom's				Final Evamination	(E00/ weightege)						
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4	(10%)#	FIIIai Examination	n (50% weightage)	
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %		30 %		30 %		30 %		30%		
Level I	Understand	40 70	-	30 %	-	30 //	-	30 %	-	30%	-	
Level 2	Apply	40 %	_	40 %	_	40 %	_	40 %	_	40%	_	
Level 2	Analyze	70 /0	_	40 /0	_	70 /0	_	40 /0	_	4070	_	
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%		
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	100	0 %	100 %		100 %		100) %	100 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Dr. D. Ashokkumar, SRMIST								
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Mr. P. Muthu, SRMIST								

18EC:01231		Course Name		BIOM	EDICAL IM	AGING	Cou Cate	urse egory	0	Open Elective	L 3	T 0	P 0	C 3
Pre-requisi Courses	INII			Co-requisite Courses	Nil			Progres		Nil				
Course Offer	ring Department	Flectror	nics and Commi	ınication		Data Book / Codes/Standards	1	Nil						

Course Charmy Department	Elocatorino dila Commandatori	, ,,,,																	
Course Learning Rationale (CLR):	The purpose of learning this course is to:	L	_earni	ng				F	Progr	am L	.earni	ing O	utcon	nes (P	,LO)				
CLR-1: Utilize the working principle	e of X-ray imaging	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Analyze the principle behin	CLR-2: Analyze the principle behind tomographic imaging and the reconstruction techniques							_			Ŋ								
CLR-3: Interpret the theory behind nuclear medicine and utilize the working of imaging modalities in nuclear medicine								답			ability								
CLR-4: Analyze the physics of ultrasound and the different imaging modes using ultrasound				ıt (%)	dge		ent	ese			staine		Work		92				
CLR-5: Utilize the physical principle of nuclear magnetic resonance and magnetic resonance image reconstruction				men	Knowlec	တ	elopment	Š.	age	æ	Sust		E		inance	В			
CLR-6: Utilize imaging modalities X-ray, computed tomography, nuclear medicine, ultrasound and magnetic resonance imaging			Proficiency	Attainment	출	Analysis	skelc	sign,	Us	ulture	∞ ∞		Team	ig.	∞ ⊔	arning			
		Thinking	귤	₹	ering	Ang	, De	, D	20	ت «	nen		<u>∞</u>	<u>ig</u>	Mgt.	J Le			
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected	Enginee	Problem	Design &	Analysis	Modern	Society &	Environr	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PS0-2	PSO - 3
CLO-1: Analyze the physics and p	rinciple behind the working of X-ray imaging	2	85	75	М	-	-	-	-	-	-	-	-	-	-	-	М	-	-
CLO-2: Identify the principle behin	d working of tomographic imaging and reconstruction procedures.	3	85	75	М	-	-	-	-	-	-	-	-	-	-	-	Μ	-	-
CLO-3: Analyze the working principle of nuclear medicine imaging modalities				75	М	-	-	-	-	-	-	-	-	-	-	-	М	-	-
	CLO-4: Identify the physics of ultrasound and the modes of ultrasound imaging		85	75	М	-	-	-	-	-	-	-	-	-	-	-	М	-	-
CLO-5: Explain the physical princi	ple of magnetic resonance imaging and the instrumental components involved in MR imaging	3	85	75	М	-	-	-	-	-	-	-	-	-	-	-	М	-	-
	.0-6: Understand the basic principle and working of medical Imaging systems		85	75	М	-	-	-	-	-	-	-	-	-	-	-	М	-	-

		X-ray	Computed Tomography	Ultrasound	Magnetic Resonance Imaging	Nuclear medicine
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	General principles of Imaging with X-rays	Introduction: Tomographic Imaging	Characteristics of sound: Propagation, wavelength, frequency and speed	Principles of NMR Imaging	Radionuclide decay terms and relationship
3-1	SLO-2	X-ray Production –X-ray source	Comparison between tomographic and planar imaging	Pressure, Intensity and dB scale	Free Induction decay	Nuclear transformation
S-2	SLO-1	X-ray tube current, tube output	Basic principle: Technique of producing CT images	Interaction of ultrasound with matter: Acoustic impedance, reflection, refraction	Excitation, Emission	Radionuclide production
0-2	SLO-2	Beam intensity, X-ray Energy Spectrum	Contrast scale	Scattering, Attenuation	Relaxation times-T1 & T2	Radiopharmaceuticals
S-3	SLO-1	Coherent and Compton scattering	System components: first generation, second generation, third generation,	Transducers: Piezoelectric materials, resonance transducers	Spin echo technique	Radiation detection and measurement: types of detectors, Gas-filled detectors
	SLO-2	Photoelectric effect	Fourth, fifth and spiral/helical CT	Damping block, matching layer, Resolution	Spin echo contrast weighting	Scintillation detectors
S-4	SLO-1	Linear and Mass attenuation coefficient of X-rays in tissue	X-ray source, types of detectors	Transducer arrays	T1 weighted image	Semiconductor detectors
3-4	SLO-2	Instrumentation for Planar X-ray Imaging: Collimators	Gantry and slip ring technology, Collimation and filtration	Multi-element linear array scanners	T2 weighted image	Pulse height spectroscopy
S-5	SLO-1	Antiscatter grids Intensifying screens	Processing system	Multi-linear and phased array	Gradient recalled sequence	Non-imaging detector applications
3-3	SLO-2	X-ray films	Iterative reconstruction, back projection reconstruction	Generation and detection of ultrasound	Proton density weighted images, pulse sequence for fast imaging	Counting statistics
S-6	SLO-1	Instrumentation for computed and digital radiography	Filtered back projection	Basic pulse echo apparatus: A-scan	Slice selection gradient	Nuclear imaging
3-0	SLO-2	X-ray Image characteristics: Signal to Noise ratio	Helical /Spiral CT: Helical pitch	B-Mode	Frequency encode gradient	Anger scintillation camera

S-7	SLO-1	Spatial resolution, Contrast to Noise ratio	Basic reconstruction approaches	M-mode	Phase encode dradieni	Basic principle :Emission computed tomography
3-1	SLO-2	X-ray contrast agents, X-ray angiography	Slice sensitivity profile	Echocardiograph	1 ZD SDID echo dala acquisilion	Single photon emission computed tomography
	SLO-1	X-ray Fluoroscopy	Multislice CT	Duplex scanner	Basic NMR components: Main magnet, RF transmitter/receiver	Positron emission tomography
3-0	SLO-2 X	X-ray mammography	Detector configuration	Intravascular imaging		Imaging techniques and scanner instrumentation
6.0	SLO-1	Dual energy Imaging	Measurement of X-ray dosage	Artefacts: Refraction, shadowing and enhancement	fMRI : Basic principle	Dual modality: PET/CT
3-9	SLO-2	Abdominal X-ray scans	Methods for dose reduction	Reverberation	BOLD concept, MR spectroscopy	Working and applications

Learning Resources	R.S.Khandpur, Handbook of Biomedical instrumentation, 3 rd ed., Tata McGraw Hill, 2014	 Jerrold T. Bushberg, John M. Boone, The essential physics of medical imaging, 3rd ed., Lippincott Williams & Wilkins, 2011
-----------------------	---	---

Learning Asse	earning Assessment													
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination (50% weightage				
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	ł (10%)#	FIIIai Examination	i (50 % weightage)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-			
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-			
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-			
	Total	100	0 %	100	0 %	100	0 %	10	0 %	100 %				

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers											
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts									
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Dr. T. Jayanthi, SRMIST									
2. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	2. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	2. Dr. U. Snekhalatha, SRMIST									

Cou		18ECO124T	Course Name	HUMAN ASSIST DEVICES Cours Category					0				0	pen E	Electiv	е					L 3		P 0	C 3
	equisite	Nil		Co-requisite Nil				gress		Nil														
		Department	Electronics and Com		k / Codes/Standards		Nil	ourse	-3															
_							Γ.			1 [_										
		g Rationale (CLR):	' '	<u> </u>			-	_earni									ing O							
CLR-1			gy and device used for a	ssisting human disability			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Analyze various devices used for mobility CLR-3: Utilize the various assist device used for hearing													£			≟								
CLR-4: Utilize the various assist device used for riearing								(%)	(%)	و	2	¥	ear			nabi		돈		Ф				
CLR-5			device used in orthopaed	lic			8	ncy	ent	٩		Jamer	Res	ge		ıstai		Μ		anc	50			
CLR-6: Analyze the working principles of cardiac assist devices and Artificial kidney Course Learning Outcomes (CLO): At the end of this course, learners will be able to:								ficie	E.E.	100	ysis	le lop	ign,	Usa	ture	ઝ જ		ean	5	- Fi	Ë			
							Ē	Pro	Atte	2	Anal	Dev	Des	.8	Cul	ent		∞ _	icati	gt. 8	Lea			
Course	: Comprehend the assistive technology (AT) used for mobility						I Level of Thinking (Bloom)	Expected Proficiency (%)	52 Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt. & Finance	ife Long Learning	PS0 - 1	PS0-2	PSO - 3
CLO-1	: Comp	rehend the assistive	e technology (AT) used for	or mobility		2	85		M		-	-		-	-	-	-	-	-	-	М	-	-	
				-			3	85	75	M	-	-	-	-	-	-	-	-	-	-	-	-	L	-
CLO-3			nology used for sensory in	mpairment of vision			3	85		-	-	-	-	-	-	-	-	-	-	-	-	-	L	-
			e used in orthopedic				3	85	75	M		-	-	-	-	-	-	-	-	-	-	М	L	-
CLO-5			assist technology in heal				3	85 85	75 75	I M		-	-	-	-	-	-	-	-	-	-	М	-	-
CLO-6	: Desig	n the prostnetic nea	art valves and pacemake				3	80	/5	l M	-	-	-	-	-	-	-	-	-	-	-	М		
Duratio	on (hour)		9	9	9						9								9)				
S-1	SLO-1	Basic assessment a mobility	and evaluation for	Basic ear anatomy, Mechanism of hearing	Anatomy of eye					Anatomy of upper & lower extremities -						Basic Anatomy and physiology of hear						t.		
3-1	SLO-2	Basic assessment a mobility	and evaluation for	Common tests audiograms	Categories of visual in	npairn	nent			Classifica	tion of	атри	tation	types	S		Cardia	ac as	sist de	evices	8			
S-2	SLO-1	Manual wheelchair	S	Air conduction, Bone conduction	Intraocular Devices					Prosthesi	s preso	criptio	1				Intra-A	Aortic	Ballo	on Pu	ımp (l.	4 <i>BP</i>),	,	
3-2	SLO-2	Electric power whe	elchairs	Masking techniques,	Extraocular Devices					Hand and	arm re	eplace	ment				Prostl	netic I	neart	valve	s			
	SLO-1	Power assisted who	eelchairs	SISI	Permanent Vision Res	storati	on			Different i				xterna	ally		Evalu	ation	of pro	sthet	ic valv	е		
S-3	SLO-2	Wheel chair standa	ards & tests -	Hearing aids principles	Non-Permanent Vision Restoration					Different i	ypes c	f mod	els, ex	kterna	ally		Heart	pace	make	r				
6.4	SLO-1	Wheel chair transp	ortation	Drawbacks in the conventional unit	Voice Control Sound	Contro	ol.			Foot orth	osis .						CABG	ì						
S-4	SLO-2	Control systems, na space by wheelcha	avigation in virtual airs	DSP based hearing aids	Sensor Technology Adapter Impaired				sion	Pediatric	orthose	98					Extrac	corpoi	real si	ирроі	t			
0.5	SLO-1	Wheel chair seating	g and pressure ulcers.	Cochlear Implants	Libraille					Wrist-hand orthosis Vascular prosthesis														
5-5	S-5 SLO-2 EOG based voice controlled wheelchair Internal Hearing Aid GRAB								feedback in orthotic system Vascular prosthesis															

mathematical Braille

Blind mobility aids

External Hearing Aid

Permanent Hearing Restoration

SLO-1 BCI based wheelchair

Fuzzy logic expert system for automatic tuning of myoelectric prostheses

S-6

SLO-2

Components of upper limb prosthesis

Components of lower limb prosthesis

Artificial heart

Intermittent positive pressure breathing (IPPB) type assistance for lungs

S-7	SLO-1	Intelligent prosthesis	Non-Permanent Hearing Restoration	Reading writing & graphics access,	Lower extremity- and upper extremity- orthoses	Dialysis for kidneys
3-1	SLO-2	Intelligent prosthesis	Touch Tactile Haptic Technology	Orientation & navigation Aids	Lower extremity- and upper extremity- orthoses	Artificial Kidney
	SLO-1	Future trends in assistive technology	Sound Coding Translation	Wearable Assistive Devices for the Blind	functional electrical stimulation	Haemodialysis
3-8		virtual reality based training system for disabled children	Acoustic Transducers Hearing Quality	Wearable tactile display for the fingertip.	Sensory assist devices	Membrane dialysis
S-9	SLO-1	Information technology, telecommunications,	Electric Electronic Stimulation	Cortical implants	Sensory assist devices	Portable dialysis monitoring and functional parameter
3-9	SLO-2	new media in assisting healthcare	Hearing Enhancement	Retinal implants	Slints – materials used	Latest use of assistive technology for chronic heart diseases and healthcare

	1.	Levine S.N. Advances in Bio-medical engineering and Medical physics, 1st ed., Vol. I, II, IV, Interuniversity	6.	Albert M.Cook, Webster J.G, Therapeutic Medical Devices, Prentice Hall Inc.,1982
		publications, 1968.	7.	Gerr .M. Craddock Assistive Technology-Shaping the future, 1st ed., IOS Press, 2003
Learning	2.	Marion. A. Hersh, Michael A. Johnson, Assistive Technology for visually impaired and blind, 1st ed., Springer	8.	Brownsell, Simon, et al., A systematic review of lifestyle monitoring technologies, Journal of
		Science & Business Media, 2010		telemedicine and telecare 17.4 (2011): 185-189
Resources	3.	Kopff W.J, Artificial Organs, 1 st ed., John Wiley and Sons, 1976	9.	Yadin David, Wolf W. von Maltzahn, Michael R. Neuman, Joseph.D, Bronzino, Clinical
	4.	Daniel Goldstein, Mehmet Oz, Cardiac assist Devices, Wiley, 2000		Engineering, 1st ed., CRC Press, 2010
	5.	Kenneth J. Turner, Advances in Home Care Technologies: Results of the match Project, 1st ed., Springer, 2011	10.	Pascal Verdonck, Advances in Biomedical Engineering, 1st ed., Elsevier, 2009

Learning As	sessment											
	Bloom's		Final Examination (50% weightage									
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	FIIIai Examination	i (50% weightage)	
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Laural 4	Remember	40 %		30 %		30 %		30 %		30%		
Level 1	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply	40 %		40 %		40 %		40 %		40%		
Level 2	Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%		
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	100	0 %	100 %		10	0 %	100	0 %	100 %		

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers											
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts									
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Mrs. Lakshmi Prabha, SRMIST									
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. U. Snekhalatha, SRMIST									

Course Code	18ECO125T	Course Name	QUALITY CONTRO	DL FOR BIOMEDICAL DEVICES	Course Category	0	Open Elective	L 3	T 0	P 0	3
Pre-requisite Courses Course Offerin	NII	Electron	Co-requisite Courses ics and Communication	Nil Data Book / Codes/Standards	Progre Cour		Nil				

oourse offering Department	Learning Rationale (CLR): The purpose of learning this course is to: Utilize Quality, Quality control measures essential for an organization																			
• , ,			L	earnir	ng				P	rogra	am Le	earni	ing O	utcon	nes (F	PLO)				
CLR-1: Utilize Quality, Quality cont	R-1: Utilize Quality, Quality control measures essential for an organization R-2: Utilize the quality management principles and good management practices R-3: Utilize the various quality control tools R-4: Utilize the various quality management tools R-5: Analyze the various standards applicable to healthcare globally and nationally R-6: Implement the global standards in healthcare					1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Utilize the quality managen	nent principles and good management practices											>								
CLR-3: Utilize the various quality co	1.1: Utilize Quality, Quality control measures essential for an organization 1.2: Utilize the quality management principles and good management practices 1.3: Utilize the various quality control tools 1.4: Utilize the various quality management tools 1.5: Analyze the various standards applicable to healthcare globally and nationally 1.6: Implement the global standards in healthcare 1.5: Analyze the underlying concepts of quality and quality control concepts of an organization 1.5: Analyze the underlying concepts of quality and quality control concepts of an organization 1.5: Evaluate the various quality management principles and good management practices								arch			ustainability								
CLR-4: Utilize the various quality m	R-1: Utilize Quality, Quality control measures essential for an organization R-2: Utilize the quality management principles and good management practices R-3: Utilize the various quality control tools R-4: Utilize the various quality management tools R-5: Analyze the various standards applicable to healthcare globally and nationally R-6: Implement the global standards in healthcare urse Learning Outcomes (CLO): At the end of this course, learners will be able to: 0-1: Analyze the underlying concepts of quality and quality control concepts of an organization 0-2: Evaluate the various quality management principles and good management practices 0-3: Evaluate various tools of quality control 0-4: Analyze the various quality management tools 0-5: Analyze the various standards applicable to healthcare globally and nationally					Knowledge		ent	ese			ain		Work		92				
CLR-2: Utilize the quality management principles and good management practices CLR-3: Utilize the various quality control tools CLR-4: Utilize the various quality management tools CLR-5: Analyze the various standards applicable to healthcare globally and nationally CLR-6: Implement the global standards in healthcare Course Learning Outcomes (CLO): At the end of this course, learners will be able to: CLO-1: Analyze the underlying concepts of quality and quality control concepts of an organization CLO-2: Evaluate the various quality management principles and good management practices CLO-3: Evaluate various tools of quality control CLO-4: Analyze the various quality management tools					Attainment	N N	<u>.v</u>	elopment	Ğ,	age	ge	Sus		E		inance	ing.			
CLR-6: Implement the global stand	R-1: Utilize Quality, Quality control measures essential for an organization R-2: Utilize the quality management principles and good management practices R-3: Utilize the various quality control tools R-4: Utilize the various quality management tools R-5: Analyze the various standards applicable to healthcare globally and nationally R-6: Implement the global standards in healthcare surse Learning Outcomes (CLO): At the end of this course, learners will be able to: O-1: Analyze the underlying concepts of quality and quality control concepts of an organization O-2: Evaluate the various quality management principles and good management practices O-3: Evaluate various tools of quality control O-4: Analyze the various quality management tools O-5: Analyze the various standards applicable to healthcare globally and nationally				tain	조	Analysis	e e	Design,	<u> </u>	ulture	φ		Team	tion	∞ ⊥	earning			
	R-2: Utilize the quality management principles and good management practices R-3: Utilize the various quality control tools R-4: Utilize the various quality management tools R-5: Analyze the various standards applicable to healthcare globally and nationally R-6: Implement the global standards in healthcare urse Learning Outcomes (CLO): At the end of this course, learners will be able to: D-1: Analyze the underlying concepts of quality and quality control concepts of an organization D-2: Evaluate the various quality management principles and good management practices D-3: Evaluate various tools of quality control D-4: Analyze the various quality management tools					ering	Ā	ă	۵	J00	8 C	neu		<u>∞</u>	nica Bi	Mgt.				_
Course Learning Outcomes (CLO):	R-6: Implement the global standards in healthcare urse Learning Outcomes (CLO): At the end of this course, learners will be able to: O-1: Analyze the underlying concepts of quality and quality control concepts of an organization				Expected	Enginee	Problem	Design (Analysis,	Modern	Society	Environ	Ethics	Individual	Communication	Project I	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Analyze the underlying con	R-2: Utilize the quality management principles and good management practices R-3: Utilize the various quality control tools R-4: Utilize the various quality management tools R-5: Analyze the various standards applicable to healthcare globally and nationally R-6: Implement the global standards in healthcare urse Learning Outcomes (CLO): At the end of this course, learners will be able to: D-1: Analyze the underlying concepts of quality and quality control concepts of an organiz D-2: Evaluate the various quality management principles and good management practices D-3: Evaluate various tools of quality control Analyze the various quality management tools Analyze the various standards applicable to healthcare globally and nationally				75	-	-	-	М	-	-	-	М	М	-	-	L	-	М	L
	At the end of this course, learners will be able to: 1.1: Analyze the underlying concepts of quality and quality control concepts of an organization 1.2: Evaluate the various quality management principles and good management practices 1.3: Evaluate various tools of quality control 1.4: Analyze the various quality management tools				75	L	-	-	-	-	-	-	-	-	-	-	-	-	-	L
	2: Evaluate the various quality management principles and good management practices 3: Evaluate various tools of quality control 4: Analyze the various quality management tools				75	М	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Evaluate various tools of quality control Analyze the various quality management tools Analyze the various standards applicable to healthcare globally and nationally				75	L	-	-	-	-	-	-	-	-	-	-	-	-	-	L
	Analyze the various standards applicable to healthcare globally and nationally				75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CLO-6: Analyze the outcomes of in	2: Evaluate the various quality management principles and good management practices 3 3: Evaluate various tools of quality control 3 4: Analyze the various quality management tools 3 5: Analyze the various standards applicable to healthcare globally and nationally 3				75	М	-	-	-	-	-	-	-	-	-	-	L	-	-	L

		Introduction to quality	TQM principles	Statistical process control	TQM tools	Quality systems
Durati	ion (hour)	9	9	9	9	9
S-1	SLO-1	Definition of Quality	Customer satisfaction – Customer Perception of Quality	The seven tools of quality	Benchmarking	ISO 9000 Systems
0-1	SLO-2	Dimensions of Quality	Customer Complaints	Cause-and-effect diagram	Reasons to Benchmark	ISO 9000 Systems
S-2	SLO-1	Quality Planning	Service Quality	Check sheet	Benchmarking Process	ISO 9000:2000 Quality System – Elements
3-2	SLO-2	Quality Planning	Customer Retention	Check sheet	Benchmarking Process	ISO 9000:2000 Quality System – Elements
S-3	SLO-1	Quality costs	Employee Involvement	Control chart	Quality Function Deployment (QFD)	Need for Accreditation of hospitals
5-3	SLO-2	Quality costs	Motivation	Control chart	Quality Function Deployment (QFD)	Need for Accreditation of hospitals
S-4	SLO-1	Basic concepts of Total Quality Management	Empowerment	Histogram	House of Quality	FDA Regulations
3-4	SLO-2	Principles of TQM	Teams and Team Work	Histogram	House of Quality	FDA Regulations
S-5	SLO-1	Leadership – Concepts	Recognition and Reward	Pareto chart	QFD Process - Benefits	Joint Commission
3-3	SLO-2	Role of Senior Management	Performance Appraisal	Pareto chart	QFD Process - Benefits	Joint Commission
S-6	SLO-1	Quality Council	Juran Trilogy	Scatter diagram	Total Productive Maintenance (TPM) – Concept	Regulatory Bodies of India
3-0	SLO-2	Quality Statements	Juran Trilogy	Scatter diagram	Total Productive Maintenance	Medical Council of India

S-7	SLO-1	Strategic Planning	PDSA Cycle	Stratification	Improvement Needs	Pharmacy Council Of India
3-1	SLO-2	Strategic Planning	PDSA Cycle	Stratification	Improvement Needs	Pharmacy Council Of India
S-8	SLO-1	Deming Philosophy	Kaizen	Six sigma	FMEA	Indian Nursing Council
3-8	SLO-2	Deming Philosophy	Kaizen	Six sigma	FMEA	Indian Nursing Council
	SLO-1	Barriers to TQM Implementation	5S	Six sigma	Stages of FMEA	Dental Council of India
S-9	SLO-2	Barriers to TQM Implementation	5S	Six sigma	Stages of FMEA	Homeopathy Central Council

	1.	Rose J.E, Total Quality Management, Kogan Page Ltd., 1993	,	laaamh I Cam I
Learning Resources	2. 3.	Cesar A. Cacere, Albert Zana, The Practise of clinical Engineering, Academic Press, 1997 Greg Bounds, Beyond Total Quality Management-Toward the emerging paradigm, McGraw	4. 5.	Joseph J.Carr, E Jerrold T. Bushb Wilkins. 2011
		Hill. 2013		· · · · · · · · · · · · · · · · · · ·

Joseph J.Carr, Elements of Electronics Instrumentation and Measurement, 2nd ed., Pearson Education, 2003
 Jerrold T. Bushberg, John M. Boone, The essential physics of medical imaging, 3rd ed., Lippincott Williams & Wilkins, 2011

Learning Ass	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(E00/ weightege)
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	FIIIai Examination	n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100	0 %	10	0 %	100) %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	1. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	1. Dr. D. Kathirvelu, SRMIST
2. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	2. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	2. Dr. D. Ashok Kumar, SRMIST

Cou		18ECO131J	Course Name	VIRTUAL	. INSTRUMENTATION			ourse tegory		0				Oį	oen E	lective	9					L 2	-	P 2	C 3
	equisite	Nil				gress ourse		Nil																	
		Department	Electronics and Com	Courses munication	Data Book	/ Codes/Standards		Nil	04.00																
Cours	e Learnin	g Rationale (CLI	prious real time data acquisition methods. rious Instrument Interfacing concepts. rining techniques for various control techniques using VI software lysis toolsfor Process control applications.						earniı	ng				ı	Progr	am L	earniı	ng Ou	ıtcom	nes (P	PLO)				
			ots of Virtual instrumentation and to learn the programming concepts in VI. various real time data acquisition methods. various Instrument Interfacing concepts. mming techniques for various control techniques using VI software alysis toolsfor Process control applications.					1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2			various real time data acquisition methods. rarious Instrument Interfacing concepts. mming techniques for various control techniques using VI software alysis toolsfor Process control applications.											_			. <u>≥</u> .								
CLR-3	: To stu	idy about thevari	e various real time data acquisition methods. evarious Instrument Interfacing concepts. ramming techniques for various control techniques using VI software analysis toolsfor Process control applications. real time measurement systems					(E)	(%)	(%)	9		=	earc			nabil		¥		a)				
CLR-4	• To str	ıdy tile programlı ıdv various analv	ning techniques for various	annlications	using vi sollware			8	ncy	ent (yedç		mer	Res	ge		ıstai		٨		anc	D			
CLR-6				арричаного.				king	oficie	ainm	Von	lysis	/elop	sign,	Usa	lture	જ		eau	Б	Ξ	iE			
	,	•	,					F	d Pro	d Aff	ling	Ana	» De	, Des	<u>100</u>	& Culture	nent		~ L	icati	/gt. ∂) Le			
Cours	e Learnin	g Outcomes (CL	At the end of this cou	rse, learners will be	able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	H Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society &	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PS0 - 1	PSO-2	PSO-3
					derstand the construction	Data Book / Codes/Standards Incepts in VI. Interface Buses-USB,P; Inalog output VXI, Interface SCXI Interfa			80	70						0,				Ŭ			Н		
			d and apply various data ac					2	85	75	H												Н	Н	
								3	75 85	70 80	H	H	H	H	H								Н	Н	H
								3	85	75	Н	Н	Н	Н	Н				Н	Н	Н	Н	Н	Н	п
			d and implement various m					3	80	70	Н		Н	Н	Н				Н		Н			Н	
D	(1)		40		40	46							4.		•					•	12	•			
Durati	on (hour)	Historical perspe	12			12	-			-	Introductio	n to A	12		10.00	ntrollo	ro				14				
	SLO-1		of VI, Virtual Instruments	A/D Converters, Or VI system -	to learn the programming concepts in VI. methods. coepts. control techniques using VI software epilications. e., learners will be able to: mentation and understand the construction of VI isition methods. e. interfacing instruments rol techniques using VI software mengineering application. Issurement systems 12 12 12 12 12 12 12 12 12 12 12 13 14 15 16 16 17 17 18 18 18 19 19 19 10 10 11 11 11 11 11 11 11 11 11 11 11					Introduction to Non continuous controllers in LabVIEW PC based								PC based digital storage oscilloscope							
S-1	SLO-2		Software environment, Introduction to the block	D/A Converters, Types of D/A						Introductio LabVIEW	n to c	ontinu	ous co	ntroli	ers in	S	Senso	r Tec	hnolo	gy					
	SLO-1	Bar, Block diagra	am Tool Bar, Palettes			RS232, RS422				ı	Design of	ON/O	FF cor	ntroller			4	Applica	ations	s of se	ensor	Techi	nology	/	
S-2	SLO-2	Building a conne Placing and Sav	Creating an ICON, ector pane, Displaying VI'S ing Sub VI'S on block le of full adder circuit using t	Organization of the	DAQ VI system -	RS485					Proportion described						ally s	Signal	proce	essing	g Ted	chniqu	es		
s	SLO-1		trols and Indicator rithmetic Operations	Measurement of did using LabVIEW	ode I-V characteristics	Load cell Data acquisi	tion u	sing R	S232		On-off ten LabVIEW	perati	ure co	ntrolle	r usin	g	E	Desigr	n of D	SO					
3-4	SLO-2	Verification of Ha Verification of F				Load cell Data acquisi	tion u	sing R	RS422		Continous LabVIEW	Contr	ol of te	emper	ature	using		Analys LabVII		differ	rent s	ignal F	ilters	usin	3
S-5	SLO-1	Loops-For Loop,		Opto Isolation need	1	Interface Buses-USB,	PXI			I	Modeling	of leve	el proc	ess			5	Spectr	rum A	nalys	er				_
3-3	SLO-2	While Loop		Performing analog	input and analog output	VXI,				ı	Basic con	rol of	level p	roces	s in L	abVIE	W	Navef	orm (Gener	rator				
	SLO-1	Arrays,		Scanning multiple a	analog channels	SCXI				1	Modeling	of Rea	actor F	roces	ses		Ε	Data v	risuali	zation	n from	n multi	ple lo	catio	ns
S-6	SLO-2	Clusters,plotting	data	Issues involved in s acquisition cards	selection of Data	PCMCIA					Basic cont LabVIEW	rol of	Reacto	or pro	cess	in	E	Distrib	uted i	monit	oring	and c	ontrol		

S 7-8	SLO-1	Program to find Addition of First n natural numbers using for loop Program to find Addition of First n odd numbers using while loop.	Flow measurement in water using LabVEW and DAQ hardware.	DC motor control using VXI	On-off Level controller using LabVIEW	Real time spectrum analysis using LabVIEW
	SLO-2	Implementation of Array functions. Calculation of BMI using cluster	Level measurement in water using LabVEW and DAQ hardware	IGPIR WITH VISA TUNCTIONS	Continuous Control of pressure controller using LabVIEW	Arbitratory Waveform Generator using LabVIEW
S-9	SLO-1	Charts	Data acquisition modules with serial communication	Instrumentation Buses - Modbus and GPIB	Case studies on development of HMI in VI	Vision and Motion Control
3-9	SLO-2	Graphs	Design of digital voltmeters with transducer input	Networked busses – ISO/OSI		Examples on Integrating Measurement with vision and motion
S-10	SLO-1	Case and Sequence Structures	Timers and Counters	кетегепсе тоаеі,	Case studies on development of SCADA in VI	
3-10	SLO-2	Formula nodes, String and File Input/Output.	Timers and Counters	Ethernet and TCP / IP Protocols	Case studies on development of SCADA in VI	Speed control system
S 11-12	SLO-1	Monitoring of temperature using Charts and Graphs. Program for implementing Seven segment display	0 0	Online temperature control using LabVIEW using TCP/IP	On-off pressure controller using LabVIEW	Minor Project
11-12		Program to perform Traffic light control	Pressure measurement usingLabVEW and DAQ hardware DAQ.		Continuous Control of pressure controller using LabVIEW	Minor Project

Learning Resources
Resources

- Nadovich, C., Synthetic Instruments Concepts and Applications, Elsevier, 2005
 Bitter, R., Mohiuddin, T. and Nawrocki, M., Labview Advanced Programming Techniques, 2nd ed., CRC Press, 2007
 Gupta, S. and Gupta, J. P., PC Interfacing for Data Acquisition and Process Control", 2nd ed., Instrument Society of America, 1994
- 4. Jamal, R., Picklik, H., Labview Applications and Solutions, National Instruments Release.
- Johnson, G., Labview Graphical programming, McGraw-Hill, 1997
 Wells, L.K., Travis, J., Labview for Everyone, Prentice Hall, 1997
- 7. Buchanan, W., Computer Busses, CRC Press, 2000

Learning Asses	sment										
	Dloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Bloom's Level of Thinking Remember Understand Apply Analyze Evaluate Create	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	FIIIai Examination	i (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level I	Understand	2070	2070	1370	1070	1370	1370	1370	1070	1070	1070
Level 2		20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
LOVOIZ		2070	2070	2070	2070	2070	2070	2070	2070	2070	2070
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
LEVEI J	Create	1070	1070	1370	1370	1370	1370	1370	1070	1070	1370
	Total	100	0 %	100) %	100	0 %	100	0 %	10	0 %

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. D. Karthikeyan, Controlsoft Engineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	1. Dr. K. A. Sunitha, SRMIST
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Dr. D. Nedumaran, Madras University, dnmaran@gmail.com	2. Mrs. A. Brindha, SRMIST

Cou		18E(.()1371	ourse ame	ANALYTIC	ı		ourse tegory	, ()				Oį	pen E	Electiv	е					L 3			C 3												
	requisite ourses	Nil		Co-requisite Courses	Nil			Prog	gressiv ourses	e _N	il																									
Cours	e Offerin	g Department	Electronics and Comi	munication	Data Book	/ Codes/Standards		Nil																												
_																																				
Cours	1	ig Rationale (CLR):							earning	_		ı				ram L					•															
CLR-1				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15															
CLR-2		rstand the quantitative												등			Ϊţ																			
CLR-3		the concept of separa							(%)	%	ge		ŧ	searc			inabi		¥		g,															
CLR-5	-5: Identify and solve engineering problems associated with Radiation Techniques								ncy	ent	wled		ome	Res	ge	_	ustai		Μ		& Finance	D D														
CLR-6									oficie	ain I	Ş	lysis	velo	sign,	Usa	lture	ى ∞		ea	5	Σ. Ε.	in I														
	I-6: Understand the working of Analytical Instrument and their importance in industries							를	Pr	Aff.	.i.	Ana	, De	Des	8	no x	nent		~	icati		Le														
Cours	e Learnin	Learning Outcomes (CLO): At the end of this course, learners will be able to: Apply the principles and theory of instrumental analysis							Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Jesign & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt.	ife Long Learning		7.7	PSO - 3											
CLO-1	: Apply	the principles and the	ory of instrumental and			2	80	70	Н	H	L	L	<u> </u>	Н	H	-	-	-	-		Н		L													
		the principles of vari				2		70	Н	Н	L	L	Н	Н	-	-	-	-	-	-	Н	Н	L													
CLO-3	: Analy	ze and understand the			2		70	Н	Н	L	L	Н	Н	-	•	-	-	-	-	Н	Н	L														
CLO-4		nalyze and understand			2		70	Н	Н	L	L	Н	Н	-	-	-	-	-				L														
CLO-5		entify and solve engine			2		70	Н	Н	L	L	Н	Н	-	-	-	-	-				L														
CLO-6	: To ur	nderstand the working o	of analytical Instrumen	ts in industries				2	80	70	Н	Н	L	L	Н	Н	-	-	-	-	-	-	Н	Н	L											
Durati	on (hour)	9)			9						9								9																
S-1	SLO-1	Introduction to Chemic analysis	cal instrumental		analyzer, Importance of ed oxygen in Industry,	Chromatography, Imworking of Chromato			sic	Pro	ectral me operties ectromag	or par	ramete	ers of	S-							nporta roscop		and ba	asic											
	SLO-2	Spectral method of an	alysis	Working of Dissolv	ed oxygen analyzer	Gas chromatograph Instrumentation	У				ectromag							Magn stabili			oly, Pr	obe ui	nit, In	strum	ent											
S-2	SLO-1	Electro analytical and	seperative methods		Importance of measuring r, Principle working	Basic parts of a gas	chroma	atograp	hy		er's law ansmittai					tomete	ers	Types	of NI	ЛR sp	ectro	meter,	Minii	mal ty	ре											
3-2	SLO-2	Instrumental methods components and their		Working of sodium	n analyzer	Carrier gas supply Sample injection sys					er's law plication	of be	er's la	W				Multip	urpos	e NM	R,Wio	deline														
	SLO-1	Sampling systems		Silica analyzer, In Silica in Industry, I	nportance of measuring Principle working	Chromatographic co Selection of column				De	rivations	of be	er's la	aw.				Applio	ations	of N	MR S	pectro	mete	r												
S-3	SLO-2	Importance of Samplii chemical Industries ar	Thermal compartment Detection system Recording system				Detection system		Detection system		Detection system		Detection system		Detection system		Detection system				Sir	ngle bear	m and	doub	le bea	am in:	strume		Mass Impor		rome	ters, E	Basic v	vorkir	ng and	d
S-4	Times of Flootrades Deference Flootrades						ohy-Prir	iciples,	types		spectrop struments			;								Spectro		ers												
	SLO-2 Types of Electrodes, Reference Electrodes Types of Moisture measurement High pressure						l chroma	atograp	hy		pes of IF mponen		uired i	for thr	ee ty _l	pes of			etic Se	ector		meter: zer ,Do		focus	sing											
S-5	SLO-1 Secondary Electrodes and Types Oxygen analyzer Methods of oxygen analyzers and importance Instrumen HPLC					Instrumentation or b HPLC	asic co	mpone	nt of		truments Radiatio					ent ,		Time analy:		ıt ana	lyzers	s, Qua	drupo	ole Ma	ass											
1	I I I I I I I I I I I I I I I I I I I									lm	nortance	of M	onoch	romat	ors a	nd tvn	es			_																

Paramagnetic oxygen analyzer Electro analytical method

SLO-2 Indicator electrodes

Solvent reservoir and its treatment system

Importance of Monochromators and types

of Monochromators

Application of mass spectrophotometers

	SLO-1	pH meters direct reading type pH meter null detector type pH meter	CO monitor,Importance of measuring CO	Pumping system, Types of working systems and Importance	1 · · .	nuclear radiation detectors, importance of measurement
S-6	SLO-2	ion selective electrodes Types of ion selective electrodes Glass membrane electrodes Liquid membrane electrodes Solid membrane Electrodes	Types of CO monitor	Pulse dampers	FTIR spectrometers Main components Advantages disadvantages	GM counter
S-7	SLO-1	Features of Biosensor Block diagram of bio sensor	NO2 analyzer, Importance of NO ₂ measurement	Sample injection system and types	Types of sources Selection factors	Working setup, advantages of GM Counter
	SLO-2	Applications of Biosensors in industries	Types of NO ₂ measurement	Liquid chromatographic column working , Types of Column thermostats	Types of detectors Selection factors	proportional counter, Basic Principle
S-8	SLO-1	conductivity meters ,Importance in Chemical Industries	H ₂ S analyzer, Importance of H ₂ S Measurement	Detection system types		Working setup, advantages of GM Counter
	SLO-2	Types of Conductivity meters	Types of H ₂ S measurement	Types of Recording system	radiation source chopper	solid state detectors, Basic Principle
	SLO-1	Air pollution Monitoring Instruments	Dust and smoke measurement- dust measurement and Importance Types of dust measurement	Application of HPLC, Advantages of HPLC over gas chromatography	production of atomic vapor by flame, Parts by flame photometer Emission system	Working setup, advantages of Solid state detectors
S-9	SLO-2	Estimation of Air pollution	Thermal analyzer , Importance of Thermal analyzers, Types of Thermal analyzer	Detectors types, Factors Influencing the Selection of Detectors	Monochromators And types, Types of Detectors and recording systems and their selection criteria	scintillation counter, Basic principle

Learning	1. 2.	Khandpur. R.S, "Handbook of Analytical Instruments", Tata McGraw Hill publishing Co. Ltd., 2006 Bella. G, Liptak, "Process Measurement and analysis"., CRC press LLC.,2003.
Resources	3.	Francis Rousseau and Annick Rouesssac "Chemical analysis Modern Instrumentation Methods and
		Techniques", John wiley & sons Ltd.2007.

- James W.Robinson, "Undergraduate Instrumental Analysis", Marcel Dekker., 2005.
 Dwayne Heard, "Analytical Techniques for atmospheric measurement", Blackwell Publishing, 2006.

Learning Ass	sessment												
	Bloom's	m's Continuous Learning Assessment (50% weightage) CLA - 1 (10%) CLA - 2 (15%) CLA - 3 (15%) CLA - 4 (10%)# Final Ex											
	Level of Thinking	CLA –	FIIIai Examinatio	n (50% weightage)									
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	100	0 %	100	0 %	10	0 %	100	0 %	10	0 %		

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. D.Karthikeyan, Controlsoft Engineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	1. Dr. K. A. Sunitha, SRMIST
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Dr. D. Nedumaran, Madras University, dnmaran@gmail.com	2. Mrs. A. Brindha, SRMIST

																						. 1	_	_	
Cou		18ECO133T	Course Name	SENSORS AND	TRANSDUCER	S	_	ourse tegory	,	0				(Open .	Electiv	⁄e				_			P 0	C 3
	equisite	Nil		Co-requisite Nil				Pro	gressi ourses		Nil														
		Department	Electronics and Com		Data Boo	ok / Codes/Standards		Nil																	
C		n Dationala (CL)	D). The manage of learning						!	_					D			ning O		//	DI O				
	_	g Rationale (CLI						1	earnin 2	3	_	1 2	3	4	5	G 6	_earr	1111 g U	9	10 10	11	12	13	14	15
	CLR-1: Gain knowledge on classification, and characteristics of transducers CLR-2: Acquire the knowledge of different types of inductive and capacitive sensors											2	3	4	3	0		0	9	10	11	12	13	14	10
CLR-3: Acquire the knowledge of different types of thermal and radiation sensors										(arch arch			bility								
CLR-4: Acquire the knowledge of different types of magnetic sensors										nt (%	1	agge	ent	eses			taina		Nork		Finance				
CLR-5: Acquire the knowledgeof different types of sensors measuring non-Electrical quantity										ıme		ي. ا <u>ه</u>		- L E	sage	<u>e</u>	Sus		am /	_	Fina	ping			
CLR-6: Locate the Applications of sensors in industries and home appliances										Attaii	2	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Deve	Jesiç		Celt	ant &		& Te	atio	య	Lean			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:										S Expected Attainment (%)	-	Engineering Knowledge	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt.	Life Long Leaming	PS0 - 1	PS0-2	PSO - 3
CL O-1	· To do	monetrate the va	rious types of basic sensor	6				Level of Thinking (Bloom)	Expected Proficiency (%)	<u>X</u>	ŀ	1 6			₹.	S H	H E	苗田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	<u>2</u>	ပိ -	- P	≝ H	H	- B	- PS
			ive and capacitive sensors		ıring various para	meters		3	80	75	ŀ		_	Н	-	Н	-	-	-	-	-	Н	-	Н	-
			al and radiation sensors		gac para			3	80	75	Ţ.			-	-	Н	-	-	Н	Н	-	-	Н	-	-
			wledgeon the various mag					3	80	75		- '			-	-	-	-	-	-	-	-	-	Н	-
			rious types of basic sensor		al quantity			3	80	75					Н	-	-	-	-	-	-	Н	-	-	Н
CLO-6	: Selec	t the right transat	ucer for the given applicatio	n				3	80	75	<i>F</i>	1 -	Н	-	-	Н	Н	Н	-	-	-	Н	Н	-	-
Durati	on (hour)		9	9			9							9							9)			
S-1	SLO-1	Introduction to se Principles	ensors/ transducers,	Introduction to Inductive	sensor	Thermal sensors: Inti	oductio	on	Magnetic sensors: Introduction Measurement of No Introduction						Non-	on-Electrical quantity:									
3-1	SLO-2	Classification ba	sed on different criteria	Sensitivity and linearity o	of the sensor	Thermal Expansion ty	уре.		Villari effect Flow Measurem					ureme	ement – Introduction.										
S-2	SLO-1		of measurement systems	Transformer type transdu	ucer	Acoustics temperatur	e sens	ors.		ı	Viedmar	nn effe	ct					Ultras	onic F	-low I	Meter	S.			
0-2	SLO-2	Static characteri Resolution, Sens	stics Accuracy, Precision, sitivity	Electromagnetic transduc	cer	Thermo-emf sensor.				F	lall effec	ct						Hot W	/ire Aı	nemo	meter	rs.			
S-3	SLO-1	Dynamic charac	teristics.	Magnetosrtictive transdu	icer	Materials for thermos	-emf s	ensors	S.	(Construc	tion,						Electr	omag	netic	Flow	meter	S.		
SLO-2 Environmental Parameters Materials used in inductive sensor Thermocouple construct										ŗ	erforma	nce c	naract	eristics	5,			Princi	ple ar	nd typ	es.				
SLO-1 Characterization and its type Mutual Inductance change type Types.								and its Application Measurement of D					Displ	laceme	ent.										
3-4	SLO-2	Electrical charac	cterization.	LVDT: Construction.		Thermo-sensors usin device	g semi	icondu	ctor	Introduction to smart sensors Introduction and types.					S.										
S-5	SLO-1	Mechanical Cha	racterization.	Material, input output rela	ationship,	Pyroelectric thermal s	sensor	s		F	ilm sen	sors: I	ntrodu	ction				Meas	ureme	ent of	Veloc	ocity/ Speed.			
3-3	SLO-2	Thermal Charac	terization	Synchros-Construction		Introduction				7	hick filn	sens	ors				-	Introd	uction	and	types	 S.			
0.6	SLO-1	SLO-1 Optical Characterization. Capacitive sensor: Introduction characteristics								Microelectromechanical systems Measurement of Liquid Level.							el.								
S-6				1		1												 							

Application

Parallel plate capacitive sensor

SLO-2 Errors and its classification.

Micromachining.

Introduction and types.

S-7	SLO-1	Selection of transducers.	Variable thickness dielectric capacitive sensor	Radiation sensors	Nano sensors	Measurement of Pressure.
3-1	SLO-2	Introduction to mechanical sensors	Electrostatic transducer	Introduction	Applications: Industrial weighing systems: Link–lever mechanism.	Introduction and types.
S-8		7,1	Piezoelectric elements	Characteristics	Load cells – pneumatic, elastic and their mounting.	Measurement of Vibration.
3-0	SLO-2	Strain gauge: Theory, type, design consideration, sensitivity.	Ultrasonic Sensors	Geiger counters	different designs of weighing systems.	Introduction and types.
S-9	SLO-1	Resistive transducer: RTD, materials used in RTD	Calculation of sensitivity.	Scintillation detectors	conveyors type.	Application of sensors in industries
5-9	SLO-2	Thermistor: thermistor material, shape	Capacitor microphone, response characteristics	Application on radiation sensors	weighfeeder type.	Application of sensors in home appliances

Learning
Resources

- Patranabis, D., "Sensors and Transducers", 2nd Edition, Prentice Hall India Pvt. Ltd, 2010
 Doeblin, E.O., "Measurement Systems: Applications and Design", 6thEdition, Tata McGraw-Hill Book Co.,
- 3. Bentley, J. P., "Principles of Measurement Systems", 4th Edition, Addison Wesley Longman Ltd., UK, 2004.
- 4. Murthy, D.V.S., "Transducers and Instrumentation", Prentice Hall of India Pvt. Ltd., New Delhi,
- 5. Neubert H.K.P., "Instrument Transducers An Introduction to their performance and Design", Oxford University Press, Cambridge, 2003

Learning Ass	sessment												
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(E00/ woightage)		
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)			
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	40 %		30 %		30 %		30 %		30%			
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply	40 %		40 %		40 %		40 %		40%			
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	40%	-		
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%			
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total 100 % 100 %				0 %	10	0 %	100	0 %	100 %			

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. D. Karthikeyan, ControlsoftEngineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	1. Mrs.K.Vibha, SRMIST
2. Mr. Prasad, KCP Sugar & Industries, kcpengineering@gmail.com	2. Mr. Prashanth Ravi, NTU, prashantrar@gmail.com	2. Dr. G.JoselinRetna Kumar, SRMIST

Cour		18ECO134T	Course Name	INDUSTRIAL AUTOMATI	ON		ourse tegory		0				C	pen l	Electiv	e						-	P 0	C 3
	equisite urses	Nil		Co-requisite Courses				gressi ourses		Nil										•			•	
		Department	Electronics and (Book / Codes/Standards		Nil																	
Course	Learnin	g Rationale (CL	R): The purpose of le	arning this course is to:			L	earnin	ng					Prog	ram L	.earn	ing O	utcon	nes (l	PLO)				
CLR-1	: Under	rstand basic com	ponents of PLC				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Understand the use of timers and counters in process automation													Ę.			lity								
CLR-3: Understand DCS architecture CLR-4: Understand operator and engineering interface in DCS										٩		ŧ	searc			inabil		rk		ø				
CLR-4: Understand operator and engineering interface in DCS CLR-5: Understand HART signal standard and Field bus										Na Pa		bme	, Re	age		usta		۳ W		Finance	Б			
CLR-6		rstand Field bus					nking	rofici	ttain	X	alvsis	. evelo	esign) Os	ultur	t & S		Tear	tion	⊗	amir			
Course	e Learnin	g Outcomes (CI	LO): At the end of this	course, learners will be able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	52 Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. &	Life Long Leaming	PS0 - 1	PS0 - 2	₩ PSO - 3
		t PLC based on I					3	80		Н	М	L	-	-	-	-	-	М	-	М		М		
CLO-2 CLO-3		timers and coun t LCU based on a	ters in process automa	ion			3	80 80	75 75	H		Н	H -	H	-	L	-	Н	M	L -	L	H M	Н	H M
CLO-3		se data's in Oper					3	80	75	H		-	Н	-	-	-	-	Н	М	-	L	Н	L	M
	: Interp	ret industrial data	a communication mode	S			3	80	75	Н	-	-	-	-	-	-	-	-	L	-	L	Н	-	L
CLO-6	: Gain I	knowledge on fie	ld bus				3	80	75	Н	L	-	-	-	-	-	-	-	-	-	L	Н	-	L
Duratio	on (hour)		9	9	9)				9					9)								
	SLO-1	Programmable l	ogic controllers	PLC Programming Languages	Evolution of DCS					Operator	Interfa	ices R	equire	ement	s		Introduction to HART							
S-1	SLO-2	PLC vs Comput	ter	Ladder Diagram	Hybrid System Archite	cture				Process I	1onito	ring				Evolution of Signal standard								
	SLO-1	Parts of a PLC		Functional block	Central Computer sys	tem A	rchited	cture		Process (Contro	I					HAR1	Netv	vorks:	Poin	t-to-Po	int		
S-2	SLO-2	Architecture		Sequential Function Chart	DCS Architecture					Process L	Diagno	stics					Multi-	drop						
	SLO-1	PLC size and Ap	oplication.	Instruction List	Comparison of Archite	cture				Process F	Record	l Keep	ing				Split r	ange	contr	ol valı	ve			
S-3	SLO-2	Fixed and Modu	ılar I/O	Structured Text	Local Control Unit Arc	hitect	ure			Low Level Operator Interface					HART	Field	l Con	troller	Imple	menta	ation			
	SLO-1	Discrete Input M	fodules	Wiring Diagram	Architectural Paramet	ers			High Level Operator Interface Hart Commends:						: Univ	rersal								
S-4	SLO-2	Discrete Output	Modules	Ladder logic Program	Comparison Of LCU A	Archite	ecture	re Hardware Elements In The Operator Common Pra					Common Practice											
0.5	SLO-1	Analog Input Mo	odules	On-Delay Timer Instruction	LCU Language Requi	remer	ents Operator Input And Output Devices Device Specific						Specific											
S-5	SLO-2	Analog Output N	Modules	Off-Delay Timer Instruction	Function Blocks					Operator	erator Display Hierarchy Win					Wireless Hart								
	SLO-1	Special I/O Mod	lules	Retentive Timer	Function Block Librari	es				Plant-Lev	el Dis _l	olay					Field Bus Basics							
S-6	SLO-2	LO-2 High Speed Counter Module Cascading Timer Problem-Oriented La					е	Area- Level Display Field Bus Architecture						ı										

S-7	SLO-1	Power Supplies	Up-Counter	LCU Process Interfacing Issues	Group- Level Display	Field Bus Standard
3-1	SLO-2	Isolators	Down-Counter	Security Requirements	Loop- Level Display	Field Bus Topology
	SLO-1	Input/output Devices: Switches	Cascading Counters	Security Design Approach	Engineering Interface Requirements	H1 Field Bus
S-8	SLO-2	sensors	Combining Counter And Timer Functions	On-Line Diagnostics	Requirement For Operator Interface Configuration	H2 Field Bus
S-9	SLO-1	Relays	Math Operation	Redundant Controller Design	Low Level Engineering Interface,	Interoperability
5-9	SLO-2	Solenoid valve	Program	One-On-One, One-On-Many Redundancy	High Level Engineering Interfaces	Interchangeability

Learning Resources
Resources

- Frank D. Petruzella, Programmable Logic Controller, Tata McGraw Hill Fifth Edition, 2017
 Bolton. W, Programmable Logic Controllers, 6th Edition, Elsevier Newnes, Sixth Edition 2016.
 Krishna Kant, Computer Based Industrial Control, Second edition, Prentice Hall of India, New Delhi, 2015
- Bowten, R HART Application Guide, HART Communication foundation, 2015.
 Berge, J, Field Busses for process control: Engineering, operation, maintenance, ISA press, 2015

Learning Assessment												
	Bloom's	Continuous Learning Assessment (50% weightage)								Final Examination (50% weightage)		
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4 (10%)#		Final Examination (50% weightage)		
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Understand											
Level 2	Apply	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
	Analyze											
Level 3	Evaluate	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Create											
	Total		100 %		100 %		100 %		100 %		100 %	

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers							
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts					
1. D. Karthikeyan, Controlsoft Engineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	1. Mr.J. Sam Jeba Kumar, SRMIST					
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Mr. Prashanth Ravi, NTU, prashantrar@gmail.com	2. Dr. G.Joselin Retna Kumar, SRMIST					

ACADEMIC CURRICULA

Professional Core Courses

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

ACADEMIC CURRICULA

Professional Core Courses

AEROSPACE ENGINEERING

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Course Code	18ASC101T	Course Name		APPLIED ENGINEERING MECHAN	ICS	Course Category	,	С				Pro	fessio	nal C	ore					L 3	T 1	P 0	C 4
Pre-requisit Courses	te _{Nil}			Co-requisite Nil			gress		Vil														
Course Offeri	ing Department	Aerosp	ace Engineerir	Data Boo	k / Codes/Standards	Nil																	
Course Learn	ing Rationale (CL	R): The pu		L	earni	ng					Progi	am L	_earni	ng O	utcor	nes (l	PLO)						
CLR-1: Util	lize the concept of e	equilibrium of	particles and ri	gid bodies		1	2	3		1 2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3: Utili CLR-4: Utili CLR-5: App	lize with the dynam lize with the dynam oly the concepts of	ics of particle ics of rigid bo mechanics to	s dies solve problem	res and moment of inertia about different a s related to space mechanics ems dealing with forces	axes	Thinking (Bloom)	d Proficiency (%)	d Attainment (%)		Engineering Knowledge Problem Analysis	Development	Design, Research	Tool Usage	& Culture	nent & Sustainability		ıl & Team Work	iication	fgt. & Finance	Learning			
Course Learn	ing Outcomes (Cl	LO): At the	end of this cou	rse, learners will be able to:		Level of	Expected	Expected		Engineer	Design & I	Analysis, I	Modern	Society 8	Environment	Ethics	Individual	Communication	Project Mgt.	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Det	termine the forces ι	under equilibr	ium			2	85	75		Ч -	-	-	-	-	-	-	-	-	-	-	-	-	-
CLO-2: Idea	ntify the centroids a	and determine	e moment of ine	ertia		2	85	75		4 F	l H	-	-	-	-	-	-	-	-	-	-	-	-
	termine the forces a					2	85	75	_	4 -		Н	-	-	-	-	-	-	-	-	-	-	-
				etics and kinematics		2	85	75		H F		-	-	-	-	-	-	-	-	-	-	-	-
	olication of determi					2	85	75		4 -	- ''	-	-	-	-	-	-	-	-	-	-	-	-
CLO-6: Apply the concepts of fundamental mechanics and space mechanics in real time applications			1	2	85	75		4 F	l H	Н	-	-	-	-	-	-	-	-	-	-			
Duration (hour	r)	12		12	12	!					1:	2							12	2			
	' '			Destiling on mostic a lini			-															$\overline{}$	

Durati	ion (hour)	12	12	12	12	12
S-1	SLO-1	Fundamentals of mechanics- Classification of forces, Laws of mechanics.	Determination of centroids by integration, centroids of lines, areas and volumes.	Rectilinear motion-Uniform motion and Rectangular components of velocity	Kinematics of rigid bodies	Curvilinear motion: Projectile motion
3-1	SLO-2	Vector and vector operations problems	Determination of centroids by integration, centroids of areas	Rectilinear motion - Uniformly accelerated motion	Kinematics of rigid bodies: Linear translational motion	Projectile motion: Path of the projectile
S-2	SLO-1	Forces on particles in 2 D- Triangular law of forces & parallelogram law of forces	Determination of centroids in composite areas	Curvilinear motion-Normal and tangential components	Kinematics of rigid bodies: Fixed axis rotation	Position and velocity of the projectile after a known time
3-2	SLO-2	Equilibrium on particles in 2D, Lami's Theorem, Free body diagram	Centroids of volumes, Centre of gravity	Curvilinear motion- Normal and tangential components	Kinematics of rigid bodies: Fixed axis rotation	Velocity, direction and time taken of the projectile after a known height
S-3	SLO-1	Action & Reaction, Equilibrium on particles in 2 D – Equations of Equilibrium	Pappus guildinus Theorem I	Curvilinear motion- Radial and transverse components	Kinematics of rigid bodies: relation between linear and rotation	Motion of particle projected horizontally
3-3	SLO-2	Forces in space	Pappus guildinus Theorem II	Curvilinear motion- Radial and transverse components	Kinematics of rigid bodies: relation between linear and rotation	Projected from inclined plane
S-4	SLO-1	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
3-4	SLO-2	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
S-5	SLO-1	Statics of rigid body in 2D – Moment & Varigon's Theorem	Moment of inertia	Cylindrical coordinates- Newtons second law, D'Alembert's principle.	General plane motion-Absolute and relative velocity in plane motion	Angular momentum of a particle. Rate Of change of angular momentum
3-3	SLO-2	Statics of rigid body in 2D – Force Couple System	Determination of moment of inertia by Integration	Cylindrical coordinates- Newtons second law, D'Alembert's principle.	General plane motion-Absolute and relative velocity in plane motion	Motion under a central force, Conservation of angular momentum.
S-6	SLO-1	Equilibrium of Rigid bodies in 2D	Parallel axis theorem	Principle of work and energy	General plane motion: Crank- Rod Mechanism	Newton's Law of Gravitation
3-0	SLO-2	Equilibrium of Rigid bodies in 2D : Support Reactions, Types of Support	Parallel axis theorem	Principle of work and energy	General plane motion: Crank- Rod Mechanism	Sample problems: Conservation of angular momentum and newton's law of gravitation
S-7	SLO-1	Analytical method to determine the support reactions of beam	Perpendicular axis theorem	Principle of impulse and Momentum.	Instantaneous centre of rotation in plane motion	Sample problems: Conservation of angular momentum and newton's law of gravitation

	SLO-2	Moment of Uniformly varying loads	Perpendicular axis theorem	Principle of impulse and Momentum.	Instantaneous centre of rotation in plane motion	Sample problems: Conservation of angular momentum and newton's law of gravitation
S-8	SLO-1	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
3-0	SLO-2	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
S-9	SLO-1	Truss: Classification, perfect/Imperfect frame, Analysis of perfect frame	Polar moment of inertia,	Impact of Elastic bodies	D'Alembert's principle : Linear motion	Trajectory of a particle under a central force
5-9	SLO-2	Determine the support Reaction in truss	Radius of gyration	Derivation of Elastic coefficient	D'Alembert's principle : Rotation motion	Trajectory of a particle under a central force: Application to space mechanics
S-10	SLO-1	Analysis of perfect Frame by method of joints: Simply supported	Mass moment of inertia of solid objects	Impact of Elastic bodies-Direct central	Principle of work and energy for a rigid body: Linear motion	Kepler Law of planetary motion
3-10	SLO-2	Analysis of perfect Frame by method of joints: Cantilever	Mass moment of inertia of solid objects	Impact of Elastic bodies-Direct central	Principle of work and energy for a rigid body: Rotation motion	Sample problems: Central force
S-11	SLO-1	Analysis of perfect Frame by method of sections: Simply supported	Mass Moment of inertia of thin plates	Impact of Elastic bodies- Oblique central impact.	Principle of impulse, momentum for plane motion of a rigid body: Linear motion	Sample problems: Central force
3-11	SLO-2	Analysis of perfect Frame by method of sections: Cantilever	Mass Moment of inertia of thin plates	Impact of Elastic bodies- Oblique central impact.	Principle of impulse, momentum for plane motion of a rigid body: Rotation motion	Sample problems: Periodic time
S-12	SLO-1	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
3-12	SLO-2	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems

Learni	-	1.	Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Philip J Cornwell, Vector Mechanics for Engineers: Statics and Dynamics, 10th ed., McGraw Hill, 2013	3.	NPTEL Engineering Mechanics Lectures by IIT Guwahati 'https://nptel.ac.in/courses/112103109/'
Resou	rces	2.	Shames, I.H., Krishna Mohana Rao, G., Engineering Mechanics (Statics and Dynamics), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education), 2006		Guwanati https://npter.ac.in/courses/112103109/

Learning As	sessment										
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	o (E00/ woightogo)
	Level of Thinking	CLA -	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	rinai Examinatio	n (50% weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %	_	30 %	_	30 %		30%	
LEVELI	Understand	40 /0	_	30 /0	-	30 70	-	30 /0	-	3070	-
Level 2	Apply	40 %	_	40 %	_	40 %	_	40 %	_	40%	_
Level 2	Analyze	40 /0	_	70 /0	_	40 /0	_	70 /0	_	4070	_
Level 3	Evaluate	20 %		30 %		30 %	_	30 %		30%	
FEACI 2	Create	20 /0	_	30 70	_	30 /0	_	30 //	_	3070	-
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Raja, National Aerospace Laboratories, Bangalore, raja@nal.res.in	1. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	1. Mr. K. B. Ravichandrakumar, SRMIST
2. Dr. Vinay Kumar Gupta, National Physical Laboratory, guptavinay@nplindia.org	2. Dr. S. Elangovan, BIHER, Chennai, email: subelango@yahoo.co.in	2. Mr. lynthezhuthon, SRMIST

Cou		18ASC102J	Course Name	APPLIE	D FLUID MECHANICS			urse egory		С				Profe	ession	al Coi	е				L 3	T 0	P 2	C 4
	requisite ourses	Nil		Co-requisite Courses	Nil				gressi		Nil													
Cours	e Offerino	Department	Aerospace Engineeri	ng	/ Codes/Standards		Nil																	
		g Rationale (CLR							earnin									Outco						-
			tics of fluids and utilize the w problems and apply the	a fluid flow problems		1	2	3	1	2	3	4	5	6	7 8	9	10	11	12	13	14	15		
	: Identi	fy the mathematic	cal techniques of potential f	low problems	volume concept in various	s naid now problems		Ê	(9	<u> </u>				arch			falling.							
CLR-4			sional analysis and fluid flo					Bloor	cy (%	nt (%	ebpe		nent	Research	m		stalle	Work		nce				
CLR-5			epts of boundary layer in fl I of fluid mechanics applica					ing (F	icien	inme	now	/Sis	elopu	gn, F	Jsage	are	Sinc x	eam	5	Fina	ing			
OLIV-0	· Lxpio	re advanced level	тогнию теснатіся арріса	uons				Phink	Prof	Atta	ing X	Analy	Dev	Desi	00	S	E E	- 8 - T	icatio	lgt. &	Leal			
		`	O): At the end of this cou	,				Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design,	Modern Tool Usage	Society & Culture	Environment & Sustainability Frhics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO-2	PSO-3
			of fluid properties and princ			ruments		2	85	75 75	Н	_	М	L	-	-	- -	L	-	-	М	L	-	-
			roblems and system and colling techniques of potential flo		pt			2	85 85	75 75	H	H	M	M M	-	-		L	-	-	M M	L	-	-
								2	85	75	H	H	M	M	-			L	-	-	M	L	-	-
CLO-5	: Accru	e the knowledge a	dimensional analysis and fluid flow through pipes e knowledge about boundary layer concept mprehensive knowledge in fluid mechanics applications						85	75	Н	М	М	L	-			-	-	-	М	-	-	-
CLO-6	: Accru	e comprehensive	hensive knowledge in fluid mechanics applications						85	75	Н	Н	М	М	-	-	- -	L	-	-	М	L	-	-
Durati	on (hour)		15		15	15							15	i						1	5			
S-1	SLO-1	Introduction to flu	uid mechanics	fluid flow	llerian description of	Pitot – tube				E	Dimensior	al Ana	alysis				Pip	e frictio	on maj	or an	d Mino	r loss	es	
	SLO-2	Brief history of flu	uid mechanics	Types of fluid flow, and streak lines.	streamlines, path lines,	Numerical problems				F	Rayleigh's	meth	od, nu	merica	l prob	lems	Nui	merica	l proble	ems				
S-2	SLO-1	Fluids and their p	properties	System and Contro	ol volume concept	Introduction to potential	flow			E	Buckingha	m's Pi	i – the	orem			Nui	merica	l Probl	ems i	n para	llel,		
	SLO-2	Density, viscosity	y, surface tension	Introduction to Rey	nolds transport theorem	Equation of streamline					Buckingha						Sei	ies an	d bran	ched	pipes.			
S-3	SLO-1	Properties of fluid	ds numerical problems	Reynolds transport		Stream function, Veloci	ty po	tential	functi		lumerical heorem	proble	ems oi	n Buck	nghar	n's Pi	- Boi	ındary	layer	theory	/ introd	luctio	n	
	SLO-2	Compressibility a		Reynolds transport applications	theorem and its	Basic elementary flows					lumerical	<u> </u>						id flow						
S 4-5	SLO-1 SLO-2	Lab 1: Determine of orifice meter	e coefficient of discharge	Lab 4: Repeat clas	s	Lab 7: Performance tes centrifugal air blower	t on ı	radial			ab 10: Pe entrifugal			est on	forwa	rd	Lab		lajor lo	ss du	e to fri	ction	in pip	е
		Fluid statics-Paso	cal's law	Reynolds transport in finite control volu	theorem, applications ime analysis	Uniform parallel flow str velocity potential function		functio	on and	d A	Application numbers			nt dim	ensior	nless		w over	a flat	olate				
S-6	SLO-2	Numerical proble	ems on Pascal's law	control volume ana problems	lysis Numerical	Source flow and sink flo and velocity potential fu			unctio	on N	lumerical	proble	ems					•	•		opmen			olate
S-7	SLO-1	Hydrostatic law		Euler's equation of streamline	motion along a	Free vortex					low throu	gh pip	oes					placen kness	nent th	ickne	ss, mo	ment	um	
3-1	SLO-2	Piezometric head	d, and Numerical problems	Bernoulli's equation	n	Free vortex stream fund potential function	ction	and ve	elocity	′ L	aminar a	nd turk	bulent	flow			Ene	ergy th	icknes	s				
S-8	SLO-1	Manometry- simp	ole manometer	Bernoulli's equation	n - Numerical problems	Forced vortex				F	lagen - P	oiseuil	lle flov	in circ	ular p	ipes	Nui	merica	probl	ems c	on			
3- 8	SLO-2	Numerical proble manometers	ems on simple	Numerical problem equation	s on Bernoulli's	Combination of elemen	tary f	lows		F	lagen – F	oiseui	ille equ	ıation							ss, mo ckness		um	

S	SLO-1	Lab 2: Determine coefficient of discharge	Lab 5: Determine Impact force of water jet	Lab 8: Repeat class	Lab 11: Determine type of flow by	Lab 14: Performance test on reciprocating
9-10	SLO-2	of venturimeter	on vane	Lab o. Repeat class	Reynolds apparatus	air compressor
S-11	SLO-1	Differential manometer- U-tube differential manometer	Bernoulli's equation – Application venturimeter, orifice meter, pitot tube	Doublet flow	Hagen – Poiseuille equation applications	Drag on a flat plate
3-11	SLO-2	Numerical problems on U-tube differential manometer		Doublet flow stream function and velocity potential function	Numerical problems on viscous flow through pipes	Vonkarman Momentum integral equation
S-12	SLO-1	Differential manometer- Inverted U-tube differential manometer	Numerical problems on Venturimeter	Non-lifting flow over a cylinder	Development of flow in pipes Darcy- Weisbach equation	Separation of flow over bodies, streamlined and bluff bodies
3-12	SLO-2	Numerical problems on Inverted U-tube differential manometer	Numerical problems on Venturimeter	Pressure and velocity distributions	Pipe friction	Lift and Drag on cylinder
C 42	SLO-1	Inclined manometer	Orifice meter	Lifting flow over a cylinder	Numerical problems on Darcy-Weisbach equation	Lift and Drag on Aerofoil
S-13	SLO-2	Numerical problems on Inclined manometer	Orifice meter discharge equation, and numerical problems	pressure and velocity distributions	Numerical problems on Pipe friction	Lift and Drag on cylinder and Aerofoil Numerical problems
S 14-15	SLO-1 SLO-2	Lab 3: Verify Bernoulli's theorem	Lab 6: Minor losses due to pipe fittings in pipes	Lab 9: Performance test on backward centrifugal blower	Lab 12: Repeat class	Lab 15: Repeat class

Lagraina	1.	Kumar, K.L., Engineering Fluid Mechanics, 8th ed., S. Chand, New Delhi, 2016	3.	Irving H. Shames, Mechanics of Fluids, 4th ed., McGraw-Hill, 2003
Learning	2.	Munson, Bruce R., Young, Donald F., Okiishi, Theodore H., Huebsch, Wade W. Fundamentals of Fluid	4.	Streeter, Victor, Bedford, K.W., Wylie, E. Benjamin, Fluid Mechanics, 2nd ed., Tata McGraw Hill, New
Resources		Mechanics, 7th ed., John Wiley & Sons, Inc. 2016		Delhi, 1997

Learning Assess	sment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	FIIIai Examinatio	ii (50 % weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	10	0 %	100	0 %	10	0 %	100) %	10	00%

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Raja, National Aerospace Laboratories, Bangalore, raja@nal.res.in	1. Dr. S. Elangovan, BIHER, Chennai, email: subelango@yahoo.co.in	1. Mr. S. Rajkumar, SRMIST
2. Dr. Vinay Kumar Gupta, National Physical Laboratory, guptavinay@nplindia.org	2. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	2. Mr. M. Abdur Rasheed, SRMIST

Cou		18ASC103T	Course Name	AERO ENGINEERING THERMODYNA	MICS		ourse tegory	(;				Pro	fessio	onal Co	ore				3	T 0	P 0	C 3
	equisite ourses	Nil		Co-requisite Nil				ressiv urses	e _{Nii}	!													
Cours	e Offerino	g Department	Aerospace Engineeri	ing Data Bool	c / Codes/Standards		Nil																
Cours	e Learnin	g Rationale (CLR)	: The purpose of learning	ng this course is to:			Le	arning						Prog	ram Lo	earni	ng Ou	come	s (PL	0)			
CLR-1	: Identi	ify the engineering a	and practical applications	of Heat, Energy and Work			1	2	3	1	2	3	4	5	6	7	8	9 1	0 1	1 12	13	14	15
CLR-2			of Thermodynamics on E	ngineering systems									١			ty							
CLR-3			of Thermodynamic Laws				Ē	(%	(e)	Ф			arch			ap		<u>~</u>					
CLR-4			ncepts of Entropy and Ex				Bloc	Cy (Ę	edg		nen	Rese	Ф		stain		No.		2			
CLR-5			ciple of Heat Energy drive	en systems r the broad understanding of engineering an	d toobnology) Bu	icien	ᄩ	wou	Sis.	ldole	gn, F	Jsag	e n	Sus		an	uou Liii		'		
CLK-0	· Utilize	e the Thermouynam	iic concepts in physics io	r the broad understanding of engineering an	u technology		i	Prof	Atta	ğ X	nal	Deve	Desi	7 00	ë	aut %		<u>~</u> .	9 3	Lear			
							evel of Thinking (Bloom)	Expected Proficiency (%)	S Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability		ndividual & Team Work	Communication	Life Long Learning	\ -	7	က
Cours	e Learnin	g Outcomes (CLO): At the end of this cou	ırse, learners will be able to:			eve	×	<u>×</u>	ngin	lge	esig	naly	lode	ocie	nvir	Ethics	ğ		ie L	PS0 - 1	PSO-	PSO - 3
CLO-1	: Identi	ify the laws of Therr	nodynamics and its applic	cations to Aerospace Engineering				80	70	Н	М	L	L		<i>S</i>	-					-	-	-
			t and applications of ener				2		70	Н	М	М	М	-	-	L	-		L .	_	М	М	М
CLO-3	: Unde	rstand various gas	and vapor power cycles v	vith applications			2	80	70	Н	М	L	М	-	-	-	-	-	-		-	-	-
			ure behavior and chemica					80		Н	М	М	М	1	-	М	М		И		М	М	М
CLO-5	: Utilize	e the fundamental c	oncepts for the physical u	understanding of engineering and technolog	у		2	80		Н	М	М	М	М	L	L	-		И		М	М	М
CLO-6	: Apply	the Thermodynam	ic Principles to Aerospac	e Engineering Applications			2	80	70	Н	М	М	М	М	L	L	М	LI	И	_ H	М	М	М
Durati	on (hour)		9	9		9			T			9								9			
	, ,		*	Limitations of first law of Thermodynamics.	,																		
S-1	SLO-1		ficroscopic,macroscopic and point functions.	Introduction to Heat Reservoirs, Sources and Sinks	Limitations of Second Thermodynamics	l Law o	of			e of Car gineering		ycle ir	i Aero	space	9	1	Mass fi	action	and i	nole fr	action	S	
	SLO-2	quantities.	nsive, total and specific	Heat Engine, Refrigerator, and Heat pump. Thermal efficiency of heat engines.	Explanation of the Co	ncept (of Entro	ору		oductior al cycle	to O	tto cy	cle, D	iesel	cycle,	11'	o-v-t be mixture		r and	oroper	ies of	ideal	gas
S-2	SLO-1	System and types. thermodynamics, a equilibrium	Thermodynamic	Second law of Thermodynamics: C.O.P, Kelvin-Planck statement	Clausius inequality, T	-s diag	gram		Ind	icator di	agran	n Mea	n effe	ctive	pressu		Dalton' Avogad			ial pre	ssures	,	
3-2	SLO-2		sible and irreversible nd work transfer, sign	Clausius statement of second law and equivalence of statements.	Entropy change for di	ifferent	proces	sses.		mparisoi les, Air)ual		Gibbs-l heat of				y and	speci	fic
	SLO-1	Solving Problems		Solving Problems	Solving Problems				Sol	ving Pro	blem	S				3	Solving	Probi	ems				
S-3	SLO-2	Solving Problems		Solving Problems	Solving Problems				Sol	ving Pro	blem	s				3	Solving	Probi	ems				
S-4	SLO-1	a closed system un concept of Internal	energy, change of state	Reversible and irreversible processes- causes of irreversibility	Principle of increase of relations, T-ds Equations ratio of heat capacities	ions, D				oduction yton cyd		erosp	ace P	ropul	sion -	5	Chemic Stoichic Equiva	metri	c coe				atio,
	SLO-2	Energy and Work systems, P-V diago		Carnot Theorem and corollary	Energy equation, Jou Coefficient, Clausius-			uation		ect of Re ercooling		, Rege	enerat	ion ai	nd	(Combu	stion a	and D	issocia	tion		
	SLO-1	Solving Problems		Absolute Thermodynamic Temperature scale	Solving Problems		1			ving Pro		s					Solving	Prob	ems				

Solving Problems

Carnot cycle and Performance

SLO-2 Solving Problems

Solving Problems

Solving Problems

S-6	SLO-1	First law for an Open system: Conservation of mass, energy, steady flow energy equation	Solving Problems	Entropy change of Ideal and Real gases	Turbine and Compressor efficiency	Aerospace Chemical Propulsion: Fuels in combustion
	SLO-2	Aerospace applications of SFEE to Nozzles, Diffusers	Solving Problems	Isentropic efficiencies of Aerospace steady flow devices		Enthalpy of reaction, formation and combustion
S-7	SLO-1	Cases of turbine, compressor, boiler, pump	Engineering and Practical Applications of Second Law		Equivalent Carnot cycles: Stirling and Ericsson cycle, Humphrey cycle	Gravimetric and volumetric analysis
3-1		Heat exchanger and Throttling process	Aerospace Engineering Applications of		Interactive session with demo on practical working of Gas Power based Engines	Introduction to adiabatic flame temperature
S-8	SLO-1	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
3-0	SLO-2	Solving Problems	Solving Problems	Solving Problems	Solving Problems	Solving Problems
S-9	SLO-1	Chapter Doubt clarification.	Chapter Doubt clarification.	Chapter Doubt clarification.	Chapter Doubt clarification.	Chapter Doubt clarification.
3-9	SLO-2	Chapter Doubt clarification.	Chapter Doubt clarification.	Chapter Doubt clarification.	Chapter Doubt clarification.	Chapter Doubt clarification.

Learning Resources	2. Ratnakrishnan. E, Fundamentais of Engineering Thermodynamics, Prentice—Hall, India, 2005 13. Holman, L.P. Thermodynamics, 4th ed. Tata McGraw Hill, 2015	 Michael Moran, J., Howard Shapiro, N., Fundamentals of Engineering Thermodynamics, 4th ed., John Wiley & Sons, 2010 Yunus A. Cengel, Michael A. Boles, Thermodynamics an engineering approach, 7th ed., McGraw Hill, 2011
-----------------------	--	--

Learning As	sessment										
	Bloom's		Final Evamination	n (50% weightage)							
	Level of Thinking	CLA -	1 (10%)	CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	l (10%)#	FIIIdi Examination	1 (50 % weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	100) %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Vinay Kumar Gupta, National Physical Laboratory, guptavinay@nplindia.org	1. Prof. D.P. Mishra, IIT Kanpur, mishra@ iitk.ac.in.	1. Dr. R. Vasudevan, SRMIST
2. Dr. S. Raja, National Aerospace Laboratories, Bangalore, raja@nal.res.in	2. Prof. Prasanta Kumar Das, IIT Kharagpur, pkd@mech.iitkgp.ernet.in.	2. Dr. T. Selvakumaran, SRMIST

Cou		18ASC104J Course Name Al	RCRAFT MATERIALS AND PRODUCTION T	ECHNIQUES 1 3	ou ateç	rse jory	-	С	Professional Core										L 3	•	P 2	C 4	
Co	equisite ourses e Offerin	Nil Beginner Aerospace Engineer	Co-requisite Nil String Data Book	c / Codes/Standards	N		essiv Irses		lil														
Course	e Learnin	ng Rationale (CLR): The purpose of lear	ning this course is to:			Lea	arning	g					Prog	ram Le	arnir	ng Oı	ıtcon	nes (F	PLO)				
		ify materials			Ĺ	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 CLR-3		e the mechanical behavior of materials e the existing production technologies				=						rg.			pilit								
CLR-4	: Ident	ifying the selection of materials				Sloom	%) /s	nt (%	egpe		nent	esea			taina		Nork		nce				
CLR-5 CLR-6		ify material's Application e the experience of machining Techniques			ing (F	ficien	inme	nowle	ysis	elopn	ign, F	Jsage	ture	s Sus		eam	E	Fina	rning				
<u> </u>	1 Otinz	and experience of macriming recomingues	tor roar arme approacher			Thir	d Pro	d Atta	ring	Anal	& Dev	, Des	Tool 1	& Cul	nent 6		al⊗T	nicatio	√gt. 8	g Lea			
Course	e Learnin	ng Outcomes (CLO): At the end of this co	ourse, learners will be able to:			evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt. & Finance	ife Long Learning	PS0 - 1	PSO-2	PSO-3
		ify materials and it properties				2	80	70	Н	Н	-	-	-	-	-	-	-	-	-	-	-	-	-
CLO-2 CLO-3		ze the application of materials in different a ify different treatments to strengthen mater			-	2		75 70	H	Н	- Н	- Н	Н	-	-	-	-	-	-	-	-	-	-
CLO-3		ify different casting techniques	ais			2	85	80	H	Н	-	-	Н	-	-	-	-	-	-	-	-	-	-
CLO-5	: Analy	ze machining techniques				2		75 70	Н	-	Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-6		ze forming Techniques	1			2	80	70	-	-			-	-	-	-	-	-	-	-	-	-	-
Duratio	on (hour)	15	15	15							15	5							1	5			
0.4	SLO-1	Introduction to materials, mechanical properties	Heat Treatment	Casting Introduction				М	Mechanical working of Materials Machining Proce						Proce	rocess							
S-1	SLO-2	Fixed-wing aircraft structures	Purpose of Heat Treatment	Basic Terms				In	troductio	n to m	echar	nical \	Norkir	ng	Introduction to Machines								
S-2	SLO-1	Classification of aircraft materials	Principles of Heat Treatment	Casting Procedure		Hot Working									Lathe								
3-2	SLO-2	Materials used for aircraft components	Stages of Heat Treatment	Casting Nomenclature				Co	old Work	ing					L	athe	Com	ooner	its, to	ols			
S-3	SLO-1	Helicopter structures	Stages of Heat Treatment, Description	Sand Casting				Н	ot Worki	ng- Fo	rging				V	Vorki	ng of	Lathe	,				
3-3	SLO-2	Space shuttle structures	Types of Heat treatment	Making of Sand Casting, G risering System	atir	ng and	d	Fo	orging Ty	pes, F	orgin	g Def	ects		C	Opera	tions	in La	the, to	ools			
S 4-5	SLO-1 SLO-2	Lab 1: Step Turning	Lab 4: Drilling and Boring	Lab 7 Surface Grinding				La	ab 10: S	our Ge	ear Mi	lling			L	ab 1	3: Thi	ead (Cuttin	9			
S-6	SLO-1	Materials used in jet engines	Heat treatment of carbon steel	Special Casting Process				R	olling, Ty	pes o	Rollir	ng, R	olling	Mills	E	Orilling	у Мас	hine,	Туре	s of D	rilling	тас	hine
3-0	SLO-2	Light weight material for MAV/UAV.	Procedures of Heat treatment of carbon steel	Special casting process				R	olling De	fects					C	Opera	tions,	Tool	s use	d in Di	illing	Мас	hine
S-7	SLO-1	Super alloys.	Heat treatment of - aluminum alloys,	Expandable Mold Casting		-		Di	Drawing							Shaper Machine							
3-1	SLO-2	Application of Composite materials	Procedures of Heat treatment of - aluminum alloys,	Shell Mold Casting					Drawing Types							Operations							
S-8	SLO-1	Introduction to smart materials,	Heat treatment of titanium alloys.	Investment Casting				E	xtrusion						C	Quick	retun	n Med	hanis	m			
3-0	SLO-2	Shape memory alloys	Procedures of Heat treatment of titanium alloys	Investment Casting Proces	ss			E	xtrusion	Types					Mechanism Detail								

S	SLO-1	Lab 2: Taper Turning	Lab 5: Shaper	Lab 8 Cylindrical Grinding	Lab 11:Helical Gear Milling	Lab 14: Slotting
9-10			,	Permanent Mold Casting, Die Casting,	Sheet Metal Operations, Shearing	Slotter machine, mechanisms, Grinding
S-11	SLO-1	Advanced structure ceramic	Heat treatment of Magnesium alloys.	Centrifugal Casting, Casting Defects	Operations	Machines
0-11	SLO-2	intermetallics, Ni and Ti aluminide	Procedures of Heat treatment of Magnesium alloys	Casting Defects	Types of Shearing Dies	Cutting Tools in Grinding Machines
S-12	SLO-1	Introduction to FRP,	Case Hardening	Welding Introduction	Forming Operations	Operations in Grinding Machines
3-12	SLO-2	Glass and Carbon Composites	Procedures of Case Hardening	Gas Welding, Arc Welding	Forming Operations	Types of Grinding Machines
S-13	SLO-1	Aerospace Applications – Plastics and Rubber.	Stress reliving Procedures	Laser Beam Welding	Cutting Tools in sheet metal Process	Milling
3-13	SLO-2	Emerging trends in Aerospace materials,	Protective Treatments	Electron Beam Welding, Electric Resistance Welding	Striking Tools in Sheet Metals, Riveting	Milling Operations, Types of Milling Machines
S	SLO-1	Lab 3: Taper boring	Lab 6: Drilling, Reaming & Tapping	Lab 9: Grooving and Knurling	Lab 12: External keyway cutting	Lab 15:Gear hobbing
14-15	SLO-2	, ,	5. 0 11 0	, , , , , , , , , , , , , , , , , , ,	, , ,	

Learning Resources	Adrian P. Mouritz, Introduction to aerospace materials, Woodhead Publishing Limited, 2012 Dieter, G. E., Mechanical Metallurgy, McGraw Hill, Singapore, 2001	Keshu S.C, Ganapathy K.K, Aircraft production technique, Interline Publishing House, Bangalore 1993 Dr. P C Sharma, A Text book of Production Technology, 8th ed., S. CHAND and company Pvt. Ltd. 2014	

Learning Asses	sment										
	Bloom's				Final Evamination	n (50% weightage)					
	Level of Thinking	CLA -	1 (10%)	CLA -	2 (15%)	CLA -	3 (15%)	CLA – 4	l (10%)#		ii (50 % weigiilage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level I	Understand	20%	20%	13%	10%	10%	13%	13%	10%	10%	13%
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 3	Create	1076	1076	1370	1370	1370	1370	1370	1370	15/6	1370
	Total 100 % 100 % 100 % 100 %										

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Vinay Kumar Gupta, National Physical Laboratory, guptavinay@nplindia.org	1. DrSrinivasa Rao Bakshi, IITM, Chennai, sbakshi@iitm.ac.in	1. Mr. N Bharat, SRMIST
2. Dr. S. Raja, National Aerospace Laboratories, Bangalore, raja@nal.res.in	2. Dr. Ramesh Babu, N , nrbabu@iitm.ac.in	2. Mr. K B Ravichandra kumar, SRMIST

Course Code	18ASC105T	Course Name	A	AIRCRAFT SYS	STEMS AN	O INSTRUMENTS		Course Category	С		Professional Core	3	T 0	P 0	C 3
Pre-requisite Courses	IVII		C	Co-requisite Courses	Nil			Progres Cours	ssive ses	Nil					
Course Offerin	ng Department	Aerospac	ce Engineering			Data Book / Codes/Sta	andards	Nil							
Course Learni	ing Rationale (CLF	R): The purpo	ose of learning this	is course is to:				Leari	ning		Program Learning Outcomes (PLC	0)			

Course Oriening Department	Aerospace Engineening	Data Book / Codes/Standards	IVII																	
Course Learning Rationale (CLR):	The purpose of learning this course is to:		L	earni	ng					Prog	ram L	.earni	ing O	utcor	nes (l	PLO)				
CLR-1: Identify the type of control	system and its components used in aircraft.		1	2	3	_	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Layout the components an	d accessories of hydraulic & Pneumatic system.											y								
CLR-3: Identify the type of powerp	lant and various system operations in aircraft engines	3	=	(%	_				search			Sustainability								
CLR-4: Demonstrate the cabin env	rironmental control system, oxygen system and other	auxiliary system of an airplane.	(Bloom)	\sim	t (%)	4	lyeis sizyle	ent	Seg			aina		Work		ge				
CLR-5: Identify the various aircraft	instruments and their functions.		g (B	enc	nen	1	1	elopment	. 8	sage	Φ	Sust		E		inanc	Ð			
CLR-6: Utilize the knowledge acqu	ired for design, development & maintenance of aircra	aft & aero engine systems.		Proficiency	Attainment	3	Analyeis	vel v			ulture	∞		Team	io	∞ ⊏	arni			
			Thinkir				5 A	& De	, D	T00	್ ಶ	nent		∞	icat	Mgt.	J Le			
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:		Level of	Expected	Expected		Problem Apg	: 1	Analysis,	Modern -	Society &	Environment	Ethics	Individual	Communication	Project ∧	Life Long	PS0 - 1	PS0-2	PSO - 3
CLO-1: Understand the operation of	of various control system in an airplane		2	80	70	ŀ	1 -	L	L	L	-	-	-	-	-	-	L	L	М	М
CLO-2: Acquire knowledge on hyd	raulic and pneumatic system of modern jet airliner.		2	80	70	ŀ	1 -	M	L	М	-		-	-	-	-	-	М	М	М
CLO-3: Learn the working of variou	us systems of piston and gas turbine engine		2	80	70	ŀ	1 -	L	L	М	-		-	-	-	-	L	М	М	М
CLO-4: Appreciate the need and fu	ınctions of Cabin Environmental Systems and auxiliar	ry systems of aircraft.	2	80	70	ŀ	1 -	L	L	L	-	М	М	-	-	-	L	М	М	М
CLO-5: Gain knowledge on princip	le and operation of various aircraft instruments.		2	80	70	ŀ	1 L	L	L	М	-	-	-	-	М	-	L	Н	Н	М
CLO-6: Acquire comprehensive kn	owledge of aircraft systems, engine systems and its i	nstrumentation.	2	80	70	ŀ	1 L	L	L	М	-	М	М	-	М	-	L	М	М	М

Durat	on (hour)	9	9	9	9	9
S-1	SLO-1	Need for Control Systems	Introduction to Hydraulic Systems	Introduction to Aircraft Engines	Introduction to Cabin Environmental Control Systems	Introduction to Aircraft Flight Instruments
	SLO-2	Conventional Flight Controls.	Applications & Advantages	Types, Abnormal Combustion	Need for Aircraft Pressurization System	Types
S-2	SLO-1	Components of Conventional Flight Control System and their functions	Selection & Classification of Hydraulic Fluids	Introduction to Aircraft Fuel System	Principle of Air Cycle Cooling System	Principle of Air Data Instruments
3-2	SLO-2	Push Pull rod System	Open Centre & Closed Centre System	Types of Fuel & Fuel System Components	Operation & Advantages	Operation of Altimeter
S-3	SLO-1	Cable Pulley System	Components of Hydraulic System and its functions	Gravity Feed Fuel System	Principle of Vapour Cycle Cooling System	Operation of Air Speed Indicator
3-3	SLO-2	Disadvantages of Mechanical Control System.	Automatic Operating Control Valves	Pressure Feed Fuel System	Its Operation & Advantages	Operation of Vertical Speed Indicator
S-4	SLO-1	Challenges in Power Assisted Flight Control System	Study of Typical Hydraulic System for Modern Jet Airliner	Need for Lubrication System	Need for Cabin Heating System	Principle of Gyroscopic Instruments
3-4	SLO-2	Q – Feel System	Operation and its Advantages	Functions and Characteristics of Lubricating Oil.	Types & Operation	Operation of Attitude Indicator
S-5	SLO-1	Servo Tabs	Aircraft Brake System	Types of Lubrication System, Wet Sump System	Need for Aircraft Oxygen System	Operation of Turn Coordinator
3-3	SLO-2	Fully Powered Flight Control System for heavy aircraft	Types and Applications	Dry Sump System and their Advantages	Types & Advantages	Operation of Heading Indicator
S-6	SLO-1	Fly by Wire System (FBW)	Introduction to Pneumatic Systems	Need For Ignition System	Components of Oxygen System	Principle & Operation of Engine Instruments – Tachometer & EGT
3-0	SLO-2	Operation of FBW & its Advantages	Applications & Advantages	Types of Ignition Systems	Its Operation	Principle & Operation of EPR, CHT & Manifold Pressure Gauge
S-7	SLO-1	Digital Fly by Wire System (DFBW)	Study of Typical Pneumatic System for Modern Airliner	Magneto Ignition System & its Operation	Introduction to Fire Detection Systems	Principle & Operation of Electronic Instruments – EADI & EHSI

	SLO-2	Operation of DFBW & its Advantages		Components of Ignition System of Gas Turbine Engine	Requirements for Fire Detection System	Principle & Operation of Electronic Systems Monitor Displays
S-8	SLO-1	Need for Automatic Flight Control Systems	Introduction to Landing Gear System	Need for Starting System	Types	Principle & Operation of EICAS
3-0	SLO-2	Operation of Autopilot System	Classification of Landing Gear System	Types of starters	Principle and Operation	Need for Instrument Landing System (ILS)
	SLO-1	Auto Throttle System (ATS)		Pneumatic Starting System for Modern airliner	Need for Anti-Icing & De-Icing System	Components of ILS and their functions
S-9	SLO-2	Advantages of ATS	Applications	Advantages of Pneumatic Starting System	Types and Applications.	Advantages

	-			1
Learning Resources	1. 2. 3.	Ian Moir, Allan Seabridge, Aircraft Systems – Mechanical, Electrical and Avionics subsystems integration, 3 rd ed., Professional Engineering Publishing Limited, 2008 E.H.J.Pallet, Aircraft Instruments, 2 rd ed.,Pearson Publishing Company, 2009 Aviation Maintenance Technician Handbook – Airframe, Vol.2, U.S.Dept. of Transportation Federal Aviation Administration, Flight Standards Service, 2012	4. 5. 6. 7.	Aviation Maintenance Technician Handbook – Powerplant, Vol.1, 2, U.S.Dept. of Transportation, Federal Aviation Administration, Flight Standards Service, 2012 Michael J.Kroes, William A.Watkins ad Frank Delp, Aircraft Maintenance and Repair, 7th ed., Tata McGraw Hill, 2013 Irwin Treager, Aircraft Gas Turbine Engine Technology, 3rd ed., McGraw-Hill, 1997 The Jet Engine, 5th ed., Rolls Royce, Wiley Publication, 2005

Learning Asses	sment												
	Bloom's		Continuous Learning Assessment (50% weightage)										
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA – 3 (15%)			l (10%)#	Final Examination (50% weightage)			
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	40 %		30 %		30 %		30 %		30%			
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%			
Level 2	Analyze	40 /0	_	40 /0	-	40 /0	-	40 /0	-	4070	-		
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%			
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Wg.Cdr K.Manoharan (Retd), Blue Dart Aviation Ltd., manoharank@bluedart.com	1. Dr. A. P. Haran, Park College of Engineering & Technology, ap_haran@rediffmail.com	1. Dr. S. Sivakumar, SRMIST
2. Dr. Raja S, CSIR-NAL, Bangalore, raja@nal.res.in	2. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	2. Mr. G. Mahendra Perumal, SRMIST

Course	18ASC201J	Course	APPLIED SOLID MECHANICS Course Category			С		Professional Core	L	T	Р	С
Code		Name			Category				3	0	2	4
Pre-requisite Courses	18ASC101T		Co-requisite Courses	Nil	Progre Cour		Nil					
Course Offering	Department	Aerospace Engineering	1	Data Book / Codes/Standards	Nil							
							1					

Course Offering Department	Aerospace Engineering Data Book / Codes/Standards	IVII																
Course Learning Rationale (CLR):	The purpose of learning this course is to:	L	earni	ng					Prog	ram L	_earn	ing O	utco	mes (l	PLO)			
CLR-1: Identify the stresses gener	ated and structural changes in different bar materials subjected to different loads	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12 1	13 1	14 1
CLR-2: Identify the sacreacy guintered and autotral manages in standards and stress in various beams subjected to different loads CLR-3: Identify the variation of shear force, bending moments and bending stress in various beams subjected to different loads CLR-4: Identify the advantages and disadvantages of using solid and hallow shafts, different springs for different loads CLR-5: Know the buckling characteristics of column for various end conditions and stresses generated in thin and thick cylinders CLR-6: Know the behavior of different structural materials for different types of loading					ring Knowledge	Analysis	& Development	, Design, Research	Tool Usage	& Culture	nment & Sustainability		al & Team Work	nication	Mgt. & Finance	g Learning		
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expecte	Expecte	T cairo	Problem	Design 8	Analysis,	Modern	Society	Environ	Ethics	Individual	Communic	Project I	의 ,	o o	PSO - 2
CLO-1: Differentiate a ductile mate	rial and a brittle material after performing a tension test	2	80	70	H	' Н	-	-	-	-	-	-	-	-	-	-	-	-
CLO-2: Analyze the shear force an	d bending diagrams in cantilever and simply supported beams	2	80	75	H	Н	-	Н	-	-	-	-	-	-	-	-	-	-
	esign of a beam based on the bending stress and desired deflection	2	75	70	ŀ	' Н	Н	Н	-	-	-	-	-	-	-	-	-	-
CLO-4: Design the shaft for a parti	cular torque transmission and springs for energy absorption	2	80	75	H	' Н	Н	Н	-	-	-	-	-	-	-	-	-	-
CLO-5: Find the planes of principa	stresses in a stressed model and hoop stress, longitudinal stress in thin walled pressure vessel	2	85	75	H	-	Н	-	-	-	-	-	-	-	-	-	-	-
CLO-6: Calculate the various stres	ses generated in a particular element subjected to different loading	2	80	70	ŀ	' Н	Н	Н	-	-	-	-	-	-	-	-	-	-

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Concept of stress and strain in a bar element	Hardness and Strength	Relation between deflection, slope, radius of curvature	Theory of pure torsion	Stresses on inclined planes
3-1	SLO-2	Hooke's law, Poisson's ratio, Elastic young's modulus	Ductility and brittleness	Shear force and bending moment Derivation explanation for different loads	Explain shear stress variation in a circular (solid and hollow)	Derivation explanation
S-2	SLO-1	True and Engineering stress strain curve for ductile material in tension, compression	Difference between static loading and dynamic loading	Find slope and deflection in a cantilever beam by double integration method	Apply torsion equation based on allowable shear stress	Mohr's circle derivation
3-2	SLO-2	True and Engineering stress strain curve for a brittle material in tension	Impact loading	Problem solving	angle of twist	Plane stress case
S-3	SLO-1	Concept of shear stress, shear strain and Rigidity modulus	Statically Determinate structure, examples	Find slope and deflection in a simply supported beam by double integration	Compare solid and hollow shafts for transmission of same torque	Mohr's circle construction
3-3	SLO-2	Principle of complementary shear	Statically Indeterminate structure, examples	Problem solving	Applications explanation	Procedure to different kinds of load
S 4-5	SLO-1 SLO-2	Lab1: Tension test	Lab-4: Brinell Hardness Test and Vickers hardness test	Lab-7: Deflection test in a cantilever beam with a point loads	Lab-10: Torsion test on a circular rod using digital torsion testing machine	Lab 13: Charpy Impact test and Izod impact test
S-6	SLO-1	Biaxial and triaxial state of stress and volumetric strain	Beam, types of beams, types of load	Find slope and deflection in a simply supported beam by Macaulay's method	Explain shear stress variation in closed coil helical sprigs	Concept of pure shear, relation between Young's, Shear and bulk modulus
0-0	SLO-2	Problem solving	Procedure of solving a beam	Problem solving	Applications	Derivation explanation
	SLO-1	Analysis of prismatic bar subjected to single load	Shear force and bending moment diagram and their sign convention	Moment Area Theorem-I	Explain shear stress variation in open coil helical springs	Numerical solving
S-7	SLO-2	Analysis of prismatic bar subjected to varying loads	Shear force and bending moment diagram for a cantilever beam subjected to point load and UDL	Application to cantilever and simply supported beam	Numerical explanation	Numerical solving
S-8	SLO-1	Analysis of non-prismatic bar subjected to single load	Shear force and bending moment diagram for a simply supported beam subjected to point load	Moment Area Theorem-II	Stiffness of closed coil helical spring	Fatigue load-Explanation

	SLO-2	Analysis of non-prismatic bar subjected to varying loads		Application to cantilever and simply supported beams	Stiffness of open coil helical spring	S-N curve for various materials
S 9-10	SLO-1 SLO-2	Lab-2: Compression test	Lab-5: Repeat	Lab-8: Deflection test: Simply supported beam	Lab-11: Tension test on a closed coil helical spring	Lab-14: Determine endurance limit of the given material by performing a fatigue test.
S-11	SLO-1	Analysis of composite bars	Shear force and bending moment diagram for a overhanging beam	Principle of superposition	Shaft subjected to combined bending and torsion	Thin walled pressure vessel subjected to internal pressure
0-11	SLO-2	Numerical solving		rr ····	Derivation	Hoop stress explanation
S-12	SLO-1	Thermal stresses-Support Yield	Explanation of bending stress variation in a beam subjected to pure bending	Maxwell reciprocal theorem	Strain energy due bending	Thin walled cylindrical pressure vessel
0-12	SLO-2	Numerical Solving	Application	Application	Derivation	Longitudinal stress explanation
S-13	SLO-1	Thermal stresses-composite bars	Explain shear stress variation in a beam of symmetrical and unsymmetrical cross sections subjected to bending	Explain shear force diagram of an aircraft wing	Strain energy due torsion	Thick cylinder
	SLO-2	Problem solving	Annucation	Explain bending moment diagram of an aircraft wing	Derivation	Lame's theory
S 14-15	SLO-1 SLO-2	Lab-3: Study of magnified images obtained using Inverted Metallurgical Microscope on a specimen.		Lab-9:Repeat	Lab-12: Compression test on an open coil helical spring	Lab-15 :Repeat

Learning Resources		3. James M. Gere, Mechanics of Materials, 8 th ed.,Brooks/Cole, USA, 2013 4. Shigley, J. E., Applied Mechanics of Materials, International Student Edition, McGraw Hill, 2000 5. V. Feodosyev. Strength of Materials, MIR Publishers, Moscow 1968
-----------------------	--	--

Learning Assess	sment												
	Final Examination (50% weightage)												
	Bloom's Level of Thinking	CLA –	1 (10%)	CLA –	CLA – 2 (15%)		3 (15%)	CLA – 4	ł (10%)#	Tillal Examination (50 % weightage)			
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Raja S, CSIR-NAL, Bangalore, raja@nal.res.in	1. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	1. Mr. S. Chandra Sekhar, SRMIST
2. Wg.Cdr K.Manoharan (Retd), Blue Dart Aviation Ltd., manoharank@bluedart.com	2. Dr. A. P. Haran, Park College of Engineering & Technology, ap_haran@rediffmail.com	2. Mr. K B Ravichandra kumar, SRMIST

Course Code	18ASC202J	Course INCOM	PRESSIBLE AERODYNAMICS	CS Course Category		Professional Core	3	T 0	P 2	C 4
Pre-requis Courses	18ASC102.1	Co-requi Course	NII	Progre Cou		Nil				
Course Offe	ring Department	Aerospace Engineering	Data Book / Codes/Stand	dards Nil						

Course Offering Department Aerospace Engineering Data Book / Codes/Standards	Nil																		
ourse Learning Rationale (CLR): The purpose of learning this course is to:		.earni	ng]					Progi	ram L	Learn	ing O	utco	mes (PLO)				
CLR-1: Identify and utilize the lift generating devices	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Evaluate the forces and moments acting on aero foils and wings under ideal flow conditions.											>								
CLR-3: Evaluate and optimize the aerofoil characteristics	<u></u>	(%	_					arch			Sustainability								
CLR-4: Evaluate and optimize the wing characteristics.	(Bloom)	\sim	t (%)		dge		ent	sse			aina		/ork		8				
CLR-5: Evaluate and optimize the propeller characteristics.	9.0	ency	nent		- Ne	s	Development	, R	age	a)	nst		S =		Finance	ъ			
CLR-6: Evaluate and optimize the aerodynamic interaction effects between different components of aircraft		Profici	Attainme		Ϋ́	llysi	l Se	esign,	ns	Culture	∞5		Tear	.u	ĭ⊑ ≪	aming			
		<u>F</u>			Ē	Analysis	8	D	100	& CL	ent		.∞	<u>is</u>	Mgt.	Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering Knowledge	Problem	Design &	Analysis,	Modern 7	Society 8	Environn	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PSO - 2	PSO - 3
CLO-1: Understand the lift generation and lift generating devices	1	80	75		М	M	M	Н	М	-	-	-	-	-	-	М	-	Н	-
CLO-2: Analyze the forces and moments acting on aero foils and wings under ideal flow conditions.	2	80	75		Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	-	Н	-
CLO-3: Analyze the aerofoil characteristics.	3	70	60		Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	-	Н	-
CLO-4: Analyze the wing characteristics.	3	70	60		Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	-	Н	-
CLO-5: Analyze the propeller characteristics.	3	70	60		Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	-	Н	-
CLO-6: Analyze the aerodynamic interaction effects between different components of aircraft	2	70	65		Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	-	Н	-

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to aerodynamics	Center of pressure	High lift devices	torque grading and efficiency equation	Influence of taper and twist applied to wings
3-1	SLO-2	Introduction to the mathematical model of flow	Aerodynamic center	Thin airfoil theory-Flapped airfoil - circulation equation	Combined blade element and momentum theories velocity comparison	effect of sweep back and delta wings
S-2	SLO-1	Airfoil geometry	Numerical problems on Center of pressure	Thin airfoil theory-Flapped airfoil - coefficient of lift and moment	Comparison of thrust and torque equation	Fundamentals of potential flows
3-2	SLO-2	Airfoil nomenclature	Numerical problems on Aerodynamic center	Geometry of the propeller	Axial flow factor equation	Indirect and direct methods of mathematical model of flow
S-3	SLO-1	Wing geometry parameters	Numerical problems on Center of pressure and Aerodynamic center	Forces acting on Propeller	Angular flow factor equation	Basic equations of potential flow
3-3	SLO-2	Application of wing geometry parameters	Experimental characteristics of airfoil	Types of Propeller	The Biot-savart law	Introduction to panel methods
S 4-5	SLO-1 SLO-2	Lab 1: Introduction to subsonic wind tunnel	Lab 4: Study of flow over streamlined body by laser beam assisted smoke visualization	wing with wingtip by laser beam assisted	Lab 10: Pressure distribution and Estimation of forces acting over a rough	Lab 13: Estimation of forces acting over a streamlined body using force balance
	SLO-1	Vortex motions, vortex filament, vortex sheet	technique Thin airfoil theory assumptions and limitations.	flow visualization technique Propeller arrangements	cylinder Application of Biot-savart law	method Source panel method
S-6	SLO-2	Vortex types, Starting vortex, trailing edge vortex	Fundamental equation of thin airfoil theory	Axial momentum theory assumptions and limitations.	Introduction of Prandtl's lifting line theory	Application of Source panel method
S-7	SLO-1	kutta's and kelvins theorem	Thin airfoil theory- symmetrical airfoil – circulation equation	Pressure and velocity distribution across the propeller control volume	Governing equations of Prandtl's lifting line theory	Vortex panel method
3-1	SLO-2	Kutta – Joukowski theorem	Thin airfoil theory- symmetrical airfoil – coefficient of lift and moment	Propeller thrust equation	Applications of Prandtl's lifting line theory	Application of Vortex panel method
S-8	SLO-1	Lift generation	Thin airfoil theory- symmetrical airfoil – location of forces	Propeller power equation	Prandtl theory- Elliptical lift Distribution – circulation equation	Wing- fuselage interference

	SLO-2	bound and horseshoe vortex	Numerical problems on thin airfoil theory		Prandtl theory- Elliptical lift Distribution – downwash and induced angle	Wing-engine interference
s	SLO-1	Lab 2: Wind tunnel measurement	Lab 5: Study of Magnus effect using		Lab 11: Pressure distribution and	Lab 14: Estimation of pressure distribution
9-10	SLO-2	techniques	rotating cylinder by laser beam assisted smoke visualization technique.	Lab 8: Calibration of subsonic wind tunnel	Estimation of forces acting over a sphere model	acting over a symmetrical / unsymmetrical airfoil for different angle of attack
S-11	SLO-1	Aerodynamic forces	Thin airfoil theory- unsymmetrical airfoil- circulation equation		Prandtl theory- Elliptical lift Distribution- coefficient of lift and induced drag	Wing-landing gear interference
3-11	SLO-2	Aerodynamic moments	Thin airfoil theory- unsymmetrical airfoil – verification of circulation equation	Numerical problems on Axial momentum theory	Fundamentals of Prandtl theory- General lift Distribution	Wing – propeller interference
	SLO-1	Types of drag	Thin airfoil theory- unsymmetrical airfoil – coefficient of lift	1	Prandtl theory- General lift Distribution- circulation equation	Wing -tail interference
S-12	SLO-2	Numerical problems on Aerodynamic forces	Thin airfoil theory- unsymmetrical airfoil – coefficient of moment and location of forces		Prandtl theory- General lift Distribution- coefficient of lift and induced drag	interference flow over an airplane as a whole
S-13	SLO-1	Numerical problems on Aerodynamic forces and moments	Numerical problems on thin airfoil theory	Basic equation of thrust and torque grading	Lift slope relation	Passive Laminar flow control methods
3-13	SLO-2	Numerical problems on Aerodynamic forces and moments	Numerical problems on thin airfoil theory	thrust grading equation	Numerical problems on Lift slope relation	Active Laminar flow control methods
S 14-15	SLO-1 SLO-2	Lab 3: Study of flow over bluff body by laser beam assisted smoke visualization technique	Lab 6: Study of flow over a tapered finite wing without wingtip by laser beam assisted flow visualization technique	Lab 9: Pressure distribution and Estimation of forces acting over a smooth cylinder	Lab 12: Estimation of forces acting over a bluff body using force balance method	Lab 15: Estimation of forces acting over a symmetrical / unsymmetrical airfoil for different angle of attack

	3. Clancy, L, J., Aerodynamics, Pitman, 1986 4. Milne, L.H., Thomson, Theoretical Aerodynamics, Dover, 1985
, , , , , ,	

Learning Assess	Learning Assessment											
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(50% woightage)	
	Level of Thinking	CLA -	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)		
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level I	Understand	2070	2070	1370	1370	1370	1370	1370	1370	1070	15/0	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
LCACI 2	Create	1070	1070	1370	1370	1370	1370	1370	1370	10/0	13/0	
	Total	10	0 %	100	0 %	10	0 %	100) %	10	0 %	

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers											
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts									
1. Dr. Raja S, CSIR-NAL, Bangalore, raja@nal.res.in	1. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	1. Mr. R. Mohamed Arif, SRMIST									
2. Wg.Cdr K.Manoharan (Retd), Blue Dart Aviation Ltd., manoharank@bluedart.com	2. Dr. P. K Dash, Nitte Meenakshi Institute of Technology, Bangalore, drpdash@gmail.com	2. Mr. K B Ravichandra kumar, SRMIST									

Course Code	18ASC203T	Course Name		AIR BRE	ATHING PROPULSION			urse egory	,	С	Professional Core			ore	3 (T 0	P 0	C 3					
Pre-requis	i VIII			Co-requisite Courses	Nil			C	gress ourse		Vil														
Course Offe	ring Department	Aerosp	ace Engineeri	ng	Data Book	/ Codes/Standards		Nil																	
	Course Learning Rationale (CLR): The purpose of learning this course is to:							L	earniı	_					Prog		earni	ing O			PLO)				
	entify the working pr							1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3: D	esign of inlets, comb esign of compressor esign of turbines in g	s in gas turbii	ne propulsion s	ystems	engines			Thinking (Bloom)	y (%)	Attainment (%)	edp		ent	esearch			Sustainability		/ork		ЭС				
	nderstand the princip				AMJET engines			g (B	ienc	men	owle	.છ	mdo	n, Re	sage	<u>.</u>	Sust		Team Work		Finance	E			
CLR-6 : <i>U</i>	nderstand the workin	ng principles o	of gas turbine p	ropulsion systems				ir	rofic	ttain	Ä	lalys	eve	esig	SO IC	Culture			Teg	ation		Learning			
	rning Outcomes (Cl			rse, learners will be				Level of	Expected Proficiency (%)	Expected	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & C	Environment &	Ethics	Individual &	Communication	Project Mgt. &	Life Long L	PSO - 1	PS0-2	PSO - 3
	nalyze the performar							2	80	70 75	Н	-	- Н	-	-	-	-	-	-	-		-	-	-	-
	nalyze inlets, combu nalyze the compress				ngines			2	85 75	70	H	Н	П	H	-	-	-	-	-	-		-	-	-	-
	nalyze the turbines in							2	85	80	H	Н	-	-	-	-	_	_	_	-	-	-	-	-	
	nalyze the performar				ines			2	85	75 H - H			-	-											
							2	80	70	Н	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Duration (ho	ur)	9			9		9						9								9				
SLO	-1 Introduction to A	Air breathing e	engines	Inlets		Compressor				Turbine Pulse Jet Engine-Operating Princi				iple											
0-1	1																								

Durati	ion (hour)	9	9	9	9	9		
S-1	SLO-1	Introduction to Air breathing engines	Inlets	Compressor	Turbine	Pulse Jet Engine-Operating Principle		
3-1	SLO-2	Ideal and actual Brayton cycle	Classification of Inlets	Classification of compressors	Classification of turbines	RAMJET Engine		
	SLO-1	Turbojet Engine	Subsonic Inlets	Axial flow compressor Axial flow turbine stage		Working of RAMJET		
S-2	SLO-2	Numerical Problems on turbojet engine	Supersonic Inlets	Work and compression ratio	Velocity triangles and Power output	Working of RAMJET		
	SLO-1	High bypass turbofan Engine	Modes of Inlet operation	Degree of reaction	Blade Element theory	RAMJET with afterburner		
S-3	SLO-2	Low bypass turbofan engine	Starting problems and Shock swallowing methods	Characteristic performance of a single stage axial compressor	Blade Element theory	RAMJET with afterburner		
S-4	SLO-1	Numerical Problems on turbofan engine	Numerical Problems on Inlets	Characteristic performance of a multistage axial compressor	Free vortex theory	RAMJET performance		
3-4	SLO-2	Numerical Problems on turbofan engine	Numerical Problems on Inlets	Cascading of axial compressor- Compressor efficiency	Free vortex theory	RAMJET performance		
S-5	SLO-1	Turboshaft engine	Gas turbine combustion chamber	Numerical Problems on Single stage Axial flow compressor	Limiting Factors of gas turbine design	Numerical Problems on RAMJET		
3-3	SLO-2	Turboprop engine	Types of combustion chamber	Numerical Problems on Single stage Axial flow compressor	Limiting Factors of gas turbine design	Numerical Problems on RAMJET		
S-6	SLO-1	Numerical Problems on turboprop engine	Fuel injector- Flame Tube cooling	Numerical Problems on multi stage Axial flow compressor	Turbine performance	SCRAMJET Engine		
3-0	SLO-2	Numerical Problems on turboprop engine	Flame Stabilization-Flame holders	Numerical Problems on multi stage Axial flow compressor	Turbine blade cooling	Working principle of SCRAMJET Engine		
S-7	SLO-1	Typical engine performance	Nozzle	Centrifugal compressor	Turbine blade cooling methods	Problems faced in supersonic combustion		

	SLO-2	Typical engine performance	Classification of nozzies	Working Principle of a centrifugal compressor	Turbine and compressor matching	Problems faced in supersonic combustion
S-8	SLO-1	Methods of thrust augmentation	Numerical Problems on Nozzles.	Work and compression ratio	Numerical Problems on Axial flow turbine	Numerical Problems on SCRAMJET
3-0	SLO-2	Methods of thrust augmentation	Numerical Problems on Nozzles.	Work and compression ratio	Numerical Problems on Axial flow turbine	Numerical Problems on SCRAMJET
	SLO-1	Introduction to Air breathing engines	Inlets	Compressor	Turbine	Pulse Jet Engine-Operating Principle
S-9	SLO-2	Ideal and actual Brayton cycle	Classification of Inlets	Classification of compressors	Classification of turbines	RAMJET Engine

Learning Resources	 Hill, P. G., Peterson, C. R., Mechanics and Thermodynamics of Propulsion, 2nd ed., Addison-Wesley Publishing Company, 1992. Cohen. H. Rogers. G.F.C., Saravanamuttoo. H.I.H., Gas turbine theory. 4th ed., Pearson education V.Ganesan., Gas Turbines, 3rd ed., Tata McGraw-Hill Education, 2010 	 Rolls-Royce , Jet Engine Manual, 3rd edition, 1983 Oats, G.C., Aerothermodynamics of Aircraft Engine Components, AIAA Education Series, 1985 Mattingly, J.D., Heiser, W.H., Pratt, D.T., Aircraft Engine Design, AIAA Education Series, 2002
-----------------------	--	--

Learning Assess	Learning Assessment											
	Bloom's Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	1 (10%)#	Final Examination (50% weightage)		
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	10	0 %	10	0 %	10	0 %	100 %		10	0 %	

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
1. Dr. Raja S, CSIR-NAL, Bangalore, raja@nal.res.in	1. Dr. P. K Dash, Nitte Meenakshi Institute of Technology, Bangalore, drpdash@gmail.com	1. Mr. G. Saravanan, SRMIST								
2. Wg.Cdr K.Manoharan (Retd), Blue Dart Aviation Ltd., manoharank@bluedart.com	2. Dr. K. M. Parammasivam, Madras Institute of Technology, Chennai, mparams@mitindia.edu	2. Mr. G. Mahendra Perumal, SRMIST								

ACADEMIC CURRICULA

Professional Core Courses

AUTOMOBILE ENGINEERING

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Code 18AUC20	1J Course Name	MANUFACTURING TECH	NOLOGY FOR AUTOMOTIVE ENGINEERS	Course Category	С	Professional Core	3	0	2	4
Pre-requisite Courses Course Offering Departm	ent Autom	Co-requisite Courses	Nil Data Book / Codes/Standards	Progre Cour		Nil				

Course Offering Department	Automobile Engineering Data Book / Codes/Standards	Nil																		
Course Learning Rationale (CLR):	The purpose of learning this course is to:	ı	Learni	ing] [Progr	ram L	.earn	ing O	utcor	nes (PLO)				
CLR-1: Utilize knowledge of variou	s manufacturing processes and machine tools and also familiarize the process parameters	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Utilize the work and tool ho	olding devices											>								
CLR-3: Identify the various surface									Research			Sustainability								
CLR-4: Produce Prismatic Compor								ent	ese			aina		Work		ce				
CLR-5: Compare various surface fi	inishing operations	(Bloom)	ency	Attainment		Knowledge	S	elopment	, %	sage	a)	nst		M V		inance	g			
CLR-6: Utilize different welding, ca	sting processes, shaping, forming, machining and surface finishing processes	hinking) je	ä		χ	Analysis	velc	Design,	\neg	ulture	∞ŏ		Team	io	δF	an.			
		- 朣	d Pr			ing	Ans	& De		Tool	ನ ಶ	ment		~	icat	Mgt.	Ę.			
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering	Problem	Design 8	Analysis,	Modern -	Society &	Environn	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PS0-2	PSO - 3
CLO-1: Apply different welding and	l casting process.	2	85	75	1 [Н	М	Н	Ĺ	Н	М	М	Н	Н	М	L	Н	Н	Н	Н
CLO-2: Compare various shaping a	and forming process	2	80	75		Н	М	Н	Н	Н	М	М	Н	Н	М	L	М	Н	Н	Н
CLO-3: Solve problems on cutting	forces, tool life and analytical methods of estimating cutting temperature	2	90	85	1 [Н	Н	Н	Н	L	М	М	Н	М	М	М	Н	Н	Н	М
CLO-4: Produce Prismatic Compor	nents and Gears	2	85	80	1 [Н	М	Н	Н	Н	Н	Н	Н	Н	Н	М	Н	Н	Н	Н
CLO-5: Compare various surface fi	inishing operations	2	80	75		Н	М	М	М	Н	Н	Н	Н	Н	Н	М	Н	Н	Н	Н
CLO-6: Apply different welding, case	sting processes, shaping, forming, machining and surface finishing processes	2	85	75		Н	М	Н	L	Н	М	М	Н	Н	М	L	Н	Н	Н	Н

		Welding and Casting	Shaping and Forming	Machining of Axi-Symmetrical Components	Machining of Prismatic Components and Gear Manufacturing	Surface Finishing and Treatments
Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to welding, Basics, Classifications	Forging - Introduction	Introduction - Machining	Introduction – Milling machine & types	Introduction – Finishing operations
3-1	SLO-2	Material properties, material selection and Manufacturing process	Forging Processes and Defects	Theory of Metal Cutting	Milling cutters and work holding device	Grinding machine – Surface, Cylindrical – External, Internal, Centreless
	SLO-1	Arc Welding – working principle and types	Rolling – Blooms, Billets, slabs	Mechanics of chip formation and types of chips	Milling operation and indexing	Grinding wheel types and specifications
S-2	SLO-2	Working principles of MIG welding	Rolling – Billets, slabs	Calculation of cutting force and temperature in cutting.	Operating parameters- cutting speed, feed rate, depth of cut.	Grinding Operating parameters – surface finish, accuracy attainable by various process
S-3	SLO-1	Working principles of TIG welding	Forces and Geometrical relationship in rolling	Cutting tool materials – Tool life calculation,	Material Removal rate, Accuracy, Surface roughness	Lapping – process - application
3-3	SLO-2	Friction and Friction Stir Welding	Types of Rolling Mills	Cutting tool materials - Tool Wear	Drilling Machine – Types, Process Capabilities	Honing – process - applications
S 4-5	SLO-1 SLO-2	Lab 1: Facing, Turning and Step turning	Lab 3: External thread cutting	Lab 5: V block shaping	Lab 7: Milling – Spur Gear	Lab 9: Cylindrical Grinding
S-6	SLO-1	Welding defects	Rolling Defects	Tool signature for single point cutting tool	Drill types and reaming operations	Buffing – process - applications
3-0	SLO-2	Casting introduction, Pattern Materials, Types, allowance	Extrusion process – types	Tool signature for multi-point cutting tool.	Broaching- Principle, Tool Nomenclature	Deburring – Shot blasting
S-7	SLO-1	Expandable mold- sand,	Extrusion process – defects	Lathe machine – Bench Lathe	Types of Broaching machine	Deburring –Abrasive flow machining
3-1	SLO-2	Expandable mold- shell	Wire and tube drawing – types and its defects	Lathe machine – Capstan and turrent	Gear Forming process-Extrusion, Stamping	Shot peening process and its application

S-8	SLO-1	Expandable mold-Investment	Drawing force Calculation	Li atne macnine – Special types of latne	Gear Manufacturing Process - Powder Metallurgy	Super finishing process- cylindrical micro honing
3-0	SLO-2	Permanent mold – Pressure die casting, Centrifugal casting	Sheet metal operations – shearing, slitting,	Specification and chip collection system	Gear Hobbing - Axial	Super finishing process- centreless micro honing
S 9-10	SLO-1 SLO-2	Lab 2: Taper Turning	Lab 4: Radial Drilling	Lab 6: Gear Hobbing – Helical Gear	Lab 8: Surface Grinding	Lab 10: Slotting - keyway
S-11	SLO-1	Design of runner, riser,	Sheet metal operations - fine blanking, perforating	Cutting fluids and machinability	Gear Hobbing - Tangential	Polishing: Chemical Mechanical polishing
3-11	SLO-2	Design of gating and sprue	Bending – types and defects	Work and tool holding devices	Gear Hobbing - Radial	Electro-chemical polishing
S-12	SLO-1	Solidifcation time, Shrinkage allowances	Bending Load calculations	Surface machining – external	0 11	Protective and Decorative coatings – Material selection
3-12	SLO-2	Casting Defects	Stretch forming, Deep drawing.	Surface machining – internal	Gear Shaping -Types and working principle	Protective and Decorative coatings – Process
S-13	SLO-1	Application of Casting in Automotive Industries.	Ironing, seaming process	Design consideration in turning operation	Gear Shaping-Advantages and Demerits	Protective and Decorative coatings – Coating techniques
3-13	SLO-2	Application of Welding in Automotive Industries.	Hydroforming.	Material Removal rate and cutting forces	0 01	Protective and Decorative coatings – Applications
S 14-15	SLO-1 SLO-2	Lab: Assessment 1	Lab: Assessment 2	Lab: Assessment 3	Lab: Repeat class	Lab: Mini Project

Resources	Pearson Education, 2013	3. P N Rao, Manufacturing Technology – Machining and Machine tools, Vol. 2, 3 rd ed., Tata Mc Graw Hill, 2017 4. P N Rao, Manufacturing Technology – Foundry forming and Welding, Vol. 1, 4 th ed., Tata Mc Graw Hill, 2013 5. Sharma P C, A Text Book of Production Technology - Manufacturing Processes, S Chand & Company, New Delhi
-----------	-------------------------	---

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	1 (10%)#	Filiai Examinatio	ii (50 % weiginage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	10	100 %			10	0 %	0 %	100 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Silambarasan Ramadoss, Renault Nissan, silambarasan.ramadoss@rntbci.com	1. Dr. A. Siddharthan, MIT Chrompet, sidharth@mitindia.edu	1. Dr. J. Chandradass, SRMIST
2. Mr. N. Vijayakumar, Mahindra and Mahindra, vijayakumar.n@mahindra.com	2. Dr. S. Renold Elson, VIT Vellore, renoldelsen.s@vit.ac.in	2. Mr. S. Palanisamy, SRMIST

Cou		18AUC204L	Course Name	AUTON	MOTIVE COMP	ONENTS AND ASSEMBL	Y DRAWING		ours		(С				Pro	fessio	nal Co	ore				L 0	T 0		C 2			
Co	equisite ourses e Offerin	18MES101L	Automobile Er	ingineering	Co-requisite Courses	Nil Data Book	c / Codes/Standard	ds		Cou	essiv rses		il																
Cours	e Learnir	g Rationale (CLI	R): The purpose o	of learning t	this course is to	<u> </u>				Lea	rning	1					Progr	am L	earning	ı Outo	omes	(PLC))			_			
		• •	ection and argument						-			3	1	2	3	4	5	6	•	3 9		•	,	13	14	15			
CLR-2	. Reco					ve parts and make use of	it in drawing the												Α.										
			te standards in draw						1	Ē :	(%	(%	· ·			arch			apilit	÷	2								
		Comprehend and apply the geometric dimensioning & tolerancing Analyze the functional requirement of Automotive parts and components) (Rloc	ncy (eut (/leda)	men	Rese	e G		ıstair	, W.		ance							
CLR-6		Analyze the functional requirement of Automotive parts and components Synthesis the Automotive components from the given part diagram								I hinking (Bloom)	oficie	tainm	X So	alysis	velop	sign,	Usa	ılture	S S	Ě	io l	& Fin	Learning						
											P P	ed Att	arina	Ans	& De	s, De	<u>1</u> 00	& CL	ment	0	nicat	Mat.	g Le		2	က			
	R-3: Make use of appropriate standards in drawing the component R-4: Comprehend and apply the geometric dimensioning & tolerancing R-5: Analyze the functional requirement of Automotive components from Loo In Sage Roy Roy Continue urse Learning Outcomes (CLO): At the end of this course, learners will be able to: R-6: Synthesis the Automotive components from the given part diagram urse Learning Outcomes (CLO): At the end of this course, learners will be able to:														PS0 - 1	PSO -	PSO-												
			iection for simple 3D						_			85	Н			М	М	L	L				М	Н		М			
		esent tne standard Irawing standards	d Automotive parts in	in convention	onai symbois ai	na representations						85 85	M			M M	M M	L	L I	_		L	H	H	M M	H H			
CLO-4	: Apply	the principle of g	eometric dimensioni			nbly drawing			,	3 8	85	80	M			Н	М	L	L	<u>۱</u> ۸	1 M		Н	М	М	Н			
CLO-5	: Desc	ribe and draw the	part drawings of Au	utomotive c	component							80	M		L	Н	М	L	M	_ A			М	Н	L	М			
CLO-6	: Asse	mble and draw the	e part drawings into	a finished	Automotive con	nponent	-		Ι,	3 8	85	80	M	М	Н	М	Н	L	М	<u>'</u> Λ	1 M	L	М	Н	L	Н			
Duration	on (hour)		12			12		12							12								12						
S 1-4	SLO-1	Development of		in of solids su	technical drawii ethod of indicati Irface finish, we	tions and symbols used ngs. Symbols and ion on the drawing for Iding and riveted joints.	Systems (Quantita types of fit)	Systems (Quantitative appr			Topic 5: System of Fits -Ho Systems (Quantitative appr types of fit)				po sy	pic 7: 0 sitional mbols u erances	Datu sed to	m and o repre	datun sent g	n featu geome	res tric	To bo	x, pos	t, pot	igs, a	utoma	tic dri		
	SLO-2	Drawing 1: ORT				MBLY OF SLEEVE & FLANGE COUPLING	Drawing 5: ASSE		SIN	INGLE		NOLE		Dr	awing 7	: ASS	EMBL	Y OF	FUEL	PUM					HE PA		IAGRA D	И	
S 5-8	SLO-2 PROJECTIONS Topic 2: BIS Code of Practice for Engineering Drawing: general principles of presentation, conventional representation of dimensioning (7 Types) and sectioning, threaded parts, gears, springs and common features. COTTER JOINT; FLANGE COUPLING Topic 2: Tolerance types and representation on the drawing – Fits types and selection for different applications, Limit System Topic 6: System of Systems (Quantitative) Systems (Quantitative) Systems (Quantitative) Systems (PLATE CLUTCH)											fer	pic 8: A rous & pes- Ca	Non-n	netal- p	olastic	s/elas	tomer	s. fix	ture b lexing	ase &	set bl g fixtu		ypes	lamps, of fixtu xture,	res-			
	SLO-2	Drawing 2: CON	ENTIONAL TION OF ENGG. PAI		rawing 4: ASSE LOCK	MBLY OF PLUMMER	Drawing 6: ASSEINJECTOR	MBLY O	FU	EL		Dr Of	awing 8 SPAR	: MAP K PLU	KE THE JG.	E PAR	RT DIA	GRAI	DF						JCTIOI HELIC				
S 9-12	SLO-1 SLO-2	Lab: Assessmen	nt 1	La	ab: Assessment	2	Lab: Assessment	3				La	b: Asse	ssme	nt 4				La	b: Uni	versit	/ Ехаг	ninatio	n					
Learni Resou	•	2. Gopalakrishn	an.K.R, Machine Dra	rawing, 20 th	^h ed., Subash P	wing, 5 th ed., New Age Int ublishers, 2007 ₁ , Tata McGraw Hill, 2014							Machin I. D, Ma																

	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
		CLA -	(10%) CLA – 2 (15%)			CLA -	3 (15%)	CLA – 4	l (10%)#	Filiai Examination	i (50 % weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Lovel 1	Remember	•	40%	•	30%	•	30%	•	30%		30%
Level 1	Understand	-	40%	-	30%	-	30%	-	30%	-	30%
Level 2	Apply		40%		40%		40%		40%		40%
Level 2	Analyze	-	4070	-	4070	-	4070	-	4070	-	4070
Laval 2	Evaluate		20%		30%		30%		30%		30%
Level 3	Create	-	20%	-	30%	-	30%	-	30%	-	30%
	Total	100 %			0 %	10	0 %	0 %	100 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. N. Varatharaj, Comstar Automotive Technologies Pvt, Ltd, nvaratha@comstarauto.com	1. Dr. P. Ramkumar, IIT Madras, ramkumar@iitm.ac.in	1. Dr. Rajendran R, SRMIST
2. Mr. D. Srinivasan, Ford India LTD., dsriniv9@ford.com	2. Dr. M. Murugan, VIT Vellore, hod.me@vit.ac.in	2. Mr. Jerome Stanley M, SRMIST

Course Code	18AUC203T	Course Name	APPLIED THERMAL ENGIN	EERING FOR AUTOMOTIVE ENGINEERS	Course Category	С	Professional Core	L 3	1	P 0	4
Pro-requiei	ita		Co-requisite		Progre	i					

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses Nil
Course Offering I	Department	Automobile Engineering	Data Book / Codes/Standards	Steam Table and Mollier chart

Course Learning Rationale (CLR): The purpose of learning this course is to:	l	_earni	ng	Program Learning Outcomes (PLO)														
CLR-1: Utilize the various gas power cycles	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Utilize knowledge in engine testing										>								
CLR-3: Utilize various heat transfer concepts	Ξ	(%	<u></u>				arch arch			Sustainability								
CLR-4: Enlighten the knowledge in air compressors and refrigeration systems	(Bloon	ncy (%	ent (%)	ge		aut	Ses			aina		Work		ce				
CLR-5: Construct knowledge on air conditioning systems				- ₩	S	elopment	8	зде	a)	nst		am M		inan	Ð			
CLR-6: Utilize knowledge on engines, heat transfer systems and air conditioning systems			Attainme	χ	Analysis	evelo	sign,	ol Usi	Cultur	∞ŏ		e —	ation	δF	arni			
	Thinking	d Proficie	0	rin Bu		& De	۾	T00	& C	onment		~	ica	Mgt.	g Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	evel of	Expecte	Expecte	Engineering Knowledge	Problem	Jesign {	Analysis	Modern	Society	Environr	Ethics	ndividual	Communic	Project I	ife Long	- OSc	2-05	SO-3
CLO-1: To learn the basic assumptions, significance and efficiency of various air standard cycles	2	80	75	H	H	М	M	L	Ĺ	M	L	M	Ĺ	L	L	H	H	M
CLO-2: Acquire understanding and numerically applying the methods to determine engine performance parameters	3	80	75	Н	Н	М	М	М	L	М	L	М	L	L	М	Н	Н	М
CLO-3: Understand and apply basic heat transfer concepts in real world applications			75	Н	Н	М	М	М	L	М	L	М	L	L	М	Н	Н	Н
CLOA: Apply the knowledge in calculating the performance of air compressors and refrigerators	3	QΩ	75	н	н	1.4	1.4	1.1	1	ш	ш	Λ.1	1	1	1.1	н	н	П

H H M M M L H H M L L M H H HM M M L
M L M L

H H M M M L

Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of 7	Expected	Expected
CLO-1:	To learn the basic assumption	ons, significance and efficiency of various air standard cycles	2	80	75
CLO-2: Acquire understanding and		inderstanding and numerically applying the methods to determine engine performance parameters			
CLO-3:	Understand and apply basic	heat transfer concepts in real world applications	3	80	75
CLO-4:	CLO-4: Apply the knowledge in calculating the performance of air compressors and refrigerators				
CLO-5:	CLO-5: Calculate performance of air conditioning system using Psychrometric chart and applications in automotive climate control		3	80	75
CLO-6:	Identify knowledge on engin	es, heat transfer systems and air conditioning systems	3	80	75

					T	
		Air Standard cycle	Engine Performance Characteristics and Testing	Fundamentals of Heat Transfer Conduction	Air compressor and Refrigeration	Air Conditioning Processes and Application
Durat	ion (hour)	12	12	12	12	12
S-1	SLO-1	·	Introduction to performance parameters, Brake power, Frictional power	One-dimensional Heat Conduction Plane wall	Introduction of Air Compressor and its types	Properties of atmospheric air, Psychrometric chart, dry bulb temperature and wet bulb temperature
	SLO-2	Otto cycle significance, PV and TS diagram -processes	Indicated Power, Torque, Maximum brake torque	One-dimensional Heat Conduction Plane wall	Construction and Working of Single acting and double acting air compressors	Psychrometric Processes- Sensible heating and cooling
	SLO-1	Otto Cycle- Brake thermal efficiency derivation	Fuel consumption Vs brake power, Specific fuel consumption	One-dimensional Heat Conduction Cylinder	Basics of Intercooler, Construction, Working - Multi stage Air Compressor	Psychrometric Processes - Humidification, Dehumidification,
S-2	SLO-2	Compression ratio its effect on Brake thermal efficiency	Specific Energy consumption – definition, significance considering calorific values of different conventional fuels	One-dimensional Heat Conduction Cylinder	Compressor - work required –lsentropic, adiabatic and polytropic	Cooling and dehumidification Heating and Humidification
S-3	SLO-1	Otto Cycle- Mean Effective Pressure Mean Effective Pressure and work done	Volumetric efficiency, Ambient temperature, Mechanical efficiency	One-dimensional Heat Conduction Composite walls	Compressor - work required –lsentropic, adiabatic and polytropic	Bypass factor for heating and cooling coils
3-3	SLO-2	Derivation for Mean effective pressure	Thermal efficiency – definition, heat input work done -significance	One-dimensional Heat Conduction Composite walls- Numericals	Work done without clearance volume	Bypass factor for heating and cooling coils
S-4	SLO-1	Tutorial 1: Otto Cycle -Determine brake	Tutorial 4: Brake power, frictional power,	Tutorial 7: Plane walls, Cylinder and	Tutorial 10: Work done with and without	Tutovial 12: Poughvarantiis Processes
5-4	SLO-2	thermal efficiency, compression ratio, mean effective pressure	Indicated Power, specific fuel consumption	composite walls numericals	clearance - Problems	Tutorial 13: Psychrometric Processes
S-5		Diesel cycle Introduction to diesel cycle – significance	Engine specific weight, and heat balance Definition and significance	Heat transfer through extended surfaces (simple fins)	Free air delivery (FAD)	Summer Air conditioning system – construction and working
3-3	SLO-2	PV and PV and TS diagram - processes	Heat balance – computation procedure, Shankey diagram	Critical thickness of insulation- Definition and significance	Rotary air compressors, -types and working	Summer Air conditioning system – construction and working
S-6	SLO-1	Diesel Cycle- Derive Brake thermal efficiency	Measurement of friction power - Different Methods	Convection: Types, Rate equation, Heat transfer coefficient	Fundamentals of refrigeration, COP,	Winter Air conditioning system – Construction and working

	SLO-2	Compression ratio, cut off ratio - its effect on Brake thermal efficiency	Measurement of friction power - Different Methods	Classes of convective flows, Introduction to dimensionless groups		Air conditioning - year-round air conditioning system
S-7	SLO-1	Diesel Cycle- Mean Effective Pressure, Mean Effective Pressure and work done	Measurement of different engine Performance Parameters	Introduction to hydrodynamic boundary layer	Simple vapour compression refrigeration system	Cooling load calculations
3-1	SLO-2	Derivation for Mean effective pressure	Measurement of different engine Performance Parameters	Introduction to thermal boundary	PV-TS diagram analysis and COP	Cooling load calculations
S-8	SLO-1	Tutorial 2: Diesel cycle - Determine brake thermal efficiency, compression ratio,	Tutorial 5: Brake thermal efficiency,		Tutorial 11: Volumetric efficiency –	Tutorial 14: Summer Air conditioning -
	SLO-2	mean effective pressure	volumetric efficiency, mechanical efficiency	transfer coefficient and neat transfer rate	Problems, FAD- Air compressor	Numericals
S-9		Dual cycle: Introduction to Dual cycle – significance	Fuel consumption, Air induction	Heat transfer in internal and external flow- Basics and examples		Application of Air conditioning systems in automobiles
3-9	SLO-2	PV and TS diagram -processes	Ambient temperature, exhaust temperature	Heat Exchangers: Types of heat Exchangers		Study of Automotive air conditioning systems
S-10	SLU-1	Dual Cycle- Brake thermal efficiency derivation	Introduction to manifold pressure and in- cylinder pressure measurement		Desirable properties of an ideal refriderants	Automotive climate control – climate governing factors
3-10	SLO-2	Compression ratio, cut off ratio - its effect on Brake thermal efficiency	Case study: Engine testing facility requirements	Heat Exchangers: Effectiveness - Overall Heat Transfer Coefficient	Different Types of Refrigerants	Climatic control and its governing factors.
S-11	SLO-1	Dual Cycle - Mean Effective Pressure, Mean Effective Pressure and work done	Case study on Engine testing facility requirements	Fouling Factor, A real time case study on radiator	Methods to improve efficiency of vapour compression refrigeration. Eg: Avoiding two phase entry into compressor	Considerations for energy efficient heat exchange
3-11	SLO-2	Derivation for Mean effective pressure	Case study: Real-time Engine parameters measurement, Eg: Ambient air conditioning fuel temperature compensation etc.	A real-time case study on radiator	Methods to improve efficiency of vapour absorption refrigeration or problems to be avoided	Considerations for energy efficient heat exchange
S-12	SLO-1 SLO-2	Tutorial 3: Dual cycle - Determine brake thermal efficiency, compression ratio, mean effective pressure	Tutorial 6: Numerical related to heat balance	Tutorial 9: Heat Exchangers: LMTD and NTU- Numericals	Tutorial 12: Vapour compression refrigeration Cycles – COP - Problems	Tutorial 15: Summer Air conditioning - Numericals

		1.	R. Rudramoorthy, Thermal Engineering, 4th ed., Tata McGraw-Hill, 2007
Learnin	Learning	2.	Michael A. Boles, Yungus A. Cengel Thermodynamics: An Engineering Approach, 2 nd ed., Tata McGraw-Hill, 2011
	Resources	3.	Yunus A Cengel, Afshin J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications, 5th ed., Tata McGraw-Hill 2015
		4.	C.P. Kothandaraman, Fundamentals of Heat And Mass Transfer, 4th ed., New Age International Publishers, 2012

- 5. R. K. Rajput, Thermal Engineering, 10th ed., Laxmi Publications(P)Ltd., 2015

- 6. https://www.edn.com/Pdf/ViewPdf?contentItemId=4403883
 7. http://www.gbv.de/dms/ilmenau/toc/54857491X.PDF
 8. https://www.airah.org.au/Content_Files/HVACRNation/2017/05-17-HVAC-001.pdf

Learning Asses	sment												
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(50% woightage)		
	Level of Thinking			CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4	l (10%)#	Final Examination (50% weightage)			
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %		

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
1. Dr. Gunabalan, Manager, R&D Turbo Energy, Chennai,	1. Dr. Chandramohan, NIT Warangal,	1. Mr. C. Prabhu, SRMIST						
2. Mr. Shantha Kumar, Lead Engineer, Royal Enfield,	2. Dr. Ganesh, Anna University, Chennai	2. Dr. S. Thiyagarajan, SRMIST						

ACADEMIC CURRICULA

Professional Core Courses

BIOTECHNOLOGY

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Cou		18BTC101J Course Name	BIOCHEMISTRY			ourse		С				Pro	fessio	nal Co	ore					L 3	T 0	P 2	C 4
	equisite urses	Nil	Co-requisite Nil				gress ourse		Nil														
Course	Offering	Department Biotechnology	Data Book	c / Codes/Standards		Nil																	
•		D. (1. 1. (01.D) T/ (1. 1.1.																					
		g Rationale (CLR): The purpose of learning					earnir	<u> </u>		١.	١.			ram Le		•		•	,	40	40	44	45
CLR-1 CLR-2		ret the various aspects of biological macromolec elate between metabolism of biomolecules and t				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3		rehend principles behind estimation and analysi	•			Ê	(9)	(9)				arch			ability		J						
CLR-4: Evaluate the role of biochemistry in various biological processes and the role of biochemistry in making them economical										stains		Work		ance									
CLR-5: Assess the metabolic diseases and disorders related to biomolecules CLR-6: Evaluate the basics of practical biochemistry and have an understanding on biomolecules								inme	wor	ysis	elopr	ign, F	Usag	ture	S Su:		eam	u.	Fin	rning			
Livaluate the basics of practical biochemistry and have an understanding on biomolecules							d Pro	d Atte	ring	Anal	& Dev	, Des	Tool	& Cul	nent		_ ×	icati	√gt. 8	g Lea			
Course	Learnin	g Outcomes (CLO): At the end of this cou	rse, learners will be able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Fnaineerina Knowledae	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PS0 - 1	PS0 - 2	PSO-3
		ss in details the structures and reactions of bion				1	80	70	L	-	-	H	H	-	-	-	H	H	-	H	H	H	Н
CLO-2		ibethe synthesis of biomolecules and their role instrate an understanding of the metabolic pathy				2	80	70 70	-	H	-	Н	Н	-	-	-	Н	Н	-	Н	Н	Н	H
CLO-4	: Descr	ribe how these biochemical processes are not is	plated but tightly integrated, with specific control			2	80	70	-	L	-	Н	Н	-	-	-	Н	Н	-	Н	Н	Н	Н
CLO-5 CLO-6		instratethe role of biomolecules in metabolic disc in the importance of laboratory safety and stand				2	80 80	70 70	-	H	-	H	H	-	-	-	H	H	-	H	H H	H	H
		in the importance of laboratory safety and stand T	ard operating procedures of lab equipment			'	00	70	-	п	-	П	П	-	-	-	П	П	- 1	п	П	П	П
Duratio	n (hour)	15	15	1:	5						15	j			4.				1:	-			
S-1	SLO-1	History of Biochemistry, Chemical bonds	Introduction to metabolism	Introduction to amino a	acid m	netabo	olism		Introduction of Fatty acids metabolism Metabolic relationships among thuman organs				ng the	ma	or								
0.	SLO-2	pH and Buffers	Carbohydrate metabolism	Transamination					Hormones role in the release of fatty Acids from adipose tissue Introduction –Bioe				-Bioenergetics										
S-2	SLO-1	Introduction and classification of carbohydrates	Glycolysis - Introduction	Deamination				I	Fatty acid	oxidat	tion - I	ntrodu	ıction		High energy compounds								
	SLO-2	Monosaccharaides – structure and function	Role of enzymes in glycolysis	Metabolism of ammon	ia			(Oxidation						A	ATP s	ynthe	sis					
S-3	SLO-1	Disaccharides- structure and function	Pyruvate metabolism	Urea cycle				I	Energetic	s of fat	ty acid	l oxida	ation		E	Electr	on tra	nspoi	rt cha	in (ET	C)		
0-3	SLO-2	Polysaccharides – structure and function	Regulation of glycolysis	Importance of urea cy	cle			1	Ketone bo	dies					E	Biolog	iical o	xidati	on				
S 4-5	SLO-1 SLO-2	Lab 1 - Introduction to commonly used instruments and laboratory safety	Lab 4 - Qualitative analysis of Disaccharides in food samples	Lab 7 - Estimate blood normal and diabetes n				re l	Lab 10: R	epeat/	Revisi	on of	experi	iments			3 - Qı y's me			analys	is of p	rote	ns
SLO-1 Introduction and classification of amino acids Citric acid cycle - Introduction Biosynthesis of amino acids Ketogenesis								E	Electr	on Ca	rriers	:											
S-6	Tyrosine synthesis				I	Biosynthe	sis of i	fatty a	cids				Overv ETC	iew o	f path	way i	in the r	nitoch	hond	rial			
S-7	SLO-1	Primary Structure of proteins	Gluconeogenesis and energetics	Phenylalanine synthes	sis Regulation of fatty acid synthesis				∕arioι ETC	is cor	nplex	es in	the mi	tocho	ndria	1							
3-1	SLO-2 Secondary, Tertiary and Quaternary structure of proteins Cori and Glucose-alanine cycle Tryptophan synth				sis Eicosanoids and cholesterol biosynthesis Chemiosmot			Chemiosmotic theory															
S-8	SLO-1 Functions and biotechnological applications of proteins Glycogen metabolism Molecules derived fr				n ami	no aci	ds	I	Lipoprote	ns			_		(Oxida	tive P	hospi	horyla	ation			
3-0	SLO-2 Biological important peptides Hormones regulate muscle use of glycogen Neuro							ı	Disorders	of Lipi	d met	abolis	m		I	nhibit	ors of	oxida	ative	phosp	horyla	ation	

S	SLO-1	Lab 2 - Preparation and measurement of	Lab 5 - Qualitative analysis of	Lab 8 - Acid hydrolysis and action of	Lab 11 - Separation of amino acids on Thin	Lab 14 - Quantitative estimation of serum
9-10	SLO-2	pH of standard buffers	Polysaccharides in food samples	salivary amylase on starch	Layer Chromatography	cholesterol
S-11	SLO-1	Enzyme kinetics	Various bioproducts produced from carbohydrate metabolism	Biosynthesis of lignin, tannin, and auxin	Biosynthesis of Pyrimidines	Glycerol phosphate Shuttle
0-11	SLO-2	Industrial application of enzymes	Disorders of carbohydrate metabolism	Regulation of amino acid synthesis	Biosynthesis of Purine	Malate aspartate Shuttle
S-12	SLO-1	Introduction to Nucleic acids – DNA and RNA	Diabetes Mellitus – Types and diagnosis	Disorders of tyrosine metabolism	Degradation of purine and pyrimidines nucleotides	Photosynthesis
3-12	SLO-2	Classification of lipids	Biochemical aspects of Diabetes mellitus	Disorders of phenyl alanine metabolism	Disorders of purine metabolism	Light and dark reactions
S-13	SLO-1	Classification of fatty acids	Oral medications of Diabetes mellitus	Disorders of heme metabolism	Disorders of pyrimidine metabolism	Carbon Dioxide Fixation: Calvin-Benson Cycle
3-13	SLO-2	Cholesterol and cell membranes		Medically important peptides and amino acid derivatives	Deoxyribonucleotide Biosynthesis	Regulation of Carbon Dioxide Fixation
S	SLO-1	Lab 3 - Qualitative analysis of	Lab 6 - Qualitative analysis of lipids	Lab 9 - Estimation of enzyme kinetic	Lab 12 - Enzymatic hydrolysis of glycogen	Lab 15 - Quantitative analysis of urea in
14-15	SLO-2	Monosaccharide in food samples	(triglycerides, cholesterol, phospholipids)	parameters	by α and 6 amylase	serum

Learning	1. U. Satyanarayana, U. Chakrapani, Biochemistry, 4 th ed., Elsevier India, 2013
Resources	2. David L. Nelson, Michael M. Cox, Lehninger Principles of Biochemistry, 7th ed., W.H. Freemen & Co., 2017

- Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto, Lubert Stryer, Biochemistry, 8thed., 2015
 Donald Voet, Judith G. Voet, Charlotte W. Pratt, Fundamentals of Biochemistry: Life at the Molecular Level", 5th ed., John Wiley & Sons Inc., 2016

Learning Assess	earning Assessment												
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	o (E00/ weightege)		
	Level of Thinking	CLA -	1 (10%)	CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)			
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
LOVOIT	Understand	2070	2070	1070	1070	1070	1070	1070	1070	1070	1070		
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
LCVCI Z	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070		
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
LGVGI J	Create												
	Total	10	0 %	10	0 %	10	0 %	100	0 %	10	0 %		

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1 Dr. P. Bala Kumaran, Proklean Technologies (P) Limited, Chennai, genbalu86@gmail.com	1.Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. S. ThyagaRajan, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad karthikmpk@gmail.com	2.Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr. V. Vinoth Kumar SRMIST

Cou		18BTC102J Course Name	C	CELL BIOLOGY			urse egory		С		Professional Core				re				L 3	T 0	P 2	C 4	
Co	equisite urses Offering	Nil Department Biotect	Co-requisite Courses	Nil Data Book	/ Codes/Standards			gressi ourse:		Nil													
Course	Learnin	g Rationale (CLR): The put	rpose of learning this course is to:				L	earnir	ng				ı	Progr	am Le	earning Outcomes (PLO)							
CLR-1	: State	the basic concepts and under	standing of cell structure and func	tion			1	2	3	1	2	3	4	5	6	7 8	8 !) 1) 1	1 12	13	14	15
CLR-2		ze the different strategies of o											_			ıέ							
CLR-3		ate the concepts of structural a te a platform to study the mole			(mo	(%)	(%)	e e		±	earc			nabil	-	≟	a	,					
CLR-4		e the applications of various re			(B)	ncy	ent (yedg		mer	Res	96		ıstai	3	>	200						
		ze the concept of cell signaling			king	oficie	ain	Von	lysis	/elop	sign,	Usa	Iture	જ જ		2 2	: i	E E					
		, ,			H.	d Pro	d Att	ring	Ana	» De	, De	20	S. Cu	nent	-	8 ig	to V	Les					
Course	Learnin	g Outcomes (CLO): At the	able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Etnics	Comminication	Project Mot & Finance	Life Long Learning	PS0 - 1	PS0 - 2	PS0-3	
		iss on the basic concepts of ce					2	80	70	М	М		Н	-	-		Н	-	-	-	Н	Н	Н
			experiments involving cell structure				2	85 75	75 80	M M	M	H	H	- Н	-		Н I Н I		_	-	H	H	H
		<u> </u>	e and its function in development a cell signaling in mammalian cell sy				2	85	80	M	M	Н	Н					1 -	_		Н	Н	Н
			the different areas of diagnostic an		s of cells		3	85	80	M	M	Н	Н	Н			<u>, ,</u> Н і			+-	Н	Н	Н
			ne and specialized cells to study ce				3		75	М		Н	Н	Н			Н І		-	-	Н	Н	Н
Duratio	n (hour)	15		15	1:	5				15								15			-		
S-1	SLO-1	Introduction to cell biology	Cell structure and i	function: Nucleus	Cytoskeleton				F	Principles	of cell	signal	ing			Ca	Cancer						
3-1	SLO-2	Origin and history of life	Internal organization	on of Nucleus	Types and function				Models of cell signaling				Int	Introduction to cancer									
S-2	SLO-1	Evolution of cell	Endoplasmic reticu	ılum	Microfilaments				li	ntracellula	ar sign	al tran	sducti	on		Stages of cancer							
3-2	SLO-2	Evolution of metabolism	Protein folding and	f processing in ER	Intermediate filaments	3			F	Pathways	in sigr	al trar	sduct	ion		Ту	pes o	f cand	er				
S-3	SLO-1	Origin of prokaryotes	Lipid synthesis in S	SER	Microtubules				F	unction c	f cell s	urface	rece	otors		De	evelop	ment	of car	ncer			
3-3	SLO-2	Endosymbiosis	Export of proteins a	and lipids from ER	Re-organization of mid mitosis			Ü	G	GPCR pai	hway					Ha	allmar	ks of a	ance	-			
S 4-5	SLO-1 SLO-2	Lab 1: Cell Morphology: Micro observation of eukaryotic cell	oscopic Lab 4: Cell Organe cells	elles: Nuclear staining of	Lab 7: Cell Proliferation	on: Mi	totic in	ndex	L	.ab 10: R	epeat/l	Revisio	on of e	experi	ments		b 13: myot		iffere	ntiation	n: L6 m	iyobla	sts to
0.0	SLO-1	Origin of eukaryotes	Golgi apparatus		Transport of molecule	s in ce	ell		С	:AMP pat	nway					Or	псоде	nes ai	nd tur	nor su _l	opress	or ge	nes
5-6	SLO-2 Differences between Prokaryotes & Protein sorting from Golgi Eukaryotes				Passive diffusion				F	Receptor	yrosin	e kina	se pat	hway		Та	rgete	d drug	thera	ру			
6.7	SLO-1 Development of multicellular organisms: Lysosomes				Active diffusion				٨	ЛАРК pat	hway					Εp	oithelia	al cell	cance	r			
S-7	SLO-2 Plant cells & Animal cells Phagocytosis and autophagy			Ion channels				Cell division				Or	ral cai	icer									
	SLO-1 Cells as experimental models Bioenergetics			Endocytosis	Cell cycle			Lung cancer															
S-8	SLO-2 Tools of cell biology Metabolism				Phagocytosis		Mitosis and stages Breast cancer																

S 9-10		Lab 2: Cell development: Embryogenesis in fruit fly and Zebrafish	Lab 5: Osmosis: Stomatal opening and closing	Lab 8: Karyotyping: G banding	Lab 11: Cell division: Mitotic cell division in onion root tip	Lab 14: Heterochromatin: Polytene chromosomes
0.44	SLO-1	Molecular composition of cell	Mitochondria- structure and function	Cell-cell interactions	Meiosis	Classification of breast cancer
S-11	SLO-2	Biosynthesis of cellular constituents	Genetic system of mitochondria	Cell junctions	Programmed cell death:Necrosis and apoptosis	Treatment of breast cancer
C 42	SLO-1	Enzymes as biocatalysts	Chemiosmotic coupling	Adhesion junctions	Intrinsic and extrinsic pathway	Neurodegenerative diseases
S-12	SLO-2	Central role of Enzymes	Chloroplasts	Tight junctions	Cell differentiation	Dementia
6 4 2	SLO-1	Cell membrane	Photosynthesis	Gap Junctions	Stem cells adult and embryonic	Alzheimer's disease
S-13	SLO-2	Glycocalyx	Peroxisomes	Plasmodesmata	Therapeutic applications of stem cells	Diagnosis and treatment
S 14-15		Lab 3: Chromosome preparation: Metaphase spread preparation	Lab 6: Cellular fractionation: chloroplast	Lab 9: Cell viability: Determination of cell viability using typhan blue dye exclusion		Lab 15: Histology: Sectioning of tissues using microtome and staining

Learning Resources	Channarayappa, Cell biology, Universities Press, 2010 Rastogi, S.C, Cell Biology, New Age International publishers, 2005	3. ThyagaRajan et al., Biology for Engineers, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2012 4. Ajoy Paul, Text book of cell and molecular biology, 2 nd ed., Books & Allied (P) Ltd., 2009
-----------------------	--	--

Learning Assess	ment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (50% weightage)	
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#		ii (50 % weigiilage)	
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level I	Understand	20%	20%	10%	10%	10%	13%	13%	10%	10%	10%	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	2070	2070	2070	20%	2070	2070	2070	2070	2070	2070	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 3	Create	10%	10%	13%	13%	13%	13%	13%	13%	13%	13%	
	Total	10	0 %	100 %			0 %	100) %	100 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	1. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. S. ThyagaRajan, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr. S. Sujatha, SRMIST

Course	18BTC103J	Course	MICROBIOLOGY	Course	C	Professional Core	L	Т	Р	С
Code	100101033	Name	WICKOBIOLOGI	Category	C	Professional Core	3	0	2	4

Pre-requisite Nil		Co-requisite Courses	Nil		Progressive Courses	Nil
Course Offering Department	Biotechnology			Data Book / Codes/Standards	Nil	

	- I																	
Course Learning Rationale (CLR): The purpose of learning this course is to:		Lear	ning					Prog	ram L	earn	ing O	utcor	nes (l	PLO)				
CLR-1: Illustrate the fundamentals of Microbiology and different types of microorganisms and their characteristics	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Demonstrate the fine structure of bacteria, their functions, growth and cultivation of microorganisms										.y								
CLR-3: Illustrate various infectious diseases and their mode of actions] ₅	(%)	5 6				Research			Sustainability								
CLR-4: Demonstrate the host-microbe interactions	(Book)		- -	gge		ent	ese			aine		Work		nance				
CLR-5: Illustrate the various applications of microorganisms in various fields		Proficiency	Attainment) We	.02	Development	Ä,	age	gu	Sust		m V		Finar	В			
CLR-6: Analyze the importance of Microbiology in various field applications	Thing H	ن ا	aj g	χ	Analysis	, kelc	Design, I	I Us	ulture	∞ŏ		Теа	ion	∞ T	aming			
	;			ing	An	& De	Ğ,	Tool	S C	nen		₩ S	i <u>c</u>	Mgt.	g Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	l ava		Expecte	Engineering Knowledge	Problem	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Illustrate the roles and characteristics of microorganisms	2	? 8	0 70	-	Н	-	-	-	-		-	Н	-	-	-	Н	Н	Н
CLO-2: Identify growth of microorganisms, its impact in environment, applications of advanced microscopical techniques	2	8	5 75	-	Н	Н	-	-	-	Н	-		-	-	-	Н	Н	Н
CLO-3: Explain the role of microbes in public health and antimicrobial agents	2	? 7	5 80	Н	-	Н	М	Н	-	Н		Н	-	Н	-	Н	Н	Н
CLO-4: Discuss various interactions of microbes with various microbes, animals and plants	2	8	5 80	Н	-	Н		Н	-	М	-	Н	-	Н	-	Н	Н	Н
CLO-5: Explain the applications of microbes and their products in various field		8	5 80	Н	Н	Н	Н	Н	-	М	-	Н	-	Н	-	Н	Н	Н
LO-6: Illustrate the fundamental and applied Microbiology			0 75	Н	Н	Н	Н	Н	-	М	-	Н	-	Н	-	Н	Н	Н

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to Microbiology	Nutritional requirements of bacteria	Fungi-Importance of fungi in various field applications	Microbial infections, transmission, and their mode of action	Introduction to Applied Microbiology
3-1	SLO-2	Prokaryotes and Eukaryotes	Nutritional types of bacterium	Morphology of fungi	Sources of infection	Beneficial microbes and Microbial metabolites-overview
S-2	SLO-1	Basics of microbial existence- History of Microbiology	Physical nutrients requirement of the bacteria	Structural characteristics and ecological association of fungi	Portals of entry and Exit of microbes.	Microbial applications in Biotechnological field
3-2	SLO-2	Characterization of microorganisms	Chemical nutrients requirement of the bacteria	Classification of fungi	Epidemiological terminologies-Infectious diseases caused by Vibrio cholerae	Microbial enzymes in various biotechnological applications
S-3	SLO-1	Classification and nomenclature of microorganisms	Types of culture media; Factors influencing bacterial growth	Sexual and Asexual Reproduction of fungi	Vibrio cholera-Mode of action	Microbial secondary metabolites-antibiotics
3-3	SLO-2	Microscopic examination ofmicroorganisms Light Microscopy-Bright field; Dark field	Microbial growth phases	Cultivation of fungi	Vibrio cholera-Treatment	Microbial applications in agricultural field
S 4-5	SLO-1 SLO-2	Lab 1: Aseptic techniques and Media preparation (Both liquid and solid)	Lab 4: Staining Techniques (Simple staining, Gram staining, spore staining)	Lab 7: Enzyme based biochemical characterizations-Catalase test	Lab 10: Repeat/Revision of experiments	Lab 13: Antibiotic sensitivity test-Kirby- Bauer assay
S-6	SLO-1	Phase contrast; Fluorescent Microscopy	Types of bacterial culturing/fermentations with respect to growth phases	Preservation techniques of fungi	Sexually Transmitted diseases	Microbial applications in agricultural field
5-0	SLO-2	Differential and specific staining methods	Microbial growth curve and kinetics	Fungal toxins	Acquired Immuno Deficiency syndrome (AIDS)	Advancements in agricultural field
S-7	SLO-1	Electron Microscopy techniques: Scanning and Transmission Electron Microscopy	Different methods of quantitative bacterial growth-Direct method	Bacterial viruses-Bacteriophages	HIV-Replication; Opportunistic Infections associated with AIDS; Treatment	Biocontrol agents-Biofertilizer
3-1	SLO-2	Sample preparation techniques for SEM and TEM	Different methods of quantitative bacterial growth-Indirect method	Types of bacteriophages and their General characteristics	Fungal diseases	Microbial applications in Pharmaceutical field
S-8	SLO-1	Advanced Microscopic techniques- Confocal Microscopy	Utilization of energy in non-biosynthetic processes- Energy utilization-Bacterial motility	Morphology and structure of bacteriophages	Antibacterial agents-classification	Microbial applications in Environmental field

	SLO-2	Scanning Probe Microscopy-Scanning Tunneling	Bacterial nutrient uptake mechanisms- Simple Diffusion, Active Transport, Group Translocation	Replication-Viruses of bacteria	Mode of actions of antibiotics	Microbes in the pollution removal and bioplastic syntheis
S	SLO-1	Lab 2: Isolation and enumeration of	Lab 5: Motility test by Hanging drop	Lab 8: Enzyme based biochemical	Lab 11: Triple sugar Iron agar test-H2S	Lab 14: Identification of bacteria using 16s-
9-10	SLO-2	microorganisms from given sample	method	characterizations-oxidase test	production	rRNA sequencing
S-11	SLO-1	Scanning Probe Microscopy - Atomic Force Microscopy	Bioenergetics- utilization of energy in biosynthetic processes	Animal viruses-Classification	Multidrug resistance in bacterial pathogens-MDROs, MRSA, VRE	Control of Microorganisms-Physical, chemical and biological methods
3-11	SLO-2	Morphology and fine structure of Bacteria	Biosynthesis of small molecules-synthesis of amino acids	Animal virus- Replication	Mechanisms of antibiotic resistance	Host-microbe interactions: Microbe- Microbe interaction
S-12	SLO-1	Cells	of peptidoglycan	Viruses of cancer	Antifungal agents	Host-microbe interactions: Plant-microbe interaction
3-12	SLO-2	External structure of bacteria	Synthesis of organic cell material in chemoautotrophic bacteria	Viroids and Prions	Mode of action of antiviral agents	Host-microbe interactions: Animal-microbe interaction
S-13	SLO-1	Cell organization	Bioenergetics of microbial metabolism	Plant viruses-Classification	Antiviral agents	Normal/indigenous flora and opportunistic flora of human body
0-10	SLO-2	Internal structures of bacteria	Aerobic respiration and Anaerobic bioenergetics	Replication of plant viruses	Mode of action of antiviral agents	Probiotics and Prebiotics
S 14-15		Lab 3: Purification and preservation techniques of bacterial cultures		Lab 9: Enzyme based biochemical characterizations-Urease test	Lab 12: Casein and Starch Hydrolysis	Lab 15: Differentiation of live and dead cells using fluorescence Microscopy

	Pelczar et al., Microbiology, 7 th ed., Mc Graw Hill, 2011 Madigan et al., Brock Biology of microorganisms, 12 th ed., Prentice Hall, 2008 Davis et al., Microbiology, 6 th ed., Lippincott Williams and Wilkins, 2010	4. Prescott et al., Microbiology, 11 th ed., Mc Graw Hill, 2011 5. Brooks et al., Medical Microbiology, 26 th ed., Lange Med. 2012
--	---	---

Learning Assessi	nent										
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA -	1 (10%)	(10%) CLA – 2 (15%)			3 (15%)	CLA – 4	(10%)#	Filiai Examination	i (50% weightage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level I	Understand	20%	2070	1370	1370	1370	1370	1370	1370	1370	1370
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 3	Create	1070	1070	1070	1370	1370	1370	1370	1070	1070	1370
	Total	10	100 % 100 % 100 %			0 %	100) %	100 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Sam Gunasekar, Orchid Chemicals and Pharmaceuticals Ltd., sam@orchidpharma.com	1. Dr. A. Gnanamani, CSIR-Central Leather Research Institute, agmani_2000@yahoomail.com	1. Dr. K. Ramani, SRMIST
2.Dr. D. Gunaseelan, BIOCON Ltd., guna.sachin@gmail.com	2. Dr. Anbumani Sadasivam, CSIR-Indian Institute of Toxicology Research,anbumani@itr.res.in	2. Dr. R. Muthukumar, SRMIST

Course Code	18BTC104T	Course Name	GENETICS	S AND CYTOGENETICS		urse egory	,	С	Professional Core			1 - 3	Г Р) 0	C 3								
0000		Hamo			- Ju	090. j														J () 0	3
	Pre-requisite Courses Nil Co-requisite Courses Nil Progressive Courses 18BTC105J																					
Course Off	ering Department	Biotech	nnology	Data Book / Codes/Standards	3	Nil		·														
Course Le	arning Rationale (CLI	R): The pur	pose of learning this course is to:			Le	earnir	na				F	rogra	m Le	arnin	a Ou	tcom	es (P	LO)			
			f genes in eukaryotes			1	2	3	1	2	3	1	5	6		8		10		12	13 14	4 15
	Use two and three fact					-		3	-		J	4	J	U	1	0	9	10	11	12	10 1	, 13
	Use Karyotype in dete						_					당			<u>*</u>							
	Apply different method					(Bloom)	(%)	(%)	<u>8</u>		Ħ	search			inat		Work		e e			
	Analyze genetic variati) E	ncy	Attainment (%)	wed		Development	8	96		Sustainability		Š		Finance	g		
			tance in living organisms.			king	oficie	ainm	, or	lysis	/elo	Design,	n Sa	₽	∞ಶ		Team		ĕ ĕ	Learning		
	, ,					Thinking	d Pro	d Atta	ring	ı Analysis	& De	, De	⊢ •	×8	ment		∞ಶ	nicati	Mgt.	g Lea		
Course Le	arning Outcomes (CL	-O): At the e	end of this course, learners will be	able to:		Level of	Expected Proficiency	Expected	Engineering Knowledge	Problem	Design &	Analysis, I	Modern	Society	Environment	Ethics	Individual	Communic	Project	Life Long	PSO - 1	1
CLO-1:	Describe the fundame	ntal Laws of C	Genetics and interaction of genes			1	80	80	Н	Н	Н	Н	-	М	L	Н	Н	Н	Н	Н	H F	l H
CLO-2:	Explain the concepts a	ınd experimer	nts in the preparation of linkage m	ар		2	85	75	Н	Н	Н	Н	-	-	М	Н	Н	Н	Н	Н	H F	l H
	Recognize the pattern					2	75	80	М	Н	М	Н	M	М	-	М	Н	• •	Н	• •	H F	
						2	85	80	Н	Н	Н	Н	-		Н	L	Н		Н		H F	
						3	85	75	Н	Н	Н	Н	- 1			Н	Н		Н		H F	
CLO-6:	Explain the basic conc	epts and prin	ciples of nucleic acids in prokaryo	tic and eukaryotic organisms		2	80	80	Н	Н	Н	Н	L	М	М	М	Н	Н	Н	Н	H F	H H

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Mendel's Experiments	Chromosome structure	Mutation	Bacterial genetics	Population genetics
3-1	SLO-2	Law of segregation	Chromosome organization	Classification of mutation	Mechanisms of recombination	Allele frequency
S-2	SLO-1	Law of independent assortment	Giant chromosomes- polytene chromosome	Structural chromosomal aberration	Transformation in bacteria	Calculation of allele frequency in a population
0-2	SLO-2	Problems in Mendelein inheritance	Lampbrush chromosome	Types of structural aberration	Mapping by transformation	Solving Problems
S-3	SLO-1	Allelic interaction	Linkage	Numerical chromosomal aberration - Aneuploidy	Recombination by generalized transduction	Calculation of genotype frequency in a population
0-5	SLO-2	Lethal genes	Arrangement and types of linkage	Euploidy	Mapping by generalized transduction	Hardy-Weinberg equilibrium
S-4	SLO-1	Non-allelic interaction	Crossing over	Non-disjunction	Specialized transduction by lambda phage	Applications of Hardy Weinberg equilibrium
3-4	SLO-2	Epistatis	Frequency of recombination	Aneuploids in humans	Mapping by specialized transduction	Solving Problems
S-5	SLO-1	Duplicate genes	Cytological basis of crossing over	Mosaics	Conjugation	Changes in allele frequency
3-3	SLO-2	Complementary and inhibitory genes	Stern's experiment	Position effect	Recombination by conjugation	Changes in allele frequency by mutation
S-6	SLO-1	Multiple allelism -ABO	Mapping by two factor cross	Chromosome preparation from leukocyte culture	Interrupted mating analysis	Changes in allele frequency by migration
3-0	SLO-2	Rh factor in Humans	Solving Problems	marrow	Mapping by conjugation	Migration dynamics
S-7	SLO-1	Cytoplasmic inheritance	Mapping by three factor cross	Chromosome preparation from amniotic fluid and chorionic villi	Preparation of linkage maps in bacteria	Changes in allele frequency by selection

	SLO-2	Pedigree analysis - Solving Problems	Solving Problems	Banding technique	Solving Problems	Selection dynamics
S-8	SLO-1 Mechanisms of sex determination		Combining of map segments	Karyotype preparation and analysis	Merozygote analysis	Random genetic drift
3-0	SLO-2	Sex linked inheritance	Preparation of linkage map	Prenatal diagnosis	Fine structure mapping	Dynamics of random genetic drift
S-9	SLO-1	Epigenetics - reprogramming	Somatic cell hybridization	Fluorescent in situ hybridization	Solving Problems	Genetic equilibrium
3-9	SLO-2	X-inactivation	HAT selection procedure	Comparative Genomic hybridization	Solving Problems	Solving Problems

Learning Resources	1.	Gardner, Simmons, Sunstad, Principles of Genetics, 8th ed., John Wiley and Sons, Inc., 2006	2. Monroe W. Strickberger, Genetics, 3rd ed., PHI Learning, 2008

Learning Asses	earning Assessment											
	Bloom's			Final Examination (50% weightage)								
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#	FIIIai Examination	(50 % weightage)	
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %		30 %		30 %		30 %		30%		
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply	40 %		40 %		40 %		40 %		40%		
Level 2	Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%		
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	10	0 %	100	0 %	10	0 %	100	0 %	100 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	1. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. S. Barathi, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr. K. T. Ramyadevi, SRMIST

Cou		18BTC105J Course Name	MOLECULAR BIOLOGY			urse gory	,	С		Professional Core					l Core					L 3	T 0	P 2	C 4
	equisite	18BTC104T	Co-requisite Nil				gress		Nil														
	urses e Offerin	g Department Biotechnology	Courses Data Book	/ Codes/Standards	1	Vil	ourse	S															
		g =			- I				, ,														
Cours	e Learnin	ng Rationale (CLR): The purpose of learn	ning this course is to:			Le	earnii	ng					Pro	gram	n Lear		utco	•	•				
		rate the chemistry of polynucleotides			4	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2		onstrate the mode of DNA replication onstrate transcription and the processing of	RNA		1	_	_					٩	5		A)								ı
CLR-4	: Demo	onstrate protein synthesis and modification i				loom) (%)	t (%)	9	200	ţ	1 000			ainat		/ork		ce				ı
CLR-5			ntrol gene expression at the transcriptional lev	rel		g (Bl	ienci	men	9	<u>.u</u>		A A	gage	و (Sust		ME V		inan	<u>e</u>			ı
CLR-6	: Analy	ze the chemical and molecular processes to	hat occur in the cells			inkin	rofic	ıttain	, Y	sylec	a Va	i i	î ŝ	1	a k		Teg	ation	t. & F	earn			ı
Cours	e Learnin	ng Outcomes (CLO): At the end of this co	ourse, learners will be able to:			evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	noinearing Knowladge	Problem Analysis	Design & Development	Analysis Design Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt. & Finance	ife Long Learning	PSO - 1	PSO-2	PSO - 3
CLO-1	: Discu	uss on the basic concepts and principles of I	nucleic acids from the perspective of engineer	S		2	80	70	-	H	' -	-		-		-	H	-	-	-	Н	Н	Н
		rate the mechanism involved in the duplicati				2	85	75	ļ <u>.</u>					-	- ''	-		-	-	-	Н	Н	Н
		rate the mechanism and role of the nucleic a uss the structure and machinery of nucleic a				2	75 85	80	l l		H		1 H H		- ''	-	H	-	H	-	H	H	H
		ain the regulation of gene expression under				3	85	80	H							-	Н	-	Н	-	Н	Н	Н
CLO-6		ain the role of biological macromolecules wh				2	80	75	ŀ								Н	-	Н	-	Н	Н	Н
Durati	on (hour)	15	15	15								15							1	5			
	SLO-1	Scope and history	Basic rules for replication	RNA polymerases in prok eukaryotic cells	orokaryotic and Genetic code								Gene	e regu	gulation								
S-1	SLO-2	Proof for DNA as the genetic material	Chemistry of DNA synthesis	Types and function of RN	Ар	olyme	erase	S I	wobble h	poth	esis					Principles of gene regulation							
0.0	SLO-1	Proof for semi conservative replication	Semi discontinuous replication	Structure and function of t	the p	prom	oters		Translatio	on in p	rokai	yotic	cells			Transcriptional gene regulation							
S-2	SLO-2	DNA constituents	Pulse chase and pulse labeling experiment	Fine structure of prokaryo genes	tic a	and e	ukary	yotic	nitiation	of trar	slatic	n				Post	trans	criptio	nal g	ene re	gulati	on	
	SLO-1	Nucleoside and Nucleotide	Enzymes involved in replication	Transcription of RNA in prinitiation	roka	aryote	9S -	ı	Elongatio	n of tı	ansla	tion				Activ	ators						
S-3	SLO-2	Structure of DNA	Types and functions of DNA polymerases in prokaryotic and eukaryotic replication	Elongation and terminatio	n				Transloca	ation						Co-a	ctivat	ors					
S 4-5	SLO-1 SLO-2	Lab 1: Isolation of genomic DNA from bacteria	Lab 4: Plasmid DNA isolation	Lab 7: Polyacrylamide gel of DNA	Lab 7: Polyacrylamide gel electrophoresis of DNA Lab 10: Repeat/Revision of expe					erime	ents	Lab 1	13: Lig	gation	of di	gested	DNA						
	SLO-1	Base pairing and base stacking	Proof reading activity	Transcription in eukaryote	s			,	Terminati	on of	transi	lation				Supp	resso	rs – C	Co-su	ppress	ors		
S-6	SLO-2	Models of DNA	5'-3' exonuclease activity and Topoisomerase activity	Structure of promoters in and tRNA genes	of promoters in mRNA, rRNA, Ribosome recycling				cling					Mode	erator	s, Sile	ncers	s and E	Enhar	cers			
SLO-1 Double helix Events in the replication fork			Transcription of mRNA					Translatio	n in e	ukary	otic o	ells			Oper	ons						-	
3-1	SLO-2	Features of Watson and crick model	Telomeric DNA replication	Steps in transcription by RNA polymerase II					Polyribosome					Positive and negative regulation									
S-8	SLO-1	Major and minor groove	Models of DNA replication – Bidirectional replication	Transcription of tRNA by polymerase III	' Post translational modifications			ations			Lac Operon												
3- 8	SLO-2	Forms of DNA - A, B, Z	Plasmid replication-theta model	Transcription of rRNA by polymerase I	RN	ΊΑ			Protein folding Regulation of Lac operon by glucose														

SLO-1	Lab 2: Qualitative analyses of genomic	Lab 5: Qualitative analyses of plasmid	Lah 8: Isolation of RNA	Lab 11: Restriction digestion of Plasmid	Lab 14: Effect of UV rays in the bacterial
SLO-2	DNA	DNA	Lab o. Isolation of NIVA	DNA	cell growth
	Structure and function of RNAs– mRNA, rRNA and tRNA	Strand displacement model	Processing of tRNA	Protein sorting and targeting	Trp Operon
SLO-2	Secondary structures in RNA	Rolling circle model	Processing of rRNA	Types of Protein targeting	Control of Trp operon by Attenuator
SLO-1	DNA Topology	Bidirectional replication	Post transcriptional processing of mRNAs – 5'capping	Principles of protein sorting and targeting into mitochondria	Ara Operon
SLO-2	Supercoiling – Twist - Writhe	Unidirectional replication	Polyadenylation	Principles of protein sorting and targeting into endoplasmic reticulum	Regulation of Ara operon
SLO-1	Linking number	DNA repair: Nucleotide excision and Mismatch repair	Splicing (including different types)	Principles of protein sorting and targeting into nucleus	Gal Operon
SLO-2	Change in linking number	Photo-reactivation, Recombination repair and SOS repair	Alternative splicing	Principles of protein sorting and targeting into chloroplast	Regulation of Gal operon
SLO-1	Lab 3: Quantitative analyses of genomic	Lab 6: Quantitative analyses of plasmid	Lab 9: Qualitative and quantitative	Lab 12: Restriction digestion of genomic	Lab 15: Polymerase Chain Reaction
	\$LO-2 \$LO-1 \$LO-2 \$LO-1 \$LO-2 \$LO-1	SLO-2 DNA SLO-1 Structure and function of RNAs- mRNA, rRNA and tRNA SLO-2 Secondary structures in RNA SLO-1 DNA Topology SLO-2 Supercoiling – Twist - Writhe SLO-1 Linking number SLO-2 Change in linking number SLO-1 Lab 3: Quantitative analyses of genomic	SLO-2 DNA SLO-1 Structure and function of RNAs- mRNA, rRNA and tRNA SLO-2 Secondary structures in RNA SLO-1 DNA Topology SLO-2 Supercoiling – Twist - Writhe SLO-1 Linking number SLO-2 Change in linking number SLO-2 Lab 3: Quantitative analyses of genomic SLO-1 Lab 6: Quantitative analyses of plasmid	SLO-2 DNA DNA Lab 6: Isolation of RNA Structure and function of RNAs - mRNA, rRNA and tRNA Structure and function of RNAs - mRNA, rRNA and tRNA Structure sin RNA Rolling circle model Processing of tRNA	SLO-2 DNA DNA SLO-1 Structure and function of RNAs—mRNA, rRNA and tRNA Strand displacement model Processing of tRNA Protein sorting and targeting SLO-2 Secondary structures in RNA Rolling circle model Processing of rRNA Types of Protein targeting SLO-1 DNA Topology Bidirectional replication Post transcriptional processing of mRNAs - 5'capping into mitochondria SLO-2 Supercoiling – Twist - Writhe Unidirectional replication Polyadenylation Principles of protein sorting and targeting into endoplasmic reticulum SLO-1 Linking number DNA repair: Nucleotide excision and Mismatch repair Alternative splicing into inchoroplast SLO-2 Change in linking number Principles of genomic Lab 6: Quantitative analyses of plasmid Lab 9: Qualitative and quantitative Lab 12: Restriction digestion of genomic

_			
			0.00.00.00.00.00.00.00.00.00.00.00.00.0
	Learning	1. James D Watson, Molecular Biology of Gene, Pearson Education, 2017	3. Benjamin Lewin, Genes IX, Benjamin Cummings, 2007
	Resources	2. Robert Weaver, Molecular Biology, McGraw-Hill, 2011	4. G.M. Malacinski, David Friefelder, Essentials of Molecular Biology, 4th ed., Narosa Publishers 2008

Learning Asses	earning Assessment											
	Bloom's				Final Examination (50% weightage)							
	Level of Thinking	CLA -	1 (10%)	CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4	l (10%)#	Final Examination (50 % weightage)		
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level I	Understand	20%	20%	13%	10%	10%	10%	10%	10%	10%	13%	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 3	Create	1076	1076	1370	1370	1370	1370	1370	1370	1570	1370	
	Total	100 % 100 % 100 % 100 %		0 %	10	0 %						

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Sam Gunasekar, Orchid Chemicals and Pharmaceuticals Ltd., sam@orchidpharma.com	1. Dr. A. Gnanamani, CSIR-Central Leather Research Institute, agmani_2000@yahoomail.com	1. Dr. K. Ramani, SRMIST
2. Dr. D. Gunaseelan, BIOCON Ltd., guna.sachin@gmail.com	2. Dr. Anbumani Sadasivam, CSIR-Indian Institute of Toxicology Research,anbumani@iitr.res.in	2. Dr. R. Muthukumar, SRMIST

Cou		18BTC106J	Course Name	I	IMMUNOLOGY			ourse tegory	, (0					L 3	T 0	P 2	C 4						
Pre-requisite Courses		Nil	Biotechnology	Co-requisite Courses	Courses			Cd	gressiv ourses	e _{Ni}	Nil													
Cours	/ Codes/Standards		Nil																					
Cours	a Laarnin		1.	earning						roars	m I c	arnii	ng Ou	tcomo	e (DI	0)								
Course Learning Rationale (CLR): The purpose of learning this course is to: CLR-1 : Examine the science of immunology and a detailed study of various types of immune cells								1		3	1	2	3	4	5		7				. 0) 1 12	12	11	15
	CLR-2: Distinguish immune systems produced molecules and their classification, structure and function							-		3	1		J		5	-		0	9 1	0 1	1 12	13	14	13
CLR-3: Choose methods used in immunology, particularly the use of specific antibody in bio-molecular applications									(%	(o)				arch			apilit		~					
CLR-4: Evaluate knowledge about immune system, their cells, its interaction and how they fight against infectious diseases CLR-5: Analyze the dysregulation of immune system functioning and ways to strengthen immune system									Cy (ent (%	ledge		ment	Rese	e_		stain		Wor		auce			
CLR-5: Analyze the dysregulation of immune system functioning and ways to strengthen immune system CLR-6: Evaluate the knowledge about how human body is designed and protected to fight against various pathogens									ficier	ain	\vert_{now}	lysis	dolə/	ign,	Usaç	ture	& Su		eam	- L	& rinance arning			
2									d Pro	d Att	ring	Ana	& De	, Des	T00	S Cu	nent		2 S	T T	wgt. d			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:									Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Collimation	Project Ivigt. & Fina Life Long Learning	PS0 - 1	PSO - 2	H PSO - 3
CLO-1: Describe the immune system and their structure and classification									80	70	М	-	Н		L	Ĺ	L	Н	- I	1 1	И Н	М	Н	
CLO-2: Discuss about genetic control of antibody production, cellular immunology CLO-3: Explain various methods to assess immune function, their application and interpretation of the results										70 70	M	M	- L	H	H	M	H -	••	- H M H		И Н И Н	H	H	H
CLO-3: Explain various metrious to assess immune function, their application and interpretation of the results CLO-4: Describe the role of the immune molecules in infectious diseases, autoimmunity, and cancer will be discussed									80	70	-	-	-	Н			Н		M I		M L	Н	Н	Н
CLO-5: Discuss about hypersensitive immune reaction, vaccination and cancer immunology										70	М	М	-	Н	Н		Н		M I		Н М		Н	Н
CLO-6: Describe how immune cells, organ and processes function to protect human body against infective agen						tive agents and cance	er cells	. 2	80	70	М	L	М	Н	Н	М	М	Н	M I	1 1	Н М	Н	Н	Н
Durati	ration (hour) 15 15					15 15									15									
S-1 =	SLO-1	Overview of the			Immunoglobulin structure Isolation of imm animals			n of immune cells from Human and				Major histo-compatibility Complex(MHC)						Hypersensitive reactions						
	SLO-2	Development an hematopoietic st	nd differentiation of the tem cells	Immunoglobulin typ	Immunoglobulin types and function Antigen- antibody intera					МН	MHC – types and function						7	Type I and Type II reaction						
S-2	SLO-1	Myeloid and Lyn	mphoid lineage	Antibodies biologic properties	Antibodies biological and functional properties antibody affinity and a					МН	MHC Class I						7	Type III and Type IV reaction						
	SLO-2	Lymphatic syste	em	Proteolytic digestio	Proteolytic digestion of antibodies Hemaagglutination rea					МН	MHC Class II							Immune responses to infectious diseases introduction						
S-3	SLO-1	Lymphoid organs - types		Monoclonal antiboo	Monoclonal antibodies production		Coombs test – direct and indirect				antigen processing and presentations – Endogenous and Exogenous						١	Viral disease-HIV infection						
	SLO-2	Innate lymphoid cells		Monoclonal antiboo	Monoclonal antibodies applications			precipitation reaction				Diversity of MHC molecules						Bacterial disease-Tuberculosis						
S 4-5	SLO-1 SLO-2	Lab 1:Laborator	y safety principles and	d Lab 4: Antigen – A Widal test	Lab 4: Antigen – Antibody reaction I – Widal test		Lab 7: Ouchterlony gel diffusion				Lab 10: Active immunodiffusion – II – Counter Current Immunoelectrophoresis							Lab 13: Enzyme linked Immunosorbent assay (ELISA) – DOT						
0.0	SLO-1	Agglutination principle, blood group types Rhesus group types		pes Widal test - slide m method	Widal test - slide method and test tube method		Single radial immunodiffusion (SRID)				Antigen – Antibody interaction						7	Types of ELISA, Direct vs Indirect ELISA, Dot ELISA Sandwich ELISA						
S-6	SLO-2	incompatible blood transfusion and			B Cell differentiation		titer value, zone of equivalence Quantitative Immuno assays				Standard and test antigen Rocket Immunoelectrophoresis							Parasitic disease-Malaria						
S-7	SLO-1	Receptors of Innate Immune system		B cell receptor stru transduction	B cell receptor structure and B cell signal transduction		passive Immunodiffusion				Biology of T lymphocyte					E	Evading Mechanisms of pathogens							
	SLO-2	Types of Immun	ne cells, Innate Immun	ity Antibody diversity	, ,			Precipitation reaction				T cell receptors and interaction with MHC						Vaccine history and principle						
S-8	SLO-1	Anatomical and	Physiological barriers	Light chain synthes	I I iant chain cunthocic			Active Immunodiffusion – Rocket immunoelectrophoresis				T-cell maturation						Active and passive Immunization						
	SLO-2	Acquired Immun	nity, clonal selection th	Heavy chain synthe	Heavy chain synthesis Cytokine receptor SD			SDS-PAGE and Western blot				T-cell activation and differentiation						DNA vaccine, Edible vaccine and Adjuvants						

S 9-10	SLO-1 SLO-2	Lab 2: Total Leukocyte count	Lab 5: Antigen – Antibody reaction II -rapid plasma reagin (RPR) test	Lab 8: Repeat/Revision of experiments	Li an TT immiinonrecinitation	Lab 14: Enzyme linked Immunosorbent assay (ELISA) – Plate
C 44	SLO-1	Types of blood cells Leukocyte counting	Flocculation reaction	Quantitative Immuno assays - Radio- immunoassay	Thymic selection - Positive and negative	Tumor Immunology introduction
S-11	SLO-2	Comparative immunity - Plant Immune system	Cytokine types and function	Precipitation reaction, Immunoprecipitation	T-cell activation and cytokine secretion	Evidence for Tumor Immunity
S-12	SLO-1	Vertebrate and Invertebrate Immune system	Role of cytokines in diseases		Result interpretation Counter current immuno electrophoresis	Tumor immuno therapy
3-12	SLO-2	Immunogens, Antigens and Haptens	Complement system	Immunohistochemistry	Cytokine control of TH1 and TH2 CD4+	Autoimmunity introduction
C 12	SLU-1	Requirements for immunogenicity; major classes of antigens	Regulation of complement pathway	Itlow cytometry ELISA and types	Function of CD8+ T cells, T Regulatory cells	Genetic Basis of Autoimmunity
S-13	SLO-2	antigen recognition by T and B lymphocytes		Cell culture and experimental models, analysis of gene expression	T-cell and B-cell cooperation, Pathways of Activation	Classification of auto-immunity
S 14-15	SLO-1 SLO-2	Lab 3: Differential Leukocyte count	3	Lab 9: Active Immunodiffusion 1 - Rocket Immunoelectrophoresis	Lab 12: SDS-PAGE	Lab 15: Western blotting

Learning Resources	1. Sudha Gangal, Shubhangi Sontakke, Textbook of basic and clinical immunology, Universities Press, 2013	2. Jenni Punt, Sharon Stranford, Patricia Jones, Judith A Owen, Kuby Immunology, 8th ed., W. H. Freeman and Company, 2018
-----------------------	--	---

Learning As	sessment													
_	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination (FOV) weighted				
	Level of Thinking	CLA -	1 (10%)	CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4	l (10%)#	Final Examination (50% weightage)				
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Total	10	0 %	100) %	10	0 %	10	0 %	10	0 %			

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	1. Dr. Joe Varghese, CMC Vellore, joevarghese@cmcvellore.ac.in	1. Dr. S. Thyagarajan, SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	2. Dr. S. Nageswaran, SRMIST

Cou		18BTC107J Course Name	BIOPROCESS PRINCIPLES	-	Cour ateg		С				Prof	essior	al Core					L 3			C 4
Co	equisite ourses e Offering	18BTC103J Department Biotechnology	Co-requisite Courses Nil Data Book	/ Codes/Standards	N	Progress Course		Nil													
Cours	e Learnin	g Rationale (CLR): The purpose of learni	ng this course is to:			Learni	ing				F	Progra	am Lea	rning (Outco	mes (PLO)				
CLR-1	: Selec	et the proper design offermenters and the fen	mentation process			1 2	3	1	2	3	4	5	6 7	8	9	10	11	12	13	14	15
CLR-2		nine the process of media formulation and ste									-		.≟								
CLR-3		ss the metabolic stoichiometry and energetic age the various modes of operating and desic		(%)	(%)	e e		ŧ	searc				¥		æ						
CLR-5		pret the microbial growth and kinetics during				ency B	nent	wled		bme	, Re	g	0 2		۳ W		nanc	p			
CLR-6	-6: Analyze the basic principles of bioprocess engineering and the working of living cells						tain	X S	alysis	ole ve	sign	l Us	ulture 2 ×	5	Tear	tion	& Fi	arnir			
CLO-1 CLO-2 CLO-3 CLO-4	: Expla : Pract : Interp : Analy		s of fermentation process hisites to produce bioproducts buct formation mediated by cell growth hation data to operate the bioreactor according	ıgly		2 Level of Thinking (Bloom) 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	70 70 70 70	H H Engineering Knowledge	M H M Problem Analysis	H H H Design & Development	エココ Analysis, Design, Research	L L L	Society & Culture	- - -	H H H Individual & Team Work	H H Communication	· · · Project Mgt. & Finance	H H H	H H H	H H H	H H H H H
CLO-5	: Apply : Empl			3 80 3 80		H		H	H	H	- F		H	H	-				H H		
Durati	Ouration (hour) 15 15									15	i	<u>'</u>	'		15						
	SLO-1	Outline of an integrated bioprocess	Criteria for a good medium	Stoichiometric of cell grow	th			Types of b	ioreac	tor				Math	athematical models						
S-1	SLO-2	Upstream and downstream bioprocess	Types of media	Stoichiometric of product for	orma	ation		Strategies for choosing a bioreactor Mathematic						lathematical Models - Classification							
S-2	SLO-1	Process flow sheets of primary metabolite production	Various commercial media for microbial biotechnology	Elemental balance, degree	e of ı	reduction	n .	Modes of a	perat	ion of	biorea	ctor		Model formulation							
3-2	SLO-2	Process flow sheets of secondary metabolite production	Medium formulation – Carbon and Nitrogen source	Substrate and biomass				Batch ope	ration	– The	ory			Unst	ructur	ed, No	nseg	regate	d mod	lels	
	SLO-1	Types of fermentation	Medium formulation – Growth factor and inducers	Electron balance				Growth kir	etics (of bato	h culti	ure		Mon	od mo	del					
S-3	SLO-2	Fermented products	Natural and synthetic media	Yield coefficient of biomas. formation	s an	d produc	ct	Solving pr	oblem	in gro	wth kii	netics		Blac		tessie	er, mo	ser an	d con	tois	
S 4-5	SLO-1 SLO-2	Lab 1 - Types of fermentation	Lab 4 - Medium formulation to maximize the biomass production	Lab 7 - Batch growth kinet of doubling time	ics -	Evaluat	ion	Lab 10: Repeat/Revision of experiments							13 - Q glucos		icatio	of bio	mass	, etha	nol
	SLO-1	Fermenter – Various components	Animal culture media	Maintenance coefficients			Batch reactor – Logistic equations						Mon		del m	odifie	d for su	ıbstra	te		
S-6	SLO-2	Fermenter design	Plant culture media	Determination of stoichiom	netrio	c coeffici	ients	Performan	ce equ	uation	of a b	atch re	eactor	Mod	fied M	lonod	mode	ls			
S-7	SLO-1	Standard geometry of stirred tank bioreactor (STR)	Design of experiments	Solving problem in stoichiometric coefficients Solving problem related to batch reactor						actor	Unst	ructur	ed Ba	tch G	rowth I	Model	S				
3-1	SLO-2	Basic features of STR – Agitation	Plackett - Burman design (PBD)	Solving problem in stoichiometric coefficients Fed-batch oper							•			Prod	uct Fo	rmatio	on Kir	etics			
S-8	SLO-1	Basic features of STR – Aeration	Response surface methodology (RSM)	Energetic analysis of micro product formation	robial growth and Performance equation of a fed- batch reactor Structured kinetics Mod							del									
3-0	SLO-2	Basic features of STR – Miscellaneous items	Artificial neural network (ANN)	Oxygen transfer in aerobic	cult	ture		Solving pro reactor	oblem	relate	d to fe	d-bato	:h	Struc mod		produ	ct for	mation	kinet	ic	

S	SLO-1	Lab 2 - Bioreactor operation	Lab 5 - Screening of process parameters	Lab 8 - Batch growth kinetics - Evaluation	Lab 11 - Preparation of immobilized	Lab 14 - Production of ethanol by
9-10	SLO-2	(demonstration)	for bacterial biomass production by PBD	of specific growth rate	cells/enzyme	Saccharomyces cerevisae
S-11	SLO-1	Summary of conventional bioreactor systems	Sterilization	Oxygen transfer in aerobic culture – problem	Continuous operation - Theory	Compartment model
0-11	SLO-2	Summary of novel bioreactor systems	Kinetics of thermal death of microorganism	Determination of yield coefficients	Chemostat and Turbidostat	Williams two compartment model
C 42	SLO-1	Monitor and Control of physical parameters	Solving problem in sterilization kinetics	Solving problem in yield coefficients	Performance equation of a continuous reactor	Ramakrishna Model
S-12	SLO-2	Monitor and Control of chemical parameters	Types of sterilization - batch	Solving problem in yield coefficients	Dopt – Significance	Product formation models
S-13	SLO-1	Monitor and Control of biological parameters	Types of sterilization - Continuous	Heat evolution in aerobic culture	Solving problem related to Dopt	Luedeking-piret Model
3-13	SLO-2	Summary of Monitor and Control of fermentation parameters	Air sterilization	Analyze thermodynamic efficiency of cell growth	Stability analysis of bioreactor	Growth and non-growth associated kinetics
S 14-15	SLO-1 SLO-2	Lab 3 - Real-time monitoring of process (pH, temp etc.) parameters in bioreactor		Lab 9 - Batch growth kinetics - Evaluation of yield coefficient	Lab 12 - Comparison of free and immobilized enzyme/cells kinetics	Lab 15 - Evaluation of ethanol yield and productivity by S. cerevisae

Learning Resources	 Hall, Stephen J., Stanbury, Peter F., Whitaker, Allan, Principles of Fermentation Technology, 3rd ed., Butterworth – Heinemann, 2017 Pauline M. Doran, Bioprocess Engineering Principles, 2nd ed., Academic press, 2012 	3. Carl-Fredrik Mandenius, Bioreactors: design, operation and novel applications, 1sted., Wiley-VCH Verlag GmbH & Co, 2016
-----------------------	--	--

Learning Ass	sessment													
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination (50% weightage)				
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	1 (10%)#	Final Examination (50% weightage)				
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Total	100	0 %	100	0 %	10	0 %	100	0 %	10	0 %			

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. P. BalaKumaran, Proklean Technologies (P) Limited, Chennai,genbalu86@gmail.com	1. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	1. Dr. M. VenkateshPrabhu,SRMIST
2. Dr. Karthik Periyasamy, Aurobindo Pharma Limited, Hyderabad, karthikmpk@gmail.com	2. Prof. R. B. Narayanan, SVCE, Chennai, rbn@svce.ac.in	2. Dr. V. Vinoth Kumar, SRMIST

Cou		18BTC108J Course Name	PLANT BIOTECHNOLOGY			urse egory		С				Pro	fessio	nal Co	ore					L 1	T I	P 2	C 4
	equisite	18BTC103J	Co-requisite Nil			Prog			Nil														
	urses		Courses	10 1 101 1 1			urses	s i	***														
Course	Offerin	g Department Biotechnology	Data Book	/ Codes/Standards	/\	Nil																	
Course	Learnir	ng Rationale (CLR): The purpose of learning	ng this course is to:			Le	arnin	ng					Prog	ram L	earni	ing O	utcor		•				
CLR-1	: Illusti	rate the genome organization in plants and its	regulations			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		oy the different methods for the development	0 1									_			.≥.								
		the plants as production systems by altering t		ents	_	æ	(%)	(%	<u>o</u>		+=	earc			labi		논		m				
CLR-4 CLR-5		oret the mechanisms for plant to cope up for to the classical and modern plant breeding tec			8)cy) tue	ledo		men	Resi	e e		stair		% W		ance					
CLR-6	117 1 0 1 1 1								lo V	ysis	dole	igi,	Usaç	ture	S. Su		eam	5	Ē	E.			
OLI C	100 In the knowledge to increase plant production and protection through biotechnological approaches					įĘ	Pro	Atta	a p	Anal	Dev	Des	1 00	ਤੋ	eut		×	catio	gt. 8	Lea			
Course	Learnir	ng Outcomes (CLO): At the end of this cou	rse, learners will be able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PS0 - 1	PSO - 2	H PSO - 3
		iss on the basics of plant genomes organizat					80	70	-	Н	-	Н	-	-	-	-	Н	-	-	-	Н	Н	Н
		onstrate the various methods of genetic mani				2	85	75	Н	Н	Н	Н	Н	-	Н	Н	Н	-	Н				Н
		rate the mechanism and role of plant tissue co uss the molecular aspects of plant adaptability				2	75 85	80	H	H	H	H M	H -	-	H M	-	H	-	H				H
CLO-4		in the significance of plant breeding and gen		nortance		3	85	80	Н	Н	Н	Н	Н	-	M	Н	Н	-	Н				Н
CLO-6		nin the significance of plant breeding and gen in the basic concepts and to use the plant bid					80	75	H		H	Н	Н	-	Н	Н	Н	-	Н				H
																							_
Duratio	n (hour)	15	15 1								15	5					15 troduction to crop improvement						
S-1	SLO-1	Introduction and scope of plant molecular biology	Agrobacterium mediated gene transfer	Plant Tissue culture				F	Plant stres	ses									•	•			
0-1	SLO-2	DNA, Chromatin, and Chromosome structure	The biology of Agrobacterium	Plasticity and totipotency	of p	lant c	ells	E	Biotic stress The distant past and beyond					listant past - Crop plant domestication eyond			tion						
S-2	SLO-1	Chloroplast genome	Vector for plant transformations	The culture environment				F	Plant – pa	thoger	n intera	actior	ıs			The re	ecent	past -	•				
3-2	SLO-2	Genome Structure, evolution, expression, gene regulations	Ti plasmid	Physical and chemical fa	ctors	S		F	Prokaryote	es, fun	gi and	l virus	es			Hybrid	d see	d prod	ductio	n			
S-3	SLO-1	Mitochondrial genome	t-DNA transfer and integration	Plant growth hormones				E	isease re	sistan	се					Impor	tance	of gr	een r	evolutio	on		
3-3	SLO-2	Genome Structure, evolution, expression, gene regulations	transformation in plant with an example of Arabidopsis thaliana	Culture types	ture types Natural disease resistance in plants								The (I	First)	Greer	n Rev	olution						
S 4-5	SLO-1 SLO-2	Lab 1: Isolation of genomic DNA from plant tissues	Lab 4: Isolation and recombinant preparation of Ti plasmid	Lab 7: Preparation of plant tissue culture media Lab 10: Repeat/Revision of experiments								Lab 1 fusion				olation _: on	elec	tro-					
0.0	SLO-1 Nuclear genome Direct gene transfer methods Production of secondary metabolites Biotechnological approach							ach				Breed	ling te	echno	logies	;							
S-6	SLO-2	Genome size and organization	anization Advantages and disadvantages Carbohydrates					C	ver expr	ession	of PR	R-prot	eins			Advai	nces i	n bree	eding	techno	logie	s	
0.7	SLO-1	Introduction to gene and expression	Vectors	Metabolic engineering				F	lerbs as l	oiotic s	stress	facto	S			Practi	icing I	Now a	nd				
S-7	SLO-2	Regulation of gene expressions	Optimization and binary vectors	Lipids				7	ypes of h	erbicio	des					into th	ne futi	ure					
	SLO-1	Gene transcription	Alternative markers and reporter genes	Molecular farming					ransgeni olerance			or im	provin	g		Applications of breeding							
S-8	SLO-2	Organellar Self-Splicing Introns and Horizontal DNA transfer	Effect of selectable marker system to environment	Proteins					Plant base			tion				Breed	ling fo	or imp	rovea	humai	n hea	lth	

S	SLO-1	Lab 2: Extraction of total RNA from plant	Lab 5: Agrobacterium mediated gene	Lab 8: Direct organogenesis of plants	Lab 11: Enhanced production of secondary metabolites in suspension cultures by	Lab 14: Haploid productions/
9-10	SLO-2	tissues	transformation in Arabidopsis thaliana	Lab o. Direct organogenesis or plants	using elicitors	Somatic embryogenesis
S-11	SLO-1	RNA modification	The genetic manipulation of pest resistance crop plants	Emerging applications	Abiotic stresses - nature	Breeding
3-11	SLO-2	Post Transcriptional Gene Silencing (PTGS)	Bacillus thuringiensis (Bt) approach	Producing fine chemicals	Plant responses	For drought tolerance
C 40	SLO-1	Micro RNA	The use of Bt as a biopesticide	Plant derived compounds	The nature of water deficit stress	Innovations
S-12	SLO-2	Production and interfering with gene for silencing	Bt-based genetic modification of plants	As a drugs	Various approaches for tolerance	In agriculture
S-13	SLO-1	DNA instability	Development of pest resistant crops	Current demand from plants	Salt stress	Revolutions
3-13	SLO-2	Transposable Elements in plants	Clean gene technology – Copy nature strategy	Alternative fuels	Cold and heat stress	The Second Green Revolution
S	SLO-1	Lab 3: Qualitative and Quantitative	Lab 6: Demonstration of electroporation	Lab 9: Callus induction and indirect		Lab 15: Quantification of t-DNA
14-15	SLO-2	analysis of nucleic acids from plant tissues	method of gene transformation in plants	organogenesis	secondary metabolites using HPLC	expressions from plants

Learning	Slater. A, Scott.N.W, Fowler,M.R, Plant Biotechnology - The genetic manipulation of plants, Oxford University Press 2008	3. Carole L. Bassett, Regulation of gene expression in plants - The role of transcript structure and processing. Springer, 1st ed., 2007
Resources	2. C Neil Stewart Jr. Plant Biotechnology and Genetics, John Wiley & Sons, Inc., New Jersey 2008	4. Murray.D.R, Advanced methods in plant breeding and biotechnology, CAB International 1998

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	FIIIai Examination	i (50 % weigillage)								
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
2010.2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total 100 % 100 % 100 % 100 %									10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Senthil, EID Parry, Chennai, parrynutraceuticals@parry.murugappa.com	1. Prof. Usha Vijayraghavan. IISc, Bangalore, uvr@mcbl.iisc.ernet.in	1. Dr. Sarada, SRMIST
1. Dr. C. N. Ramchand, Saksin Life sciences Pvt Ltd, Chennai, ramchand@saksinlife.com	2. Prof. K Subramaniam, IITM, Chennai, subbu@iitm.ac.in	2. Dr. Pachaiappan, SRMIST

ACADEMIC CURRICULA

Professional Core Courses

CHEMICAL ENGINEERING

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Course Code	18CHC203T	Course Name		CHEMICAL PROCESS CALCULATIONS	Course Category	(2	Professional Core	L 3	T 1	P 0	C 4
Pre-requis Courses	INII			Co-requisite Courses		gressiv ourses	е	Nil				
Course Offe	ring Department	Chemic	al Engineering	Data Book / Codes/Standards	Nil							

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	.earni	ng					Prog	ram L	earn	ing O	utcor	nes (PLO)				
CLR-1: Explain the system of units, predict the PVT properties of Ideal gases, understand the composition of various mixtures	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Formulate and solve material balance for non-reactive chemical process systems										>-								
CLR-3: Formulate and solve material balance for reactive chemical process systems	=		~				Research			.≣ 				ı	1			
CLR-4: Formulate and solve energy balance for chemical process systems	(Bloom)	y (%)	t (%)	a	5	ent	Sec			aina		Work		8				
CLR-5: Formulate and solve material balance for simple process flow sheets.	3(B)	roficiency	Attainment	d	U	elopment	~	Usage	Φ	Sustainability				inance	ning			
CLR-6: Explain mass and energy balance for reactive and non-reactive systems	Thinking	ofici	ain	, X	Analysis	vel vel	Design,	ns	Culture	∞		Team	io	∞ ⊥	ari			
	喜	Δ.		.5	S A			20	್ ಶ	neu		∞	ica	Mgt.	J Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design 8		Modem -	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Do unit conversions, Predict PVT properties of gases using ideal gas equation, calculate the composition of mixtures	2		75	H	·	-	-	-	-	-	-	-	-	-	-	Н	-	-
CLO-2: Solve the material balance for non-reactive Chemical process systems	2	80	75	H	ŀ	- 1	-	-	-	-	-	-	-	- 1	- 1	Н	Н	-
CLO-3: Solve the material balance for the reactive chemical process systems	2	80	75	H	ŀ	l M	- 1	-	-	-		-	-	-	- 1	Н	Н	-
CLO-4: Solve the energy balance for chemical process systems	2	80	75	H	·	l M	-	-	-	-	-	-	-	-	-	Н	М	М
CLO-5: Solve the material balances including recycle, purge streams for simple process flow sheets.	2	80	75	H	·	l M	-	-	-	-	-	-	-	- 1	-	Н	L	М
CLO-6: Perform mass and energy balances for varied chemical systems			75	H	·	1 -	-	-	-	-	-	-	-	-	-	Н	-	-

Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Concept of various systems of Units and dimensions.	Law of conservation of mass	Chemical reactions and stoichiometric equations	Thermo physics: Heat capacity, Kopp's rule	Introduction to material balance for sequential processes.
3-1	SLO-2	Unit conversions	Formulation of overall and individual component balance equations	Limiting reactant, excess reactant,	Sensible heat, latent heat and enthalpy	Introduction to material balance for sequential processes.
S-2	SLO-1	Various Temperature scales	Material balance for non-reactive chemical process systems: mixing	Conversion, Degree of completion, selectivity and yield.	Energy balance for non-reactive systems	Basic concepts of recycle and purge streams
3-2	SLO-2	Types of Pressure	Material balance for non-reactive chemical process systems: mixing	Conversion, Degree of completion, selectivity and yield.	Energy balance for non-reactive systems	Basic concepts of recycle and purge streams
S-3	SLO-1	Temperature and Pressure unit conversions	Problems in mixing	Problem solving in Conversion	Problem solving on sensible heat	Basic concepts of bypass stream
3-3	SLO-2	Concept of mole	Problems in mixing	Problem solving in Degree of completion, selectivity and yield.	Problem solving on sensible heat	Basic concepts of bypass stream
S-4	SLO-1	Predicting PVT properties of gases using ideal gas law	Material balance problems on crystallization process	Material balances for processes with reactions.	Thermo chemistry	Material balances for systems with recycle stream.
3-4	SLO-2	Predicting PVT properties of gases using ideal gas law	Material balance problems on crystallization process	Material balances for processes with reactions.	Standard Heat of formation, standard heat of combustion	Material balances for systems with recycle stream.
S-5	SLO-1	Problems using Ideal gas law	Material balance problems on drying Process	Tutorial in Material balances for processes with reactions.	Hess law	Tutorial on Recycle Stream
3-3	SLO-2	Problems using Ideal gas law	Material balance problems on drying Process	Tutorial in Material balances for processes with reactions.	Tutorial on Thermochemistry	Tutorial on Recycle Stream
S-6	SLO-1	Basis of calculations	Material balance problems on membrane separation process	Combustion as a special case of material balance with reactions.	Heat of reaction from heat of formation or combustion	Material balances for non-reactive systems with bypass and purge stream
J-0	SLO-2	Basis of calculations	Material balance problems on membrane separation process	Combustion as a special case of material balance with reactions.	Tutorial on Thermochemistry	Material balances for non-reactive systems with bypass and purge stream

S-7	SLO-1	Composition of mixtures – Solids	Material balance problems on distillation process	Fuels, types of fuel, flue gas	Tutorial on Thermochemistry	Tutorial on Multiple processes
5-7	SLO-2	Composition of gas mixtures - mole, mass, volume and partial pressure.	Material balance problems on distillation process	Orsat analysis, theoretical air, excess air	Tutorial on Thermochemistry	Tutorial on Multiple processes
S-8	SLO-1	Density of gas mixtures	Tutorial on distillation	Problems on Combustion	Enthalpy changes in reactions with different temperatures	Material and energy balance analysis for multi-unit processes
3-8	SLO-2	Density of gas mixtures	Tutorial on distillation	Problems on Combustion	Problem solving on Enthalpy for reactive systems	Case studies with simple process flow sheets
S-9	SLO-1	Problems on composition	Material balance problems on extraction process	Problems on Combustion	Problem solving on Enthalpy for reactive systems	Case study 1
5-9	SLO-2	Problems on composition	Material balance problems on extraction process	Problems on Combustion	Problem solving on Enthalpy for reactive systems	Case study 1
S-10	SLO-1	Problems on composition	Partial saturation and humidity, types of humidity	Analysis of products of combustion	Problem solving on Enthalpy for reactive systems	Case study 2
0-10	SLO-2	Problems on composition	Relative humidity and percentage humidity	calculation of excess air	Theoretical flame temperature.	Case study 2
S-11	SLO-1	Solutions and their concentrations	Material balances involved in two-phase gas-liquid systems as in humidification and dehumidification.	Tutorial on excess air	Theoretical flame temperature.	Case study 3
	SLO-2	Solutions and their concentrations	Tutorial on Humidification	Tutorial on excess air	Tutorial on Energy Balance	Case study 3
S-12	SLO-1	Tutorial on concentrations	Tutorial on Humidification	Tutorial on Reactive systems	Tutorial on Energy Balance	Tutorial on Mass balance for process flowsheets
3-12	SLO-2	Tutorial on concentrations	Tutorial on Humidification	Tutorial on Reactive systems	Tutorial on Energy Balance	Tutorial on Mass balance for process flowsheets

Learning
Resources

- David M. Himmelblau, James B. Riggs, Basic Principles and Calculations in Chemical Engineering, 8th ed., Pearson - Prentice Hall International
- 2. B. I. Bhatt, S. B Thakore., Stoichiometry, 5th ed., Tata McGraw-Hill Publishing Company, New Delhi
- B. Lakshmikutty, K. V. Narayanan, Stoichiometry and Process Calculations, PHI Publishers, Delhi Richard M. Felder, Ronald W. Rousseau, Elementary Principles of Chemical Processes, 3rd ed.,
- John Wiley & Sons, Inc.

Learning Assess	sment												
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)		
	Level of Thinking CLA – 1 (10%) CLA – 2 (15%) CLA – 3 (15%) CLA – 4 (10%)#										i (50 % weightage)		
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	40 %		30 %		30 %		30 %		30%			
Level I	Understand	40 /0	-	30 //	-	30 //	-	30 70	-	3070	-		
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%			
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-		
Level 3	Evaluate	20 %		30 %		30 %	_	30 %		30%			
Level 3	Create	20 /0	-	30 //	-	30 //	-	30 70	-	3070	-		
	Total	10	0 %	10	0 %	10	0 %	100	0 %	100 %			

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Mr. V. Ganesh, SRMIST
	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Ms. E. Kavitha, SRMIST

Course Code 18CHC205T	Course Name	CHEMICAL ENGINEE	RING FLUID MECHANICS	Course Category	С	Professional Core	L 3	T 0	P 0	3
Pre-requisite Courses Nil Course Offering Department	Chemic	Co-requisite Courses Nil Cal Engineering	Data Book / Codes/Standards	Progres Cours Nil		Nii				

Course Learning Rationale (CLR):	urse Learning Rationale (CLR): The purpose of learning this course is to:			earnir	ng				F	Progr	am L	earni	ing O	utcor	nes (PLO)				
CLR-1: Describe the behavior of flu	ids, mechanics of fluids (fluid statics and fluid dynamics)) and fluid flow phenomena	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Demonstrate the Kinematics	s of flow											,		1						
CLR-3: Analyze the flow past imme	rsed bodies		=	_	_				earch			≣		.						
CLR-4: Elucidate the transportation	of fluids		(moo	(%)	t (%)	age		eut	Sea			aina		Work		9				
CLR-5: Compare the metering of flu	iids) (Blo	ency	nent	efinelwolly	s	elopme	, Re	Usage	as de	Sustainability				inance	ng			
CLR-6: Describe fluid flow and the i	ts transportation.		Thinking	ofici	Attainme		alysi	>	Design,	l Usi	ulture	∞ಶ		Team	ion	& F	arni			
		_	声	귤	d At	≘	Anal	& De	9	J00	ر ک	nen		∞	ica	Mgt.	J Le			
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:		Level of	Expecter	Expecter	n in	Problem	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual	Communication	Project I	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Describe fundamental know	rledge in fluids properties, classification, flow in boundar	y layers, and pressure measurements	1	80	70	1	Н	L	-	-	-	-	-	-	-	-	-	Н	Н	-
CLO-2: Interpret Bernoulli equation,	Friction factor and pressure measurements		2	85	75	1	Н	М	М	М	-	-		-	-	-	-	Н	Н	-
CLO-3: Interpret the Ergun equation	n, Navier–Stokes, settling velocity and fluidization		2	80	75	1	М	М	-	Μ	-	-		-	-	-	-	Н	Н	-
CLO-4: Differentiate types of seals,	valves and pumps		2	85	75	1	L	М	М	М	-	-	-	-	-	-	-	L	Н	-
CLO-5: Differentiate flow meters an	d flow rate calculations	·	2	85	75	1	Н	Н	-	М	-	-	-	-	-	-	1	L	Н	-
CLO-6: Understand the flow behavi	or of fluids and their handling.	·																		_

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Introduction to fluids	Streamlines and stream tubes	Drag, drag coefficients	Introduction to: pipe and tubing	Introduction to: Metering of fluids
5-1	SLO-2	Continuum hypothesis, Forces on fluids	Eulerian and Lagrangian descriptions Continuity equation	Drag coefficients of typical shapes	Transportation of fluids	Types of metering of fluids
S-2	SLO-1	Tutorial on forces	Bernoulli equation	Ergun equation	Joints and fittings, Flanges	Constructional features of venturi meter
3-2	SLO-2	Newtonian and Non-Newtonian fluids	Pump work in Bernoulli equation	Navier–Stokes equation	Stuffing boxes, Mechanical seals	working principles of venturi meter
S-3	SLO-1	Hydrostatic equilibrium	Tutorial on Bernoulli equation	Settling velocity	Gate valves and globe valves	Derivation for flow measurement by using Bernoulli equation
3-3	SLO-2	Fluid statics - pressure distribution	Tutorial on Bernoulli equation	Free and hindered settlings	Plug cocks, ball valves, check valves	Tutorial on venturi meter
S-4	SLO-1	Tutorial on pressure	Friction factor	Terminal settling velocity	Classification and selection and design of pumps	Constructional features of orificemeter
3-4	SLO-2	Eddy viscosity	relationships between skin-friction parameters	Tutorial on Settling velocity	Design of blowers and compressors	working principles of orificemeter
S-5	SLO-1	Reynolds number	Flow of incompressible fluids	Tutorial on Settling velocity	Compressible flow	Derivation for flow measurement by using Bernoulli equation
5-5	SLO-2	laminar and turbulent nature	Flow of incompressible fluids in conduits and thin layers	Tutorial on Free and hindered settlings	Pumps: developed head, suction lift, power requirement	Tutorial on orificemeter
S-6	SLO-1	laminar and turbulent flow in boundary layers, boundary layerformation in tubes	Friction factor, Moody diagram	Stokes' law	Constructional features of single suction volute centrifugal pump	Constructional features and working principles of Pitot tube
3-0	SLO-2	Unsteady flows	Relationships between average velocity and maximum velocity	Newton's law for settling	Working principle of single suction volute centrifugal pump	Derivation for flow measurement by using Bernoulli equation

S-7	SLO-1	Dimensional analysis	roughness parameter, Vorticity and Circulation	criterion for settling regime	Characteristic curves of centrifugal pump, comparison of devices for moving fluids	Constructional features and working principles of Rotameters
3-1		Dimensional analysis derivation for pressure drop	Equivalent diameter, form friction losses in Bernoulli equation, couette flow.	Tutorial on Newton's law for settling	Tutorial on pumps	Derivation for flow measurement
S-8	SLO-1	Boundarylayer	Hagen-Poiseuille equation	Fluidization	Constructional features of reciprocating pump	Tutorial on flow measurement
3-0	SLO-2	Boundary layer formation in flat plate	Hydraulically smooth pipe, von Karman equation	Types of fluidization	working principle of reciprocating pump	Tutorial on flow measurement
S-9	SLO-1	Manometer, types of manometers	Tutorial on Hagen-Poiseuille equation	Conditions for fluidization,	Tutorial on pumps	Target meter, turbine meter
5-9	SLO-2	Tutorial on Manometer	Tutorial on Hagen-Poiseuille equation	Minimum fluidization velocity	Constructional features and working principle of jet ejectors	Vortex shedding meter, Magnetic flow meter

Learning	1.	McCabe, W.L., Smith, J.C., Harriot, P., Unit Operations in Chemical Engineering, 7th ed., McGraw-Hill,	3.	Badger W.L. and Banchero J.T.,
Resources		2005	4.	Coulson. J.M, Richardson. J.F, E
11000011000	12.	Noel de Nevers, Fluid Mechanical for chemical Engineers, 2 nd ed., McGraw Hill International Editions, 1991		Engineering, Vol. II, 5th ed., Butt

 Badger W.L. and Banchero J.T., Introduction to Chemical Engineering, Tata McGraw Hill, 1997
 Coulson. J.M, Richardson. J.F, Backhurst. J.R. Harker. J.M, Coulson & Richardson's Chemical Engineering, Vol. II, 5th ed., Butter worth Heinemann, Oxford, 2002

Learning Asses	sment											
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (50% weightage)	
	Level of Thinking	CLA -	1 (10%)	CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	(10%)#	Filiai Examination	i (50 % weigiliage)	
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	10	0 %	100) %	10	0 %	100	0 %	100 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Dr. K. Anbalagan SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Dr. S. Vishali, SRMIST

																				- ,	_	_			
Cou		18CHC2061	Course Name	MECHA	NICAL OPERATIONS			ourse egory	,	С				Pro	fessio	nal Co	ore					L 3) (C 3
D				0	T																	0	, ,	0	_
	requisite ourses	Nil		Co-requisite Courses	Nil				gress ourse		Nil														
Cours	e Offerin	g Department	Chemical Engineering	g	Data Book	/ Codes/Standards		Nil			•														
											1														
		ng Rationale (CLR):	The purpose of learning	•					earnir				,			ram Le		-							
CLR-1			aracterizing, handling a e reduction and size enl		s, and Screening concept	ts		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13 1	14	5
			eparations of particles t		ai licies			2	_	_				<u>r</u> c			bility								
			filtration and working of					Sloon	%) %	nt (%	dge	,	ent	esea			taina		Nork		nce				
			ation and mixing, and vize reduction and partic		ellers, design of turbines			ng (E	cienc	nmer	Jan S	.s	logi	J. R.	sage	ıre	Sus		am /	_	& Finance	ning			
CLK-6	: Desc			hinki	Profi	Attai	l la	Analy.	Deve	Desig	n loo	Culfu	ent &		& Te	cation	gt. &	Leari							
Cours	e Learnir	ng Outcomes (CLO):	At the end of this cou	rse, learners will be	able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Fnaineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modem Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt.	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
		racterize the particles s						2	85	70	-	Н	-	Н	L	-	-	-	-	-	-	М	Н	-	-
		cribe the size reduction	n machineries I separation techniques					3	90 85	80 75	H		- М	M H	-	-	- М	-	-	-	-			_	<u>-</u>
			cepts and design the e					2	85	75	H		H	Н	-	-	М	-	-	-	-		_		-
			ation and mixing in proc					3	80	70	Н	Н	М	Н	-	-	-	-	-	-	-			-	-
CLO-6	: Unde	erstand particle separa	ation based on size and	their handling				3	80	70	Н	Н	М	Н	-	-	-	-	-	-	-	-	Н	-	-
Durati	on (hour)		9		9	9			9							9	9								
S-1	SLO-1	Characterization of s and size	colids: Particle shape	Purposes of size re	eduction	Motion of particles in fl	uid				Principles	of Filt	ration					Introduction and purposes of mixing a						g and	
3-1	SLO-2	Mixed Particle size n techniques		Principles of Comm		Free settling and Hinde					Mechanis	m of fi	Itratio	า				Agitat							
S-2	SLO-1	Specific surface area particle size	a of mixture, Average	Power and Energy reduction	requirements in size	Gravity settling process Clarifier	ĺ		ier an	d	Filter Med	ium a	nd Filt	er aid	S		,	Impeli	ers :	Turbii	nes				
	SLO-2	Tutorial on particle si	ize	Crushing efficiency		Drag forces and Lift for coefficient Terminal se			ty		Cake and					ces		Prope	llers a	and P	addle	s			
S-3	SLO-1	Tutorial on particle si	ize	Kick's law, Bond's		Settling under Stoke's	law re	egime			Principles Pressure	drop ti	hrough	n filter	cake			Stand	ard tu	ırbine	desig	gn			
	SLO-2			Tutorial on power r reduction	,	Newton's law regime					Compress cakes	ible a	nd inc	ompre	essible	efilter		Flow	oatter	ns ins	side th	ne agita	tion v	essel	
S-4	SLO-1	Screen analysis: Diff cumulative method	ferential and	Tutorial on power r reduction		Tutorial on Stoke's law					Constant	oressu	ıre Fili	tration	1			Preve	ntion	of sw	rirling	and vo	rtex fo	ormati	on
SLO-2 Standard screen series Tutorial on power required for size reduction				required for size	Tutorial on Stoke's law					Constant	rate fil	tration)				Draft i	ubes							
S-5	SLO-1	Screening equipmen and Grizzlies	t - Stationary screens	Classification of siz Crushers: Jaw crus	ze reduction equipments shers-Blake jaw	_	i utonai on tiltration						Flow number												
0-0	SLO-2	Gyrating screens, Vil	brating screens	Gyratory crushers		Differential settling met settling	thod a	and Ed	qual		Tutorial o	n filtra	tion						ulation of power consumption in onian liquids						
S-6	SLO-1	Ideal and actual scre	eens	Grinders: hammer	mills, Impactors	Batch Sedimentation			Tutorial on filtration Dimensions				nsiona	al ana	alysis										
3-0	SLO-2 Capacity and Screen effectiveness Tumbling mills: Ball mill Equipment for Sedimentation: thickeners Tutorial on filtration					Equipment for Sedimer	kener	Tutorial o	n filtra	ion			Power number correlation through Buckingham's π theorem												

S-7	SLO-1	Tutorial on Screen effectiveness	Critical speed of Ball mill	Kynch theory of sedimentation	Filtration equipments	Power correlation
3-1	SLO-2	Tutorial on Screen effectiveness	Tutorial on Ball mill	Design of thickener	Pressure Filters-Batch Process-Plate and Frame Filter press	Significance of dimensionless groups
	SLO-1	Tutorial on Screen effectiveness	Ultrafine grinders - Fluid energy mills	Tutorial on sedimentation	Vacuum Filters	Tutorial on Power correlation
S-8	SLO-2	Tutorial on Screen effectiveness	Cutting machines: Knife cutters		Continuous filters- Rotary Drum Vacuum filter	Tutorial on Power correlation
	SLO-1	Storage and transportation of solids	Size enlargement	Flocculation and Froth floatation	Centrifugal filters–Types of centrifuges	Blending of miscible liquids
S-9	SLO-2	Silos, Bins, Hoppers and conveyors	Open and Closed circuit operation	1	Working mechanism of Suspended batch centrifuge	Type of Mixers and its application

	1.	McCabe, W.L., Smith, J.C., Harriot, P., Unit Operations in Chemical Engineering, 7th ed., McGraw-Hill,	3.	Badger W.L., Banchero J.T., Introduction to Chemical Engineering, Tata McGraw Hill, 1997
Learning		2005	4.	Coulson. J.M, Richardson. J.F, Backhurst J.R., Harker. J.M, Coulson & Richardson's Chemical
Resources	2.	Foust, A. S., Wenzel, L.A., Clump, C.W., Naus, L., Anderson, L.B., Principles of Unit Operations, 2 nd ed.,		Engineering, Vol. II, 5 th ed., Butter worth Heinemann, Oxford, 2002
		John Wiley & Sons, 2008	5.	Swain. A, Patra H, Roy. G K, Mechanical Operations, Tata McGraw Hill, 2010

Learning Assess	Learning Assessment Continuous Learning Assessment (50% weightage) Fig. 15 Continuous Learning Assessment (50% weightage)														
	Bloom's				Final Evamination	n (50% weightage)									
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	l (10%)#	FIIIai Examination	i (50 % weightage)				
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember	40 %		30 %		30 %		30 %		30%					
Level I	Understand	40 /0	-	30 /0	-	30 //	-	30 %	-	30%	-				
Level 2	Apply	40 %		40 %		40 %	_	40 %	_	40%					
Level 2	Analyze	40 /0	-	40 /0	-	40 //	-	40 //	-	4070	-				
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%					
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-				
	Total	10	0 %	10	0 %	10	0 %	10	0 %	100 %					

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Dr. K. Deepa, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Mr. K. Selvam, SRMIST 3. Mrs. D. Nanditha, SRMIST

Course Code	18CHC207T	Course Name	HEAT	TRANSFER	Course Category	С	Professional Core	4	T 0	P 0	4
Pre-requisit Courses	e Nil		Co-requisite Nil	1	Progre Cour		Nil				
Course Offeri	ng Department	Chemical Engineering		Data Book / Codes/Standards	Nil						

Course Offeria	ng Department	Chemical Engineering	Data Book / Codes/Standards	Nil																	
Course Learni	ing Rationale (CLR):	The purpose of learning this course is to:		Learning Program Learning Outcomes (PLO)																	
	ize heat transfer modes, nsfer coefficient	evaluate rate of heat transfer, analyze steady, un	steady state conduction, evaluate heat	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3: Den CLR-4: Exp	monstrate the application plain the principles of rac			(Bloom)	(%) kc	nt (%)	edge		nent	Research			Sustainability		Work		nce				
		vaporation and evaporator design as of heat transfer, concepts and applications.		Thinking (B	d Proficiency	d Attainment	Engineering Knowledge	Analysis	& Development	Design,	Tool Usage	& Culture	∞ŏ		& Team	ication	/lgt. & Finance	g Learning			
	. ,	At the end of this course, learners will be able to		Level of	Expected	Expected	Engineel	Problem	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual	Communication	Project Mgt.	9		1	PSO - 3
CLO-1: Eva	aluate rate of heat transf	er, analyze steady state and unsteady state condu	uction and evaluate heat transfer coefficient	2	80	75	Н	М	L	-	-	-	-	-	-	-	-	-	М	-	-
CLO-2: Eva	aluate heat transfer coef	ficient of natural, forced convection as applied to v	various flows and geometry	2	80	75	Н	М	L	-	-	-	-	-	-	-	-	-	M	М	-
CLO-3: Des	sign the heat exchanger	S		2	80	75	Н	Н	Н	L	-	-	-	-	-	-	-	-	M	М	L
CLO-4: Ana	alyze the principles of ra	diation heat transfer		2	80	75	Н	М	L	-	-	-	-	-	-	-	-	-	М	-	-
CLO-5: Des	sign the evaporators			2	80	75	Н	Н	М	L	-	-	-	-	-	-	-	-	M	М	L
CLO-6: Und	derstand the concepts of	f heat transfer and the equipments		2	80	75	Н	М	L	-	-	-	-	-	-	-	-	-	М	-	-

Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to various modes of heat transfer	Concept of heat transfer by convection. Natural and forced convection	Types of heat exchange equipments	Basic concepts of radiation	Introduction to Evaporation and its applications
3-1	SLO-2	Concept of resistance to heat transfer.	Forced convection in systems of simple geometries- Flow over a flat plate	Co-current and counter -current flow in heat exchangers - Temperature distribution	Emissive power, Black body	Single effect and multiple effect evaporation
S-2	SLO-1	Fourier's law of heat conduction	Thermal boundary layer, flow across a cylinder	Double pipe heat exchanger	Gray body, emissivity, radiation intensity	Types of evaporators
3-2	SLO-2	Effect of temperature on thermal conductivity	Mean temperature difference, LMTD	Shell and tube heat exchanger-single pass and multipass	Laws of radiation: Stefan-Boltzmann law, Planck's law, Wien's displacement law	Working principle of Long tube vertical evaporators: Falling film evaporators
	SLO-1	Steady state conduction of heat through a plane wall	Application of dimensional analysis for convection	Baffles and tube arrangements	Kirchhoff's law	Climbing film evaporators
S-3	SLO-2	Steady state conduction of heat through a hollow cylinder	Heat transfer correlations for natural Convection- Free convection from a flat surface, cylinder	multi -pass shell and tube heat exchanger, LMTD correction factor	View factor	Agitated film evaporators
S-4	SLO-1	Tutorial on conduction	Tutorial on LMTD	Fouling of a heat exchanger	Tutorial on Stefan-Boltzmann law	Evaporator capacity and economy
3-4	SLO-2	Tutorial on conduction	Tutorial on LMTD	Tutorial on heat exchangers	Tutorial on Stefan-Boltzmann law	Boiling point elevation, Duhring's rule
S-5	SLO-1	Steady state conduction of heat through a composite plane wall	Heat transfer correlations for forced Convection	Process design considerations	Energy exchange between black bodies	Enthalpy balance equation for single effect evaporator
3-3	SLO-2	Steady state conduction of heat through coaxial cylinders	Forced convection in laminar and turbulent flow in circular pipes	Enthalpy balance and heat duty calculation in double pipe heat exchanger	Gray surfaces: Energy exchange between two large parallel planes	Tutorial on Enthalpy balance
0.0	SLO-1	Problem solving on composite layers	Overall heat transfer coefficient.	Tutorial on heat exchangers	Energy exchange between two large parallel planes of different emissivity	Tutorial on Enthalpy balance
S-6	SLO-2	Problem solving on composite layers	Relationship between individual and overall heat transfer coefficients	Tutorial on heat exchangers	Energy exchange between a small object placed in a large enclosure	Tutorial on evaporators

S-7	SLO-1	Problem solving on composite layers	Problem solving on Overall heat transfer coefficient.	Enthalpy balance and heat duty calculation in shell and tube heat exchanger	Problem solving on energy exchange	Tutorial on evaporators
3-1	SLO-2	Steady state conduction in bodies with heat sources - The plane wall	Problem solving on Overall heat transfer coefficient.	Tutorial on heat exchangers design	Problem solving on energy exchange	Multiple effect evaporators: Methods of feeding
	SLO-1	Steady state conduction in bodies with heat sources - The cylinder	Momentum and heat transfer analogies	Tutorial on heat exchangers design	Problem solving on energy exchange	Comparison between the methods of feeding
S-8	SLO-2	Combined conductive and convective heat transfer and the concept of Heat Transfer Coefficient	Heat transfer to fluids with phase change- The Condensation Phenomenon	Tutorial on heat exchangers design	Problem solving on energy exchange	Effect of boiling point elevation in a multiple effect evaporator
	SLO-1	Heat transfer between fluids separated by a plane wall	Film wise and drop wise condensation	The effectiveness- NTU method of heat exchanger analysis	Radiation shield	capacity and economy of multiple effect evaporators
S-9	SLO-2	Heat transfer between fluids separated by a cylindrical wall	Heat transfer coefficientfor film wise condensation -condensation on vertical and horizontal cylinders		Radiation intercepted by a shield placed between two large parallel planes	Enthalpy balance equation for multiple effect evaporator
S-10	SLO-1	Tutorial on Combined conductive and convective heat transfer	Tutorial on condensation		Radiation intercepted by a shield in a cylindrical enclosure	Problem solving on evaporators effect
3-10	SLO-2	Tutorial on Combined conductive and convective heat transfer	Tutorial on condensation		Radiation intercepted by a shield in a spherical enclosure	Tutorial on multiple effect evaporators
S-11	SLO-1	Critical insulation thickness, applications	Effect of non-condensable gases	Tutorial on heat exchangers design	Tutorial on Radiation shield	Tutorial on multiple effect evaporators
3-11	SLO-2	Heat transfer from Extended surfaces – The Fins	The boiling phenomenon	Tutorial on heat exchangers design	Tutorial on Radiation shield	Tutorial on multiple effect evaporators
S-12	SLO-1	Unsteady state heat conduction - Introduction	The regimes of boiling in pool boiling	Tutorial on heat exchangers effectiveness	Tutorial on Radiation shield	Tutorial on multiple effect evaporators
3-12	SLO-2	Unsteady state heat conduction –Cartesian coordinates	Correlations for pool boiling heat transfer	Tutorial on heat exchangers effectiveness	Tutorial on Radiation shield	Evaporator selection

Learning Resources	Holman J.P, Heat Transfer, 10 th ed. Tata McGraw Hill, 2010 Binay K Dutta, Heat Transfer: Principles and Applications, PHI Learning Private Limited, 2010	3. Warren L. McCabe, Julian C. Smith, Peter Harriott, Unit Operations of Chemical Engineering, 7 th ed., McGraw Hill Education, 2014
-----------------------	--	---

Learning Assess	ment										
	Bloom's				Final Evamination	n (50% weightage)					
	Level of Thinking	CLA -	1 (10%)	CLA –	CLA – 2 (15%)		3 (15%)	CLA – 4	ł (10%)#	Filiai Examinatio	ii (50 % weigiilage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %	_	30 %	_	30%	
Level I	Understand	40 /0	-	30 /0	-	30 70	-	30 //	-	30%	-
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%	
Level 2	Analyze	40 /0	-	40 /0	-	40 70	-	40 /0	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %	_	30 %	_	30%	
Level 3	Create	20 /0	-	30 70	-	30 /0	-	30 /0	-	3070	-
	Total	10	0 %	10	0 %	100	0 %	100	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Mr. V. Ganesh, SRMIST
	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Ms. E. Kavitha, SRMIST

								_
18CHC208T	PRINCIPLES OF MASS TRANSFER	С	Professional Core	L	Т	Р	С	1

Cou		-	ourse lame				_	ourse tegor														3	0	0	3
	requisite ourses	Nil		Co-requisite Courses	Nil				gress		18CHC3)3T													
_		g Department	Chemical Engineering		Data Bo	ok / Codes/Standards		Nil	ouisc	,,,															_
		J -	<u> </u>	<u> </u>				1																	
		• , ,	The purpose of learning	•													rning Outcomes (PLO)								
			of mass transfer, Diffu			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
CLR-2			f mass transfer, dimens absorption and design a			er across fluid interface:	S							등			<u>i</u>								
CLR-4			and dehumidification o					(moc	(%)	(%)	9	,	ŧ	sear			inab		돗		æ				
CLR-5	: Expla	ain the principles of dry	ring, different types of a	riers and drving tin	ne for different drvina ı	eriods) B)	ency	Jent	Ned Ned		bme	, Re	ge	a	nsta		۳ ۷		nanc	g.			
CLR-6			s transfer and their con					iķi	oficie	Pain	Š	alysis	velo	sign	Usa	lfure	s s		Tear	ion	⊗ E	arnir			
								_ <u>;</u>	d P	d At	i.E	Ang	& De	, De	T00	ರ ಶ	men		<u>∞</u>	nical	Mgt.	g Le			
Cours	e Learnin	g Outcomes (CLO):	At the end of this coul	se, learners will be	e able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Enaineerina Knowledae	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO-2	PSO - 3
			ass transfer principles,					2	80	75	Н	Н	-	-	-	-	-	-	-	-	-	-	М	-	-
			pefficients and identify r					2	80	75	Н		М	L	-	-	-	-	-	-	-	-		М	-
			nn and analyze the per humidification problem					3		75 75	H		M	M	-	-	-	-	-	-	-	-	M M	M	-
CLO-5			ic principles of drying, s			16		2		75	H		M	M	-	-	-	-	-	-	-			М	
			als of mass transfer and		and caroarate arying an			T-	-			1													
				, ,											•										
Durati	on (hour)		9		9		9 9							9 Introduction, Importance of drying in											
S-1	SLO-1	Introduction to Mass		Introduction to Ma	ss transfer coefficients	Introduction to Gas	absorpt	ion			Introductio						- 1	Introduction, Importance of drying in processes							
0-1	SLO-2	Diffusion and its types Diffusion	s, Fick's I law of	Types of mass tra	nsfer coefficients	Packing Characteris	stics				Humidity, gas, satur				ure, s	aturat	furated principles of drying, wet Basis and dry basis calculations								
	SLO-1	Steady state molecular rest and in laminar flo		Relationship betwee	een mass transfer	Types of tower pace	kings			Ĭ	Relative h	umidit			ge hui	midity,							re, bo	ound	
S-2	SLO-2	Molecular diffusion in diffusion of A through	gases: steady state		oups in mass transfer	Characteristics of s	olvent				Humid he		al enth	alpy,	dew p	oint			anism						
	SLO-1	Tutorial on diffusion	non amasing b		mentum, heat and mas	S Contact between lig	uid and	gas		(Concept o	f adia	batic s	satura	tion			Cons	tant a	nd fal	ling ra	ate per	iod		
S-3	SLO-2	Gas phase equimolal	counter diffusion.	transfer Theories of mass	transfer: film theory	pressure drop and l	imitina f	low ra	tes	,	Adiabatic	satura	tion te	emner	ature					ing cu	irve, d	critical	moist	ture	
	SLO-1	Diffusion in Multicomp Tutorial on diffusion	oonent gas mixtures	Penetration theory	•	Material balances				١	Wet-bulb	empe		•		vet-bu	lb		late o			under (
S-4											temperatu ,											stant ra falling			
	SLO-2		liquido: atoody atota	surface-renewal T	heory	limiting gas-liquid ra	atio			F	osychrom	etric li	ne and	d Lew	ıs rela	tion			dryin			9		,	-
S-5	SLO-1	Molecular diffusion in diffusion of A through	Rate of absorption				ŀ	Humidity (hart,	use of	humi	dity ch	nart		Tutor	ial on	const	ant ai	nd falli	ng ra	te pe	riod			
	SLO-2	Tutorial on diffusion		Equilibrium betwe	en phases	calculation of tower	height				Tutorial or	humi	dificat	tion			Tutorial on drying								
S-6	SLO-1	Tutorial on diffusion		Concentration pro transfer	file in Interphase mass	number of transfer unit	number of transfer units, height of transfer unit				Tutorial oi	hum	dificat	tion			Tutorial on drying								
3-0	SLO-2	Liquid phase equimol	lal counter diffusion	Two film theory		alternate forms of transfer coefficients				7	Tutorial on humidification						Classification of dryers, solids handling in dryers					in			
S-7	SLO-1	Tutorial on counter di	Tutorial on absorption Types of Cooling towers equipment's for drying processes						and co	ontinu	ious														

	SLO-2	Tutorial on counter diffusion	III)rivina Forces	•	0	Working principle of tray drier
S-8	SLO-1	Pseudo – steady state Diffusion.	Relation between individual and overall mass transfer coefficient	Absorption in plate columns: Determination of number of plates, Tray efficiencies	Design of a cooling tower	Working principle of rotary drier
3-0	SLO-2	Tutorial on counter diffusion	I Litorial on mace tranetor coatticiant	Height equivalent to a theoretical plate (HETP)	NTU, HTU concept	Working principle of spray drier
S-9		Effect of temperature and pressure on diffusivity	Experimental determination of mass transfer coefficients	Tutorial on HETP	Tutorial on design of a cooling tower	Working principle of fluidized bed drier
3-9	SLO-2	Tutorial on diffusivity	I Liforial on mass transfer coefficient	Introduction to absorption with chemical reaction	Tutorial on design of a cooling tower	Concept of freeze drying

Learning	1. 2.	Robert E. Treybal, Mass-Transfer Operations, 3 rd ed., McGraw Hill Education, 2012 Warren L. McCabe, Julian C. Smith, Peter Harriott, Unit Operations of Chemical Engineering,	3.	Christie John Geankoplis, Transport Processes and Separation Process Principles (Includes Unit Operations), 4th ed., Pearson India Education Services Pvt. Ltd., 2015
Resources		7 th ed., McGraw Hill Education, 2014	4.	Binay K. Dutta, Principles of Mass transfer and Separation Processes, Prentice- Hall of India, New Delhi, 2007

Learning Asses	ssment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA -	1 (10%)	(10%)#	FIIIai Examination	i (50 % weightage)					
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		30 %		30%	
Level I	Understand	40 /0	-	30 70	-	30 %	-	30 %	-	3070	-
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%	
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	100) %	10	0 %	10) %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Mrs. E. Poonguzhali, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Ms. E. Kavitha, SRMIST

Course Code	1	8CHC209L	Cou Nar		CHEMICA	L ENGINEERING LA	AB - I		urse egory		С				Profe	essioi	nal Co	re					L 1	P 4	_
Pre-req		18CH206T, 18C	CHC20	15T	Co-requisite Courses	Nil				gress		Nil													
Course O	ffering	Department	C	Chemical Engineeri	ng	Data I	Book / Codes/Stand	lards	Nil																
Course L	earning	Rationale (CLR	R): Ti	he purpose of learr	ing this course is to:	:			L	.earnii	ng					Prog	ram L	.earn	ing O	utcor	nes (l	PLO)			
CLR-1:		solid handling ted ing equipments	Crushing, grinding a	nd	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13 1	4 15				
CLR-3 : CLR-4 : CLR-5 :	Analyzo Analyzo Compa	e the fluid - Solid the metering of re the transporta	l separ f fluids ation de	and Frictional loss evices and design	nd to design of thicke calculation				evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	sis, Design, arch	Modern Tool Usage	ty & Culture	Environment & Sustainability		Individual & Team Work	Communication	Project Mgt. & Finance	ife Long Leaming	0	-2
CLO-1 : CLO-2 :	Handle Learn t	the size reduction	on mad and u	chineries Inderstand the desi					1 2	80	75 75	N F	L	М	Analysis, E Research	Mode	Society & (Enviro	Ethics	H Individ	Comn	Projec		PSO -	PSO - 3
CLO-4:	Interpre	et the knowledge	in des	sign of piping syste	m	t the knowledge in d	esign the equipments	S	2	90 80	75 75		M	L	M M					L			H		\pm
				vledge to design of ction techniques ar					1	80	75 75		L L	L						Н			Н		+
Duration	(hour)		12	2		12		12		'			'	12	2	'						12	2		
S 1-4	SLO-	Determine Ave Sieve Analysis		article Size using d		of given cut diameter sing Screen Effectiven			e give	n Solid		Calculate substance critical spe	using	Ball Mi					batch thicke	sedin ner	entati	on set	up and	d desigi	
S 5-8		Find the particle efficiency using	g Cyclo	ne separator	plate and frame filte		Conveyor	veyance efficie	ency o	f Screv		Calculate Vacuum le			dium re	esista	nce us		mater	ial usi	ng Dro	p We	ight Cri		
S SLO-1 Find the Orifice Coefficient using Orifice Open flow channel 9-12 SLO-2 Find the discharge coefficient using Rota Meter Coefficient using Rota Meter Coefficient using Rota Calculate pressure loss coefficient of Contraction, Expansion and fittings on pipe							Verify relationsh and friction factor					Verify per	orman	ce Cha	racteri	stics o	of pum	ps	packe Calcu	ed bed late m		n fluia		v throug	gh y of flov
Learning Resources 1. McCabe, W.L., Smith, J.C., and Harriot, P., Unit Operations in Chemical Engineer							ering, 7 th ed., McGra	w-Hill, 2005.																	
Learning	Learning Assessment																								
		Bloom's	na	CLA – 1	\ /	CLA – 2 (,	CLA		(15%)				_	\ - 4 (/			F			nation	`	weight	• ,
	I evel of I hinking						Practice	Theory		Pr	Practice Theory Practice Theory				Practice										

Learning As	sessment										
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA – :	2 (15%)	CLA -	3 (15%)	CLA – 4	1 (10%)#	FIIIai Examination	ii (50% weigiilage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember		40 %		30 %		30 %		30 %		30%
Level I	Understand	•	40 %	,	30 /0	-	30 //	-	30 /0	-	3070
Level 2	Apply		40 %	_	40 %	_	40 %		40 %		40%
Level 2	Analyze	•	40 /0	•	40 /0	-	40 /0	-	40 /0	-	4070
Level 3	Evaluate		20 %		30 %		30 %		30 %		30%
Level 3	Create	-	20 %	-	30 %	-	30 %	-	30 %	-	30%
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0 %

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Dr. K. Selvam, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Mrs. D. Nanditha, SRMIST

ACADEMIC CURRICULA

Professional Core Courses

CIVIL ENGINEERING

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Cour	rea		Course					C	ourse														1	т	Р	С
Cod		18CEC201T	Name		ENG	INEERING GEOLOGY			tegory		С				Prof	essior	nal Co	re					3	1	_	4
	equisite	Nil			Co-requisite Courses	Nil				ressiv		il											'			
Course	Offerin	g Department	Civil En	gineering		Data Bo	ok / Codes/Standards		Nil		·															
		<u> </u>			ng this course is t	0:				earnin	_								ng Ou		•	•			1	
		ify the various geo ze the Minerals o		sses					1	2	3	1	2	3	4	5		7	8	9	10	11	12	13	14	15
		ze the willerais o		h Crust							_				ιch			Aillic								
CLR-4	: Interp	oret the various ge	eological struc	tures					loom	y (%	ıt (%)	gge		ent	esea			aina		Vork		e)				
		e the geological ir							B) Gu	Sienc	men	owle	.s	lopm	n, R	sage	<u>e</u>	Sust		am	_	Finar	gi			
CLR-6	: Ident	ify Geological con	nsiderations to	r cıvıl enginee	ering projects				ninkir	Profic	Attair	a P	nalys	Deve	Jesig	00	Cultu	art &		& Te	ation	jt.	Learr			
Course	e Learnin	a Outcomes (CL	O): At the e	nd of this cou	ırse, learners will i	be able to:				Expected Proficiency (%)	Expected Attainment (%)	H Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	S	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
		•	·							数 85	80	<u>Ē</u>	Pro	De	. An	8 -		<u>ٿ</u> M	Ethics		<u>8</u>	- Pro		H S	- S	S.
		ify the geological ify the physical pr			erals				2		75	Н	-	-	-	-		M	-		-	-		Н	_	-
CLO-3					ution of various ty	oes rocks			2	80	75	H	-	-	-	-	-	Н	-	_	-	-		Н		-
CLO-4		oret the various ge							2	85	80	Н	-	-	-	-	-	Н	-	-	-	-		Н	_	-
CLO-5	: Analy	ze the investigati	ion techniques		. , ,				3	85	75	Н	-	Н	М	-	-	Н	-		-	-		Н	_	-
CLO-6	: Anaiy	ze the primary m	easures for civ	/II Engineerin	g projects				3	80	75	Н	Н	Н	Н	-	-	Н	-	М	-	-	Н	Н	-	-
Duratio	on (hour)		12			12	12							12								12				
S-1	SLO-1	Applications of G Engineering	Geology in Civi	il	Physical properti identification met	es of minerals and its hods	Rocks of the earth crus	st				continui Rock	ities in	the r	ock &S	tructu	ıre of	7	Geolog Topogr eading	aphy	and t	ypes				
	SLO-2	Internal structure	e of Earth		chemical and opt and its role in Alk	ical properties of minera alinity reactivity	ls Types of rocks and kin materials	ds of	buildir	g		ntour an termine						(Geolog constru	ical m	парріі		ethods	of a		
S-2 -	SLO-1	Endogenous pro Tectonics	ocess- Earthqu		minerals and its o quartz analysis –	es of quartz group optical properties- straine cement bonding effects	Igneous Rocks- Types alteration process	com	npositio	n,	Att	itude of	rocks-	· DIP d	& Strike)			Geolog opogra		парріі	ng of	subsu	ırface		
3-2	SLO-2	Physical weathe demerits of weat area	thering zones	in project	minerals and opt	es of Feldspar group ical properties. Chemica ars and formation of cla		ıre, v	eins, c	aves,	Ge	ological	Struc	tures -	- Folds	3			Geoph nethod		Inve	stigati	ions –	Self p	otent	ial
	SLO-1	Chemical and bi process, merits a weathering zone	and demerits o	of	Mica group of mi deleterious mine		Engineering Properties rocks – Granite, Diorite Biotite granite, felsic gr	, dol anite	erite, B	asalt,		ld Class	ificatio	on					Geoph and po					equip	otent	ial
S-3	SLO-2	Products of wea analysis- with str			minerals, Identific	rpes and deleterious cation of minerals Quartz I quartz analysis –cemer		gth E	nginee	ring	inv	ld signifi estigatio orientati	ns, F	old ax			minati	nation Seismic methods-Reading sei and deciphering subsurface st								
S-4	SLO-1 SLO-2	Tutorial			Tutorial		Tutorial				Tu	torial							Tutoria	-						
	SLO-1	Groundwater- or types, water tabl			Pyroxene group	of Minerals	Sedimentary Rocks- T					ological	Struc	tures -	- Fault				GPR te Gravita					ace n	паррі	пg
S-5	SLO-2	Rainwater harve patterns	esting methods	, Drainage	Amphibole group	of Minerals	Conglomerate, breccia composition, quality an signatures	,	,		*	ult Class	ificati	on			Remote Sensing Techniques for civil engineering				ivil					

	SLO-1	Exploration method of Groundwater- Electrical resistivity survey technique	Gem group of Minerals	Limestone, types, composition, properties, solution reactivity and cave formation	Fault Classification	Applications of satellite mapping methods
S-6	SLO-2	Geomorphic landforms performed at- Desert, lands (wind) merits and demerits for civil engineering. projects	Properties of Gypsum	Clay minerals types formation and Engineering properties	Geological Structures – Joints	Geological Considerations for Dam
S-7	SLO-1	Geomorphic landforms performed by sea erosion, merits and demerits for civil engineering. projects	Physical Properties of Calcite	Engineering Properties of the Sedimentary rocks-, Breccia and Conglomerate, sandstone and limestone	Joint Classification	Geological Considerations for Dam
3-1	SLO-2	Geomorphic landforms performed at ice covered lands merits and demerits for civil engineering. projects	Physical Properties of Gypsum,mica	Metamorphic Rock types, description of gneiss, quartzite, marble, slate, schist, phyllite	Joint Classification	Geological Considerations for Dam
S-8	SLO-1 SLO-2	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial
S-9	SLO-1	Geomorphic landforms performed at River Erosion its merits and demerits for civil engineering. projects	Clay minerals and, types	Metamorphic rocks Textures and structures,	Engineering Considerations of Fold	Geological Considerations for Reservoirs
3-9	SLO-2	Landforms performed at River deposition, its merits and demerits for civil engineering. projects	Clay properties as lining and filter materials	Engineering properties of metamorphic rocks	Engineering Considerations of Fold	Geological Considerations for Reservoirs
C 40	SLO-1	Coastal erosional and depositional land forms	Engineering properties of Clay	Preparation of Fence diagram and delineation of subsurface rock layers	Engineering Considerations of Fault	Geological Considerations for hard and soft Tunnels
S-10	SLO-2	Sea water dynamics and Coastal protection structures	Coal deposits and mines in India	Litho core/Borehole rock analysis	Engineering Considerations of Fault	Geological Considerations for Tunnels and Road Cuts
S-11	SLO-1	Landslides, causes for landslides, factors.	Coal properties	Rock litho core analysis,	Engineering Considerations of Joint	Demonstration of Clinometer, Brunton, GPS, GPR
3-11	SLO-2	Types of landslides, landslide mitigation structures	Petroleum deposits of India	Determination of rock strength	Engineering Considerations of Joint	Identification of maps, type of soils,
S-12	SLO-1 SLO-2	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial

	1.	Garg .S.K, Physical and Engineering Geology, Khanna Publication, New Delhi, 1999	5.	Blyth, Geology for Engineers, ELBS, 1995
Learning	2.	Parbin Singh, Engineering and General Geology, Katson Publication House, 2010	6.	NPTEL: Earth Sciences for Civil Engineering Part I. https://onlinecourses.nptel.ac.in/noc18_ce12/preview
Resources	3.	Maruthesha Reddy M.T, Engineering Geology Practical, New Age International Pvt Ltd, 2003	7.	NPTEL: Subsurface exploration :importance and techniques.
	4.	Legeet, Geology and Engineering, McGraw Hill Book Company, 1998		https://onlinecourses.nptel.ac.in/noc19_ce10/preview

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4	1 (10%)#	Filiai Examination	i (50 % weigilage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Sarunjith K J, National Centre for Sustainable Coastal Management, sarunjith@ncscm.res.in	Dr. R. Nagendra, Anna University, geonag@gmail.com	Dr. R Annadurai, SRMIST Dr. Sachikanta Nanda, SRMIST
2. Dr. Nagasundaram M, Geological Survey of India, nagasundaram.m@gsi.gov.in	Dr. S. G. D. Shreedhar, University of Madras, sgd.sri@unom.ac.in	Dr. Apama S Bhaskar, SRMIST

Course Code	18CEC202T	Course Name	FLU	JID MECHAN	NICS	Course Category	С		Professional Core	_	L 2	T 1	P 0	C 3
Pre-requisi Courses	INII		Co-requisite Courses	18CEC202L	-	Progre Cou		18CEC206T						
Course Offer	ring Department	Civil Engineering			Data Book / Codes/Standards	Nil								
								_						

Course Offering Department	Civil Engineering	Data Book / Codes/Standards	Nil																		
Course Learning Rationale (CLR):	The purpose of learning this course is to:		L	.earni	ng						Progi	ram L	_earn	ing O	utcor	mes (PLO)				
CLR-1: Utilize the various properties	es of fluids		1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Analyze hydrostatics, buoy	ancy; stability of floating and submerged boo	dies											>								
CLR-3: Utilize pressure measuring	devices		=	<u></u>	_					arch			i ii								
CLR-4: Analyze concepts of fluid k	inematics		(mool	(%) A	t (%)		dge		ent	ese			Sustainability		Work		ce				
CLR-5: Apply fluid dynamics for pra	actical applications) (Blo	Proficiency	Attainment		wle	S	elopment	, R	sage	Ф	Sust		N N		Finance	ing			
CLR-6: Utilize the concepts of flow	through pipes in real time applications		hinking	ofici	ai.		χ	alysis	Ne Ve	Design,	\sim	ulture	∞		Team	ion	∞ŏ	arni			
			≟				ing	Ans	Ğ.		Tool	ರ **	neut		∞ŏ	icat	Mgt.) Le			
Course Learning Outcomes (CLO):	At the end of this course, learners will be a	able to:	Level of	Expected	Expected		Engineering Knowledge	Problem	Design &	Analysis,	Modern	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PS0-2	PSO - 3
CLO-1: Identify the various propert	ies of fluid		2	85	80		Н	Н	-	-	-	-	-	-	-	-	-	-	Н	-	-
CLO-2: Analyze hydrostatic pressu	re force		3	85	75		Н	Н	-		-	-	-	-	-	-	-		Н	-	-
CLO-3: Apply hydrostatic laws in va	arious pressure measuring devices		3	85	75	Ī	Н	Н	-	-	-	-	-	-	-	-	-	-	Н	-	-
CLO-4: Identify the importance of fi	uid kinematics		2	85	80		Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-
CLO-5: Identify the applications of	fluid dynamics		2	80	75		Н	Н	-	Μ	-	-	-	-	-	-	-		Н	-	-
CLO-6: Analyze laminar and turbul	ent flow in pipes		3	85	75		Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Fluid properties Importance, application of fluid mechanics	U tube differential manometer, upright and inverted differential manometer	Stream line, path line, streak line and stream tube	Momentum equation	Pipes in series and parallel
3-1	SLO-2	Distinction between fluid and solid, mass density, specific weight, specific gravity	Mechanical gauges	Velocity potential function	Force exerted by a flowing fluid on a pipe bend	Equivalent pipes
S-2	SLO-1	Newton's law of viscosity, kinematic and dynamic viscosity	Fluid statics: Hydrostatic pressure force: horizontal and vertical surfaces	Stream function	by the jet	Flow through syphon
3-2	SLO-2	Variation of viscosity with temperature and pressure	Hydrostatic pressure force: inclined surfaces	Flow net	Time of flight, time to reach highest point, horizontal range of the jet	Branching of pipes
S-3	SLO-1	Solving problems using tutorial sheet 1	Solving problems using tutorial sheet 4	Solving problems using tutorial sheet 7	Solving problems using tutorial sheet 10	Solving problems using tutorial sheet 13
0-5	SLO-2	Solving problems using tutorial sheet 1	Solving problems using tutorial sheet 4	Solving problems using tutorial sheet 7	Solving problems using tutorial sheet 10	Solving problems using tutorial sheet 13
S-4	SLO-1	Surface tension on liquid droplet, hollow bubble and liquid jet	Hydrostatic pressure force on curved surfaces	Control volume, continuity equation in cartesian coordinate system	Flow through pipes	Two reservoir problem
3-4	SLO-2	Capillarity	Buoyancy, center of buoyancy	Forced vortex flow and free vortex flow	Laminar flow in circular pipes, Hagen– Poiseuille equation	Three reservoir problem
	SLO-1	Bulk modulus of elasticity, compressibility	Metacenter and metacentric height	Fluid dynamics	Turbulent flow in pipes, Velocity distribution for turbulent flow	Water hammer in pipes
S-5	SLO-2	Vapour pressure, boiling point and cavitation	Stability of floating and submerged bodies	Euler's equation and Bernoulli's equation	Reynolds experiment, frictional loss in pipe flow, Darcy Weisbach equation, minor energy losses	Power transmission through pipe
S-6	SLO-1	Solving problems using tutorial sheet 2	Solving problems using tutorial sheet 5	Solving problems using tutorial sheet 8	Solving problems using tutorial sheet 11	Solving problems using tutorial sheet 14
3-0	SLO-2	Solving problems using tutorial sheet 2	Solving problems using tutorial sheet 5	Solving problems using tutorial sheet 8	Solving problems using tutorial sheet 11	Solving problems using tutorial sheet 14

	SLO-1	Fluid pressure at a point, Pascal's law	Fluid kinematics	Practical applications of Bernoulli's equation, venturimeter	Loss due to sudden enlargement and contraction	Condition for maximum power transmission
S-7		Pressure variation in a fluid at rest; absolute and gauge pressures	Classification of fluid flow	Horizontal, vertical and inclined venturimeters	Loss of head at the entrance and exit of the pipe	Boundary layer theory Boundary layer definitions, characteristics
		Piezometer, U-tube manometer	Velocity and acceleration	Orificemeter	Loss of head due to an obstruction in a pipe	Boundary layer thickness and displacement thickness
S-8	SLO-2	Single column manometer	Local acceleration and convective acceleration	Pitot tube	Hydraulic Gradient Line (HGL) and Total Energy Line (TEL)	Momentum thickness and energy thickness
	SLO-1	Solving problems using tutorial sheet 3	Solving problems using tutorial sheet 6	Solving problems using tutorial sheet 9	Solving problems using tutorial sheet 12	Solving problems using tutorial sheet 15
S-9	SLO-2	Solving problems using tutorial sheet 3	Solving problems using tutorial sheet 6	Solving problems using tutorial sheet 9	Solving problems using tutorial sheet 12	Solving problems using tutorial sheet 15

Learning Resources	Modi, P.N., Seth S.M., Hydraulics and Fluid Machines, Standard book house, 2005 Subramanya, K., Theory and application of fluid mechanics, Tata McGraw Hill, 2002	 Rajput R.K., Fluid Mechanics and Hydraulic Machines, S.Chand, 2014 Bansal R.K., Fluid Mechanics and Hydraulic Machines, Laxmi Publication, 2017 NPTEL Course - Introduction to Fluid Mechanics https://onlinecourses.nptel.ac.in/noc19_me15/preview 	
-----------------------	---	---	--

Learning Ass	essment												
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (EOO/ weightege)		
	Level of Thinking	CLA - 1	1 (10%)	CLA – :	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	FIIIai Examination	n (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	40 %		30 %		30 %		30 %		30%			
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply	40 %		40 %		40 %		40 %		40%			
Level 2	Analyze	40 70	-	40 /0	-	40 /0	-	40 /0	-	4070	-		
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%			
Level 3	Create	20 %	-	30 %	-	30 70	-	30 //	-				
	Total	100) %	100) %	100	0 %	10	0 %	10	0 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Abdul Hakeem, National Remote Sensing Center, Hyderabad, abdulhakeem_k@nrsc.gov.in	1. Dr. R. Saravanan, Anna University, rsaran@annauniv.edu	1. Dr. R. Sathyanathan, SRMIST
2. Dr. Sat Kumar Tomer, Satyukt Analytics Pvt Ltd., Bengaluru, sat@satyukt.com	2. Dr. S. Saravanan, NIT Trichy, saravanans@nitt.edu	2. Dr. Deeptha Thattai, SRMIST

Course Code	18CEC202L	Course Name		FLUID MEG	CHANICS LABO	RATOR	′		ourse tegory	,	С					Proi	fessio	nal C	ore					L 0	T 0	P 2	<u>C</u>
Pre-requisite Courses	Nil			Co-requisite Courses	18CEC202T				C	gress ourse		Nil															
Course Offering	Department	Civil En	gineering		Da	ata Book	/ Codes/Standards		Nil																		
Course Learnin	g Rationale (CLI	R): The purp	ose of learnin	g this course is to:					L	earnir	ng					ı	Prog	ram L	.earn	ing O	utco	mes (PLO)				
	e pressure measu			tions					1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	buoyancy for rea								(mc	(%)	(%)		Э		=						논						
	ze the application		<u> </u>						8	ρ	eut (je je		me		e				Š		Finance	_			
	the functions of		renturimeter ai	nd pitot tube					ing	ficiel	.E		Š.	ysis	elop	ign,	Jsac	Culture	ox		eam	Ę	냰	Leaming			
	fy the losses in pa the functions of		vuthniooo						Ę	Pro	Atta		g X	\na	Dev	Des	00	S	ent 🧎		∞	catic	gt. &	Lea			
CLR-0: Utilize	e trie furictions of	onnice and mic	ишріесе						of T	ted	ted		eeni	me	۵	sis, arch	m	య	m i		dual	iun	χ	ong	-	- 5	3
Course Learnin	g Outcomes (CL	O): At the e	nd of this cour	se, learners will be	able to:				Level of Thinking (Bloom)	Expected Proficiency (%)	S Expected Attainment (%)		Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society	Environment &	Ethics	Individual & Team Work	Communication	Project Mgt.	Life Long	PSO	PSO	PSO
	the concept of P								3	90			Н	М		-	-	-	-	-	Н	-	-	-	Н	-	Н
	fy the application								3	85	80		Н	М	-	-	-	-	-	-	Н	-	-	-	Н	-	Н
	fy the application								3	90	85		Н	М	-	-	-	-	-	-	Н	-	-	-	Н	-	Н
			nents and fund	ctions of orificemet	er, venturimeter	and pitot	tube		3	85	80		Н	М	-	-	-	-	-	-	Н	-	-	-	Н	-	Н
	ate the losses in								3	85	80		Н	M	-	-	-	-	-	-	Н	-	-	-	Н	-	Н
CLO-6: Identi	ty the working pri	ncipie, and fui	nctions of orific	ce and mouthpiece	· · · · · · · · · · · · · · · · · · ·				3	85	80		Н	М	-	-	-	-	-	-	Н	-	-	-	Н	-	Н
Duration (hour)		6			6		6								6								6	i			
	Determine press manometer	ure using U-tu	ibe	Verify Bernoulli's e	quation		Determine coefficient of orificemeter	of disc	charge	for		Determi ube	ne co	oeffic	ient c	of velo	city fo	or pito	-	Deteri enlard			coeffic	ient fo	r sud	den	
	Determine metad	contric hoiaht	for a shin	Determine coefficie	ant of discharge	for						Determi	no fri	iction	facto	or of th	no nin	ιΔ					ciont	of disc	harne	o of	
	model	vontilo noigni		venturimeter	on discharge	101	Measure flow using or	ficem	eter			nateria		UUUII	iault	, or u	ιο μιμ			orifice		COGIII	oibiil (or uist	a rai y	, 01	
	Determine meta	centric height	for o				Determine coefficient of	of disc	charge	for		Determi		ss co	effici	ent fo	r sud	den				coeffi	cient (of disc	harge	e of	_
5-6 SLO-2	rectangular log			Measure flow using	g venturimeter		rotameter		•		(contract	ion							mouth	пріесе	Э					
Learning Resources				Fluid Machines, Sta n of fluid mechanic								Mecha									nd Co	ompar	ny Ltd	1.,2013	}		
	z. oubraillail)	.a,, 111001y	aa appiioatio	c. naia mooname	o, . ata mooraw	, 200	_	· <u> </u>	abora				a, au		91110	o.mg i	_4501	atory,	, O, (I)								_

Learning As	sessment										
	Dia a mai'a			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Franciscation	- /FOO/
	Bloom's	CLA –	1 (10%)	CLA -	2 (15%)	CLA –	3 (15%)	CLA – 4	4 (10%)#	Finai Examinatio	n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%
Level 2	Apply Analyze	-	40 %	-	40 %	-	40 %	-	40 %	-	40%
Level 3	Evaluate Create	-	20 %	-	30 %	-	30 %	- 30 %		-	30%
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Abdul Hakeem, National Remote Sensing Center, Hyderabad, abdulhakeem_k@nrsc.gov.in	1. Dr. R. Saravanan, Anna University, rsaran@annauniv.edu	1. Dr. R. Sathyanathan, SRMIST
2. Dr. Sat Kumar Tomer, Satyukt Analytics Pvt Ltd., Bengaluru, sat@satyukt.com	2. Dr. S. Saravanan, NIT Trichy, saravanans@nitt.edu	2. Mr. Shaik Niyazuddin Guntakal, SRMIST

Course Code	18CEC203T	Course Name		MECHAN	NICS OF STRUCTURES		Course Catego		С					Profe	ssion	al Core)				L 2	T 1	P 0	C 3
Pre-requisite Courses	Nil			Co-requisite Courses	18CEC203L			gress		Nil														
Course Offering	Department	Civil Eng	gineering		Data Book	(/ Codes/Standards	Nil																	
Course Learnin	g Rationale (CLF	R): The purp	oose of learnir	ng this course is to			ı	_earni	ing					P	rograi	n Lea	ning	Outco	omes	(PLO)			
CLR-1: Utilize	the concepts of	stresses in co.	mpound secti	ons and principal s	tresses and principal stra	ains	1	2	3		1	2	3	4	5 (ô 7	8	9	10	11	12	13	14	15
CLR-3: Utilize CLR-4: Utilize CLR-5: Analy	ze columns and a	stresses in be slope and defl application of t	am cross sec lection of bear heories of fail	tion ms and analysis of	determinate and indetern	minate trusses	of Thinking (Bloom)	ed Proficiency (%)	ed Attainment (%)		Engineering Knowledge	m Analysis	Develop	is, Design, Research	<u> </u>	Society & Culture		ual & Team Work	Sommunication	t Mgt. & Finance	Long Learning	1	2	9
Course Learnin	g Outcomes (CL	O): At the e	nd of this cou	rse, learners will be	e able to:		eve	Expected	Expected		Engine	Problem	Design	Analysis,	Modern	Society	Ethics	ndividual &	Somm	Project	ife Lo	-08c	-08c	PSO-
CLO-1: Analy	ze the state of str	ress, evaluate	principal stres	sses and principal	strains including stresses	s in compound sections	3	80	75		H	Н	-	-	-		-	-	-	-	-	Н	-	Н
CLO-2: Deter	mine bending mo	ment and she	ar force distril	bution along the be	am		3	85			Н	Н	-	-	-		-	-	-	-	-	Н	-	Н
CLO-3: Deter	mine bending and	d shear stress	distribution a	cross the cross sed	ction of rectangular, 'I', 'T	" sections.	3	75	75		Н	Н	-	Н	-	- -	-	-	-	-	-	Н	-	Н
						ate, indeterminate trusses		90	80		Н	Н	-	-	-		-	-	-	-	-	Н	-	Η
					ies of failure in real time	applications	3	85			Н	Н	-	-	-		-	-	-	-	-	Н	-	Η
CLO-6: Apply	Macaulay's meth	hod, Clapeyror	n's theorem to	solve indetermina	te beam problems		3	80	75		Н	Н	-	-	-	- -	-	-	-	-	-	Н	-	Н
Duration (hour)		9			9	9							9							9)			
SLO-1	STRESSES IN C		SECTIONS	AND SHEAR FOR	EAMS - BENDING CE DIAGRAMS	DETERMINATE BEAMS	- SLOF	PE AN		COLU Class	IMNS fication	ns of c	olumr	s, faii	ure of						E AMS & kine	natic		

Durati	ion (hour)	9	9	9	9	9
S-1		STRESSES IN COMPOUND SECTIONS Principles of composite sections	TAND SHEAD EODCE DIAGDAMS	DETERMINATE BEAMS – SLOPE AND DEFLECTION Definition of slope and deflection:	COLUMNS Classifications of columns, failure of column	INDETERMINATE BEAMS Introduction to static & kinematic indeterminacy
	SLO-2	Analysis of compound sections	S S	Definition of elastic line, differential equation of flexure	Euler's column theory limitations, end conditions, effective length, slenderness ratio	Static and kinematic indeterminacy of two and three dimensional pin jointed structures
S-2	SLO-1	Thermal stresses and strains	SF diagrams, cantilever beams	Slope and deflections of determinate structures - Macaulay's method	Solving Problems	Static and kinematic Indeterminacy of two and three dimensional rigid jointed structures
	SLO-2	Simple and compound bars.	SF and BM Diagrams for simply supported beams	Solving Problems	Solving Problems	Analysis of indeterminate beams, propped cantilever beams - Macaulay's Method
S-3	SLO-1 SLO-2	Tutorials	Tutorials	Tutorials	Tutorials	Tutorials
S-4	SLO-1	STRESSES AT A POINT Introduction to principal stresses and strains		Slope and deflections of determinate structures - Conjugate beam method.	Rankine's formula, factor of safety	Analysis of fixed beam by Macaulay's method
	SLO-2	Two dimensional stresses without shear stress	beams with internal hinges, point of contra flexure	Solving Problems	Column with eccentricity, core / kernel section.	Introduction to Clapeyron's theorem of three moments
	SLO-1	Two dimensional stressesLike and unlike stresses, with shear stress	and bending moment.	PIN JOINTED TRUSSES Analysis of determinate trusses.	THEORIES OF FAILURES Introduction to theories of failures	Analysis - Continuous beams
S-5		Introduction to three dimensional stresses	BENDING / SHEAR STRESSES: Pure bending, bending equation – Bending / Shear stress distribution	Determination of deflection at the tip of the cantilever determinate truss	Application of maximum principal stress theory	Analysis of Continuous beams with settlement of supports
S-6	SLO-1 SLO-2	Tutorials	Tutorials	Tutorials	Tutorials	Tutorials

S-7	SLO-1	invariants.	Neutral axis, moment of resistance, section modulus		Application of maximum principal strain theory	Solving problems on two span continuous beam with simple supports
	SLO-2	Stresses in thin cylinder and spherical shells	Bending stresses, symmetrical sections.	Analysis of Trusses due to lack of fit	Application of stress difference theory	Solving problems on two span continuous beam end support (s) fixed
S-8	3 U-1	Concept of product of inertia, parallel axes theorem		Analysis of Trusses subjected to temperature effects.	Application of strain energy theory	Solving three span continuous beams with simple end supports and fixed end supports.
3-0	SLO-2	Principal moment of inertia	snear stress distribution for different sections.	Concept of solving indeterminate trusses with degree of indeterminacy greater than one	Application of shear strain energy theory	Principle of forming deflection equation - Macaulay's method.
S-9	SLO-1 SLO-2	Tutorials	Tutorials	Tutorials	Tutorials	Tutorials

Learning Resources
Resources

- 1. Devdas Menon, Structural Analysis, 1st ed., Narosa, 2013
- 2. R.C.Hibbeler, Structural Analysis, 9th ed., Pearson India, 2017
- R.C. Hibbeler, Mechanics of Materials, 9th ed., Pearson India, 2018
 Ramamamrutham.S, Narayan.R, Strength of Materials, 18th ed., Dhanpat Rai Publishing Company, 2014
- 5. Rajput.R. K, Strength of Materials: Mechanics of Solids, 5th ed., S. Chand Limited, 2010
- Punmia.B.C, Ashok.K.Jain, Arun.K.Jain, Theory of Structures, 12th ed., Laxmi Publications, 2014
- NPTEL Course: Mechanics of Solids. https://onlinecourses.nptel.ac.in/noc17_ce17/preview
 NPTEL Course: Strength of Materials https://onlinecourses.nptel.ac.in/noc18_ce17/preview
- nt .

Learning Ass	sessment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(E00/ waightaga)	
		CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	riliai Examination	ı (50% weightage)	
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %		30%	-	
	Total	10	0 %	100	0 %	10	0 %	100	0 %	100 %		

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. G.Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. G. Appa Rao, Professsor, IIT Madras, garao@iitm.ac.in	1. Dr. K. Gunasekaran, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. C. Uma Rani, Professor, Anna University, umarani@annauniv.edu	2. Dr. P. R. Kannan Rajkumar, SRMIST

Cou		18CEC203L	Course Name	STRENGTH C	OF MATERIALS LABO	PRATORY	-	ourse ategor	-	С				Pro	ofessi	onal C	Core				-	L 0	T 0	P 2	C 1
Co	requisite	Nil	0.75	Co-requisite Courses	18CEC203T			С	ogress Course		Nil														
Course	e Offering	Department	Civil Engineering		Data B	Book / Codes/Stan	ndards	Nil																	
		g Rationale (CLR):		0					Learni							ıram l									
			ure to determine modul					1	2	3		1	2 3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 CLR-3			ure of torsional, impact sting technique of reboo			rength of bricks an	nd concrete	Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		ge	=						놓		æ				
CLR-4			nd deflection of helical		-v iesis)Bi	ancy	nent		wed	, land		ge	•			Μ̈́		Finance	p p			
			asticity of concrete, spli		d flexural strength of d	concrete		king	oficie	ainn		χ S	anysis velo	sign	nse	& Culture	∞ .		Tear	. <u>E</u>	& Fi	ami			
CLR-6			ure to determine bond s					重	d P	d Att		ring	Ans Per	, De	200	ر ک	ment		<u>∞</u>	jcat	√gt.	g Le			
		•				· · · · · ·		el of	ecte	ecte		Engineering Knowledge	Problem Analysis Design & Development	Analysis, Design,	Modern Tool Usage	Society	Environment &	S	Individual & Team Work	Communication	Project Mgt. &	ife Long Leaming	-1	PS0 - 2	0-3
			: At the end of this co						_	EXD				Ana		Soc	2 S	Ethics		ပ္ပ	Proj	Ę	PSO	PSC	PSO.
			asticity of steel, double					3					И	-	М	-	-	-	Н	-	-	-	Н	-	Η
CLO-2			strength of steel, identii					3					И -	-	М	-	-	-	Н	-	-	-	Н	-	Н
CLO-3 CLO-4			on-destructive testing t		a nammer and UPV te	ests		3					И -	-	M	-	-	-	H	-	-	-	H	-	H
CLO-4			asticity of concrete, spli		d flevural strength of a	concrete		3					и - И -	+ -	M	-	-	-	Н	-	-	-	Н	-	Н
CLO-6			en steel bar and concr		a nexarar strength or c	CONTOLOGO		3					И -	-	M	-	-	-	Н	-		-	Н	-	Н
Duratio	on (hour)	<u> </u>	6		6		6		1		1		·	6		1		6							
S	, ,	Determination of stre	ength of steel specimen	Determination of s	trength of steel specime	en Determination	of stiffness and	d defle	ection o	of [)eterm	ination	of solit t	ensile :	strena	th of		Non Destructive Test using rebound han							
1-2		under impact test -lz		under double shea		helical springs		a dono	,01101110			e cylind		onono i	ou ong	01		and U	IPV.			Ŭ			
S			ength of steel specimen		trength of concrete cube		of strength of s		pecime			ination			ngth o	f conci				e beha	vior c	of Cast	ellated	d Stee	ıl —
3-4	01.0.4	under torsion test		and bricks under c	ompression tests.		test - Charpy Te		" .		eam (wo poi	t load t	est).				Beam							
S			dness strength test on		steel, aluminum specin		n of modulus of rain graph by co			I L		ination				ween s						terns c			
5-6	SLO-2	specimen using Roci	kwell & Brinell	under central and	non-central point load.	tension test or		Jiidacti	ung	b	ar and	concre	te (pull-	out tes	t).			mode	ls usir	ig pho	to ela	sticity	test-D)emo	
Learni Resou	-	Indian Standa	(Reaffirm – 2004), Spl ards, New Delhi. aterials Laboratory - La			d of Test, Bureau o	^{Ω†}	ew Del 1500:	lhi. :2005,	(Reaffirm – 2004), Method of Tests for Strength of Concrete, Bureau of Indian Star 5, Method for Brinell Hardness Test for Metallic Materials -Method of Test, Bureau of lew Delhi.															
Learni	ing Asses	sment			Ozafia	I		!	4																
		Bloom's	CLA – 1	(10%)	Continuo CLA – 2 (ous Learning Asse			tage) (15%))		1	^	_A – 4	(10%	.\#			Final	Exam	inatio	on (50	% wei	ightag	je)
		Level of Thinking	Theory	Practice	Theory	Practice	Theory	.A – J		<i>)</i> Practice	Э		Theory	_/\ - 4		<i>∘,</i> ≖ Practi	се		Т	heory			Pra	ctice	
Level 1	1	Remember Understand	-	40 %	-	30 %	-			30 %			-			30 %	6			-			30	0%	
Level 2	2	Apply Analyze	-	40 %	-	40 %	-			40 %			-			40 %	6			-			40	0%	
Level 3	3	Evaluate		20 %	_	30 %	_	- 30 % - 30 % -						30)%										

Total 100 % 100 % 100 % 100 % 100 % # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Level 3

Create

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. G. Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. G. Appa Rao, Professsor, IIT Madras, garao@iitm.ac.in	1. Dr. K. Gunasekaran, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pyt Ltd. Chennai, desigan.agy@gmail.com	2. Dr. C. Uma Rani, Professor, Anna University, umarani@annauniv.edu	2. Dr. P. R. Kannan Rajkumar, SRMIST

100 %

100 %

Course	18CEC204T	Course	FNGIN	EERING SUI	RVFYING	Course	С		Professional Core	L	Т	Р	С
Code	100202011	Name		LLI WITO CO.	WETHIO	Category	Ŭ		Troiceachair Corc	2	1	0	3
Pre-requisi Courses	INII		Co-requisite Courses	18CEC204	L	Progre Cou	essive rses	Nil					
Course Offer	ring Department	Civil Engineering			Data Book / Codes/Standards	Nil							

The purpose of learning this course is to:		Learn	ing						Prog	ram L	_earn	ing O	utco	nes (PLO)				
ane table surveying	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1											y								
of theodolite surveying	7		_					arch T			biit								
Learning Rationale (CLR): The purpose of learning this course is to: Utilize chain, compass & Plane table surveying Utilize working procedures of theodolite surveying Utilize working procedures of theodolite surveying Utilize operations of tachometric surveying Utilize the knowledge of surveying in carrying out Civil Engineering works Estimate the capacity of reservoirs, areas of embankments & setting out foundation trenches and curves Learning Outcomes (CLO): At the end of this course, learners will be able to: Apply the principles and making of linear, direction measurements and creation of Plan/Map Determine or set the altitude of the point/or set of points w.r.t the given datum Measure the horizontal and vertical angle and derive the measurements at times of obstacle and inaccessible points apply knowledge of optics to make the angular measurements in rolling/hilly terrain Set horizontal, vertical control and setting out works					dge		eut	see			aina		/ork		ce				
veying in carrying out Civil Engineering works	, (B	euc	l en		We	s	md		age	Φ	Sust		M V		inan	bu			
servoirs, areas of embankments & setting out foundation trenches and curves	ķi	ofici	aj.		Α'n	ılysi	Velc	sigr	ns	₫	∞		Геа	ion	& F	arni			
	_	a T			ing	Ans	°De	, De	<u> </u>	ರ *	nent		∞ŏ	icat	Λgt.) Le			
At the end of this course, learners will be able to:	Level of	Expecter	Expecter		Engineel	Problem	Design 8	Analysis	Modern	Society &	Environn	Ethics	Individua	Commur	Project N	Life Long	PS0 - 1	PS0 - 2	PSO - 3
king of linear, direction measurements and creation of Plan/Map	2	90	80	1	Н	Н	-	-	L	-	-	-	-	М	-	-	Н	-	-
e of the point/or set of points w.r.t the given datum	3	85	75		Н	Н	-	-	М	-	-	-	-	Μ	-	-	Н	-	-
vertical angle and derive the measurements at times of obstacle and inaccessible points	3	80	75		Н	Н	-	-	Μ	-	-	-		Μ			Н	-	-
o make the angular measurements in rolling/hilly terrain	3	85	80		Н	Н	-	-	М	-	1	-	-	М	-	-	Н	-	-
rol and setting out works	2	85	80		Н	Н	-	-	Н	-	М	-	-	М	-	М	Н	-	-
nd setting out curves	3	80	75		Н	Н	-	-	Н	-	М	-	-	М	-	М	Н	-	-
	The purpose of learning this course is to: ane table surveying In of theodolite surveying Interic surveying Interic surveying Inveying in carrying out Civil Engineering works Intervoirs, areas of embankments & setting out foundation trenches and curves At the end of this course, learners will be able to: Inking of linear, direction measurements and creation of Plan/Map Intervoirs of points w.r.t the given datum Intervoirs of vertical angle and derive the measurements at times of obstacle and inaccessible points Intervoirs of works	The purpose of learning this course is to: ane table surveying of theodolite surveying netric surveying reveying in carrying out Civil Engineering works servoirs, areas of embankments & setting out foundation trenches and curves At the end of this course, learners will be able to: king of linear, direction measurements and creation of Plan/Map of the point/or set of points w.r.t the given datum vertical angle and derive the measurements at times of obstacle and inaccessible points of make the angular measurements in rolling/hilly terrain 3 arol and setting out works	The purpose of learning this course is to: ane table surveying of theodolite surveying netric surveying reveying in carrying out Civil Engineering works reveroirs, areas of embankments & setting out foundation trenches and curves At the end of this course, learners will be able to: aking of linear, direction measurements and creation of Plan/Map vertical angle and derive the measurements at times of obstacle and inaccessible points and the angular measurements in rolling/hilly terrain and course, Learn (a) (b) (c) (c) (d) (d) (d) (d) (d) (d	The purpose of learning this course is to: ane table surveying In the fit theodolite surveying In the purpose of learning this course is to: In the purpose of learning this course is to: In the purpose of learning this course is to: In the purpose of learning this course is to: In the purpose of theodolite surveying In the purpose of theodolite surveying In the purpose of theodolite surveying In the purpose of the purpose of purpose is to: In the purpose of learning this course is to: In the purpose of learning this course is to: In the purpose of learning In the purpos	The purpose of learning this course is to: ane table surveying of theodolite surveying netric surveying reveying in carrying out Civil Engineering works reveroirs, areas of embankments & setting out foundation trenches and curves At the end of this course, learners will be able to: a thing of linear, direction measurements and creation of Plan/Map of the point/or set of points w.r.t the given datum vertical angle and derive the measurements at times of obstacle and inaccessible points a thing of linear, direction measurements at times of obstacle and inaccessible points a make the angular measurements in rolling/hilly terrain a metable surveying (a) (b) (c) (d) (d) (d) (d) (d) (d) (d	The purpose of learning this course is to: ane table surveying In the definition of the definition of the end of this course, learners will be able to: At the end of this course, learners will be able to: At the end of this course, learners will be able to: At the point/or set of points w.r.t the given datum In the end of this course, learners at times of obstacle and inaccessible points In the end of this course, learners will be able to: In the end of this course, l	The purpose of learning this course is to: ane table surveying of theodolite surveying netric surveying reveying in carrying out Civil Engineering works reveroirs, areas of embankments & setting out foundation trenches and curves At the end of this course, learners will be able to: aking of linear, direction measurements and creation of Plan/Map vertical angle and derive the measurements at times of obstacle and inaccessible points ane table surveying 1 2 3 1 2 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	The purpose of learning this course is to: ane table surveying In an etable	The purpose of learning this course is to: ane table surveying ane table surveying of theodolite surveying veying in carrying out Civil Engineering works are as of embankments & setting out foundation trenches and curves At the end of this course, learners will be able to: aking of linear, direction measurements and creation of Plan/Map vertical angle and derive the measurements at times of obstacle and inaccessible points or make the angular measurements in rolling/hilly terrain Learning 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 4 2 3 4 1 4 2 3 4 2 90 80 4 4 1 2 3 4 3 85 80 H H H	The purpose of learning this course is to: ane table surveying In an etable	The purpose of learning this course is to: ane table surveying In the purpose of learning this course is to: ane table surveying In the first the end of this course, learners will be able to: At the end of this course, learners will be able to: In the end of	The purpose of learning this course is to: ane table surveying ane table surveying for theodolite surveying netric surveying reveying in carrying out Civil Engineering works reveroirs, areas of embankments & setting out foundation trenches and curves At the end of this course, learners will be able to: At the end of this course, learners will be able to: At the point/or set of points w.r.t the given datum vertical angle and derive the measurements at times of obstacle and inaccessible points or make the angular measurements in rolling/hilly terrain The purpose of learning 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 2 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	The purpose of learning this course is to: ane table surveying of theodolite surveying retric surveying retric surveying retric surveying At the end of this course, learners will be able to: At the end of this course, learners will be able to: At the end of this course, learners will be able to: and the point/or set of points w.r.t the given datum vertical angle and derive the measurements at times of obstacle and inaccessible points or make the angular measurements in rolling/hilly terrain The purpose of learning 1 2 3 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 3 4 5 6 7 8 1 4 4 5 6 7 8 1 4 4 5 6 7 8 1 4 5 6 7 8 1 5 6 7 8 1 6 7 8 1 6 7 8 1 7 7 8 1 8 7 8 1 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	The purpose of learning this course is to: ane table surveying Interior surveying Interi	The purpose of learning this course is to: ane table surveying In an etable surveying In a a an etable surveyin	The purpose of learning this course is to: ane table surveying In of theodolite surveying Interior surv	The purpose of learning this course is to: ane table surveying ane table surveying for theodolite surveying netric surveying reveying in carrying out Civil Engineering works reveroirs, areas of embankments & setting out foundation trenches and curves At the end of this course, learners will be able to: At the end	The purpose of learning this course is to: ane table surveying ane table surveying for theodolite surveying retric surveying reveying in carrying out Civil Engineering works reveroirs, areas of embankments & setting out foundation trenches and curves At the end of this course, learners will be able to: At the end of this course, learners will be able to: At the end	The purpose of learning this course is to: ane table surveying ane table surveying of theodolite surveying retric surveying reveriors, areas of embankments & setting out foundation trenches and curves At the end of this course, learners will be able to: At the end of this course, learners will be able to: At the end of this course, learners will be able to: a the purpose of learning broad and properties are the point of set of points w.r.t the given datum a the purpose of learning broad and properties are the point of and setting out works a the purpose of learning broad and properties are the properties are the purpose of learning broad and properties are the properties ar

Durat	ion (hour)	9	9	9	9	9
S-1		Surveying Definition, Principles of Surveying	Methods: Radiation, Intersection	Theodolite Vernier & microptic, description and uses Temporary Adjustments of Vernier transit	Horizontal & Vertical for staff held Inclined Elevation & Depression on Fixed Hair Systems, with and without Analytic Lens	Layout, setting out works for foundation trenches
3-1	SLO-2	Classification of Surveying, Chain: Description, types of Chain & Accessories	Resection: two point &three-point Problem	Permanent Adjustments of the Vernier transit	Horizontal & Vertical for Normal staff Elevation & Depression. On Fixed Hair Systems, with &without Analytic Lens	Curves: Description & Components, Horizontal and Vertical curves, types
		Conventional signs, Field & office work chaining	Levelling: Level Line, Horizontal Line, horizontal plane	Horizontal angles measurements: Radiation & Repetition Method	Movable Hair methods: Principle, Stadia constants, Analytic Lens	Simple curves: Terms & Components
S-2		Ranging: Direct &Reciprocal ranging Procedures	Vertical Plane, datum, vertical line, elevation. Levels and Staves & types	Traversing, Closing error & distribution, Trigonometrical levelling: Heights & Distances	Tangential Systems: Both Angles are Angles of Elevation	Methods of Simple curves: setting with chain and tapes, Setting out procedure
S-3	SLO-1 SLO-2	Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems
S-4	SLO-1	Setting perpendiculars, Well- conditioned triangles	Spirit level, sensitiveness, Bench marks & important Terminology in Levelling	Base of the Object accessible, Base of the object Inaccessible: Instrument station in the same vertical Plane as Elevated Object. (Single Plane Method)	Tangential Systems: Both Angles are angles of Depression	Methods of Simple curves Rankies method: Tangential angles by theodolite(Single Theodolite Method)
	SLU-Z	Compass: Prismatic compass, Surveyor's compass	Temporary Adjustments of Vernier Transit	Base of the object Inaccessible: Instrument station in the same vertical Plane as Elevated Object	Tangential Systems: One Angle of Elevation and Other of Depression	Methods of Simple curves Rankies method: tangential angles by theodolite(Double Theodolite Method)
S-5	SLO-1	Meridians, Bearings & Types, Bearing systems &Types	Permanent adjustments of Vernier transit	Base of the object Inaccessible: Instrument station in the same vertical Plane as Elevated Object: Axis at different Levels	Substence Bar Method	Setting out procedure by rankies method, compound and reverse curves, Transition curves

	SLO-2	Conversions, Bearings to angles, Local Attraction: Definition & Corrections applied for Local Attraction	Longitudinal & cross-sectional Levelling & plotting	Base of the object Inaccessible: Instrumental Station not in the same vertical plane as the elevated object. (Double Plane Method)	Self-Reducing Tachometers	Contours: Definition, Contour Interval & Consideration Factors
S-6	SLO-1 SLO-2	Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems
S-7	SLO-1		Fly & Check Levelling, Height of collimation, rise & fall Method Booking & Reduction Types	tacheometric Systems, Types Tangential,	Engineering Surveys: Reconnaissance, Preliminary surveys for Engineering Projects	Contours, Contouring Methods
	SLO-2	Magnetic declination, dip, Traversing, Types & Plotting	Gradient & Missing Values on booking & Reduction	Stadia Systems: types, Principle of stadia systems	Location surveys for Engineering Projects	Characteristics of contours
	SLO-1	Plane Table Surveying: Plane table instruments and accessories	booking & Reduction on levelling for inverted staff		Setting out Works, Aims Horizontal Control, Vertical control	Uses of contours
S-8	SLO-2	Merits and demerits of Plane Table, & Operations of Plane Table	Curvature, Refraction & combined correction, Reciprocal Levelling	Horizontal & Vertical for staff held Inclined Elevation & Depression on Fixed Hair Systems	Base Lines & Types of Grids for carrying setting out works	Plotting – Calculation of areas and volumes
S-9	SLO-1 SLO-2	Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems	Tutorial: Solving Problems

	1.	Kanetkar T., Surveying and Levelling, Vols. I &II, United Book Corporation, Pune, 2007
Learning	2.	Punmia B.C, Surveying, Vols. I, 17 th ed., Laxmi Publications, 2016
Resources	3.	Chandra A.M, Plane Surveying and Higher Surveying, 3rd ed., New Age International (P) Limited, 2015
	4.	Clark.D, Plane and Geodetic Surveying, Vols. I & II, 17th ed., C.B.S. Publishers and Distributors, 2002

- Punmia B.C, Surveying, Vols. II, 16th ed., Laxmi Publications, 2016
 James M. Anderson, Edward M. Mikhail, Introduction to Surveying, 3rd ed., McGraw Hill, 2001
 N N Basak, Surveying & Levelling, 1st ed., Tata Mc Graw Hill, 2015
 Arora K.P, Surveying, Vol. 3,11th ed., Standard Book House, 2013
 NPTEL course: Surveying (Web). https://nptel.ac.in/courses/105107122/1

Learning Ass	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	Filiai Examination	i (50 % weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers			
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts	
1. Er. Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. K. Srinivasa Raju, Anna University, raju_irs@yahoo.com	1. Mr. K Prasanna, SRMIST	2. Ms. S Durga Devagi, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. E.S.M. Suresh, NITTTR, Chennai, esmsuresh@gmail.com	3. Mr V Satya Ramesh Potti,	SRMIST

Course Code 18CEC204L Course Name	ENGINEERING SURVEYING LABORA	TORY Cat	our iteg		С					Pro	fessio	nal C	Core					L 0	T 0	P 2	C 1
Pre-requisite Courses	Co-requisite 18CEC204T	-		Cou	essive rses	Nil															
Course Offering Department Civil Engineering	Data Bool	k / Codes/Standards	Ni																		
• , , , ,	rning this course is to:			Lea	rning						Progi	ram L	_earn	ing O	utcor	٠,					
					2 3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
				evel of Thinking (Bloom)	Expected Proticiency (%) Expected Attainment (%)	2	e G		¥						¥		a)				
	R-4: Utilize the principles of Levelling								mer		e				No.		Finance	-			
			gu .			Nov	/Sis	dole	Design,	Jsac	e E	.*		eam	⊊	ᇤ	Leaming				
			Ĕ Ē	7 A		ρ	nal)ev	Sesi	<u> </u>	SE	art 8	•	× ×	atic	±,	ea				
CLR-6: Apply theodolite principle for measuring neigh			- -	ted ted		eni	Æ	~	is, l	Ľ.	× ×	nme		ľa	ini	ξ	gu	-	7	3	
Course I coming Outcomes (CLO). At the and of this		-	Ne l	Expected Proficiency (%) Expected Attainment (%)		Engineering Knowledge	Problem Analysis	Design & Development	Analysis, E Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. &	ife Long	PSO-	- 080	PS0 -	
		_	_	û û 90 8	<u> </u>	Ш Н	H	ă	- R A	ž	Š	ந்ல	ш	<u> </u>	ŏ H	ď.	Ē	H	č	H H	
	the Offering Department Civil Engineering Data Book / Codes/Standar The purpose of learning this course is to: Utilize the principles of chain Surveying Utilize the principles of Compass surveying Utilize the principles of Levelling Utilize the principles of Department Utilize the principles of Levelling Utilize the principles of operation of theodolite Apply theodolite principle for measuring height and distance Learning Outcomes (CLO): At the end of this course, learners will be able to: It traverse and prepare the site layout It traverse, resulting in precise location of points using prismatic compass Prepare site layouts Profile land levels and contouring Determine horizontal distance of the inaccessible target Chain surveying, Calculation of area using stores staff by Perpendicular offset SLO-1 Chain surveying, Calculation of area using stores staff by oblique offset SLO-1 Chain surveying, Calculation of area using stroyed and open compass traverse, plotting and adjustments of traverse plotting and adjust									-	L	-	-	-	Н	Н	-	-	Н	-	Н
3				35 8 30 7		H	H	М		М				Н	Н	-		Н		Н	
				35 8		Н	Н	M	-	M	-	_	_	Н	Н	_	-	Н	-	Н	
	ble target		_		35 8		Н	Н	Н	-	М	_	-	-	Н	Н	-	1	Н	-	Н
	turget				30 7		Н	Н	Н	-	М	-	•	1	Н	Н	-	L	Н		Н
Duration (hour) 6	6	6							6								6				\neg
S Chain surveying, Calculation of area us	closed and open compass traverse,							Theod Heigh				ertica	l angle	es and	I						
3-4 SLO-2 cross staff by oblique offset	Resection, Field solution of problems (Trial and Error me						distar	nce by	/ Sing	le Pla	ne										
survey lines by prismatic compass and	Reduction of levels by Heigh Collimation method	ht c	of		Theo reiter			ure ho	rizon	ital an	gles		Heigh Metho		distar	nce by	/ Doul	ble Pla	ane		
Learning 1. Punmia B.C, Surveying, Vols. I, 17 Resources 2. Bhavikatti, S.S, Surveying and Let	th ed., Laxmi Publications, 2016 eling, Vol. I and II, I.K. International, 2010	3. S	Sur	eying/	Manu	al - SF	MIST														_
Learning Assessment																					

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n /EOO/ woightogo)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	Filiai Examinatio	n (50% weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%
Level 2	Apply Analyze	-	40 %	-	40 %	-	40 %	-	40 %	-	40%
Level 3	Evaluate Create	-	20 %	-	30 %	-	30 %	-	30 %	-	30%
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. K. Srinivasa Raju, Anna University, raju_irs@yahoo.com	1. Dr. Sachikanta Nanda, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. E.S.M. Suresh, NITTTR, Chennai, esmsuresh@gmail.com	2. Dr. J. Satish Kumar, SRMIST

Course Code	18CEC205T	Course Name	STRU	CTURAL ANALYSIS	Course Category	С	Professional Core	2	T 1	P 0	C 3
Pre-requis Courses	18CF2031		Co-requisite Courses	18CEC205L	Progre		Nil				
Course Offer	ring Department	Civil Engineering		Data Book / Codes/Standards	IS 9282	: 2002 In	ndian Standard Wire Ropes and Strands for Suspension Bridges	- Spe	cificat	ons	

Course O	ffering Department	IS 92	282: 2	002 Inc	dian S	tanda	ard W	ire Ro	pes	and S	trand	s for	Susp	ensior	n Bridg	ges –	Speci	iticatio	ons				
	earning Rationale (CLR):	The purpose of learning this cour findeterminate structures using slo			L	earni	ing 3		1	2	2	1	-	am L	_earn		utco	mes (F			12	14	15
					-	2	3	-	- 1	2	ა	4	5	0	1	8	9	10	11	12	13	14	15
CLR-2: CLR-3:	Get exposed to stiffness m	method in the analysis of indeterm patrix method	iiriale structures		(Bloom)	(%)	(%)		<u>e</u>		±	earch			Sustainability		¥		•				
CLR-4:		ictures using flexibility matrix metho	od		eg.				led		mer	Res	<u>o</u>		staii		Work		Finance	_			
CLR-5:		f determinate and indeterminate st		oads		icie.	Attainment		Knowledge	Sis.	velopment	gn, l	Usage	<u>e</u>	ns y		am	_		in in			
CLR-6:	Get an insight into the beha	avior of arches and suspension brid	idges		Thinking	Proficiency	Atta		β.	Analy	Deve	Design,	Tool	Culture	ant 8		& Te	gatio	÷.	Lear			
					of T	ted	ted		ening	E	∞ర	is, I	Ľ.	∞ŏ	Jul.		lual	E	t Mgt.	bug	_	2	က
Course L	earning Outcomes (CLO):	At the end of this course, learner	rs will be able to:		Level	Expec	Expected		Engine	Probler	Design	Analysis,	Modern	Society	Enviro	Ethics	Individua	Comm	Project	Life Lo	PSO-	PSO-	PSO-
CLO-1:	Apply slope deflection meth	hod to analyze indeterminate bear	ns and plane rigid jointe	d frames	3	90	75		Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-
CLO-2:	Use moment distribution m	nethod to analyze indeterminate be	eams and plane rigid joir	ted frames	3	95	75		Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-
CLO-3:	Make use of computer base plane rigid jointed frames	ed matrix stiffness method and dire	ect stiffness method to a	nalyze indeterminate beams and	3	90	75		Н	Н	-	Μ	М	-	-	-		-	-	-	Н	М	-
CLO-4:	Apply energy concepts and	d matrix flexibility method to analyz	e indeterminate beams	and plane rigid jointed frames	3	80	75		Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-
CLO-5:		ms for determinate and indetermina or finding stress resultants due to m		the same for determinate and	3	95	75		Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-
CLO-6:	fixed arches			study concepts behind the analysis o	of 3	85	75		Н	Н	-	М	-	-	-	-	-	-	-	-	Н	-	-
	Analyze suspension cables	s and get an insight into to suspens	sion bridges with two an	d three hinged girders																			

		Influence Lines Diagrams (ILD) and Moving Loads	Arches and Suspension Bridges	Flexibility Matrix Method	Slope Deflection and Moment Distribution Methods	Direct and Element Stiffness Matrix Methods
Durat	on (hour)	9	9	9	9	9
		Introduction to influence line diagram (ILD) and Muller Breslau's principle	Introduction to arches: three hinged, two hinged, fixed. Eddy's theorem	Revisiting Castigliano's energy theorems	Fixed end moments, effect of rotations and settlement on support moments	Relation between SDM, matrix stiffness method, derive direct stiffness method
S-1	SLO-2	ILD for BM and SF for cantilever	theoretical arch, analyze three hinged parabolic arches with supports at same level	Form basic determinate structure of an indeterminate structure by releasing the redundant reactions or inserting hinges	Principle of superposition and joint equilibrium, derivation of slope deflection method (SDM)	Advantages of Stiffness method over flexibility method, Analysis of propped cantilever using direct stiffness method
S-2	SLO-1	ILD for BM and SF for simply supported, overhanging beam. Introduction to IRC trailer load		Derive flexibility coefficients using unit load method.	Apply SDM for drawing bending moment diagram (BMD) and shear force diagram (SFD) for propped cantilevers with and without overhang	Analyze continuous beams using direct stiffness method
	SLO-2	Find max. BM, SF using ILD for cantilever, simply supported, overhanging beam subject to moving point loads and udl	Analyze three hinged circular arches with supports at the same level	Determine deflection of basic determinate beams using flexibility coefficients	Apply SDM for the analysis of beams up to a degree of static indeterminacy of 2 including the effect of support settlements	Apply direct stiffness method for single storey portal frame
S-3	SLO-1 SLO-2	Tutorial class	Tutorial class	Tutorial class	Tutorial class	Tutorial class
S-4		Concept of absolute maximum BM in simply supported beams	movement, temperature change and rib shortening	Derive direct flexibility matrix equation. Solving propped cantilever using flexibility method	Solve rigid jointed plane frame with degree of static indeterminacy 2 using SDM	Introduction to element stiffness method- coordinate systems – element and global
		Find absolute maximum BM and SF in a simply supported beam subjected to series of moving loads	a single point load	Formulate flexibility matrix for a two-span continuous beam with one of the end supports fixed	Moment Distribution Method (MDM), definition of stiffness, carry over factors	Derive element stiffness matrix for truss, beam, frame elements in local coordinates

					with demonstrative analysis of propped cantilever	
S-5	SLO-1	Find absolute maximum BM /SF in a simply supported beam subjected to udl – shorter and longer than the span	Analyze two hinged parabolic arches with udl occupying the entire span	Analyze two span continuous beam with one of the end supports fixed using direct flexibility method	Analyze 2 span- continuous beams using MDM	Rotation matrix for truss element and transformation of element stiffness matrix in local coordinates to global coordinates
3-3	SLO-2	ILD of propped cantilevers	Analyze two hinged parabolic arches with part udl occupying anywhere in the span		Analyze 3 span- continuous beams using MDM includingeffect of support settlements	Rotation matrix for frame element and transformation of element stiffness matrix in local coordinates to global coordinates
S-6	SLO-1 SLO-2	Tutorial class	Tutorial class	Tutorial class	Tutorial class	Tutorial class
S-7		ILD for two span continuous beam for end support reaction	Introduction to suspension cables	Form flexibility matrix for single storey portal frame with static indeterminacy of 2 with supports at different levels and analyzing	Analyze non-sway frames using MDM	Compute load vector in global coordinates for truss problems. Assemble global stiffness matrix for truss problem
3-1		ILD for two span continuous beam for mid support reaction	Analyze suspension cables with udl – maximum and minimum cable tension and support reactions – resultant (Supports at same level)	Find support reactions for a single storey portal frame with static indeterminacy of 3 with supports at same level and subjected to a lateral point load at beam level	Introduction to sway in portal frames	Compute joint load vector in beam/frame problems with uniformly distributed and point loads
	SI ()-1	ILD for two span continuous beam for mid support moment	Analyze suspension cables with udl – maximum and minimum cable tension and support reactions – resultant (Supports at different levels)	Form flexibility matrix for a single storey portal frame with a static indeterminacy of 3 with supports at same level and subjected to udl over the beam	Fixed end moments due to sway in single storey frames and analysis of single storey portal frames with sway using MDM	Assemble global stiffness matrix for two span continuous beams. Partition global stiffness matrix and find unknown displacements and reactions
S-8		ILD for two span continuous beam for span BM and span shear	Find forces at anchor towers – saddle support with rollers and hinged supports. Introduction to two hinged and three hinged stiffening girders	Find support reactions for a single storey portal frame with static indeterminacy of 3 with supports at same and different levels and subjected to either udl over the beam or lateral load at beam level	KANI'S METHOD Introduction to Kani's method for multistory frames and definition of rotation factors and sway corrections	Assemble global stiffness matrix for single storey portal frame, partitioning, solve for unknown displacements and find element forces from known displacements upto a static indeterminacy of 3
S-9	SLO-1 SLO-2	Tutorial class	Tutorial class	Tutorial class	Tutorial class	Tutorial class

Learning
•
Resources

- 1. Menon D, Structural Analysis, Alpha Science International Limited, 2009
- 2. Pandit G.S., Gupta S.P., Structural Analysis- A Matrix Approach, 2nd ed., Tata McGraw-Hill, 2010
- 3. Punmia B.C., Ashok Kumar Jain, Arun Kumar Jain, Theory of Structures, 12th ed., Laxmi Publications,
- 4. Vaidyanathan R, Perumal. P, Comprehensive Structural Analysis-Volume I & II, Laxmi Publications, 2004
- 5. Bhavikatti S. S, Structural Analysis, Vol-1 &2, E-2, Vikas Publishing House Pvt Limited, 2009
- Hibbeler R.C., Structural Analysis, 8th ed., Prentice Hall, 2012
- NPTEL Course: Structural Analysis I. https://onlinecourses.nptel.ac.in/noc17_ce25/preview NPTEL Course: Structural Analysis II https://nptel.ac.in/downloads/105105109/

Learning Ass	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Evamination	(EOO/ waightage)
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	FIIIai Examination	n (50% weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	100	0 %	100	0 %	100) %	10	0 %

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. G.Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. G. Appa Rao, Professsor, IIT Madras, garao@iitm.ac.in	1. Dr. K. Sathyanarayanan, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. C. Uma Rani, Professor, Anna University, umarani@annauniv.edu	2. Prof. G. Augustine Maniraj Pandian, SRMIST

Course Code	18CEC205L	Course COM	PUTER AIDED ST	RUCTURAL ANALYSIS	LABORATORY	-	ourse itegory	,	С			ı	Professi	ional C	ore				L	T 0	P 2	C 1
Pre-requisite Courses	INII		Co-requisite Courses	18CEC205T				gressiv ourses		il												
Course Offerin	g Department	Civil Engineering		Data Boo	k / Codes/Standard	ds	Nil															
CLR-1: Utiliz		Area of Steel of beams u	sing MS Excel prog				1	earnin	3	1	2	3	Prog	gram L	earni 7				•	2 13	14	15
CLR-3 : Anal CLR-4 : Anal CLR-5 : Utiliz	yze behavior of 2D a yze behavior of Plan e the flexural and sh	ving Matrix Equation using and 3D Moment Resistar e Steel Frames using Sinear behavior of RCC be e torsional behavior of R	t Steel Frames usir FAAD Pro or ETABS am		S		Level of Thinking (Bloom)	Expected Proficiency (%)	Spected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Research Modern Tool Usage	Society & Culture	Environment & Sustainability		Individual & Team Work	Sommunication	Project Mgt. & Finance	Life Long Leaming PSO - 1	.2	3
CLO-1 : Calci CLO-2 : Solve CLO-3 : Repo CLO-4 : Anal CLO-5 : Anal	ulate the Area of Ste e matrix equation us. ort on the behavior o yze the behavior of I	f 2D and 3D Moment Re Plane Steel Frames I shear resistance of RCC	ccel program sistant Steel Frame				3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	90 85 90 85 85	85 80 85 80 80 80	H H H Engin	M M M M	H - -	- H - H - H	. Societ	Enviro	- - - -	H H	-	-	- LITE LONG - H - H - H - H	H H PSO - 2	H H H H
Duration (hour)		6		6		6						6							6			
S SLO-1 1-2 SLO-2	Programming in MS	Excel for calculating Ast	Solving Matrix Prob	lems in MS Excel	Exercise the solution	-	AD Pro	or ETAL		alysis in S C loads a			ETABS f	for movi		Study th	ne beh	avior	of RCC	C beam	test un	der
S SLO-1	Solving Problems in	MS Excel		Resistant Steel Frames or ETABS for real building					Pro	ne Pin Jo or ETAE	3S				S	shear						
S SLO-1 5-6 SLO-2	Solving Matrix Equa	tion using Stiffness Matrix	Exercise the solution	n in STAAD Pro or ETAB	S Exercise the solution and verification usi					ercise the d verificat						Study th orsion	ne beh	avior	of RC0	C beam	test un	der
Learning Resources	1. IS 456 :2000,	Plain and Reinforced Co	oncrete: Code of Pr	actice, Bureau of Indian	Standards, New De	elhi.	2.	Lab	orator	y Manua	I - SRM	IST										
Learning Asse	ssment																					
	Bloom's	01.1	(400()		Learning Assessme			<u> </u>				01.4	4 /400/	\ II		_ Fi	nal Ex	xamir	ation ((50% w	eightad	ge)
	Level of Thinking	g CLA – 1 Theory	(10%) Practice	CLA – 2 (15) Theory	%) Practice	CL Theory	A – 3 (/	actice		Theo		4 (10%)# Practic	٠		The			•	actice	. ,
Level 1	Remember Understand		40 %	-	30 %				0 %		-	y		30 %				- -			30%	
Level 2	Apply Analyze	-	40 %	-	40 %	-		4	0 %		-			40 %	,			-		,	10%	
Level 3	Evaluate Create	-	20 %	-	30 %	-			0 %		-			30 %	•		-	-			30%	
# CLA 4 1	Total	100		Tallia Mini Drainata C	Ohudir - O-1/ O'		100 %		: ^)(D	t -	1	00 %						100	%		
	<u>~</u>	tion of these: Assignmen	its, Seminars, Tech	i raiks, Mini-Projects, C	ase-Studies, Self-St	tuay, MOO	US, CE	ertificat	ions, C	ont. Pap	er etc.,											
Course Design	ers																					

2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com 2. Dr. C. Uma Rani, Professor, Anna University, umarani@annauniv.edu

Experts from Industry

1. Er. G.Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com

Experts from Higher Technical Institutions

1. Dr. G. Appa Rao, Professsor, IIT Madras, garao@iitm.ac.in

Internal Experts

1. Dr. K. Sathyanarayanan, SRMIST

2. Prof. G. Augustine Maniraj Pandian, SRMIST

Cou		18CEC206T	Course Name	HYDRAULIC E	ENGINEERING AND DES	SIGN	Cou Cate			С				Pro	fessio	nal C	ore					L 2	T 1	P 0	C 3
	requisite ourses	18CEC202T		Co-requisite Courses	18CEC206L			Prog Co	ressi urse:		Nil														
Cours	e Offering	Department	Civil Enginee	ring	Data Book	/ Codes/Standards	٨	lil																	
Cours	e Learnin	g Rationale (CLI	R): The purpose of	of learning this course is to:				Le	arnir	ng					Progr	ram L	.earni	ing O	utcor	nes (PLO)				
CLR-1	: Utilize	e dimensional and	d model analysis					1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 CLR-3 CLR-4 CLR-5 CLR-6 Cours CLO-1 CLO-2 CLO-3 CLO-4 CLO-5 CLO-6	: Utiliza: : Creat : Addre : Utiliza: e Learnin : Ident: : Analy : Ident: : Analy : Ident:	e basic hydraulic of the insights into the east concepts related the components of t	e components and feted to the components, functions and use O: At the end of coustillary and problems in ted to open channes to measure and ents and functions of its and functions of great ted to open channes.	ring discharge and velocity if functions of roto-dynamic pu- ents and functions of positive as of Pelton wheel, Kaplan a this course, learners will be involving dimensional and m	amp e displacement pump and Francis turbines e able to: model analysis city in open channel			と ら ら ら し Fevel of Thinking (Bloom)	8 8 8 8 Expected Proficiency (%)	(%) The strain (%) 75 75 75 75 70 75 75 75 75 75 75 75 75 75 75 75 75 75	T T T T Engineering Knowledge	H H H H Problem Analysis	H · · · H · Design & Development	- '	Modem Tool Usage	Society & Culture	Environment & Sustainability	· · · Ethics	ı ı ı ı lndividual & Team Work	Communication	' ' ' Project Mgt. & Finance	Life Long Learning	H H H H H H H H H H H H H H H H H H H	PSO-2	PSO-3
020 0	i raona	ı ıno odinpononi	to, ranotiono ana ao	oo or various riyaraano tarbi		T		Ŭ	00					_							l			- 1	
Durati	on (hour)		9		9	9							9								9				
	SLO-1	Dimensional and	d Model analysis	Open channel flow	′	Backwater computation method	by dir	ect st	ер	(auging flu	mes,	non-n	nodula	ar/ven	turiflu	ıme /	Air ve	ssel a	nd its	funct	ions			
S-1	SLO-2	Use of dimension quantities and de	nal analysis, fundar erived quantities		een open channel and of channels and types of	Rapidly varied flow, hydi types					Standing w	ave / I	Modu	ar flui	те			Workii oump				drauli	c ram	, jet	
	01.0.1	MI Tayadama fa		Chamila farmula a	ad Manainala famania	Expression for loss of er	ergy	due t	o jum	np,	4			4			. Т.	T							

S-7	SLO-1	Similitude – Geometric similarity		Effect on discharge over a notch or weir due to error in the measurement of head	Characteristic curves, NPSH	Kaplan turbine, design aspects of Kaplan turbine
3-1	SLO-2	Kinematic and dynamic similarity	Gradually varied flow	Velocity of approach and end contraction	Reciprocating pump, components and working	Draft tube, types
S-8	SLO-1	Dimensionless numbers and their significance	'	Cippoletti weir, broad crested weir	Coefficient of discharge, slip, indicator diagram	Specific speed and its significance
3-8	SLO-2	Model (or similarity) laws; Model studies in fluid flow problems	Length of back water curve and afflux	Narrow crested weir, Ogee weir and drowned/submerged weir	Effect of acceleration and friction, Maximum speed of reciprocating pump	Characteristic curves of hydraulic turbines
S-9	SLO-1	Solving problems using tutorial sheet 3	Solving problems using tutorial sheet 6	Solving problems using tutorial sheet 9	Solving problems using tutorial sheet 12	Solving problems using tutorial sheet 15
3-9	SLO-2	Solving problems using tutorial sheet 3	Solving problems using tutorial sheet 6	Solving problems using tutorial sheet 9	Solving problems using tutorial sheet 12	Solving problems using tutorial sheet 15

Lograina	1.	Modi, P.N., Seth S.M., Hydraulics and Fluid Machines, Standard book house, 2005	4.	Chandramouli P.N., Applied Hydraulic Engineering, Yesdee, 2017
Learning	2.	Subramanya, K., Theory and application of fluid mechanics, Tata McGraw Hill, 2002	5.	NPTEL Course-Hydraulics. https://nptel.ac.in/courses/105106114/#
Resources	3.	R.K., Fluid Mechanics and Hydraulic Machines, S.Chand, 2014	6.	NPTEL Course-Fluid Machinery. https://nptel.ac.in/courses/112104117/

Learning Ass	essment										
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (EOO/ weightege)
	Level of Thinking	CLA - 1	1 (10%)	CLA – :	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	FIIIai Examination	n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		30 %		30%	
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %		40 %		40%	
Level 2	Analyze	40 70	-	40 /0	-	40 /0	-	40 /0	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
Level 3	Create	20 %	-	30 %	-	30 70	-	30 //	-	30%	-
	Total	100) %	100) %	100	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Abdul Hakeem, National Remote Sensing Center, Hyderabad, abdulhakeem_k@nrsc.gov.in	1. Dr. R. Saravanan, Anna University, rsaran@annauniv.edu	1. Dr. R. Sathyanathan, SRMIST
2. Dr. Sat Kumar Tomer, Satyukt Analytics Pvt Ltd., Bengaluru, sat@satyukt.com	2. Dr. S. Saravanan, NIT, Tiruchy, ssaravanan@nitt.edu	2. Dr. DeepthaThattai, SRMIST

Pre-requisite Courses Course (Course)
Course Learning Rationale (CLR): The purpose of learning this course is to: CLR-1: Utilize the Chezy's and Manning's equations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CLR-2: Analyze the concept of hydraulic jump CLR-3: Utilize knowledge on notches and flumes CLR-4: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Very Stand Manning's equations CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications Utilize Pelton wheel turbine and Francis turbine for suitable applications Utilize Pelton wheel turbine and Francis turbine for suitable applications
CLR-1: Utilize the Chezy's and Manning's equations CLR-2: Analyze the concept of hydraulic jump CLR-3: Utilize knowledge on notches and flumes CLR-4: Utilize knowledge in operating the current meter CLR-5: Utilize centrifugal pump, reciprocating pump, submersible pump and gear oil pump for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLO-1: Apply the concept of Chezy's and Manning's equations CLO-2: Analyze the concept of Chezy's and Manning's equations Test Performance of centrifugal pump Test Performance of gear oil pump
CLR-2: Analyze the concept of hydraulic jump CLR-3: Utilize knowledge on notches and flumes CLR-4: Utilize knowledge in operating the current meter CLR-5: Utilize knowledge in operating the current meter CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications Course Learning Outcomes (CLO): At the end of this course, learners will be able to: CLO-1: Apply the concept of Chezy's and Manning's equations CLO-2: Analyze hydraulic jump CLO-3: Evaluate velocity using current meter CLO-4: Evaluate velocity using current meter CLO-6: Analyze the working of centrifugal pump, reciprocating pump, submersible pump and gear oil pump Duration (hour) 6 6 6 6 6 S SLO-1 Determine Chezy's constant for an open I-2 SLO-2 Channel Determine coefficient of discharge for triangular notch
CLR-3: Utilize knowledge on notches and flumes CLR-4: Utilize knowledge in operating the current meter CLR-5: Utilize centrifugal pump, reciprocating pump, submersible pump and gear oil pump for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications CLR-6: Utilize Pelton wheel turbine and Francis turbine for suitable applications Telegraphy of the concept of Chezy's and Manning's equations of the performance of telegraphy of the perf
CLO-1: Apply the concept of Chezy's and Manning's equations 3 90 85 CLO-2: Analyze hydraulic jump 3 90 85 CLO-3: Evaluate discharge using notches and flumes 3 90 85 H M H H H H H H H
CLO-1: Apply the concept of Chezy's and Manning's equations 3 90 85 CLO-2: Analyze hydraulic jump 3 90 85 CLO-3: Evaluate discharge using notches and flumes 3 90 85 H M H H H H H H H
CLO-1: Apply the concept of Chezy's and Manning's equations 3 90 85 CLO-2: Analyze hydraulic jump 3 90 85 CLO-3: Evaluate discharge using notches and flumes 3 90 85 H M H H H H H H H
CLO-1: Apply the concept of Chezy's and Manning's equations 3 90 85 CLO-2: Analyze hydraulic jump 3 90 85 CLO-3: Evaluate discharge using notches and flumes 3 90 85 H M H H H H H H H
CLO-1: Apply the concept of Chezy's and Manning's equations 3 90 85 CLO-2: Analyze hydraulic jump 3 90 85 CLO-3: Evaluate discharge using notches and flumes 3 90 85 H M H H H H H H H
S SLO-1 Determine Chezy's constant for an open 1-2 SLO-2 channel
S SLO-1 Determine Chezy's constant for an open 1-2 SLO-2 channel
S SLO-1 Determine Manning's roughness Determine coefficient of discharge for
3-4 SLO-2 coefficient for an open channel rectangular notch Measure velocity using current meter rectangular notch Test Performance of reciprocating pump Test Performance of Pelton wheel turbin
S SLO-1 5-6 SLO-2 Determine specific energy curve Measure flow using rectangular and triangular notches Measure discharge using venturiflume Test Performance of submersible pump Test Performance of Francis turbine
Learning 1. Modi, P.N., Seth S.M., Hydraulics and Fluid Machines, Standard book house, 2005 3. Rajput R.K., Fluid Mechanics and Hydraulic Machines, S.Chand and Company Ltd., 2013 4. Laboratory Manual for Hydraulic Engineering Laboratory, SRMIST
Learning Assessment
Bloom's Continuous Learning Assessment (50% weightage) Final Examination (50% weightage)
Level of Thinking CLA - 1 (10%) CLA - 2 (15%) CLA - 3 (15%) CLA - 4 (10%)#
Theory Practice Theory Practice Theory Practice Theory Practice Theory Practice Theory Practice
Level 1 Remember - 40 % - 30 % - 30 % - 30 % - 30 % - 30 %

40 %

20 %

100 %

Apply

Analyze Evaluate

Create

Level 2

Level 3

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1. Mr. Abdul Hakeem, National Remote Sensing Center, Hyderabad, abdulhakeem_k@nrsc.gov.in	1. Dr. R. Saravanan, Anna University, rsaran@annauniv.edu	1. Dr. R. Sathyanathan, SRMIST							
2. Dr. Sat Kumar Tomer, Satyukt Analytics Pvt Ltd., Bengaluru, sat@satyukt.com	2. Dr. S. Saravanan, NIT, Tiruchy, ssaravanan@nitt.edu	2. Mr. Shaik NiyazuddinGuntakal, SRMIST							

40 %

30 %

100 %

40 %

30 %

100 %

40%

30%

100 %

40 %

30 %

100 %

[#]CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Cou		18CEC207T	Course Name	DESIGN OF RC AND STEEL STRUCT	JRES	Cou Cate			С		nal Co	ore)					T 0	P C 0 4							
	equisite urses	Nil	Co-requisite Courses Nil Progres																							
Cours	Offering	g Department	Civil Engineering	Data Book	/ Codes/Standards		IS 45	6 :200	00, SI	² 16-C	Column	Des	ign Ch	arts,	IS 80	0: 20	07, St	teel Ta	ables							
Course Learning Rationale (CLR): The purpose of learning this course is to:							Learning Program Learning Outcomes (PLO)																			
	CLR-1: Utilize the behavior of RC sections under flexure and shear and to get introduced to the relevant IS codes				ant IS codes		1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14 15		
	R-2: Design RC using Limit state method R-3: Utilize the concepts in performing design of RC beams, slabs, columns and foundations						mool	%) A	t (%)		dge		ent						/ork		8					
	CLR-4: Analyze behavior of Steel sections under tension, compression and flexure, identify relevant IS codes					19 (B	ienc	men		owle	. <u>s</u>	obuic	-	sage	உ			ME		inan	ing					
			using Limit state method				inkir	Profic	Attain		g Kn	nalys	Develop	8	Š O	릙	ĕ E <u>≩</u>		ž –e	ation	t. & F	-eam				
CLR-6	: Utiliz	e the concepts in p	performing design of steel	tension, compression and flexural members	and their connections		of T	ted F	ted /		eenin	em A	n & L	arch arch	임	ty & (onme inabi		dual 8	nunic	ot Mg	ong L	-	3 8		
Cours	Learnin	ng Outcomes (CL	.O): At the end of this cou	rse, learners will be able to:			evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	Problem Analysis	Design & Development	Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt. & Finance	ife Long Leaming	PS0 - 1	PSO - 2 PSO - 3		
CLO-1	: Ident	ify effect of extern	al loads on RC members,	factors influencing their behavior, identify rel	evant IS codes		3	85	80		Н	-	-	М	-	-	-	-	-	-	-	H	Н	М -		
			C sections under flexure an				2	80			Н	Н			-	-	-	-	-	-	-	Н	Н	М -		
							3	85 85	80	+ +	H	H -			-	-		-	-	-	-	H	H	M -		
	CLO-5: Analyze the behavior of Steel sections under tension, compression and flexure 2					80			Н	Н			-	-	-	-	-	-	-	Н	Н	М -				
				n, compression and flexural members and th	eir connections		2	85	80		Н	Н	Н	Н	-	-	-	-	-	-	-	Н	Н	М -		
Durati	on (hour)		12	12	12	12				12								12								
S-1	SLO-1	Grade of concret	N TO RC DESIGN te - concrete mix design- ns-Design of nominal and	RC SLABS Reinforcement detailing of one way slabs	RC BEAMS Concept of load transfer from slab to beam-Introduction to singly and doubly reinforced and flanged beams -Design recommendations as per IS 456:2000				11-	RC STAIR-CASES Design of dog-legged stair-case-Procedul					In	RC FOUNDATIONS Introduction-Types of foundation-Transfer of forces at junction of column-foundation										
	SLO-2	Basic design con Philosophy- Work method of design	king stress and Limit state	Design of continuous slabs-Procedure	Design of singly reinforc Procedure	ed b	eams	; -	I	Design of stair-cases-Example 1							Design recommendations as per IS 456:2000									
S-2	SLO-1	RC DESIGN: Pa	rtial safety factors -Limit vantages	RC SLABS Design of continuous slabs-Example 1	RC BEAMS Design of singly reinforc Example 1	ed b	oeams	; -		RC STAIR-CASES Design of stair-cases-Example 2							RC FOUNDATIONS Design of isolated foundationaded-sloped						ndation-axially			
	SLO-2	IS 456:2000	recommendations as per	Design of continuous slabs-Example 2	Design of singly reinforc Example 2	ed b	eams)-	I	Reinforcement detailing-Use of SP 34								Design of isolated foundation-axially loaded-stepped								
S-3	SLO-1	AND PLASTIC A structures - Prop Indian Standard sections- Design 800:2007-Analys	ICTION TO STEEL DESIGN STIC ANALYSIS: Types of steel - Properties of structural steel, indiard Specifications and Design criteria as per IS Analysis methods STEEL TENSION MEMBERS Design provisions of tension members Design of simple columns-indiance of the sign provisions of tension members								STEEL CONNECTIONS Design of pin connections						1 -	STEEL BEAMS Design provisions of beams								
3-3	SLO-2	Design Philosopl State Method of	ads as per IS codes- hy-Introduction to Limit design – Partial safety design requirements as	Design of simple tension members - Effective net area-Types of failures	Design of simple column	ıs-E	хатрі	le 1	L	Design of lap joints-Procedure							Design of simple beams-restrained- Procedure									
S-4	SLO-1	Plastic hinge me of resistance, Pl		STEEL TENSION MEMBERS Design of plates with holes subjected to tension-Procedure	STEEL COMPRESSION Design of simple column				STEEL CONNECTIONS Design of lap joints-Example 1							Di Ex	STEEL BEAMS Design of simple beams-restrained- Example									
	SLO-2	Shape Factor for triangular section	r rectangular, circular and ns	Design of plates with holes subjected to tension-Example	Types of built up column				Design of lap joints-Example 2								Lateral torsional buckling behaviour of unrestrained beams									

S-5			RC SLABS Reinforcement detailing of continuous slabs	RC BEAMS Design of doubly reinforced beams- Procedure	RC COLUMNS Short and long columns, Effective length slenderness ratio, un braced and braced columns -Design recommendations as per IS 456:2000	RC FOUNDATIONS Design of isolated foundation-eccentrically loaded-Procedure
	SLO-2		Design of two way slabs-Procedure	Design of doubly reinforced beams- Example 1	Design of axially loaded short columns	Design of isolated foundation-eccentrically loaded-Example
S-6	SLO-1	nor IS 456:2000 florure	RC SLABS Design of two way slabs-Simply supported on the edges with corners not held down	RC BEAMS Design of doubly reinforced beams- Example 2	RC COLUMNS Uniaxial and biaxial bending of columns	RC FOUNDATIONS Design of combined rectangular foundation-Procedure
	SLO-2		Design of two way slab- Simply supported on the edges with corners held down	Ductile detailing of beams as per IS 13920	Use of interaction curves from SP16	Design of combined rectangular foundation-Example
S-7	SLO-1	PLASTIC ANALYSIS: Snape Factor for I	STEEL TENSION MEMBERS Design of angles subjected to tension- Procedure	STEEL COMPRESSION MEMBERS Design of lacing-Procedure	STEEL CONNECTIONS Design of butt joints-Procedure	STEEL BEAMS Check for lateral torsional buckling of unrestrained beams-Steps
	SLO-2	Shape Factor for T and C sections	Design of angles subjected to tension- Example	Design of lacing-Example	Design of butt joints-Example 1	Check for lateral torsional buckling of unrestrained beams-Example
S-8	SLO-1		STEEL TENSION MEMBERS Design of built-up tension members- various cross-sections	STEEL COMPRESSION MEMBERS Design of batten-Procedure	STEEL CONNECTIONS Design of butt joints-Example 2	STEEL BEAMS Design of beams subjected to biaxial bending-Procedure
	SLO-2	Mechanism method of plastic analysis	Design of built-up tension members- Procedure	Design of batten-Example	Design of Truss joint-Procedure	Design of beams subjected to biaxial bending-Example 1
S-9	SLO-1	RC SLABS Introduction-Types of slab -Introduction on moment co-efficient and design recommendations as per IS 456:2000	RC SLABS Design of two way slabs-with edges fixed	RC BEAMS Design of flanged beams-Procedure	RC COLUMNS Design of long columns	RC FOUNDATIONS Introduction to Strip Footing
	SLO-2	Design of one way slabs-Procedure	Design of two way slabs-Example	Design of flanged beams-design for torsion	Ductile detailing of columns as per IS 13920	Introduction to Raft Footing
S-10	SLO-1	RC SLABS Design of one way slabs-Example 1	RC SLABS Reinforcement detailing of two way slabs	RC BEAMS Design of flanged beams-Example 1	RC COLUMNS Reinforcement detailing at beam-column joints using SP34	RC FOUNDATIONS Design of pile foundation, pile cap
	SLO-2		Use of design handbooks	Design of flanged beams-Example 2	Extension of design of columns to piles	Reinforcement detailing
S-11	SLO-1	PLASTIC ANALYSIS :Analysis of	STEEL TENSION MEMBERS Design of built-up tension members- Example	STEEL CONNECTIONS Types of connections-Bolted and welded	STEEL CONNECTIONS Design of Truss joint-Example 1	STEEL BEAMS Design of beams subjected to biaxial bending-Example 2
	SLO-2	Analysis of indeterminate beams with varying M _p	Tension splices	Types of bolts and welds-Permissible stresses	Design of Truss joint-Example 2	Design of built-up beams-Procedure
S-12	SLO-1	PLASTIC ANALYSIS :Analysis of single bay single storey rectangular portal frames-with same column heights	STEEL COMPRESSION MEMBERS Design provisions of compression members	STEEL CONNECTIONS Load transfer mechanism	STEEL BEAMS Behaviour of steel members in flexure	STEEL BEAMS Design of built-up beams-Example 1
J-12	SLO-2		Effective length-Slenderness ratio-Types of buckling-Classification of cross-sections	Types of failure of connections	Phenomenon of web buckling and web crippling	Design of built-up beams-Example 2

	1. Varghese.P.C, Limit State Design of Reinforced Concrete, 2 nd ed.,PHI Learning Pvt. Ltd., 2004	6.	Subramanian.N, Design of Steel structures-Limit state method, Oxford University Press, 2016
	2. Unnikrishna Pillai.S, Devdoss Menon, Reinforced Concrete Design, 5th ed., Tata McGraw, 2003	7.	Shah.V.L., Veena Gore, Limit State Design of. Steel Structures, 1st ed., Structures Publications, 2009
Learnin	 Subramanian.N, Design of Reinforced Concrete Structures, Oxford University Press, 2013 	8.	Punmia.B.C, Ashok Kumar Jain, Arun Kumar Jain, Comprehensive Design of Steel structures, Laxmi
Resour	ces 4. Punmia.B.C, Ashok Kumar Jain, A run Kumar Jain, Limit State Design of Reinforced		Publications Pvt. Ltd., 2007
	Concrete, 1st edition, Laxmi Publications Pvt. Ltd., 2007	9.	NPTELCourse: Design of Reinforced Concrete Structures: https://onlinecourses.nptel.ac.in/noc18_ce24/preview
	5. Duggal S.K, Limit state design of steel structures, Tata McGraw Hill, 2010	10.	NPTELCourse: Design of Steel Structures https://onlinecourses.nptel.ac.in/noc17_ce21/preview

	Bloom's			Final Examination	(50% weightage)							
		CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	FIIIdi Exallillatioi	i (50 % weightage)	
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
l aval 1	Remember	40 %		30 %		30 %		30 %		30%		
Level 1	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply	40 %		40 %		40 %		40 %		40%		
Level 2	Analyze	40 %	-	-	40 %	-	40 %	-	40 %	-	40%	-
1 2	Evaluate	20.0/		20.0/		20.0/		20.0/		200/		
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	100	0 %	100) %	10	0 %	100) %	10	0 %	

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. G.Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. G. Appa Rao, Professsor, IIT Madras, garao@iitm.ac.in	1. Dr. K. Sathyanarayanan, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. C. Uma Rani, Professor, Anna University, umarani@annauniv.edu	2. Prof. G. Augustine Maniraj Pandian, SRMIST

Course Code	18CEC208T	Course Name	ENVIRONMENTAL	L ENGINEERING AND DESIGN	Course Category	С	Professional Core	L 2	T 1	P 0	C 3
Pre-requisi Courses	INII		Co-requisite Courses	18CEC208L	Progre Cour		Nil				
Course Offer	ring Department	Civil Engineering	1	Data Book / Codes/Stan	dards Nil						

Course Offering Department	Civil Engineering	Data Book / Codes/Standards	Nil																	
Course Learning Rationale (CLR):		e is to:	L	.earni	ng					Progi	ram L	_earn	ing O	utcor	mes (PLO)				
CLR-1: Utilize the sources of water	r supply and its quality		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Design and Construct water	er treatment for domestic supplies											y								
CLR-3: Utilize sanitary engineering	g concepts for implementation		=		<u></u>				arch			pilit								
CLR-4: Design sewage treatment	plants for towns and cities		(Bloom)	(%) A	t (%)	dge		eut	sse			aina		Work		ce				
CLR-5: Utilize solid waste manage	ment mechanisms		9.8	ency	Attainment	we le	S	elopment	ı, Re	age	Ф	Sustainability		N N		Finance	ning			
CLR-6: Analyze the role of Govern	ment and NGO's in sustaining the e	nvironment	Ę.	Profici	aju	χ	Analysis	evelc	esign,	Ns	ulture	∞ర		Team	ion	& F	arni			
•			Thinking	Ę.		ing	Ans	$\overline{\Box}$	De	Tool	& CL	nent		∞	icat	Mgt.	l Le			
Course Learning Outcomes (CLO):	At the end of this course, learners	will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design &	Analysis,	Modern -	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	0	PSO - 3
CLO-1: Identify the various source	s of water and its quality		2	85	80	Н	Н	М	Ĺ	-	Ĺ	Н	-	-	-	-	L	Н	-	-
CLO-2: Design water treatment un	its for domestic purposes		3	85	75	Н	Н	Н	Н	-		Н	-	-	,			Н	-	-
CLO-3: Identify the collection and of	LO-3: Identify the collection and conveyance of domestic sewage					Н	Н	М	М	-	L	Н	-	-	-	-	L	Н	-	-
CLO-4: Design of sewage treatment	LO-4: Design of sewage treatment units for sanitary sewage				75	Н	Н	Н	Н	-	-	Н	-	-	-	-	-	Н	-	-
CLO-5: Apply the concept of reduc	ing, reuse, recycling in solid waste n	nanagement	2	85	80	Н	Н	М	М	L	L	М	-	-	-	-	L	Н	-	-
CLO-6: Analyze the environmental	legislations		2	80	75	Н	Н	М	-	-	L	М	М	-	-	-	-	Н	-	-

		Water Supply	Water Treatment	Sanitary Engineering	Disposal of Sewage	Solid Waste Management & Air Pollution
Durat	ion (hour)	9	9	9	9	9
S-1	SLO-1	Water quality requirement for different beneficial uses	Concept and objectives of water treatment	Domestic and storm water quantity of sewage and flow variations	Concept of sewage disposal	Concept and generation of solid waste
3-1		Importance of water supply scheme and Need for protected water supply	Principles of Aeration and Sedimentation. Types of sedimentation & design	Conveyance of sewage and types of sewers. Design of sewers	Pollution due to improper disposal of sewage	Municipal Solid Waste(MSW), composition and other parameters
S-2	SLO-1	Various sources of water available for supply	Principles of Coagulation and Flocculation	Pumping of sewage and sewer appurtenances	Zones of pollution and Self-purification of rivers	Quantification and Collection of MSW
3-2	SLO-2	Per capita consumption-Demand	Types of coagulants used in water treatment	Laying and jointing of sewer lines	Oxygen sag curve. National river cleaning plans Dissolved Oxygen and BOD	Treatment and disposal of MSW
S-3	SLO-1	Solving problems using Tutorial Sheet 1	Solving problems using Tutorial Sheet 4	Solving problems using Tutorial Sheet 7	Solving problems using Tutorial Sheet 10	Solving problems using Tutorial Sheet 13
	SLO-2	Solving problems using Tutorial Sheet 1	Solving problems using Tutorial Sheet 4	Solving problems using Tutorial Sheet 7	Solving problems using Tutorial Sheet 10	Solving problems using Tutorial Sheet 13
S-4	SLO-1	Quality issues in various sources of water	Concept and theory of Filtration	Different plumbing systems adopted in buildings	Disposal of treated sewage in irrigation land	Waste from commercial establishments and other urban areas
3-4	SLO-2	Water Pollution, sources, causes and effects. Water quality characteristics	Working principles of slow sand filters and design	Sanitary fittings used in buildings. Quantification of storm water	Sewage sickness and remedial measures	Effect of solid waste on environment
S-5	SLO-1	WHO and BIS standards and Water Borne Diseases	Working principles of rapid sand filters and design	Concept of Primary, Secondary and Tertiary treatments	Concept of sludge management	Segregation and disposal methods of sloid waste
3-3	SLO-2	Population forecast using different methods	Disinfection of water and Chlorination	Screening and Grit Chambers	Thickening, Conditioning and Dewatering of sludge	Reduction at source, recovery and recycle
S-6	SLO-1	Solving problems using Tutorial Sheet 2	Solving problems using Tutorial Sheet 5	Solving problems using Tutorial Sheet 8	Solving problems using Tutorial Sheet 11	Solving problems using Tutorial Sheet 14
3-0	SLO-2	Solving problems using Tutorial Sheet 2	Solving problems using Tutorial Sheet 5	Solving problems using Tutorial Sheet 8	Solving problems using Tutorial Sheet 11	Solving problems using Tutorial Sheet 14

S-7	SI ()- I	Water requirements for industrial need and agriculture		Concept of aerobic and anaerobic treatment systems	Various disposal methods of sludge	Concept of Air Pollution: Properties and monitoring of Air pollutants
3-1	SLO-2	Components of water supply system	dvanced treatment like membrane ocesses and UV methods. Primary settling tanks and secondary settling tanks		Energy recovered from sludge	Air quality standards and control measures for Air Pollution
S-8	SLO-1	Transmission of water and distribution system	Effective water management Rain water harvesting methods	Principles of septic tanks and design.	Revenue from end product of sludge management	Basic concept of Noise Pollution and measurements
3-0	SLO-2	Service reservoirs used in water supply	Measures taken for protecting the existing water bodies	Activated Sludge Process and Trickling Filters	Design of Sludge digestion tanks	Various control methods of noise pollution Acceptable standards for Noise levels
S-9	SLO-1	Solving problems using Tutorial Sheet 3	Solving problems using Tutorial Sheet 6	Solving problems using Tutorial Sheet 9	Solving problems using Tutorial Sheet 12	Solving problems using Tutorial Sheet 15
3-9	SLO-2	Solving problems using Tutorial Sheet 3	Solving problems using Tutorial Sheet 6	Solving problems using Tutorial Sheet 9	Solving problems using Tutorial Sheet 12	Solving problems using Tutorial Sheet 15

Learning Resources	1. 2. 3. 4.	Metcalf, Eddy, Wastewater Engineering, Treatment and Reuse, Tata McGraw Hill, 2005 S. K. Garg, Water Supply Engineering, Khanna Publishers, 2017 S. K. Garg, Sewage Disposal and Air Pollution Engineering, Khanna Publishers, 2017 CPHEEO Manual on Water Supply and Treatment, Ministry of Drinking water and Sanitation, New Delhi, 2015	6. 7.	GeorgeTchobanoglous, Hilary Theisen, Samuel Vigil, Integrated Solid Waste Management, McGraw Hill, 1993 CPHEEO Manual on Sewerage and Sewage Treatment, Ministry of Urban Development, New Delhi, 2010 NPTEL Course-Water, Society & Sustainability. https://onlinecourses.nptel.ac.in/noc18_hs36/ NPTEL Course-Wastewater Treatment & Recycling https://onlinecourses.nptel.ac.in/noc18_ce26
-----------------------	----------------------	---	----------	--

Learning Ass	sessment										
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA -	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	ł (10%)#	Filiai Examination	i (50 % weightage)
	Level of Thirtking	Theory	heory Practice T		Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		30 %		30%	
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %	_	40 %	_	40%	
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100	0 %	100	0 %	10	0 %	10	0 %

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Rajkumar Samuel, Hubert Enviro-Care Systems, Chennai, rajkumar@hecs.in	1. Dr. S. Madhava Kumar, IIT Madras, mathav@iitm.ac.in	1. Mr. K. Prasanna, SRMSIT
2. Mr. A. Abdul Rasheed, CMWSS Board, juruterarasheed@gmail.com	2. Dr. G. Dhinagaran, Anna University, Chennai, dhinagaran@annauniv.edu	2. Mr. D. Justus Reymond, SRMIST

Course Code 18CEC208L Course Name	ENVIRONMENTAL	ENGINEERING LABOR	RATORY		ourse		С					Pro	essic	onal C	ore					L 0	T 0	P 2	<u>C</u>							
Pre-requisite Courses	Co-requisite Courses	18CEC208T			С	gress ourse		Nil																						
Course Offering Department Civil Engineering		Data Book	k / Codes/Standards		Nil																									
Course Learning Rationale (CLR): The purpose of learn	ning this course is to:				L	earniı	ng						Prog	ram l	_earn	ing O	utco	mes (PLO)												
CLR-1: Evaluate characteristics of water					1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15							
CLR-2: Evaluate the characteristics of waste water	R-2: Evaluate the characteristics of waste water								Ф								×		_											
CLR-3: Conduct tests on water and wastewater					evel of Thinking (Bloom)	Proficiency (%)	Expected Attainment (%)		edg		nen		Ф				Wor		ance				i							
CLR-4: Utilize turbidity meter, pH meter, electrical conductivity meter									WOL	Sis.	gok	gu,	Sag	9			Team Work	_	Finance	Learning			i							
CLR-5: Utilize spectrophotometer, high volume sampler,	noise level meter				iz	Profi	Λttai		g K	naly)ek	Design,	5	Culture	int &		& Te	atio	t. &	-ear			i							
CLR-6: Conduct titration experiments					Ę	Expected F	ted /		erin	ш	8	is, E	٦ ا	∞ŏ	nme		nal	unic	t Mg	ng l	-1	2	-3							
Course I coming Outcomes (CLO). At the and of this co									Engineering Knowledge	Problem Analysis	Design & Development	Analysis, [Research	Modern Tool Usage	Society	Environment &	Ethics	Individual &	Communication	Project Mgt. &	Life Long	PSO-	- 0Sc	PSO-							
CLO-1: Evaluate the characteristics of water	urse, learners will be	able to:			3	<u>வ</u> 90	<u>வ</u> 85		Ш Н	M	ے	- A %	ž	Ж	шī o	ш	드	ŏ	Ā	Ë	H	ď	H							
CLO-1: Evaluate the characteristics of water CLO-2: Analyze the characteristics of waste water					3	85	80		Н	M	-	-	-	-	Н	-	-	-	-	-	Н	-	Н							
CLO-3: Test water and wastewater sample					3	90	85		Н	М		_	-		- 11				-		Н		Н							
CLO-4: Identify the working of turbidity meter, pHmeter,	electrical conductivity	meter			3	85	80		Н	М	_	_	_	-	_	_	_	_	_	-	Н	-	Н							
CLO-5: Identify the working of spectrophotometer, high v					3	85	80		Н	М	-	-	-	-	Н	-	-	-	-	-	Н	-	Н							
CLO-6: Conduct titration based experiments					3	85	80		Н	М	-	-	-	-	Н	-	-	-	-	-	Н	-	Н							
Duration (hour) 6		6	6					•		•	6								6											
S SLO-1 Determine turbidity, electrical conductivity, ph		ntents in water: Total, nded, dissolved, settle olids	Determine alkalinity and A	cidit	у			Determ magne				s, calc	um aı	nd	ı	Detern	nine c	hloride	and .	sulpha	ite									
S SLO-1 SLO-2 Determine optimum coagulant dose	Determine Chemical	Oxygen Demand (COD)	Determine Dissolved Oxy Biological Oxygen Deman			nd		Determ	ine bre	eak po	oint ch	olorina	tion			Detern	nine c	opper												
S SLO-1 Determine bacteriological quality 5-6 SLO-2 Determine bacteriological quality measurement: MPN Monitor Ambient air quality (TSP,RSPM) Monitor Ambient air quality								Monito	Ambi	ent air	r qual	ity (NC) _x)		-	Measu	re Am	bient	noise											
Learning 1. S. K. Garg, Water Supply Engineering 2. S. K. Garg, Sewage Disposal and Air 1. S. K. Garg, Sewage D		3			00-201 nment								er, Bur	eau c	f India	an Sta	andar	ds, Ne	ew De	elhi.										

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#	FIIIdi Examination	i (50 % weightage)
	Level of Hilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%
Level 2	Apply Analyze	-	40 %	-	40 %	-	40 %	-	40 %	-	40%
Level 3	Evaluate Create	-	20 %	-	30 %	-	30 %	-	30 %	-	30%
	Total	100	0 %	10	0 %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Rajkumar Samuel, Hubert Enviro-Care Systems, Chennai, rajkumar@hecs.in	1. Dr. S. Madhava Kumar, IIT Madras, mathav@iitm.ac.in	1. Mrs. Sija Arun, SRMIST
2. Mr. A. Abdul Rasheed, CMWSS Board, juruterarasheed@gmail.com	2. Dr .G. Dhinagaran, Anna University, Chennai, dhinagaran@annauniv.edu	2. Mr. S. Ramesh, SRMIST

ACADEMIC CURRICULA

Professional Core Courses

COMPUTER SCIENCE AND ENGINEERING

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

CLO-1:Identify linear and non-linear data structures. Create algorithms for searching and sorting38070LHLLLCLO-2:Create the different types of linked lists and evaluate its operations38575MHLMLMLCLO-3:Construct stack and queue data structures and evaluate its operations37570MHMHLMLCLO-4:Create tree data structures and evaluate its types and operations38580MHMHLML	ırse de		18CSC201J	Course Name	DATA STRUCTURES AND) ALGORITH	IMS		ourse	,	С				Pro	ofessio	onal Cor	е				L 3	T 0	P 2	C 4
Course Learning Rationale (CLR): The purpose of learning this course is to: Clust Utilize the different types of learning this course is to:			Nil									18CSC20	4.J												
Course Learning Rationale (CLR): The purpose of learning this course is to: CLR3: Ultilize the different data types; Utilize searching and sorting algorithms for data search CLR4: Ultilize the different data types; Utilize searching and sorting algorithms for data search CLR4: Ultilize the different data types; Utilize searching and sorting algorithms for data search CLR4: Ultilize the different types of class structures and its operations processing data in developing applications CLR4: Ultilize the different types of data structures and its operations for real-time application development CLR5: Ultilize algorithms to find shorted data search in graphs for real-time applications development CLR5: Ultilize data different types of data structures and its operations for real-time programming applications CLR6: Ultilize the different types of data structures and its operations for real-time programming applications CLR6: Ultilize the different types of data structures. Create algorithms for searching and sorting CLR6: Ultilize the different types of data structures and evaluate its operations CLR6: United the different types of different structures and evaluate its operations CLR6: United the different types of different structures and evaluate its operations CLR7: United the different types and operations CLR7: United the different types and operations in identities and evaluate the special operations. Intendiction-Basic Terminology Array SLO-1 Constitute the different data structure and evaluate the different types and operations. Intendiction-Basic Terminology Array Slack ADT General Tree Graph Terminologies Graph Terminologies SLO-1 Lab 1: Implementation of Searching techniques Linked List Implementation Tree Representation Topological sortin Applications of Stack - Native Deptitive Features Applications of Stack - Native Deptitive Features Applications of Stack - Native Deptitive Features Applications of Stack - Native Huncilon Applications of Stack - Native Featuration Binary T			Denoutment	Computer Coiones o		Data Baak	/ Cadaa/Standarda			ourse	!S														
CLR-2: Utilize the different data types; Utilize searching and sorting algorithms for data search CLR-2: Utilize linked list in developing applications CLR-3: Utilize linked list in developing applications CLR-4: Utilize linked list in developing applications CLR-4: Utilize linked list in developing applications CLR-4: Utilize linked list in developing applications CLR-3: Utilize stack and queues in processing data for real-time applications CLR-4: Utilize linked list shortes data search in graphs for real-time applications	e On	nering	Department	Computer Science at	ia Engineering	Data Book	/ Codes/Standards		IVII																
CLR3: Utilize inked list in developing applications CLR3: Utilize stack and queues in processing data for real-time applications CLR4: Utilize stack and queues in processing data for real-time applications CLR4: Utilize stack and queues in processing data for real-time applications CLR5: Utilize stack and queues in graphs for real-time applications CLR5: Utilize stack and queues data structures and its operations for real-time applications CLR5: Utilize the different types of data structures and its operations for real-time applications CLR6: Utilize the different types of data structures and its operations for real-time programming applications CLR6: Utilize the different types of data structures and evaluate the special process of the different types of linked tists and evaluate the special process of the different types of linked tists perations CLO-3: Constitute stack and queue data structures and evaluate the special process of linked tists and evaluate the special process of linked tists pose and evaluate to perations CLO-4: Create the different types of linked tists pose and evaluate the special process of linked tists and evaluate to perations CLO-5: Constitute the different data structures and evaluate the special process of linked tists and evaluate the special process of linked t	e Le	earning	g Rationale (CLR):	: The purpose of learni	ng this course is to:				Le	earnir	ng					Prog	ram Le	arning	Outo	comes	(PLC))			
CLR4: Utilize stack and queues in processing date for real-time applications CLR4: Utilize stack and queues in processing date for real-time applications CLR4: Utilize stack and queues in processing date for real-time applications CLR4: Utilize stack and queues structure from applications CLR4: Utilize stack and queues of data structures and its operations for real-time programming applications CLR4: Utilize the different types of data structures and walked its operations for real-time programming applications CLO-1: Identify linear and non-linear data structures structures. Create algorithms for searching and sorting CLO-2: Construct stack and queue data structures and evaluate its operations CLO-3: Construct stack and queue data structures and evaluate its operations 3 85 75 70 MM H L M L L · · · M L CLO-4: L L CLO-4: Clo-4: Create the different types of linked lists and evaluate its operations 3 85 75 MM H L M L L · · · M L L CLO-4: Clo-4: Create the different types of linked lists structures and evaluate its operations 3 85 75 MM H L M L L · · · M L L CLO-4: Clo-4: Create the different data structure, and evaluate its operations 3 85 75 MM H L M L L · · · M L L CLO-4: Clo-4: Create tree data structure, and evaluate its operations 3 85 75 MM H L M H L · · · · M L L CLO-4: Create graph data structure, evaluate its operations implement algorithms to identify shortest path 3 85 75 MM H H M H L · · · · M L L · · · M L L CLO-4: Create graph data structure, evaluate its operations implement algorithms to identify shortest path 3 85 75 MM H H M H L · · · · M L · · · · M L L CLO-4: Create graph data structure, evaluate its operations implement algorithms to identify shortest path 3 85 75 MM H H M H L · · · · M L · · · · M L · · · · L L L · · · M L · · · ·					nd sorting algorithms for data sea	arch			1	2	3	1	2	3	4	5	6	7 8	9	10	11	12	13	14	15
CLO-1: Identify linear and non-linear data structures. Create algorithms for searching and sorting CLO-2: Create the different types of linked lists and evaluate its operations CLO-3: Construct stack and queue data structures and evaluate its operations CLO-4: Create tree diata structures and evaluate its operations CLO-5: Create tree diata structures and evaluate its operations CLO-6: Construct tree diata structures and evaluate its operations CLO-6: Construct the different data structures and evaluate its operations CLO-6: Construct the different data structure, evaluate its operations in placement algorithms to identify shortest path S-1 CLO-6: Construct the different data structure, evaluate its operations in placement algorithms to identify shortest path S-1 S-1 S-1 S-1 S-1 S-1 S-1 S-					10 0										ج			<u>≥</u>							
CLO-1: Identify linear and non-linear data structures. Create algorithms for searching and sorting CLO-2: Create the different types of linked lists and evaluate its operations CLO-3: Construct stack and queue data structures and evaluate its operations CLO-4: Create tree diata structures and evaluate its operations CLO-5: Create tree diata structures and evaluate its operations CLO-6: Construct tree diata structures and evaluate its operations CLO-6: Construct the different data structures and evaluate its operations CLO-6: Construct the different data structure, evaluate its operations in placement algorithms to identify shortest path S-1 CLO-6: Construct the different data structure, evaluate its operations in placement algorithms to identify shortest path S-1 S-1 S-1 S-1 S-1 S-1 S-1 S-): (Utilize I Itilize	stack and queues tree data storage s	IN processing data for re- structure for real-time an	al-time applications				(moi	(%)	(%)	e g		ŧ	searc			inabi	+	<u> </u>	ō.				
CLO-1 Identify linear and non-linear data structures. Create algorithms for searching and sorting 3 80 70 L H - H L L L L CLO-2 Create the different types of linked lists and evaluate its operations 3 85 75 70 M H L M L CLO-3 Construct stack and queue data structures and evaluate its operations 3 85 85 75 70 M H L M L CLO-5 Clo-4 Create tree data structures and evaluate its operations 3 85 85 75 70 M H M H L M L CLO-5 Clo-6 Construct the different data structure, evaluate its operations 3 80 70 L H - H L M L L L L L L L L L						evelopment			(Blo	ancy	ent	wled		bme	Res	ge		nstai	W .		Janc	p			
CLO-1 Identify linear and non-linear data structures. Create algorithms for searching and sorting 3 80 70 L H - H L L L L CLO-2 Create the different types of linked lists and evaluate its operations 3 85 75 70 M H L M L CLO-3 Construct stack and queue data structures and evaluate its operations 3 85 85 75 70 M H L M L CLO-5 Clo-4 Create tree data structures and evaluate its operations 3 85 85 75 70 M H M H L M L CLO-5 Clo-6 Construct the different data structure, evaluate its operations 3 80 70 L H - H L M L L L L L L L L L							ations		king	oficie	ain	Kno	llysis	velo	sign	n Sa	Iture	ഗ •୪	Tea	io la	.E	Learning			
CLO-1 Identify linear and non-linear data structures. Create algorithms for searching and sorting 3 80 70 L H - H L L L L CLO-2 Create the different types of linked lists and evaluate its operations 3 85 75 70 M H L M L CLO-3 Construct stack and queue data structures and evaluate its operations 3 85 85 75 70 M H L M L CLO-5 Clo-4 Create tree data structures and evaluate its operations 3 85 85 75 70 M H M H L M L CLO-5 Clo-6 Construct the different data structure, evaluate its operations 3 80 70 L H - H L M L L L L L L L L L									Thin	d Pr	d Att	ring	Ana	% De	, De	J00	ರ ಶ	ment	- ×	nicat	Mat	g Le			_
CLO-1: Identify linear and non-linear data structures. Create algorithms for searching and sorting CLO-2: Create the different types of linked lists and evaluate its operations CLO-3: Construct stack and queue data structures and evaluate its operations CLO-4: Create tree diata structures and evaluate its operations CLO-5: Create tree diata structures and evaluate its operations CLO-6: Construct tree diata structures and evaluate its operations CLO-6: Construct the different data structures and evaluate its operations CLO-6: Construct the different data structure, evaluate its operations in placement algorithms to identify shortest path S-1 CLO-6: Construct the different data structure, evaluate its operations in placement algorithms to identify shortest path S-1 S-1 S-1 S-1 S-1 S-1 S-1 S-	e Le	earnin	g Outcomes (CLO)): At the end of this cou	rse, learners will be able to:				Level of	Expecte	Expecte	Enginee	Problem	Design	Analysis	Modern	Society	Environ Fhis	ndividu.	Commu	Project Mat. & Finance	Life Long I	PS0 - 1	PS0 - 2	PS0-3
CLO-3: Construct stack and queue data structures and evaluate its operations 3 75 70 CLO-4: Create tree data structures and evaluate its operations 3 85 80 M H M H L M L CLO-5: Create graph data structure, evaluate its operations, implement algorithms to identify shortest path 3 85 75 H H M H L M L CLO-6: Construct the different data structures and evaluate their types and operations 3 80 70 H H M H L M L L L L L L L L L						sorting					70	L	Н	-	Н	+			L	. L	-	Н	-	-	-
CLO-4 Create tree data structures and evaluate its types and operations 3 85 80 CLO-5 Create graph data structure, evaluate its types and operations, implement algorithms to identify shortest path 3 85 75 M H M H L - - - M L CLO-5 Construct the different data structure, evaluate its operations, implement algorithms to identify shortest path 3 85 75 L H - H L - - - M L L L - - M L L L L L H - H L - - - M L L L L L L L L L																					-	Н	-	-	-
CLO-5: Create graph date structure, evaluate its operations, implement algorithms to identify shortest path 3 85 75 H H M H L M L																L				_	-	H	-	-	-
Duration (hour) 15 15 15 15 15 15 15 1						tifv shortest ı	path									L			_	_	-	Н	-	Ė	-
Sto-1 Introduction-Basic Terminology Array Stack ADT General Trees Graph Terminology Stock ADT General Trees Graph Terminologies Graph Traversal) 0.707.0007										L			L	. L	-	Н	-	-	-
Sto-1 Introduction-Basic Terminology Array Stack ADT General Trees Graph Terminology Stock ADT General Trees Graph Terminologies Graph Traversal	/l-	السيما		4E	45			E					•	41		•				•	•	15	•	•	
St.0-1 Image: St.0-1 Image: St.0-1 Image: St.0-2 Image: St.0-2 Data Structures	ion (n	,			-		-	o			-	2		1;)			C	b T	·		15			
SLO-2 Data Structures Operations on Arrays – Insertion and Deletion SLO-1 Data Structure Operations Applications on Arrays SLO-1 Data Structure Operations Applications on Arrays SLO-2 SLO-2 ADT Multidimensional Arrays-Sparse Matrix Conversion SLO-1 Algorithms – Searching techniques Linked List Implementation - Insertion Applications of Stack- Infix to Postfix Conversion SLO-1 Algorithms – Searching techniques Linked List Implementation - Insertion Applications of Stack- Postfix Evaluation SLO-2 Complexity – Time , Space Trade off Linked List - Deletion and Search Applications of Stack- Balancing symbols Expression Trees Network flow prob SLO-2 Linear and Binary Search Techniques Insertion, Deletion. SLO-1 Algorithms - Sorting Applications of Linked List Applications of Stack- Nested Function Binary Tree Traversal Shortest Path Algorithm Array SLO-1 Applications Of Stack- Nested Function Binary Tree Traversal Shortest Path Algorithm Array SLO-2 Complexity – Time , Space Trade off Polynomial Arithmetic Recursion concept using stack Threaded Binary Tree SLO-1 Mathematical notations Cursor Based Implementation — Applications of Recursion: Tower of Hanoi Binary Search Tree : Construction, Bearching Binary Bearch Bearchi	SL	_0-1	Introduction-Basic	Terminology	Array		Stack ADT					senerai ir	ees					Gra	арп т	erminc	nogy				
St.O-1 St.O-2 St.O-3 St.O-3 St.O-3 St.O-3 St.O-4 St.O-3 St.O-4 St	SL	_0-2	Data Structures			n and	Stack Array Implemen	ntation			7	Tree Term	inolog	iies				Gra	ph T	ravers	al				
SLO-2 Algorithms – Searching techniques SLO-1 Algorithms – Searching techniques Linked List Implementation – Insertion Applications of Stack- Postfix Evaluation Applications of Stack- Postfix Evaluation Binary Tree Representation Minimum Spanning Algorithm SLO-2 Complexity – Time , Space Trade off SLO-1 Lab 1: Implementation of Searching – Linear and Binary Search Techniques SLO-2 Linear and Binary Search Techniques SLO-1 Algorithms – Sorting SLO-1 Algorithms – Sorting SLO-1 Algorithms – Sorting SLO-1 Complexity – Time , Space Trade off SLO-2 Complexity – Time , Space Trade off SLO-2 Complexity – Time , Space Trade off SLO-2 Complexity – Time , Space Trade off SLO-3 Mathematical notations Cursor Based Implementation – Methodology Applications of Stack- Nested Function Calls Recursion concept using stack Threaded Binary Tree :Construction, Mathematical notations Cursor Based Implementation – Methodology Applications of Recursion: Tower of Hanoi Searching	SL	_O-1	Data Structure Ope	erations	Applications on Arrays		Stack Linked List Imp.	lement	tation		7	Tree Repre	esenta	ation				Тор	ologi	ical so	rting				
S-3 SLO-1 SLO-2 Complexity – Time , Space Trade off SLO-2 SLO-1 SLO-1 SLO-2 SLO-1 SLO-1 SLO-2 SLO-1 SLO-2 SLO-1 SLO-2 SLO-1 SLO-2 SLO-1 SLO-2 SLO-1 SLO-2 SLO-1 SLO-1 SLO-2 SLO-1 SL	SL	_0-2	ADT		Multidimensional Arrays- Sparse	e Matrix		Infix to	o Post	tfix	7	Tree Trave	rsal					Mir	nimun	n span	ning i	ree –	Prims	Algor	ithm
St. O-2 Complexity – Time , Space Trade off St. O-1 St. O-2 St. O-2 St. O-3 S	SL	_0-1	Algorithms – Searc	ching techniques	Linked List Implementation - Ins	sertion	Applications of Stack-	Postf	ix Eva	aluatio	on E	Binary Tre	e Rep	resen	tation)					ning	Tree -	Krusk	al's	
SLO-1 Lab 1: Implementation of Searching - Linear and Binary Search Techniques	SI	0-2	Complexity – Time	, Space Trade off	Linked List- Deletion and Searc	ch	Applications of Stack-	Balar	ncing s	symbo	ols E	Expression	Tree	S							roble	m			
St.O-2 Linear and Binary Search Techniques Insertion, Deletion. St.O-1 St.O-2 St.O-1 Algorithms - Sorting Applications of Linked List Applications of Stack- Nested Function Calls St.O-2 Complexity - Time , Space Trade off Polynomial Arithmetic Recursion concept using stack Threaded Binary Tree Shortest Path Algorithm St.O-1 St.O-1 St.O-1 Mathematical notations Cursor Based Implementation - Methodology Methodology Recursion: Tower of Hanoi Searching Search Tree : Construction, Searching Search Tree : Construction, Search Tree			Lab Arland	#	Lab As books and the		Lab 7 days 1 2 2																		
4-5 SLO-2 SLO-2 SLO-1 Algorithms - Sorting Applications of Linked List Applications of Stack- Nested Function Calls SLO-2 Complexity - Time , Space Trade off Polynomial Arithmetic Recursion concept using stack Threaded Binary Tree Shortest Path Algorithm SLO-1 SLO-1 Mathematical notations Cursor Based Implementation - Methodology Applications of Recursion: Tower of Hanoi Searching Searching Search Tree : Construction, Searching Search Tree : Construction, Searching Searching Searching Searching Search Tree : Construction, Searching Searching Searching Searching Searching Searching Searching Search Tree : Construction, Searching	SL	_O-1				y –		ot sta	ick usi	ıng arı	ray L	.ab 10: Im	pleme	entatio	n of	Tree u	sing arr	- 1		Implen	nenta	tion of	Grapi	h usin	ıg
S-6 S-7 SLO-1 SLO-2 Complexity – Time , Space Trade off Polynomial Arithmetic Recursion concept using stack Recursion concept using stack Threaded Binary Tree Shortest Path Algorithm Applications of Recursion: Tower of Hanoi Search Tree : Construction, Searching Applications of Recursion: Tower of Hanoi Searching	SL	_0-2	Lillear and binary s	Search rechniques	insertion, Deletion.		and Linked List											Arr	ay						
SLO-2 Complexity - Time , Space Trade off Polynomial Arithmetic Recursion concept using stack Threaded Binary Tree Shortest Path Algorithm	SL	_0-1	Algorithms - Sorting	g	Applications of Linked List			Nest	ted Fu	ınction	n E	Binary Tre	e Trav	/ersal				Sh	ortest	Path /	Algon	thm- I	ntrodu	ction	
SLO-1 Mathematical notations	SL	_0-2	Complexity – Time	, Space Trade off	Polynomial Arithmetic		Recursion concept us	ing sta	nck		7	Threaded I	Binary	Tree							Algon	thm: E	ijkstra	i's	
5-1	SL	_0-1	Mathematical notat	tions	, ·	-	Applications of Recur	sion: T	ower (of Har		-	rch T	ree :C	onstr	ruction	,				func	ions -	Introd	luctio	1
	SL	_0-2	Asymptotic notation	ns-Big O, Omega	Cursor Based Implementation		Queue ADT						rch T	ree : I	nsert	ion an	d Deleti	on Ha	shing	: Hash	func	ions			
S-8 SLO-1 Asymptotic notations - Theta Circular Linked List Queue Implementation using array AVL Trees: Rotations Hashing : Collision	SL	_0-1	Asymptotic notation	ns - Theta	Circular Linked List		Queue Implementatio	n usin	g array	у	A	AVL Trees	: Rota	ations				На	shing	: Colli	sion a	voida	псе		

	SLO-2	Mathematical functions	Circular Linked List - Implementation	Queue Implementation using Linked List	AVL Tree: Insertions	Hashing : Separate chaining
S 9-10	SLO-1 SLO-2	Lab 2: Implementation of sorting Techniques – Insertion sort and Bubble Sort Techniques	•	Lab 8: Implementation of Queue using Array and linked list	Lab 11: Implementation of BST using linked list	Lab 14 :Implementation of Shortest path Algorithm
C 44	SLO-1	Data Structures and its Types	Applications of Circular List -Joseph Problem	Circular Queue	B-Trees Constructions	Open Addressing
S-11	SLO-2	Linear and Non-Linear Data Structures	Doubly Linked List	Implementation of Circular Queue	B-Trees Search	Linear Probing
	SLO-1	1D, 2D Array Initialization using Pointers	Doubly Linked List Insertion	Applications of Queue	B-Trees Deletions	Quadratic probing
S-12	SLO-2	1D, 2D Array Accessing using Pointers	Doubly Linked List Insertion variations	Double ended queue	Splay Trees	Double Hashing
	SLO-1	Declaring Structure and accessing	Doubly Linked List Deletion	Priority Queue	Red Black Trees	Rehashing
S-13	SLO-2	Declaring Arrays of Structures and accessing	Doubly Linked List Search	Priority Queue - Applications	Red Black Trees Insertion	Extensible Hashing
S 14-15	SLO-1 SLO-2	Lab 3: Implement Structures using Pointers	Lab 6: Implementation of Doubly linked List	Lab 9: Applications of Stack, Queue	Lab 12:Implementation of B-Trees	Lab 15 :Implementation of Minimal Spanning Tree

Learning Resources

- 1. Seymour Lipschutz, Data Structures with C, McGraw Hill, 2014
- 2. R.F.Gilberg, B.A.Forouzan, Data Structures, 2nd ed., Thomson India, 2005
- $3.\ \textit{A.V.Aho, J.E Hopcroft , J.D.Ullman, Data structures and Algorithms, Pearson Education, 2003}$
- 4. Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2nd ed., Pearson Education, 2015
- 5. Reema Thareja, Data Structures Using C, 1st ed., Oxford Higher Education, 2011
- 6. Thomas H Cormen, Charles E Leiserson, Ronald L Revest, Clifford Stein, Introduction to Algorithms 3rd ed., The MIT Press Cambridge, 2014

Learning As:	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weigl	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#	FIIIai Examination	i (50 % weightage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100	0 %	100	0 %	100	0 %	10	0 %	10	0 %

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Nagaveer, CEO, Campus Corporate Connect, nagaveer@campuscorporateconnect.com	1. Dr. Srinivasa Rao Bakshi, IITM, Chennai, sbakshi@iitm.ac.in	1. Mr. K. Venkatesh, SRMIST
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Ramesh Babu, N , nrbabu@iitm.ac.in	2. Dr.Subalalitha C.N, SRMIST
	3. Dr.Noor Mahammad, IIITDM, Kancheepuram, noor@iiitdm.ac.in	3. Ms. Ferni Ukrit, SRMIST

Course Code	18CSC202J	Course Name	OBJECT ORIENTE	D DESIGN AND PROGRAMMING	Course Category	С	Professional Core	3	T 0	P 2	C 4
Pre-requis Courses Course Offe	1180.88101.1	Comput	Co-requisite Courses ter Science and Engineering	Nii Data Book / Codes/Standards	Progre Cour Nil		18CSC207J				

000.000				_	, o a . o .	_														
Course Offering Department	Computer Science and	d Engineering	Data Book / Codes/Standards	Nil																
Course Learning Rationale (CLR):	The purpose of learning	g this course is to:			_earni	ng					Progr	am Le	earni	ng Oı	utcor	nes (F	PLO)			
CLR-1: Utilize class and build dom	ain model for real-time p	rograms		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13 ′	14 1
CLR-2: Utilize method overloading	and operator overloading	g for real-time appl	ication development programs										>							
CLR-3: Utilize inline, friend and vir.	tual functions and create	application develop	oment programs	(mo		·				Research			Sustainability							
CLR-4: Utilize exceptional handling	g and collections for real-	time object oriente	d programming applications	00		t (%)	dge		ent	ese			aina		Work		ance			
CLR-5: Construct UML component	diagram and deploymen	nt diagram for desig	n of applications		ency	Attainment	Knowledge	S	elopment	ج. چ	Usage	ø	Sust		eam M		Finar	ē		
CLR-6: Create programs using obj	ect oriented approach an	nd design methodol	logies for real-time application development	Thinking	ofici	tain	K	Analysis	_	Design,	l Ns	Culture	∞ŏ		Tea	ation	∞ŏ	arı		
				<u> </u>	F F	₹	rin Biri	Ä	& De	, De	T00	ت ھ	neu		<u>∞</u>	unical	Mgt.	J Le		
Course Learning Outcomes (CLO):	At the end of this cours	se, learners will be	able to:	Level of	Expected	Expecter	Engineering	Problem	Design &	Analysis,	Modern	Society &	Environment	Ethics	Individual	Commur	Project N	Life Long	1	2-05d
CLO-1: Identify the class and build	domain model			3	80	70	Н	Н	М	-	-	-	-	-	Н	Н	-	-	М	H F
CLO-2 : Construct programs using	method overloading and	operator overloadii	ng	3	85	75	Н	Н	Н	Н	Н	-	М	-	Н	Н	-	-	М	H F
CLO-3: Create programs using inli	ne, friend and virtual fund	ctions, construct pro	ograms using standard templates	3	75	70	Н	Н	М	Н	Н	-	М	-	Н	Н	-	-	М	H F
CLO-4: Construct programs using	exceptional handling and	l collections		3	85	80	Н	Н	Н	-	-	-	-	-	Н	М	-	-	M .	H F
CLO-5: Create UML component di			<u>-</u>	3	85	75	Н	М	М	М	М	М	М	-	Н	Н	-	М		H F
CLO-6: Create programs using obj	ect oriented approach an	nd design methodol	ogies	3	80	70	Н	Н	М	-	-	-	-	-	Н	Н	-	-	М	H F
																	•			

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Comparison of Procedural and Object Oriented Programming	Types of constructor (Default, Parameter)	Feature Inheritance: Single and Multiple	Generic - Templates : Introduction	STL: Containers: Sequence and
	SLO-2	OOPS and its features	Static constructor and copy constructor	Inheritance: Multilevel	Function templates	Associative Container
S-2	SLO-1	I/O Operations, Data Types, Variables, static	Feature Polymorphism: Constructor overloading	Inheritance: Hierarchical	Example programs Function templates	Sequence Container: Vector, List
3-2	SLO-2	Constants, Pointers, Type Conversions	Method Overloading	Inheritance: Hybrid	Class Templates	Sequence Container: Deque, Array
	SLO-1	Features: Class and Objects	Example for method overloading		Class Templates	
S-3	SLO-2	UML Diagrams Introduction	Method Overloading: Different parameter with different return values	Inheritance: Example Programs	Example programs for Class and Function templates	STL : Stack
S 4-5	SLO-1 SLO-2	Lab 1: I/O operations	Lab 4: Constructor and Method overloading	Lab 7: Inheritance and its types	Lab 10: Templates	Lab 13: STL Containers
	SLO-1	Feature :Class and Objects	Operator Overloading and types	Advanced Functions: Inline, Friend	Exceptional Handling: try and catch	
S-6	SLO-2	Examples of Class and Objects	Overloading Assignment Operator	Advanced Functions: Virtual, Overriding	Exceptional Handling: Multilevel exceptional	Associative Containers: Map, Multimap
0.7	SLO-1	UML Class Diagram and its components	Overloading Unary Operators	Advanced Function: Pure Virtual function	Exceptional Handling: throw and throws	Iterator and Specialized iterator
S-7	SLO-2	Class Diagram relations and Multiplicity	Example for Unary Operator overloading	Example for Virtual and pure virtual function	Exceptional Handling: finally	Functions of iterator
S-8	SLO-1	Feature Abstraction and Encapsulation	Overloading Binary Operators	Abstract class and Interface	Exceptional Handling: User defined exceptional	Algorithms: find(), count(), sort()
3-0	SLO-2	Application of Abstraction and Encapsulation	Example for Binary Operator overloading	Example Program	Example Programs using C++	Algorithms: search(), merge()
S	SLO-1			Lab 8: Virtual Function and Abstract class		

9-10	SLO-2	Lab 2: Classes and Objects, Class Diagram	Lab 5: Polymorphism : Operators Overloading		Lab 11: Exceptional Handling	Lab 15: STL Associative containers and algorithms
0.44	SLO-1	Access specifiers – public, private	UML Interaction Diagrams	UML State Chart Diagram	Dynamic Modeling: Package Diagram	Function Object : for_each(), transform()
S-11	SLO-2	Access specifiers - protected, friend, inline	Sequence Diagram	UML State Chart Diagram	UML Component Diagram	Example for Algorithms
S-12	SLO-1	UML use case Diagram, use case, Scenario	Collaboration Diagram	Example State Chart Diagram	UML Component Diagram	Streams and Files: Introduction
0-12	SLO-2	Use case Diagram objects and relations	Example Diagram	UML Activity Diagram	UML Deployment Diagram	Classes and Errors
S-13	SLO-1	Method, Constructor and Destructor	Feature: Inheritance	UML Activity Diagram	UML Deployment Diagram	Disk File Handling Reading Data and
3-13	SLO-2	Example program for constructor	Inheritance and its types	Example Activity Diagram	Example Package, Deployment, Package	Writing Data
S 14-15	SLO-1 SLO-2	Lab 3: Methods and Constructor, Usecase	Lab 6: UML Interaction Diagram		Lab12 : UML Component, Deployment, Package diagram	Lab15: Streams and File Handling

Learning	1.	Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Object-Oriented Analysis and Design with Applications, 3 rd ed., Addison-Wesley, May 2007	4.	Robert Lafore, Object-Oriented Programming in C++, 4th ed., SAMS Publishing, 2008
Resources		Reema Thareja, Object Oriented Programming with C++, 1 st ed., Oxford University Press, 2015 Sourav Sahay, Object Oriented Programming with C++, 2 nd ed., Oxford University Press, 2017		Ali Bahrami, Object Oriented Systems Development", McGraw Hill, 2004 Craig Larmen, Applying UML and Patterns, 3 rd ed., Prentice Hall, 2004

Learning Ass	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	1 (10%)#	FIIIai Examination	i (50% weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc # For the laboratory component the students are advised to take an application and apply the concepts

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr. Girish Raghavan, Senior DMTS Member, Wipro Ltd.	1. Dr. Srinivasa Rao Bakshi, IITM Chennai, sbakshi@iitm.ac.in	1. Ms. C.G.Anupama, SRMIST
Ms. Thamilchelvi, Solutions Architect, Wipro Ltd	2. Dr. Ramesh Babu, N, IITM Chennai, nrbabu@iitm.ac.in	2. Mr. C.Arun, SRMIST
		3. Mr. Geogen George, SRMIST
		4. Mr. Muthukumaran, SRMIST

	Course	18CSC203J	Course	COMPUTER ORGANIZATION AND ARCHITECTURE		ND ADCHITECTURE	Cou	ırse	C	Professional Core	L	Τ	Р	С																												
	Code	100302030	Name	COMPOTENCINGA	NIZATIONA	IND ARCHITECTORE	Cate	Category		gory		gory		gory		gory		gory		gory		gory		gory		agory C		ategory		tegory		Category		Category		Category		Professional Core	3	0	2	4
	Pre-requis Courses	INII		Co-requisite Courses	Nil			Progres Cours		18CSC207J																																
C	ourse Offe	ring Department	Comput	er Science and Engineering		Data Book / Codes/Standards	٨	Vil	•																																	

Course Chaining Dopartment																				
Course Learning Rationale (CLR):	urse Learning Rationale (CLR): The purpose of learning this course is to:									Progi	ram L	_earn	ing O	utco	mes ((PLO))			_
CLR-1: Utilize the functional units of a computer						1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Analyze the functions of an	rithmetic Units like adders, multipliers etc.											·y								
CLR-3: Understand the concepts of	of Pipelining and basic processing units	(mo	(%	_					당			ppilit								
CLR-4: Study about parallel proce	ssing and performance considerations.	00	\sim	ıt (%)		Knowledge		ent	sse			Sustainability		Work		ance				
CLR-5: Have a detailed study on li	nput-Output organization and Memory Systems.	g (Blo	ency	Attainment		<u>×</u>	S	elopm	, Re	Usage	Ф	sust		am V		inar	пg			
CLR-6: Simulate simple fundamen	ntal units like half adder, full adder etc	hinking	ofici	āi		호	ılysi	>	Design,		Culture	∞		Теа	.io	⊗ ⊤	arıi			
		Į≒	Į.	ΑĦ		ing	Ans	& De	å	00	ನ ಸ	nent		~	igi	Mgt.	J Le			
Course Learning Outcomes (CLO):	Level of	Expected	Expected		Engineering	Problem	Design 8	Analysis,	Modem -	Society 8	Environment	Ethics	Individual	Communication	Project ∧	Life Long	PS0 - 1	PS0 - 2	PSO - 3	
CLO-1: Identify the computer hard	ware and how software interacts with computer hardware	2	80	70		Н	Н	-	-	-	-	-	-	М	L	-	М		-	-
CLO-2: Apply Boolean algebra as	3	85	75		Н	Н	Н	-	Н	-	-	-	Μ	L	-	М	-	-	-	
CLO-3: Analyze the detailed operation of Basic Processing units and the performance of Pipelining						Н	Н	Н	Н	-	-	-	-	М	L	-	М		-	-
CLO-4: Analyze concepts of parallelism and multi-core processors.						Н	-	-	Н	-	-	-	-	М	L	-	М	-	-	-
CLO-5: Identify the memory technology	CLO-5: Identify the memory technologies, input-output systems and evaluate the performance of memory system					Н	-	Н	Н	-	-	-	-	М	L	-	М	-	-	-
CLO-6: Identify the computer hardware, software and its interactions						Н	Н	Н	Н	Н	-	-	-	М	L	-	М	-	-	-

	ration nour)	15	15	15	15	15
S-1	SLO-1	Functional Units of a computer	Addition and subtraction of Signed numbers	Fundamental concepts of basic processing unit	Parallelism	Memory systems -Basic Concepts
0-1	SLO-2	Operational concepts	Problem solving	Performing ALU operation	Need, types of Parallelism	Memory hierarchy
S-2	SLO-1	Bus structures	Design of fast adders	Execution of complete instruction, Branch instruction	applications of Parallelism	Memory technologies
3-2	SLO-2	Memory locations and addresses	Ripple carry adder and Carry look ahead adder	Multiple bus organization	Parallelism in Software	RAM, Semiconductor RAM
S-3	SLO-1	Memory operations	Multiplication of positive numbers	Hardwired control	Instruction level parallelism	ROM,Types
	SLO-2	Memory operations	Problem Solving	Generation of control signals	Data level parallelism	Speed,size cost
S	SLO-1	Lab 1: To recognize various components of PC- Input Output systems	Lab4:Study of TASM	Lab-7: Design of Half Adder	Lab-10: Study of Array Multiplier	Lab-13: Study of Carry Save Multiplication Program to carry out Carry Save
4-5	SLO-2	Processing and Memor y units	Addition and Subtraction of 8-bit number	Design of Full Adder	Design of Array Multiplier	Multiplication
	SLO-1	Instructions, Instruction sequencing	Signed operand multiplication	Micro-programmed control-	Challenges in parallel processing	Cache memory
S-6	SLO-2	Addressing modes	Problem solving	Microinstruction	Architectures of Parallel Systems - Flynn's classification	Mapping Functions
S-7	SLO-1	Problem solving	Fast multiplication- Bit pair recoding of Multipliers	Micro-program Sequencing	SISD,SIMD	Replacement Algorithms

	SLO-2	Introduction to Microprocessor	Problem Solving	Micro instruction with Next address field	MIMD, MISD	Problem Solving
	SLO-1	Introduction to Assembly language	Carry Save Addition of summands	Basic concepts of pipelining	Hardware multithreading	Virtual Memory
S-8	SLO-2	Writing of assembly language programming	Problem Solving	Pipeline Performance	Coarse Grain parallelism, Fine Grain parallelism	Performance considerations of various memories
S 9-10		properly	Lab 5: Addition of 16-bit number Subtraction of 16-bit number	Lab-8: Study of Ripple Carry Adder Design of Ripple Carry Adder	Lab-11: Study of Booth Algorithm	Lab-14: Understanding Processing unit Design of primitive processing unit
	SLO-2	Assembling of System Components		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
0.44	SLO-1	ARM Processor: The thumb instruction set	Integer division – Restoring Division	Pipeline Hazards-Data hazards	Uni-processor and Multiprocessors	Input Output Organization
S-11	SLO-2	Processor and CPU cores	Solving Problems	Methods to overcome Data hazards	Multi-core processors	Need for Input output devices
0.40	SLO-1	Instruction Encoding format	Non Restoring Division	Instruction Hazards	Multi-core processors	Memory mapped IO
S-12	SLO-2	Memory load and Store instruction in ARM	Solving Problems	Hazards on conditional and Unconditional Branching	Memory in Multiprocessor Systems	Program controlled IO
S-13	SLO-1	Basics of IO operations.	Floating point numbers and operations	Control hazards	Cache Coherency in Multiprocessor Systems	Interrupts-Hardware, Enabling and Disabling Interrupts
3-13	SLO-2	Basics of IO operations.	Solving Problems	Influence of hazards on instruction sets	MESI protocol for Multiprocessor Systems	Handling multiple Devices
	SLO-1	Lab -3To understand how different				
S 14-15	SLO-2	components of PC are connected to work properly Disassembling of System Components	Lab-6: Multiplication of 8-bit number Factorial of a given number	Lab-9: Study of Carry Look-ahead Adder Design of Carry Look-ahead Adder	Lab-12: Program to carry out Booth Algorithm	Lab-15: Understanding Pipeline concepts Design of basic pipeline.

Learning
Learning Resources

- Carl Hamacher, ZvonkoVranesic, SafwatZaky, Computer Organization, 5th ed., McGraw-Hill, 2015
 Kai Hwang, Faye A. Briggs, Computer Architecture and Parallel Processing", 3rd ed., McGraw Hill, 2016
 Ghosh T. K., Computer Organization and Architecture, 3rd ed., Tata McGraw-Hill, 2011
 P. Hayes, Computer Architecture and Organization, 3rd ed., McGraw Hill, 2015.

- 5. William Stallings, Computer Organization and Architecture Designing for Performance, 10th ed., Pearson Education, 2015
- David A. Patterson and John L. Hennessy Computer Organization and Design A Hardware software interface, 5th ed., Morgan Kaufmann, 2014

Learning Ass	sessment												
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(50% woightage)		
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	1 (10%)#	Final Examination (50% weightage)			
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20% 20%		20% 20%		20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total	10	0 %	100 %		10	0 %	10	0 %	100 %			

#CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. T. V. Sankar, HCL Technologies Ltd, Chennai, sankar_t@hcl.com	1. Prof. A.P. Shanthi, ANNA University Chennai, a.p.shanthi@cs.annauniv.edu	1.Dr. V. Ganapathy, SRMIST
		2. Dr. C. Malathy, SRMIST
		3. Mrs M.S.Abirami, SRMIST

Course Code	18CSC204J	Course Name	DESIGN AND	ANALYSIS OF ALGORITHMS		ourse tegor		С				Pro	fessio	onal C	ore					L 3	T 0	P 2	C 4
Pre-requisite Courses 18CSC201J, 18CSC202J Courses 18CSC207J				18CSC207J			gress ourse	1/\	lil														
Course Offe	ring Department	Computer Science	and Engineering	Data Book / Codes/Standards	3	Nil		•															
Course Learning Rationale (CLR): The purpose of learning this course is to:						L	.earnir	ng					Prog	ram L	_earn	ing O	utco	mes ((PLO)				
CLR-1: De						1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Ar	nalyze various algorit	hm design techniques to	solve real time proble	ms in polynomial time											ý								
CLR-3: Ut	tilize various approac	hes to solve greedy and o	dynamic algorithms			=	(9	<u></u>				arch			Sustainability								
CLR-4: Ut	tilize back tracking ar	nd branch and bound para	adigms to solve expor	nential time problems		00	y (%)	t (%	dge		eut	ses			aine		Work		8				
CLR-5: Ar	nalyze the need of ag	proximation and randomi	zation algorithms, util	ize the importance Non polynomial algorithms	S	(B)	enc	neu	<u>\$</u>	S	ĕ	, Re	Usage	m	nst		ν.		Finance	ъ			
CLR-6: Co	onstruct algorithms th	nat are efficient in space a	and time complexities			Thinking (Bloom)	Proficiency	Attainment (%)	호	Analysis	Development	Design,	ľš	Culture	∞		Team	.u	∞ ⊥⊥	earning			
	•	•	•			를			.E				100	& Cu	nent		∞	icat	Mgt.				
Course Lear	rning Outcomes (CL	.O): At the end of this co	ourse, learners will be	able to:		Level of ⁻	Expected	Expected	Engineering Knowledge	Problem	Design &	Analysis,	Modern 7	Society 8	Environment	Ethics	Individual	Communication	Project M	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Apply efficient algorithms to reduce space and time complexity of both recurrent and non-recurrent relations					3	80	70	L	Н	-	Ĥ	L	-	-	-	L	Ĺ	-	H	-	-	-	
CLO-2: Sc	O-2: Solve problems using divide and conquer approaches				3	85	75	М	Н	L	М	L	-	-	-	М	L	-	Н	-	-	-	
CLO-3: Ap	CLO-3: Apply greedy and dynamic programming types techniques to solve polynomial time problems.				3	75	70	М	Н	М	Н	L	-	-	-	М	L	-	Н	-	-	-	
				_	0.5															-			

H H M H L

M H

М

М

МН

3 85 80

CLO-3: Apply greedy and dynamic programming types techniques to solve polynomial time problems.
CLO-4: Create exponential problems using backtracking and branch and bound approaches.

CLO-5: Interpret various approximation algorithms and interpret solutions to evaluate P type, NP Type, NPC, NP Hard problems 3 85 75 CLO-6: Create algorithms that are efficient in space and time complexities by using divide conquer, greedy, backtracking technique 3 80 70

Durati	on (hour)	15	15	15	15	15
2.4	SLO-1	Introduction-Algorithm Design	Introduction-Divide and Conquer	Introduction-Greedy and Dynamic Programming	Introduction to backtracking - branch and bound	Introduction to randomization and approximation algorithm
S-1	SLO-2	Fundamentals of Algorithms	Maximum Subarray Problem	Examples of problems that can be solved by using greedy and dynamic approach	N queen's problem - backtracking	Randomized hiring problem
	SLO-1	Correctness of algorithm	Binary Search	Huffman coding using greedy approach	Sum of subsets using backtracking	Randomized quick sort
S-2	SLO-2	Time complexity analysis	Complexity of binary search	Comparison of brute force and Huffman method of encoding	Complexity calculation of sum of subsets	Complexity analysis
S-3	SLO-1	Insertion sort-Line count, Operation count	Merge sort	Knapsack problem using greedy approach	Graph introduction	String matching algorithm
	SLO-2	Algorithm Design paradigms	Time complexity analysis	Complexity derivation of knapsack using greedy	Hamiltonian circuit - backtracking	Examples
S 4-5	SLO-1 SLO-2	Lab 1: Simple Algorithm-Insertion sort	Lab 4: Quicksort, Binary search	Lab 7: Huffman coding, knapsack and using greedy	Lab 10: N queen's problem	Lab 13: Randomized quick sort
	SLO-1	Designing an algorithm	Quick sort and its Time complexity analysis	Tree traversals	Branch and bound - Knapsack problem	Rabin Karp algorithm for string matching
S-6	SLO-2	And its analysis-Best, Worst and Average case	Best case, Worst case, Average case analysis	Minimum spanning tree - greedy Kruskal's algorithm - greedy	Example and complexity calculation. Differentiate with dynamic and greedy	Example discussion
S-7	SLO-1	Asymptotic notations Based on growth functions.	Strassen's Matrix multiplication and its recurrence relation	Minimum spanning tree - Prims algorithm	Travelling salesman problem using branch and bound	Approximation algorithm
3-7	SLO-2	0,0,θ, ω, Ω	Time complexity analysis of Merge sort	Introduction to dynamic programming	Travelling salesman problem using branch and bound example	Vertex covering

S-8	SLO-1	Mathematical analysis	Largest sub-array sum	0/1 knapsack problem	Travelling salesman problem using branch and bound example	Introduction Complexity classes
3-6	SLO-2	Induction, Recurrence relations	Time complexity analysis of Largest sub- array sum	Complexity calculation of knapsack problem	Time complexity calculation with an example	P type problems
S 9-10	SLO-1 SLO-2	Lab 2: Bubble Sort	II ah 5: Strassen Matrix multiplication	Lab 8: Various tree traversals, Krukshall's MST	Lab 11: Travelling salesman problem	Lab 14: String matching algorithms
S-11	SLO-1	Solution of recurrence relations	Master Theorem Proof	Matrix chain multiplication using dynamic programming	Graph algorithms	Introduction to NP type problems
	SLO-2	Substitution method	Master theorem examples	Complexity of matrix chain multiplication	Depth first search and Breadth first search	Hamiltonian cycle problem
S-12	SLO-1	Solution of recurrence relations	l Finding Maximum and Minimum in an arrav	Longest common subsequence using dynamic programming	Shortest path introduction	NP complete problem introduction
		Recursion tree	Time complexity analysis-Examples	Explanation of LCS with an example	Floyd-Warshall Introduction	Satisfiability problem
S-13	SLO-1	Solution of recurrence relations	Algorithm for finding closest pair problem	Optimal binary search tree (OBST)using dynamic programming	Floyd-Warshall with sample graph	NP hard problems
	SLO-2	Examples Convex Hull problem		Explanation of OBST with an example.	Floyd-Warshall complexity	Examples
S 14-15	SLO-1 SLO-2	Lab 3: Recurrence Type-Merge sort, Linear search	Lab 6: Finding Maximum and Minimum in an array, Convex Hull problem	Lab 9: Longest common subsequence	Lab 12: BFS and DFS implementation with array	Lab 15: Discussion over analyzing a real time problem

Learning	1.	Thomas H Cormen, Charles E Leiserson, Ronald L Revest, Clifford Stein, Introduction to Algorithms, 3rd ed., The	
Resources		MIT Press Cambridge, 2014	١
IVE2001CE2	2	Mark Allen Weiss, Data Structures and Algorithm Analysis in C. 2nd ed. Pearson Education, 2006	l

100 %

Create Total Ellis Horowitz, Sartajsahni, Sanguthevar, Rajesekaran, Fundamentals of Computer Algorithms, Galgotia Publication, 2010
 S. Sridhar, Design and Analysis of Algorithms, Oxford University Press, 2015

100 %

100 %

Learning Assessment Continuous Learning Assessment (50% weightage) Final Examination (50% weightage) Bloom's CLA - 1 (10%) CLA - 2 (15%) CLA - 3 (15%) CLA - 4 (10%)# Level of Thinking Theory Theory Practice Theory Practice Theory Practice Theory Practice Practice Remember Level 1 20% 20% 15% 15% 15% 15% 15% 15% 15% 15% Understand Apply 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% Level 2 Analyze Evaluate 10% 10% 15% 15% 15% 15% 15% 15% 15% Level 3 \15%

100 %

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

100 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. G. Venkiteswaran, Wipro Technologies, gvenki@pilani.bits-pilani.ac.in	1. Mitesh Khapra, IITM Chennai, miteshk@cse.iitm.ac.in	1. Mr.K.Senthil Kumar, SRMIST
2. Dr.Sainarayanan Gopalakrishnan, HCL Technologies, sai.jgk@gmail.com	2. V. Masilamani. IIITDM, masila@iiitdm.ac.in	2. Dr.A.Razia Sulthana, SRMIST
		3. Mr. V. Sivakumar, SRMIST
		4. Ms. R. Vidhya, SRMIST

	ourse Code 18CSC205J Course Name OPERATING SYSTEMS Course Category C Professional Core							ore					L 3	T 0	P 2	C 4							
	requisite ourses	Nil	Co-requisite Nil				ressi urses		Nil														
Cours	e Offerino	g Department Computer Science as	nd Engineering Data Book	/ Codes/Standards	I	Vil																	
Cours	e Learnin	g Rationale (CLR): The purpose of learni	ng this course is to:			Le	arnin	g					Prog	ram Lo	earni	ng O	utcor	nes (l	PLO)				
CLR-1	: Introd	duce the key role of an Operating system				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2		the Process Management functions of an O			-							£			ΞĘ								
CLR-3		nasize the importance of Memory Management p			-	(mod	(%)	(%)	90		ŧ	searc			inabi		¥		ø				
CLR-5			File Management functions of an Operating system				ency	ment	wled	S	bme	, Re	age	Ф	Susta		m W		inanc	ng			
CLR-6	: Explo	ore the services offered by the Operating sys	tem practically			inkin	rofici	ıttainı	K	alysi	evelo	esigr	ol Us	Į.	nt & S		Tea	ation	Α	Learning			
						evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	ering	m.	ا % ا	sis, D	n To	× ×	Environment & Sustainability		Individual & Team Work	Communication	Project Mgt. & Finance	ong L	-	2	က
Cours	e Learnin	g Outcomes (CLO): At the end of this cou	rse, learners will be able to:			evel	xbec	xpec	Engineering Knowledge Problem Analysis Design & Development Analysis, Design, Research Modem Tool Usage Society & Culture Environment & Sustamabilit				nviro	Ethics	pivip	omm;	mjec	Life Long l	PS0 - 1	PSO -	M PS0 - 3		
		ify the need of an Operating system				1	80	70	H H H H H M L				L	М	H	М	М	H	Н	Н	М		
		the Process management functions of an O				1		75					L	М	Н	М	М	Н	Н	Н	М		
		rstand the need of Memory Management fur the significance of Device management role				1	-						L	M M	H	M M	M M	H	H	H H	M		
	CLO-5: Recognize the essentials of File Management part of an Operating system 2 85 75 H H H H H H M								L	М	Н	М	М	Н	Н	Н	М						
CLO-6: Gain an insight of Importance of an Operating system through practical						3	80	70	Н	Н	Н	Н	Н	М	L	М	Н	М	М	Н	Н	Н	М
Duration (hour) 15 15 15				15							1:	5							1	5			
	SLO-1	Operating System Objectives and functions	PROCESS SYNCHRONIZATION : Peterson's solution, Synchronization Hardware	MEMORY MANAGEMEN Management: Logical Vs I space, Swapping				ss V	VIRTUAL	МЕМО	ORY-	Back	ground	d	1	STORAGE MANAGEMENT : Mass storage structure – Overview of Mass storage structure – Magnetic Disks			sks				
S-1	SLO-2	Gaining the role of Operating systems	Understanding the two-process solution and the benefits of the synchronization hardware	Understanding the basics management	of I	Memo	ory		Understan paging	ding t	he ne	ed of	dema	nd		Understanding the Basics in storage management			ige				
	SLO-1	The evolution of operating system, Major achievements	Process synchronization: Semaphores, usage, implementation	Contiguous Memory alloca	atio	n – F	ixed a					- Basi	cond	epts –		Disk S	Schea	luling					
S-2	SLO-2	Understanding the evolution of Operating systems from early batch processing systems to modern complex systems	Gaining the knowledge of the usage of the semaphores for the Mutual exclusion mechanisms	Getting to know about Par management and issues. fragmentation and externa problems	: In	ternal		L	page fault handling Understanding , how an OS handles the page faults				Understanding the various scheduling respect to the disk			uling	with						
	SLO-1	OS Design considerations for Multiprocessor and Multicore	Classical Problems of synchronization – Readers writers problem, Bounded Buffer problem	Strategies for selecting fre Dynamic partition	e h	oles i	in	F	Performance of Demand paging				FILE S File a				RFACE	: File	conc	ept,			
S-3		Understanding the key design issues of Multiprocessor Operating systems and Multicore Operating systems	Good understanding of synchronization mechanisms	Understanding the allocation strategies with examples Understanding the relationship of effective access time and the page fault rate			ve	Understanding the file basics															
\$ 4-5	SLO-1 SLO-2	LAB 1 : Understanding the booting process of Linux	LAB4 : System admin commands – Basics	ics LAB7: Shell Programs – Basic level			vel LAB10 : Overlay concept				LAB13:Process synchronization												
S-6	SLO-1	PROCESS CONCEPT- Processes, PCB	Classical Problems of synchronization – Dining Philosophers problem (Monitor)	Paged memory management Copy-on write				File sharing and Protection															

maintained of the by the second among managed processing and processing managed processing and p										me protection				
S-7	SLO-1	Threads – Overview a	nd its Benefits	CPU SCHEDULI	NG : FCFS,SJF,Priority	Structure of	Page Map Table			lacement Mechani LRU and LRU app es		FILE SYSTEM IMPLEM system structure	MENTATION : File	
	SLO-2	Understanding the imp	oortance of threads	Understanding th	ne scheduling techniques	Understandi	ng the components	of PMT		nding the Pros and lacement techniqu		To get the basic file system structure		
S-8	SLO-1	Process Scheduling : Schedulers, Context s	•	_	Round robin, Multilevel g, Multilevel feedback	Example : In Architecture	tel 32 bit and 64 –b s	it	-	based page repla fering Algorithms	cement and	Directory Implementation		
	SLO-2	2 Understanding basics of Process understanding basics of Process understanding the scheduling techniques architectures understanding the Paging in the Intel architectures available for page replacement strategies					Understanding the various levels of directory structure							
S 9-10	SLO-1 SLO-2	LAB2 : Understanding	the Linux file system	LAB5: System actions	dmin commands – Simple	LAB 8: Proce	ess Creation		LAB11: I	PC using Pipes		LAB14 : Study of OS16	1	
S-11	SLO-1	Operations on Process Process termination	s – Process creation,		uling: Rate Monotonic Deadline Scheduling	Example : A	RM Architectures		Allocation Allocation	n of Frames - Glob n	al Vs Local	FILE SYSTEM IMPLEMENTATION :A	location methods	
3-11	SLO-2 Understanding the system calls – Understanding the system calls – Understanding the real time scheduling fork(), wait(), exit() Understanding the real time scheduling ARM Understanding the Paging with respect to ARM								Understanding the pros various disk allocation					
S-12	SLO-1		nter Process communication: Shared Memory, Message Passing, Pipe() DEADLOCKS: Necessary conditions, Resource allocation graph, Deadlock prevention methods DEADLOCKS: Necessary conditions, Segmented memory management Thrashing, Causes of Thrashing						FILE SYSTEM IMPLEMENTATION :Fr space Management					
	SLO-2	Understanding the nee	ed for IPC	Understanding th	ne deadlock scenario		ng the users view o to the primary men		Understa	nding the Thrashir	ng	Understanding the met		
S-13	SLO-1	PROCESS SYNCHRO Background, Critical s		Deadlocks :Dead and Recovery	llock Avoidance, Detection	Paged segm	entation Technique		Working	set Model		Swap space Managem	ent	
3-13	SLO-2	Understanding the rac need for the Process s		_	ne deadlock avoidance, covery mechanisms	Understanding the combined scheme for efficient management			1	nding the working g the Working set		Understanding the Low-level task of the OS		
S 14-15	SLO-1 SLO-2	LAB3: Understanding of Compilation of a 'C'		LAB6 : Linux cor	nmands	LAB9: Overl	ay concept		LAB12: I Message	PC using shared m queues	emory and	LAB15 : Understanding the OS161 filesystem and working with test programs		
Learni Resou	•				Operating systems, 9th edign Principles, 7th ed., Pren			 Andre Bryar 	ew S. Tane nt O'Hallax	enbaum, Herbert B n, Computer syste	os, Modern Op ms- A Program	erating systems, 4 th ed., I mer's Perspective, Pears	Pearson, 2015 on, 2015	
Learni	ing Asses	ssment												
	_	Bloom's			Continuous	Learning Asse	essment (50% weig	htage)				Final Evamination	n (50% weightage)	
		Level of Thinking	CLA – 1		CLA – 2 (15%			3 (15%)			(10%)#	i iliai Examinatioi		
		Ů	Theory	Practice	Theory	Practice	Theory	Prac	tice	Theory	Practice	Theory	Practice	
Level '	1	Remember Understand	20%	20% 15% 15% 15%		159	%	15%	15%	15%	15%			
Level 2	2	Apply Analyze	20%	20%	20%	20%	20%	20% 20%		20%	20%	20%	20%	
Level 3	3	Evaluate Create	10%	10%	15%	15%	15% 15%		%	15%	15%	15%	15%	
		Total	100	%	100 %		10	0 %		100) %	10	0 %	
Cours	e Design	ers	<u></u>									<u></u>	<u></u>	
	ts from Inc		Experts	from Higher Tech	nical Institutions			Int	ernal Expe	rts				
1. Mr.	Balamuru	gan, Infosys, balams@	gmail.com 1. Dr. L	atha Parthiban, Po	andicherry University, latha	parthiban@ya	ahoo.com	1.	Dr.G.Mara	gatham, SRMIST		3. Ms. Aruna S, SRMIS	T	
		5 , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 3,				M. SRMIST		, -		
									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,				

Understanding the Paging technique.PMT

hardware mechanism

Understanding the need for Copy-on write

Emphasis the need for the file sharing and

its protection

Understanding the Process concept and

Maintanance of PCB by OS

Understanding synchronization of limited

resources among multiple processes

Code Name SOFTWARE ENGINEERING AND PROJECT MANAGEMENT Category C Professional Cole 3 0 2	Course 180902061		Course	SOFTWARE ENGINEERING AND PROJECT MANAGEMENT	Course	_	Professional Core	L	Т	Р	С	
	Code	100302003	Name		Category	ory		3	0	2	4	

Pre-requisite Nil	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department	Computer Science and Engineering	Data Book / Codes/Standards	Nil	

Course L	earning Rationale (CLR):	The purpose of learning this course is to:	Le	earnir	ıg
CLR-1:	Familiarize the software life	cycle models and software development process	1	2	3
CLR-2:	Understand the various tech	nriques for requirements, planning and managing a technology project	ê	6)	· ·
CLR-3:	Examine basic methodologi	es for software design, development, testing, closure and implementation	(Bloom)	Proficiency (%)	ıt (%)
CLR-4:	Understand manage users	expectations and the software development team	3 (B	enc	neu
CLR-5:	Acquire the latest industry k	nowledge, tools and comply to the latest global standards for project management	Thinking	ofici	Attainment
	-				
Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected
CLO-1:	Identify the process of proje	ct life cycle model and process	1	85	80
CLO-2:	CLO-2: Analyze and specify software requirements through a productive working Relationship with project stakeholders		2	80	75
CLO-3:	CLO-3: Design the system based on Functional Oriented and Object Oriented Approach for Software Design.		3	85	85
CLO-4:	CLO-4: Develop the correct and robust code for the software products				
CLO-5:	CLO-5: Perform by applying the test plan and various testing techniques				

	Program Learning Outcomes (PLO)													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
Н	Н	L	-	-	-	L	-	Н	Н	М	М	-	-	-
Н	Н	Н	Н	Н	-	М	-	Н	Н	H-	М	-	-	-
Н	Н	М	Н	Н	М	М	L	Н	Н	М	-	-	-	-
Н	Н	Н	-	Н	-	-	М	Н	М	Н	-	-	-	-
Н	М	М	М	М	М	М	-	Н	Н	-	М	-	-	-

Durati	on (hour)	15	15	15	15	15
0.4	SLO-1	Introduction to Software Engineering	Software Design - Software Design Fundamentals	Software Construction	Introduction to testing	Product Release
S-1	SLO-2	Software Project Management - life cycle activities	Design Standards - Design Type	Coding Standards	Verification	Product Release
S-2	SLO-1	Traditional – Waterfall, V Model	Design model – Architectural design, Software architecture Coding Framework		Validation	Product Release Management
	SLO-2	Prototype, Spiral, RAD	pe, Spiral, RAD Software Design Methods Reviews - Desk checks (Peer Reviews) Test Strate		Test Strategy	Product Release Management
S-3	SLO-1	Conventional – Agile,	Top Down , Bottom Up Walkthroughs Planning		Planning	Implementation
3-3	SLO-2	XP, Scrum	Module Division (Refactoring)	Code Reviews, Inspections Example: Test Strategy and Planning		Implementation
S	SLO-1	Lab1:Identify the Software Project, Create Lab 4:Prepare Project Plan based on Lab 7:State and Sequence Diagram, Lab 10: Module Implementation (Phase 2				
4-5	SLO-2	Business Case, Arrive at a Problem Statement	scope, Find Job roles and responsibilities, Calculate Project effort based on resources	Deployment Diagram, Sample Frontend Design (UI/UX)	Scrum Master to Induce New Issues in Agile Development	Lab 13:Manual Testing
S-6	SLO-1	Introduction to Requirement Engineering	Module Coupling	Coding Methods	Test Project Monitoring and Control	User Training
3-0	SLO-2	Requirements Elicitation	Component level design	Structured Programming	Test Project Monitoring and Control	Maintenance Introduction
S-7	SLO-1	Software Project Effort and cost estimation	User Interface Design	Object-Oriented Programming	Test Project Monitoring and Control	Maintenance Types - Corrective
	SLO-2	Cost estimation	Pattern oriented design	Automatic Code Generation	Test Project Monitoring and Control	Adaptive
	SLO-1	Cocomo 1 and 2	Web application design	Automatic Code Generation	Test Project Monitoring and Control	Perfective
S-8	SLO-2	Cocomo 1 and 2			Test Project Monitoring and Control	Preventive
	SLO-1				Lab 11:Module Implementation (Phase 3)	
S 9-10	SLO-2	Lab 2:Stakeholder and User Description, Identify the appropriate Process Model, Comparative study with Agile Model	Lab 5:Prepare the Work, Breakdown Structure based on timelines, Risk Identification and Plan	Lab 8:Module Description, Module Implementation (phase 1) Using Agile	Scrum Master to Induce New requirements in Agile Development, Scrum Master to Induce New Issues in Agile Development, Code Documentation	Lab 14:User Manual, Analysis of Costing, Effort and Resources

S-11	SLO-1	Risk Management	Design Reuse	Software Code Reuse	Design –Master test plan, types	Maintenance Cost
3-11	SLO-2	Risk Management	Design Reuse	Software Code Reuse	Design –Master test plan, types	Maintenance Process
S-12	SLO-1	Configuration management	Concurrent Engineering in Software Design	Pair Programming	Test Case Management	life cycle
3-12		Configuration management	Concurrent Engineering in Software Design	Test-Driven Development	Test Case Management	Software Release
S-13	SLO-1	Project Planning – WBC, planning,	Design Life-Cycle Management	Configuration Management	Test Case Reporting	Software Maintenance
3-13	SLO-2	scope, risk	Design Life-Cycle Management	Software Construction Artifacts	Test Case Reporting	Software Release, Software Maintenance
	SLO-1	Lab 3:Identify the Requirements, System	Lab 6:Design a System Architecture, Use Case Diagram, ER Diagram (Database), DFD Diagram (process) (Upto Level 1),	Lab 9:Module Implementation, Scrum	Lab 12:Master Test Plan, Test Case	Lab 15: Project Demo and Report
14-15	14-15 F	Requirements, Functional Requirements, Non-Functional Requirements	Class Diagram (Applied For OOPS based Project), Collaboration Diagram (Applied For OOPS based Project) (Software – Rational Rose)	Master to Induce New requirements in Agile Development	Design (Phase 1)	Submission with the team

	1.	Roger S. Pressman, Software Engineering – A Practitioner Approach, 6th ed., McGraw Hill, 2005	5.	Ashfaque Ahmed, Software Project Management: a process-driven approach, Boca Raton, Fla: CRC
Learning	2.	Ian Sommerville, Software Engineering, 8th ed., Pearson Education, 2010		Press, 2012
Resources	3.	Rajib Mall, Fundamentals of Software Engineering, 4th ed., PHI Learning Private Limited, 2014	6.	Walker Royce, Software Project Management, Pearson Education, 1999
	4.	Ramesh, Gopalaswamy, Managing Global Projects, Tata McGraw Hill, 2005	7.	Jim Smith Agile Project Management: Creating Innovative Products, Pearson 2008

Learning As	Learning Assessment Continuous Learning Assessment (50% weightage) Fig. 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15													
	Bloom's			Final Examination (50% weightage)										
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	FIIIai Examination	ii (50% weightage)			
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0 %			

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Girish Raghavan, Wipro Technologies	1. Dr. Latha Parthiban, Pondicherry University, lathaparthiban@yahoo.com	1. Mrs. Sasi Rekha Sankar, SRMIST
2. Dr.Mariappan Vaithilingam, Amazon, Bangalore	2. V. Masilamani. IIITDM, masila@iiitdm.ac.in	2. Dr. T.S.Shiny Angel, SRMIST
		3. Mr.N.Arivazhagan, SRMIST
		4. Mrs K.R.Jansi, SRMIST

Course Code	18CSC207J	Course Name	ADVAN	CED PROGRAM	IMING PRACTICE	(Course Categor		С				Pro	fessic	nal C	ore					L 3	T 0	P 2	C 4
Pre-requ Course	180.50.707.1		Co-requi Course	1786567)4J		_	gress		Nil														
Course Off	ering Department	Comput	er Science and Engineerin	g	Data Book / Codes/S	tandards	Nil																	
Course Le	Course Learning Rationale (CLR): The purpose of learning this course is to: CLR-1: Create Real-time Application Programs using structured, procedural and object oriented programming paradigms					l	.earni	ng					Prog	ram L	.earn	ing O	utcor	nes (F	PLO)					
							1	2	3	,	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			ms using event driven, dec				4						Ę			. <u>≥</u>								
			ms using parallel, concurre		, , , , ,		Ę (E	%	(%)	9	2	+=	Design, Research			Sustainability		논		m				
			ms using logic, dependent ms using symbolic, automa				- 1 🗟	ncy	eut (4	Ž	men	Res	e e		stai		Work		Finance				
			ns using symbolic, automa ns using different program			granı paradığını	- lig	Proficiency (%)	Attainment	3	ysis	Development	gi	Usaç	Culture	& SL		eam	5	& Fin	earning			
OLIT OI	ordate reductions report	oution i rogiui	no doing unforont program	ming paradigme	doing python language		Thinking (Bloom)	Po	Atta	3	Analysis		Des	Tool Usage	S	ent		∞ _	icati					
Course Le	arning Outcomes (CL	O): At the e	nd of this course, learners	will be able to:			Level of 1	Expected	Expected ,		Problem,	Design &	Analysis,	Modern T	Society &	Environment	Ethics	Individual & Team	Communication	Project Mgt.	Life Long	PS0 - 1	PSO-2	PSO - 3
			rocedural and object orient				3	85	80	H		Н	Н	Н	-	-	L	М	М	L	М	-	М	-
			declarative and imperative				3	85	80	ŀ	l H	Н	Н	Н	-	-	L	М	М	L	М	-	-	-
			current and functional prog				3	85	80	ŀ		Н	Н	Н	-	-	L	М	М	L	М	-	-	-
			dent type and network prog				3	85	80	ŀ	_	Н	Н	Н	-	-	L	М	М	L	М	-	-	-
			tomata based and graphica				3	85	80	ŀ		Н	Н	Н	-	-	L	М	М	L	М	-	-	-
CLO-6:	Freate Programs using	different prog	gramming paradigms using	python languag	е		3	85	80	ŀ	l H	Н	Н	Н	-	-	L	М	М	L	М	-	-	

Durati	ion (hour)	15	15	15	15	15
	SLO-1	Structured Programming Paradigm	Event Driven Programming Paradigm	Parallel Programming Paradigm	Logic Programming Paradigm	Symbolic Programming Paradigm
S-1	SLO-2	Programming Language Theory	Event Object, handler, bind	Multi-threading, Multi-Processing	First-class function, Higher-order function, Pure functions, Recursion	Symbolic Maths, algebraic manipulations, limits, differentiation, integration, series
S-2	SLO-1	Bohm-Jacopini structured program theorem	Keypress events, Mouse events	Serial Processing, Parallel Processing	Packages: Kanren, SymPy	SymPy usage for symbolic maths
0-2	SLO-2	Sequence, selection, decision, iteration, recursion	Automatic events from a timer	Multiprocessing module in Python	PySWIP, PyDatalog	Equation Solving, Matrices
	SLO-1	Other languages: C, C++, Java, C#, Ruby	Other languages: Algol, Javascript, Elm	Process class, Pool class	Other languages: Prolog, ROOP, Janus	Other languages: Aurora, LISP, Wolfram
S-3	SLO-2	Demo: Structured Programing in Python	Demo: Event Driven Programming in Python	Demo: Parallel Programming in Python	Demo: Logic Programming in Python	Demo: Symbolic Programming in Python
S 4-5	SLO-1 SLO-2	Lab 1: Structured Programming	Lab 4: Event Driven Programming	Lab 7: Parallel Programming	Lab 10: Logic Programming	Lab 13: Symbolic Programming
	SLO-1	Procedural Programming Paradigm	Declarative Programming Paradigm	Concurrent Programming Paradigm	Dependent Type Programming Paradigm	Automata Based Programming Paradigm
S-6	SLO-2	Routines, Subroutines, functions	Sets of declarative statements	Parallel Vs Concurrent Programming	Logic Quantifier: for all, there exists	Finite State Machine, deterministic finite automation (dfa), nfa
	SLO-1	Using Functions in Python	Object attribute, Binding behavior	threading, multiprocessing	Dependent functions, dependent pairs	State transitions using python-automaton
S-7	SLO-2	logical view, control flow of procedural programming in various aspects	Creanno Evenis wilnoul describing llow	concurrent.futures, gevent, greenlets, celery	Relation between data and its computation	Initial state, destination state, event (transition)
	SLO-1	Other languages: Bliss, ChucK, Matlab	Other languages: Prolog, Z3, LINQ, SQL	Other languages: ANI, Plaid	Other Languages: Idris, Agda, Coq	Other languages: Forth, Ragel, SCXML
S-8	SLO-2	Demo: creating routines and subroutines using functions in Python	Demo: Declarative Programming in Python		Demo: Dependent Type Programming in Python	Demo: Automata Based Programming in Python

S 9-10	SLO-1 SLO-2	Lab 2: Procedural Programming	Lab 5: Declarative Programming	Lab 8: Concurrent Programming	Lab 11: Dependent Type Programming	Lab 14: Automata Programming
3-10		Object Oriented Programming Paradigm	Imperative Programming Paradigm	Functional Programming Paradigm	Network Programming Paradigm	GUI Programming Paradigm
S-11	SLO-2	Class, Objects, Instances, Methods	Program State, Instructions to change the program state		Socket Programming: TCP & UDP Connection oriented, connectionless	Graphical User Interface (GUI)
S-12	SLO-1	Encapsulation, Data Abstraction	Combining Algorithms and Data Structures		Sock_Stream, Sock_Dgram, socket(), bind(), recvfrom(), sendto(), listen()	Tkinter, WxPython, JPython
3-12		Polymorphism, Inheritance	Imperative Vs Declarative Programming		Server-Client; send(), recv(), connect(), accept(), read(), write(), close()	WxWidgets, PyQT5
		Constructor, Destructor	Other languages: PHP, Ruby, Perl, Swift	Other languages: F#, Clojure, Haskell	Other languages: PowerShell, Bash, TCL	Other languages: GTK, java-gnome
S-13	SI O-2	Example Languages: BETA, Cecil, Lava Demo: OOP in Python	Demo: Imperative Programming in Python	Demo: Functional Programming in Python	Demo: Socket Programming in Python	Demo: GUI Programming in Python
S 14-15	SLO-1 SLO-2	Lab 3: Object Oriented Programming	Lab 6: Imperative Programming	Lab 9: Functional Programming	Lab 12: Network Programming	Lab 15: GUI Programming

Learning
Resources

- Elad Shalom, A Review of Programming Paradigms throughout the History: With a suggestion Toward a Future Approach, Kindle Edition, 2018
- John Goerzen, Brandon Rhodes, Foundations of Python Network Programming: The comprehensive guide to building network applications with Python, 2nd ed., Kindle Edition, 2010
- 3. Elliot Forbes, Learning Concurrency in Python: Build highly efficient, robust and concurrent applications, Kindle Edition, 2017
- Amit Saha, Doing Math with Python: Use Programming to Explore Algebra, Statistics, Calculus and More, Kindle Edition, 2015
- Alan D Moore, Python GUI Programming with Tkinter: Develop responsive and powerful GUI applications with Tkinter, Kindle Edition, 2018
- 6. https://www.scipy-lectures.org/

Learning Assess	sment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA -	1 (10%)	CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4	1 (10%)#	Filiai Examination	i (50% weightage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level I	Understand	2070	2070	1370	1370	1370	1370	1370	1370	1370	1370
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
FEACI 2	Create	1070	1070	1370	1370	1370	1370	1370	1370	1370	1370
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Sagar Sahani, Amadeus Software Labs, Bangalore, hello.sagarsahni@gmail.com	1. Dr. Rajeev Sukumaran, IIT Madras, rajeev@wmail.iitm.ac.in	1. Dr. R. Annie Uthra, SRMIST
2. Mr. Janmajay Singh, Fuji Xerox R&D, Japan, janmajaysingh14@gmail.com	2. Prof. R. Golda Brunet, GCE, goldabrunet@gcessalem.edu.in	2. Dr. Christhu Raj M R, SRMIST
		3. Ms. K. Sornalakshmi, SRMIST
		4. Mr. C. Arun, SRMIST

ACADEMIC CURRICULA

Professional Core Courses

ELECTRICAL & ELECTRONICS ENGINEERING

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

							T																	
Cou		TREECOULT	ourse lame	ANALYSIS OF ELI	ECTRIC CIRCUIT	S		urse egory	,	С				Prof	essio	nal Co	ore					L T		•
							1															3 0	2	4
	equisite urses	18EES101J		Co-requisite Courses					gress ourse															
Course	Offering	g Department	Electrical and Electro	nics Engineering	Data Book	/ Codes/Standards	I	Nil		- 1														
		D (; 1 (0) D)	<i></i>															_		(D				
			The purpose of learning						earnir	_							earnir					10 1	0 4	
CLR-1	,		U	nalysis and network reduc	tion			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12 1	3 14	4 15
CLR-3	0 1													등			<u>₹</u>							
CLR-4									(%)	(%)	ge		aut	sear			ainab		Ą		8			
CLR-5	5: Solve 3 phase circuits, coupled and tuned circuits								ency	nent	w lec	S	bme	, Re	age	Ф	onste		E		& Finance	g		
CLR-6	R-6: Enrich the concepts of AC and DC circuits using different analysis								Profici	√ttainı	g Knc	nalysi)evelo	esigr	ol Us	Sultur	nt & 9		Z Tea	ation	t. & F	eami		
Caura	urse Learning Outcomes (CLO): At the end of this course, learners will be able to:								Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Jesign & Development	Analysis, Design, Research	Aodern Tool Usage	Society & Culture	Environment & Sustainability	g	ndividual & Team Work	Communication	roject Mgt.	ife Long Leaming	- -	PSO - 3
	-1: Analyze circuit parameters, analyze circuits using mesh and nodal analysis and network reduction									Exp			1	_	_	0,		ш	_					
				mesn and nodal analysis a series and parallel resona		tion		3	75 75	75 75	H	H	-	-	- М	-	-	- /	M M	M M	-		И N И N	_
		late solutions of netwo			ance			3	75	75	H	Н	-	-	IVI	-	-	-	М	М	-		и IV	
CLO-4		ze the transients of RL		ia 710 onouno				3	75	75	H	Н	М	-	М	-	-	-	М	М	-		u N	
		ze 3 phase circuits, co						3	75		Н	Н	М	-	-	-	-	-	М	М	-		И N	
CLO-6	: Evalu	uate AC and DC circuits	s under different cases	;				3	75	75	Н	Η	М	-	Μ	-	-	-	М	М	-	- A	И N	1 -
Duratio	on (hour)	1	5	15			15						15								15			
	SLO-1	Introduction to two ter	minal circuit passive	Introduction to AC circuits	S	Superposition theore	em in DC	circu	ıits		Introduction: Exponentially increasing Analysis of balanced thr functions					three-phase 3 wire								
S-1	01.0.0	Characteristics of two	terminal circuit			Problems in Superpo	sition th	eorer	m in D)C										balar	nced t	hree-pi	hase 3	3 wire
	SLO-2	passive elements		Phasors		circuits				E	Exponentia	lly De	creasi	ing fui	nction	S	С	ircuits	3					
	SLO-1	Circuit Reduction Tec	hniques	Impedance		Superposition theore	em in AC	circu	ıits	F	RL free circ	uits						Inalys ircuits		unbala	anced	three-	phase)
S-2	8103	Problems in Circuit R	aduation Tachniques	Admittance		Problems in Superpo	sition th	eorer	m in A	IC ,	RL Driven o	oirouite	`							unba	lance	d three	-phas	е
	JLU-Z					circuits											7	ircuits		otor m	othod	of mo	acurin.	g three-
S-3	SLO-1	Combination of Source	es	Calculation of Power and	Power Factor	Reciprocity theorems					Transients	in RL	circuit	with	DC ex	citatio	on p	hase	powe	er				
	SLO-2	Source Transformation	n	Problems in Power and P	Power Factor	Problems in Reciproc circuits	city theo	rems	in AC	; 1	Transients	in RL	circuit	with.	AC ex	citatio	וו מר					neter m power		of
S	SLO-1	Lab 1: Circuit reduction	on and hasis laws	Lab 4: Determine Power	and Power Factor	Lab 7: Verify Superp	osition a	and Re	ecipro	city L	ab 10: An	alyze	Time (doma	in of F	RL	L	ab 1	3: Me	asure	powe	er in 3 p	hase	circuits
4-5	SLO-2			Lab 4. Determine r'OWER	ana rowen racion	Theorems				t	ransient ci	rcuit					ι	ısing	two и	/attme	eter m	ethod		
S-6	SLO-1	Mesh current analysis dependent sources	s of DC circuits with	Steady state analysis of F	RL circuits	Thevenin's theorem	in DC cir	rcuits		F	RC free circ	cuits					A	nalys	sis of	couple	ed circ	cuits		
3-0	SLO-2	Problems in Mesh cur circuits with depender		Steady state analysis of F	RC circuits	Norton theorem in D	C circuits	S		F	RC driven o	circuits	S				F	Proble	ms in	coup	led ci	rcuits		
	SLO-1	Mesh analysis in DC o		Steady state analysis of F	RLC circuits	Thevenin's theorem in AC circuits Transients in RC circuit was				t with	DC e	xcitati	on A	nalys	sis of	tuned	circui	ts						
S-7	SLO-2	Problems in Mesh and	alysis in DC circuits	Discounting and a second	,	Problems in Thevenin's theorem				Transients in RC circuit with AC excitation				Problems in tuned circuits										
	SLU-Z	with current sources	•	Phasor diagram of RLC c	circuits	circuits				- 1	ransienis	III KC	Circui	L VVILII	AC 6	Kullalii	ווט	TODIO	1115 111	lune	J GII GC	iito		

		Problems in Nodal Voltage analysis of DC circuits with dependent sources	Problems in Series resonance circuits	Problems in Norton's theorem in AC circuits	Transform impedance	Analysis of Two port networks
S 9-10	SLO-1 SLO-2	Lab 2: Mesh analysis in DC circuits	Lab 5: Real time Data Acquisition	Lab 8: Verify Thevenin's and Norton's theorems	Lab 11: Analyze Time domain of RC transient circuit	Lab 14: Analysis in tuned circuits
C 44		Supermesh method for mesh analysis	Parallel resonance circuits	Millman's theorem in AC circuits	Transients in RLC circuit with DC excitation	Impedance parameters
S-11	SLO-2	Problems in Supermesh method for mesh analysis	Problems in Parallel resonance circuits	Problems in Millman's theorem in AC circuits	Problems in Transients in RLC circuit with DC excitation	Problems in impedance parameters
S-12	SLO-1	Nodal analysis in DC circuits with voltage sources	Mesh analysis in AC circuits	Maximum Power Transfer Theorem in DC circuits	Transients in RLC circuit with AC excitation	Admittance parameters
J-12	SLO-2	Problems in Nodal analysis in DC circuits with voltage sources	Problems in Mesh analysis in AC circuits	Theorem in DC circuits	Problems in Transients in RLC circuit with AC excitation	Problems in admittance parameters
S-13	SLO-1	Supernodal method for nodal analysis	IINOGALANAIVSIS IN AU CIRCUITS	Maximum Power Transfer Theorem in AC circuits	Circuit transients using Laplace transform	Hybrid parameters
J-13	SLO-2	Problems in Supernodal analysis	Problems in Nodal analysis in AC circuits	Problems in Maximum Power Transfer Theorem in AC circuits	Problems in Circuit transients using Laplace transform	Inverse Hybrid parameters
S 14-15	SLO-1 SLO-2		Lab 6: Study of series and parallel resonance circuits	Lab 9: Verify maximum power transfer theorem	Lab 12: Analyze Time domain of RLC transient circuits	Lab 15: Determine hybrid parameters

Learning Resources	1. 2.	Sudhakar A, Shyam Mohan S.P, Circuits and Networks Analysis and Synthesis, 4th ed., Tata McGraw Hill, 2010 William H. Hayt, Jack E. Kemmerly, Steven M. Durbin, Engineering circuit analysis, 8th ed., McGraw Hill, 2012	
Resources	3	legatheesan R. Analysis of Electric Circuits, McGraw Hill, 2014	to-electron

John Bird, Electric circuit theory and technology, 5th ed., Taylor and Francis, 2013 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-071j-introduction-to-electronics-signals-and-measurement-spring-2006/lecture-notes/

Learning Asse	ssment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(EOO/ waightaga)
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	FIIIai Examination	n (50% weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	10	0 %	100	0 %	10	0 %	100	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr . Roosefart Mohan, Nelcast Limited, chennai,roosefart@gmail.com	1. Dr. D. Devaraj, Kalasalingam Academy of Research and Education, deva230@yahoo.com	1. Dr. R. Jegatheesan, SRMIST
2.Mr. Muralikrishna, National Instruments, emkkrishnan@gmail.com	2. Dr. B. ChittiBabu, IIITD, Kanchipuram, chittibabu@gmail.com	2. Dr. J. Preetha Roselyn, SRMIST

Course Code	18EEC202T	Course Name	ELECTRO	MAGNETIC THEORY	Course	С	Professional Core	L	T	Р	С
Code		Name			Category			3	1	U	4
Pre-requisite			Co-requisite		Prog	essive					
Courses			Courses		Co	ırses					
Course Offerin	g Department	Electri	cal and Electronics Engineering	Data Book / Codes/Standards	Nil						
		•		·	•						

Course Learning Rationale (CLR): The purpose of learning this course is to:	Learning Program Learning Outcomes (PLO)	
CLR-1: Utilize the concepts of Electromagnetic theory for practical applications	1 2 3 1 2 3 4 5 6 7 8 9 10 11 12	13 14 15
CLR-2: Utilize knowledge about the static electric field and its applications.		
CLR-3: Utilize knowledge on static magnetic field	ing (Bloom) whert (%) where (%) where (%) where (%) is something sage re re re re re re re re re	
CLR-4: Utilize parameters involved in time varying field and Maxwell's equations	(Bloom) ncy (%) ncy (%) ment (%) ment (%) wedge ge ge	
CLR-5: Enrich in the field of Electromagnetic waves	hinking (Bloon Proficiency (% Attainment (% Analysis Development Design, Rese ool Usage ool Usage ent & Sustain & Team Worl gt. & Finance	
CLR-6: Create a mindset to solve various engineering problems in the field of electromagnetism	hinking (BI Proficiency Attainmen and Knowle Analysis Developm Design, Re ool Usage culture ent & Sust gt. & Finan M ication Learning	
	Thinking Thinking d Attainm ad Attainm Analysis S Develop b, Design, Tool Usag & Culture ment & Su ment & Su Mgt. & Fin	
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	gn 8	PSO - 1 PSO - 2 PSO - 3
CLO-1: Identify the basic laws of electromagnetics and coordinate systems	2 80 75 M M M M	M M -
CLO-2: Solve the Electric field parameters for simple configuration under static condition	3 80 75 H H M L M M	М М -
CLO-3: Examine the Magnetic field for simple configuration under static condition	3 80 75 H H M L M M	M M -
CLO-4: Extend the basics of electromagnetic theory on time varying electric and magnetic field	3 80 75 H H M L M M M	M M -
CLO-5: Analyze propagation of electromagnetic waves	3 80 75 H H M L M M	M M -
CLO-6: Apply electromagnetic concepts to solve real time problems	3 75 75 H H M L M M M	M M -

Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Vector analysis for three-dimensional Euclidean space	Current density, Ohms Law in point form	Fundamentals of Magnetostatics (B, H)	Faraday's law of Electromagnetic induction	Wave parameters- velocity, intrinsic impedance- propagation constants
	SLO-2	Stokes and Divergence theorem	Continuity of current equation	Magnetic field due to straight conductor	Motional and transformer EMF	Uniform plane waves
S-2	SLO-1	Three orthogonal coordinate systems –Cartesian system	Boundary conditions of perfect dielectric materials	B and H for a circular loop	Displacement current and conduction current	Electromagnetic Wave equation for free space,
3-2	SLO-2	Cylindrical and spherical coordinate system	Boundary condition between conductor and dielectric, conductor and free space.	Magnetic field due to infinite sheet of current.	Point form of Maxwell's equation, Integral form of Maxwell's equations	Equation for lossy dielectric medium
S-3	SLO-1	Conversion from one coordinate to another coordinate system	Permittivity of dielectric materials	Magnetic materials, permeability	Phasor representation of time harmonic field	Wave equation for lossless dielectrics and conductors
3-3	SLO-2	Solutions of Coulomb's law	Dielectric strength and dielectric polarization	Magnetic dipole	Energy in quasi-stationary Electromagnetic Fields	Skin effect and skin depth calculations
S-4	SLO-1 SLO-2	Tutorial: Quantitative analysis of coordinate system	Tutorial: Quantitative analysis of boundary condition problem	Tutorial: Quantitative analysis of B and H calculations	Tutorial: Quantitative analysis of Maxwell's Equation	Tutorial: Quantitative analysis of Electromagnetic Wave Equation
S-5	SLO-1	Fundamentals of electrostatics	Capacitance of a two-wire line.	Magnetization and Magnetic susceptibility	Magnetic Potential	Standing wave
3-3	SLO-2	Electric field intensity (E) andflux density (D) due to point, line and surface charge		Magnetic field in multiple media – Boundary conditions	Potential for time varying fields	Plane wave reflection and refraction
S-6	SLO-1	D and E for volume charge distribution	Applications of Laplace and Poisson's	Magnetic potential – Scalar and Vector potential. Magnetic diffusion	MagNet software	The incidence of plane wave at the boundary between two regions
3-0	SLO-2	Electric field due to dipole	Uniqueness theorem	Magnetic force and stress tensor	MagNet software for 3D electromagnetic field simulations	Fresenel's coefficient
S-7	SLO-1	Applications of Gauss law's	Duality theorem	Inductance calculation for a solenoid and toroid	Case study on real time applications of Maxwell's equations	Goos-Hanchen's effect

	SLO-2	Electric Potential and its calculation for different configurations	Method of images	Inductance of a coaxial cable	Problems on time varying field	Snell's law
S-8	SLO-1 SLO-2	Tutorial: Quantitative analysis forD, E and potential calculation	Tutorial: Quantitative analysis of capacitance calculations and Laplace	Tutorial: Quantitative analysis of magnetic boundary conditions	Tutorial: Quantitative analysis of Poynting vectors and magnetic potential	Tutorial: Quantitative analysis of Electromagnetic boundary conditions
	SLO-2	Force on a moving charge and differential current element	equations Sketches of fields and field plotting.	Industance derivation for two wire	Case study of Parallel Particle Tracing for Steady-State and Time-Varying Flow	Reflection coefficient
S-9	SLO-2	Magnetic field and induced emf in rotation		Transmission coefficient		
S-10	SLO-1	Mutipole concept	FDM to a solution of region and boundary conditions	Energy density in magnetic field	Electromagnetic Wave Equations	Quantitative analysis of wave parameters
0-10		Multipole of electrostatic expansion	Quantitative analysis of FDM	The finite element analysis- an introduction	Solutions of Helmholtz's equation	Brewster angle
S-11	SLO-1	Quadrupole and octupole		Finite element method (FEM) for magnetostatic field	Prototype using the concept of EM theory	Critical angle
3- 11	SLO-2	Example for multipole expansion		Case study on super conducting disk in an external magnetic field.	Minor Project presentation	Case study on fault calculations using EM wave equations
S-12	SLO-1 SLO-2	Tutorial: quantitative analysis of force, current and torque	Tutorial: Quantitative analysis of Electrostatic field calculations	Tutorial: quantitative analysis of magnetostatic field	Tutorial: quantitative analysis of electromagnetic field	Tutorial: Quantitative analysis of EM wave coefficients

Learning Ass	sessment												
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination (50% weightage)			
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4 (10%)#		Final Examination (50 % weightage)			
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	40 %	_	30 %	_	30 %	_	30 %	_	30%	_		
Level 1	Understand	70 /0	_	30 70	_	30 70	_	30 70	_	3070	_		
Level 2	Apply	40 %	_	40 %	_	40 %	_	40 %	_	40%	_		
Level 2	Analyze	70 /0	_	40 /0	_	40 70	_	70 /0	_	7070	_		
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%			
revel 2	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total 100 % 100 %		10	0 %	100) %	100 %						

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Paramasivam, Danfoss, Industries Pvt Ltd, paramsathya@yahoo.com	1. Dr. K. S. Swarup, IIT Madras, ksswarup@iitm.ac.in	1. Mrs. R. Rajarajeswari, SRMIST
2. Mr.J. Sasikumar, Philips India Limited, Chennai	2. Dr. A. Venkadesan, NIT, Pondicherry, venkadesan@nitpy.ac.in	2. Mrs. D. Anitha, SRMIST

Course	195502021	Course	DIGITAL SYSTEM DESIGN	Course		Professional Core	L	Т	Р	С
Code	18EEC203J	Name	DIGITAL STOTEM DESIGN	Category	C	r Tolessional Cole	3	0	2	4

Pre-requisite Courses	18EES101J	Co-requisite Courses		Progressive Courses
Course Offering	Department	Electrical and Electronics Engineering	Data Book / Codes/Standards	Nil

Course Learning Rationale (CLR): The purpose of learning this course is to:			ng	Program Learning Outcomes (PLO)													
CLR-1: Utilize digital systems				1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Utilize combinational logic circuits										,							
CLR-3: Design and implement sequential logic circuits] _		_				뒫			billty							
CLR-4: Implement different logic functions using transistor and MOSFET	(Bloom)	(%) /	t (%)	dge		t e	sear			aina		Work		8			
CLR-5: Analyze the types of PLD's and VHDL programming	<u> </u>	Proficiency	Attainment	× ec		bme	Design, Re	Usage		& Sustainability		>		Finance	ning		
CLR-6: Analyze and design digital logic circuits	king	Jicie	aj.	Ϋ́	lysis	Development			ulture			Team	e G	ĭ⊑ ⊗	E.		
	Thinking		A#	ing	Analysis	& De	De	00	& Cu	nent		∞	icati) Le		
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design 8	Analysis,	Modern -	Society &	Environme	Ethics	Individual &	Communication	Project Mgt.	Life Long	PS0 - 1	PSO - 2 PSO - 3
CLO-1: Simplify Boolean expression	2	75	75	Н	М	М	М	-	-	-	-	М	М	-	-	L	М -
CLO-2: Solve problems in combinational logic circuits	3	75	75	Н	М	М	М	-	-	-	-	М	М	-	-	L	М -
CLO-3: Construct sequential circuits for given requirement and verify them in laboratory				Н	М	М	М	-			-	М	М	-	-	L	М -
CLO-4: Analyze IC characteristics operation of logic gates and their families				Н	М	L	L	-	-	-		М	М	-	-	L	М -
CLO-5: Implement digital circuit using PLA, PAL, PROM. Write programs using VHDL				Н	L	L	L	L	-	-	-	М	М	-	-	М	М -
CLO-6: Apply the concepts of digital systems and experimentally validate them	3	75	75	Н	М	М	М	L			-	М	М	-	-	L	М -

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Minterms, Canonical SOP form	Binary multiplier	Introduction to latches/Flip flop	Introduction to asynchronous sequential circuit	Memory organization and operation
SLO-		O-2 Simplification of switching function using K maps-SOP method Steps involved in design of asynchronous sequential circuit		Classification of memories ROM, PROM, EPROM, RAM		
S-2	SLO-1	Simplification of Incompletely specified function using K maps- SOP method	Arithmetic logic unit (ALU)	Flip flops: D flip flop	Merger graph	Content addressable memory, Charge decoupled device memory
3-2		Simplification of switching function with Don't care using K maps-SOP method	Elementary ALU design	Flip flops: JK & T flip flops	Problems in design of asynchronous sequential circuit	Commonly used memory chips
	SLO-1	Maxterms, Canonical POS form	Multiplexer	Realization of D, JK, T flip flops using SR flip flops	Cycles	Programmable Logic Array(PLA)
S-3	SLO-2	Simplification of switching function using K maps-POS method	Implementation of Boolean expression using multiplexer	Realization of D flip flop using T flip flop, Realization of T flip flop using D flip flop, Realization of JK flip flops using D flip flop	Critical and non-critical Races, Hazards	Implementation of Boolean function using PLA
\$ 4-5	SLO-1 SLO-2	Lab 1: Simplification of switching function using K maps and implementation using logic gates	Lab 4: Realization of MUX, Realization of Boolean expression using MUX	Lab 7: Realization of one flip flop using another flip flop	Lab 10: Design and implementation of Hazard free circuit	Lab 13: Realize Boolean algebra using PLA
S-6	SLO-1	Quine-McCluskey method for 4 variable problem	Demultiplexer	Design of synchronous sequential circuits- Moore Model using D flip flop	Problems in design of asynchronous sequential circuit including races	Programmable Array Logic (PAL)
3-0	SLO-2	Quine-McCluskey method for4 variable problem with Don't care	Implementation of Boolean expression using demultiplexer	Design of synchronous sequential circuits- Moore Model using JK flip flop	Analysis of asynchronous sequential circuits	Implementation of Boolean function using PAL
S-7	SLO-1	Quine-McCluskey method for5 variable problem	Decoders,	Design of synchronous sequential circuits- Moore Model using T flip flop	Analysis of asynchronous sequential machines with latches	Complex programmable logic device (CPLD), FPGA
3-1	SLO-2	Quine-McCluskey method for5 variable problem with Don't care	BCD to 7 segment decoders, drivers for display devices	Design of synchronous sequential circuits- Mealy Model using D flip flop	Asynchronous up Counters, Asynchronous down Counters design	Introduction to VHDL programming

S-8	SLO-1	Adder: Half adder, Full adder	Encoder	Design of synchronous sequential circuits- Mealy Model using JK flip flop	Design of asynchronous up/down counter	VHDL design flow
3-0	SLO-2	Subtractor: Half subtractor, Full subtractor	Priority encoder Design of synchronous sequential circuits- Mealy Model using T flip flop Design		Design of asynchronous MOD-n Counter	VHDL types and operators
S 9-10	SLO-1	Lab 2: Realization of combinational circuits: Half adder, Full adder, Half	Lab 5: Design of BCD to 7 segment decoders	Lab 8: Design and implementation of synchronous sequential circuits	Lab 11: Design of asynchronous Counters	Lab 14: Verification of gates using FPGA
	SLO-2 SLO-1	subtractor, Full subtractor Parallel binary adder and parallel binary subtractor	Parity generator	Analysis of synchronous sequential circuits	Digital logic families: Characteristics of Digital logic families	Structural and Behavioral Modelling
S-11	SLO-2	Parallel adder/subtractor	Parity checker	Analysis of synchronous sequential circuits	TTL Logic, Schottky TTL Logic, CMOS	Data flow Modelling
S-12	SLO-1	Carry look ahead adder	Code Converter: Binary to Grey	Synchronous counters: up, down, up-down counters	ECL logic	Packages, subroutines
0-12	SLO-2	BCD adder	Code Converter: Grey to Binary	MOD-n, Random counters	Interfacing CMOS with TTL	Test bench
S-13	SLO-1	Magnitude Comparator for 1,2-bit Comparator	Code Converter: BCD to Excess 3	Shift registers, Serial to parallel converter, Parallel to serial converter, Universal shift register	Tristate logic	Simple VHDL program: Combinational logic circuits
	SLO-2	Magnitude Comparator for 4-bit Comparator	Code Converter: Excess 3 to BCD		Comparison between various logic circuits	Simple VHDL program: counters
S 14-15	SLO-1 SLO-2	Lab 3: Realization of BCD adder and 2-bit Magnitude Comparator	Lab 6: Realization of Code Converters		Lab 12: Mini Project Presentation: Realization of digital control circuits	Lab 15: Verification of Combinational logic circuits using FPGA

Learning	
Resources	

- 1. M. Morris Mano, Michael D. Ciletti, Digital Design: With an Introduction to Verilog HDL, VHDL and System Verilog, 6th ed., Pearson, 2018
 2. Thomas L.Floyd, Digital Fundamentals, 11th ed., Pearson India, 2014

- Charles H. Roth, Lizy K. John, Digital System Design Using VHDL, 2nd ed., Cengage learning, 2012
 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science

Learning Assess	sment										
	Bloom's			Contir	nuous Learning Asse	essment (100% wei	ghtage)			Final Ev	amination
	Level of Thinking	CLA –	1 (20%)	CLA -	2 (30%)	CLA –	3 (30%)	CLA – 4	1 (20%)#	FIIIdi EX	ammanom
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level I	Understand	20%	20%	10%	10%	15%	10%	10%	10%	10%	13%
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 3	Create	1070	1076	1370	1370	1570	1370	1370	1370	1370	1370
	Total	10	100 % 100 %		0 %	10	0 %	10	0 %	100 %	

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Roosefart Mohan, Nelcast Limited, Chennai, roosefart@gmail.com	1. Dr. D. Devaraj, Kalasalingam Academy of Research and Education, deva230@yahoo.com	1. Dr. C. S. Boopathi, SRMIST
2. Mr. Muralikrishna, National Instruments, emkkrishnan@gmail.com	2. Dr. B. ChittiBabu, IIITD, Kanchipuram, chittibabu@gmail.com	2. Ms. D. Anitha, SRMIST

Course	18EEC204J	Course	ELECTRICAL MACHINES I	AICAL MACHINES I		Professional Core	L	Т	Р	С
Code	100002040	Name	ELECTRICAL WACHINES I	Category	C	Fiolessional Cole	3	0	2	4

Pre-requisite Courses	18EES101J	Co-requisite Courses		Progressive Courses
Course Offering I	Department	Electrical and Electronics Engineering	Data Book / Codes/Standards	Nil

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng					Progi	ram L	_earni	ing O	utcor	nes (PLO)			
CLR-1: Analyze the characteristics of different types of DC generators	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2: Identify the working, starting and speed control of DC motors										,							
CLR-3: Analyze transformers and derive its equivalent circuit	(ر	_	_				ıch			Sustainability							
CLR-4: Test DC machines and transformers as per standard practice	000	8	t(%)	dge		ent	ses			aina		Work		9			
CLR-5: Model DC machines	(B)	Proficiency (%)	Attainment	Knowledge	m	bud	, Re	Usage	m	nste		٧		Finance	ning		
CLR-6: Analyze the performance of the DC machine and transformer	king	JĘĆ.	ainr	Kno	lysi	velo	Design,	ns	Culture	∞		Team	on	ĭ⊑ ≪	arni		
	Thinking (Bloom)	Ę.	d Att	ring	Analysis	& Development	, De	T00	& Cu	nent			icat	/lgt	J Le		
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering	Problem	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long	PS0 - 1	PSO - 2 PSO - 3
CLO-1: Analyze the principle and fundamentals of DC generator	2	75	75	Н	L			-	-	-	-	Μ	М	-		М	М -
CLO-2: Analyze the principle and fundamentals of DC motor	2	75	75	Н	L	-	-	-	-	-	-	Μ	М	-	-	М	М -
CLO-3: Identify the different types of transformers and analyze its performance using equivalent circuit	2	75	75	Н	М	-		-	-	-	-	Μ	М	-	-	М	М -
CLO-4: Investigate and interpret the performance of DC machines and transformers performing suitable tests	3	75	75	Н	Μ	-	-	-	-	-	Μ	Μ	Μ	-	-	М	M M
CLO-5: Analyze DC machines by mathematical modeling	3	75	75	Н	М	Ĺ	L	L	1	-	-	Μ	М	-	-	М	М -
CLO-6: Evaluate characteristics of transformers, DC Machines and evaluate their performance by applying various testing methods	3	75	75	Н	М	L	L	L		-	L	М	М	-	-	М	M L

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Energy in magnetic system	Torque equation of DC motor	Transformers: Types and Construction	Testing of DC machines: Brake test	Modeling of dc machines: Basic two pole DC machine
3-1	SLO-2	Field energy and mechanical force	Emf equation of DC motor	Principle of operation, emf equation	Swinburne's test	Analysis of DC machine using Primitive two axis machine equation
S-2	SLO-1	Single excited systems	Voltage equation of various types of DC motor	Ideal transformer and Practical transformer on no load	Problems in Swinburne's test	Modelling of voltage equation
3-2	SLO-2	Multiple excited systems	Current equation of various types of DC motor	Practical transformer on load	Retardation test	Modelling of torque equation
S-3	SLO-1	Torque and Force equations	Speed equation and regulation of DC motor	Equivalent circuit of transformer	Hopkinson's test	Mathematical model of separately excited DC machine
3-3	SLO-2	Energy conversion via electric fields	Power flow in DC motor, Losses & efficiency	Transformer regulation, losses, efficiency	Problems in Hopkinson's test	Problems in mathematical model of separately excited DC machine
S 4-5	SLO-1 SLO-2	Lab 1: Demo on Single & Multiple excited systems	Lab 4: Load test on DC motors	Lab 7: Load test on single-phase transformer	Lab 10: Swinburne's test and Hopkinson's test on DC machine	Lab 13: Study of impulse test in transformer
S-6	SLO-1	Dynamic equation of electromechanical systems	Review of mechanical starter- 3-point starter	Phasor diagram of transformer	Open circuit test on single phase transformer	Mathematical model of shunt connected DC machine
3-0	SLO-2	DC generator- lap and wave winding, Major considerations in design of windings	4-point starter, 2-point starter	EMF in power transformers	Short circuit test on single phase transformer	Problems in mathematical model of shunt connected DC machine
S-7	SLO-1	DC generator-EMF equation-circuit model	Electronic soft starters for DC motor with energy saving	All day efficiency, Per unit representation of transformer	Sumpner's test	Mathematical model of series connected DC machine
3-1	SLO-2	Methods of excitation	Speed control: Field control, Armature control		Equivalent circuit, efficiency and regulation from OC & SC test	Problems in mathematical model of series connected DC machine
S-8	SLO-1	Losses in DC generator	Speed control: voltage control	Phasing of transformer	Equivalent circuit, efficiency and regulation from Sumpner's test	Mathematical model of compound connected DC machine

	SLO-2	Power flow in DC generator, efficiency		Parallel operation of single phase and three phase transformers	Problems in OC & SC test	Problems in Mathematical model of compound connected DC machine
s	SLO-1	Lab 2: Open circuit and load	Lab 5: Speed Control of DC Motor: Field	Lab 8: Load test on three phase	Lab 11: Open circuit and short circuit test	Lab 14: Study of zero sequence
9-10	SLO-2		,	transformer	, , , , , , , , , , , , , , , , , , , ,	impedance and noise level test in
	OLO-2	generator			transformer	transformer
S-11	SLO-1	Effect of armature flux on field flux in DC generator	Speed control: Thyristor control	Auto transformer	Routine test on transformer	Time domain model of shunt connected DC machine
3-11	SLO-2	Use of compensating windings, Ampere- Turns calculations	Speed control: Converters control		Dielectric and parametric test on transformer	State equations of shunt connected DC machine
S-12	SLO-1	Commutation in DC generator, construction of commutator,	Speed control: choppers control	Variable frequency transformer, audio frequency transformer	Type test on transformer	Problems in state equations of shunt connected DC machine
3-12	SLO-2	Methods to improve commutation	Braking of DC motors	Phase shifting transformer, dry type	Temperature rise and impulse test on	Time domain model of permanent magnet
			ŭ	transformer		DC machine
	SLO-1	Voltage and current equation, Residual	Permanent magnet DC motor		, ,	State equations of permanent magnet DC
S-13	020 .	voltage, Critical Resistance	r emanent magnet 20 meter	transformer	on transformer	machine
J-13	SLO-2	Problems in DC generator	Problems in speed control	Welding transformer, rectifier transformer	Zero sequence impedance and noise level	Problemsin state equations of permanent
	0L0-2	in Do generator	i robiems in speed control	reduing transformer, rectiller transformer	test on transformer	magnet DC machine
S	SLO-1	Lab 3: Open circuit and load characteristics	Lab 6: Speed Control of DC Motor:	Lab 9: Parallel operation of single phase	Lab 12: IEC/IEEE standard practice on	Lab 15: Simulation of separately and self-
14-15				and three phase transformers	transformer testing	excited DC machine

Learning	1.	D. P. Kothari, I. J. Nagrath, Electrical Machines, 5thed., Tata-McGraw Hill, 2017
Resources	2.	A. E. Fitzgerald, C. Kingsley, Electric Machinery, 6th ed., McGraw Hill Education, 2013

- Paul C. Krause, Oleg Wasynezuk, Scott D. Sudhoff, Analysis of electric machinery and Drive systems 3rd ed., IEEE Series, John Wiley & Sons, 2013
- 4. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science

Learning Assess	sment										
	Bloom's			Contir	nuous Learning Asse	essment (100% weigh	ghtage)			Final Ev	amination
	Level of Thinking	CLA –	1 (20%)			CLA –	3 (30%)	CLA – 4	(20%)#	FIIIdi EX	ammanom
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level I	Understand	20%	20%	10%	10%	15%	10%	13%	10%	10%	10%
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 2	Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 3	Create	10%	10%	13%	1370	13%	13%	13%	13%	13%	13%
	Total	10	100 %		0 %	10	0 %	100	0 %	100 %	

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Paramasivam, Danfoss Industries Pvt Ltd, paramsathya@yahoo.com	1. Dr. D. Devaraj, Kalasalingam Academy of Research and Education, deva230@yahoo.com	1. Dr. C. S. Boopathi, SRMIST
2.Mr. Muralikrishna, National Instruments, emkkrishnan@gmail.com	2. Dr. B. ChittiBabu, IIITD, Kanchipuram, chittibabu@gmail.com	2. Dr. K. Vijayakumar, SRMIST

Course	18EEC205J Course	ELECTRICAL MACHINES II	Course	Professional Core	L	T	Р	С	
Code	Name	ELECTRICAL MACHINES II	Category	Fiblessional Cole	3	0	2	4	

Pre-requisite Courses	18EES101J	Co-requisite Courses		Progressive Courses
Course Offering I	Department	Electrical and Electronics Engineering	Data Book / Codes/Standards	Nil

Course Learning Rationale (CLR): The purpose of learning this course is to:	Learning Program Learning Outcom							utcor	nes (l	PLO)								
CLR-1: Identify the need of rotating magnetic field in three phase induction motor and draw its equivalent circuit	1	2	3		2	3	4	5	6	7	8	9	10	11	12	13 1	14 1	5
CLR-2: Evaluate performance of three phase induction motor using circle diagram, identify its starting, speed control methods										,								
LR-3: Develop an equivalent circuit of single phase induction motor and explain the operation of single phase AC machines							된			bilit								
CLR-4: Construct an equivalent circuit and phasor diagram of an alternator and obtain its voltage regulation			t (%)	1 2	20	Ę	Research			aina		Work		8				
CLR-5: Analyze the working and characteristics of salient pole alternator and synchronous motor				-	Niowiedya Iveis	Development	, Re	ge	•	Sustainability				Finance	Б			
CLR-6: Utilize the construction, operation and performance of AC machines					Z Z	응	Design,	Usage	ulture	∞		Team	o.	ĭ⊑ ≪	Ţ.			
	l iel	l Proficiency	d Attainment		Analysis		Ğ	T00	& Cu	ent		8	icati	Mgt.	Fe			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of ⁷	Expected	Expected		Problem Aps		Analysis,	Modern 7	Society 8	Environment	Ethics	Individual &	Communication	Project M	Life Long	1	PSO - 2	
CLO-1: Analyze the working of three phase induction motor, its torque slip characteristics and hence obtain its equivalent circuit	2	75	75	I	1 F	l M	-	-	ı	-	-	Μ	М	-	-	L	М	
CLO-2: Identify the starting and speed control methods of three phase induction motor and evaluate its performance	3	75	75	1	1 F	l M	-	-	-	-	-	Μ	Μ	-	-	M	М	
CLO-3: Analyze the different single phase AC machines and model a single-phase induction motor			75	I	1 N	1 L	-	-	-	-	-	М	М	-	-	L	М	
CLO-4: Model alternators and compute its voltage regulation		75	75	1	1 F	И	-	-	-	-	-	Μ	М	-	-	L	М	
CLO-5: Identify the operation and control of salient pole alternator and synchronous motor	2	75	75	I	1 L	L	-	-	-	-	-	М	М	-	-	М	М	
CLO-6: Analyze the performance of an AC machine by modeling and by carrying out laboratory experiments	3	75	75	1	1 N	1 M	-	-	-	-	-	М	М	-	-	L	М	

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Review of poly phase distributed AC winding, Production of EMF	Construction of circle diagram for 3-phase induction motor	Constant magnetic field, Pulsating magnetic field	Alternators- Constructional features and types, Short pitch and full-pitch coils	Salient pole synchronous machine
3-1	SLO-2	Flux and mmf waves in induction motor	Performance calculation from circle diagram	Alternating current in winding with spatial displacement	Concentrated and distributed winding, Coil span factor, Winding distribution factor	Blondel's two reaction theory
S-2	SLO-1	Constructional details of three-phase induction motor	Problems in circle diagram	Magnetic field produced by single winding- fixed current and alternating current	Air gap MMF distribution with fixed current	Phasor diagram using Xd, Xq
3-2	SLO-2	Principle of operation of three-phase induction motor	Determination of maximum quantities from circle diagram	Pulsating fields produced by spatially displaced windings	Air gap MMF distribution with sinusoidal current	Slip test, Voltage regulation using slip test
S-3	SLO-1	Slip, Effect of slip on rotor parameters	Need for speed control	Windings spatially shifted by 90 degrees	EMF equation of alternator	Power output of Salient pole synchronous machine
3-3	SLO-2	Torque equation, Starting torque equation, Maximum torque	Speed control of three-phase induction motor: Stator side	Addition of pulsating magnetic fields	Armature reaction, Alternator on load, phasor diagram	Problems in voltage regulation
S		Lab 1: Load test on 3 phase induction	Lab 4: Speed control of three-phase induction motor: stator side	Lab 7: Demo of spatially displaced	Lab 10: Load test on 3 phase alternators	Lab 13: Determination of Xd and Xq of
4-5	SLO-2	motor	induction motor. stator side	windings	·	salient pole machine
S-6	SLO-1	Torque-slip characteristics, Generation and breaking region in Torque-slip characteristics	Speed control of three-phase induction motor: rotor side	Constructional detail of single phase induction motor	Equivalent circuit and phasor diagram	Synchronous motor: Principle of operation, Methods of starting
3-0	SLO-2	Starting characteristics of 3 phase induction motor, Effect of Rotor resistance on Torque-slip characteristics	Speed control by solid state devices	Double revolving field theory	Synchronous Impedance, voltage regulation	Torque and power equations
S-7	SLO-1	Power Stages	Necessity of Starters	Torque equation	Pre-determination of voltage regulation using EMF method	Synchronous motor on load, Synchronous motor on constant excitation variable load
3-1	SLO-2	Relation between rotor input, rotor copper losses and rotor output	Types of starters	Torque- speed characteristics	Problems in EMF method	Synchronous motor on constant load variable excitation, 'V', inverted 'V' curves

S-8	SLO-1	Problems in power stages	Induction generator, Self-excited Induction generator		Pre-determination of voltage regulation using MMF method	Synchronous condenser, Hunting and its suppression
3-0	SLO-2	No load and blocked rotor tests	Doubly-Fed Induction generator	Equivalent circuit	Problems in MMF method	Short circuit transient in synchronous machine
S 9-10	SLO-1 SLO-2	Lab 2: No load and blocked rotor test on 3- phase squirrel cage induction motor		Lab 8: No load and blocked rotor test on 1- phase induction: To draw equivalent circuit		Lab 14: Determination of 'V' and inverted 'V' curves in synchronous motor
S-11	SLO-1	Steady state analysis-Equivalent circuit	Harmonics in induction motor		Pre-determination of voltage regulation using ZPF method	Capability curves in synchronous machine
3-11	SLO-2	Motor efficiency, rotor efficiency	Crawling, Cogging	Shaded pole induction motor	Problems in ZPF method	Positive, Negative and Zero sequence reactance of synchronous machines
S-12	SLO-1	Equivalent circuit from No load and blocked rotor tests	Electric Braking: Regenerative braking, Plugging Braking	Linear Induction motor, Universal motor	Pre-determination of voltage regulation using ASA method	Synchronous induction motor
0-12	SLO-2	Problems in no load and blocked rotor test	Electric Braking: AC, DC dynamic braking	Reluctance motor	Problems in ASA method	Brushless DC motor
0.40	SLO-1	Double cage rotor	Slip power recovery scheme	AC series motor, Repulsion motor	Parallel operation of alternators, Load sharing	Permanent Magnet Synchronous Motor
S-13	SLO-2	Equivalent circuit of double cage rotor, Performance calculation	Difference in starting and blocked rotor characteristics	Stepper motor	Voltage and frequency control, Synchronization to infinite bus-bar	Tacho generator
S 14.15	SLO-1		Lab 6: Characteristics of 3 phase Induction	Lab 9: Load test on single phase induction	Lab 12: Voltage regulation of alternators by ZPF method, Synchronization and parallel	Lab 15: Determination of Positive, Negative and Zero sequence reactance of
14-15	SLO-2	phase slip ring induction motor	generator	motor	operation of alternators	synchronous machines

Learning
Resources

- H.Wayne Beaty&Jame. L.Kirtley.Jr, Electric Motor Handbook, McGraw-Hill, USA, 1st Edition, 1998
 M.G.Say, The Performance and Design of Alternating Current machines, Tata-McGraw Hill, 1st Edition, 2004
- J. B. Gupta, Theory & Performance of Electrical Machines, 15th ed., S. K. Kataria & Sons, 2015 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-685-electric-machines-
- fall-2013/index.htm

Learning Assess	sment										
	Bloom's			Contin	nuous Learning Asse	essment (100% weig	ghtage)			Final Ev	amination
	Level of Thinking	CLA -	1 (20%)	CLA –	2 (30%)	CLA –	3 (30%)	CLA – 4	1 (20%)#	FIIIai Ex	ammation
	Level of Trilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level I	Understand	2070	2070	1370	1370	1370	1370	1370	1370	1070	1370
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 3	Create	111		1370	1370					1370	1370
	Total	10	0 %	100	0 %	100 %		10	0 %	10	0 %

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. S. Paramasivam, Danfoss Industries Pvt Ltd, paramsathya@yahoo.com	1. Dr. D. Devaraj, Kalasalingam Academy of Research and Education, deva230@yahoo.com	1. Dr. C. S. Boopathi, SRMIST
2. Mr. Muralikrishna, National Instruments, emkkrishnan@gmail.com	2. Dr. R. Ramesh, CEG, rramesh@annauniv.edu	2. Dr. K. Vijayakumar, SRMIST

Cour		18EEC206J Course Name	ANALOG ELECTRONICS			urse egory	,	С				Pro	fessio	nal Co	ore					L 3	T 0	P 2	C 4
Co	equisite urses	18EES101J	Co-requisite Courses			C	gress ourse																
Course	Offering	Department Electrical and Electro	nics Engineering Data Book	/ Codes/Standards		Nil																	
Course	Loornin	g Rationale (CLR): The purpose of learning	ng this source is to:			1.	earni	na					Drog	ram L	oorni	۰	utoo	maa /	DI O	١			
		the basic amplifier circuits.	ig this course is to.			1	2	3	1	2	3	4	5 5	6	7	1 y 0	9	•		12	13	11	15
CLR-2		ire knowledge on different power amplifiers.				-		3	1		3	4	J	U		0	3	10	- 11	12	13	14	13
CLR-3	Const	truct different waveform generating circuits.				Ê	(9)	(9)				arch			ability		~						
CLR-4 CLR-5	Discu	ss the basics of operational amplifiers. rstand different analog to digital and digital to	analog convertors			Blool	()	ent (%	ledge		ment	Rese	Ф		stain		Worl		ance				
CLR-6	Desig	in amplifier circuits using transistor and opera	ational amplifiers.			king (ficier	ainme	Know	ysis	relopi	ign, F	Usag	ture	& Su		eam	on	& Finance	Learning			
		· ·				Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Aodern Tool Usage	Society & Culture	Environment & Sustainability		ndividual & Team Work	Communication	Λgt. 8	g Lea			
Course	Learnin	g Outcomes (CLO): At the end of this cou	rse learners will be able to:			'el of	ecte	ecte	ginee	plem	sign 8	alysis	dern	siety	ironr	Ethics	ividua	ınmu	Project Mgt.	Life Long	PS0 - 1	PSO - 2	PSO - 3
		ze the amplifier circuits using small signal me				<u>6</u>	75	<u>3</u>	H	H P	H	H	- Mo	Soc -	Ш́ L	· Eth	<u>Pu</u> M	Co	ı Pro	- Life	M M	H ES	- PS
		ze the ampliller circuits using small signal mi gnize the different power amplifiers	очет апа пурна тючет			2	75	75	H	Н	Н	Н	-	-		-	М	M	-	-	M	H	-
CLO-3	Desig	n oscillators and multivibrators.				3	75	75	Н	Н	Н	М	-	-	-	-	М	М		-	М	М	-
		different operational amplifiers.				2	75	75	Н	М	М		-	-	-		М	М	-	-	М	М	-
		ate filters and converter circuits onstrate electronic modern tools in various ele	ectronic fields			3	75 75	75 75	H	H	H	M M	H M	-	- L	-	M M	M M	-	-	M M	M	-
020-0	Dome	matate dicetonic modern tools in various co	controlle holds.				70	70	,,,	11	11	IVI	IVI		_		IVI	IVI			IVI	IVI	
Duratio	n (hour)	15	15	15							15	i							1	15			
S-1	SLO-1	BJT -Biasing methods -Base bias, base bias with emitter feedback	Power amplifiers: Types. Determine efficiency for class A, B power amplifier	Oscillators and classific	ation	of os	cillato		ntroductio echnolog		inear I	ntegra	ated		F	ilter	s bas	ics an	d typ	es			
3-1	SLO-2	Base bias with collector feedback and voltage divider bias	Frequency response of RC coupled class A amplifier	Design and Analysis of oscillator	RC F	Phase	shift		Fabrication process for Integrated Circuits														
S-2 -	SLO-1	Emitter bias using BJT in CE configuration	Frequency response of Transformer coupled class A amplifier.	Operation of Hartley's o	scilla	ntor			oc charact urrent.	eristic	s of o	o amp	and	input l	bias Design of I Order HPF								
0-2	SLO-2	Transistor biasing stability using BJT in CE configuration	Operation of Class B push pull power amplifier	Analysis of Hartley's os	cillato	or			nput offse		•				L	Desig	n of I	I Orde	er HF	PF			
S-3	SLO-1	Operation of BJT as an amplifier	Operation of Differential amplifier	Operation of Armstrong	osci	llator			C charac nd Frequ							·		BPF a					
	SLO-2	CE, CB, CC Amplifier –Evaluation of h- parameters	Analysis of Differential amplifier	Operation of UJT Relax	ation	oscil	ator		lew rate						f	Iters				ers an			
S 4-5	SLO-1 SLO-2	Lab 1: Determination of hybrid parameters of a CE amplifier.	Lab 4: Determination of gain of an amplifier.	Lab 7: RC Phase shift oscillator				C	ab 10: aı)p-amp						1	ass	Filte	rs.		w pas			
S-6 -	SLO-1	Small signal analysis of CE Amplifier	Self–biased active load differential amplifier	Operation of Cross Coupled oscillator				nverting a mplifier	nplifie	er and	Non-i	inverti	ng		Oscill '41.	lators	- Weii	n brid	lge Os	cillato	or usii	ng IC	
3-0	SLO-2	Small signal analysis of CB and CC amplifier	Source degenerated common source amplifier	Integrators				ummer a			or.			(Scill	lator			d Qua				
S-7	SLO-1	Large signal analysis of CE Amplifier	Classification of class C power amplifiers (Tuned amplifiers)	Differentiators					'oltage fol c amplifie		and				á	тр (circuit	s.	'	MOS			
3-1	SLO-2	Large signal analysis of CB and CC amplifier.	Frequency response of Single, Double and Staggered Tuned Class C power amplifier	d r Schmitt trigger			V to I and I to V converters					Analog to Digital converters, classification. Counter and Sigma Delta type ADC.				tion.							
S-8	SLO-1	JFET –Common source (CS) amplifier - operation	Cascode and Cascade circuits	Multivibrator, Classification Operation of Astable Multivibrator				Ir	Instrumentation amplifier				Successive approximation type ADC										

	SLO-2	CS Amplifier – small signal analysis	Feedback amplifiers –Barkhausen criterion and Types of feedback amplifier	Analysis of Astable Multivibrator	Log and Antilog amplifiers	Digital to Analog converters and Pulse width modulator DAC
S 9-10	SLO-1 SLO-2	Lab 2: Analysis of JFET amplifier	Lab 5: Frequency response of RC coupled amplifier	Lab 8: AstableMultivibrator	Lab 11: Applications of op-amp	Lab 14: Wein bridge oscillator using IC 741.
S-11	SLO-1	JFET – Common Drain (CD) Amplifier – operation	Analysis of voltage series feedback amplifier	Operation of Monostable Multivibrator.	Comparators and classification of comparators	R -2R Ladder DAC
3-11	SLO-2	Small signal analysis of MOSFET	Analysis of voltage shunt feedback amplifier	Analysis of Monostable Multivibrator.	Applications of Comparators : Summer, Subtractor, Voltage follower	Binary coded DAC
	SLO-1	Biasing of MOSFET	Analysis of current series amplifier	Operation of Bistable Multivibrator.	Basics of IC 555 Timer and Pin Details	Case study: Minor project on any
S-12	SLO-2	CD Amplifier – small signal analysis	Analysis of current shunt feedback amplifier	Analysis of Bistable Multivibrator.	Astable operation using IC 555 Timer with applications	advanced application based circuit using IC 741 or IC 555 Timer or IC 723.
S-13	SLO-1	Problems on biasing of circuits.	Problems on power amplifiers.	Voltage and time-based circuits.	Monostable operation using IC 555 Timer with applications	Case study: Minor project on any advanced application based circuit using
0-10	SLO-2	Problems on hybrid parameters	Problems on feedback amplifiers	Series and shunt voltage regulator	Voltage regulator using IC 723	IC 741 or IC 555 Timer or IC 723.
S 14-15	SLO-1 SLO-2	Lab 3: Analysis of MOSFET amplifier	Lab 6: Frequency response of Class C Power amplifier	Lab 9: Transistor series voltage regulator	Lab 12: Voltage Regulator Using IC 723	Lab 15: R -2R Ladder DAC

Learning	
Resources	

- 1. Jacob Millman, Christos C.Halkias, SatyabrataJit, Millman's Electronic Devices and Circuits, 4th ed., Tata McGraw Hill, 2015
- Boylestead, Nashelsky, Electronic Devices and Circuit Theory, 11th ed., Pearson, 2015
 David A. Bell, Electronic Devices and Circuits, 5th ed., Prentice Hall, 2004

- Sergio Franco, Design with operational amplifiers and Analog Integrated circuits, 5th ed., McGraw-Hill, 2014 Roy Choudhary and Shail Jain, Linear Integrated Circuits, 4th ed., New Age International Publishers, 2014 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-
- spring-2007/syllabus/

Learning Asse	ssment											
	Bloom's			Contin	uous Learning Asse	essment (100% weigh	ghtage)			Final Examination		
	Level of Thinking	CLA -	CLA – 1 (20%)		2 (30%)	CLA –	3 (30%)	CLA – 4	1 (20%)#	FIIIdi EX	ammanom	
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Levei	Understand	2070	2070	1370	1370	1070	1070	1370	1370	1370	1370	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
L6 V 61 Z	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
LC ADI 2	Create	1070	1070	1370	1370	1070	10/0	1370	1370	1370	1370	
	Total	10	0 %	100 %		10	0 %	10	0 %	100 %		

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers	·										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts									
1. Dr. S. Paramasivam, Danfoss Industries Pvt Ltd, paramsathya@yahoo.com	1. Dr. P. Satheeshkumar, Anna University, silkart@gmail.com	1. Ms. R. C. Ilambirai, SRMIST									
2. Mr. B. Nliranjithkumar, BEL, Chennai., niranjithkumarb@bel.co.in	2. Dr. S. Kamalakannan, Anna University, kamalakannan1612@gmail.com	2. Dr. K. Mohanraj, SRMIST									

Course	18EEC207J	Course	ELECTRICAL AND ELECTRONICS MEASUREMENTS	Course	Professional Core	L	Т	Р	С
Code	10EEG2073	Name	AND INSTRUMENTATION	Category	Froiessional Core	3	0	2	4

Pre-requisite Courses		Co-requisite Courses		Progressive Courses
Course Offering I	Department	Electrical and Electronics Engineering	Data Book / Codes/Standards	Nil

Course Offering Department	Electrical and Electronics Engineering	Data Book / Codes/Standards	Nil																
Course Learning Rationale (CLR): CLR-1: Utilize the knowledge of va	ida	L	earni 2	ng 3	1	2	3	I	Progra	am Le	arning	Outco	mes ((PLO)	12	13	14 1	5	
			3	-		3	7	J	0	1 0	3	10		12	10	17 1	<u></u>		
CLR-2: Utilize the working of analog meters for power, energy and harmonic measurements CLR-3: Utilize different measuring and display devices CLR-4: Compare the measurement of non- electrical quantities. CLR-5: Analyze the functions of biomedical instruments and data acquisition system CLR-6: Utilize the knowledge about measurements, measuring instruments for practical applications						ng Knowledge	Analysis	Development	Design, Research	ool Usage	₽	ent & Sustainability	& Team Work	ication	Mgt. & Finance	Learning			
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:		Level of Thinking	Expected	Expected	Engineering	Problem	Design &	Analysis,	Modern T	Society &	Environment	Individual	Communication	Project M	Life Long		PSO - 2	5
CLO-1: Solve the problems in mea	suring instruments and bridges		3	75	75	Н	L	-	-	L	-		М	М	-	-	L	М -	-
CLO-2: Apply the different analog i	meters for power, energy and harmonic measuremen	ts.	2	75	75	Н	L	-	-	-	-		М	М	-	-	L	М .	-
CLO-3: Design the operation of different	ferent measuring and display devices		2	75	75	Н	L	-	-	-	-		М	М	-	-	L	L ·	
CLO-4: Identify the measurement of			2	75	75	Н	-	-	-	L	-		М	М	-	-	L	L ·	
CLO-5: Describe the working of biomedical instruments and data acquisition system					75	Н	-	-	-	-	-		М	М	-	-	L	М .	
CLO-6: Interpret the acquired know	2	75	75	Н	L	-	-	L	-		М	М	-	1	L	М -	-]		

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Functional elements of instrument	Special type of transformers -Current Transformer	Construction and working of synchro scope – Western type	Methods of pressure measurements- Dead-weight gauges and Manometers	Over view of biomedical measurements
3-1	SLO-2	Static characteristics of measurement	Potential Transformer- Measurement of voltage	Nalder-Lipman type	Pressure measuring system	Sources of bio electric potentials, Electrodes
S-2	SLO-1	Dynamic characteristics of measurement	Principle of operation, construction, Torque equation of induction type single phase energy meter	General principle and performance equations of Ballistic Galvanometer	Elastic transducer, Vibrating cylinder	Measurement of blood pressure-direct methods
	SLO-2	Errors in measurement	Three phase energy meter	D'Arsonval Galvanometer	Resonant transducer.	Working of X- ray Instrumentation
0.0	SLO-1	Kelvin's Double Bridge, measurement of Low value of Resistances	Creeping adjustments, testing of energy meters	General principle and working of Hall effect sensors	Measurement of Flow: Flow visualization from Pitot-static tube, Yaw tube.	Applications of X- ray Instrumentation
S-3	SLO-2	Wheat -stone Bridge, measurement of Medium value of Resistances.	Calibration of energy meter using direct loading.	Encoder-Laser based methods.	Positive displacement method, Obstruction methods.	Working and applications of Electrocardiograph (ECG)
S 4-5	SLO-1 SLO-2	Lab 1: Measurement of R, L and C using bridge circuit	Lab 4: Measurement of power and energy	Lab 7: Measurement of liquid flow rate	Lab 10: Measurement of water level using capacitive Transducer	Lab 13: Real time monitoring of ECG wave analysis using simulator
S-6	SLO-1	Maxwell's Inductance Bridge, Measuring Unknown value of Inductance	Digital energy meter	Graphical methods of measurement: Cathode ray oscilloscope	Drag effect methods, hot-wire anemometers.	Block diagram of data acquisition system
3-0	SLO-2	Anderson's Bridge, measurement of Un known value of Inductance.	Net metering	Digital storage oscilloscope	Measuring Devices: Vacuum and sound	Block diagram of Signal conditioning
S-7	SLO-1	Schering's Bridge measurement of Un known value of Capacitance.	Measurement of reactive power using wattmeter in single phase circuit.	Storage devices: Strip chart recorder	McLeod gauge, Knudsen gauge	Telemetry and working.
3-1	SLO-2	Principle of operation of Thermal type instruments	Measurement of reactive power using wattmeter in Poly phase circuits	X-Y recorder	Diaphragm and ionization gauges	Respiratory instrumentation – Mechanism of respiration, spirometry
S-8	SLO-1	Principle of operation, construction, working of single phase power factor meter	Measurement of Volt Ampere reactive power using VAR meter	Principle of operation and applications of Phase sequence indicator	Motion measurement-Fundamentals standards.	Working of different types of Pacemakers

						"
	SLO-2	Three phase power factor meter	Maximum demand indicator	Principle of operation and applications of Display devices: LED, LCD, Dot matrix display	Temperature measurement using Liquid in glass thermometers	Applications of Pacemakers
S	SLO-1				Lab 11: Measurement of temperature to	
9-10	SLO-2	Lab 2: Power factor measurement	Lab 5: Measurement of power and energy	Power anality analyser	estimate the response time using temperature measuring instruments	Lab 14: Study of Pacemaker Module
S-11	SLO-1	Solving Problems in error measurements	Solving Problems in single phase energy meter	Solving Problems in Phase sequence indicator.	LSOMING Problems in transducers	Interfacing instruments –General purpose interfacing bus (GPIB)
3-11	SLO-2		Solving Problems in three phase energy meter	Solving Problems in Galvanometer	Solving Problems in Pressure measurement.	Working of GPIB Hardware Components
S-12		Principle of operation, construction, Torque equation of Dynamometer type instruments		Measurement of LCD screen size		GPIB / SCPI Programming Elements and specifications
3-12	SLO-2	, , ,		I _ '	Properties of analogue sensors for temperature	Interfacing instruments –USB
C 12	SLU-1	Principle of operation and applications of Digital voltmeter.	Principle of operation of specifilm analyser	Radio frequency identification (RFID) reader	Properties of analogue sensors for pressure	Instrumentation for medical imaging
S-13	SLO-2	Principle of operation and applications of Digital Multimeter.	Principle of operation of Harmonic analyser	Data loggers	Laser based measurement of liquid temperature	Instrumentation for Therapeutic Devices
S	SLO-1	Lab 3: Demo on Universal bridge			Lab 12: Study of temperature and pressure	Lab 15: Analysis of Instrumentation for
14-15	SLO-2	Lab 3. Dellio oli oliiversai bilage	Lab o. Demo on Frequency meter	using Synchroscope	sensor	medical imaging

Learning Resources	 Ernest O Doebelin, Dhanesh N Manik, Measurements Systems Application and Design, 5th ed., McGraw Hill, 2006 Sawhney A. K, A Course in Electrical and electronic Measurement and Instrumentation, Dhanpat Rai & Sons, 2015 Rajendra Prasad, Electrical Measurements & Measuring instruments, 10th ed., Khanna Publishers, 1989 	<i>4.</i> 5. 6.	Albert D Halfride & William D Cooper, Modern Electronic Instrumentation and Measurement Techniques, Pearson, 2015 John G Webster, Medical instrumentation: Application and design, 4th ed., Wiley, 2010 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science
-----------------------	---	-----------------	---

Learning As	Learning Assessment												
	Bloom's Continuous Learning Assessment (100% weightage)												
	Level of Thinking	CLA – 1 (20%)		CLA – 2 (30%)		CLA –	3 (30%)	CLA – 4	1 (20%)#	Final Examination			
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total	100	100 % 100 % 100 %						0 %	10	0 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Thiyagarajan, TANGEDCO, athiyagu3177@yahoo.com.	1. Dr. S. Senthilkumar, NIT, Trichy, skumar@nitt.edu	1. Ms. C. Anuradha, SRMIST
2. Mr. Muralikrishna, National Instruments, emkkrishnan@gmail.com	2. Dr. Bindu, Govt. College of Engineering, Vayanadu, Kerala, bgr100@gmail.com	2. Ms. S. Vijayalakshmi, SRMIST

Course	40FFC200T	Course		Course		L	T	Р	С
Code	18EEC208T	Name	GENERATION, TRANSMISSION AND DISTRIBUTION	Category	Professional Core	3	0	0	3

Pre-requisite		Co-requisite		Progressive	
Courses		Courses		Courses	
Course Offering Department	Electrical and Electronic	cs Engineering	Data Book / Codes/Standards	Nil	

Course L	earning Rationale (CLR):	The purpose of learning this course is to:	Le	earnir	ıg
CLR-1:	Utilize the basics of electric	power generation, transmission and distribution	1	2	3
CLR-2:	Solve the various transmiss	ion line parameters for single and three phase transmission system			
CLR-3:	CLR-3: Analyze the performance of transmission line and to learn the different voltage compensation techniques				
CLR-4:	CLR-4: Utilize insulators, cables and estimate the string efficiency				
CLR-5:	Analyze the basics of subst	ation components and DC distribution systems	(Bloom)	Proficiency	Attainment (%)
CLR-6:	CLR-6: Create overall structure of power system starting from generation to power transmission and distribution				
Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	evel of Thinking	Expected Pn	Expected At
CLO-1:	Identify the layout of various	energy sources and its economics of power generation	2	80	75
CLO-2:	Calculate the line paramete	r for single and multi-phase power transmission system	3	80	75
CLO-3:	CLO-3: Compute the performance of various types of transmission lines		3	80	75
CLO-4:	CLO-4: Acquire knowledge on insulators, cables and evaluate stress and sag		3	80	75
CLO-5:	CLO-5: Identify the substation components and compute the DC distribution systems				75
CLO-6:	CLO-6: Design a power system using components like generators, transmission lines and distributors				75

				Prog	ram L	_earn	ing O	utco	mes (PLO)				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
Н	М	М	-	-	-	М	-	-	-	-	-	Н	М	Н
Н	Н	М	М	М	-	М	-	-	-	-	-	М	М	М
Н	Н	Н	М	-	-	-	-	М	М	-	-	Н	М	М
Н	М	Н	М	-	-	-	-	-	-	-	-	Н	Н	М
Н	Н	М	М	-	-	-	-	-	-	-	-	Н	М	М
Н	Н	Μ	М	Μ	-	Μ		М	М	-	-	Н	Μ	М

	ration lour)	9	9	9	9	9
S-1	SLO-1	Sources of energy	Calculate Resistance in a single-phase transmission line	Analyze performance of short line	Classify insulators for transmission and distribution purpose	Classification, major components of substations, Bus-bar arrangements
3-1	SLO-2	Structure of power system	Calculate Inductance in a single-phase transmission line	Analyze performance of medium transmission line (end condenser method)	Voltage distribution in insulator string	Substation bus schemes- single bus, double bus with double breaker
S-2	SLO-1	Basic layout of PV power generation	transmission line for		Improvement of string efficiency	Double bus with single breaker
3-2	SLO-2	Basic layout of wind power generation	Calculate Inductance and capacitance of three phase transmission lines	Analyze Performance of medium line using T method	Calculation of voltage distribution and string efficiency	Main and transfer bus schemes
	SLO-1			Calculation of efficiency and regulation of voltage for medium line by T method	Testing of insulators	Double bus-bar scheme with bypass isolators
S-3	SLO-2	Types of OTEC	Calculate inductance and capacitance in an Unsymmetrical spaced conductor (transposed)	Analyze Performance of medium line using πmethod	Construction features of LT and HT cables, Insulation resistance	Introduction to substation earthing
S-4	SLO-1	Basic layout of Biomass power plant	Calculate inductance of Single circuit lines	Calculation of efficiency and regulation of voltage for medium line by π method	Calculate Capacitance, dielectric stress	Substation safety
3-4	SLO-2	Load curve & Load duration curve	Calculate capacitance of Single circuit lines	Analyze Performance of long line using Rigorous method	Grading cables	Qualitative treatment to neutral grounding
S-5	SLO-1	Calculation of total power generation	Calculate inductance in double circuit lines	Ferranti effect – surge impedance	Fault in underground cables	Feeders, service mains and distributors
3-3	SLO-2	Load, demand and diversity factors	Calculate capacitance in double circuit lines	Attenuation constant and phase constant	Location of fault in underground cables	DC Distribution
S-6	SLO-1	Plant capacity and plant use factors	Calculate inductance in Stranded and bundled conductors	Real power flow in transmission lines	Tan δ and power loss	Types of DC distributors

		Calculation of Plant capacity and plant use factors		Reactive power flow in transmission lines	I I nermai characteristics of cables	Quantitative analysis of radial distribution fed at one end
S-7	SLO-1	Choice of type of generation, choice of size and number of units	Application of self GMD	Power circle diagrams		Quantitative analysis of radial distribution fed at both the ends
3-1		Cost of energy generated		illiding the maximum power transfer	Calculate Sag of towers with equal neights	Quantitative analysis of Ring main distribution
S-8	SLO-1	Tariffs	Skin and Proximity effect	Series compensation		Design of rural distribution, planning and design of town electrification schemes
3-0	SLO-2	Types of tariffs	*	Shunt compensation	heights	Kelvin's law for the design of feeders and limitations
S-9	SLO-1	Transmission systems	Implementation of distribution system using software	Seminar Presentations on ABCD constants	Effect of wind on overhead transmission line	Smart grid
3-9	SLO-2	Distribution systems	, ·_ ·	Seminar Presentation on surge impedance loading	Effect of ice loading on overhead transmission line	Power system restructuring

Learning Resources	1. 2.	D.P. Kothari, I.J. Nagrath Power System Engineering Mc Graw-Hill Publishing company limited, New Delhi, 2 nd ed., 2008 C. L. Wadwa, Electric Power Systems, 7 th ed., New Age International Publishers, 2016	4.	Luces M. Fualkar berry, Walter Coffer Electrical Power Distribution and Transmission, Pearson Education, 2007 S.N.Singh, Electric power generation, transmission and distribution, 2 nd ed., PHI, 2011 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science
-----------------------	----------	---	----	---

Learning Asses	sment											
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Examination (50% weightage		
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4 (10%)#		Final Examination (50% weightage)		
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40 %		30 %		30 %	_	30 %		30%		
Level I	Understand	40 %	-	00 70		30 70		00 70		3070	-	
Level 2	Apply	40 %	_	40 %		40 %	_	40 %	_	40%		
Level 2	Analyze	40 /0	-	40 /0		40 /0	-	40 /0		4070	-	
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%		
LEVEL 3	Create	20 /0	-	JU 70	,	30 //	-	JU 70	1	30%	-	
	Total	al 100 % 100 %) %	10	0 %	100 %		100 %			

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers					
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts			
1. Dr. Bhaskarsahu, Schneider Electric Ltd, bhaskar.sahu@schneider-electric.com	1. Dr. K. S. Swarup, IITM, ksswarup@iitm.ac.isn	1. Mr. P. Suresh, SRMIST			
2. Dr. P. Dharmalingam, Ensave Pvt Ltd, pdlingam@gmail.com	2.Dr. R. Ramesh, Anna University, rramesh@annauniv.edu	2. Dr. D. Sattianadan, SRMIST			

ACADEMIC CURRICULA

Professional Core Courses

ELECTRONICS AND COMMUNICATION ENGINEERING

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Course	18ECC102.I Course	ELECTRONIC DEVICES	Course		Professional Core	L	Т	F)	С
Code	Name	ELECTRONIC DEVICES	Category	C	Fiolessional Cole	3	0	. 2	2	4

Pre-requisite	18EES101 I	Co-requisite	lii	Progressive 19ECC2011
Courses	TOEESTOTS	Courses	VII	Courses 18ECC201J
	Department	Electronics and Communication Engineering	ng Data Book / Codes/Standards	Nil

Course L	earning Rationale (CLR):	The purpose of learning this course is to:					
CLR-1:	Provide a basis for understa	anding semiconductor material, how a pn junction is formed and its principle of operation	1	2	Ī		
CLR-2:	Explain the importance of o	Explain the importance of diode in electronic circuits by presenting appropriate diode applications					
CLR-3:	-3: Discuss the basic characteristics of several other types of diodes that are designed for specific applications						
CLR-4:	4: Describe the basic structure, operation and characteristics of BJT, and discuss its use as a switch and an amplifier.						
CLR-5:	Describe the basic structure	e, operation and characteristics of MOSFET, and discuss its use as a switch and an amplifier.	(Bloom)	(%) /			
CLR-6:	CLR-6: Use modern engineering tools such as PSPICE to carry out design experiments and gain experience with instruments and methods used by technicians and electronic engineers			Proficiency			
			Thinking	J Pro			

			_ ⊢	~	~
Course Learning Outcomes (CLO): At the end of this course, le		At the end of this course, learners will be able to:	Level of	Expected	Expected
CLO-1:	Understand the operation, c	haracteristics, parameters and specifications of semiconductor diodes and special diodes	1	90	80
CLO-2:	Demonstrate important applications of semiconductor diodes and special diodes.				
CLO-3:	3: Review bipolar transistor construction, operation, characteristics and parameters, as well as its application in amplification and switching.				
CLO-4:	4: Review field-effect transistor construction, operation, characteristics and parameters, as well as its application in amplification and switching.				
CLO-5:	5: Build a circuit, then make functional measurements to understand the operating characteristics of the device / circuit.				
CLO-6:	5: Solve specific design problem, which after completion will be verified using modern engineering tools such as PSPICE.				

				Prog	ram l	_earn	ing O	utco	mes (PLO)				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt & Finance	Life Long Leaming	PSO-1: Professional Achievement	PSO – 2: Project Management Techniques	PSO – 3: Analyze & Research
Н	-	-	-	-	-	-	-	-	-	-	М	-	-	-
-	-	-	-	-	-	-	-	-	-	-	Μ	-	-	-
Н	1	1	1	1	-	-	-	-	-	1	М	-	-	-
Н	1	1	1	1	-	-	-	-	-	1	М	-	L	-
-	1	-	-	Н	-	-	-	-	-	-	-	L	L	-
-	-	-	-	Н	-	-	L	Н	М	-	М	-	-	-

Du	ration	Semiconductor Diodes	Diode Circuits	Special Diodes	Bipolar Junction Transistors	MOS Field-Effect Transistors
(h	our)	15	15	15	15	15
S-1	SLO-1	Basic semiconductor theory: Intrinsic & extrinsic semiconductors	HWR operation, Efficiency and ripple factor	Backward diode	Physical structure	Physical structure
3-1	SLO-2	Current flow in semiconductors	Problem solving	Varactor diode	Device operation of BJT	Device operation of E-MOSFET & D- MOSFET
S-2	SLO-1	SLO-1 PN junction theory: Equilibrium PN junction Center-Tapped Transformer FWR operation, Efficiency and ripple factor		Step recovery diode	Current-Voltage characteristics of CE BJT configuration	I-V characteristics of E-MOSFET
3-2	SLO-2	LO-2 Forward biased PN junction Problem solving		Point-contact diode	Current-Voltage characteristics of CE BJT configuration	Problem solving
S-3	SLO-1	Reverse biased PN junction		Metal-semiconductor junction: Structure, Energy band diagram	Current-Voltage characteristics of CB BJT configuration	Derive drain current
3-3	SLO-2	Relation between Current and Voltage	Problem colvina	Forward & Reverse Characteristics of Schottky Diode	Current-Voltage characteristics of CB BJT configuration	Problem solving
S 4-5	SLO-1 SLO-2	Lab 1: PN Junction Diode Characteristics	Lab 4: Diode clipping and clamping circuits	Lab 7: Series and Shunt Regulators	Lab 10: BJT and MOSFET Switching Circuits	Lab 13: Repeat Experiments
S-6	SLO-1	Calculate depletion width	Filters: Inductor & Capacitor Filters	Tunnel Diode	Current-Voltage characteristics of CC BJT configuration	Derive transconductance
5-6	SLO-2	Calculate barrier potential	Problem solving	Tunnel Diode	Current-Voltage characteristics of CC BJT configuration	Problem solving
S-7	SLO-1	Derive diode current equation	Filters: LC & CLC Filters	Gunn Diode	BJT as an amplifier	CMOS FET

	SLO-2	Derive diode current equation	Problem solving	Gunn Diode	BJT as a switch	MOSFET as an amplifier
S-8	SLO-1	Effect of Capacitance in PN junction: Transition Capacitance	Diode Clippers	IMPATT Diode	BJT circuit models - h-parameter	MOSFET as a switch
3-0	SLO-2	Diffusion Capacitance	Problem solving	IMPATT Diode	BJT circuit models - hybrid-π parameter	Problem solving
S 9-10	SLO-1 SLO-2	Lab 2: Zener diode characteristics	Lab 5: BJT Characteristics	Lab 8: MOSFET Characteristics	Lab 11: Photoconductive Cell, LED, and Solar Cell Characteristics	Lab-14: Model Examination
S-11	SLO-1	SLO-1 Energy band structure of PN Junction Diode Diode Clampers PIN Diode		PIN Diode	BJT biasing circuits and stability analysis: Base bias and emitter bias	Biasing Circuits for MOSFET: Gate Bias
3-11	SLO-2	Ideal diode and its current-voltage characteristics	Problem solving	PIN Photodiode	Problem solving	Problem Solving
C 40	SLO-1	Terminal characteristics & parameters	Voltage Multipliers	Avalanche photodiode	Voltage-divider bias	Self-bias
S-12	SLO-2	Zener diode: Characteristics, breakdown mechanisms		Laser diode	Problem solving	Problem Solving
S-13	SLO-1	DC load line and analysis	Zener resistances and temperature effects Zener diode as voltage regulator	Problem solving	Collector-feedback bias	Voltage-divider bias
3-13	SLO-2	Problem solving	Problem solving	Problem solving	Problem solving	Problem Solving
S 14-15	SLO-1 SLO-2	Lab 3: Diode rectifier circuits	Lab 6: BJT Biasing Circuits	Lab 9: MOSFET Biasing Circuits	Lab 12: Simulation experiments using PSPICE	Lab 15: End-Semester Practical Examination

	1.	David A. Bell, Electronic Devices and Circuits, 5th ed., Oxford University Press, 2015	5.	Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuit Theory, 11th ed., Pearson Education, 2013
Learning	2.	Donald Neamen, Electronic Circuits: Analysis and Design, 3rd ed., McGraw-Hill Education, 2011	6.	Muhammad Rashid, Microelectronic Circuits: Analysis & Design, 2 nd ed., Cengage Learning, 2010
Resources	3.	Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuits: Theory and Applications, OUP, 2014	7.	Muhammed H Rashid, Introduction to PSpice using OrCAD for circuits and electronics, 3 rd ed., Pearson, 2004
	4.	Thomas L. Floyd, Electronic Devices", 9th ed., Pearson Education, 2013	8.	Laboratory Manual, Department of ECE, SRM University

Learning Ass	sessment													
	Bloom's	Continuous Learning Assessment (50% weightage)							Final Evamination	(50% woightogo)				
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)				
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Total	100 % 100 % 100 %		0 %	10	0 %	100 %							

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mr. Manikandan AVM, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. Diwakar R Marur, SRMIST

Course	18ECC103J	Course	DIGITAL ELECTRONIC PRINCIPLES	Course	0	Professional Core	L	Τ	Р	С
Code	10ECC 1033	Name	DIGITAL ELECTRONIC PRINCIPLES	Category	C	Professional Core	3	0	2	4

Pre-requisite Courses	18EES101J	Co-requisite Courses		Progressive Courses 18ECC203J
Course Offering	Department	Electronics and Communication Engineering	Data Book / Codes/Standards	Nil

	, ,	1														-				
Course L	earning Rationale (CLR): The purpose of learning this course is to:	L	Learning		ng Program Learning Outcomes (PLO)															
CLR-1:	Understand binary codes, digital arithmetic operations and able to simplify Boolean logic expressions	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Describe how basic TTL and CMOS gates operate at the component level														1	1				
CLR-3:	Able to design simple combinational logics using basic gates and MSI circuits													ı	1	.		ent		
CLR-4:	Familiarize with basic sequential logic components: flip-flops, registers, counters and their usage, and able to design and											_		, I	1	.		vement	Ħ	ક
CLR-4.	analyze sequential logic circuits and Finite State Machines.	(Bloom)	(%)	(%)					ırch			<u>≣</u>		, I	1	.		Achiev	e	Research
CLR-5:	1 0					dge		aut	Resea			Sustainability		Work	1	8		Ac	Management	Res
CLR-6:	B.6. Use modern engineering tools such as PSPICE / Logisim to carry out design experiments and gain experience with		roficiency	Attainment		₩	(n	Development	, Re	age	m	nste		≥	1	Finance	б	ona	ĕ	∞ ∞
CLR-0:	instruments and methods used by technicians and electronic engineers			ain.		Š	lysis	velo	Design,	Usage	Culture	∞ర		Team	. E	× ∃	Leaming	essi	Project as	Analyze
						ng	Analysis	De		Tool	J.	ent			icati	Mgt.	Le	Professional	Pro es	
Course L	Course Learning Outcomes (CLO): At the end of this course, learners will be able to:					Engineering Knowledge	Problem	Design &	Analysis,	Modern 1	Society &	Environment	Ethics	Individual &	Communication	Project M	Life Long	1	PSO – 2: Techniau	PSO - 3:
CLO-1:	Have a thorough understanding of the fundamental concepts and techniques used in digital electronics.	1	90	75		Н	-	-		-	-	-	-	-	-	-	М	-	-	-
CLO-2:			80	70		Н	-	-		-	-	-	-	-	-	-	М	-	-	-
CLO-3:	CLO-3: Understand, analyze, design and troubleshoot various combinational logic circuits.			75			М	Н	-	Н	-	-	-	-	-	-	М	-	-	-
CLO-4:	CLO-4: Understand, analyze, design and troubleshoot various clocked sequential logic circuits.			75			М	Н	-	Н	-	-	-	-	-	- 1	М	-	-	-
CLO-5:	CLO-5: Analyze, design and implement various digital logic circuits using PLDs			75		-	М	Н	-	Н	-	-	-	-	-	-	-	-	-	-
CLO-6 :	CLO-6: Solve specific design problem, which after completion will be verified using modern engineering tools such as PSPICE /		90	75		-	М	Н	-	Н	-	-	L	Н	М	L	М	М	-	L
	Logisim																			

	ration	Binary Codes, Digital Arithmetic and Simplification of Boolean Functions	Logic Families	Combinational Systems	Sequential Systems	Memory and Programmable Logic
(1	nour)	15	15	15	15	15
S-1	SLO-1	Binary Codes, Digital Arithmetic and Simplification of Boolean Functions	Introduction	Binary arithmetic units	Flip-flop and Latch: SR latch,	RAM Memory decoding
0-1	SLO-2	Error detecting codes	TTL Logic Family	Adder	JK flip-flop, T flip-flop, D flip-flop	ROM
S-2	SLO-1	Error correcting code	Totem-pole TTL	Design of Half adder	Master-slave RS flip-flop	Programmable Logic Devices (PLDs): Basic concepts
0-2	SLO-2	Hamming Code	open-collector and tristate TTL	Design of Full adder	Master-slave JK flip-flop	PROM
S-3	SLO-1	Arithmetic number representation	Schottkey TTL, standard TTL characteristics	Subtractor	Registers & Counters	PROM as PLD
	SLO-2	Binary arithmetic	Metal Oxide Semiconductor logic families	Design subtractor using logic gates	Shift registers (SISO, SIPO, PISO, PIPO)	Programmable Array Logic (PAL)
S 4-5	SLO-1 SLO-2	LAB 1: Study of logic gates	LAB 4: Design and implement encoder and decoder using logic gates	LAB 7: Implement combinational logic functions using standard ICs	LAB 10: Design and implement Synchronous Counters	LAB 13: Construct combinational circuit using Logisim
	SLO-1	Hexadecimal arithmetic	N-MOS	n-bit parallel adder & subtractor	Universal shift register	Programmable Array Logic (PAL)
S-6	SLO-2	Hexadecimal arithmetic	P-MOS	look ahead carry generator	Counters: Asynchronous/Ripple counters	Programmable Logic Array (PLA)

C 7	SLO-1	BCD arithmetic simplification	CMOS logic circuits	Decoder	Synchronous counters, Modulus-n Counter	Programmable Logic Array (PLA)
S-7	SLO-2	Minimization of Boolean Functions: Algebraic simplification	Characteristics of MOS logic	Encoder	Ring counter, Johnson counter	Design combinational circuits using PLD's
S-8	SLO-1	Problems on Algebraic simplification	Compare MOS logic circuits(CMOS) with TTL digital circuit	Multiplexer	Up-Down counter	Design combinational circuits using PLD's
0-0	SLO-2	Karnaugh map simplification	Electrical characteristics	Demultiplexer	Mealy and Moore model	Design combinational circuits using PLD's
S 9-10	SLO-1 SLO-2	LAB 2: Design and implement Adder and Subtractor using logic gates	LAB 5: Design and implement Multiplexer and Demultiplexer using logic gates	LAB 8: Verify characteristic table of flip- flops	LAB 11: Construct and verify shift registers	LAB 14: Model Practical Examination
S-11	SLO-1	Problems on Karnaugh map simplification	Fan-out	Code converters		Design of combinational circuits using PLD's
3-11	SLO-2	Problems on Karnaugh map simplification	Propagation Delay	Magnitude comparators	Synchronous (Clocked) sequential circuits	Design sequential circuits using PLD's
S-12	SLO-1	Quine McCluskey	Power dissipation	Magnitude comparators	Synchronous (Clocked) sequential circuits	Design sequential circuits using PLD's
3-12	SLO-2	Tabulation method	Noise margin	Parity generators (Odd parity)	Analyze and design synchronous sequential circuits	Design sequential circuits using PLD's
C 12	SLO-1	Problems on Quine McCluskey or Tabulation method.	Supply voltage levels	Parity generators (Even parity)	State reduction	Design sequential circuits using PLD's
S-13	SLO-2	Exercise problems using Tabulation method	Operational voltage levels	Implementation of combinational logic by standard IC's.	State assignment	Design sequential circuits using PLD's
S 14-15	SLO-1 SLO-2	Lab 3: Design and Implement 2-bit Magnitude Comparator using logic gates	LAB-6: Design and implement code converters using logic gates	LAB 9: Construct and verify 4-bit ripple counter, Mod-10/Mod-12 ripple counters	Lab 12: Construct mini project work	LAB 15: University Practical Exam

- Morris Mano M, Michael D. Ciletti, Digital Design with an Introduction to the Verilog HDL, 5th ed., Pearson Education, 2014
- 2. Charles H Roth (Jr), Larry L. Kinney, Fundamentals of Logic Design, 5th ed., Cengage Learning India
- Thomas L. Floyd, Digital Fundamentals, 10th ed., Pearson Education, 2013

- 4. Ronald J. Tocci, Digital System Principles and Applications, 10th ed., Pearson Education, 2009
- 5. Donald P Leach, Albert Paul Malvino, Goutam Saha, Digital Principles and Applications, 6th ed., Tata-Mcgraw Hill, 2008
 6. LAB MANUAL, Department of ECE, SRM University

Learning Assessi	nent													
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(50% woightage)			
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)				
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
r. Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
I. Level I	Understand	2070	2070	1370	1370	1370	1370	1370	1370	1370	15/0			
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
LGVGI Z	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070			
1 2	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 3	Create	10%	10%	13%	15%	15%	15%	15%	15%	15%	13%			
	Total	10	0 %	100	0 %	100 %		100) %	10	0 %			

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mr. Viswanathan B, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course	18ECC104T	Course Name	SIGNALS A	ND SYSTEMS	Course	С	Professional Core	L	T	Р	С
Code	Code		OIGIVIES /	STOTALES THE STOTEWO		Ü	i Totossional Gold	3	1	0	4
Pre-requisi Courses	18FFS101.I		Co-requisite Nil		Progre		18ECC204J				
Course Offer	ring Department	Electro	nics and Communication Engineering	Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	Program Learning Outcomes (PLO)																	
CLR-1: Understand the fundamentals of signals, systems and their classification	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Learn the methods of representing the continuous signal and its properties											,							ent	ch
CLR-3: Educate about system modeling through Laplace transform and Convolution integral for continuous time systems								rch			bilit							e	ear
CLR-4: Learn about discrete time signals and its properties					ge		int	Research			ina		Work		8		_	Management	Res
CLR-5: Understand the concept of Z-Transform for the analysis of DT system					Nec	'n	bme	, Re	age	m	Sustainability		<u>ج</u>		Finance	Б	onal	≅	∞ ∞
CLR-6: Learn about continuous and discrete signals and its properties					Š	lysis	Development	Design,	Usage	ulture	∞ŏ		Team	o.	Σ	earning	essi.	oject	nalyze
					ng B	Analysis		Des	Tool	0	ent			icati	Mgt.		Prof	Pro es	An
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:					Engineering Knowledge	Problem	Design &	Analysis,	Modern 1	Society &	Environment	Ethics	Individual &	Communication	Project M	Life Long	PSO-1: I Achieven	PSO – 2: Techniau	PSO – 3:
CLO-1: Acquire knowledge of various classifications of Signals and Systems			65		Н	М		М		-		-	-	-	-	-	М	Н	М
CLO-2: Analyze Periodic and Aperiodic for Continuous time Signals using Fourier series and Fourier Transform			65		М	Н	Μ	Н	-	-		-	-	-	-	-	М	-	Н
CLO-3: Analyze and characterize the Continuous time system through Laplace transform and Convolution integral.			65		М	Н	Μ	Н	-	-		-	-	-	-	-	М	-	Н
CLO-4: Analyze and characterize the Discrete time signals and system through DTFT, Convolution sum	3	85	65		Н	Н	М	М	-	1	-		-	-	-	-	М	-	Н
CLO-5 : Analyze and characterize the Discrete time system using Z transform		85	65		Н	М	Н	М	-	-	-	-	-	-	-	-	М	-	Н
CLO-6: Understand the properties and modeling of continuous and discrete time signals		85	65		Н	Н	М	М	-	1	-	-	-	-	-	-	М	-	Н

		Classification of Signals and Systems	Analysis of Continuous Time Signals	Analysis of LTI CT System	Analysis of DT Signals and Systems	Analysis of LTI DT System using Z-Transform
Durati	ion (hour)	12	12	12	12	12
	SLO-1	Introduction to signals and systems	Introduction to Fourier series	System modeling	Representation of sequences	Z transform – introduction
S-1	SLO-2	Requirements of signal and system analysis in communication	Representation of Continuous time Periodic signals	Description of differential equations	Discrete Time Fourier Transform (DTFT) – Existence	Region of convergence of finite duration sequences-properties.
S-2	SLO-1	Continuous time signals (CT signals)	Fourier series: Trigonometric representation	Solution of Differential equation using classical method	DTFT of standard signals	Unilateral and bilateral z transforms
3-2	SLO-2	Discrete time signals (DT signals)	Fourier series: Trigonometric representation	Differential equation: Zero state response	Properties of DTFT	Properties of z transform
S-3	SLO-1	Representation of signals: Step, Ramp, Pulse, Impulse	Fourier series: Cosine representation	Differential equation: Zero Input response	Problems on Properties of DTFT	Practice problems
?	SLO-2	Representation of signals: Sinusoidal, Exponential	Fourier series: Cosine representation	Total Response using classical method	Inverse DTFT	Practice problems
	SLO-1	Basic operation on the signals	Symmetry conditions	Impulse response	Impulse response of a system with DTFT	Relation between DTFT and Z transform
S-4	SLO-2	Problems on signal operations	Properties of Continuous time Fourier series	Step response	Frequency response of a system with DTFT	Practice problems
S-5	SLO-1	Classification of CT and DT signals: Periodic & Aperiodic signals.	Practice problems on Fourier series	Frequency response	Step response	condition for causality in Z domain- Problems
3-3	SLO-2	Classification of CT and DT signals: Deterministic & Random signals.	Practice problems on Fourier series	Practice problems on solution of differential equation	Practice problems	condition for stability in Z domain-Problems
S-6	SLO-1	Energy signal	Gibb's Phenomenon	Convolution integral	Solution of linear constant coefficient difference equations	Inverse Z transform

	SLO-2	Power signal	Parseval's relation for power signals	Properties of convolution	Problems with and without Initial conditions	Power series expansion
S-7	SLO-1	Even & Odd signals	Power density spectrum,	Graphical method of convolution	Solution of difference equations using classical method	Inverse Z transform with Partial fraction
3-1	SLO-2	Even & Odd signals	Frequency spectrum.	Practice Problems	Zero input response , Zero state response, Total response	Inverse Z transform with Partial fraction
	SLO-1	CT systems and DT systems	Fourier transform: Introduction	Analysis using Laplace transform	Practice problems	Residue method
S-8	SLO-2	Classification of systems: Static & Dynamic	Representation of Continuous time signals	ROC and Convergence of Laplace Transform	Practice problems	Convolution method
S-9	SLO-1	Superposition theorem	Properties of Continuous time Fourier transform	Properties of Laplace transform	DFT and IDFT	Analysis and characterization of DT system using Z-transform
3-9	SLO-2	Linear & Nonlinear system	Properties of Continuous time Fourier transform	Problems on properties of Laplace transform	Properties of DFT	Analysis and characterization of DT system using Z-transform
S-10	SLO-1	Time-variant & Time-invariant system	Parseval's relation for energy signals	Inverse Laplace transform	Practice problems	Practice problems
3-10	SLO-2	Time-invariant system	Energy density spectrum	Problems	Convolution sum	Practice problems
S-11	SLO-1	Causal system	Practice problems on Fourier Transform	Analysis of LTI system using Laplace transform	Convolution properties	Realization of Discrete time system- Direct form I, Direct Form II
3-11	SLO-2	Noncausal system	Practice problems on Fourier Transform	Analysis LTI system using Laplace transform-Problems	Linear Convolution,-Tabulation method, Matrix method	Realization of Discrete time system- Parallel and cascade form
S-12	SLO-1	Stable & Unstable,LTI System	Practice problems on properties of Fourier Transform	Analysis LTI system using Fourier transform	Linear convolution-Graphical method	Practice problems
3-12	SLO-2	Unstable, LTI System	Practice problems on properties of Fourier Transform	Analysis LTI system using Fourier transform-Problems	Circular convolution-concentric circle method, matrix method	Practice problems

Learning	1.	Alan V Oppenheim, Ronald W. Schafer Signals & Systems, 2 nd ed., Pearson Education, 2015	4.	Lathi B.P, Linear Systems & Signals, 2 nd ed., Oxford Press, 2009
Learning Resources	2.	P.Ramakrishna Rao, Shankar Prakriya, Signals & Systems, 2 nd ed., McGraw Hill Education, 2015	5.	John G. Proakis, Manolakis, Digital Signal Processing, Principles, Algorithms and Applications, 4th ed.,
resources	3.	Simon Haykin, Barry Van Veen, Signals and Systems, 2 nd ed., John Wiley & Sons Inc., 2007		Pearson Education, 2007

Learning Asses	sment												
	Dloom'o	Bloom's Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA -	1 (10%)	CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4	ł (10%)#	Filiai Examination	n (50% weightage)		
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	10	0 %	10	0 %	10	0 %	10	0 %	100 %			

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. S. Dhanalakshmi , SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course	18ECC105T	Course	ELECTROMAGNETICS AND TRANSMISSION LINES	Course	_	Professional Core	L	Т	Р	С
Code	10ECC1031	Name	ELECTROMAGNETICS AND TRANSMISSION LINES	Category	C	Professional Core	3	0	0	3

Pre-requisite Courses 18EES101J, 18PYB1	101J Co-requisite Courses	Nil	Progressive Courses 18ECC206T	
Course Offering Department	Electronics and Communication Enginee	ring Data Book / Codes/Standards	Clark's Table, IS: 456-2000	

Course C	Offering Department	Electronics and Communication Engineering Data Book / Codes/Standards	Clar	k's Tal	ble, IS	S : 456	5-2000)													
Course L	earning Rationale (CLR):	The purpose of learning this course is to:	ı	earni-	ng						Prog	ram L	.earni	ing O	utcor	nes (PLO)				
CLR-1:	Gain knowledge on the bas	ic concepts and insights of Electric field	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Gain knowledge on the bas equations.	ic concepts and insights of Magnetic field and Emphasize the significance of Maxwell's																	ent		
CLR-3:	Interpret the wave propagat	tion in guided waveguide.											_							Ħ	등
CLR-4:	Acquire the fundamental kn	owledge on Transmission Line Theory.								arch			E I						Pie.	Management	Research
CLR-5:	Acquire the knowledge on t	ransmission line parameter calculation and impedance matching concepts.	(Bloom)	(%)	(%)		ge		ant	sea			in a		Work		8		Achie	nag	Res
CLR-6:		retical concepts and analysis techniques to find solutions for problems related to agation and Transmission line Theory.	ing (Bl	oficiency	inment		Knowledge	/sis	Development	ign, Re	Usage	Culture	& Sustainability		eam W	uc	Finance	Leaming	SSic	Analyze &	
	т		Thinking	₽.	d Atta		ering K	Analysis	& Dev	, Design,	Tool I	& Cul			&Τ	nicatio	Mgt &	g Lea	ш.	🛎	3: Ana
Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected		Enginee	Problem	Design	Analysis	Modern	Society	Environment	Ethics	Individual	Communication	Project	Life Long	T	T : H	PS0 - 3
CLO-1:	Apply the concepts and kno	owledge to solve problems related to electric field.	2	80	70		М	Н													
CLO-2:	Interpret and apply the cond	cepts of Magnetic field and Maxwell's equations in the real world application.	2	80	70		Н	М													
CLO-3:	Understand the phenomeno	on of guided wave propagation and its mode of propagation.	1	80	70		Н	М													
CLO-4:	Realize the importance of tr	ransmission line theory applicable to low frequency transmission lines.	1	80	70		М	Н													
CLO-5:		ameter and impedance matching through analytical and graphical methods.	2	80	70		М	Н													
CLO-6:		gnetic waves are generated using Maxwell's equations and how Transmission lines are used ergy from one point to another with minimum losses over a widehand of frequencies	2	80	70		М	Н										Н			L

	ration	Electrostatics	Magnetostatics and Maxwells Equations	Electromagnetic Waves and Waveguides	Transmission Line Theory	Transmission Line Calculator and Impedance Matching
(I	nour)	9	9	9	9	9
S-1	SLO-1	Introduction	Energy density in electrostatic field	Introduction	Transmission line parameters	Introduction
3-1	SLO-2	Rectangular co-ordinate	Problem discussion.	Waves in general	Transmission line parameters	Smith chart Introduction
S-2	SLO-1	Cylindrical & Spherical Co-ordinate	Biot savart law-Magnetic field intensity due to Infinite line charge	Plane wave in lossless dielectric	Transmission line equivalent circuit	Reflection coefficient, Standing wave ratio Input impedance calculation in smith chart
3-2	SLO-2	Review of vector calculus	H- due finite and semi finite line charge	Plane wave in free space	Explanation	Practice problems.
S-3	SLO-1	Coulomb's Law and field intensity	Ampere's circuital law& application: Infinite line current	Plane wave in good conductor	Transmission line equation derivation	Single stub matching Introduction
3-3	SLO-2	Problem based on coulomb's law	Infinite Sheet current	Problems based on plane waves in lossless, free space and good conductor	Problem discussion.	Procedure for single stub matching
S-4	SLO-1	Electric field due to continuous charge distribution Concept	Infinitely long coaxial Transmission line	Rectangular waveguide	Transmission line characteristics: lossless line	Problems solving in smith chart
3-4	SLO-2	Derivation of E due Infinite Line charge	Problem based on ACL.	Rectangular waveguide-Problems	Distortionless line.	Problems solving in smith chart
S-5	SLO-1	Electric field due to sheet charge	Magnetic flux density	Transverse Electric (TE) mode	Input impedance derivation	Impedance matching using Quarter wave transformer
0-3	SLO-2	Problem based on sheet charge	Problem based on magnetic field and flux.	Transverse Electric (TE) mode-problems	Problems for input impedance calculation.	Problems.

S-6	SLO-1	Electric field due to volume charge	Maxwell's equation for static field	Transverse Electric (TE) mode	Standing wave ratio	Single stub tuner
3-0	SLO-2	Electric flux density	Faraday's law	Transverse Electric (TE) mode-Problems	Calculation of standing wave ratio.	Problem discussion
S-7	SLO-1	Gauss law application-point charge	Transformer EMF	Wave propagation in guide	Reflection coefficient	Slotted Line (Impedance Measurement)
3-1	SLO-2	Electric flux due infinite line charge	Motional EMF	Problem discussion	Problem discussion.	Problem discussion
S-8	SLO-1	Electric flux due sheet charge	Displacement current.	Power Transmission	Shorted line, open circuited line	Transmission Lines as circuit Elements
3-0	SLO-2	Electric flux due coaxial cable	Maxwell's equation in time varying field	Calculation of Pavg and Ptotal	Matched line	Problem discussion
S-9	SLO-1	Relation between E&V	Time varying potential concepts	Power attenuation	Power calculations	Additional smith chart problem solving.
3-9	SLO-2	Electric dipole and flux lines	Time varying potential derivation.	Calculation of αTE and αTE	Problem discussion.	Additional smith chart problem solving.

Learning Resources		Matthew N. O. Sadiku., S. V. Kulkarni, Elements of Electromagnetics, 6 th ed., Oxford University Press, 2015 G. S. N. Raju, Electromagnetic Field Theory and Transmission Lines, Pearson Education, 2006 Nannapaneni Narayana Rao, Principles of Engineering Electromagnetics,6 th ed., Pearson Education, 2016	4.	William H. Hayt,Jr., John A.Buck., Engineering Electromagnetics, 8th ed., Tata McGraw-Hill 2012 John D.Ryder, Networks, Lines and Fields, PHI, 2009
-----------------------	--	---	----	---

Learning As	sessment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Einal Evamination	o (50% woightage)	
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	l (10%)#	Final Examination (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0 %	

[#]CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. P. Eswaran, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECC201J	Course Name	ANALOG E	LECTRONIC CIRCUITS	Course Category	С	Professional Core	L 3	T 0	P 2	C 4
Pre-requisite Courses Course Offering	18ECC102J	Electror	Co-requisite Courses iics and Communication Engineer	18ECC202J ing Data Book / Codes/Standards	Progre Cour		18ECE201J	1			

	Courses 18ECC102J Courses 18ECC202J						ourse	17	8ECE	201J													
Course O	Offering Department	Electronics and Commu	ınication Engineeı	ring Data Book / Codes/Standard	ds	Nil																	
Course L	earning Rationale (CLR):	The purpose of learning	this course is to:			L	earnii	ng					Prog	ram L	.earn	ing O	utco	nes (PLO)				
CLR-1:	-1: Understand the operation and design of BJT amplifier circuits for a given specification					1	2	3		1 2	! 3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Understand the operation a	and design of MOSFET ar	mplifier circuits for	r a given specification																			
CLR-3:	Understand the effects of pagetive feedback on amplifier circuits, and analyze the different BC and LC ascillator circuits														_						Achievement	aut	U
CLR-4:						~	·	_				당			1						hie.	Je Ji	Research
CLR-5:	Understand how matched to current sources.	ransistor characteristics a	are used in the IC	design and to be able to design BJT and M	OSFET	(Bloom)	Proficiency (%)	Attainment (%)		afinal ,	Development	, Research	ge	40	Sustainability		n Work		Finance	<u>g</u>	nal	Management	∞ŏ
CLR-6:						Thinking	oficie	aiu		VOLVE A		Design,	Tool Usage	Culture	∞		Team	ion	& Fi	Leaming	essi	Project es	Analyze
						F.	P			n 2			2	& Cu	ent			icat		Le	Prof	Pro	An
Course L	earning Outcomes (CLO):	At the end of this course	e, learners will be	able to:		Level of	Expected	Expected		engineeming Kriowiedge	S doi: 0	Analysis,	Modern -	Society &	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long	PS0-1:1	PSO – 2: Techniau	PSO - 3:
CLO-1:				tions, and to Analyze the frequency responsermine the bandwidth of the circuit.	se of	2,3	80	70		_ ^	1 H	ا -	-	-	-	-	-	1	1	-	-	-	-
CLO-2:				cations, and to Analyze the frequency respondermine the bandwidth of the circuit.	onse of	2,3	80	70		_ ^	1 F	۱ -	1	-	-	-	-	1	1	-	1	-	-
CLO-3:	circuits to meet certain specifications.				lesign	2,3	80	70		_ ^	1 H	-	-	-	-	-	-	-	-	-	-	-	-
CLO-4:	type of power amplifier				of each	2,3	80	70		. /	1 H	· -	-	-	-	-	-	-	-	-	-	-	-
CLO-5:	Present the basic circuit bu	ilding blocks that are use	d in the design of	IC amplifiers, namely current mirrors and se	ources	2,3	80	70		_ /	1 F	-	-	-	-	-	-	-	-	-	-	-	-
CLO-6:	-6: Analyze and design analog electronic circuits using discrete components, and take measurement of various analog ci to compare experimental results in the laboratory with theoretical analysis.				og circuits	3	90	80			·	' -	М	-	-	L	М	-	-	М	Н	L	-

Dunat	(h)	BJT Amplifiers	FET Amplifiers	Feedback amplifies & Oscillators	Oscillators & Power Amplifiers	IC Biasing & Amplifiers with Active Load
Durat	on (hour)	15	15	15	15	15
S-1	SLO-1	Overview of DC analysis of BJT circuits	Overview of FET DC circuit analysis	Basic feedback concepts, general feedback structure	Crystal Oscillators	BJT current sources: Cascode current source, Widlar current source
3-1	SLO-2	Overview of BJT models	Problem solving	Properties of negative feedback	Problem solving	Multi-transistor current source Problem solving
S-2	SLO-1	AC load line analysis	Graphical analysis, load lines, and small- signal models	Feedback Topologies: Voltage-Series & Current-Series feedback connections	Negative-resistance oscillator	FET current sources: 2-transistor MOSFET current source
3-2	SLO-2	Problem solving	Problem solving	Problem solving	Problem solving	Problem solving
S-3		AC analysis of Common-Emitter BJT amplifier config. using hybrid-π model	AC analysis of Common-Source MOSFET amplifier configuration	Feedback Topologies: Voltage-Shunt & Current-Shunt feedback connections	Power Amplifiers: Definitions and amplifier types	FET current sources: Cascode current mirror and Wilson current mirror
0-3	SLO-2	Problem solving	Problem solving	Problem solving	Q point placement	Problem solving
S 4-5		Lab 1: Learning to design amplifier and oscillator circuits	Lab 4: Design & analyze differential amplifier with resistive load	Lab 7: Design and analyze RC oscillators	Lab 10: BJT & FET Current Sources	Lab 13: Design and analyze differential amplifier with active load

S-6	SLO-1	AC analysis of Common-Base BJT amplifier configuration using hybrid-π model	AC analysis of Common-Gate MOSFET amplifier configuration	Practical Feedback Amplifier Circuits	Maximum dissipation hyperbola	Analysis of CE BJT amplifier circuit with active load
	SLO-2	Problem solving	Problem solving	Problem solving	Heat sink	Problem solving
S-7	SLO-1	AC analysis of Common-Collector BJT amplifier config. using hybrid-π model	AC analysis of Common-Drain MOSFET amplifier configuration	Oscillators: Principles of Oscillation	Class A amplifier	Analysis of CS FET amplifier circuit with active load
0-1	SLO-2	Problem solving	Problem solving	Types of Oscillators	Problem solving	Problem solving
S-8	SLO-1	Multi-stage amplifier configurations: CE - CE, CE - CC amplifiers	BiFET amplifier configuration	Audio Frequency Oscillators: RC Phase- Shift Oscillator	Class B and Class AB push-pull amplifiers	DC and small-signal analysis of basic BJT differential pairs
3-0	SLO-2	Problem solving	Problem solving	Problem solving	Problem solving	Problem solving
S 9-10	SLO-1 SLO-2	Lab 2: Design and analyze BJT amplifier configurations	Lab 5: Design and analyze negative feedback amplifier configurations	Lab 8: Design and analyze LC oscillators	Lab 11: Design and analyze BJT CE amplifier with active load	Lab 14: Model Practical Examination
S-11	SLO-1	Multi-stage amplifier configurations: CE - CB, and CC - CC amplifiers	Low Frequency response analysis of a basic FET CS amplifier	Audio Frequency Oscillators: Wein Bridge Oscillator	Class C amplifiers	DC and small-signal analysis of basic FET differential pairs
0-11	SLO-2	Problem solving	Problem Solving	Problem Solving	Problem solving	Problem solving
S-12	SLO-1	Low Frequency response analysis of a basic BJT CE amplifier	High Frequency response analysis of a basic FET CS amplifier	Radio Frequency Oscillators: Hartley Oscillator	Class D and Class E amplifiers	Analysis of BJT differential amplifier with active load
0-12	SLO-2	Problem Solving	Problem Solving	Problem solving	Amplifier distortions	Problem solving
S-13	SLO-1	High Frequency response analysis of a basic BJT CE amplifier	Design problems in MOSFET amplifier configurations	Radio Frequency Oscillators: Colpitts & Clapp Oscillators	IC Biasing & Amplifiers with Active Load: BJT current sources: 2- & 3-transistor current sources	Analysis of FET differential amplifier with active load
	SLO-2	Problem Solving	Operational voltage levels	Problem solving	Problem solving	Problem solving
S 14-15	SLO-1 SLO-2	Lab 3: Design and analyze multistage amplifier configurations	Lab 6: Design and analyze MOSFET amplifier configurations	Lab 9: Classes of power amplifier (efficiency calculation)	Lab 12: Design and analyze FET CS amplifier with active load	Lab 15: End Semester Practical Examination

	1.	David A. Bell, Electronic Devices and Circuits, 5 th ed., Oxford University Press, 2015
Learning	2.	Donald Neamen, Electronic Circuits: Analysis and Design, 3rd ed., McGraw-Hill Education, 2011
Resources	3.	Muhammad Rashid, Microelectronic Circuits: Analysis & Design, 2nd ed., Cengage Learning, 2010
	4.	Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuits: Theory and Applications, OUP, 2014

- Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuit Theory, 11th ed., Pearson Education, 2013
- 6. Albert P. Malvino, David J. Bates, Electronic Principles, 8th ed., Tata McGraw Hill, 2015

Learning Assess	ment										
	Bloom's				Final Evamination	n (50% weightage)					
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	Filiai Examinatio	i (50% weightage)
	Level of Trilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
r. Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
I. Level I	Understand	2070	2070	1070	1370	1370	1070	1370	1070	1070	1370
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
Level 3	Create	10%	10%	13%	13%	13%	13%	13%	13%	13%	13%
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0 %

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mr. Manikandan AVM, SRMIST

2. Mr. I	Hariharas	udhan - Johnson (Controls, Pune, hariharasu	2. Dr. Venka	katesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in							2.	2. Dr. M. Sangeetha, SRMIST											
Cou		18ECC202J	Course Name	LINEAR IN	NTEGRATED CIRCUIT	S	_	ourse tegor		С				Pro	fessio	onal C	ore					L .	T F	C 2 4
Co	equisite urses Offering	18ECC102J	Electronics and Com	Co-requisite Courses munication Enginee	18ECC201J ring Data Boo	ok / Codes/Standards			gres		Nil													
Course	Learnin	g Rationale (CLF	R): The purpose of learni	ng this course is to:				L	.earni	ing					Prog	ram L	.earni	ing Ou	tcom	es (P	LO)			
CLR-2 CLR-3 CLR-4 CLR-5 CLR-6	: Unde : Unde : Identi : Gain and L : Gain : ELearnin : Infer : Elucic : Expla : Class : Illustr . Analy	rstand the various rstand the operation of the active filter knowledge on data D/A conversions. The properties of the DC and AC children and design the properties of the function of the function of the properties of the function of the properties of the function of the properties of the properties of the function of the properties of the pr	es, configurations and pra- linear and non-linear appl on and analysis of op-amp types, filter response chara a converter terminology, its nee to put theoretical conce O): At the end of this cou- aracteristics of operational ee linear and non-linear applee working of multivibrators and the working principle of application specific ICs su ctronic circuits and system results in the laboratory with	ications of op-amp oscillators, single classifier paras performance parameters learned in the classifier paras performance parameters learned in the classifier parameters will be a maplifiers and its explications of an oparas using special applied data converters and ich as Voltage regulas using linear ICs, as	hip oscillators and frequencters and IC voltage meters, and various circle course to practice. The able to: Iffect on output and the mand special application IC 555 and general active filters lators, PLL and its applicant take measurement.	regulators. cuit arrangements for A/l ir compensation techniquition ICs ral purpose opamp ication in communication	Jes 1	1 (Bloom) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 (%) 85 85 85 85	75 70 80 75 75	L L	M M M	H H Design & Development	Analysis, Design, Research	5 Modem Tool Usage	Society & Culture	Environment & Sustainability	- Ethics	ım Work	Communication	Project Mgt. & Finance	· · · · Life Long Learning	W · · · PSO–1: Professional Achievement	1
Duratio	on (hour)		15		15		15					•	1	5					•		15	i		
S-1		Op-amp symbol,	terminals, packages	Basic op-amp circu inverting voltage a	uits: Inverting & Non-	Waveform Generator Generators - Design		e-wave	Э		Filters: Co Active Ne		ison b	-	n Pas	sive a		Digital i Specific					: DAC	
0-1	SLO-2	Op-amp-Specific	ations	Voltage follower		Implementation & So	olving	proble	ms		Active Ne	twork	Desig	n				Solving	prob	lems				
6.2	SLO-1	Block diagram Re	epresentation of op-amp	Summing, scaling	& averaging amplifiers,	Square Wave genera	itors- l	Design)		Filter App	roxima	ations					Weight	ed Re	esisto	r DA	С		
SLO-2 Ideal op-amp & practical op-amp - Open loop & closed loop configurations AC amplifiers						Implementation & So.	lving p	robler	ns		Design of	LPF 8	Solvi	ing pro	oblem	s		Solving	prob	lems				
	SLO-1		characteristics of op-amp	Linear Applications Amplifiers	s: Instrumentation	Triangle wave gener	ators				Design of	HPF (& Solv	ing pr	oblem	ıs		R-2R L	adde	r DAC)			
S-3	SLO-2	Solving Problems	S	Instrumentation An Problems	nplifiers, Solving	Saw-tooth Wave gen	erator	S.			Design of	BPF8	Solvi	ng pro	blem	S		Solving	prob	lems				
S 4-5	SLO-1 SLO-2	Lab-1:Basic op-a	mp circuits	Lab 4: Comparator	rs	Lab 7: Waveform ger amp & 555 Timer	nerato	rs: usii	ng op	-	Lab 10: D Band Reje			, HPF	, BPF	and		Lab 13.	: Flas	h Typ	e AE	С		
	SLO-1	AC performance	characteristics of op-amp	V-to-I Converters		IC 555 Timer: Circuit	sche	matic			Design of	Band	Rejec	t Filte	rs			Inverte	d R-2	R Lac	dder	DAC		
3-0	SLO-2 Solving Problems I-to-V converters					Operation and its app	olicatio	stions Solving problems Monolithic DAC																

Differentiators

Integrators

SLO-1

S-7

Frequency response

SLO-2 Frequency response

IC 555 Timer: Monostable operation

Applications & Solving problems

Analog to Digital conversion: ADC specifications

Solving problems

State Variable Filters - All Pass Filters,

Solving problems

S-8	SLO-1	Frequency compensation	Non-linear Applications: Precision Rectifiers	IC 555 Timer: Astable operation	Switched Capacitor Filters.	Ramp Type ADC
3-0	SLO-2	Frequency compensation	Wave Shaping Circuits (Clipper and Clampers)	Applications & Solving problems	Solving problems	Solving problems
S 9-10	SLO-1 SLO-2	Lab 2: Integrators and Differentiators	Lab 5: Wave shaping circuits	Lab 8: Waveform generators: using op- amp & 555 Timer	Lab 11: IC Voltage regulators	Lab 14: Simulation experiments using EDA tools
S-11	SLO-1	Basic op-amp internal schematic	Log and Antilog Amplifiers,	PLL: Operation of the Basic PLL	Voltage Regulators: Basics of Voltage Regulator	Successive Approximation ADC
3-11	SLO-2	operations of blocks	Analog voltage multiplier circuit and its applications,	Closed loop analysis of PLL	Specifications and characteristic parameters	Solving problems
S-12	SLO-1	Basic op-amp internal schematic	Operational Trans-Conductance Amplifier (OTA)	Voltage Controlled Oscillator	Linear Voltage Regulators using Op-amp,	Dual Slope ADC
3-12	SLO-2	operations of blocks	Comparators : operation	Solving problems	IC Regulators (78xx, 79xx, LM 317, LM 337, 723),	Flash Type ADC,
S-13	SLO-1	Review of data sheet of an op-amp.	Comparators applications	PLL applications	Switching Regulators -operation	Solving problems on Flash Type ADC,
3-13	SLO-2	Solving Problems	Sample and Hold circuit.	Solving problems	Types	Monolithic ADC
S 14-15	SLO-1 SLO-2	Lab 3: Rectifiers	Lab 6: Waveform generators: using op- amp & 555 Timer	Lab 9: Design of LPF, HPF, BPF and Band Reject Filters	Lab 12: R-2R ladder DAC	Lab 15: Simulation experiments using EDA tools

Learning Resources

- 1. Ramakant A. Gayakwad, Op-Amps and Linear Integrated Circuits, 4th ed., Prentice Hall, 2000
- 2. David A. Bell, Operational Amplifiers and Linear ICs, 3rd ed., OUP, 2013
- 3. Roy Choudhury, Shail Jain, Linear Integrated Circuits, 4th ed., New Age International Publishers, 2014
- Robert F. Coughlin, Frederick F. Driscoll, Operational-Amplifiers and Linear Integrated Circuits, 6th ed., Prentice Hall, 2001
- 5. Sergio Franco, Design with operational amplifier and analog integrated circuits, McGraw Hill, 1997
- 6. LABORATORY MANUAL, Department of ECE, SRM University
- 7. David A Bell, Laboratory Manual for Operational Amplifiers & Linear ICs, 2nd ed., D.A. Bell, 2001
- 8. David La Lond, Experiments in Principles of Electronic Devices and Circuits, Delmar Publishers, 1993
- Muhammed H Rashid, Introduction to PSpice using OrCAD for circuits and electronics, 3rd ed., Pearson, 2004
- L. K. Maheshwari, M. M. S. Anand, Laboratory Experiments and PSPICE Simulations in Analog Electronics, PHI, 2006

Learning Assess	ment												
	Bloom's				Final Evamination	n (50% weightage)							
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	i iilai Examinatio	i (30 % weightage)		
	Level of Trilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total	10	0 %	100	0 %	10	0 %	100) %	100 %			

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mr. Manikandan AVM, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. M. Sangeetha, SRMIST

ACADEMIC CURRICULA

Professional Core Courses

MECHANICAL ENGINEERING

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Course Code	18MEC101T	Course Name	THI	ERMODYNA	MICS		ourse tegory	,	С				Pro	fessio	onal C	ore					L 3	T 1	P 0	C 4
Pre-requis Courses		<u> </u>	Co-requisite Courses	Nil				gress		lil														
Course Offe	ering Department	Mechanical Engineering	ng		Data Book / Codes/Standards		Stean	n table	es and	Mollier	chart													
Course Lear	rning Rationale (CLR)	: The purpose of learning	g this course is to:				Le	earnir	ng					Prog	ram L	_earn	ing O	utcoı	nes (l	PLO)				
CLR-1: Id	lentify the fundamental	concepts of thermodynam	ic systems and en	ergy transfer			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: U	tilize thermodynamic la	ws and their applications														ý								
							æ	(%)	9				Research			Sustainability		_						
CLR-4: Utilize the evaluation of properties of pure substances and vapour power cycles							Thinking (Bloom)	Proficiency (%)	Attainment (%)	dop)	ent	ese			ain		Work		Finance				
CLR-5: Utilize the evaluation of properties of gas and gas mixtures							g (E	ienc	mer	alway.	. <u>v</u>	Development	٦,	Usage	ø	Sus		Ē		inai	bu			
CLR-6 : <i>U</i>	tilize the thermodynam	ic relations and its significa	ance				nkin	ofic	tain	Ž	Analysis	Se ∈	Design,	l so	Culture	∞ŏ		Team	tion	∞	Learning			
Course Lear	rning Outcomes (CLO	At the end of this cours	se, learners will be	able to:			Level of Thii	Expected Pr	Expected At	Engineering Knowledge		Design & De	Analysis, De	Modern Tool	Society & C	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long Le	PS0 - 1	PSO-2	PSO - 3
CLO-1: A	pply the concept of the	rmodynamic properties to d	quantify energy tra	nsfer			3	90	80	Н		М	М	М	L	L	L	М	Μ	М	М	М	М	М
		ws to analyze various therr					3	90	80	Н		М	М	М	L	L	L	М	М	М	М	М	М	М
		ropy and availability to ther			exergy analysis		3	90	80	Н		М	М	М	L	L	L	М	М	М	М	M	М	М
		of pure substances and ana	alyze vapour powe	r cycles	<u> </u>	-	3	90	80	Н		М	М	М	L	L	L	М	Μ	М	М	M	М	М
	valuate the properties o	of gas and gas mixtures					3	90	80	Н		М	М	М	L	L	L	М	М	М	М	М	М	М
CLO-6: A	pply the knowledge of t	thermodynamic relations to	evaluate non mea	asurable prop	erties		3	90	80	Н	М	М	М	М	L	L	L	М	М	М	М	М	М	М

Durat	ion (hour)	12	12	12	12	12
S-1	SLO-1	Thermodynamic system and Control volume	Limitations of first law	Clausius theorem	Pure substances, Phase change phenomenon of a pure substance	Properties of ideal gases
3-1	SLO-2	Thermodynamic properties, State, Process and Cycle	Cyclic heat engine, Energy reservoirs,	Concept of entropy, T-s diagram	Property diagrams for phase change process	Properties of real gases
S-2	SLO-1	Thermodynamic equilibrium, Quasi-static process	Refrigerator and heat pump	Clausius inequality, Entropy principle	T-v, P-v,P-T diagram, P-v-T surface, Critical point and Triple point	Equation of state
0-2	SLO-2	Pure substance , State postulate	Thermal efficiency and COP	Application of the concept of Clausius theorem	T-s and h-s diagram, Dryness fraction,	Vander Waal's equation of state
S-3	SLO-1	Concept of temperature, Zeroth law of thermodynamics,	Kelvin-Planck statement and Clausius statement of second law	Clausius inequality on solving problems of heat engines, heat pump and refrigerators.	Use of Steam tables, Mollier chart	Compressibility factor, compressibility chart
3-3	SLO-2	Work and heat interaction	Equivalence of the two statements	Evaluation of change in entropy for solids and liquids	Identification of states & Determination of properties	Problem solving on evaluation of properties of ideal gas and real gas.
S-4	SLO-1	Path function and point function.	Tutorials on Second law of thermodynamics	Tutorials on change in entropy for solids and liquids	Tutorials on calculation of steam properties	Tutorials on properties of ideal gas and real gas.
3-4	SLO-2	pdVwork for various quasi-static processes	Tutorials on Second law of thermodynamics	Tutorials on change in entropy for solids and liquids	Tutorials on calculation of steam properties	Tutorials on properties of ideal gas and real gas.
S-5	SLO-1	Tutorials on Work and Heat Transfer.		Evaluation of change in entropy for ideal gases undergoing various processes	Rankine cycle	Properties of mixture of gases
3-3	SLO-2	other types of work transfer including flow work	Causes of irreversibility	Evaluation of change in entropy for ideal gases undergoing various processes	Operation of Rankine cycle	Dalton's law of partial pressures
S-6	SLO-1	First law of thermodynamics for a closed system	Carnot cycle	Available and unavailable energy	Analysis of Rankine cycle	Amagat's law of additive volumes
3-0	SLO-2	Concept of total energy E	Working of a Carnot engine	Dead state	Analysis of Rankine cycle	Internal energy, enthalpy
S-7	SLO-1	Various modes of energy	Thermal efficiency of a Carnot heat engine	Availability	Problems solving on Rankine cycle	specific heats and entropy of gas mixtures

	SLO-2	Tutorials on first law for a closed system	Tutorials on Carnot engines	Irreversibility	Problems solving on Rankine cycle	Problem solving on evaluation of properties of gas mixtures
S-8	SLO-1	Tutorials on first law: Constant volume, constant pressure, process in which PV=C	Reversed Carnot cycle	Tutorials on change in entropy for ideal gases	Tutorials on Rankine cycle with different turbine inlet conditions	Tutorials on properties of gas mixtures
3-0	SLO-2	Tutorials on first law: Polytropic, adiabatic process, Combination of different process	Carnot's theorem	Tutorials on change in entropy for ideal gases	Tutorials on Rankine cycle with different turbine inlet conditions	Tutorials – Mixing of gases
S-9	SLO-1	Internal energyand Enthalpy, specific heats	Thermodynamic temperature scale.	Availability of energy entering a system	Reheat Rankine cycle	Maxwell's relations
3-9	SLO-2	Process and cycle	Efficiency of Carnot heat engine	Availability of energy entering a system	Operation of reheat Rankine cycle	T-ds relations
S-10	SLO-1	First law applied to flow processes	COP of Carnot refrigerator	Isvsiem	Analysis of reheat Rankine cycle	Equations for dH and dU.
3-10	SLO-2	Derivation of general energy equation for a control volume	Carnot heat pump, COP	Problems solving on Availability of a closed system	Concept of regeneration in Rankine cycle	Clausius-Clapeyron Equation
S-11	SLO-1		Tutorials on combined heat engine & refrigerator/heat pump system	Availability in a steady flow process	Problem solving on reheat Rankine cycle	Joule-Thomson experiment
3-11	SLO-2	Problem solving on first law applied to flow processes	Tutorials on combined heat engine & refrigerator/heat pump system	Problem solving on availability	Problem solving on reheat Rankine cycle	Joule -Thomson coefficient.
C 12	SLO-1	Tutorial on first law applied to various steady flow devices	Tutorials on combined heat engine & refrigerator/heat pump system	Tutorials on availability	Tutorials on reheat Rankine cycle	Tutorials on Thermodynamic relations
S-12	SLO-2	Tutorial on first law applied to various steady flow devices	Tutorials on combined heat engine & refrigerator/heat pump system	Tutorials on availability	Tutorials on reheat Rankine cycle	Tutorials on Thermodynamic relations

Learning Resources 1. Mahesh M. Rathore, Thermal Engineering, Tata McGraw Hill Education, 2012 2. Yunus. ACengel., Michael A Boles, Thermodynamics – An Engineering Approach, 8th ed., Tata McGraw Hill-Education, 2015 3. Nag. P.K, Engineering Thermodynamics, 5th ed., Tata McGraw Hill Education, 2013 4. R. K. Rajput, Thermal Engineering, 10th ed., Laxmi Publications (P) Ltd, New Delhi, 2017

- Michael J Moran, and Howard N Shapiro, Fundamentals of Engineering Thermodynamics, 8th ed., John Wiley & Sons, New York, 2015
- 6. Claus Borgnakke, Richard E. Sonntag, Fundamentals of Thermodynamics, 7th ed., Wiley, 2009
- 7. Ramalingam. K. K, Steam tables, Sci. Tech Publishers, 2009

Learning Assess	sment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	l (10%)#	FIIIai Examination	i (50 % weightage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		30 %		30%	
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %	-	40 %	_	40%	
Level 2	Analyze	40 /0	-	40 /0	-	40 //	-	40 //	-	4070	-
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%	
Level 3	Create	20 /0	-	30 /0	-	30 //	-	30 %	-	30%	-
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in	1. Dr. R Velraj, IES,CEG, Anna University, Chennai, velrajr@annauniv.edu	1. Mr. V Thirunavukkarasu, SRMIST
2. Dr.A.Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in	2. Dr. M. Cheralathan, SRMIST

Cou		18MF(.10.51	ourse			ourse		С				Pro	fessin	nal Co	re				L	. T	Р	_		
Cod	de	N	Name	120	JID MECHANICS		Cat	egory	`					1 10	100010	nai oo	10				3	1	0	4
	equisite	Nil		Co-requisite Courses	Nil				ressiv urses		Vil													
		g Department	Mechanical Engineer		Data Book	/ Codes/Standards		Nil	urses															
		g _ opu	inioenamear Engineeri	···9		7	l																	
Course	e Learnin	ng Rationale (CLR):	The purpose of learning	ng this course is to:				Le	arning	3					Progr	ram Le	arnin	g Out	come	s (Pl	_O)			
	_		d and pressure measur					1	2	3	1	2	3	4	5	6	7	8	9 1	0 ′	11 1	2 1	3 1	4 15
CLR-2			of fluid mechanics to so		ms									ے			.≩.							
CLR-3 CLR-4			imensional and model a					(mc	%	%	e e		=	earc			labi		£					
CLR-4			le and design of hydrau dary layer, lift and drag		ips			(Blo	ncy	eut	/ledc		mer	Res	Эе		stail		8		Finance			
CLR-6			ds at rest as well as in r					king	ficie	E I	y v	ysis	elop	ign,	Usaç	ture	જ જ		eall r	- i	. 물	Ē		
		.,						Pii	Pro	Atte	l Bu	Anal	De	Des	00	Col	ent		×8 .5		gt.	Lea		
Course	e Learnin	ng Outcomes (CLO):	At the end of this cou	rse, learners will be a	able to:			evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	☐ Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Etnics	ndividual & Team Work		Project Mgt. &	Life Long Leaming		PSO - 3
CLO-1	: Ident	ify the properties of flu	ıid					2		80	Н	Н	Н	H	M	L	L		M L		- 1	H L	. <i>I</i>	I L
CLO-2	: Solve	e the fluid flow problem	18					3		80	Н	Н	Н	Н	М	L	L	L	M L	-	- 1	H L	. <i>I</i>	
CLO-3	: Apply	y the mathematical tec	hniques for practical flu	id flow problem				3		80	Н	Н	Н	Н	М	L				-		H L		
			ge process in fluid macl					3		80	Н	Н	Н	Н	М	L	L .		M L	-		H L		
			theory and flow over suid flows and their gove					3		80 80	H	H	H	H	M M	L	L .		M L	-		H L	. <i>H</i>	_
CLO-6	: Allaiy	yze trie dyrianiics or ild	ilu ilows ariu trieir gove	ming parameters				J	00	00	П	П	П	П	IVI	L	L	L	VI L	-	- /	П	. 1	1 L
Duratio	on (hour)	1	12		12	1:	2						12	?							12			
S-1	SLO-1	Types of Fluids, Prop	perties of fluid	Types of fluid flow		Dimensional analysis				H	ydraulic n	nachir	nes				В	ounda	ry laye	er				
3-1	SLO-2	Density, Specific weig	ght, Specific volume,	Lagrangian and Eul	lerian approach of study	Dimensions, Dimension	onal H	omoge	neity	Τι	urbines aı	nd Pui	mps				La	mina	r boun	dary	layer			
S-2	SLO-1	Specific gravity, Vapo	or pressure	Velocity of Fluid par	rticles	Buckingham's pi theor	rem			CI	Classification of turbines and pump					ps	Τι	ırbule	nt bou	ındar	y laye	er		
3-2	SLO-2	Viscosity: Dynamic a	nd Kinematic viscosity	Acceleration of Fluid	d particles	Model analysis				Pe	elton turb	ine-W	orking	g princ	ciple		Во	ounda	ry laye	er thi	cknes	s		
	SLO-1	Newton's law of visco	osity	Continuity equation		Advantages and applic	cations	S		Ve	elocity tria	ngle					Di	splac	ement	thick	kness			
S-3	SLO-2	Surface tension and	Capillarity	Continuity equation	in three dimensions	Similitude, Dimensioni	less nu	umbers	S	De	esign par	amete	ers, Pe	erform	ance			oblen		ng oi	n boui	ndary i	layer	
	SLO-1	Tutorials on fluid prop	perties	Tutorials on Velocity Continuity equation		Tutorials on Buckingh	am's p	i theor	rem	Tutorials on Pelton turbine								ound	dary la	ayer th	ickne	SS		
S-4	SLO-2	Tutorials on fluid prop	perties	Tutorials on Velocity Continuity equation	y, Acceleration and	Tutorials on Buckingh	am's p	i theor	rem	Τι	utorials or	n Pelto	on turi	bine			Τι	ıtorial	s on B	ound	dary la	ayer th	ickne	ss
	SLO-1	Bulk modulus of elast	ticity and	Fluid Dynamics		Model laws- Reynold's	s, Frou	ıde		Fr	rancis turi	oine-V	Vorkin	g prin	ciple		М	omen	tumthi	ckne	SS			
S-5	SLO-2	Fluid statics: Pascal's	slaw	Euler equation of m	otion	Model laws- Euler				Ve	elocity tria	ngle					Eı	nergy	thickn	ess				
	SLO-1	Hydrostatic law		Bernoulli's equation	1	Tutorials on Reynold's	and F	Froude	model	Ká	aplan turb	ine-W	Vorkin	g prin	ciple			ag fo	rce on	a fla	t plate	e due t	to bou	ındary
S-6	SLO-2	Manometers: Types		Applications of bern	noulli's equation		lel law	S		Ve	elocity tria	ngle							man r	nome	entum	integr	ral eq	uation
	SLO-2 Manometers: Types Applications of bernoulli's equation Weber and Mach model laws									1	· · ·													

	SLO-1	Piezometer	Venturimeter	Laminar flow-Reynold's experiment	Cavitation in turbines	Separation of boundary layer
S-7	SLO-2	Applications and Limitation	Orificemeter	Hagen poiseuille law	Problem solving on Turbine performances	Problem Solving on momentum integral equation
	SLO-1	Tutorials on laws of fluid statics	Tutorials on Venturimeter and Orificemeter	Tutorials on major and minor losses	Tutorials on Francis and Kaplan turbine	Tutorial problems on momentum integral equation
S-8	SLO-2	Tutorials on laws of fluid statics	Tutorials on Venturimeter and Orificemeter	Tutorials on major and minor losses	Tutorials on Francis and Kaplan turbine	Tutorial problems on momentum integral equation
S-9	SLO-1	U-Tube manometer	Pitot tube	Turbulent flow-Darcy equation	Reciprocating pump	Forces exerted by a flowing fluid on a stationary body
5-9	SLO-2	Problem Solving on U-tube manometer	Nozzle flow meter	Minor loss due to sudden enlargement	Single and double acting pumps-working principle	Separation of flow over bodies
S-10	SLO-1	Single column manometer	Bernoulli's equation for real fluid	Minor loss due to sudden contraction	Centrifugal pump - Working principle	Streamlined and bluff bodies
3-10	SLO-2	Differential U-tube manometer	Types of flow lines, Stream line	entrance and exit of pipe	Velocity triangle, Design parameters	Development of lift on a circular cylinder
S-11	SLO-1	Inverted differential U-tube manometer	Streak line and Path line	Flow through pipes in series	Cavitation in pumps	Development of lift on an aerofoil
3-11	SLO-2	Problem solving in differential manometer	Impulse Momentum equation	Flow through pipes in parallel	Performance curves on turbines and pumps	Problem Solving on lift and drag forces
S-12	SLO-1	Tutorials on differential manometer	Tutorials on finding force exerted by fluid on pipe bend	Tutorials on major and minor losses	Tutorials on centrifugal pump	Tutorials on lift and drag forces
3-12	SLO-2	Tutorials on differential manometer	Tutorials on finding force exerted by fluid on pipe bend	Tutorials on major and minor losses	Tutorials on centrifugal pump	Tutorials on lift and drag forces

Learning Resources	1. 2.	Rajput. R. K, A text book of Fluid Mechanics and Hydraulic Machines, S.Chand & Company Ltd., 6th ed., 2015 Bansal. R. K, A text book of Fluid Mechanics and Hydraulics Machines, Laxmi publications (P) Ltd., 9thed., 2015 Modi R.N. Seth S.M. Hydraulics and Fluid Mechanics Standard Back House 15thed., 2002	5.	White. F. M, Fluid Mechanics, Tata McGraw-Hill, 7th ed., 2011 Streeter. V. L, Wylie. E. B, Fluid Mechanics, McGraw Hill, 5thed., 1984 Medi P. N. Seth S. M. Huddenling and Fluid Mechanics. Standard Book House 15thed. 2002
	3.	Modi P.N, Seth S.M, Hydraulics and Fluid Mechanics, Standard Book House, 15thed., 2002	6.	Modi P.N, Seth S.M, Hydraulics and Fluid Mechanics, Standard Book House,15 th ed., 2002

Learning Ass	sessment											
	Dia ana'a			Contir	nuous Learning Ass	essment (50% weigh	ntage)			Final Franciscotion	- (FOO(=:=b4====)	
	Bloom's Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA – 3	3 (15%)	CLA – 4	4 (10%)	Final Examination	n (50% weightage)	
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Lovel 1	Remember	40 %		30 %		30 %		30 %		30%		
Level 1	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply	40 %		40 %		40 %		40 %		40%		
Level 2	Analyze	40 /0	-	40 %	-	40 /0	-	40 /0	-	4070	-	
Level 3	Evaluate	20 %		30 %		30 %	_	30 %		30%		
Level 3	Create	20 /0	-	30 /0	-	30 /0	-	30 /0	-	3070	-	
	Total	100) %	100) %	100) %	100) %	100 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in	1. Dr. R Velraj, IES, CEG, Anna University, Chennai, velrajr@annauniv.edu	1. Mr. V. Rajasekar, SRMIST
2. Dr.A.Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in	2. Dr. K. Suresh Kumar, SRMIST

Pre-requisite Courses Nil Co-requisite Courses Nil Courses Nil Courses Nil Course Courses Nil Course Course Course Nil Course C	Course Code	18MEC103T	Course Name	MANUFAC	TURING TECHNOLOGY	Course Category	С		Professional Core	3	T 1	P 0	C 4
	Courses	IVII	Mochani	Courses	Nil	Cour	essive rses	Nil					
Trogram Ecurining Vacconics (1 Ec)				Ŭ Ü	1		ning		Program Learning Outcomes (PLC	D)			

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	.earni	ing					Pro	gram	Learn	ing O	utcor	nes (l	PLO)				
CLR-1: Utilize the Concepts of casting Technology	1	2	3	1	2	! 3	3 4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Identify the Mechanical working of metals										>-								
CLR-3: Identify the Theory of metal cutting] _	9	<u></u>				달			iii		ایا						'n
CLR-4: Utilize machine tools principles and its application in manufacturing industry	(Bloom)	y (%)	ıt (%)	ع ا	5	ţ	Research			Sustainability		Work		92				
CLR-5: Identify the various metal joining process for the assembly operations.	9 8	roficiency	Attainment	a A	ے. ا	2 5	Z Z	Usage	go	Sust				inance	ng			
CLR-6: Utilize principles and techniques of casting, forming, joining and finishing operations and determine their suitability	Thinking	olic	tain	Ž	oiovled A		Design,	' I S	Culture	∞		Team	tion	∞	earning			
	<u>:</u>	1 1			2			200	ت «	nen		<u>∞</u>	ica.	Mgt.				'n
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Froinsering Knowledge	moldon O) deign	Analysis,	Modem	Society	Environment	Ethics	Individual &	Communication	Project I	Life Long	PS0 - 1	PS0 - 2	6 - OSA
CLO-1: Identify metal casting processes and to recognize the various casting techniques to apply for making the product	2	90	85	H	' L	. \ \	1 M	-	-	-		М	-	-	-	Н	L	Н
CLO-2: Identify metal forming processes and sheet metal techniques to apply the techniques for any fabrication work	2	90	85	H	۱ ۸	1 N	1 M	-	-	-	-	М	-	-	-	Н	L	Н
CLO-3: Use the theory behind the metal cutting operation and acquire the knowledge about cutting tool and cutting fluids	2	90	85	H	۱ ۸	1 N	1 M	-	-	-	-	М	-	-	-	Н	L	Н
CLO-4: Identify machine parts and operations of milling, shaping, slotting, planning and broaching machines	2	90	85	H	' <i>L</i>	. 1	1 L	-	-	-	-	М	-	-	-	Н	L	Н
CLO-5: Identify various metal joining process and its application in various industrial sectors	2	90	85	H	' L	. <i>F</i>	1 H	-	-	-	-	М	-	-	-	Н	L	Н
CLO-6: Identify manufacturing processes, tools, environment and suitable manufacturing processes for fabrication work	2	90	85	H	٨	1 N	1 M	-	-	-	-	М	-	-	-	Н	L	Н

Durati	ion (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to Casting	Introduction to Hot Working	Orthogonal cutting	Introduction to Gear Manufacturing	Types of Welding Processes, Types of Joints, Types of Welds,
3-1	SLO-2	Patterns and its types and Materials	Cold Working	Oblique cutting	Machining and Generating Processes	Power Density, Heat Balance in Fusion Welding
S-2	SLO-1	Pattern Allowances	Hot and Cold Rolling	Classification of cutting tools	Classification of Milling Machines and its basic construction,	General Technology of Arc Welding
3-2	SLO-2	Moulding and its types,	Types of rolling; Two, three, four, multi and Universal rolling	Single point cutting tools	Types of cutters in Milling machines	consumable and non-consumable electrodes Oxy-fuel Gas Welding
S-3	SLO-1	Moulding sand	Open die and Closed die forging	Multipoint cutting tools	Types of milling operations; (up and down, peripheral, face milling	Fundamentals of Shielded Metal Arc Welding
3-3	SLO-2	Design of Gating system	Wire drawing	Tool signature for single point cutting tool	Simple and differential Indexing methods and its calculations	Gas Metal Arc Welding, and Submerged Arc Welding
S-4	SLO-1	Tutorial for design of gating system	Tutorial Session	Tutorial on Numerical in cutting force calculation	Tutorial 10 Numerical in indexing methods	Tutorial Session
3-4	SLO-2	Tutorial for design of gating system	Tutorial Session	Tutorial on Numerical in cutting force calculation	Tutorial 10 Numerical in indexing methods	Tutorial Session
S-5	SLO-1	Numerical problems on pouring time	Hot, Cold wire drawing	Mechanics of orthogonal cutting	Shaping and slotting Machine	Fundamentals of Gas tungsten arc welding
3-3	SLO-2	Numerical problems on Caine's rule	Forward, backward and tube extrusion	Force relationship	Description and Operations	Resistance welding, and Plasma arc welding
0.0	SLO-1	Numerical Problems on Riser design	Shearing, Piercing	Merchant Circle	Planing; Double house and open side	Parametric considerations in solid-state welding
S-6	SLO-2	Numerical Problems on Riser design	Trimming and Stretch forming	Merchant Circle	Quick return mechanism, Work and tool holding Devices	Difference between fusion welding and solid-state process

S-7	SLO-1	Cores	Theory of Bending, Bending length	Determination of shear angle	Boring machine and its Specification, operations	Forge Welding, Roll Welding, Explosion Welding, Ultrasonic welding
3-1	SLO-2	Core making	Bending force calculations	Determination of shear angle	Jig boring machine	Friction welding and Friction stir welding, Friction surfacing and processing
S-8	SLO-1	Tutorial on Numerical in riser design and pouring time	Tutorial on Numerical in bending force calculation	Tutorial on Numerical in Merchant circle	Tutorial on Discussion about mechanism of special purpose machine	Tutorial Session
3-8	SLO-2	Tutorial on Numerical in riser design and pouring time	Tutorial on Numerical in bending force calculation	Tutorial on Numerical in Merchant circle	Tutorial on Discussion about mechanism of special purpose machine	Tutorial Session
S-9	SLO-1	Shell casting	Drawing	Chip formation	Specification of Broaching machine, its types and operations; internal, surface	Basic Solidification Concepts, Grain structure
3-9	SLO-2	Investment Casting	Blank size and and drawing force calculations	Cutting tool materials	Tool nomenclature of broaching tool	Post-Solidification Phase Transformations, CCT diagram
S-10		Die casting	Tube forming, Embossing and coining	Tool wear calculation	Grinding process, Types of Grinding machines	Residual Stresses and Distortion, weld defects, Inspection and Testing Methods,
3-10		Centrifugal Casting	Progressive dies	Taylor tool life calculation	Surface, Cylindrical and Centerless Grinding	factors of weldability, Types of weldability test techniques,
S-11	SLO-1	Casting defects	Compound and Combination dies	Machinability	Grinding Wheel and its types, Grinding specifications and type of abrasive bonds	Introduction on brazing and soldering methods
3-11	SLO-2	Remedies for defects	Defects in forming	Cutting Fluids	Lapping, Buffing, Honing, and Super finishing	filler materials
S-12	SLO-1	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session
J-12	SLO-2	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session	Tutorial Session

Learning Resources

- SeropeKalpakjian, Steven R Schmid Manufacturing Engineering and Technology, 7th ed., Pearson, 2018
- Mikell P. Groover, Fundamentals of Modern Manufacturing Materials, Processes, and Systems, 4th ed., John Wiley & Sons, 2010
- Roy A. Lindberg, Processes and materials of manufacture, Boston: Allyn and Bacon, Pearson education, 2006 A.C. Davies, The science and practice of welding, Vol. 1 and 2, 10th ed., Cambridge University Press, 2002
- John A. Schey, Introduction to manufacturing processes, 3rd ed., McGraw-Hill, 2000
- Sindo Kou, Welding Metallurgy, 2nd ed., John Wiley & Sons, 2003.
- John C. Lippold, Welding Metallurgy and Weldability, John Wiley & Sons, 2015
- Welding Handbook Volume 1 to 5, 9th ed., American Welding Society.2013

Learning Assess	ment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(EOO/ woightogo)
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#	FIIIai Examination	n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Lavel 1	Remember	40 %		30 %		30 %		30 %		30%	
Level 1	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %	_	40 %		40 %	_	40 %	_	40%	
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-
Level 3	Evaluate	20 %	_	30 %		30 %	_	30 %		30%	
Level 3	Create	20 /0	-	30 //	-	30 //	-	30 /0	-	30%	-
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0 %

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com	1. Dr. M. Prakash, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. N. Arunachalam, IIT Madras, chalam@iitm.ac.in	2. Dr. Manidipto Mukherjee, SRMIST

Course Code	18MEC104L	Course Name	FLUID DY	NAMICS LABORATORY			ourse tegory		С					Prof	essio	nal Co	ore					L 0		P 2	C 1
Pre-requisite Courses	Nil		Co-requisite Courses	18MEC102T				gress ourse		Nil															
Course Offering	Department	Mechanical Engineer	ring	Data Book	/ Codes/Standards		Nil																		
	• ,	The purpose of learning	ing this course is to:				L	earnir										ing O		•	•				
	ice working of flow n		nines				1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Practice Kinematics and dynamics of fluid flow in pipes CLR-3: Identify the various energy losses in pipes CLR-4: Identify the performance of pumps CLR-5: Analyze the performance of turbines CLR-6: Analyze fluid flow concepts, working principles of flow meters, energy heads and losses, performance of pumps, turbine								Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	& Culture	Environment & Sustainability		Individual & Team Work	iication	Project Mgt. & Finance	Life Long Learning			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to: CLO-1: Practice the concept of flow measurement devices									Expected 85		H Engineer	H Problem	H Design 8	H Analysis,	_ Modern _	- Society 8	- Environn	- Ethics	✓ Individua	Communication Com	N Project №	M Life Long	- PSO - 1	- PSO - 2	- PSO - 3
	ze the different type		<u> </u>				3	95 95	85		Н	Н	Н	Н	М	L	L	L	М	М	М	М	L	L	L
	ate the various ener						3	95	85		Н	Н	Н	Н	М	L	L	L	Μ	М	М	М	L	L	L
	ze the performance						3	95	85			Н	Н	Н	М	L	L	L	М	М	М	М	L	L	L
	ze the performance		flow motors, onergy	heads and losses, perfor	rmanaa of numna turhin		3	95 95	85 85	+ +	H	H H	H	H	M M	L	L	L	M M	M M	M M	M	L	L	<u></u>
CLO-0 . Allaly	ze naid now concept	is, working principles or	now meters, energy	neaus and iosses, penoi	mance or pumps, turbin	18	J	90	00		П	П	П	П	IVI	L	L	L	IVI	IVI	IVI	IVI	L	L	
Duration (hour)		6		6	6								6								6	i			
S-1 SLO-1 SLO-2		using Orificemeter	Flow visualization apparatus	using Reynolds	Study of major Energy I	oss i	in a pi	ре		Study o	of Kap	lan tı	urbine	Test	Rig			Study	of St	ıbmer	sible	Pump	Test	Rig	
S-2 SLO-1 SLO-2	Determine the co-e Orifice meter	fficient of discharge of	Free and forced vo	rtex flow visualization	Determine friction factor	at a	a giver	n pipe		Perform	nance	test	on Ka	aplan	turbin	ie		Perfo	rman	ce tes	t on S	Subme	ersible	pum	ıp
S-3 SLO-1 SLO-2		using Venturimeter		file of forced vortex and e forced vortex curve	Study of Pelton turbine					Study o	of Frai	ncis t	urbine	e Test	Rig			Study	of R	ecipro	cating	g Pum	p Tes	st Rig	
S-4 SLO-1 Determine the co-efficient of discharge of SLO-2 Venturimeter S-4 SLO-2 Venturimeter S-4 SLO-2 Venturimeter Performance test on								е		Perform	nance	test	on Fr	ancis	turbir	пе		Perfo	rman	ce tes	t on F	Recipro	ocatin	ig pui	тр
SLO-2 Visualization of cavitation in pipe flow points in the pipe							Study on impact of jet of water on vanes Study of Centrifugal Pump Test Rig					Study of Jet pump/ Performance test on Gear Pump Test Rig							n						
									f	Perform	nance	test	on Ce	entrifu	gal p	итр						let pur Gear p			
Learning Resources	SLO-2 Prandtl type Pitot tube losses due to pipe fittings water on different v Learning 1. Robert W. Fox, Alan T. McDonald, Philip J. Pritchard, Introduction to Fluid Mechanics, 8th ed., Wiley, 20								3. 4. 5.	KLI	Kumai	r, Eng										Co., 20	015		

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA -	4 (10%)	i iliai Examination	ii (50 % weigiilage)
	Level of Hilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Lovel 1	Remember		40 %		30 %		30 %		30 %		30%
Level I	Understand	- 40 %		-	30 /0	-	30 //	-	30 //	-	30%
Level 2	Apply		40 %	_	40 %	_	40 %	_	40 %		40%
Level 2	Analyze	-	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070
Level 3	Evaluate		20 %		30 %	_	30 %		30 %		30%
FEACI 2	Create	-	20 /0	_	30 /0	_	30 /0	_	30 /0	_	30%
	Total	100	0 %	100	0 %	10	0 %	10	0 %	10	0 %

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in	1. Dr. R Velraj, IES, CEG, Anna University, Chennai, velrajr@annauniv.edu	1. Dr. R Senthil, SRMIST
2. Dr.A.Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in	2. Mr. S Bharath Subramaniam, SRMIST

Course Code	18MEC105L	Course Name	MANUFACTURI	NG PROCESS LABORA	ATORY		ourse tegory	1	С					Prof	essio	nal C	ore					L 0	T 0	P 2	C 1
Pre-requisite Courses	Nil		Co-requisite Courses	18MEC103T				gressi ourse:		Nil															
Course Offeri	ng Department	Mechanical Enginee	ering	Data Book	k / Codes/Standards		Nil																		
Course Learn	ng Rationale (CLF	R): The purpose of learn	ning this course is to:				L	earnin	ng					ı	Prog	ram L	.earn	ing O		•	•				
		of lathe operations					1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	ctice the Production ctice basic Gear ma	of flat surface and conto	ur shapes on the give	en component										등			<u>F</u>								
	ctice Surface finishi						Level of Thinking (Bloom)	(%)	(%)		ge		Ħ	sear			inab		ork		Э				
	ctice and Preparation) (Bic	Expected Proficiency (%)	nent		wlec	s	bme	, Re	age	a)	usta		W W		Finance	ng			
CLR-6: Utili											Engineering Knowledge	Problem Analysis	Design & Development	s, Design, Research	Modem Tool Usage	Society & Culture	Environment & Sustainability		Individual & Team Work	Communication	∞	Life Long Learning			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to: CLO-1: Machine using lathe to create new components according to specified dimensions									Expected Attainment (%)							Society		Ethics	Individu		Project Mgt.		PS0 - 1	PSO - 2	PSO - 3
							3	85	80			Н	H	L	Н	L	H	L	L	Н	L	Н	L	L	L
	duce the flat surface ctice basic Gear Ma	e and contour shapes on t	the given component	•			3	90 95	85 90		H M	M	L	L H	Н	L	<u> </u>	L	H	H	L	H	L	L	_ <u>L</u>
	ctice Surface Finish						3	85	80		Н	I	Н	L	I	L	Н	Н	I	L	I	Н	I	I	1
	ctice casting and m						3	95	90		М	Н	Н	L	L	L	Н	L	L	L	L	L	L	L	L
CLO-6: Pra	ctice machines like	lathe, CNC Lathe, Shape	r, Slotter, Milling, CN	C MIlling, Gear hobbing,	grinding and sand mou	lding	3	90	85		Н	М	Н	М	М	L	М	М	М	М	L	Н	L	L	L
Duration (hour)		6		6	6	;							6								(6			
S-1 SLO-1 SLO-2	Perform plain tur	ning in lathe	Perform eccentric	turning in lathe	Perform V block shape machine	ng in	shape	r		Helical	Gear	cutti	ng in	Hobbi	ing m	achin	е	Grind and C	Cutter	grind	ing m	achin	9		
S-2 SLO-1 SLO-2	Perform step turr	ning in lathe	Perform Taper bor	ing in lathe	Perform V block shape machine.	ng in	shape	r		Helical			•		•			Grind and C						ol in	ГооІ
S-3 SLO-1 SLO-2	Perform chamfer	•	Perform Knurling in	n lathe	Perform Polygon millin	ng in ı	milling	machi	iie ,	Perforn machin	е							Prepa patte	rn wit	h loos	e-pie	ce pat	tern		•
S-4 SLO-1 Perform taper turning by compound Perform plain turning in CNC Lathe Perform Polygon m							milling	machi		Perforn machin		ace g	grindii	ng in (Grindi	ing		Prepa patte						solid	l/spli
S-5 SLO-1 SLO-2	Perform drilling in	n lathe	Perform step turnir	ng in CNC Lathe	Spur Gear cutting in milling			ne		Perforn machin	е		_	_		_		Prepa patte						solid/s	split
S-6 SLO-1 SLO-2		and internal thread	Performing chamfe	ering in CNC Lathe	Spur Gear cutting in n	nilling	machi	ne		Perforn machin		drica	al grin	ding i	n Grii	nding		Prepa patte						solid/s	plit
Learning Resources	rning 1. Chapman.W.A.J, Workshop Technology, Vol. I and II, Arnold Publisher, 2001								3. 4.					С Ма	chinir	ng Ha	nd Bo	ook, Ir	ndusti	rial Pr	ess Ir	nc., Ne	w Yo	ork, 19	

Learning As	sessment										
	Dia ami'a			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(EOO/ woightogo)
	Bloom's Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	1 (10%)#	Filiai Examination	n (50% weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%
Level 2	Apply Analyze	-	40 %	-	40 %	-	40 %	-	40 %	-	40%
Level 3	Evaluate Create	-	20 %	-	30 %	-	30 %	-	30 %	-	30%
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com	1. Mr. S. Sakthivel, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. N. Arunachalam, IIT Madras, chalam@iitm.ac.in	2. Mr. Sundar Singh Sivam S.P, SRMIST

Course Code	18MEC106T	Course Name	MECH	HANICS OF SOLIDS	Course Category	С	Professional Core	L 3	T 1	P 0	C 4
Pre-requisite Courses	18MES201T		Co-requisite Courses	Nil		essive rses	18MEC208T, 18MEE305T				
Course Offering	g Department	Mechanical Engineering	g	Data Book / Codes/Standards	Nil						

Course Offering Department	urse Offering Department Mechanical Engineering Data Book / Codes/Standards																				
	rse Learning Rationale (CLR): The purpose of learning this course is to: 1.1. Utilize concepts of stress and strain									ı	Progra	am L	earni	ng O	utcon		PLO)				
			1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Analyze bending and shear										_			≥								
CLR-3: Utilize concepts to design s	shafts		E	(%)	(0					arch			ilig B								
CLR-4: Analyze of slope and deflet	ction in beams		(Bloom)		ıt (%)		qge		ent	ese			aii		Work		ချွ				
CLR-5: Utilize concepts to design of	column and cylinders		g (B	iency	ment)wle	<u>.s</u>	Development	Š.	Usage	go.	Sustainability				Finance	ning			
CLR-6: Utilize concepts of stress, s	strain, slope and deflection in beams and d	lesign of shaft, column and cylinders	Thinking	roficie	Attainme		Knc	Analysis	Nel Ve	esign,	n	Culture	∞		Team	io	- Σ	ari			
		_	<u>≒</u>				ing	Ä			T00	ನ ನ	Jen		∞ =	ig	Mgt.	Je			
Course Learning Outcomes (CLO):	At the end of this course, learners will be	able to:	Level of	Expected	Expected		Engineering Knowledge	Problem	Design &	Analysis,	Modem -	Society 8	Environment	Ethics	Individual	Communication	Project ∧	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Identify concepts of stress	and strain		3	85	80		Н	Н	L	L	L	L	L	L	L	L	L	L	L	М	L
CLO-2: Analyze bending and shear	r stresses developed in beams		3	85	80		Н	Н	L	L	L	L	L	L	L	L	L	L	L	М	L
CLO-3: Apply the concepts necess	ary to design of shafts		3	85	80		Н	Н	Н	L	L	L	L	L	L	L	L	L	L	М	L
CLO-4: Analyze the slope and defle	ection in beams		3	85	80		Н	Н	L	L	L	L	L	L	L	L	L	L	L	М	L
CLO-5: Apply the concepts necess	ary to design of column and cylinders		3	85	80		Н	Н	Н	L	L	L	L	L	L	L	L	L	L	М	L
CLO-6: Analyze the stresses, slope	e and deflection in beams and apply the co	ncepts to design of shaft, column and cylinders	3	85	80		Н	Н	Н	L	L	L	L	L	L	L	L	L	L	М	L

Durati	on (hour)	12	12	12	12	12
0.4	SLO-1	Concept of stress and strain, Hooke's law	Introduction to types of beams and loads	Theory of pure torsion	Introduction, Beam deflection	Columns and struts
S-1	SLO-2	Tensile, compressive and shear stresses, Poisson's ratio	Shear force, bending moment diagram for cantilever beam: (a) due to pure point load	shear stress in terms of torque in a circular shaft		Members subjected to combined bending and axial loads
S-2	SLO-1	Stress-strain diagram Elastic constants and their relationship	(b) due to pure Uniformly Distributed Load (c) pure Uniformly Varying Load	Strength, Stiffness of shaft, Torsional rigidity & power transmitted	Problems on Relations	Expression for crippling load with different end conditions based on Euler's theory
3-2	SLO-2	Volumetric strain	Problems on Shear force and bending moment diagrams for cantilever beam	Problems on solid shaft, finding dimensions	Problems on Relations	Problems on crippling load with different end conditions based on Euler's theory
S-3	SLO-1	Bars of uniform and varying sections subjected to single loads	Shear force, bending moment diagram for simply supported beam: (a) due to pure point load	Torque expression for (a) solid circular shaft subjected to torsion	Slope and deflection of cantilever beam with (a) a point load	Expression for crippling load by Rankine's theory
	SLO-2	Bars of uniform and varying sections subjected to multiple loads	(b) due to pure Uniformly Distributed Load (c) pure Uniformly Varying Load	(b) hollow circular shaft subjected to torsion.	(b) Uniformly Distributed Load	Problems on crippling load by Rankine's theory
S-4	SLO-1	Tutorial on stress, strain, Hooke's law, elastic constants and volumetric strain	Tutorial on Shear force, bending moment diagrams for simply supported beam	Tutorial on hollow shaft (a) finding dimensions,	Tutorial on Slope, deflection of cantilever beam with (a) a point load	Tutorial on crippling load by Rankine's theory
3-4	SLO-2	Tutorial on bars of uniform and varying sections subjected to single, multiple loads	Tutorial on Shear force, bending moment diagrams for simply supported beam	(b) percentage of material savings	(b) Uniformly Distributed Load	Tutorial on crippling load by Rankine's theory
S-5	SLO-1	Analysis of bars of composite sections	Shear force, bending moment diagram for overhanging beam due to(a)pure point load	Circular shafts in series	Slope and deflection of simply supported beam with (a) a point load	Thin cylindrical shells subjected to internal pressure
3-3	SLO-2	Analysis of bars of composite sections	(b)pure Uniformly Distributed Load (c) pure Uniformly Varying Load	Circular shafts in parallel	(b) a Uniformly Distributed Load (Double integration method)	Change in dimensions of thin cylindrical shells due to internal pressure
S-6	SLO-1	Problems on Analysis of bars of composite sections	_	Problems on Circular shafts in series and parallel	Problems on Slope and deflection of simply supported beam with (a) a point load	Problems on thin cylindrical shells subjected to internal pressure

	SLO-2	Problems on Analysis of bars of composite sections		Problems on Circular shafts in series and parallel	(b) Uniformly Distributed Load (Double integration method)	change in dimensions of thin cylindrical shells due to internal pressure
S-7	SLO-1	Concept of Thermal stresses in simple bars	Theory of ure bending derivation,	Concepts on Strain energy due to torsion	Slope and deflection of simply supported beam with (a) a point load	Thin spherical shells subjected to internal pressure
5-1	SLO-2 Concept of Thermal stresses in composite		Bending stress in beams of regular sections	Concepts on Strain energy due to torsion	(b) Uniformly Distributed Load (Macaulay's method)	Change in dimensions of thin spherical shells
S-8	SLO-1	Tutorial. on Thermal stresses in simple and	Tutorial on Bending stress in beams of	Tutorial on Strain energy due to torsion	Tutorial on Slope, deflection of simply supported beam with point load, Uniformly	Tutorial on thin spherical shells subjected to internal pressure, change in dimensions
3-0	SLO-2	composite bars	regular sections	Tutorial on otrain energy due to torsion	Distributed Load	of thin spherical shells due to internal pressure
S-9	SLO-1	Principal plane, principal stress, Direct stress in two mutually perpendicular directions	Bending stress in beams having I- section	Solid circular shaft subjected to combined bending and torsion	Slope and deflection of cantilever beam with (a) a point load	Lame's theory on stresses in thick cylinders
3-9	SLO-2	Direct stress in two mutually perpendicular directions accompanied by a simple shear stress		Hollow circular shaft subjected to combined bending and torsion	(b) Uniformly Distributed Load (Moment area method)	Lame's theory on stresses in thick cylinders
S-10	SLO-1	Problems on Direct stress in two mutually perpendicular directions		Problems on circular shaft subjected to combined bending and torsion	Slope and deflection of simply supported beam with (a) point load	Problems on Lame's theory on stresses in thick cylinders
3-10	SLO-2	Problems on Direct stress in two mutually perpendicular directions	Problems on bending stress in beams having I and T sections	Problems on circular shaft subjected to combined bending and torsion	(b) Uniformly Distributed Load (Moment area method)	Problems on Lame's theory on stresses in thick cylinders
S-11	SLO-1	Mohr's circle: direct stress in tow mutually perpendicular directions without shear stress	Derivation of shear stress distribution in beams of different sections	Composite solid circular shaft	Castigliano's theorem	Stresses in compound thick cylinder and Shrink fit
	SLO-2	Mohr's circle: direct stress in two mutually perpendicular directions with shear stress	Derivation of shear stress distribution in beams having I and T sections	Composite hollow circular shaft	Maxwel's reciprocal theorem	Problems on stresses in compound thick cylinder
S-12	SLO-1 SLO-2	Tutorial on direct stress in two mutually perpendicular directions	Tutorial on shear stress distribution in beams of different sections such as I and T	Tutorial on composite circular shafts	Tutorial on Castigliano's and Maxwel's reciprocal theorem	Tutorial on stresses in compound thick cylinder and Shrink fit

	1.	Ferdinand P. Beer, E. Russell Johnston Jr., John T. DeWolf, David F. Mazurek, Mechanics of Materials, 7th
Learning		ed., McGraw Hill, 2014
Resources	2.	William A. Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, 3rd ed., McGraw
		Hill, 2007

- Egor P. Popov, Engineering Mechanics of Solid, 2nd ed., Prentice Hall of India Pvt. Ltd., 2009
 James M. Gere, Mechanics of Materials, 8th ed., Brooks/Cole, USA, 2013
 Shigley. J. E., Applied Mechanics of Materials, International Student edition, McGraw Hill, 2000

Learning Assess	sment												
_	Bloom's Continuous Learning Assessment (50% weightage)												
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	l (10%)#	Final Examination (50% weightage)			
	Level of Trilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %		

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1.Dr. Shankar Krishnapillai, IIT Madras, skris@iitm.ac.in	1. Dr. M. Kamaraj, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2.Dr. K. Jayabal, IIITDM, Kancheepuram, jayabal@iiitdm.ac.in	2.Mr. D. Raja, SRMIST

Cou		18MEC107T	EC107T Course Name APPLIED THERMAL ENGINEERING Course Category C Professional Core												L 3	T 1	P 0	C 4							
Pre-	requisite ourses	18MEC101T		Co-requisite Courses	Nil			Prog	gressiv	e _N	Nil											3		U	
		Department	Mechanical En		Data Bool	c / Codes/Standards				Tabl	es &Psy	hrom	etric d	chart											
					,																				
Cours	e Learnin	g Rationale (CL			Le	arning	ı					Prog	ram L	_earn	ing O	utco	nes (l	PLO)							
CLR-1	: Analy	ze the sequence	of operation of energ	gy cycles				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			als of Fuels and calc											£			ΞĘ								
			ce testing of IC Engi	nes and analysis of compress	sors			(moc	(%)	%	ge		Ħ	searc			inabi		ork		æ				
			rinciple of refrigeratio) (Bic	ency	nent	wled	s	bme	ı, Re	age	ø	Susta		W W		& Finance	g			
CLR-6	: Utilize	e the fundamenta	ls and psychrometric	processes				inking	rofici	ttain	X Z	ıalysi	evelc	esigr	s n lo	ültur	ıt & S		Теа	ation	≪ ⊥	earni			
Cours	e Learnin	g Outcomes (CL	.O): At the end of the	his course, learners will be	e able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt.	Life Long Learning	PSO - 1	PS0-2	6-08d
				nergy release and method	to calculate the efficienc	у		2	85	80	Н	Н	М	M	М	Ĺ	L	Ĺ	М	М	М	М	М	М	М
			properties and its ap	plications				3		80 80	H	H	M	M	M M	L	L	L	M M	M M	M M	M M	M	M M	M M
				ressors, their performance	e evaluation			3		80	Н	Н	M	M	M	L	L	L	M	M	M	M	M	М	M
				ems and evaluate its perfo				2	85	80	Н	Н	М	М	М	L	L	L	М	М	М	М	М	М	М
CLO-6	3: Analy	ze the fundamen	tal processes of air c	conditioning systems and c	do fundamental calculatio	ns		2	85	80	Н	М	М	М	М	L	L	L	М	М	М	М	М	Μ	М
Durati	ion (hour)		12		12	1:	2			12 12						2									
S-1	SLO-1	Introduction to a	ir standard cycles	Introduction to fue	ls, Solid fuels	Classification of IC en	gines			CI	assificati	on of	Air Co	ompre	ssors			Vapor compression refrigeration system and its working principle						m	
3-1	SLO-2	Air standard effic	ciency, Assumptions	Liquid fuels		Basic operations					onstructio Impresso		d work	ing of	recip	rocat	ing	Refrigerants and properties							
S-2	SLO-1	Otto cycle: Air si	andard efficiency	Gaseous fuels, Fu	uel properties	Actual p-v diagram of engines				Co	ompressi	on wit	th clea	arance	volui	me		Eco-f	riendl	y refri	gerai	nts			
0-2	SLO-2	Mean effective p	pressure	Stoichiometric air	fuel ratio	Actual p-v diagram of engines	f four s	stroke(CI	Co	ompressi	on wit	thout	cleara	nce			Analy cycle		vapo	r con	press	ion re	frige	ation
S-3	SLO-1	Power develope	d	Theoretical air and	d excess air.	Comparison of four sta engines	roke a	nd two	IC		quation fo ciprocatii				ting			P-h C							
0-0	SLO-2	Tutorials on Otto	cycle	Air fuel ratio from	analysis of products	Comparison of CI and	l SI En	ngines		Vo	olumetric	efficie	ency c	of com	press	sor		in VC	R cyc	le	•	rheati			nena
S-4	SLO-1	Tutorials on Otto	cycle	Conversion betwe weight analysis	en volumetric analysis to	Engine Performance p	oaram	eters		со	itorial pro impresso	r with	clear	ance	•			refrig	eratio	n syst	em	oblem			
J-4	SLO-2	Diesel cycle: Air	standard efficiency	Analysis of exhaus	st and flue gas	Measurements of fuel	consu	umptio	n	Tu co	Tutorial problems on single stage compressor without clearance							refrig	eratio	n syst	em	oblem			
S-5	SLO-1	Mean effective p	ressure	Internal energy an	d enthalpy of formation	Measurements of air o	consur	mption			Free air delivered					Simp syste	,	or ab	sorpt	ion ref	rigera	ntion			
3-3	SLO-2	Power develope	d	Determination of o	calorific values of the fuel id fuel.	Measurement of brake	e powe	er	Free air delivered						Simp syste	,	or ab	sorpt	orption refrigeration						
S-6	SLO-1	Dual cycle: Air s	tandard efficiency	Determination of o	calorific values of the fuel	Measurement of in-cy	linder	pressu	Multistage compression							of atm etric cl		neric a	ir and	I					
5-0	SLO-2 Mean Effective pressure Tutorials on determination of calorific value Tutorials on IC.					Tutorials on IC Engine	ne performance Multistage compression Properties of atmospheric a Psychrometric chart						neric a	ir and	I										

S-7	SLO-1	Power developed	Tutorials on determination of calorific value	Tutorials on IC Engine Performance	Problems on multistage compression	Psychrometric processes. sensible heating and cooling
3-1	SLO-2	Tutorials on Diesel cycle	Tutorials on determination of calorific value	Tutorials on IC Engine Performance	Problems on volumetric efficiency	Psychrometric processes. sensible heating and cooling
S-8	SLO-1	Tutorials on Diesel cycle	Tutorial: Numerical problems on First law analysis	Tutorial: Numerical problems on engine performance parameters	Tutorials on multi stage compression, FAD	Cooling and dehumidification
3-6	SLO-2	Tutorials on Dual cycle	Tutorial: Numerical problems on First law analysis	Tutorial: Numerical problems on engine performance parameters	Tutorials on multi stage compression, FAD	Heating and humidification
S-9	SLO-1	Problems on Mean effective pressure	Heat calculations using enthalpy tables	Heat balance sheet	Rotary compressors	Tutorial: Numerical problems on psychrometric processes
3-9	SLO-2	Comparison of Otto, Diesel and Dual cycles	Problem Solving in Heat calculations	Heat balance sheet	Vane compressor	Summer air conditioning system
S-10		Brayton cycle	Adiabatic flame temperature	Problems on Heat balance sheet	Roots blower	Winter air conditioning system
3-10		Brayton cycle efficiency	Adiabatic flame temperature	Problems on Heat balance sheet	Different compressors and features	Year-round air conditioning systems
C 44	SLO-1	Concept of Reheat in Brayton cycle	Chemical Equilibrium	Problems on Heat balance sheet	Reciprocating compressors and rotary compressors - comparison	Heat load and simple calculations
S-11	SLO-2	Concept of Regeneration in Brayton cycle	Chemical equilibrium calculations	Problems on Heat balance sheet	Reciprocating compressors and rotary compressors - comparison	Heat load and simple calculations
	SLO-1	Tutorials on power developed	Tutorial Problems on Adiabatic flame temperature for various fuels	Engine performance curves: Constant speed engines	Tutorial: Numerical problems on multi stage compression	Tutorial: Numerical problems on psychrometric processes
S-12		Tutorials on power developed	Tutorial Problems on Adiabatic flame Engine performance curves: Variable Tutorial: N		Tutorial: Numerical problems on multi stage compression	Tutorial: Numerical problems on psychrometric processes

Learning	1. Mahesh Rathore , Thermal Engineering, Tata McGraw Hill, 2012
_	2. Eastop T. D., Mcconkey. A, Applied Thermodynamics for Engineering Technologists, 5th ed., Pearson Edition, 2009
Resources	3. Kenneth A Kroos, Merle C. Potter, Thermodynamics for Engineers, Cengage learning, 2016

4. Rajput.R. K, Thermal Engineering, 10th ed., Laxmi Publications, 2015 5. Yunus A Cengel, Michael A Boles, Thermodynamics: An Engineering Approach,8th ed., Tata McGraw Hill, 2015

Learning Assess	ment												
	Bloom's Continuous Learning Assessment (50% weightage)												
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	40 %		30 %		30 %		30 %		30%			
Level I	Understand	40 /0	_	30 /0	-	30 /0	-	30 /0	-	30%	-		
Level 2	Apply	40 %	_	40 %		40 %	_	40 %		40%			
Level 2	Analyze	40 /0	_	40 /0	-	40 /0	-	40 /0	-	4070	-		
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%			
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	10	0 %	100) %	10	0 %	100) %	10	0 %		

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in	1. Dr. R Velraj, IES, CEG, Anna University, Chennai, velrajr@annauniv.edu	1. Mr. G. Manikandaraja, SRMIST
2. Dr.A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in	2. Dr. G. Kasiraman, SRMIST

Course Code 18MEC108T Course Name MATERIALS TECHNOLOGY				IALS TECHNOLOGY		ourse	,	С				Pro	fessic	nal C	ore					L 3	T 0	P 0	C 3
	re-requisite Courses Nil Co-requisite Courses 18MEC111L Progressive Courses Nil																						
Course Of	ffering Department	Mechanical Engir	neering	Data Book / Codes	Standards	Nil																	
Course Le	earning Rationale (CLR): The purpose of lea	arning this course is to:			L	earni	ng					Prog	ram L	_earn	ing O	utcor	nes (l	PLO)				
CLR-1:	Acquire knowledge abou	ut solidification of meta	als, phase diagrams and	salient features of iron-carbon sy	stem	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Apply mechanism of pla	stic deformation, stren	gthening mechanisms, i	heat treatment and surface harde	ning processes										ý								
CLR-3:	Utilize the mechanical b					Ê	(9	(9				Research			Sustainability								
CLR-4:	Identify about structure,					00	9)	ıt (%	2	P	ent	ese			aine		Team Work		Finance				
CLR-5:	Acquire knowledge abou	ut properties and appli	cations of advanced eng	gineering materials		3 (B	enc	men	o division	S	mdc	Ą.	age	e	Sust		E >		ıa.	Ð			
CLR-6:	Utilize knowledge about	mechanical behavior,	phase diagrams, structi	ure, properties of materials and th	eir applications	Thinking (Bloom)	Proficiency (%)	Attainment (%)	2	Analysis	Development	Design, I	l Us	Culture	∞ŏ		Tea	ion	∞ŏ	earning			
Course Le	earning Outcomes (CLC	<u></u>				Level of	Expected	Expected	Engineering Knowledge		Design & De	Analysis, De	Modern Tool Usage	Society & Cl	Environment	Ethics	Individual &	Communication	Project Mgt.	Life Long Le	PS0 - 1	PSO - 2	PSO - 3
CLO-1:	Interpret phase diagram	s and correlate structu	re property relationship	S		2	90	85	F	-	-	-	М	-	-	-	-	-	-	-	-	-	
CLO-2:	Identify strengthening m	echanism, effect of he	at treatment and surfac	e hardening on the properties of r	naterials	3	90	85	F		-	-	М	-	-	-	-	-	-	-	-	-	-
CLO-3:	Analyze failure of engine	eering materials				2	90	85	F		-	М	М	1	1	-	-	-	-	-	-	М	-
CLO-4:	Select ferrous and non-t	ferrous alloys for variou	us engineering applicati	ons		3	90	85	H	-	-	-	-	-	L	1			-	L	-	-	-
CLO-5:						2	90	85	H	-	-	_	-	-	М	М	-	-	-	-	-	-	L
CLO-6:	Interpret phase diagram	s, analyze mechanical	behavior of materials, s	select materials for various engine	ering applications	3	90	85	H	Н	-	М	М		М	М	-	-	-	L	-	М	L

Durati	on (hour)	9	9	9	9	9
0.4	SLO-1	Crystal structures	Deformation by slip	Introduction to fracture	Properties of plain carbon steel	Introduction to Smart materials
S-1	SLO-2	Imperfection in solids: Point, line	Slip systems, critically resolved shear stress	Types of fracture in metals	Properties of tool steel and stainless steel	Types of Smart materials
SLO-1		interfacial and volume defects Solidification	Shear strength of perfect and real crystals,	Stress-strain behavior of metals	Dual phase steels: properties	Shape memory alloys
3-2	SLO-2	Nucleation and Growth	Concept of work hardening, Stages of work hardening		Dual phase steels: processing, composition and applications	Properties of Nickel based and other superalloys
S-3	SLO-1	Dendritic growth	Solia sollition strenathenina	Hardness: Rockwell, Brinell, Vickers hardness	Brief introduction on High Strength Low Alloy (HSLA) steel	Classes of polymers
3-3	SLO-2	Segregation and Homogenization	Grain boundary strengthening, Hall-Petch relation	Impact test: Charpy and Izod	effects of microalloying elements	Properties and applications of PE, PP, PS, PVC, Teflon
S-4	SLO-1	Introduction to Solid solutions	Dispersion strengthening: Precipitation	Griffith's theory of brittle fracture	Transformation induced plasticity (TRIP) steel, its properties and applications	Classes of ceramics
3-4	SLO-2	Types and factors governing substitutional solubility based on Hume Rothery's rules	Particulates and Fibers	Griffith equation	Twinning induced plasticity (TWIP) steel, its properties and applications	Properties and applications of Al2O3, ZrO2, SiC, Si3N4, AlN
S-5	SLO-1	Introduction to Phase diagrams	Non-equilibrium phases	Stress intensity factor	Properties of cast irons: grey, white,	Types and classification of composite materials
5-0	SLO-2	Phase rules and its application	INIAMENSITE RAINITE	Fracture toughness, Ductile to brittle transition	Properties of cast irons: malleable and spheroidal cast irons	Reinforcement and matrix material, Rule of Mixture
S-6	SLO-1	Interpretation of phase diagrams	rpretation of phase diagrams Introduction to TTT		Copper and copper alloys with their applications	Properties of MMC, CMC and PMC
3-0	SLO-2	Interpretation of phase diagrams	CCT diagrams, and their importance	Low and high cycle fatigue test	Copper, Brass, Bronze, Cupronickel, Muntz metal, Gun metal	Applications of MMC, CMC and PMC

S-7	SLO-1	Classification of phase diagram	Heat treatment processes: Annealing, Normalizing,	Stages of fatigue	Classification and properties of Aluminium alloys	Nanocrystalline materials, Classification based on dimension with examples,
0-1	SLO-2	Classification of phase diagram	Tempering, Quenching	High temperature fracture, Creep curve	Age hardening, Different alloy series	CNT, graphene and their applications
S-8	SLO-1	Iron Iron-carbide phase diagram	Case hardening: carburizing,	Hallure analysis: sources of failure	Magnesium alloys – advantages and problems	Biomaterials - applications, Types - metals, ceramics
3-8	SLO-2	Iron Iron-carbide phase diagram	nitriding, cyaniding, carbo-nitriding	Procedure of failure analysis	Magnesium alloys – Types and designations	polymers and composites, Biocompatibility
S-9	SLO-1	Microstructural aspects and invariant reactions in Fe-C diagram	Flame and induction hardening	Introduction to Non-Destructive Testing (NDT)	I itanium alloys - α , β and α + β alloys	Introduction to structure and characterization of materials
3-9		Microstructural aspects and invariant reactions in Fe-C diagram	Effect of hardening processes on hardness and microstructure	Liquid penetrant testing, Magnetic particle testing	Types of alloying additions, Properties and applications	XRD, SEM and TEM

Learning Resources	1. 2. 3. 4. 5. 6. 7.	Flake. C Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, 2008 Dieter.G.E., Mechanical Metallurgy, McGraw Hill, Singapore, 2001 Thomas H. Courtney, Mechanical Behaviour of Engineering materials, McGraw Hill, Singapore, 2000 Flinn.R.A., Trojan.P.K., Engineering Materials and their applications, Jaico, Bombay, 1995 Budinski.K.G., Budinski.M.K., Engineering Materials Properties and selection, Prentice Hall of India, 2004 ASM Metals Hand book, Failure analysis and prevention, Vol: 10, 14th ed., New York, 2002 Reza Abbaschian, Lara Abbaschian& Robert E. Reed-Hill, Principles of Physical Metallurgy, Cengage Learning, 2010 Michelle Addington and Daniel Schodek, "Smart Materials and New Technologies", Elsevier print, 2005	11.12.13.14.	William D. Callister, David G. Rethwisch, Material's Science and Engineering: An Introduction,8 th ed., Wiley publication, 2009 Donald R. Askeland, Wendelin J. Wright, Science and Engineering of Materials, 7 th ed., Cengage Learning, 2011
-----------------------	--	--	---	--

Learning Assess	sment													
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (EOO/ waightaga)			
	Level of Thinking	CLA -	1 (10%)	CLA -	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	FIIIai Examinatio	n (50% weightage)			
	Level of Trilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	1	30%	-			
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %		40%	-			
Level 3	Evaluate Create	reate 30 % -		30 % -		30 % -		30 %	-	30%	-			
	Total 100 %				0 %	10	0 %	100) %	100 %				

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com	Dr. ShubhabrataDatta, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. N. Arunachalam, IIT Madras, chalam@iitm.ac.in	Mr. D. Selwyn Jebadurai, SRMIST

Course Code	18MEC109L	Course Name	STRENGTH OF	MATERIALS LABORAT	ORY		urse egory		С					Prof	essior	nal C	ore					L 0		P 2	C 1
Pre-requisite Courses	Nil		Co-requisite Courses	18MEC206T				gress		Nil															
Course Offering	Department	Mechanica	l Engineering	Data Book	/ Codes/Standards	ı	Nil																		
Course Learnin	g Rationale (CL	R): The purpos	e of learning this course is to:				L	earni	ng					ı	Progra	am L	earni	ng Oı	ıtcon	nes (F	PLO)				
			arious destructive tests				1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3: Utilize	mechanical prop		luence of heat treatment materials under different loadi c loading	ing			(moon)	y (%)	ıt (%)		edge		ent	esearch			tainability		Vork		псе				
			nth of various materials under o ength of materials under exteri		28		evel of Thinking (Bloom)	Expected Proficiency (%)	d Attainment (%)		Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability		Individual & Team Work	nication	Project Mgt. & Finance	g Learning			
									Life Long	PSO - 1	PSO-2	PSO - 3													
			arious destructive testing meth Is and to interpret the same af		ssion test		3	80 80	85 85		H	H	M M	M	H M	-	-	-	H	-	-	-	-	-	-
			leflection test on beams and te		nas		3	80	85	1 1	Н	Н	М	M	Н	-	-	-	Н	-	-	-	-	-	-
			ned and un-notched specimen		.90		3	80	85	1	Н	Н	М	М	М	-	-	-	Н	-	-	-	-	-	_
CLO-5: Identi	fy the aspects of	testing the streng	th of various materials under o	different loading condition	IS		3	80	85		Н	Н	М	М	М	-	-	-	Н	-	-	-	-	-	-
CLO-6: Cond	uct destructive te	sts to determine s	strength of materials under ext	ernally applied loads			3	80	85		Н	Н	М	М	М	-	-	-	Н	-	-	-	-	-	-
Duration (hour)		6		6	6								6								6	i			
S-1 SLO-1 SLO-2	Tensile test on N	Mild steel rod	Test on open coil s	prings	Torsion test on Graded	steels	s		ı	Double	shea	ar test	on m	etallio	c mate	erials	E	Bend t	test o	f meta	allic r	ods			
S-2 SLO-1 SLO-2	Tensile test on N	Mild steel rod	Test on closed coil	, ,	Torsion test on Graded					Double								Bend t							
S-3 SLO-1 SLO-2	Compression tes	st of Concrete cul	bes Izod impact test		Deflection test on beam materials			materials conditions						hed											
S-4 SLO-1 SLO-2	Compression te	st of Cylinders	charpy impact test		Deflection test on beam materials	ns of a	differe	ent		Rockw materia		Brinel	l hard	ness	test o	f met		-atigu notche				erials	under	run-	
S-5 SLO-1 SLO-2	Unhardened spe		strain gauge	J	Measurement of pressu cylinders using strain ga			walle	d	Bucklir	ng an	alysis	of str	uts			3	Study	on pl	noto e	lastic	ity			
S-6 SLO-1 SLO-2		nechanical prope empered specime		U	Measurement of pressu cylinders using strain g			walle	d	Bucklir	ng an	alysis	of str	uts			5	Study	on pł	noto e	lastic	ity			
Learning Resources	1. Ferdinand	Beer, E. Russell	Johnston, Jr., John DeWolf, Da	avid Mazurek, Mechanics	s of Materials, 7 th ed., Mo	cGraw	v - Hi	II, 201	13			ni S. M atory			Mecha	anics,	2nd e	ed.,Ta	ta Mo	Graw	/ Hill,	2001			

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	ł (10%)#	i iliai Examination	ii (50 % weigiilage)					
	Level of Hilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember		30 %		30 %	_	30 %		30 %		30%
Level I	Understand	-	30 70	-	30 70	-	30 /0	-	30 70	-	3070
Level 2	Apply	_	40 %	_	40 %	_	40 %	_	40 %	_	40%
Level 2	Analyze	_	40 /0	_	40 /0	_	70 /0	_	40 /0	_	7070
Level 3	Evaluate		30 %		30 %	_	30 %		30 %		30%
Level 3	Create			-	30 70	-	30 70	-	30 70	-	3070
	Total	Total 100 % 100 % 100 % 100 %					0 %	10	0 %		

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1.Dr. Shankar Krishnapillai, IIT Madras, skris@iitm.ac.in	1. Dr. P. Nandakumar, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2.Dr. K. Jayabal, IIITDM, Kancheepuram, jayabal@iiitdm.ac.in	2. Mr. A. Vinoth, SRMIST

Course Code	-	18MEC110L	Course Name	HEAT P	OWER LABORATO	RY		Cours	-	С				Pro	fession	al Coi	re				L 0	T 0	P C 2 1
Pre-req Cour	ses	Nil		Co-requisite Courses	18MEC107T				ogres Cours														
Course C	Offering	Department	Mechanical Engineer	ring	Data I	Book / Codes/St	andards	Nil															
Course		. Detionale (CLD)	The nurnees of learn	ing this source is to					Laarm						Progra	I a		040		/DL O	`		-
		Rationale (CLR):		0	-				Learn				1 0							•	•	40	
			functions of IC Engines					1	2			1 2	3	4	5	6	7 8	9	10	11	12	13	14 15
		the properties of lu						- [2	8	8	1	n D	ŧ					ž	5	æ			
			I heat balance test on IC and emissions test	engines				, a	Si Si	ent			bme	_	ge			×		Janc	g		
-		,	t on steam power plant a	and air compressor					ficie	ji ji	1 3	ysis	lole/	ign,	Usa	an la	ø.	9	- E	ΞΞ	Ē		
			rformance of Internal co		ir compressors and	stoam nowor nlar	nt .	2 2	P P	Att	1 3	Ana	ě	Ğ,	8	3 3	ent Sijity	~	icati	gt.	Leg		
OLIN-U.	Junze	оры аноно ано рег	וטווומווטס טו ווונסווומו נטו	iibusiioii tiigiiles, d	iii compressors and s	steam power plai	п	of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		✓ Engineering knowledge ▼ Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability Ethics	Luncs Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	<u>-</u>	-2 -5
Course I	earning	Outcomes (CLO)	: At the end of this cou	irse learners will he	able to:			_ 3	xpe	- S			esic	naly	lode	900	Sustaii Fthirs	i i i	l mo	roje	je L	PSO - 1	PSO - 2 PSO - 3
			and functions of IC Engir		abic to.			2			7	H M	-	M				H		-	-	Н	
			lubricants and fuels					2				1 H	-	L	-	-		Н		-	-	-	L -
			d heat balance test on IC	c enaines				2				Н Н	М	L	М	-		Н		-	-	-	М -
			on and emissions test					3		85		1 Н	-	-	-	-		Н	-	-	-	-	- M
CLO-5:	Analyz	e performance tes	t on steam power plant a	nd air compressor				3	95	85	I	Н Н	-	-	-	-		Н	-	-	-	-	Н Н
CLO-6:	Analyz	e operations and p	erformance of Internal c	ombustion engines,	air compressors and	d steam power pl	ant	3	95	85	I	Н Н	М	L	-	-		Н	-	-	-	Н	
Duration	(hour)		6		6		6						6								6		
S S	LO-1			Determine viscosi	tv usina Redwood	Performan	ce test on petro	l enai	ne with	h	Heat bala	ance te	st on fo	our st	oke die	sel	T						
	LO-2	Components of Inte	ernal combustion engine	viscometer	, .		ynamometer	. 3			engine w						He	at bal	ance te	est on	boiler		
s S	LO-1			Dotormino viococi	tu uning Couhalt	Performand	ce test on single	e cylir	der hi	gh	Heat bala	anaa ta	ot on f	our of	raka dia	.001							
	LO-2	Valve timing diagra	m of IC Engines	Determine viscosii viscometer	ly using Sayboil		el engine with	•			engine w				оке ан	sei	Pei	rforma	ance te	st on	steam	turbin	e
				viscometer			edynamometer/				engine w	iliioul C	alulilli	etei									
s S	LO-1			Determine flash a	nd fire point/cloud an		ce test on single		der hi	gh	Retardat	ion test	on slo	w spe	ed dies	sel	Pe	rforma	ance te	st on	two st	aae	
	LO-2	Port timing diagran	n of IC Engines	pour point		speea aies	el engine withE				engine/e								nting a				
				ľ		current/nyd	lraulic dynamor	neter										•			•		
Learning		1. Ganesan. V.	Internal Combustion End	gines, Tata McGraw	-Hill, New Delhi, 201	5	2. Mathur.M			a. R. P,	, A course	in Inte	ernal C	ombu	stion E	ngine	s, Dhai	npatR	ai & So	ons, 2	010		
Resource	es						3. Laborator	ту ма	ıual														
Learning	Assess	sment																					
		Bloom's			Continu	ious Learning As												Fin	al Fxa	minat	ion (50)% w≏	ightage)
		Level of Thinking	CLA – 1	. ,	CLA – 2	\ /			3 (15%					A – 4	(10%)#								0 0 /
		,	Theory	Practice	Theory	Practice	Theory			Praction	ce	TI	heory		P	ractic	е		Theo	ry	-	Pra	ctice
Level 1		Remember		40 %	-	30 %	-			30 %	6		-			30 %			-			3	0%
		Understand					1																
Level 2		Apply	- -	40 %	-	40 %	-			40 %	6		-			40 %			-			4	0%
		Analyze Evaluate					-																
Level 3		Create	-	20 %	-	30 %	-			30 %	6		-			30 %			-			3	0%
		Total	100	%	100	%		10	0 %					100	%						100 %		
# CL A 4		i Jiai	100	/0	Tallia Mini Danianta		- It Childry MOC	_) /0					100	/0						100 /0		

Total 100 % 100 % 100 % 100 % 100 % 100 % 4 CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in	1. Dr. R Velraj, IES,CEG, Anna University, Chennai, velrajr@annauniv.edu	1.Dr. G. Balaji, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in	2.Dr. D. Sivakrishna Reddy, SRMIST

Course Code	18MEC111L	Course Name	MATERIALS TI	ECHNOLOGY LABORAT	TORY		urse egory	,	С					Pro	fessi	onal C	Core					L 0	T 0	P 2	C 1
Pre-requisite Courses	Nil		Co-requisite Courses	18MEC108T				gress ourse		Nil															
Course Offerin	g Department	Mechanical Engine	ering	Data Book	/ Codes/Standards		Nil																		
Course Learni	ng Rationale (CL	R): The purpose of lead	ning this course is to:				L	earnii	ng]					Prog	ıram l	_earn	ing O	utco	mes (PLO))			
		nd need of specimen prep			oscopic observation		1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	,	microstructure of various		metallurgical properties										يـ			<u> 4</u>								l
		process for various applic nt impact on hardness an		naes		1	(moi	(%)	(%)		ge		Ħ	searc			Sustainability		λ		ø.				l
		avior and understand stre				1) (B)	ency	nent		wled	"	bme	, Re	age	a	usta		w W		Finance	Ð			l
CLR-6: Utiliz	e the knowledge	for identifying metals, allo	ys based on microstru	icture and analyze the et	fect of heat treatment		king	oficie	tainn		Kno	alysis	selo	sign	l Us	Culture	8		Теаг	ion	× Fi	Learning			ı
		1					ij	P.	d At		ering	Αĥ	& De	, De	20	ت «	men		al &	nica	Mgt.	g Le		l '	۱
Course Learni	ng Outcomes (Cl	LO): At the end of this c	ourse, learners will be	e able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)			Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & (Environment &	Ethics	Individual & Team Work	Communication	Project Mgt. &	Life Long	PS0 - 1	PSO-2	PSO - 3
		pecimen preparation for m					1	95	90			-	-	-	Н	-	-	-	Н	-	-	-	L	- '	-
		of various metals, alloys			treatment processes		1	95	90		Н	-	-	М	Н	-	-	-	М	-	-	-	L	<u></u> '	-
		d analyze the effect of he heat treatments and prop					3	95 95	90 90		H	-	-	H	H M	-	-	-	M H	-	-	-	H	-	H
		r and understand stress a					2	95	85		Н	Н	-	Н	Н	-	-	-	Н	-	-	-	Н		Н
	tify metals, alloys	based on microstructure,	analyze effect of heat	t treatment on hardness a	and microstructural change	S	3	95	90		Н	-	-	Н	Н	-	-	-	М	-	-	-	Н		Н
Duration (hour)		6		6	6								6								(6			
s SLO-1	Study the Mount																	_							
1-2 SLO-2	Preparing the s under microscop	ample for identification pe	Identify Alloy - Ste	el based alloys	Identify various heat treat	me	nt for	MCS		Jomny	/ End	quen	ched	Steel				Coati	ng th	ickne	ss Ev	aluatio	on		
\$ SLO-1 3-4 SLO-2	Identify Metal - I	Plain Carbon steel	Identify Alloy - Cop	oper based alloys	Various heat treated stee Normalised, annealed, Te				ed,	Micro	Vicke	rs Te	ster					Analy	ze va	arious	stres	s usin	g tens	some	ter
s SLO-1 5-6 SLO-2	Identify Metal - 0	Cast iron	Identify Alloy -Ligh	t Metal alloys	Case hardened steel- Induction Hardened and	as	er Ha	ırdene	d	prope	ties o	of GC	Iron a	and S	G Iro	n		Wear	anal	lysis u	sing I	Pin-on	-disc		
LL	1				1																				
Learning Resources		Avnar, Introduction to phy Askeland, Wendelin J. W			97 th ed., Cengage Learning, 2	201	1	3. 4.		M sta		-													

Learning Assess	sment												
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)		
	Level of Thinking	CLA -	CLA – 1 (10%) CLA – 2 (15%) CLA – 3 (15%) CLA – 4 (10%)#										
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember		40 %		30 %		30 %		30 %		30%		
Level I	Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%		
Level 2	Apply		40 %		40 %		40 %		40 %		40%		
Level 2	Analyze	-	40 /0	-	40 /0	-	40 70	-	40 /0	-	4070		
1 1 2	Evaluate		00.07	0%		20.0/		200/					
Level 3	Create	-	20 %	9 % - 30 % - 30				-	30 %	- 30%			
	Total 100 %				0 %	10	0 %	100) %	10	00 %		

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com	1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com	1. Mrs. R. Ambigai, SRMIST
2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in	2. Dr. N. Arunachalam, IIT Madras, chalam@iitm.ac.in	2. Dr. U. Mohammed Iqbal, SRMIST

ACADEMIC CURRICULA

Professional Core Courses

MECHATRONICS ENGINEERING

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Course Code	18MHC101J	Course Name	MECHANICS	OF SOLIDS AND FLUIDS	Course Category	С	Professional Core	<u>L</u>	T 0	P 2	C 4
Pre-requisit Courses	e _{Nil}		Co-requisite Courses	Nil	Progre		Nil				
Course Offeri	ng Department	Mechati	ronics Engineering	Data Book / Codes/Standards	Nil	•					

Course Offering Department Mechatronics Engineering	Data Book / Codes/Standards	IVII																	
Course Learning Rationale (CLR): The purpose of learning this	course is to:	Le	earniı	ng					Progr	ram Lo	earni	ng O	utcor	nes (l	PLO)				
CLR-1: Understand the behavior of materials under load		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Identify types of beam and understand their deflection un	der different types of load										_								
CLR-3: Understand the behavior of materials under torque		=	_	_				search			Sustainability								
CLR-4: Analyze the buckling load for columns with different supp		(moo	(%)/	t (%)	ge		in a	ses			aina		Work		8				
CLR-5: Analyze the physical behavior of fluids using the concept	s of continuity equation and Bernoulli's theorem.	- (Blo	ency	Attainment	Knowledge	"	elopment	, Re	ge		nste				Finance	g			
CLR-6: Explain the basic idea of dimensional analysis		hinking	oficie	ainn	Ş S	lysis	velo	Design,	Usage	ulture	∞ర		Feam	o	ĭ⊑ ≪	aming			
		- Fi	Pr		ing	Analysis	De	De	Tool	O	ent		∞	cati	Mgt.	Fe			
Course Learning Outcomes (CLO): At the end of this course, lea	arners will be able to:	Level of 7	Expected	Expected	Engineering	Problem	Design &	Analysis,	Modern 1	Society &	Environment	Ethics	Individual	Communication	Project M	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Estimate the different types of stress induced in material		3	90	85	Н	Н	М	-	L	-	-	-	Н	-	-	-	Н	-	Н
CLO-2: Analyze the shear force and bending moment in beam		3	85	80	Н	Н	М		L	-	-	-	Н	-	-	-	Н	-	Н
CLO-3: Calculate torque induced in shaft		3	90	85	Н	Н	М	-	L	-	-	-	Н	-	-	-	Н	-	Н
CLO-4: Analyze the buclking of column.		3	85	80	Н	Н	М	-	L	-	-	-	Н	-	-	-	Н	-	Н
CLO-5: Dertermine the coefficient of discharge of different devices	es S	3	85	80	Н	Н	М	-	L	-	-	-	Н	-	-	-	Н	-	Н
CLO-6: Estimate losses in pipes		3	85	80	Н	Н	М	-	L	-	-	-	Н	-	-	-	Н	-	Н

		Stress, Strain and Deformation of Solids	Transverse Loading on Beams, Shear Force and Bending Moment	Torsion and Columns	Fluid Flow Concepts and Dynamics of Fluids	Dimensional Analysis and Flow through Pipes
Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Concept of stress-strain and its types, Hooke's law, modulus of elasticity	Types of beams and loadings, shear force and bending moments	Theory of torsion	Introduction to Fluids Mechanics	Introduction of Dimensions and units
3-1	SLO-2	Factor of safety, Poisson's ratio, elastic constants and their relationship	Sign convention for shear force and bending moments	Derive torsional equation	Properties of fluid	Concepts of dimensional homogeneity, Rayleigh method
	SLO-1	Analysis of bars of uniform cross sections subjected to different loads	Analyze shear force, bending moment for cantilever beam with point load at free end	Analyze torque transmitted by a solid shaft	Application of fluid	Problems in Rayleigh method
S-2	SLO-2	Analysis of bars varying cross sections subjected to different loads	Analyze shear force, bending moment for cantilever beam with different loads at different points	Problems in Analysis of torque transmitted by a solid shaft	Basics numerical problem in fluid properties	Application of Rayleigh method
S-3	SLO-1	Problems in Analysis of bars of uniform cross sections subjected to different loads.	Problems in Analysis of shear force and	Analyze torque transmitted by a hollow shaft	Derivation of Continuity Equation	Introduction of Buckingham's ☐ theorem
3-3	SLO-2	Problems in Analysis of bars of varying cross sections subjected to different loads	bending moment for cantilever beam with Uniformly Distributed Load	Problems in Analysis of torque transmitted by a hollow shaft	Problems in velocity and discharge of fluids in pipe using continuity equation	Properties of Buckingham's Π theorem
S 4-5	SLO-1 SLO-2	Lab 1: Tensile test on mild steel	Lab 4: Charpy and Izod impact test on steel specimen	Lab 7: Torsional test on mild steel	Lab 10: Determine coefficient of discharge of Orificemeter	Lab 13: Verify Bernoulli's theorem
S-6	SLO-1	Principle of superposition	Analyze shear force and bending moment for simply supported beam with point loads	Analysis of strength of varying cross sections of shafts	Equations of motion, derivation of Euler's equation and Bernoulli's equation	Numerical problems in Buckingham's Π theorem
3-0	SLO-2	Problems in Principle of Superposition	Analysis of shear force, bending moment for simply supported beam with UDL	Analysis of strength of varying cross sections of shafts	Derive Euler's equation and Bernoulli's equation	Advantage and disadvantage of Rayleigh method and Buckingham's Π theorem
S-7	SLO-1	Analyze uniform and varying cross section of composite bar	Problems in cantilever beams	Problems in shafts with varying cross section	Problems in Euler's equation and Bernoulli's equation	Introduction of Losses in pipes
3-1	SLO-2	Problems in composite bar with uniform and varying cross section	Problems in simply supported beams	Problems in shafts with varying cross section	Assumptions and Disadvantages of Bernoulli's equation	Types of losses, analysis of Minor losses in pipes

0.0	SLO-1	Analyze stress in composite bars due to temperature difference.	Analyze shear force, bending moment for overhanging beam with point loads and UDL	Types of columns, applications	Application of Bernoulli's equation	Problems in Minor losses
S-8	SLO-2	Problems in stress in composite bars due to temperature difference	Analyze shear force, bending moment for overhanging beam with point loads and UDL	Expression for buckling load of columns with different support conditions	Introduction to Venturimeter	Problems in Minor losses
S 9-10	SLO-1 SLO-2	Lab 2: Deflection test on different beams	Lab 5: Double shear and (or) Compression test		Lab 11: Determine coefficient of discharge of Venturimeter	Lab 14: Determine Minor losses: Expansion and contraction losses in pipes
S-11	SLO-1	Principal plane and Principal stresses	Analyze maximum bending moment and point of contraflexure in overhanging beam	Determine buckling load for columns with different support conditions using Euler's formula	Derivation and assumption of Venturimeter	Introduction to Major losses in pipes
3-11	SLO-2	Analysis of direct stresses in one plane and two mutually perpendicular planes	noint of contraflexure in overhanging heam	Determine buckling load for columns with different support conditions using Euler's formula	Problems in Venturimeter	Problems in Darcy Weisbach and Chezy formula
	SLO-1	Analyze direct stresses in one plane and	Theory and assumption of simple bending in beam	Problem in buckling	introduction to Onnice meter	Analyze discharge, velocity of fluids flows through pipes in series
S-12	SLO-2	two mutually perpendicular planes using Mohr's circle	Derivation of simple bending in a beam			Analyze discharge, velocity of fluids flows through pipes in parallel
S-13	SLO-1	Problems in Analysis of direct stresses in one plane and two mutually perpendicular	handing in haam	Determine buckling load for columns with different support conditions using Euler's formula	INDMENCAL PRODIEMS IN UNICEMEIER	Construction and working principle of centrifugal pump
	SLO-2	planes	Analysis of bending stress in symmetrical and unsymmetrical beam section	Problems in columns using Euler's formula	Application of Orifice meter	Construction and working principle of reciprocating pump
S 14-15	SLO-1 SLO-2	Lab 3: Deflection test on different beams	Lab 6: Charpy and Izod impact test on steel specimen	I oh O' Fotigue toot	Lab 12: Determine Major losses in pipe flow	Lab 15: Determine Minor losses: Expansion and contraction losses in pipes

Learning
Resources
Resources

- Bansal. R. K, Strength of Materials, 6th ed., Lakshmi publications Pvt. Ltd., 2018
 Ramamurtham S and Narayanan R, Strength of Materials, 18th ed., DhanpatRai Pvt. Ltd., 2018
 Bansal. R. K, Fluid Mechanics and Hydraulic Machines, 10th ed., Laxmi publications (P) Ltd., 2018
- Kumar, K. L, Engineering Fluid Mechanics, 8th ed., S. Chand and co limited, 2012
 Timoshenko, S. P., Gere, M. J, Mechanics of Materials, 5th ed., Stanley Thornes (PUB) Ltd, 1999.
 Strength of Material Laboratory Manual, SRMIST
 Fluid Mechanics Laboratory Manual, SRMIST

Learning Asses	ssment										
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Filiai Examination	i (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
r. Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	10	0 %	100	0 %	10	0 %	100	0 %	10	0 %

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. K.Maheshwaran, Senior Engineer, TAFE, Chennai, maheshwaran@tafe.com	1. Dr. P. Karthikeyan, MIT campus, Anna university, pkarthikeyan@annauniv.edu	1. Ms. D. Gayathiri, SRMIST
2.R.Dhinesh Babu, Senior Engineer, Technofit SDN BHD.,dinesh@technofit.com	2. Dr.B.Mohan, Professor, Anna University, mohan@mitindia.edu	2. Mr. G. Balakumaran, SRMIST

Course Code	18MHC102T	Course Name	ELECTRICAL I	MACHINES AND ACTUATORS	Course Category	С	Professional Core	L 3	T 0	P 0	C 3
Pre-requis Courses	118FES101.1		Co-requisite Courses	18MHC104L	- 3	essive	Nil				
Course Offe	ring Department	Mechat	ronics Engineering	Data Book / Codes/Standards	Nil						

	1																		
Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng						Prog	ram L	.earni	ing O	utcor	nes (l	PLO)				
CLR-1: Understand the construction and principle of operation of DC machines	1	2	3	Ī	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Understand the construction and principle of operation of AC machines											Ŋ								
CLR-3: Understand the construction and principle of operation of Special machines	=	(%)	<u></u>		_			arch			iii								
CLR-4: Identify different Control circuits for DC and AC motors	(Bloom)		ıt (%)		dge		ent	Research			Sustainability		Work		92				
CLR-5: Analyse the DC and AC machines for suitable applications) (B	Proficiency	Attainment		we .	S	Development	, R	Usage	Ф	Sust		E /		inance	rning			
CLR-6: Apply the Control circuits for different applications	Thinking	ofici	tai		ᇫ	Analysis	svelc	Design,	l Us	ulture	∞ర		Team	tion	∞	arni			
	불	P.			ring	Ä	& De	, D	T00	S S	nen			ica	Mgt.	J Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering Knowledge	Problem	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual &	Communication	Project N	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Operate different types of DC machines	3	75	70		Н	Н	-	-	-	L	-	-	-	-	-	Μ	-	-	-
CLO-2: Operate different types of AC machines	3	75	70		Н	Н		1	-	L	-	-	-	-	-	Μ	-	-	-
CLO-3: Operate different types of Special machines	3	75	70		Н	М	-	-	-	L	-	-	-	-	-	Μ	-	-	-
CLO-4: Analyze the control circuits for suitable actuation	3	75	70		Н	-	М	М	М	L	-	-	-	-	-	Μ	-	-	-
CLO-5: Apply the different machines for suitable Applicatios	3	75	70		Н	-	М	М	М	L		-	Н	-	-	М		-	-
CLO-6: Operate, analyze and apply different machines and control circuits for suitable applications	3	75	70		Н	-	М	М	М	L	-	-	Н	-	-	Μ	-	-	-

		DC Machines	Trandformers and Induction Motors	Synchronous and Special Machines	Thyrister for Controller for Actuators	Applications of Actuators
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	DC machines: Introduction	Transformer: Construction	Synchronous motor	Introduction to Relays	Applications of actuators
3-1	SLO-2	Construction	Principle, Types of Transformers	Construction	Fuses and Circuit Breakers	Different types of drives
0.0	SLO-1	Principle of operation	Emf equation	Synchronous motor	Introduction to Thyristor	Electric vehicles
S-2	SLO-2	Types of DC machines based on construction	Voltage regulation	Principle of operation	Thyristor Rectifier	DC drive with chopper control for electric vehicle
	SLO-1	Shunt Motor,	Simple problems in Transformers	Methods of starting Synchronous motor	Thyristor Choppers	Introduction to traction
S-3	SLO-2	Series Motor, Compound motor	Introduction to 3-phase system	Difference between Induction and Synchronous motors	Thyristor Choppers	chopper controlled traction drive
S-4	SLO-1	Back Emf, Voltage equations	Three phase induction motor construction	Applications of Synchronous motors	Thyristor Inverters	Robotic gripper
5-4	SLO-2	Torque equation, Simple Problems	principle of operation	Introduction to special machines	Applications of converters	Applications of robotic grippers
0.5	SLO-1	Characteristics of D.C Shunt motor, Series motor	Production of RMF	PMDC motors: Construction	Thyristor controller starters	Introduction to mems
S-5	SLO-2	Speed Control Methods	Production of RMF	principle of operation	Electronic speed control methods for DC motors	Applications of mems actuators
S-6	SLO-1	Necessity of a starter	Torque-slip characteristics	Stepper motors: construction,	Thyristor speed control of DC Shunt Motor	Introduction to solenoids

	SLO-2	Types of Starters	Torque equation	principle of operation of VR, PM Stepper Motors	Thyristor speed control of DC Series Motor	Solenoid operated fuel injection systems
S-7	SLO-1	3 point Starters	Linear Induction Motors: Construction		Speed control of single phase Induction motor using Inverter	Stepper motor throttle actuators
3-1	SLO-2	3 point Starters	Principle of operation		Speed control of single phase Induction motor using Inverter	Stepper motor throttle actuators
S-8	SLO-1	4 point Starters	Difference between Three phase and Single Phase induction Motors		Electronic Speed control of Synchronous Motor	Actuators for capsule filling machines
3-0	SLO-2	4 point Starters	Difference between Three phase and Single Phase induction Motors	Principle of operation	Driver circuit for Stepper motors	Actuators for capsule filling machines
S-9	SLO-1	Braking methods- Dynamic and plugging	Introduction to Single Phase induction Motors	Servo Motors: Types, Construction	Unipolar drive for Variable reluctance	Actuators for Labelling Machines
3-9	SLO-2	Regenerative braking	Principle and operation of single phase induction motor		Bipolar drive for Permanent Magnet and Hybrid motors	Actuators for Labelling Machines

Learning 1. B. L Theraja, A. K. Theraja, A text book of electrical technology, Volume II, S. Chand Publications, 2008 2. S. K. Bhattacharya, S. Chatterjee, industrial Electronics and control, TTTI, Chandigarh 3. Gopal K. Dubey, Fundamentals of Electrical drives, Narosa publications 2014 3. Gopal K. Dubey 5. Chatterjee, industrial Electronics and control, TTTI, Chandigarh 3. Gopal K. Dubey 5. Chatterjee, industrial Electronics and control, TTTI, Chandigarh 3. Gopal K. Dubey 5. Chatterjee, industrial Electronics and control, TTTI, Chandigarh 3. Gopal K. Dubey 5. Chatterjee, industrial Electronics and control, TTTI, Chandigarh 3. Gopal K. Dubey 5. Chatterjee, industrial Electronics and control, TTTI, Chandigarh 3. Gopal K. Dubey 5. Chatterjee, industrial Electronics and control, TTTI, Chandigarh 5. Chatterjee, industrial Electronics and control, Electronics and control, Electronics and control, Electronics and Chatterjee, industrial Electronics and

Learning As	sessment												
	Dla ami'a				Final Franciscotic	- (FOO): abta)							
	Bloom's Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	1 (10%)#	Finai Examinatio	n (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total 100 %				0 %	10	0 %	10	0 %	100 %			

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. N. Gunavardhini, TANGEDCO, Salem, gunatneb1990@gmail.com	1. Dr. S. S. Dash, Government College of Engineering Kednhhar, Orisha, munu_dash_2k@yahoo.com	1. Dr. M. Santhosh Rani, SRMIST
2. Dr. S. Janardhanam, CAPGEMINI.	2. Dr. K. Sujatha, Dr. MGR Educational and Research Institute, drksujatha23@gmail.com	2. Dr. T. Muthuramalingam, SRMIST

Course Code	18MHC103T	Course Name	SOLID STATE	DEVICES AND CIRCUITS	Course Category	С	Professional Core	L 3	T 0	P 0	C 3
Pre-requisit Courses	e 18EES101J		Co-requisite Courses	18MHC104L	Progre Cour		18MHC108L				
Course Offeri	ng Department	Mechatronics	Engineering	Data Book / Codes/Standards	Nil						

Course Offering Department Mechauronics Engineering	ata book / Codes/Standards /V/	11																	
Course Learning Rationale (CLR): The purpose of learning this course is to:		Le	arnin	g					Prog	ram L	.earn	ing O	utcor	nes (l	PLO)				
CLR-1: Utilize the characteristics of semiconductor devices		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Identify the different amplifier using 'h parameter and equivalent circuit'											у								
CLR-3: Build the various concepts of feedback and oscillators and multi vibrators		(mo	<u> </u>	_				arch TC			pilit								
CLR-4: Utilize the various rectifier and regulator circuits		<u>8</u>	y (%)	t (%)	Knowledge		ent	Research			Sustainability		Work		9				
CLR-5: Identify the different power supply circuits		g (Blo	ency	Attainment	N N	S	elopme	a,	Usage	Θ	sust				inance	пg			
CLR-6: Gain knowledge on operational amplifiers and its basic applications		Thinking	ofici	tain	호	Analysis	- S	Design,	l Ns	ulture	∞ŏ		Team	ion	⊗ T	arni			
		崖丨	F.		ig.	Ang	& De	, De	Lool	S C	nen		∞	jca	Mgt.	J Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:		Level of	Expected	Expected	Engineering	Problem	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual	Communication	Project ∧	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Describe band theory of solids with special reference to semi-conductors.		2	75	70	Н	М	М	H	М	Ĺ	М	L	М	М	-	Н	Н	Н	Н
CLO-2: Design Amplifier using 'h' Parameters and Equivalent Circuits		3	75	70	Н	М	М	Н	М	L	М	-	М	М	L	Н	Н	Н	Н
CLO-3: Illustrate the various concepts of feedback and oscillators and multi vibrators		3	75	70	Н	М	М	М	L	L	Μ	L	М	Μ	L	Н	-	-	-
CLO-4: Design various Rectifier and Regulator circuits		3	75	70	Н	М	М	-	L	L	М	L	-	М	L	Н	Н	Н	Н
CLO-5: Evaluate the performance of Power Supply Circuits.		3	75	70	Н	М	М	Н	L		М	L	М	М	L	Н	-	-	-
CLO-6: Gain knowledge on operational amplifiers and its basic applications		3	75	70	Н	М	-	Н	М	L	Μ	L	М	М	L	Н	Н	Н	Η

		Special Semiconductor Devices	Amplifier	Feedback Circuits	Switching Circuits and Power Supplies	Operational Amplifiers
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Semiconductor devices: Introduction	Introduction to amplifiers. Transistor as an amplifier, FET as an amplifier	Basic concepts of feedback	Basic about Switching action of transistor	Introduction to Operational amplifier
0-1	SLO-2	Classification of semiconductor devices	Types of Biasing	Types-Positive and negative feedback	Concept of Switching action of transistor	Ideal characteristics of op-amp
S-2	SLO-1	Characteristics of Zener diode	Self- biasing of transistor	Principle of feedback in amplifiers	Introduction of astable multivibrator	Internal block diagram of op-amp
3-2	SLO-2	Application of Zener diode	Fixed biasing, Voltage divider biasing	Principle of feedback in oscillators	Working principle of astable multivibrator	Slew rate of op-amp
S-3	SLO-1	Working principle, characteristics Schottky, diode PIN and Shockley diode	Small signal model of BJT	Voltage series network	Introduction of monostable multivibrator	Introduction about DC characteristics of op- amp
3-3	SLO-2	Applications of Schottky, diode PIN and Shockley diode	Two port network of BJT	Voltage shunt network	Working of monostable multivibrator	Concept of DC characteristics op- amp
S-4	SLO-1	Working principle, characteristics Tunnel diode	Hybrid parameter for BJT	Current series network	Introduction of bistable multivibrator	Introduction about AC characteristics of op- amp
3-4	SLO-2	Applications of Tunnel diode and varactor diode	h- parameter model for CE, CB and CC configuration	Current shunt network	Working of bistable multivibrator	Concept of AC characteristics op- amp
S-5	SLO-1	Working principle, characteristics Tunnel diode and varactor diode	h- parameter model for CE configuration and analysis for CE configuration	LC oscillator: Hartley oscillator - working principle	Circuit diagram of Schmitt trigger	Introduction of differential amplifier
3-3	SLO-2	Applications of Tunnel diode and varactor diode	Analysis for CE configuration	Hartley oscillator -derivation for the frequency of oscillation	Working of Schmitt trigger	Types of differential amplifier
S-6	SLO-1	Working principle, characteristics of thyristor: UJT	Power amplifiers: Class A working principle	Colpitt's oscillator - working principle	Introduction to Rectifiers and its types	Inverting buffer amplifier
3-0	SLO-2	Applications of Thyristor: UJT	Class A derivation for the efficiency	Colpitt's oscillator - derivation for the frequency of oscillation	Regulators and its types	Non-inverting buffer amplifier

S-7		Working principle, characteristics of thyristor: SCR	Class B working principle	Clap oscillator - working principle	Circuit diagram and working of Series regulator	Basic applications: Inverting Summing amplifier
3-1	SLO-2	Applications of thyristor: SCR	Class B derivation for the efficiency	Clap oscillator - derivation for the frequency of oscillation	Circuit diagram and working of Shunt regulator	Non-Inverting Summing amplifier
S-8	SLO-1	Working principle, characteristics of DIAC	Class AB, Class C working principle	RC oscillator: RC Phase shift oscillator - working	Block diagram of SMPS	Subtractor
3-0	SLO-2	Applications of DIAC	Class AB, Class C derivation for the efficiency	RC Phase shift oscillator - derivation for the frequency of oscillation	Working principle of SMPS	V-I and I-V converter
S-9	SLO-1	Working principle, characteristics of TRIAC	Tuned amplifiers	Wien bridge oscillator - working	Block diagram of UPS	Introduction and basic concept of Comparator
3-9	SLO-2	Applications of TRIAC	Types of Tuned amplifiers	Wien bridge oscillator - derivation for the frequency of oscillation	Working principle of UPS	Application of Comparator

Learning Resources	 David A Bell, Electronic devices and circuits, Oxford Publication., 2008 Robert Boylestad and Louis Nashelsky, Electronic devices and circuit theory, 7th ed., Prentice Hall. Roy Choudhury, Shail B. Jain, Linear integrated circuits, New Age International publishers, 2010 	4. J. B. Gupta, Electronic devices and Circuits, Sanjay Kumar Kattaria Publication, 2010 5. Milman., Halkias. C, Electronic devices and circuits, Tata McGraw Hill publications, 2001
-----------------------	--	---

Learning Asses	sment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)	
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#	FIIIai Examination	i (50 % weightage)	
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	30 %	_	30 %	_	30 %	_	30 %	_	30%		
Level I	Understand	30 70	-	30 70	-	30 /0	-	30 70	-	3070	-	
Level 2	Apply	40 %	_	40 %		40 %	_	40 %	_	40%		
LEVEI Z	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-	
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%		
Level 3	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	10	0 %	10	0 %	10	0 %	10	0 %	100 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr.S.AnandaKumar, Deputy Chief Engineer, Control and Instrumentation, TPS-2, NLC India Limited, sith.anandkumar@gmail.com	1. Dr. B. Chittibabu, IIITDM, Kanchipuram, bcbabu@iiitdm.ac.in	1. Mrs. V. Krithika, SRMIST
2.Mrs.T.Priya, Kavin Engineering and Services Private Limited, priya@kavinengg.com	2. Dr. P. Karthikeyan, MIT campus, Anna university, pkarthikeyan@annauniv.edu	2. Mr. K. Sridharan, SRMIST

Cou		18MHC104L	Course Name	ELECTRICAL AND) ELECTRONICS LABOR	RATORY		ourse tegory		С					Pro	fessio	onal C	ore					L 0		P 4	C 2
	requisite ourses	18EES101J		Co-requisite Courses	18MHC102T				gress ourse		Nil															
Cours	e Offerin	g Department	Mechatronics En	gineering	Data Book	/ Codes/Standards		Nil																		
Cours	e Learnir	ng Rationale (CL	R): The purpose of le	earning this course is to:				L	earnii	ng						Prog	ram L	_earn	ing O	utcor	nes (l	PLO)				
CLR-1			ng discrete components					1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
				circuits and design circu	its										_			ıξ								
CLR-3			concepts and operation					Ē	(%	%		Ф		+	earc			labil		논						
CLR-4			concepts and operation					Bloc	cy (j t		ledg		men	Rese	Ф		stair		Wol		& Finance	_			
CLR-5			their ability in selecting components for particular application haracteristics of semiconductor devices, amplifiers, multivibrator and operational amplifiers and electrical driv							in		now	/sis	elop	gu,	Jsag	& Culture	s Su		eam	5	Ë	in Oi			
CLK-0	. Othiz	e criaracteristics (racteristics of semiconductor devices, ampliners, multivibrator and operational ampliners and electrical d							Atta		Jg K	ınal)	Dev	Desi	9	Cult	ant 8		& Te	catic		Lear			
	ourse Learning Outcomes (CLO): At the end of this course, learners will be able to:							Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society &	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt.	Life Long Learning	PS0 - 1	PSO - 2	PSO - 3
CLO-1				g discrete components				2	85	80		Н	-	-	-	Н	-	Н	-	Н	Н	-	-	-	-	-
CLO-2				grated circuits and desig				3	85	80		Н	-	-	Н	H	-	Н	-	Н	Н	-	-	-	-	
CLO-3				erating DC and AC mac				3	85 85	80 85		Н	-	-	- Н	H	-	Н	-	H	H	-	-	-	-	-
CLO-4				C and AC and Special in for particular application				2	85	85		Н	-	-	-	п_	-	- Н	-	Н	Н	-	-	-	-	_
CLO-6					iri tor and operational amplit	iers and electrical drives		3	85	80		Н	-		-	-		-	-	Н	Н	-		-	-	÷
020-0	, , ,,ppi)	y characteristics c	or someonauctor acrice	o, ampimoro, mataviorat	tor and operational ampin	ioro ana cicotnoar anvec		10	00	00										- 1 1		l l				
Durati	on (hour)		12		12	12								12	2							12	2			
s	SLO-1			Rectifiers without f	filter: Half wave, full wave								٥,			_			_							
1-4	SLO-2	Characteristics (of PN and Zener diode	and bridge		Load Test on DC Shun	Mot	tor			Load	l est o	n Sın	gle Pi	hase	Irans	storme	er	Spee	d Con	itrol oi	Step	per M	otor		
S	SLO-1			Rectifiers with filter	r: Half wave full wave																					
5-8	SLO-2	Characteristics of transistor: BJT, UJT Rectifiers with filter: Half wave, full wave and bridge Load Test on DC S						tor			Load	Test o	n Sin	gle Pi	hase i	Induc	tion N	1otor	Chara	acteris	stics o	f serv	o Moi	or		
S	SLO-1	Design of oscillator and multivibrator Op Amp: Non-inverting, inverting and Speed Control of E						Materia	_		1	Ta a4 -	Tl-	C'	'	ام م	#a.a. 1.4	latar	l=4=	4		4 a a la ·-	اد ادد:	-4!-		
9-12	SLO-2	circuits		buffer amplifier		Speed Control of DC S	iunt	IVIUIOI			Load	rest 0	ıı ınr	ee Pî	iase I	nauci	uon M	olor	merp	retati	טוו טדו	tecrin	icai da	สเส รก	<i>3</i> 61	
Learni Resou	·	1. Electronics	s laboratory manual						2.	Elec	ctrical	labora	tory r	nanua	al											

Learning As	sessment												
	Bloom's		Final Evamination	n (50% weightage)									
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	ł (10%)#	FIIIai Examination	ii (50 % weigiilage)		
	Level of Hilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%		
Level 2	Apply Analyze	-	40 %	-	40 %	-	40 %	-	40 %	-	40%		
Level 3	Evaluate Create	-	20 %	-	30 %	-	30 %	- 30 %		-	30%		
	Total	100	0 %	100	0 %	10	0 %	10	0 %	100 %			

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. N. Gunavardhini, TANGEDCO, Salem, gunatneb1990@gmail.com	1. Dr.S. S Dash, Government College of Engineering Kednhhar, Orisha, munu_dash_2k@yahoo.com	1. Dr. M. Santhosh Rani, SRMIST
2. Dr. S. Janardhanam, CAPGEMINI	2. Dr. K. Sujatha, Dr. MGR Educational and Research Institute, drksujatha23@gmail.com	2. Dr. T. Muthuramalingam, SRMIST

Course Code	18MHC:105.1	Course Name	F	FLUID POWER	SYSTEM AND A	AUTOMATION	_	ourse tegory		С					Profe	essior	nal Cor	е				L 3	T 0	P 2	C 4
Pre-requis Courses	s ^{NII}			Co-requisite Courses	Nil			C	gress ourse		Nil														
Course Offe	ring Department	Mechat	ronics Engineerin	g	Da	ta Book / Codes/Standards		Nil																	
Course Lear	rning Rationale (CLR):	The purp	pose of learning th	his course is to:				L	earni	ng					F	Progra	am Le	arning	g Outo	ome	(PLO)			
CLR-1: Ut	tilize fundamental knowle	edge on flu	uid power, working	g of pneumatic a	and electro-pneu	matic system components		1	2	3		1	2	3	4	5	6	7 8	8 9	10) 11	12	13	14	15
CLR-3 : Do CLR-4 : Ut CLR-5 : Ut	tilize working principles o esign, develop fluid powe tilize working principle of tilize programmable logio tilize fluid power system	er circuits i various hy controller	for various applica ydraulics applicati rs and PLC progra	ations, utilize wo ion circuits. amming for fluid	orking of hydrauli power system c	ontrol.		Thinking (Bloom)	d Proficiency (%)	d Attainment (%)		Engineering Knowledge	Analysis	& Development	, Design, Research	Modern Tool Usage	& Cultu	nent & Sustainability	al & Team Work	io i	Mgt. & Finance	g Learning			
Course Lear	rning Outcomes (CLO):	At the e	end of this course,	learners will be	able to:			Level of	Expected	Expected		Enginee	Problem	Design 8	Analysis,	Modern	Society	Environment	Ethics Individual &		Project Mgt.	Life Long	PS0 - 1		PSO - 3
CLO-1: Re	ecognize the use of fluid	power sys	stems, and identif	y various pneun	natic and electro	-pneumatic components		2	80	75		Н	L	L	L	М	L			-	-	L	L	М	L
						circuit for a given application		3	80	75		Н	Н	Н	Н	М	L		- N	1 -	М	М	М	М	Μ
						s hydraulic components.		3	75	70		Н	Н	Н	Н	М	L	L .	- N	1 -	М	М	М	М	Μ
	oply hydraulic componen				ollowed in fluid p	ower systems.		3	75	70		Н	М	М	М	М	L	L ·	- -		М	L	L	М	М
	stablish programming co							3	75	70		Н	Н	М	М	М	L		- N	_	М	М	М	М	Н
CLO-6 : De	esign, develop and contr	ol fluid por	wer systems for v	arious applicatio	ons.			3	75	70		Н	Η	М	Μ	М	L	L .	- N	1 -	M	М	М	М	Μ

		Introduction to Pneumatics and Electro- pneumatics	Pneumatics and Electro-Pneumatics Components, Design of Circuits	Design of Circuits Intoductions to Hydraulics	Hydraulics and Electrohydraulic components and circuits	Programmable Logic Controllers
Durati	ion (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to Fluid Power System, Physics of Fluid Power System	Flow Control Valves and their functions	Cascading Electro-Pneumatic Circuit - Two Groups in Two Cylinder Sequential Control	Synchronization Circuits	Introduction to Programmable Logic Controllers (PLC)
3-1	SLO-2	Advantages, Applications, Comparison of Pneumatic and Hydraulic Systems	Simple and Pressure Compensated Flow Control Valve	Cascading Electro-Pneumatic Circuit - Two Groups, Three-Cylinder Sequential-Control		Advantages and Applications of PLC
S-2	SLO-1	Introduction to Pneumatic Components, Rotary Compressor - Construction and Principle of Operation	Non – Return Valves: Check Valve, Pilot Operated Check Valve	Cascading Pneumatic Circuit: Three Groups, Three-Cylinder Sequential Control	Hydraulic Accessories- Filters, Seals	Parts of PLC
	SLO-2	Reciprocating Compressors -Construction and Principle of Operation	Speed Control Circuits	Cascading Pneumatic Circuit: Three Groups, Three-Cylinder Sequential Control	Simple Pressure Relief Valve and Compound Pressure Relief Valve	Operation of PLC, Architecture of PLC
S-3	SLO-1	Air Treatment, Air Dryer	Logical Valves – Dual Pressure Valve, Shuttle Valve	Cascading Electro-Pneumatic Circuit - Three Groups, Three Cylinder Sequential Control	Sequence valve with application circuit	Introduction to PLC Programming Techniques
5-3	SLO-2	FRL – Filter, Regulator and Lubricator	Pnuematic circuits using logical valves	Triree Groups Triree Cylinger Seguenilai	Pressure reducing valve with application circuit	Introduction to ladder logic programming
S 4-5	SLO-1 SLO-2	Lab 1: Introduction to Symbolic Representation of Pneumatic Components	Lab 4: Speed Control Circuits		Lab 10: Timer and Counter Based Electro- Pneumatic Control Circuits	Lab 13: Introduction to PLC and Ladder Logic Programming Software
S-6	SLO-1	Pneumatic Actuators, Linear, Rotary and Semi Rotary Type	Quick Exhaust Valve, Time Delay Valve	Timer Based Control of Pneumatic Cylinder	Pressure unloading and counter balance valve	Ladder Logic Program -Implementation of Logic Gates
3-0	SLO-2	Cushioning in Cylinders	Pneumatic Circuits using Quick Exhaust Valve, Time Delay Valve	Counter Based Control of Pneumatic Cylinder	Pressure unloading and counter balance application circuit	Ladder Logic Program -Implementation of Start/Stop Operation and Latching

	01.0.4			Discussion on Different Pneumatic and	Accumulators – Working Principle and	Ladder Logic Program – Continuous
S-7		Special Cylinders	introduction to Sequential Control	Electro-pneumatic Circuit Implementation	Types	Reciprocation Circuits
3-1	SLO-2		Cylinder Sequential Control	Selection of Pneumatic Components	Application Circuits of Accumulator	Ladder Logic Program – Sequential Circuit Implementation
S-8	SLO-1	Cylinder	Sequential Control	Introduction to Hydraulic Components	Proportional Valve – Working Principle and Control	Ladder Logic Program – Sequential Circuit Implementation
3-0	SLO-2	Direct and Indirect Control of Double Acting Cylinder	Sequential Control	Fluids for Hydraulic Systems	Force and Torque Proportional Control	Ladder Logic Program – Pneumatic Application
S 9-10	SLO-1 SLO-2		Lab 5: Pneumatic Implementation of Two Cylinder Sequential Control Circuit	Lab 8: Pneumatic Implementation of Three Cylinder Cascading Circuit	Lab 11: Hydraulic Synchronization Circuits	Lab 14: Developing PLC Program for Sequential Control of Pneumatic Cylinder
S-11	SLO-1	Introduction to Electro-pneumatics	Flectro-nneumatic Circuit - Three Cylinder	Gear Pumps	Servo Valve – Working Principle and Types	Interlocks in PLC
3-11	SLO-2	Electro-pneumatic Components – Electrical Switches and Solenoid	Electro-pneumatic Circuit - Three Cylinder Sequential Control	Vane Pumps	Flapper Type, Jet Pipe, Electro Hydraulic Servo Valves	Ladder Logic Program – Interlocking
S-12	SLO-1	Construction and Working Principle of Relays	Circuits with Overlapping Signals		Design, Selection of Components of Hydraulic Press, Hydraulic Machine Tools	Timers in PLC
J-12	SLO-2	Timers and Counters	Steps to Solve Signal Overlapping Problem using Cascading Technique		Design and Selection of Components of Articulated Mechanisms	Counters in PLC
S-13	SLO-1	Continuous Reciprocation of Single acting and Double Acting Cylinder – Pneumatic Implementation	Cascading Pneumatic Circuit - Two Groups in Two Cylinder Sequential Control	Direction Control Valves 3/2, 4/2	Fault Diagnostics in Fluid Power Circuits	Ladder Logic Program – Implementation of Timer and Counter Based Applications
3-13	SLO-2	Continuous Reciprocation of Single acting and Double Acting Cylinder – Electro Pneumatic Implementation	Cascading Pneumatic Circuit - Two Groups in Three Cylinder Sequential Control	4/3 DCV – Different Center Positions	Safety and Emergency Mandrels in Hydraulic and Pneumatic Systems	Summary of the Course discussion
S 14-15	SLO-1 SLO-2		Lab 6: Electro-pneumatic Implementation of Two Cylinder Sequential Control Circuit		Lab 12: Developing Automation Solution for Industrial Application using Sensors	Lab 15: Model Practical Examination

Learning		Anthony Esposito, Fluid Power with applications, 7 th ed., Prentice Hall, 2014 FESTO, Fundamentals of Pneumatics, Vol I, II, III.
Resources	3.	Majumdar .S.R., Oil Hydraulics: Principle and Maintenance, Tata McGraw Hill Education, 2012

- Andrew Parr, Hydraulics and pneumatics, Jaico Publishing House, 2006
 Frank D. Petrezulla, Programmable Logic Controller, 4th ed., McGraw Hill Education, 2011
 Laboratory manual for Fluid Power System and Automation, SRMIST.

Learning Asses	ssment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA –	1 (20%)	CLA –	2 (30%)	CLA -	3 (30%)	CLA – 4	(20%)#	FIIIai Examination	i (50 % weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
r. Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	10	0 %	100	0 %	10	0 %	100) %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Harish Nachnani, National Sales Manager, Festo India(P) Ltd, harish.nachnani@festo.com	1. Dr. P. Karthikeyan, MIT campus, Anna university, pkarthikeyan@annauniv.edu	1. Mr. Sanjay Kumar Kar, SRMIST
2. Mr.Girish Joshi, Senior Manager, BoschRexroth ltd, joshi.gs@boschrexroth.co.in	2. Dr.B.Mohan, Professor, Anna University, mohanb@mitindia.edu	2. Ms. G. Madhumitha SRMIST

Course Code	18MHC106T	Course Name	KINEMATI	CS AND DYNAMI	CS OF RIGII	BODIES AND MECHANISMS	Course Category	С		Professional Core	L 3	T 1	P 0	C 4
Pre-requis Courses	INII			Co-requisite Courses	Nil		Progre Cour	ssive	Nil					
Course Offe	ring Department	Mechat	ronics Enginee	ring		Data Book / Codes/Standards	Nil							
Course Lear	ning Rationale (CLF	R): The pur	pose of learning	g this course is to			Lear	ning		Program Learning Outcomes (PLC)			

Course Offering Department	Mechatronics Engineering Data Book / Codes/Standards	INII																		
Course Learning Rationale (CLR):	The purpose of learning this course is to:		Learn	ing						Progi	ram L	.earn	ing O	utco	mes (PLO)				
CLR-1: Utilize the concept of mach	ines, mechanisms and flywheel	1	2	3	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Utilize knowledge on the po	erformance of cams, gyroscope											>-								
CLR-3: Impart knowledge on the p	erformance of gears and gear trains								arch			iii Q								
CLR-4: Explore the undesirable eff	fects of unbalanced force in engines and its remedies	(Bloom				dge		ent	Research			Sustainability		Work		92				
CLR-5: Utilize knowledge in vibrate	ory systems		Proficiency	Attainment		We.	S	velopment	, R	Usage	Ф	Sust				inance	ng			
CLR-6: Utilize various laws govern	ing rigid body motions, vibration characteristics and balancing of mechanical machines	Thinking	ofici	tain		ᇫ	Analysis	svelc	Design,	S)	Culture	∞ŏ		Team	ţio	& F	arni			
		Ë				ring		& De	, De	100 1	S C	nen		∞ ∞	.g	Mgt.	J Le			
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	evel of		Expected		Engineering Knowledge	Problem	Design 8	Analysis,	Modern	Society &	Environment	Ethics	Individual	Communication	Project I	Life Long	PS0 - 1	PSO - 2	PSO - 3
CLO-1: Comprehend the concept of	f machines, mechanisms and flywheel.	1	85			Н	L	-	Ĥ	М	-	L	L	М	-	-	-	М	-	-
CLO-2: Analyze the performance of	f cams, gyroscope	2	85	80		Н	Н	-	Н	М	-	L	L	М	-	-	-	-	-	-
CLO-3: Analyze the performance of	f gears and gear trains.	2	85	80		Н	Н	-	Н	М	-	L	L	М	-	-	-	-	-	-
CLO-4: Utilize the knowledge of un	desirable effects of unbalanced force in engines	2	85	80		Н	Н	-	Н	М	-	L	L	М	-	-	-	-	-	-
CLO-5: Interpret and solve problem	ns in vibratory systems and analyze the effects	2	85			Н	Н	1	Н	М		L	L	М	-	-	1	-	-	-
CLO-6: Implement various laws go	verning rigid body motions, vibration characteristics and balancing of mechanical machines	2	85	80		Н	Н	-	Н	M	-	Ĺ	L	M	-	-	-	-	-	-

		Basic Elements of Mechanisms	Cams and Gyroscope	Gears and Gear trains	Balancing of masses	Vibrations
Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to kinematic links, pairs, chain, machine and structure	Classifications of cam and follower	Fundamentals of toothed gearing	Introduction to balancing of masses	Introduction to Vibration
3-1	SLO-2	Degrees of freedom(DOF)	Classifications of cam and follower	Types of gear	static and dynamic mass balancing	Types of vibration
	SLO-1	Grashoff's law, Kutzback's criterion for planar mechanism	Construction of cam profile when the		Balancing of several masses rotating in	
S-2	SLO-2	Kinematic inversions of four bar mechanism and slider crank mechanism and its kinematic inversions	follower moves with uniform velocity and simple harmonic motion	Gear nomenclature	single plane.	Longitudinal, transverse vibration
S-3	SLO-1	Modelling Simulation of Crank and slotter lever mechanism	Construction of cam profile when the follower moves with uniform acceleration	Law of gearing, forms of teeth	Balancing of several masses rotating in	Dunkerley's method.
3-3	SLO-2	Modelling Simulation of Whitworth quick return mechanism		Length of path of contact	single plane.	Critical speed of shafts
S-4	SLO-1	Practice 1: Problems on DOF of Planar mechanisms, crank and slotted lever	Practice 4: Problems on construction of cam profile profile when the follower moves	Practice 7: Problems on Length of path of	Practice 10: Problems on Balancing of	Practice 13: Problems on Longitudinal,
3-4	SLO-2		with uniform velocity and simple harmonic motion	contact	several masses rotating in single plane.	transverse vibrations
S-5	SLO-1	Turning moment diagram of a single	Construction of cam profile when the	Length of arc of contact	Balancing of several masses rotating in	Viscous damping
3-3	SLO-2	cylinder engine	follower moves in cycloidal motion	Contact ratio, interference	different planes.	damping factor
S-6	SLO-1		Gyroscope: Forces and couples	Gear trains.	Balancing of reciprocating masses.	Torsional vibrations.

	SLO-2	Turning moment diagram of a multi cylinder engine		Types of gear trains- simple gear train		
S-7	SLO-1	Fluctuation of energy, coefficient of	Effect of gyroscopic couple in aeroplanes	Compound gear train.	Balancing of single cylinder engine.	Single and two rotor systems
0-7	SLO-2	fluctuation of energy	Effect of gyroscopic couple in deropidites	Reverted gear train.	Balancing of single cylinder engine.	Single and two fotol systems
S-8	SLO-1	Practice 2: Problems turning moment diagram for single cylinder and multi	Practice 5: Problems on construction of cam profile profile when the follower moves	Practice 8: Problems on simple, compound		Practice 14: Problems on Dunkerley
0-0	SLO-2	cylinder	in cycloidal motion	and reverted gear trains	single cylinder engine	method and critical speed of shaft
S-9	SLO-1	Coefficient of Fluctuation of speed	Stability of a four wheel drive moving in a	epicyclic gear train	Balancing of multi cylinder inline engine.	Three rotor systems.
	SLO-2	oodmotori of Fluoridation of Spood	curved path		Editationing of mala symmetri minite origine.	Through dystonic.
S-10	SLO-1	Energy stored in flywheel	Gyroscope: stability of two-wheel	Tabular method – epicyclic and reverted	Hammer blow	Torsional vibrations on geared systems
3-10	SLO-2	Lifergy Stored III nywneer	Gyroscope. Stability of two-wheel	gear train	swaying couple	Torsional vibrations on geared systems
S-11	SLO-1	Dimensions of flywheel rim.	Effect of gyroscopic couple in ships	Compound epicyclic gear train.	Tractive force.	Vibration analysis of geared systems.
0-11	SLO-2	Dimensions of hywneel film.	Ellect of gyroscopic couple in ships	отпроина вртоувно уван пат.	Tradity or toroe.	vibration analysis of gealed systems.
S-12	SLO-1	Practice 3: Problems on energy stored in	Practice 6: Problems on effect of gyroscopic couple on aeroplanes and four	Practice 9: Problems on Compound	Practice 12: Problems on Balancing of	Practice 15: Problems on two rotor system
J-12	SLO-2	flywheel and flywheel rim dimensions	wheeler and two wheeler	epicyclic gear train.	multi cylinder inline engine.	and three rotor system

1.	Ratan.S.S, Theory of Machines, 4th ed., Tata McGraw Hill, 2014	6.	Singiresu S.Rao, Mechanical Vibrations, Nem Chand and Bros, 1998
2.	R.L. Norton, Kinematics and Dynamics of Machinery, 1st ed., Tata McGraw Hill, 2010	7.	Thomas Beven, Theory of Machines, 3 rd ed., CBS Publishers and Distributors, 2013
3.	Sadhu singh Theory of machines, 3 rd ed., Pearson, 2011	8.	Sing.V.P, Mechanical Vibrations, Dhanpat Rai and Co., 1998
4.	Gordon R. Pennock & Shigley J.E John J Uicker, 4th ed., Theory of machines and mechanisms, Oxford	9.	Rao.J.S., Dukkipati.R.V, Mechanism and Machine Theory, Wiley Eastern Ltd., 2006
	university press, 2014	10.	John Hannah, Stephens.R.C, Mechanics of Machines, Viva Low Price student edition, 1999
5.	R.K. Bansal, J.S. Brar, Theory of Machines, 5th ed., Lakshmi publications, 2016	11.	Ghosh .A., Mallick.A.K, Theory of Mechanisms and Machines, Affiliated East - West Pvt. Ltd., 2006
;	1. 2. 3. 4. 5.	 R.L. Norton, Kinematics and Dynamics of Machinery, 1st ed., Tata McGraw Hill, 2010 Sadhu singh Theory of machines, 3rd ed., Pearson, 2011 Gordon R. Pennock & Shigley J.E. John J Uicker, 4th ed., Theory of machines and mechanisms, Oxford university press, 2014 	 R.L. Norton, Kinematics and Dynamics of Machinery, 1st ed., Tata McGraw Hill, 2010 Sadhu singh Theory of machines, 3rd ed., Pearson, 2011 Gordon R. Pennock & Shigley J.E. John J Uicker, 4th ed., Theory of machines and mechanisms, Oxford university press, 2014 R.L. Norton, Kinematics and Dynamics of Machinery, 1st ed., Tata McGraw Hill, 2010 Sadhu singh Theory of machines and mechanisms, Oxford university press, 2014

Learning Asse	ssment										
-	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	FIIIai Examination	i (50% weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	100) %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. K.Balaguru, Hindhustan Aeronautics Ltd, gurubalao7@gmail.com	1. Dr.S. S Dash, Govt. College of Engineering Kednhhar, Orisha, munu_dash_2k@yahoo.com	1. Mr. J. Thiyagarajan, SRMIST
2. Mr. M. Arun kumar Rolls-Royce India (P) Ltd., arumkumar.manickam@rolls_royce.com	2. Dr. K. Sujatha, Dr. MGR Educational and Research Institute, drksujatha23@gmail.com	2.

Course Code	18MHC107T	Course Name	SYS	TEM DYNAMICS	Cour Categ		С	Professional Core	L 3	T 0	P 0	C 3
Pre-requisi Courses	INII		Co-requisite Courses	Nil	F	Progress Course		Nil				
Course Offer	ring Department	Mechatro	onics Engineering	Data Book / Codes/Stand	dards Ni	il						

Oddise Offering Department Mechanomics Engineering Data Book / Oddes/otalidan	us I'vii
Course Learning Rationale (CLR): The purpose of learning this course is to:	Learning Program Learning Outcomes (PLO)
CLR-1: Classify and manipulate the signals with systems	1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CLR-2: Understand the significance of Laplace transform in modeling and solving the LTI systems	
CLR-3: Model all possible systems and derive their transfer functions	g (Bloom) ment (%) ment (%) is opment n, Research sage re inance inance ing
CLR-4: Determine the time domain characteristics of system and stability analysis using root locus	king (Bloom) oficiency (%) tainment (%) Knowledge allysis sign, Researc Usage ulture Lauture Team Work ion & Finance arring
CLR-5: Obtain the frequency response and determine stability margins for linear systems	Attainment Attainment Attainment (Bloomer Oevigoner) Oevelopmen Oe
CLR-6: Impart the knowledge on modeling of systems with analysis and design	
	Thinkin and Attain and Attain And Attain And And And And And And And And And An
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Expected Profice Expected Attain Expected Attain Expected Attain Engineering Kn Problem Analys Design & Devel Analysis, Design Modern Tool Us Society & Cultur Ethics Individual & Tee Communication Project Mgt. & Fe PSO - 1 PSO - 2
CLO-1: Understand and identify the different types of signals and systems	2 80 75 H H M L M L M M L M H M L M
CLO-2: Importance of Laplace transform in system analysis and design	2 75 75 H H M H M L M M L L M H M L N
CLO-3: Find the transfer function of possible systems using different methods	2 75 75 H H H H M L L M L L M H M L N
CLO-4: Design a system with required specifications	3 70 70 H H H H M L M M L M H H L M
CLO-5: Analyze a system in frequency domain and determine the margins for stability of system	3 70 70 H H H H M L M M L M H H L M
CLO-6: Identify, analyze and design of a system for the required specifications	3 75 70

		Introduction to Signals and Systems	Linear Time - Invariant Systems	Modeling in S-Domain	Time Domain Analysis and Root Locus	Frequency Response Analysis
Durati	ion (hour)	9	9	9	9	9
S-1	SLO-1	Introduction to Signals	Introduction to LTI systems	Transfer functions of simple mechanical systems	First order System and its specifications	Introduction to frequency response
5-1	SLO-2 Representation of signals in continuous and discrete time Impulse response of LTI systems		Impulse response of LTI systems	Transfer functions of simple mechanical systems	Step, ramp and impulse response analysis of first order systems	Frequency domain specifications
S-2	SLO-1	Elementary/basic Signals	Derivation of Convolution integral formula	Transfer functions of simple electrical networks	Second order system and its specifications	Correlation between time domain and frequency domain specifications
3-2	SLO-2	Relationship among the elementary signals	Properties of convolution integral	Transfer functions of simple electrical networks	Impulse response of second order systems	Construction of Bode plot
S-3	SLO-1	Properties of signals		Analogous systems Mechanical and electrical	Step response of second order systems	Construction of Bode plot
3-3	SLO-2	Properties of signals	Properties of ETT system	Mechanical and Electrical analogous system	Step response of second order systems	Determination of gain and phase margins
S-4	SLO-1	Signal power and energy	Differential equation representation of systems	Transfer function of electromechanical systems	Transient response specifications of under damped systems	Problems on drawing Bode plot and determining the margins for stability
3-4	SLO-2	Problems on properties of signal	Responses of the system in time domain	Transfer function of electromechanical systems	Time domain specifications of the under damped systems	Problems on drawing Bode plot and determining the margins for stability
	SLO-1	Operations on signals	Solving differential equation in time domain	Block diagram representation of system	Steady state error for closed loop system	Determination of transfer functions from Bode Plot
S-5	SLO-2	Manipulations on the dependent and independent variables	Solving differential equation in time domain	Block diagram reduction technique rules	Steady state error for different types and inputs of a system with generalized error coefficients	Determination of transfer functions from Bode Plot
S-6	SLO-1	Representation of Systems	Introduction to Laplace transformation and region of convergence	Problems on Block diagram reduction	Stability of the system with respect to the position of poles in s plane	Introduction and properties of Polar Plots

	SLO-2	Continuous and discrete time systems	Laplace transform of standard functions	Problems on Block diagram reduction	Stability analysis using Routh-Hurwitz criterion	Gain and phase margins in Polar plot
S-7	SLO-1	Classification and properties of system	Properties of Laplace transform			Problems on drawing Polar plots and determining the margins
3-1	SLO-2	Classification and properties of system	Properties of Laniace transform		Problems on stability checking using Routh-Hurwitz criterion	Problems on drawing Polar plots and determining the margins
S-8	SLO-1	Problems on properties of system	Transfer function approach for dynamic system using Laplace transform	I)etermination of transfer function using	Introduction of Root locus and its properties	Nyquist stability criterion
3-0	SLO-2	Problems on properties of system	Poles and zeros of system in 's' plane	Determination of transfer function using	Construction of Roots locus	Assesment of relative stability
S-9	SLO-1	Properties of system which contains differential equations		Problems on determining the transfer function using Mason's Gain formula	Problems on the construction of Root locus	Problems on Nyquist stability criterion
3-9	SLO-2	Properties of system which contains differential equations		Problems on determining the transfer function using Mason's Gain formula	Problems on the construction of Root locus	Problems on Nyquist stability criterion

Learning Resources	 K Ogata, System Dynamics, 3rd ed., Prentice Hall, 1998 B P Lathi, Principles of Linear Systems and Signals, 2rd ed., Oxford University Press, 2009 Alan V Oppenheim., Alan S Willsky, Ian T. Young., Signals and Systems, Prentice Hall, 1983 	 J Nagrath, M Gopal, Control Systems Engineering, 5th ed., New Age International, 2007 Norman S Nise, Control Systems Engineering, 7th ed., Wiley, 2015
-----------------------	---	---

Learning Asses	sment											
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(50% woightage)	
	Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)		
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	30 %	_	30 %		30 %	_	30 %	_	30%		
Level I	Understand	30 /0	-	30 %	,	30 %	-	30 //	-	3076	-	
Level 2	Apply	40 %		40 %		40 %		40 %		40%		
Level 2	Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%		
Level 3	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	10	0 %	100) %	10	0 %	100) %	10	0 %	

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. K. Karthikeyan, R&D Specialist, ABB India Ltd, Bangalore, India, sayalkarthik@yahoo.co.in	1. Dr. Dr. B. Chittibabu, IIITDM, Kanchipuram, bcbabu@iiitdm.ac.in	1.Dr. M. Mohamed Rabik, SRMIST
2. Dr. Vishal P Barde, Senior Lead Engineer, Mahindra & Mahindra, Chennai, vishalbarde@gmail.com	2. Dr. P. Karthikeyan, MIT campus, Anna university, pkarthikeyan@annauniv.edu	2Mr. S. Vasanth, SRMIST

Course Code	18MHC108J	Course Name		DIGITAL SYSTE	MS AND MIC	ROPROCESSORS		Course		С				Pro	ofessio	onal C	Core					L 3	T 0	P 2	C 4
Pre-requ Course	es ^{IVII}			Co-requisite Courses	Nil			С	gress ourse		Nil														
Course Of	fering Department	Mecha	ronics Enginee	ering		Data Book / Codes/S	Standards	Nil																	
Course Le	arning Rationale (CL	R): The pur	pose of learnin	ng this course is to:	<u> </u>			L	earni	ng					Prog	ram l	Learn	ing O	utco	mes (PLO)				
	Perceive the fundame							1	2	3		1 :	2 3	4	5	6	7	8	9	10	11	12	13	14	15
	Know the working prin Know the working nate													당			Sustainability								
	Expose the architectur				ors			Thinking (Bloom)	%) /	Attainment (%)		ge	ţ	Research			aina		Work		8				
	Deal with the Assembl) B	enc	men		Š .	Analysis Development	, g	age	Φ	Sust		≥		Finance	Б			
CLR-6:	Gain knowledge about	different peri	oheral interfaci	ing Devices				, iš	ofici	tain		Z .	al ys	Design, l	l s	Culture	- ×		Team	tion	∞ŏ	Learning			
Course Le	arning Outcomes (Cl	-O): At the e	end of this cour	rse, learners will be	e able to:			Level of Thir	Expected Proficiency (%)	Expected			Problem Analysis Design & Develor	Analysis, De	Modern Tool Usage	Society & Cı	Environment &	Ethics	Individual &	Communication	Project Mgt.	Life Long Le	PS0 - 1	PS0 - 2	PSO - 3
	Understand the conce			s digital circuits				1	95	90	_		И L	L	L	-	-	-	L	-	-	L	М	-	Μ
	Design the combination							3	90	85	_		H M	М	М	-	-	-	М	-	М	Н	М	М	L
	Enlighten the architect							1	85	80	_	Н	L -	L	М	-	-	-	-	-	L	М	М	Н	М
	Develop the assembly							3	80	75	_	_	H M	М	М	-	-	-	М	-	L	М	М	Н	М
	Use the processors for							2	80	75		Н	L L	L	Н	-	-	-	М	-	Н	М	Н	Н	Н
CLO-6:	Use microprocessor w	ith different p	eripherals					1	90	85		Η .	L L	L	М	-	-	-	Н	-	Н	М	М	Н	Μ

		Combinational Circuit Design	Sequential circuit Design	8085 Microprocessor	8086 Microprocessor	Peripheral Interfacing
Durati	ion (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to logic gates, Digital logic circuits, Boolean laws and Expression	Introduction to Latches and Flip-Flop,	Introduction to microprocessors	Introduction, Pin Descriptions of 8086 microprocessor	Introduction to Data transfer Schemes
3-1	SLO-2	Minterm, Maxterm, Sum of Products (SOP) and Product of Sums (POS)	Triggering of flip flops	Pin Descriptions of 8085 microprocessor	Modes of operation : Maximum and Minimum mode	Software interrupt
S-2	SLO-1	Boolean Laws and theorems	Truth Table, Characteristic Table,	Architecture of 8085 microprocessor	Architecture of 8086 microprocessor	Pin Description of programmable interrupt controller-8259
3-2	SLO-2	Minimization of Boolean expressions using Boolean Laws and theorems	Excitation table and equations for flip flops	Architecture or oood microprocessor	Architecture or oood microprocessor	Architecture of Programmable Interrupt Controller-8259
S-3	SLO-1	Minimization of Boolean expressions using	Conversion of SR flip flop to any flip flop	Instruction set of 8085 microprocessor:Types	Instruction set of 8086 microprocessor	Pin Description of Programmable Peripheral Interface-8255
3-3	SLO-2	K - map	Conversion of JK flip flop to any flip flop	Data Transfer Instruction Set	Data Transfer Instruction Set	Architecture of Programmable Peripheral Interface-8255
S 4-5	SLO-1 SLO-2	Lab 1: Verification of logic gates and implementation of Boolean expression	Lab 4: Implementation of Code converters	Lab 7: Implementation of Shift registers	Lab 10: Code conversion using 8085 microprocessor	Lab 13: Sorting of an array using 8086 microprocessor
S-6	SLO-1	Minimization of Boolean expressions using	Conversion of D flip flop to any flip flop	Arithmetic Instruction set	Arithmetic Instruction set	Pin Description of programmable Communication Interface (USART)-8251
3-0	SLO-2	karnaugh map with don't care conditions	Conversion of T flip flop to any flip flop	Logical Instruction Set	Logical Instruction Set	Architecture of programmable Communication Interface (USART)-8251
S-7	SLO-1	Design steps for combinational circuits.	Master –Slave Flip-flop	Branching Instruction Set	Propobing/Program Control Instruction Set	Pin Description of Direct Memory Access- 8257
3-1	SLO-2	Design of adder and subtractor.	Steps to design Sequential Circuits		Branching/Program Control Instruction Set	Architecture of Direct Memory Access- 8257
S-8	SLO-1	Design of Multiplexer	Design of synchronous counter	Control Instruction set	String Manipulation Instruction set	Pin Description of programmable Interval timer -8253

	SLO-2	Design of De-Multiplexer				Architecture of programmable Interval timer -8253
S 9-10		Lab 2: Implementation of Adder Subtractor, Multiplexer, Demultiplexer	Lab 5: Implementation of Flip flops	Lab 8: Study of microprocessor	Lab 11: Multiplication and division using 8086 microprocessor	Lab 14: Generation of waveforms by interfacing with 8085 microporcessor
S-11	SLO-1	Design of Encoder			Addressing modes of 8086 microprocessors: Register and Immediate data – Group I	Applications: stepper motor control using
3-11	SLO-2	Design of Decoder		l addraccina mada and inniiad addraccina	Addressing mode for memory data – Group II	8085 microprocessor
S-12	SLO-1	Logic Diagram of Parallel binary	Design of Asynchronous Up, Down counter	Timing Diagram of 8085 microprocessor	Addressing mode for I/O – Group III	A/D and D/ A conversion using 8086
J-12	SLO-2	adder/Subtractor	Design of Asynchronous Up/ Down counter		Interrupts of 8086 microprocessor	microprocessor
C 42	SLO-1	Design of code converters		Simple Assembly language programs	Timing Diagram of 8086 microprocessor	A/D and D/ A conversion using 8085
S-13	SLO-2	Design of magnitude comparator	Parallel Out. Parallel in Serial Out and		Assembler Directives and assembly language programs of 8086microprocessor	microprocessor
S 14-15		Lab 3: Implementation of encoder and decoder	III an b' Design of Synchronous counter		Lab 12: Stepper motor Interfacing using 8085 Microprocessor	Lab 15: Model Practical Examination

	1	M. Morris Mano, Michael D Ciletti, Digital Design, 5th ed., Pearson, 2014	4	Mohammed Rafiguzzaman, Microprocessors and Microcomputer based System Design, Universal Book
Learning		Charles H.Roth, Fundamentals of Logic Design, 6 th ed., Thomson Learning, 2013		Stall. New Delhi. 1990
Resources		Ramesh S. Gaonkar, Microprocessor Architecture. Programming and Applications with the 8085, 5 th	5.	Doughlas V.Hall, Microprocessors and Interfacing, Programming and Hardware, Tata McGraw Hill, 2012
		ed., Penram International Publishing (India) Private Limited. 2005		Laboratory manual for Digital Systems and Microprocessors, SRMIST

Learning Assess	sment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)	
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	i iliai Examinatio	ii (50 % weigiilage)	
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
r. Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
I. Level I	Understand	2070	2070	1370	1370	1370	1370	1370	1370	15/6	1370	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	20%	2070	2070	2070	2070	20%	2070	2070	20%	2070	
112	Evaluate	400/	400/	450/	450/	450/	450/	450/	450/	450/	450/	
Level 3	Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	00 %	

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. K. Karthikeyan, R&D Specialist, ABB India Ltd, Bangalore, India, sayalkarthik@yahoo.co.in	1. Dr. Dr. B. Chittibabu, IIITDM, Kanchipuram, bcbabu@iiitdm.ac.in	1.Dr. M. Mohamed Rabik, SRMIST
2. Dr. Vishal P Barde, Senior Lead Engineer, Mahindra & Mahindra, Chennai, vishalbarde@gmail.com	2. Dr. P. Karthikeyan, MIT campus, Anna university, pkarthikeyan@annauniv.edu	2Mr. S. Vasanth, SRMIST

ACADEMIC CURRICULA

Professional Core Courses

NANOTECHNOLOGY

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Course Code	18NTC101T	Course Name	NANOSCALE CI	HEMISTRY	Course Category	С		Professional	Core		T 0	P 0	C 3
Pre-requisite Courses	e _{Nil}		Co-requisite Nil		Progre Cour		Nil						
Course Offerin	ng Department	Nanotechnology	<u> </u>	Data Book / Codes/Standards	Nil	•							
										(21.5)			_

Course Learning Rationale (CLR): The purpose of learning this course is to:		Lear	ning						Prog	ram L	_earn	ing O	utcor	nes (l	PLO)			
CLR-1: Understand the role of chemistry in nanoparticle synthesis	1	2	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14
CLR-2: Improve their ability in understanding the thermodynamic behavior of nanomaterials											>-							
CLR-3: Acquire knowledge about size effects and reaction kinetics and phase properties at nanoscale	(2)			_				arch			Ħ							
CLR-4: Enhance knowledge about Symmetry and lattice parameters	(Bloom)	(%)		(%)	dge		eut	see			ustainability		Work		ge			
CLR-5: Enhance knowledge about the various nanosynthesis techniques	<u>B</u>	Diofogoaca	5	nent	× e	S	Development	8,	Usage	a)	nst		M V		Finance	bu		
CLR-6: Utilize the knowledge of processing in nanochemistry	hinking	2 3	Ē .	Attainme	Αž	lysi	Vel Vel	esign,	ns.	Culture	∞5		Team	.e	≪ ⊥	arni		
	jĒ	٥		THE C	ing	Analysis			Tool	& CL	nent		- ১১	icat	Mgt.	J Le		
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	5 6		Expected	Engineering Knowledge	Problem	Design &	Analysis,	Modern -	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PS0 - 2
CLO-1: Identify the difference between bulk and nanoscale thermodynamics	2	? 8	0 7	75	М	М	Н	Ĥ	М	М	Н	Н	Н	Н	М	Н	Н	Н
CLO-2: Identify symmetry, point groups and its application in lattice determination	2	2 8	0 7	70	Н	Н	Н	Н	М	Μ	М	Н	Н	Н	М	Н	М	М
CLO-3: Describe phase diagram and transition in nanoscale	2	? 7	5 7	70	Н	М	Н	М	Н	Н	Н	Н	М	М	Н	Н	Н	Н
CLO-4: Analyze the physical chemistry of nanomaterials	2	? 8	0 7	75	М	Н	М	Н	М	Н	Н	Н	Μ	Н	М	М	Н	Н
CLO-5: Analyze the mechanism of different chemical synthesis routes	2	? 8	0 7	70	Н	М	Н	Н	Н	Μ	Н	Н	Н	Н	М	Н	Н	Н
CLO-6: Analyze the chemistry based processes at nanoscale	2	? 8	0 7	70	Н	М	Н	Н	Н	М	Н	Н	Н	Н	М	Н	Н	Н

Dura	ition (hour)	9	9	9	9	9
S-1	SLO-1	Fundamental Properties of nanomaterials	Symmetry of molecules	Crystalline phase transitions in nanocrystals	Supercritical fluids-introduction	Introduction on different synthesis route of nanoparticles
3-1	SLO-2	Size effects on structure and morphology of free and supported nanoparticles	point groups of molecules	Phase transitions and grain size dependence	Processes involving supercritical fluids	Overview on precipitative methods
S-2	SLO-1	Size and confinement effects of nanomaterials	Symmetry of nanosystems	Phase diagram of Water and Carbondioxide	Phase diagram of a pure substance	Chemical precipitation and co-precipitation methods to synthesize nanomaterials
3-2		Fraction of surface atoms	Point groups of nanoclusters	Different forms of phase transition	Pressure-density diagram for CO ₂	Chemical reduction method to synthesize metallic nanocrystals
S-3	SLO-1	Specific surface energy and surface stress of nanomaterials	Miller indices and representation of directions	Classification of phase transitions	Physicochemical properties: solubility or dissolving power of different fluids	Metathesis to prepare nanoparticles
3-3	SLO-2	Effect of size on the lattice parameter	Bragg's law of diffraction	Tools to detect phase transition	Variation of viscosity with respect to presure	Steps involved in Sol-gel synthesis
S-4		Classification of nano-structured materials	XRD analysis of bulk and nanomaterials	Wulff anf Wulff-Kirchoff plot for equilibrium geometry	Transport properties of supercritical fluids	Reaction mechanisms: Hydrolysis and polycondensation
3-4		0D, 1D, 2D,3D structures	Identification of crystal planes in bulk and nanomaterials	Phase transition of Barium Titanate nanoparticles as example	Diffusion and Brownian motion	Introduction to micelles, reverse micelles and microemulsions
S-5	SLO-1	Introduction to thermodynamics of bulk materials	Scherer equation to calculate the grain or crystallite size	Influence of the surface or interface on nanocrystals	Thermal conductivity or heat transport phenomenon of supercritical fluids	Synthesis of nanomaterials using microemulsion route
3-3		Gibb's equation	Specific features of nanoscale growth	Modification of transition barrier, geometric evolution of the lattice in nanocrystals	Purification and extraction of supercritical fluids	Prepare inorganic nanomaterials using hydrothermal and solvothermal routes
S-6	SLO-1	Derivation of free energies of nanostructures with different geometry	Size control of nanoparticles	Influence of the nanocrystal surface or interface on the lattice parameter	Synthesis of supercritical fluids	Preparation of arrays of oxide nanocrystals using thermolysisroute
3-0	SLO-2	Surface energy and work function of nanostructures with different geometry	Triggering the phase transition in small particles fabrication	Crystallization of metallic glasses	Cryochemistry of metals-Introduction	Microwave heating assisted synthesis of nanomaterials
S-7	SLO-1	Thermodynamics of nanospheres	Application to solid nanoparticles	Grain growth and grain growth kinetics	Silver and other metals	Introduction to sonochemistry

	SLO-2	Thermodynamics of nanorods	Controlling nucleation in nanomaterial synthesis	High pressure phase stabilization and DSC studies of nanomaterials	Stabilization of nanoparticles by polymers	Sonochemical synthesis of nanometals
S-8	SLO-1	Thermodynamics of nanoclusters	Controlling growth in nanomterial synthesis	LIGA SIUGIES OF NANOMAIEMAIS		Synthesis of nanosized hydroxides using sonochemical method
3-0	SLO-2	Kinetic versus thermodynamic stability	Controlling aggregation of nanoparticles		1	Core-shell synthesis of semiconductor nanocrystals
S-9	SLU-1	Understanding the thermodynamics at nanoscale	Stability of colloidal dispersions	Congruence in solid solutions	Reactions at superlow temperatures	Electrochemical synthesis of nanoparticles
3-9	SLO-2	Factors affecting thermodynamics at nanoscale	#Breaking matter into nieces	, , ,	Reactions of silver particles of various sizes and shapes	Photochemical synthesis of nanoparticles

Learning	1.	Ben Rogers, Jesse Adams, SumithaPennathur,Nanotechnology – Understanding small systems, 3rd ed.,	2	Nils O Peterson. Foundations for Nanoscience and Nanotechnology. CRC press. 2017
Resources		CRC press, 2017	۷.	Nils O Peterson, Foundations for Nanoscience and Nanotechnology, CRC press, 2017

Learning As	sessment												
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)		
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	FIIIai Examination	ii (50 % weigiitage)		
	Level of Hilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	Total 100 % 100 %			0 %	10	0 %	0 %	100 %				

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. P. Sudhakara, CLRI – CSIR, Jalandhar, sudhakarp@clri.res.in	1. Dr. Kothandaraman Ramanujam, IITM Chennai, rkraman@iitm.ac.in	1. Dr. N.Angeline Little Flower, SRMIST
2. Dr. Nagesh Kini, Thermax, Pune, Maharastra, nagesh.kini@gmail.com	2. Prof. G. Ranga Rao, Department of Chemistry, IITM Chennai, grrao@iitm.ac.in	2. Dr. S. HariniPriya, SRMIST

Cou		18NTC102T	Course Name	QUANTUM MECHAN	IANTUM MECHANICS FOR NANOTECHNOLOGISTS									Pro	fessio	onal C	ore					L 3	-	P 0	C 3
	requisite	Nil		Co-requisite	Nil				gress		Nil														
	ourses e Offering	Department	Nanotechnology	Courses	Data Book	/ Codes/Standards		Nil	ourse	98															
Cours	e Learning	g Rationale (CLR	t): The purpose of learn	ing this course is to:				L	earnii	ng					Prog	ram l	_earn	ing O	utcor	nes (l	PLO)				
			d and new Quantum Mec	hanics				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2	: Analyz	ze the bound and	scattering states behind applications - Na	nadimanaian										5			≟								
			roblems using various ass					(moc	(%)	(%)	٩	6	ŧ	searc			inabi		¥		æ				
CLR-5			of quantum theory and a		noscale			(B)	ency	nent	A		bme	, Re	ge		usta		μ		nanc	<u>g</u>			
CLR-6			ntum mechanics and get a					king	oficie	tainn	, a	Nois	yelo	sign	l Use	Hare.	s s		Tear	ioi	& Finance	arnir			
		•						_ <u>i</u>	d Pn	d Att	i	ΔΔ	80	, De	Tool	್ ಶ	ment		∞ ⊠	nicat	Mgt.	g Le			
	•	•	O): At the end of this co	urse, learners will be	e able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt.	Life Long Learning	PS0 - 1	PSO - 2	PSO - 3
			uantum Mechanics						80	75	N				М	М	М	Н	Н	Н	М	Н	Н	Н	М
			nics in low-dimensional sy					2	80 75	70 70	l H			H	M H	M H	M H	H	M H	H	M H	H M	M H	M H	М
			methods to solve problem sses based on quantum p					2	80	75	N N				М	Н	Н	Н	М	Н	М	Н	Н	Н	H
			uantum mechanics	nonomena				2	80	70	h				Н	М	М	Н	Н	Н	M	Н	Н	Н	Н
CLO-6			antum mechanics and ge	t acquainted with its	applications			2	80	70	N	ŀ	М	Н	Н	М	М	Н	Н	Н	М	Н	Н	Н	Н
Durati	on (hour)		9		9	9								9							9	`			
Durau		Old avantum mad	chanics, wave particle			Energy eigen functions	and	oiaon	volue									Turo	nortial	0.01/04		Schrö	dinas		
S-1		duality	chariics, wave particle	Classical interpret	ation of scattering state	with precession coordi			value	1	Principle							equat	ion	-			-		
3-1	SLO-2	Heisenberg unce	rtainty principle	Quantum interpret	ation of scattering State	Infinite well potential in	one	dimen	sions		Proof of v			ethod	and			Deriv Schrö				icle sy	stem's	S	
	SLO-1	Generalized Heis principle	enberg uncertainty	Reflection of partic	cles (wavefunction)	Numericals on infinite vand three dimensions	vell p	otenti	al in o	one	Energy ei Independ degenera	ent pe	erturba	tion th				Trans from				nter of	mass	fram	Э
S-2	SLO-2	Ehrenfest theorer	m	Transmission of P	articles (wavefunction)	Quantum confinement	effec	et in na	nosca	ale	Energy ei independ degenera approach	ent po te en	erturba	tion th	eory t	for no		Exch	ange (opera	tor				
S-3	SLO-1	Linear vector spa	ce	Rectangular poten quantitative	ntial barrier (E <v<sub>0):</v<sub>	Finite Well Potential, D	elta _l	potenti	ial		Eigen fun oerturbati energy le	on th	eory fo	r non-	deger	nerate		Symn	netriza	ation (of wa	ve fun	ction		
3-3	SLO-2	Hilbert space		Rectangular poter	ntial barrier (E>V ₀)	Eigen values, Schrödin spherical coordinates	ger e	equatio	on in		Eigen fun oerturbati energy le	on th	eory fo	r non-	deger	nerate		Antis	ymme	tric w	ave f	unctio	1		
	SLO-1	Statistical interpre	etation, stationary states	Transmission prob of energy ofparticl	pability plot as a function e	Angular equation					Energy ei independ degenera	gen v ent pe te en	alue ir erturba ergy le	case tion th vels	of Tin eory f	ne for		Boso	ns and	d Ferr	nions	3			
S-4	SLO-2	Orthogonal wave	function	Numericals in rect	angular potential barrier	Introduction on radial e	quat	ion			Quantitati value in c perturbati levels	ase c	f Time	indep	ender	nt		Exch	ange i	orces	1				

	SLO-1	Normalization of wave function	Tunneling effect	Derivation of radial equation	Eigen function in case of time dependent perturbation theory for two-level systems	Solids, free electron gas
S-5	SLO-2	Hermitian operator	Relation of tunneling with nanotechnology	Infinite spherical well	Quantitative approach of eigen Function in case of Time dependent perturbation theory for two-level systems	Band structure of solids
	SLO-1	Properties of Hermitian operator	Alpha-particle emission	Numerical on infinite spherical well	Sinusoidal perturbations	Quantum scattering theory
S-6	SLO-2	Commutation	Failure of Classical Mechanics to explain Alpha-particle emission	Ground state properties of hydrogen atom	Sinusoidal perturbations (quantitative approach)	Quantum scattering theory (quantitative approach)
	SLO-1	Energy eigen value equation	Derivation on Alpha-particle emission	Angular momentum (Lx,Ly,Lz)	Incoherent perturbation	Differential and total cross sections
S-7	SLO-2	Boundary condition of wavefunction	INDITION OF THE PROPERTY OF TH	Angular momentum (Lx,Ly,Lz) in spherical coordinate	Role of incoherent perturbation	Differential and total cross sections (quantitative approach)
S-8	SLO-1	Schrödinger's time dependent wave equations	Resonant tunneling	Generalized angular momentum (Jx,Jy,Jz), Eigen values	Transition rate	Green's functions
3-0	SLO-2	Schrödinger's time independent wave equations	Applications of resonant tunneling	Eigen values of momentum operator	Transition rate role is perturbation	Born approximation
6.0	SLO-1	Schrödinger's representation	Negative differential resistance	Spin ½, spin for two particle system	Adiabatic approximations (elementary concepts)	Applications in nanotechnology
S-9	SLO-2	Heisenberg representation, interaction picture	Negative differential resistance in 2D materials	Role of spin in nanospintronics	Sudden approximations (elementary concepts)	Overall role and implication of quantum phenomena in nanotechnology

Learning	1.	G. Aruldhas, Quantum Mechanics, 2 nd ed., PHI, 2013	3.	Ajoy Ghatak, S. Lokanathan, Quantum Mechanics, 5 th ed., Macmillan, 2009
Resources	2.	David J. Griffiths, Introduction to Quantum Mechanics, 2 nd ed., Pearson, 2009	4.	Bransden B.H., JoachainC.J. Quantum Mechanics, 2 nd ed., Pearson, 2007

Learning Assess	ment												
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (50% weightage)		
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Filiai Examination	i (50% weightage)		
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	30 %		30 %		30 %		30 %		30%			
Level I	Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply	40 %	_	40 %		40 %	_	40 %	_	40%			
Level 2	Analyze	40 /0	-	40 /0	_	40 /0	-	40 /0	-	4070	-		
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%			
LEVEI 3	Create	30 %	-						-	30% -			
	Total	10	0 %	100	0 %	10	0 %) %	100 %				

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Noriaki Terakubo, JGC CORPORATION, Japan, terakubo.noriaki@jgc.co.jp	1. Dr. Uday Narayan Maiti, IITG Guwahati, udaymaiti@gmail.com	1. Dr. Ranjit Thapa, SRMIST
2. Mr. R. Seshadri, TITAN Company Limited, seshadri@titan.co.in	Dr. Noejung Park, Ulsan National Institute of Science and Technology, noejung@unist.ac.kr	2. Dr. Kiran Mangalampalli, SRMIST

Cour		18NTC103L	Course Name		NANOSCALE	MATERIALS LABORATO	DRY		ourse		С					Prof	essio	nal C	ore					L 0		P 2	C 1
	equisite urses	Nil			Co-requisite Courses	Nil				gress		Nil															
Course	Offering	Department	Nanotech	nnology		Data Book	/ Codes/Standards		Nil			•															
		•			ng this course is to:				L	earni	ng					ı	Progr	am L	earni	ing O	utcor	nes (l	PLO)				
CLR-1: Analyze the chemical properties of nanostructured materials based on their size CLR-2: Utilize microscopes to view the morphology and spectrometers to find the absorbance of the nanomaterial CLR-3: Demonstrate various synthesis methods for nanomaterials preparation CLR-4: Utilize the characterization techniques and calculate the size and bandgap CLR-5: Analyze the optical and magnetic properties of the nanomaterials CLR-6: Compare the green synthesis and chemical properties of the nanomaterials Course Learning Outcomes (CLO): At the end of this course, learners will be able to:													13	14	15												
CLO-1: Perform various experimental methods for nanoparticles synthesis 2 80 75 M M H H M M H CLO-2: Analyze the role of chemistry innanoparticle synthesis 2 80 70											H M	H Communication	▼ Froject Mgt. & Finance	H H Life Long	H M	M H PSO - 2	M PSO - 3										
CLO-5:	Descri Identif	ibe the behavior fy the mechanisn	of nanomateria n of different ch	ls based on i emical synth	esis routes				2 2 2	75 80 80 80	70 75 70 75		H M H	M M M	H H H	H H H	H M H	H M M	M H H	H H H	H H H	H H H	H M M	H H H		H H H	Н М Н
CLU-6	Perior	m various chara	cterizations of r	ianomateriais	S		T		2	80	/3		П	П	П	П	П	IVI	М	П	П	П	IVI	П	П	П	П
Duratio	` '		6			6	(i							6					.			6				
S	SLO-1 SLO-2	Introduction to th		oratory	using UV-Vis speci	bsorption coefficient trometer	Synthesis of photoca co-precipitation metho		soluti	on usi	ing	Cryoci nanop size us	article	es and	ldeteri	minat	ion of	parti	cle	precip Scher	itation rer fo allite	n met rmula size o	hod to de f nand	e nanc etermir opartic	ne the	,	ŭ
S SLO-1 Synthesis of zinc sulfide quantum dot using co-precipitation method co-precipitation method SLO-2 Determination of optical bandgap using UV-Vis spectrometer Synthesis of ferro fluids using chemical precipitation Determination of zeta potential of aqueous dispersion at different pH conditions								icles l nning	oaded techn	l polyr ique	mer	Prepai sonoci identifi	hemic	al me	thod a	and el	lemen							f unkn			'n
S		Synthesis of silic stober's method			Synthesis of metal using sol-gel techn	oxide nanoparticles ique	Repeat/revision of exp	perime	ents			Fabric phase charac micros	inver: teriza	sion to	echniq ısing s	iue ai scann	nd ing el		n	techni	ique a ty and	and to	dete	y spir rminet iven s	he dis	slocat	
Learnin Resour	-	Kenneth	h J. Klabunde, N	Vanoscále Ma		y, WileyInterscience pub rticles in Microheterogen		r,2006	·	<i>4.</i> 5.		Sperli ://chen										ley Int	er sci	ience,	2006		

Learning Asses	sment											
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)	
	Level of Thinking	CLA -	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	FIIIai Examinatio	ii (50 % weightage)	
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember		40 %		30 %		30 %		30 %		30%	
Level I	Understand	-	40 %	-	30 %	-	30 %	-	30 %	-	30%	
Level 2	Apply		40 %		40 %		40 %		40 %		40%	
Level 2	Analyze	-	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	
Level 3	Evaluate		20 %		30 %	_	30 %		30 %		30%	
Level 3	Create								30 %	- 3		
	Total	tal 100 % 100 % 100 % 100 %) %	100 %			

[#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. P. Sudhakara, CLRI – CSIR, Jalandhar, sudhakarp@clri.res.in	1. Dr. Kothandaraman Ramanujam, IITM Chennai, rkraman@iitm.ac.in	1. Dr. N.Angeline Little Flower, SRMIST
2. Dr. Sudhakar selvakumar, CSIR-Central Electrochemical Research Institute, ssudhakar79@gmail.com	2. Dr. Arthanreeswaran, NIT, Trichy, arthanareeg@nitt.edu	2. Dr. S. HariniPriya, SRMIST

Cou		18NTC104T Cour Nam		HERMODYNAMICS AND STATISTICAL MI	ECHANICS		ourse egory	, (C				Prof	fessioi	nal Co	ore					L 3	•	P 0	C 3
	equisite	Nil		Co-requisite Nil				gressiv	e _{Nil}	ı														
	urses Offering	Department Na	anotechnology	Courses Nata Bool	⟨ / Codes/Standards		Nil Nil	ourses																
Oours	, Oncomi	J Department 1740	anoteennology	Data Book	(/ Oddes/Otandards		1 411																	
Cours	Learnin	g Rationale (CLR): The	e purpose of learnin	ng this course is to:			Le	earning	ı					Progr	am Le	earni	ing Oı	ıtcon	nes (F	PLO)				
CLR-1	: Utilize	the basic principles and	laws of thermodyna	mics			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2				stances and different kinds of equilibrium									ر			ty								
CLR-3		the concept of ensemble		istics			(m	(%	(%	Φ		ţ	earch			labili		논						
CLR-4 CLR-5		ze the concepts of quant					Bloc) CO	int (ledg		men	Rese	<u>a</u>		stair		Wor		auce	_			
CLR-5		ze the principles of nanoti		mics to Nanoscale systems			ing (icier	in in	wou	/sis	elop	gu,	Jsag	are	s Su		eam	5	Ë	in			
CLK-0	. Apply	the concepts of Non-equi	ilibrium memodyna	ITHICS TO INATIOSCATE SYSTEMS			hink	Prof	Atta	g X	Analy	Dev	Desi	00	Ē	ent 8		& ⊥	catio	gt. &	Lear			
Cours	ourse Learning Outcomes (CLO): At the end of this course, learners will be able to:						Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
	O-1: Describe various thermodynamic processes and concepts explained by laws						2	80	75	M	Н	Н	Н	M	М	L	M	М	Н	L	Н			Н
	O-2: Analyze the concepts of enthalpy, entropy, chemical potential, fugacity O-3: Describe the postulates of statistical mechanics						2		70	Н	М	Н	Н	Μ	М	М	Н	М	Н	L			М	М
						2		70	M	М	Н	М	Н	Н	L	М	Н	М	М	Н		Н	Н	
		nerate on Bose-Einstein co ribe the concept of Hill's n					2		75 70	M H	H	M H	H	H M	M H	M L	H M	M H	H H	L M	M H		H	H
		rze the fluctuations in sma		S			2		75 75	M	Н	Н	Н	M	М	L	M	М	Н	IVI			Н	Н
OLO-0	. prinary	20 the hactadions in sind	iii oyotomo					00	70	IVI		.,		IVI	101		101	IVI			"		"	
Duration	n (hour)	9		9	9							9								9				
S-1	SLO-1	Properties of a thermody concept of system and be		Thermodynamic properties of pure substances in solid, liquid, vapor phases	Fundamentals of statist microscopic approach	tical p	ohysic	S-	Quantum statistics for identical particles						Thermodynamics of small systems and Gibbs equation for nanosystems									
	SLO-2	Concept of continuum		Phase diagrams of a pure substance	Concept of phase space	е				tinguish ticles	able a	nd ind	disting	uisha	ble						therm			i
S-2	SLO-1	Thermodynamic equilibri	ium	Gibb's phase rule	Concept of gamma sp	ace a	and μ	space	Gra	and cand	onical	enser	nble			i	therm	odyna	amics		ical ed			
0.2	SLO-2	Path and point functions		Different kinds of equilibrium	Volumes in phase space				Det	terminat	ion of	Gibbs	facto	r			param	eters			therm	•		
S-3	SLO-1	Extensive and intensive p	properties	Entropy and energy criteria for equilibrium	Difference between mic macrostate	crosta	ate and	d	Pho	otons in	an ov	en					Gibbs nanop			single	-comp	onent	t	
3-3	SLO-2	Zeroth law of thermodyn concept of temperature	namics and	ldeal gas equation of a state	Most probable distributi	ion			Prin	nciple of	detail	led ba	lance				Fluctu	ations	s in sr	nall s	ystem	3		
S_1	SLO-1 Energy transfer by heat and work Deviation from ideal gas behavior				Equal apriori probability	and and	ergod	licity	Ene	ergy flux							Jarzya	nki's	inequ	ıality				
3-4	SLO-2 Isothermal process VanderWaal's equation of state			VanderWaal's equation of state	Ensemble averages				Bos	se gas							Classi	cal nu	ucleat	ion th	ermod	ynam	nics	
S-5	SLO-1	Adiabatic process		Law of corresponding states	Derivation of Boltzmann	n equ	ation	S=KInV	V Stru	ucturele	ss Bos	se gas	8				Phase	diag	rams	of sm	all sys	tems		
3-3	SLO-2 Isochoric process Determination of critical constants			Determination of critical constants	Thermodynamics of Ensembles Bose Einstein distribution law			w for b	osons	Thermodynamics of metastable phase nucleation at the nanoscale														
S-6	SLO-1 Isobaric process Temperature and entropy (T-dS) relations					nonical Ensemble and its armodynamic parameters Bose-Einstein condensation					Nanoscale thermodynamic approach in CVD diamond													
3-0	SLO-2	First law of thermodynam	Helmholtz Function Gibbs Function	Microcanonical Ensemble and its thermodynamic parameters Observation of BECs of cold atoms nitride Nucleation thermodynamics of cold atoms						of cub	oic bo	ron												

S-7	SLO-1	Specific Heat at constant Pressure and constant volume	General Thermodynamic equations	Stirling Approximation	Superfluid liquid helium	Nonextensivity of nanosystems
3-1	SLO-2	Second law of thermodynamics	Joule-Thomson coefficient	Classification of statistical distributions	Fermi gases for electrons	Nonintensivity of nanosystems
	SLO-1	Reversibility, irreversibility and Carnot cycle	Co-efficient of volume expansion	Maxwell-Boltzmann distribution for classical particles	Structureless degenerate Fermi gas	Principles of non-equilibrium thermodynamics
S-8	SLU-2	cycle	Adiabatic and isothermal compressibility	Concept of degrees of freedom	Fermi Dirac distribution law for fermions	Concept of Pseudo equilibrium and benard cells
	SLO-1	Third law of thermodynamics	Clapeyron equations	Law of equipartition of energy	Fermions at low temperatures	Out of equilibrium nanosystems
S-9	SLO-2	Unattainability of absolute zero	Clapeyron-Clausius equations	Specific near capacities of dases	Fermi temperature and degenerate pressure	Cooling by heating in nonequilibrium nanosystems

Learning Resources		Keith Stowe, An Introduction to Thermodynamics and Statistical Mechanics, Cambridge University, 2007 Richard E.Sonntag, Gordon J.VanWylen, Introduction to Thermodynamics, Classical and Statistical, Wiley Publishing, 2010		Yunus, A.Cengel, Michael Boles, Thermodynamics-An Engineering Approach, Tata McGraw Hill,2008 Pathria, R. K., Statistical Mechanics, Oxford: Pergamon Press, 1972
-----------------------	--	--	--	--

Learning Assess	sment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination	n (50% weightage)
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	l (10%)#	FIIIai Examination	i (50 % weightage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	30 %		30 %		30 %		30 %		30%	
Level I	Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply	40 %		40 %		40 %		40 %		40%	
Level 2	Analyze	40 /0	-	40 /0	-	40 //	-	40 /0	-	4070	-
Level 3	Evaluate	30 %	_	30 %		30 %		30 %	_	30%	
Level 3	Create	30 //	-	30 %	-	30 //	-	30 /0	-	30%	-
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. D.K. Aswal, National Physical Laboratory, New Delhi, dkaswal@nplindia.org	1. Prof. V. Subramaniam, IITM, Chennai, manianvs@iitm.ac.in	1. Dr. Annie Sujatha, SRMIST
2. Dr. Vinay Kumar Gupta, National Physical Laboratory, New Delhi, guptavinay@nplindia.org	2. Dr. R.Gnanamoorthy,IITM,Chennai, gmoorthy@itm.ac.in	2. Dr. BibhuRanjanSarangi, SRMIST

Cou		18NTC105T Course	BIOLOGICAL PRINCIPLES FOR NANOS	SCALE SCIENCE		urse		С				Prof	essior	nal Co	ıre					L			С
Co	de	Name	NOCOCIONE I TRIVOII ELO I ORTIVITO	JONEE GOIENGE	Cat	egory	1					1 101	000101	iui oo	10					3	0	0	3
	equisite urses	Nil	Co-requisite Nil				gressiv		Vil														
Cours	Offerin	g Department Nanotechnology	Data	Book / Codes/Standards		Nil																	
Cours	e Learnin	ng Rationale (CLR): The purpose of learn	ning this course is to:			L	earning	g				ı	Progra	am Le	earnii	ng O	utcor	•	•				
CLR-1		w about various biological molecules				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 CLR-3		erstand the structure and functions of variou w about various molecular biology principle		ion across membrane								등			<u>F</u>								
CLR-3		ire insight into-bioenergetic cycles	S			(mo	(%)	(%)	eg Ge		ŧ	searc			inabi		rk Srk		g				
CLR-5		knowledge about various gene transfer tecl	hnologies			<u>8</u>	ency	nent	wed	"	bme	, Re	ge		usta		n We		nanc	g.			
CLR-6		erstand the basic biological principles and n				king	oficie	tainn	Kno	alysis	velo	sign	l Usa	HE I	t & S		Tear	ţio	E	arnir			
						į	P.	d At	gring	m Ank n & De lis, De v & Cu				men		a &	nica	Mgt.	g Le		۵.	_	
Cours	e Learnin	ng Outcomes (CLO): At the end of this co	ourse, learners will be able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Enginee	Engineering Knowledge Problem Analysis Design & Development Analysis, Design, Research Modern Tool Usage Society & Culture Environment & Sustanability				Environ	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PS0 - 1	PS0 - 2	PSO - 3	
		ribe importance of biological molecules				2	80	75	$H \mid H \mid H \mid H \mid H \mid M \mid I$				Н	Н	Н	Н	М	Н	Н	Н	М		
		ze the various biological membranes and to				2		70					М	Н	М	Н	М	Н		М	M		
		ribe the obtained knowledge on molecular b ze the techniques of Bio energetics	biology			2		70 75	Н	Н	Н	Н		Н	H	H	H M	H	M H	M H		H H	H
		neasuring the concept of gene transfer te	chnology			2		70	H	Н	Н	Н	Н		Н	Н	Н	Н	Н	Н		Н	М
		ribe various biological principles and mecha				2		75	Н	Н	Н	Н			Н	Н	Н	Н	М			Н	М
		1	1																				
Duration	on (hour)	9	9		9				9							9 Introduction of foreign genes into animal							
S-1	SLO-1	Carbohydrates: classification	Models of membrane	DNA replication				P	rinciples o	f bioe	nerge	tics				ntrod cells	uctior	of fo	reign	genes	into a	anima	al l
0.	SLO-2	J	Membrane structure	Enzymology of DNA	replicat	ion		E	Biological (Oxidat	ion re	ductio	n rea	ctions	7	Trans	genic	techr	nology	/			
S-2	SLO-1	Sugar derivatives – structural polysaccharides	Erythrocytes	Transcription				С	arbohydra	ite me	taboli	ism			7	Trans	gene	transi	fer ted	chniqu	es		
3-2	SLO-2	Storage polysaccharides	Erythrocytes membrane	Types of RNA molec	cules			G	lycolysis						L	DNA I	Micro	injecti	on				
S-3	SLO-1	Amino acids: general properties	Plant cell	RNA splicing				G	lucogenes	sis						Embry ransf		stem	cell n	nediate	d gen	ie	
3-3	SLO-2	Peptide bonds	Cell membrane	Splicing mechanism				G	luconeoge	enesis	;				F	Retro	virus I	media	ited g	ene tra	ansfer		
2.4	SLO-1	Essential amino acids	Bacterial cell	Translation				G	Glycogenolysis				F	Plant	tissue	cultu	ıre						
S-4	SLO-2 Non-essential amino acids Bacterial cell wall Genetic code							Р	entose-ph	ospha	ate pa	thway			7	Totipo	tency	/					-
0.5	SLO-1	Lipids: classification	Membrane lipids	Codon-Anticodon				Coordinated regulation of glycolysis and gluconeogenesis				s	Transgenic plants										
S-5	SLO-2	Fatty acids	Structure and function	Codon-Anticodon int	teraction	1			itric acid c						A	Agrob	acter	ium m	nediat	ed ger	ne trar	nsfer	
0.0	SLO-1	Biological significance of lipids	Membrane proteins	Ribosomes			Reactions of the citric acid cycle Ti plasmid																
S-6	SLO-2	Functions of lipids	Membrane carbohydrates	Protein synthesis		Glyoxylate cycle Vectors																	

6.7	SLO-1	Nucleic acid	Thermodynamics of transport	Posttranslational Modification of Proteins	Electron transport chain	Animal cell culture
S-7	SLO-2	Chemical structure and base composition		Difference between protein synthesis in eukaryotic and prokaryotic cells	Oxidative phosphorylation	Basic tissue culture techniques
S-8	SLO-1	Double helical structures	Mechanism of transport	Protein structures	Electron-Transfer Reactions in mitochondria	Concepts of transgenic animal technology
3-0	SLO-2	Supercoiled DNA		Primary, secondary, tertiary and quaternary structures of protein	Proton pumping	Strategies for the production of transgenic animals and their importance
S-9	SLO-1	Vitamins, water and fat soluble vitamins	ATP-driven active transport	Gene regulation	ATP molecule	Gene therapy
3-9		Deficiency and diseases	Ion gradient driven active transport	Concept of operon	ATP synthesis mechanism	Clinical significance

Learning Resources	 David L Nelson, Michael M. Cox, Lehninger Principles of Biochemistry, 7th ed., WH Freeman & Co, 201 Donald Voet, Judith G. Voet, Biochemistry, Wiley, 2003 David Freifelder, Molecular Biology, 2nd ed., Narosa, 2004 	George M Malacinski, Freifelders Essentials of Molecular Biology, 4 th ed., Jones & Bartlett, 2015 S.B. Primrose and R.M. Twyman, Principles of Gene Manipulation and Genomics, 7 th ed., Wiley, 2000
-----------------------	---	---

Learning Asses	ssment											
	Continuous Learning Assessment (50% weightage)										(50% woightogo)	
Bloom's Level of Thinking		CLA -	1 (10%)	CLA – 2	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)		
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	30 %		30 %		30 %		30 %		30%		
Level I	Understand	30 /0	-	30 %	-	30 %	-	30 /0	-	30%	-	
Level 2	Apply	40 %		40 %		40 %		40 %		40%		
Level 2	Analyze	40 /0	-	40 70	-	40 70	-	40 /0	1	4070	-	
Level 3	Evaluate	30 %		30 %		30 %		30 %	_	30%		
Level 3	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	10	0 %	100) %	10	0 %	100) %	10	0 %	

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. K. Chandru, Trivitron Healthcare Pvt. Ltd. Chennai, chandru.k@trivitron.com	1. Prof. K. Chandraraj, IITM, Chennai, kcraj@iitm.ac.in	1. Dr. G. Devanand Venkatasubbu, SRMIST
2. Dr. Achuth Padmanaban, Baylor College of Medicine, USA, achuthz@gmail.com	2. Dr. P. Balasubramanian, NIT Rourkela, biobala@nitrkl.ac.in	2. Mrs. J. Jositta Sherine, SRMIST

Cou		18NTC106T Course	DESIGN AND SYNTHESIS OF NANOMA	ILDINIC	Course	Professional Core	L T P C
Co	de	Name	BEGIGITATIVE OTTATIVESTOR OF TATAVORNA	C	ategory	1 Totossional Gore	3 0 0 3
	requisite ourses	Nil	Co-requisite Nil		Progressive Courses	Nil	
_		g Department Nanotechno		k / Codes/Standards	Nil		
			-57				
Cours	e Learnir	g Rationale (CLR): The purpose	of learning this course is to:		Learning	Program Lea	rning Outcomes (PLO)
			nvolved in the growth of nanomaterials		1 2 3	1 2 3 4 5 6 7	8 9 10 11 12 13 14 15
		liarize with zero dimensional materi					
CLR-3		the concept of one dimensional m			(mg (% %	e e e	
CLR-4		rstand the fundamentals of thin film			Bloc (ledg men men ledg	Team Worl tion & Finance arning
CLR-6		ire knowledge on special nanomate			icier (now now sis slop gn, f	ag uning land
CLR-0	: Evan	iale trie potential of various growth	approaches in designing nanomaterials		Profi	naly Ki	atio & Te
		1			of Ti	am A III A I	t Mg l
Cours	e Learnir	g Outcomes (CLO): At the end of	f this course, learners will be able to:		Level of Thinking (Bloom) Expected Proficiency (%)	Engineering Knowledge Problem Analysis Design & Development Analysis, Design, Research Modern Tool Usage Society & Culture	
		ribe the fundamental concepts invo			2 80 7		
			olved in synthesis of quantum dots and nanoparticles	S	2 80 7		
			notubes from bulk materials and 1D nanostructures		2 75 7		
		the knowledge of thin films growth			2 80 7		M
		nbe the concept of sell-assembly, t an experiments on the growth of na	iosynthesis and green synthesis of nanomaterials		2 80 7		1 H M H L H H H M
CLO-). Desig	jii experiments on the growth of ha	omaterials		2 00 7)	''
Durat	on (hour)	9	9	9		9	9
S-1	SLO-1	Introduction to nanomaterials	Classification of nanoparticle synthesis techniques	1-Dimensional nanostruct	ures: introduction	Fundamentals of thin film growth	Self assembly
0-1	SLO-2	Nanomaterials classification based dimension	nanoparticles synthesis	Various examples of 1D n	anostructures	Fundamentals of thinfilm growth (Quantitative approach)	Self-assembled monolayers
S-2	SLO-1	Surface energy	Nanoparticle synthesis by mechanical alloying	Spontaneous growth of 1L	O nanostructures	Physical vapor deposition	Monolayers of organosilicon
3-2	SLO-2	Surface energies of different surfa FCC structure	ces of Nanoparticle synthesis by mechanical milling	Evaporation (dissolution) of growth	condensation	Evaporation	Monolayers of alkanethiols and sulfides
0.0	SLO-1	Chemical potential as a function o curvature	surface Vapor-phase synthesis of nanoparticles	Fundamentals of evaporation condensation growth	tion (dissolution)	Molecular beam epitaxy (MBE) - principle	Langmuir-Blodgett (LB) technique
S-3	SLO-2	Gibbs-Thompson relation	Inert gas condensation of nanoparticles	quantitative approach		Epitaxial growth of thin films using MBE	Monolayer thin film formation using LB technique
	SLO-1	Concept of Ostwald ripening	Plasma-based synthesis of nanoparticles	Fundamental aspects of (solid) VLS growth	vapour-liquid-	Sputtering and Sputtering targets	Graphene preparation methods
S-4	SLO-2	Role of Ostwald ripening in nanop synthesis	article Spark plasma method for nanoparticles synthesis	Fundamental aspects of S	SLS growth	DC and RF sputtering	Mechanical exfoliation
	SLO-1	Fundamentals of homogeneous n	· ·	Au-Si phase diagram		Chemical vapor deposition (CVD)	Liquid phase exfoliation
S-5	SLO-2	Critical radius and critical energy	Combustion synthesis of nanoparticles	VLS growth of various nar	LS growth of various nanowires Basic chemical reactions in CVD		Role of intercalation in graphene exfoliation
•	SLO-1	Effect of temperature on critical size	e and Spray pyrolysis based synthesis of nanoparticles	Control of the size of the r	nanowires	Reaction kinetics in CVD	Large area synthesis of graphene
S-6	SLO-2	Process of nucleation and subseq		Catalyst size dependent n	anowires growth	Transport phenomena	CVD synthesis of graphene

S-7		Growth controlled by diffusion	Solution processing of nanoparticles	Various precursor sand catalysts used for nanowires growth	Atomic layer deposition (ALD)	Biological synthesis of nanoparticles		
3-1		Growth controlled by diffusion (quantitative approach)	Sol-gel processing	SLS growth of various nanowires	Self-limiting growth using ALD	Nanoparticles synthesis using viruses		
S-8		Growth controlled by surface process	Kinetically confined synthesis of nanoparticles	Stress induced recrystallization growth	Electrochemical deposition	Nanoparticles synthesis using bacteria		
3-0	SLO-2	Growth controlled by surface process (quantitative approach)	Nanoparticle synthesis using micelles	I amniata hacad cynthaeie at Nille	Electrochemical deposition – Nernst equation and film growth	Role of bacteria in nanoparticle synthesis		
S-9	SLO-1	Fundamentals of heterogeneous nucleation	Nanoparticle synthesis using microemulsion	Template filling	Sol-Gel Films - spin coating	Green chemistry of nanoparticles		
3-9	SLO-2	Fundamentals of heterogeneous nucleation (Quantitative approach)	Aerosol synthesis of nanoparticles	Nanofibres producion using Electrospinning	Dip coating, Electrophoretic deposition	Nanoparticles synthesis using plant extract		

Learning	1. C. Cao, Nanostructures & Nanomaterials – Synthesis, Properties & Applications, Imperial College Press, 2004	3.	Rai M and Poston C, Green biosynthesis of nanoparticles: mechanisms and applications, Cabi,
Resources	2. Abdullaeva Zhypargul, Synthesis of Nanoparticles and Nanomaterials -Biological Approaches, Springer, 2017		2013.

Learning As	sessment													
	Bloom's Continuous Learning Assessment (50% weightage)										Final Evamination (FOO/ weightage)			
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	ł (10%)#	Final Examination (50% weightage)				
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-			
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-			
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-			
	Total 100 %			100	0 %	10	0 %	10	0 %	100 %				

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. M. Krishna Surendra, Saint-Gobain Research, Chennai, krishna.muvvala@saint-gobain.com	1. Prof. S. Balakumar, University of Madras, balakumar@unom.ac.in	1. Dr. E. Senthil Kumar, SRMIST
2. Dr. M. Sathish, CSIR-CECRI, Karaikudi, msathish@cecri.res.in	2. Prof. S. Ramaprabhu, IIT Madras, ramp@iitm.ac.in	2. Dr. S. Chandramohan, SRMIST

Course Code 18NTC107J Course Name ADVANCED CHARACTERIZATION OF NANOMATERIA					Cours Catego		C	;				Pro	fessio	nal C	ore					L 3	T 0	P 2	C 4
	equisite urses	Nil	Co-requisite Nil				ressiv	Nil															
		ng Department Nanotechnology		k / Codes/Standards	Nil																		
Cours	e Learnir	ng Rationale (CLR): The purpose of lea	ning this course is to:			Lea	arning						Prog	ram L	.earn	ing O	utcor	nes (PLO)				
			AES and SIMS to characterize nanomaterials			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2			the morphological, structural and chemical lev	el								ч			Ξį								
CLR-3		lyze different types of nanostructures	ced characterization techniques used in nano	technology	- 1 1	(mo	(%)	%	Э		=	Analysis, Design, Research			Environment & Sustainability		¥		ø.				
CLR-5		ly the advanced techniques for solving prob		tecimology	- 6	<u>@</u>	ncy	ent	vledç		mer	Res	ge		ıstai		۷۷ ر		ancı	D			
CLR-6		nonstrate skills in the use of advanced expe				king	oficie .	all	Knov	lysis	velop	sign,	Usa	Iture	» ک		Геап	on	& Fir	arn in			
					Ē	트	J. Pro	a Att	ing	Ana	Ď	, De	Tool	S Cu	nent		- 8 - 8	icati	/gt. ≀) Le			
Cours	Loarnir	ng Outcomes (CLO): At the end of this of	ourse, learners will be able to:		-	evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	lysis	Modern Tool Usage	Society & Culture	iron	SS	ndividual & Team Work	Communication	Project Mgt. & Finance	ife Long Learning	PS0 - 1)-2	0-3
Cours		` '	•			Fe.	E XD	Ž.	Eng	Prot	Des	Ana	Мос	Soc	En	Ethics	Indi	Con	Ρroj	Life	PSC	PSO.	PSO -
CLO-1		ain the principles of optical, electron and so stroscopic and secondary ion mass spectro	anning probe microscopies and photoelectron netric techniques.	, Auger electron		1	80	75	Н	М	Н	Н	Н	Н	Н	Н	Μ	Н	L	Н	Н	Н	Н
CLO-2	: Desc	cribe the construction and operation of diffe	rent characterization techniques.			1		70	Н	М	Н	Н	М	Μ	М	Н	Μ	Н	L	Н	М	М	М
CLO-3		orm experiments using SEM, TEM, SPM, X					_	70	Н	Н	Н	Н	Н	Н	Н	Н	Μ	Н	L	Н		Н	Н
CLO-4		ly suitable techniques for characterizing nai				2	80 7	75	Н	Н	Н	Н	Н	Н	Н	Н	М	Н	М	Н	Н	Н	Н
CLO-5		yze tne morpnology, structure, elemental c g advanced techniques.	omposition and chemical state of the given /sy	ntnesizea nanomateriais		2	80 8	30	Н	Н	Н	Н	Н	Н	Η	Н	Μ	Н	L	Н	Н	Н	Н
CLO-6		y skills acquired for advanced experimenta	characterization			2	80 8	30	Н	Н	Н	Н	Н	М	Н	Н	Н	Н	М	Н	Н	Н	Н
								,															
Durati	on (hour)	15	15	15				15				15											
S-1	SLO-1	Image formation, numerical aperture resolution, effective magnification	Scanning electron microscopy; electron optics; imaging with electrons	TEM imaging system				Sca	nning p	robe r	nicros	сору	,			Basic spect				/ photo	electr	ron	
3-1	SLO-2	Brightness and contrast, depth of field, aberrations	Magnetic and electrostatic lenses	Instrumentation of TEM				Insti	nning p rument	ation						Auge	r elec	tron s	pectr	oscopy	(AES)	
S-2	SLO-1	Instrumentation: illumination system, objective lens and eyepiece	Signal detection	Electron sources				Sca curr	nning ti ent	unnelii	ng mi	crosc	opy, ti	unneli	ing	Instru	ment	ation:	XPS				
3-2	SLO-2	Steps for optimum resolution, steps to improve depth of field	Detector	Specimen stage and spe	cimen	pre	paratio	n Prol	be tips	and w	orking	envi	ronme	ents		Instru	ment	ation:	AES				
S-3	SLO-1	Imaging modes bright-field and dark-field imaging	Probe size and current	Kinematics of scattering	by nuc	cleus	:	Ator	mic ford	e mici	roscoj	рy				Photo	elect	ron s _l	ectra				
0-3	SLO-2 Kohler illumination Electron–specimen interactions Electron – electron				ering				tilevers							Auge	r elec	tron s	pectr	а			
S 4-5				Lab 7: Imaging and analy transmission electron mid					10: Tu nning tu						9	Lab 1	3: Int	erprei	ation	of XP	Sspec	ctra	
S-6				Image modes: Mass-der	nsity co	ontra	ast	Con	tact AF	М						Quali	tative	analy	sis				
3-0	SLO-2 The behavior of waves from phase objects in brightfield microscopy Compositional contrast Diffraction con							Non	-contac	t AFN	1					comp	ositio	n ima	ging	emica			
S-7	SLO-1	Properties of polarized light	Working distance and aperture size	Selected-area diffraction (SAD) and characteristics Dynamic contact AFM					Quantitative analysis: peaks and sensit factors		ivity												
3-1	SLO-2	Polarized-light microscopy	Acceleration voltage and probe current	Single-crystal diffraction, diffraction	polycr	rysta	lline	Тар	ing AFI	И						Comp	ositic	n dep	oth pr	ofiling			

				1					
S-8	SLO-1	Differential interference contrast microscopy and modulation contrast microscopy: DIC optical system	Astigmatism	Dark field images		Force modulation	Secondary ion mass spectrometry (SIMS): Basic principles		
	SLO-2	Modulation contrast microscopy	Specimen preparation	Phase control Mai		Manipulation of atoms	Secondary ion generation		
S 9-10	SLO-1 SLO-2	Lab 2: Optical microscope based investigation of microfabricated structures	Lab 5: SE and BSE imaging with SEM	Lab 8: Selected area using TEM (SAED)	electron diffraction	Lab 11: Nanoparticle size determination using atomic force microcopy (AFM)	Lab 14: Peak identification of in AES spectra, analysis of the AES depth profile		
0.44	SLO-1	Physical basis of fluorescence	Elemental imaging using EDS	High resolution image	es	Advanced SPM techniques	Dynamic and static SIMS		
S-11	SLO-2	Fluorescence microscopy	Applications of elemental imaging	Interpretation of high	resolution images	Kelvin probe force microscopy	SIMS -instrumentation		
S-12	SLO-1	Confocal laser scanning microscopy: the optical principle of confocal imaging	Field emission SEM	Ultrahigh resolution 1	ГЕМ	Scanning capacitance microscopy	Sample handling		
3-12	SLO-2	Techniques for improving imaging of nanoscale materials	Environmental SEM	Dynamic TEM		Scanning thermal microscopy	Spectrum interpretation		
0.40	SLO-1	Diffraction limit	Time resolved microscopy	z-contrast imaging		Magnetic force microscopy	Element identification		
S-13	SLO-2	Breaking the diffraction limit	Time resolved microscopy:Applications	Coherent and incohe	rent imaging	Piezoelectric force microscopy	SIMS depth profiling		
S 14-15	SLO-1 SLO-2	Lab 3: Bioimaging using fluorescence microscopy	Lab 6: EDS for chemical identification	Lab 9: Repeat/Revisi		Lab 12: Surface morphology by STM and roughness determination by AFM	Lab 15: Analysis of SIMS profile spectra		
Learn Resou	•	2 nd ed., John Wiley & Sons, 2013	dson, Fundamentals of light microscopy and n, introduction to microscopic and spectrosco in cell biology. CRC press. 2012		4. Ray, F. Egerton, Priysical principles of electron microscopy, Springer, 2005 5. Rharat Rhusan, Scanning probe microscopy in pano-science and panotechnology. Springer, 2013				

Learning Assess	ment											
	Bloom's		Continuous Learning Assessment (50% weightage)									
	Level of Thinking	CLA -	1 (10%)	CLA -	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)		
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
LEVELI	Understand	2070	2070	1070	1070	1070	1070	1070	1070	1370	1070	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
LEVEI Z	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070	
Lavel 2	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 3	Create	10%	10%	13%	15%	15%	15%	13%	13%	15%	15%	
	Total 100 %			10	0 %	10	0 %	100) %	100 %		

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. N. Vijayan, CSIR-NPL, nvijayan@nplindia.org	1. Prof. S. Balakumar, University of Madras, balakumar@unom.ac.in	1. Dr. C. M. Navaneethan, SRMIST
2. Mr.K.R. Navaneethakrishnan, GLR Laboratories Pvt Ltd	2. Dr. N. Vijayan, CSIR-NPL, nvijayan@nplindia.org	2. Dr. A. Karthigeyan, SRMIST

																					1	ı	
Cou		18NTC108T Cours		MODELING AN	D COMPUTATIONAL TO	OOLS	Cour Categ		С				Prof	ession	al Cor	е				3			C 3
	equisite ourses	Nil		Co-requisite Courses	Nil		ı		essive rses	Nil													
		g Department Na	notechnology	Courses	Data Book	/ Codes/Standards	N		1303														
										_													
Cours	e Learnin	g Rationale (CLR): The	e purpose of learnin	ng this course is to:				Lea	rning				ı	Progra	m Le	arning	Outco	omes (PLO)				
CLR-1		the basics of MATLAB an						1	2 3	1	2	3	4	5	6	7 8	9	10	11	12	13	14	15
CLR-2		ire detailed knowledge of L											5			£							
CLR-3		e and gain knowledge of Me in detail the Monte Carlo						(mo	8 8	e		ŧ	earc			nabi	ž		Ф				
CLR-4		rstand the basics of mode						8	ncy	kedç		mer	Res	ge		ıstaı	N N		ano	Б			
CLR-6		the materials modeling ar						king i	ficie ainm	Š Š	lysis	/elop	ign,	Usa	tre !	ภ ช	eau	on	& Fir	Ë			
							_	ie l	Pro	in in in	Ana	De	Des	8	ਤੋਂ	ent	~	icati	lgt. 8	Lea			
Cours	e Learnin	g Outcomes (CLO): At	the end of this cour	se, learners will be	able to:			evel of Thinking (Bloom)	Expected Proficiency (%) Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	ife Long Learning		PSO - 2	PSO - 3
CI O 1	. Evon	ute and solve problems wit	th the hasine of con	anutational tools				_	<u>ゴ</u> 80 75	<u></u> ப	M M	H H	₽ H			5		S H	M F		H H	<u>82</u> H	₩ H
CLO-1		e the principles of DFT	ui tile basics of con	тританопат 10015					80 70		M	Н	M			M H		M	M	Н			М
CLO-3		the knowledge of molecul	lar dvnamics to solv	ve problems					75 70		M	Н	Н			H M	_	Н	М	Н			Н
		and perform modeling wit							80 75		Н	М	Н			Н Н		М	Н				Н
		ute the computational code							80 70		М	Н	Н			М Н		Н	М				Н
CLO-6	: Predi	ct the physical properties f	from modeling and	simulation				2	80 70	М	Н	Н	Н	Н	М	M M	Н	Н	М	Н	Н	Н	Η
Durati	on (hour)	9			9	9						9							9				
	SLO-1	Introduction to MATLAB-A Matrices-Matrix operation		Introduction to MA	TLAB	Schrodinger equation		Classical molecular dynamics						Monte-Carlo method: Introductory examples									
S-1	SLO-2	'		Arrays		Schrodinger equation for problem																	
S-2	SLO-1	Solution of simultaneous	equation	Matrices-Matrix op	eration	Born-Oppenheimer app	oroxima	ition		Tight bindi						Fu	ndame	ental ke	ey con	cepts			
3-2	SLO-2	Arithmetic operations		Inverse of a Matrix		Introduction to DFT				Discussior dynamics								nation		ods			
S-3	SLO-1	Logical operations		Eigen value proble	m	Hohenberg-Kohn Theol				The basics algorithm					(MD)			sampl					
SLO-2 If-else clause Problems on Eigen value problem				Discussions on Hohenb 1	erg-Ko	ohn the	eorem	Discussior algorithim	s with	exam	iples d	n MD		Dis	cussic	ns of F	Rejecti	on san	npling	1			
S-4	SLO-1	Loop control structure and	d statements	Arithmetic operation	ns	Hohenberg-Kohn Theol				Verlet algo	rithms	3				Imp	ortan	e sam	pling				
	SLO-2 Break statement, Switch statement Logical operations Di.				Discussions on Hohenb 2	erg-Ko	ohn the	eorem	Discussion	s Verl	let algo	orithm	s		Dis	Discussions on Importance sampling							
S-5	SLO-1	Self-consistent method		Loop control struct	ure and statements	Kohn-Sham Equation				Predictor -	Corre	ctor a	lgorith	m				n by im	•		, ,		ory
	SLO-2 Functions-data visualization in 2D and 3D Break statement Discussion				Discussion on Kohn-Sh				Discussion	ıs on -	Corre	ector a	lgorith	n		gratio mple	n by im	porta	nce sa	mpling	g-		
S-6	SLO-1	Introduction to C++		Switch statement		Exchange-correlation fu LDA (Basic Concept)	unctions	S		· · · · · · · · · · · · · · · · · · ·				Metropolis algorithm									
		Algorithms		If and else if stater		LDA (explanation of the			Discussions MD in different ensembles Discussions on Me														

S-7	SLO-1	Structured-programing		Exchange-correlation functions GGA (Basic Concept)	Examples of MD simulation	Introduction to Kinetic Monte Carlo (KMC)
3-1	SLO-2	I/O statements	Examples on data visualization in 2D	GGA (explanation of the equation)	Discussions on qualitative results	Qualitative discussions and basic concept
	SLO-1	Controlstatements	Functions-data visualization in 3D		l emperature variation effects in MD	Introduction to Quantum Monte Carlo (QMC)
S-8	SLO-2	Looping (loop statement)	Examples on data visualization in 3D	Types of basis set (basic level)	Examples on Temperature variation effects in MD	Qualitative discussions and basic concept
S-9	SLO-1	Matrix: Basic matrix operations	Basic concept of Computer clusters, Master Node, Working Node	Flow chart of DFT scfprocedure	Limitations of MD	Merits and demerits of KMC and QMC
3-9	SLO-2	Basic idea of parallel programing	Bewolf and Shared memory clusters in introductory level	Discussions on Flow chart	Case study examples	Case study examples

Learning Resources	 Jörg-Rüdiger Hill, Lalitha Subramanian, AmiteshMaiti, Molecular modeling techniques inmaterial sciences, Taylor & Francis 2005 J.M. Thijssen, Computational Physics, Cambridge University Press, 2007 Andrew R. Leach, Molecular modelling: principles and application, Pearson Education, 2001 Rizwann Butt. Introduction to Numerical Analysis using MATLAB. Jones and Bartlett Publishers. 2008 	 Daan Frenkel and BerendSmit, Understanding molecular simulation: from algorithms to applications, Academic Press, 2001 Feliciano Giustino, Materials Modelling using Density Functional Theory: Properties and Predictions, Oxford University Press, 2014
-----------------------	---	--

Learning As	sessment												
	Bloom's	Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA - 1 (10%)		CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	Final Examination (50% weightage)			
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Analyze Evaluate	30 %	_	30 %	_	30 %	_	30 %	_	30%	_		
Level 3	Create	JU 70	-	JU 70	-	30 /0	-	30 70	-	5070	-		
	Total	10	0 %	100 %		10	0 %	10	0 %	100 %			

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers											
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts									
1. Dr. Hemant Dixit, GlobalFoundaries, USA, aplahemant@gmail.com	1. Dr. Ranjit Kumar Nanda, IIT Madras, nandab@iitm.ac.in	1. Dr. RanjitThapa, SRMIST									
2. Dr. Murali Kota, Global Foundaries,USA, kvrmmurali@gmail.com	2. Dr. Biswarup Pathak, IIT Indore, biswarup@iiti.ac.in	2. Dr. Saurabh Ghosh, SRMIST									

																			1		_
Cou		18NTC109T Course Name	SOLID STATE ENGINEERING		Cour: Catego		С				Prof	essior	al Co	re				1	- T	P 0	C 3
	equisite	Nil	Co-requisite Nil		P	rogres		Nil													
	urses Offering	Department Nanotechnolo	Courses '*" Data Book	(/ Codes/Standards	Nil	Cours	es														
Ocurs	onem,	g Department Namoteermore	gy Butu Book	(/ Oodco/Otandardo	11411																
Cours	e Learnin	g Rationale (CLR): The purpose of	f learning this course is to:			Learning Program Learning Outcomes (PLO)															
CLR-1		ire knowledge on various chemical bo				1 2	3	1	2	3	4	5	6	7	8	9	10	11	12 1	3 1	4 15
CLR-2		rstand theory of crystal diffraction, vib									_			.≥.							
		ribe the concept of free electron Ferm			_ 1	£ %	9	Ф			arc			labil		¥		_			
		sify semiconductors, metals and insula			- 2	Cy Bloc	i i	ledg		men	Rese	<u>o</u>		stair		No.		ance	_		
CLR-5		knowledge on excitons, plasmons, por rstand the principles of Raman and o			- 1	ng (l all	Mou	·Si	ldole	gu, F	Jsag	ale	Sn		am	_	Ë	in g		
CLR-0	: Unae	rstand the principles of Raman and o	oucai spectroscopy		<u>ا</u> ا	Profi	Attai	b Z	naly	Deve	Desi		SE	ent 8		δŢ	gtio	± ⊗	ear		
Cours	e Learnin	ng Outcomes (CLO): At the end of the	this course, learners will be able to:		5	Level of Ininking (Bloom) Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	T Design & Development	⊤ Analysis, Design, Research	⊥ Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO-1-	
01.0.4	. 101	the principles of the miss bounding to						됴		<u>6</u>	Ā	ĭ			立 H	<u>ਵ</u> H		<u>~</u>	H I	C S	8 8
			understand elastic properties of solids mal properties using the concept of phonons			2 80 2 80			M	М	Н		M M	M M		М				и I	_
			for electrical transport properties of solids			2 75			M	Н	Н		Н	Н	М	Н	Н			H H	
			y of metals and intrinsic and extrinsic semiconducto	rs		2 80			Н	Н	М	Н	Н	Н	Н	Н				' '	
CLO-5			erstand the optical properties of solids	10		2 80			М	Н	Н		М	М	Н	М	Н			H H	
CLO-6		te the spectroscopic concepts to analy				2 80				М	Н	Н	М	М	Н	Н	Н			H N	
	',																				1
Durati	on (hour)	9	9	9						9								9			
S-1	SLO-1	Interatomic forces: Understanding of crystal binding	Crystal diffraction	Free electron gas				Nearly free							Electro	onic ir	nterba	nd tra	nsition	s	
	SLO-2	Bonding in solids	Bragg's law	Energy levels of free election dimension	tron g	as in or		Nearly free electron model (Quantitative approach)					L	Direct and indirect transitions							
S-2	SLO-1	Van der Waals interaction	Reciprocal lattice vectors and Brillouin Zones (BZ)	Fermi- Dirac distribution				Origin and	magni	itude (of the	energ	y gap	(Conce	pt of	excito	ns			
3-2	SLO-2	Quantitative approach of London interaction	BZ of square lattice and oblique lattice	Effect of temperature on a distribution function				Bloch fund	tion					E	Energ	/ leve	l diag	ram oi	excito	ons	
S-3	SLO-1	Equilibrium lattice constants	Vibration of crystals with monoatomic basis	Free electron gas in three (Quantitative approach)	e dime	ensions		Classificat	ion of s	solids	using	band	gap	F	Frenke	elexci	tons				
3-3	SLO-2	Cohesive energy	Dispersion relation	Fermi energy, density of	states			Metals, se	micono	ductor	s and	insula	tors		Frenke moleci				i halid	es and	i
S-4	SLO-1	Nature of bonding in ionic crystals	Group velocity	Heat capacity of the free	electro	on gas		Direct and semicondu		ct ban	d gap			/	Mott-V	Vanni	erexci	tons			
5-4	SLO-2	Madelung constant	Quantization of elastic waves (concept of phonon)	Heat capacity of the free (Quantitative approach)	electro	on gas		Relation b and phond			dgap e	energy	phot	on I	Modifi	ed Ry	rdberg	's equ	ation		
S-5	SLO-1	Madelung energy	Phonon heat capacity-Planck's distribution	Electrical conductivity				Concept o	f holes	in sei	micon	ductor	S	(Quant	itative	appr	oach f	or Rar	nan ei	fect
SLO-2 Evaluation of Madelung constant Normal modes				Ohm's law				Effective n	nass					A	Applic	ation:	Rama	an effe	an effect in solids		
S-6	SLO-1	Covalent bonding	Phonon -density of states (modes) in one dimensions	Electrical resistivity				Intrinsic ca	rrier co	oncen	tration	1		(Conce	pt of	plasm	ons in	meta	s	
5-0	SLO-2	Metallic and hydrogen bonding	Phonon- density of states (modes) in three dimensions	Matthiessen's rule				Intrinsic ca approach	rrier co	oncen	tration	ı – qua	antitat	ive	Plasm	a freq	uency	′			

S-7	SLO-1	Hooke's law in solids	Debye model for density of states (modes)	Motion of electron in magnetic field	Impurity conductivity: doping	Concept of polarons
3-1	SLO-2	Elastic strain components (Quantitative treatment)	Cutoff frequency in Debye solids	Cyclotron frequency	Donor and acceptor states	Concept of polaritons
S-8	SLO-1	Dilation in solids	Debye – T³ law	Hall effect: quantitative approach	Zener tunneling, Zener breakdown and Zener diodes	Defects in solids – lattice vacancies
3-0	SLO-2	Elastic stress components	Debye – T ³ law (Quantitative approach)	I Hall coefficient	Avalanche bvreakdown and Avalanche diodes	Schottky and Frenkel defects
S-9	SLO-1	Elastic compliance components		Thermal conductivity of metals: Wiedemann-Franz law	Super lattices and quantum wells	Color centers: F centers
5-9	SLO-2	Elastic stiffness components	Einstein model for density of states – quantitative approach		Multi Quantun well light emitting diodes (MQW-LEDs)	Other centers in alkali halides

Learning Resources	 C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2015 Fundamentals of Solid State Engineering, ManijehRazeghi, Kluwer Academic Publishers, 2002 	3.	Solid State Electronic Devices, Ben. G. Streetman amd Sanjay Banerjee, 7 th Edison, Pearson, 2006
-----------------------	--	----	--

Learning Asses	ssment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination (50% weightage)		
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#			
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	30 %		30 %		30 %		30 %		30%		
Level I	Understand	30 %	-	30 70	_	30 %	-	30 /0	-	30%	-	
Level 2	Apply	40 %		40 %		40 %		40 %		40%		
Level 2	Analyze	40 /0	-	40 /0	-	40 70	-	40 /0	1	4070	-	
Level 3	Evaluate	30 %	_	30 %		30 %	_	30 %	_	30%		
Level 3	Create		_	30 //	-	30 %	-			30%	-	
	Total	10	0 %	100	0 %	10	0 %	100) %	10	0 %	

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers											
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts									
1. Dr. Hemant Dixit, GlobalFoundaries, USA, aplahemant@gmail.com	1. Dr. Ranjit Kumar Nanda, IIT Madras, nandab@iitm.ac.in	1. Dr. E. Senthil Kumar, SRMIST									
2. Dr. Krishna Surendra Muvvala, Saint Gobain Research, India, Krishna.muvvala@saintgobain.com	2. Dr. M. S. Ramachandra Rao, IIT Madras, msrrao@iitm.ac.in	2. Dr. Kamala Bharathi, SRMIST									

ACADEMIC CURRICULA

Professional Elective Courses

ELECTRONICS AND COMMUNICATION ENGINEERING

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Cou		18ECE203T	Course Name	SEMICONDU	JCTOR DEVICE MODELII	NG		urse egory		Ε				Profe	ssion	al Ele	ctive					L -	. .	_	C 3
C	requisite ourses e Offerinç	18ECC102J	Electronics and Cor	Co-requisite Courses mmunication Enginee	Nil ering Data Book	/ Codes/Standards			jress jurse		Nil														
Cours	e Learnin	g Rationale (CL	R): The purpose of learn	ning this course is to:	:			Le	arnir	ng					Prog	ram L	earn	ing Οι	ıtcon	nes (P	LO)				
CLR-1	: Utilize	e the properties o	of semiconductor materials					1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13 ′	14	15
CLR-2			s that occur in a PN junction	on																					
CLR-3			ics and modeling of BJT spects of MOSFET											당			<u>F</u>								
CLR-4			spects of MOSFET MOSFET scaling and spec	ial MOSFFTs				(moc	%)	(%)	96		ŧ	sear			inab		or K		æ				
CLR-6	Undo	rstand the fundar	mental physical processes		evices to meet the challen	ge of these dynamic		evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	H Engineering Knowledge	Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Culture	Environment & Sustainability		ndividual & Team Work	cation	roject Mgt. & Finance	ife Long Learning			
		g Outcomes (CL	,								Engineeri	Problem Analysis	Design &			Society & Culture		Ethics	Individual	O	Project M	Life Long	ш і		PSO - 3
		,	emiconductor materials for istics of Junction devices	r various applications	3			3	80 85	70 75	H		-	- Н	-	-	-	-	-	-	-	-	_	-	-
CLO-3			BJT parameters for better	performance				3	75	70	H	Н	-	Н	-	-	-	-	-	-	-		_	-	Н
	: Evalu	ate and optimize	the performance of MOSI					3	85	80	Н	Н	-	Н	-	-	-	-	-	-	-	-	-	-	Н
CLO-5		new devices with						3	85	75	Н	-	-	Н	-	-	-	-	-	-	-	-	-	-	Н
CLO-6			approximations and techr vith known qualitative theo		leriving a model with speci	ified properties, for a gen	erai	3	80	70	Н	Н	-	Н	-	-	-	-	-	-	-	-	-	-	Н
Durati	on (hour)		9		9	9							9								9				
S-1	SLO-1		Densities In Equilibrium: uantum states in energy		r thermal equilibrium: concept of space charge	Current components, Ba parameters,	sic E	BJT		٨	IOS diod	е						Scalin	g of N	10SF	ETS				
	SLO-2	Fermi – Dirac St	tatistics	Problem Solving		Limitations on the junction	n vo	oltage		C	Operation	of Ide	al MO	S diod	le (at	VGB	>0)	Effect	of Ga	te vol	tage o	on can	rier m	obilit	y
S-2	SLO-1	Electron concen	tration conduction band	within the space conjunctions at Zero b		Capacitances in a BJT,				C	peration	of ide	al MO	S diod	le (at	VGB ·	<0)	Effect	of Dr	ain vo	ltage	on car	rier m	nobili	y
3-2	SLO-2	Hole concentrati	ion Valence band		ctric filed and potential harge layer for abrupt pias	Switching of BJT					peration vithout ox			S diod	le witi	h and		Effect	of Dr	ain vo	ltage (on car	rier m	nobili	y
S-3	SLO-1	Carrier concentr semiconductors			ctric filed and potential harge layer for linearly at Zero bias	Ebers-Moll model				E	Effects of	mobile	e Ionic	charg	ies			Chann	nel ler	ıgth m	odula	ation			
3-3	SLO-2	Position of Ferm semiconductors	ni level in extrinsic		ctric filed and potential harge layer for linearly tt Zero bias	Problem Solving				F	Problem S	olving	1					Break	down	and p	unch	throug	gh		
S-4	SLO-1	lonization of imp electron and hol	purities, Equilibrium le concentration	PN Junction under layer capacitance junctions	r applied bias: Depletion in an abrupt PN	Early effect (CB & CE)				C	Oxide cha	rges a	nd Int	erface	state	es		Sub th	resho	old cui	rrent				
	SLO-2	Problem Solving	7	Problem Solving		Operation of BJT at high Charge control model	frec	uenci	es:	C	C-V Chara	cteris	tics					Sub th	resho	old cu	rrent				_
S-5	Depletion layer capacitance with arbitrary Small signal equiva						t circuit, Problem Solving Short channel effects																		

	SLO-2	Problem Solving	Static current voltage characteristics of PN junction,	Problem Solving	Threshold voltage of MOSFET	Short channel effects
S-6	SLO-1	Excess Carriers: Generation and recombination of carriers	Current-voltage relationship in an infinitely long diode,	Design of high frequency transistors	Bulk charge model	Meyer's model
0-0	SLO-2	Mobility of carriers	Quasi Fermi level under bias condition	Problem Solving	Problem Solving	Small signal model
S-7	SLO-1	Charge transport in semiconductors: Drift current	,	Second order effects in BJT: Non-uniform doping in the base	square law method (Level 1 in SPICE	MOSFET scaling
3-1	SLO-2	Hall effect	Ideality factor	Non-uniform doping in the base	square law method (Level 1 in SPICE	Non-uniform doping in channel
S-8	SLO-1	Diffusion current	Transient analysis: Time variation of stored charge	Variation of 6 with collector current	Level 3 model in SPICE	SOI MOSFET
0-0	SLO-2	Problem Solving	Problem Solving	High injection in collector	BSIM Models	SOI MOSFET
S-9	SLO-1	Current density equations	Reverse recovery of a diode, charge storage capacitance	Heavy doping effects in the emitter	Comparison of Models	Buried channel MOSFET
0-9	SLO-2	Current density equations	Problem Solving	emitter crowding in bipolar transistors	Comparison of Models	Fin FET

	1.	Nandita Das Gupta, Amitava Das Gupta, Semiconductor devices, modeling and Technology, Prentice Hall of	3.	S.M. Sze, Semiconductor Devices-Physics and Technology, John Wiley and Sons, 1985.
Learning		India, 2004	4.	Kiat Seng Yeo, Samir R.Rofail, Wang-Ling Gob, CMOS/BiCMOS VLSI-Low Voltage, Low Power,
Resources	2.	Philip. E. Allen Douglas, R. Hoberg, CMOS Analog circuit Design, 2 nd ed., Oxford Press, 2002		Pearson 2003

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(EOO/ weightegs)
	Level of Thinking	king CLA – 1 (10%)		CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	(10%)#	Filiai Examination	n (50% weightage)
	Level of Hilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100	0 %	10	0 %	100	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. P. Aruna Priya, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. J. Manjula, SRMIST

Course Code	18ECE206J	Course Name	ADVANCED DIGITAL SYS	FEM DESIGN	Course Category	Е	Professional Elective	L 2	T 0	P 2	C 3
Pre-requisi Courses	INII		Co-requisite Courses		Progre Cour		Nil				
Course Offer	ring Department	Electron	ics and Communication Engineering	Data Book / Codes/Standards	Nil						

Course Le	earning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng					Progi	ram L	_earn	ing O	utcon	nes (F	PLO)				
CLR-1:	Understand advanced Boolean theorems for logic simplification and implementation	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Understand the formal procedures for the analysis and design of synchronous and asynchronous sequential circuits																		
	Understand concept of Programmable Devices (PROM, PLA, PAL, CPLD and FPGA) and implement combinational and sequential logic circuits using them.										.≥.								
CLR-4:	Adopt systematic approach with the use of ASM chart ASMD chart, RTL representation for the design of digita circuits and systems	(Bloom)	y (%)	ıt (%)	dge		ent	esearch			Sustainability		Work		90				
CLR-5:	Use VHDL as a design-entry language for FPGA in electronic design automation of digital circuits) (B	Proficiency	Attainment	wle	S	Development	, R	Usage	ø.	Sust		<u>></u>		Finance	Вu			
CLR-6:	Develop the ability to simulate circuits for more advanced design projects.	hinking	ofici	ā	Kng	Analysis	velc	Design, I	ns	Culture	∞ర		Team	.io	∞ర	eaming			
		直	균		ing	Ana	& De		20	& Cl	nent		∞ =	<u> </u>	Mgt.				
Course Le	earning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design 8	Analysis,	Modern	Society &	Environn	Ethics	Individual &	Communication	Project N	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1:	Apply advanced theorems to simplify the design aspects of various practical circuits	3	80	75	M	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CLO-2:	Analyze and design synchronous sequential circuits	3	80	70	-	М	М	-	-	-	-	-	-	-	-	-	-	-	-
CLO-3:	Identify methods to analyze and design Asynchronous sequential circuits	3	75	70	-	М	М	-	-	-	-	-	-	-	-	-	-	-	-
CLO-4:	Implement various digital circuits using Programmable Logic Devices	3	80	75	-	М	М	-	-	-	-	-	-	-	-	-	-	-	-
CLO-5:	LO-5: Design and implement digital circuits using VHDL.		80	70	-	Н	Н	Н	Н	-	-	L	Н	М	-	-	-	-	L
CLO-6:	LO-6: Perform experiments in the laboratory with hardware and as well with software (VHDL) to simulate and verify the design		80	70	-	-	-	-	-	-	-	-	-	-	-	Н	Н	-	L

Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Shannon's Expansion theorem	state reduction	Analyze asynchronous sequential circuit	Dynamic hazards	Xilinx 3000 series FPGA
3-1	SLO-2	Shannon's Expansion theorem application	state reduction	flow table reduction	Essential hazards	Xilinx 3000 series FPGA
S-2	SLO-1	Shannon's Expansion theorem and its application	state assignment	races-state assignment	Programming logic device families	Xilinx 4000 series FPGA
3-2	SLO-2	Consensus theorem	state assignment	Variables Signals, Constants, Sequential statements VHDL processes	Designing synchronous sequential circuit using PROM	Xilinx 4000 series FPGA
S 3-4	SLO-1 SLO-2	Lab 1: Implement six-variable function using four-variable function generators	Lab 4: Implement hazard-free circuits	Lab 7: VHDL Programming Practice	Lab 10: Construct multiplexers, de- multiplexers in VHDL	Lab13: Implement BCD adder, comparator in VHDL
S-5	SLO-1	Reed-Muller Expansion technique	Design of synchronous sequential circuits	races-state assignment	Designing synchronous sequential circuit using PROM	Design of sequential circuits (using VHDL)
3-3	SLO-2	Reed-Muller Expansion technique	Design of synchronous sequential circuits	Transition table and problems in transition table	Designing synchronous sequential circuit using PROM	Design of sequential circuits (using VHDL)
S-6	SLO-1	Multiplexer logic as function generators	Introduction to VHDL, Entity and Architecture description	Transition table and problems in transition table	Programmable Array Logic (PAL)	Design of sequential circuits (using VHDL)
3-0	SLO-2	Implementation of Multiple output logic functions	VHDL Data types and Operators	Design of asynchronous sequential circuit	Programmable Array Logic (PAL)	Design of sequential circuits (using VHDL)
S 7-8	SLO-1 SLO-2	Lab 2: Implement Reed-Muller expressions using logic gates.	Lab 5: Demo of VHDL programmes, Simple programmes	Lab 8: Combinational Circuit Design using Structural, behavioral, data flow modeling	Lab 11: Construct code converters, 4-bit binary adders in VHDL	Lab 14: Mini Project Work
S-9	SLO-1	Mealy and Moore machines	ASM chart and realization using ASM	Design of asynchronous sequential circuit	Programmable Logic Array (PLA)	Additional circuit designs using VHDL

		Clocked synchronous sequential circuit design procedure	ASM chart and realization using ASM	Design of asynchronous sequential circuit	Programmable Logic Array (PLA)	Additional circuit designs using VHDL
S-10	SLO-1	State diagrams	Concurrent, Sequential Assignment Statements, Types of Modeling in VHDL	Static hazards	FPGA-Xilinx FPGA	Additional system designs using VHDL
3-10		State table	Behavioral, dataflow and structural modeling	Static hazards	FPGA-Xilinx FPGA	Additional system designs using VHDL
S 11-1	SLO-1 SLO-2	Lab 3: Implementation of Sequence detector circuit.	Lab 6: VHDL Programming Practice		Lab 12: BCD adder, comparator, Design of Sequential circuits (using VHDL)	Lab 15: End-Semester Practical Examinations

	1.	Charles H. Roth, Jr. University of Texas at Austin. Larry L. Kinney, Fundamentals of Logic Design, 7th ed.,	3.	Jayaram Bhasker, A VHDL Primer, 3rd ed., Prentice Hall, 2011
Learning		Cengage Learning, 2012	4.	Charles. H. Roth, Jr, Digital Systems Design using VHDL, CENGAGE Learning, 2010
Resources	2.	Richard S. Sandige, Michal L. Sandige, Fundamentals of digital and computer design with VHDL, Mc Graw Hil,	5.	Morris Mano M, Michael D. Ciletti, Digital Design with an Introduction to the Verilog HDL, 5th ed.,
		2014		Pearson, 2014

Learning Asses	ssment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	rinai Examinatio	ii (50% weigiilage)
	Level of Trilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0%

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mr. B. Viswanathan, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECE222T	Course Name	ADHOC AND	SENSOR NETWORKS	Course Category	Ε	Professional Elective	L 3	T 0	P 0	C 3
Pre-requis Courses	NII		Co-requisite Courses	iil	Progre Cour		Nil				
Course Offer	ring Department	Flectron	ics and Communication Engineerin	Data Book / Codes/Stance	dards Nil						

Course Offering Departmen	t Electronics and Communication Engineering Data Book / Codes/Standards	Nil Nil																		
Course Learning Rationale	(CLR): The purpose of learning this course is to:	L	.earni	ng					F	Progr	ram L	.earn	ing O	utcon	nes (F	PLO)				
CLR-1: Utilize the Ad hoc	Networks and its various routing protocols	1	2	3	F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Learn the MAC La	yer and the concept of Quality of Service											>							ent	년 당
CLR-3: Analyze energy m	anagement in Ad hoc Networks	(mo		_					arch TC			ij.							Jem	sear
CLR-4: Identify insights of	Sensor network	loon	y (%)	t (%)		Knowledge		ent	Sec			Sustainability		/ork		8		<u>a</u>	Manage	Re
CLR-5: Analyze various a	pects Hybrid networks and routing configuration	(B)	ency	Attainment		we .	S	opment	~ ~	age	a)	Sust		Ε		Finan	g			ø,
CLR-6: Expose to the diff	erent types of adhoc network routing protocols and sensor networks	ki	ofici	ai.		χ	lysi	velo	sign	Ns	ulture	∞		Team	<u>6</u>	⊗ E	Leaming	essi	Project	nalyze
		Thi	Ę			ing	Ans	E D	De	20	ರ	nent		∞ _	unication	Mgt		Profe	Pre les	An
Course Learning Outcomes	(CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering	Problem	Design &	Analysis,	Modern 7	Society 8	Environn	Ethics	Individual	Commun	Project N		PSO-1: I Achieven	PSO – 2: Techniau	PSO - 3:
CLO-1: Acquire knowledge	about Ad hoc Networks and various routing protocols used in Ad hoc networks	3	80	75		Н	М	L	М	-	-	Н	-	-	-	-	М	-	-	Н
CLO-2: Analyze the variou	s functional areas such as MAC Layer and QOS	3	80	70	Ī	Н	М	-	М	-	-	Н	-	-	-	-	М	М	-	Н
CLO-3: Identify energy ma	nagement in Ad hoc Networks	3	75	70		L	Н	-	М	-	-	М	-	-	-	-	Н	-	-	L
CLO-4: Analyze the Senso	r network	3	80	75		Н	L	-	Μ	-	-	-	-	-	-	-	-	-	М	Н
CLO-5: Identify Hybrid net	works and routing configuration	3	80	70		-	-	Н	М	-	-	М	-	-	-	-	-	-	-	-
CLO-6: Understand the v	rious types of adhoc networks and sensor networks	3	80	70		Н	М	-	L	-	-	Н	-	-	-	-	М	-	-	Н

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Cellular and Ad hoc Wireless Networks	Quality of service in Ad hoc wireless networks, Real-Time Traffic support	Energy Management-Needs	Sensor Networks, Applications. Comparison with Ad hoc network,	Hybrid wireless network, Introduction, classification
3-1	SLO-2	Applications of Ad hoc Wireless Networks	Issues and challenges in providing QoS	Classifications of Energy Management Schemes	Issues, challenges in designing sensor network Sensor Network Architecture	Multi-hop cellular network (MCN) Architecture
	SLO-1	Issues in Ad hoc Wireless Networks	Classifications of QoS solutions	Battery Management Scheme-Overview,	Layered Architecture, Clustered Architecture	Mobile assisted data forwarding (MADF) Architecture
S-2	SLO-2	MAC Protocol for Ad hoc Networks Issues in Designing and Design Goals	MAC Layer solution-cluster TDMA, IEEE 802.11e, DBASE	Data link layer solution-Lazy packet scheduling scheme,	Data Dissemination, Flooding, Gossiping, Rumor Routing, Sequential Assignment Routing	Hybrid wireless Network (HWN) Architecture
S-3	SLO-1	Classifications of MAC protocols-Floor Acquition Multiple Access protocols	Network Layer solution-QOS routing protocols,	Battery Aware MAC protocol	Cost field approach	Routing in Hybrid wireless network Base assisted ad hoc routing (BAAR)
3-3	SLO-2	Collision Avoidance Time Allocated Protocol	Ticket Based QOS Routing protocols,	Network Layer solution	Data Gathering, Direct Transmission, Binary scheme	Operation of BAAR protocol
S-4	SLO-1	Routing Protocol for Ad hoc wireless network-Classification	Predictive location based QOS routing	Transmission Power Management Schemes-Data link layer solution	Chain Based Three level scheme	Base driven multi-hop bridging protocol(BMBP)-Message used
3-4	SLO-2	Table driven Routing Protocols-Wireless Routing Protocol	QOS frame work	Dynamic power adjustments policies, Distribute topology control Algorithm	MAC protocols for sensor Networks-Self organizing MAC, CSMA Based MAC	BMBP procedure
S-5	SLO-1	On demand routing protocols-Dynamic Source Routing protocol	QOS models	Construct distributed power control loop, Centralized Topology control Algorithm	Location discovery-Indoor and sensor network localization	Issues in pricing Multi-Hop wireless networks
3-3	SLO-2	Multicast Routing Architecture Reference model	QOS Resource Reservation Signaling	Network layer solution-common power protocol	Quality of Sensor Networks-coverage,	Pricing in Multi-Hop wireless WANs
S-6	SLO-1	Tree Based Routing	INSIGNIA-QOS framework	Minimum power consumption Technique	Exposure	Pricing in Ad hoc Wireless Networks

	SLO-2	Mesh Based Routing	Operation of INSIGNIA framework, Advantages and disadvantages		Efficient Design synchronization	Power control scheme in Hybrid Wireless Networks, Issues in using variable power in IEEE 802.11
6.7	SLO-1	Energy Efficient Multicasting-Routing protocols	INORA-Coarse feedback scheme,	Higher Layer solution	Transport Layer Issue	Power optimization scheme
S-7		Cluster Adaptation of Multicast protocols	Class based fine feedback scheme			Load Balancing in Hybrid Wireless Networks
S-8	SLO-1	Multicast with QOS Guarantees-Real Time Multicasting Protocols	SWAN-Model	Power saving Mode Power Aware Multi-Access Signaling	Intrusion Tolerant Routing in Wireless Sensor Network (INSENS)	Preferred Ring Based Routing Scheme
3-0	SLO-2	Priority Scheduling Protocols	Advantages and Disadvantages	Addition of separate signaling scheme	Real –Time communication	Preferred inner Routing Scheme(PIRS)
S-9	SLO-1	Application Dependent Multi Cast Routing- Role Based,	Proactive RTMAC framework	Device power Management Scheme-Low Power Design of Hardware	SPEED Protocol	Preferred outer Ring Routing Scheme (PORS)
3-9	SLO-2	Content Based, Location Based	Advantages and Disadvantages	Hard Disk Drive (HDD) power consumption	IRAP protocols	Preferred Destination/Source Ring Based Routing Scheme

Learning Resources	1.	Siva Ram Murthy C., Manoj B.S, Ad hoc Wireless Networks – Architectures and Protocols, 2 nd ed., Pearson, 2004	3. 4	C.K.Toh, Ad hoc Mobile Wireless Networks, 7 th ed., Pearson, 2002 Thomas Brag, Sebastin Buettrich, Wireless Mesh Networking, 3 rd ed., O'Reilly Publishers, 2007
Resources	2	Feng Zhao, Leonidas Guibas Wireless Sensor Networks, 1st ed. Morgan Kaufman Publishers, 2004	4.	Thomas brag, Sepastin buettrich, Wheless Mesh Networking, 3° ed., O Reilly Publishers, 2007

Learning Assess	sment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	Filiai Examination	i (50 % weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	30 %		30 %		30 %		30 %		30%	
Level I	Understand	30 /0	-	30 %	-	30 //	-	30 /0	-	30%	-
Level 2	Apply	40 %		40 %		40 %		40 %		40%	
Level 2	Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%	
Level 3	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	10	0 %	10	0 %	100) %	10	0 %

#CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mrs. S. T. Aarthy, SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Cou		18ECE224T Course Name	CRYPTOGRAPHY AND NETWORK SEC	URITY	Cour Categ			E				Profe	ession	al Elec	ctive					L 3	Γ P		C 3
	equisite urses	Nil	Co-requisite Nil		F		ressiv urses	e ^	lil														
Course	Offerin	g Department Electronics and Com	munication Engineering Data Book	/ Codes/Standards	Ni	il																	
Course	Learnir	ng Rationale (CLR): The purpose of learning	ng this course is to:			Lea	arning	J					Prog	ram Lo	earnii	ng Oı	ıtcon	nes (F	PLO)				
		e classical and modern encryption methods				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13 1		15
CLR-2 CLR-3		e the different key generation standards e the various techniques in authentication of	information									등			ility						ement 2. Project Management		– 3: Analyze & Research
CLR-4		yze the aspects in network security	momaton		11	(moc	(%)	(%)	ge		ŧ	sear			inab		or X		8		Jage	5	Rese
CLR-5	: Ident	ify the effect of various malwares and counte			7 1	(B)	ency	ment) wec	S	bme	, Re	age	Ф	Susta		Ε N		inan	gu .	t Mai	3	e Se
CLR-6	: Unde	erstand various conventional and modern cry	ptography techniques with its added security	features] :	inking	rofici	ıttainı	g Kno	alysi	evelc	esigr	ol Us	ultur	nt & S		Теа	ation	Α	earni	nt rojec	2	nalyz
						evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability		ndividual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	Achievement PSO – 2: Pro	idiles	- 3: A
Course	Learnir	ng Outcomes (CLO): At the end of this cou	rse, learners will be able to:			evel	xbec	xbec	ngine	roble	esign	nalys	loder	ociet	inviro	Ethics	pivipu	omu	rojec	ife Lo	Achie PSO -		PSO-
CLO-1	: Ident	ify the methods of classical and modern Enc	ryption					<u>ш</u> 75	<u>ш</u>	-	M	L	-	-	-	-	-	-	-	Н	- A G		Н
CLO-2	: Ident	ify the concepts of Number theory, Key gene	ration and distribution standards					70	L	Н	М	-	-	-	-	-	-	-	-	-	- F		-
		yze Message authentication and Digital Signa						70	-	М	L	-	-	-	-	-	-	-	-	Н			М
CLO-4		in information about various forms of network yze the effects of intrusion, viruses, firewalls a						75 70	H	М	L	-	-	-	-	-	-	-	-	- М			<i>M</i>
		in the knowledge about various encryption te						70	M	-	-	1	-	-	-	-	-	-	-	-	- /		М
020 0	. 0 2 1 4	m the mismody's about various energy active	omiquee, etamaarae ana eeeanty aepeete			<u> </u>	00				1			-		I	I	I	I	- '	- '		•••
Duratio	n (hour)	9	9	9							9								9				
S-1	SLO-1	Security Services Mechanisms	Number Theory	Basics of Message author	enticat	tion c	codes	IP	Security						I	ntrud	ers						
3-1	SLO-2	Attacks	Basics of Modulo operations, additive and multiplicative inverse	Basics of Message author	enticat	tion c	codes	0	verview o	f tech	nique	s			I	Intrusi	on						
S-2	SLO-1	,	Euclidean algorithm	Requirements of MAC				Aı	rchitecture)					I.	Intrusi	on De	etectio	on				
3-2	SLO-2	Block cipher, stream cipher, symmetric and Assymetric	Extended Euclidean algorithm	MAC logic				Αι	uthenticat	ion H	eader	•			7	Techn	iques	:					
S-3	SLO-1	Conventional Encryption techniques	Fermet's theorem	MD5 Logic, MD5 Compre Function,	ession)		Αι	uthenticat	ion Pi	rotoco	ols			F	Passu	ord N	/lanag	gemei	nt			
3-3	SLO-2	Substitution and transposition techniques	Euler's theorem	MD4, Strength of MD5					ututal aut Ithenticat		cation	one	way		7	Techn	iques						
S-4	SLO-1	Steganography	Key cryptography	Requirements for a Hash simple Hash Function,	Func	tion,		Eı	ncapsulat	ing Se	ecurit	/ Payl	load		١	Viruse	s						
J=4	SLO-2	Basics of LSB, Histogram, DE techniques	Key cryptography	Birthday Attacks, Block Chaining	Techn	iques	s	Eı	ncapsulat	ing Se	ecurit	/ Payl	load		V	Worm	s						
S-5	SLO-1	DES	RSA	Securities				Se	ecurity As	socia	tions				/	Advan	ced S	Secur	ity				
J-0	SLO-2	Algorithm and examples	Algorithms and examples	HASH - MAC						Techniques overview				(OS Security								
0.0	SLO-1	SDES	Key distribution	Birthday Attack				Ke	erbros V4	V5 c	certific	ate			V	WLAN	l Seci	urity					
S-6		†																					

SHA

SLO-2 Block cipher modes operation

Algorithms

Ad hoc Network Security

Authentication Procedure

S-7	SLO-1	Overview of IDEA	Key Management	Digital Signature standard	PGP	GSM Security
3-1	SLO-2	Overview of Blowfish	Algorithms	Overview of blocks	Email Security	E-commerce Security
S-8	SLO-1	Overview of RC5	Diffie Hellman key exchange	Digital Signature Algorithms	Web security requirements	Cloud Computing Security
3-6	SLO-2	Overview of CAST-128	Diffie Hellman key exchange	Examples	SSL -TLS - SET	Introduction to Firewall
0.0		Characteristics of advanced symmetric Block ciphers	Elliptic curve cryptography	Basics of proof	Port Scanning	Firewall-Types, configurations
S-9		Characteristics of advanced symmetric Block ciphers	Elliptic curve cryptography	Proof of DSS Message Authentication Codes.	Port Knocking	Trusted System

Loorning	1.	William Stallings, Cryptography & Network Security,6 th ed., Pearson, 2014	4.	BehrouzA.Forouzan, Debdeep Mukhopadhyay, Cryptography and Network Security, 2 nd ed.,
Learning	2.	Bruce Schneier, Applied Cryptography, 2 nd ed., 2015		Tata McGraw Hill, 2010
Resources	3.	Eric Maiwald, Fundamentals of Network Security, Tata McGraw Hill, 2011	5.	Bernard Menezes, Network Security and Cryptography, Cengage Learning, 2010

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)
	Level of Thinking	CLA –	1 (10%)	10%) CLA – 2 (15%)			3 (15%)	CLA – 4	1 (10%)#	Filiai Examination	i (50% weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	30 %		30 %	_	30 %	_	30 %		30%	
Level I	Understand	30 70	-	30 /0	-	30 70	-	30 /0	-	3070	-
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%	
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%	
Level 3	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,\

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. P. Malarvezhi, SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECE321T	Course Name	RF AND MICROWAV	E SEMICONDUCTOR DEVICES	Course Category	Ε	Professional Elective	L 3	T 0	P 0	C 3
Pre-requisite Courses	18ECC102J		Co-requisite Courses	Nil	Progre Cour	ssive	Nil				
Course Offerin	ng Department	Electron	ics and Communication Engineerii	ng Data Book / Codes/Standards	Nil						

Course O	ffering Department	Electronics and Communication Engineering Data Book / Codes/Standards	Nil															
Course L	ourse Learning Rationale (CLR): The purpose of learning this course is to:			.earni	ng				Prog	gram I	Learn	ing O	utcor	mes (I	PLO)			
CLR-1:	Study microwave semicond microwave signal	uctor materials and to understand the fundamental of electronic components under	1	2	3	1	2	3 4	5	6	7	8	9	10	11	12	13 1	14 15
CLR-4 : CLR-5 :	Know the characteristics an Know the fundamentals of Discuss the main issues an	nponents and devices that are used in modern microwave radar and communication systems d operation of microwave transistor. RF power transistors and challenges d challenges encountered in developing the products at microwave frequencies g of development of RF and modern semiconductor devices	Thinking (Bloom)	d Proficiency (%)	d Attainment (%)	Engineering Knowledge	~		ool Usage	& Culture	nent & Sustainability		al & Team Work	ommunication	Mgt. & Finance	g Learning	Professional ment Project Management	seal
Course L	earning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expecte	Expected	Enginee	Problem	Design &	Modern T	Society	Environment	Ethics	Individual	Commu	Project I	Life Lon	PSO-1: Achieve	Technia PSO – 3
CLO-1:	Understand the properties	of Semiconductor Junction Diodes under microwave signals	3	80	75	Н	-	- I	1 -	-	-			-	-	-	Н	
CLO-2:	Analyze the development of	f negative resistance characteristics in tunnel diode and transit time devices	3	80	70	Н	-	- 1	1 -	-	-	-	-	-	-	-	Н	
CLO-3:	Characterize the microwave	components and circuits in terms of their performance parameters	3	75	70	Н	-	- F	1 -	-	-	-	-	-	-	-	Н	- H
CLO-4:	Compare the characteristic	s of RF power transistors	3	80	75	Н	-	- 1	1 -	-	-	-	-	-	-	-	М	
CLO-5:	Appreciate IC packaging iss	sues and challenges involved at microwave frequencies	3	80	70	Н	-	Н -	-	-	-	-	-	-	-	-	Н	- M
CLO-6:	Understand the concepts of	RF and semiconductor devices and apply in the design of electronic systems.	3	80	70	Н	Н		-	-	-	-	-	-	-		Н	- H

		Semiconductor P-N Junction	Negative Resistance and Transit Time Devices	Microwave BJT Transistors	HEMT Transistors and RF Power Transistor	RF Package Design and Development
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Review of properties of semiconductors	Negative Resistance Devices	Microwave Transistor	Introduction to HEMT	Introduction to RF Package
3-1	SLO-2	Review of properties of semiconductors	Negative Resistance Devices	High frequency limitations of BJT	Short channel effects	Introduction to RF Package
S-2	SLO-1	Transient and ac behavior of p-n junctions	Tunnel Diode, Tunneling process in p-n junction	Microwave bipolar transistors – introduction	Device operation	Thermal Management
3-2	SLO-2	Transient and ac behavior of p-n junctions	V-I characteristics and device performance	Microwave bipolar transistors – operation	Device operation	Thermal Management
S-3	SLO-1	Effect of doping profile on the capacitance of p-n junctions	MIS tunnel diodes	Hetero junction bipolar transistors	Device design	Mechanical Design
3-3	SLO-2	Effect of doping profile on the capacitance of p-n junctions	V-I characteristics and device performance	Basic principle of operation	Scaling issues	Mechanical Design
S-4	SLO-1	Noise in p-n junctions	Backward Diode	Kirk effect	Material Systems for HEMT Devices	Package electrical and electromagnetic Modeling
3-4	SLO-2	Noise in p-n junctions	V-I Characteristics	High frequency response	GaAs HEMT	Package electrical and electromagnetic Modeling
S-5	SLO-1	Varactor diode	Transferred Electron Devices	MESFET	InP HEMT	Design verification
3-3	SLO-2	Construction and Operation of Varactor Diode	Impact ionization	Principle of operation	Technology comparisons	Design verification
S-6	SLO-1	Applications of Varactor Diode	IMPATT	Properties of semiconductor materials used in MESFET	Technology comparisons	Materials testing

	SLO-2	Schottky effect	Small-signal analysis of IMPATT diodes	MESFET Technology	Introduction of RF power transistor	Reliability testing
6.7	SLO-1	Schottky barrier diode	TRAPATT, BARITT Diodes	MESFET Modeling	Figure of Merit for RF Power Transistor	computer integrated Manufacturing
S-7	SLO-2	Applications of Schottky Diode	Two-valley model of compound semiconductors	I-V Characteristics	Common RF power devices	computer integrated Manufacturing
	SLO-1	Hetero junctions	vd-E characteristics	High frequency performance	Material properties	Thermal modeling
S-8	SLO-2	Hetero junctions	Gunn Effect, modes of operation		State-of-the-art-wide bandgap microwave transistor data	Thermal analysis of resistance networks
S-9	SLO-1	Construction and operation of microwave PIN diode	small-signal analysis of Gunn diode	Operating characteristics of MISFET	Challenges to production	Introduction to computer aided design
3-9	SLO-2	Applications	Power-frequency limit.	Operating characteristics of MISFET	Challenges to production	Benefits, limitations and applications of CAD

Learning Resources	Golio, M., "RF and Microwave Semiconductor Devices Handbook", CRC Press (2002). Sze, S.M., and Ng, K.K., "Physics of Semiconductor Devices", 3rd Ed., Wiley-Interscience (2006).	3. Glover, I.A., Pennoek, S.R. and Shepi Wiley & Sons (2005) 4. Liao, S.Y., "Microwave Devices and C
-----------------------	--	--

B. Glover, I.A., Pennoek, S.R. and Shepherd P.R., "Microwave Devices, Circuits and Sub-Systems", 4th Ed., John Viley & Sons (2005)

1. Liao, S.Y., "Microwave Devices and Circuits", 4th Ed., Pearson Education (2002).

Learning Assess	sment											
	Bloom's			Contir	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (50% weightage)	
	Level of Thinking	CLA -	1 (10%)	CLA – 2	2 (15%)	CLA – 3 (15%)		CLA – 4	(10%)#	Filiai Examination	i (50% weightage)	
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	30 %		30 %		30 %		30 %		30%		
Level I	Understand	30 /0	-	30 %	-	30 %	-	30 //	_	30%	-	
Level 2	Apply	40 %		40 %		40 %		40 %		40%		
Level 2	Analyze	40 /0	-	40 /0	,	40 %	-	40 /0	-	4070	-	
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%		
Level 3	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	10	0 %	100) %	10	0 %	100) %	100 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mr. E. Siva Kumar, SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECE240T	Course Name	WAVELETS AN	ND SIGNAL PROCESSING	Course Category	Е	Professional Elective	L 3	T 0	P 0	3
Pre-requisite Courses	18ECC104T		Co-requisite Courses	Nil	Progre		18ECE341T				
Course Offering	g Department	Electronic	cs and Communication Engineeri	ing Data Book / Codes/Standards	Nil						

Course Offering Department	Electronics and Communication Engineering Data Book / Codes/Standards	Nil																	
Course Learning Rationale (CLR):	The purpose of learning this course is to:		_earn	ing					Prog	ram L	.earni	ing O	utco	mes (PLO)				
CLR-1: Learn about multiresolution	n analysis and wavelet signal processing	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13		15
CLR-2: Identify the families of wav	elets required to apply the transformation to various real time applications										у							ent	당
	ms that employs wavelet transformation			_				ırch			pilit							gem	sear
CLR-4: Study various filter banks	of discrete systems used in wavelet transformation	(Bloom)	(%)	t (%)	dge		ent	Research			aina		Work		8			<u>ھ</u>	Re
CLR-5: Analyze various real time	applications that employs filter banks) (B	ency	Attainment	Knowledge	s	elopment	ď.	Usage	ao	Sustainability		Α.		Finance	ng	Ĕ :	ct Mar	ey ey
CLR-6: Acquire knowledge about	wavelet transforms, types and applications of multiresolution analysis	Thinking	ofici	ai.	Kno	Analysis	velc	Design,	US	ulture	∞ŏ		Team	ion	∞ŏ	earning	ess	ojec	nalyze
-		_ 	- F	A A	ing	Ana	& Dev	2	Lool	ರ ಶ	hent			icat	Mgt.		Prof	es Pro	Æ
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering	Problem	Design 8	Analysis,	Modern -	Society &	Environment	Ethics	Individual &	Communication	Project N	Life Long	PSO-1: Achiever	PSO – 2 Technia	PSO - 3
CLO-1: Understand multi resolution	n analysis for discrete signals	3	80	75	Н	Н	-	-	-	-	-	-	-	-	-	-	Н	-	-
CLO-2: Know the families of wave	lets	3	80	70	Н	-	М	-	-	-	-	-	-	-	-	-	-	-	М
CLO-3: Identify Discrete wavelet tr	ansform	3	75	70	М	М	М	-	-	-	-	-	-	-	-	-	-	-	-
CLO-4: Analyze and design filter b	anks	3	80	75	Н	-	М	-	-	-	-	-	-	-	-	-	-	-	-
CLO-5: Utilize wavelet transformat	ions on various applications	3	80	70	Н	-	М	L	-	-	-	-	1	-	-	1	-	М	Н
CLO-6: Know about wavelet transf	orms, types and applications of multiresolution analysis	3	80	70	М	Н	-	-	-	-	-	-	-	-	-	-	-	-	-

		Multiresolution Analysis (MRA)	Families of wavelets	Discrete Wavelet Transform (DWT)	Filter banks	Applications
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Introduction to multiresolution/ multiscale analysis	Orthogonal	Discretization in steps	Introduction to Variants of the wavelet transform	Transient analysis
3-1	SLO-2	Introduction to multiresolution/ multiscale analysis	Orthogonal	Discretization in steps	Introduction to Variants of the wavelet transform	Transient analysis
S-2	SLO-1	Time-frequency analysis and wavelets	Biorthogonal wavelets	Discretization of scale	Implementational structures	Singularity detection
3-2	SLO-2	Time-frequency analysis and wavelets	Biorthogonal wavelets	Discretization of scale	Implementational structures	Singularity detection
S-3	SLO-1	Piecewise constant approximation	Daubechies' family of wavelets	Generalized filter bank	The wavepacket transform	Biomedical signal processing applications
3-3	SLO-2	Piecewise constant approximation	Daubechies' family of wavelets	Generalized filter bank	The wavepacket transform	Biomedical signal processing applications
S-4	SLO-1	Haar wavelet	Daubechies' family of wavelets	Discretization of translation	Computational efficiency in realizing filter banks	Efficient signal design and realization
3-4	SLO-2	Haar wavelet	Conjugate Quadrature Filter Banks (CQF) and their design	Discretization of translation	Computational efficiency in realizing filter banks	Efficient signal design and realization
S-5	SLO-1	Building up the concept of dyadic Multiresolution Analysis (MRA)	Conjugate Quadrature Filter Banks (CQF) and their design	Generalized output sampling	Computational efficiency in realizing filter banks	Wavelet based modulation and demodulation
3-3	SLO-2	Building up the concept of dyadic Multiresolution Analysis (MRA)	Conjugate Quadrature Filter Banks (CQF) and their design	Generalized output sampling	Polyphase components	Wavelet based modulation and demodulation
S-6	SLO-1	Relating dyadic MRA to filter banks	Data compression	Discretization of time/ space (independent variable)	Polyphase components	Applications in mathematical approximation
3-0	SLO-2	Relating dyadic MRA to filter banks	Data compression	Discretization of time/ space (independent variable)	Polyphase components	Applications in mathematical approximation

S-7	SLO-1	A review of discrete signal processing		Going from piecewise linear to piecewise polynomial	The lattice structure	Applications to the solution of some differential equations.
3-1	SLO-2	A review of discrete signal processing	#FINGERNINT COMPRESSION STANGARDS	Going from piecewise linear to piecewise polynomial	The lattice structure	Applications to the solution of some differential equations.
S-8	SLO-1	Elements of multirate systems	JPEG-2000 standards	The class of spline wavelets	Solving Problems	Solving Problems
3-0	SLO-2	Elements of multirate systems	JPEG-2000 standards	The class of spline wavelets	Solving Problems	Solving Problems
	SLO-1	Two-band filter bank design for dyadic wavelets.		A case for infinite impulse response (IIR) filter banks	The lifting scheme.	Solving Problems
S-9	SLO-2	Two-band filter bank design for dyadic wavelets.		A case for infinite impulse response (IIR) filter banks	The lifting scheme.	Solving Problems

Learning
Resources

- M. Vetterli, J. Kovacevic, Wavelets and Subband Coding, Prentice Hall, 1995
 S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed., Academic Press, 1999
 P.P. Vaidyanathan, Multirate Systems and Filter Banks, Pearson Education, 1993
 C.S.Burrus, Ramesh A. Gopinath, and Haitao Guo, Introduction to Wavelets and Wavelet Transforms: A Primer, Prentice Hall, 1997
- Gilbert Strang, Truong Nguyen, Wavelets and Filter Banks, 2nd ed., Wellesley-Cambridge Press, 1998.
- Ingrid Daubechies, Ten Lectures on Wavelets, SIAM, 1992
 Howard L. Resnikoff, Raymond O. Wells, "Wavelet Analysis: The Scalable Structure of Information", Springer, 1998

Learning Asses	ssment												
_	Bloom's	Continuous Learning Assessment (50% weightage)								Final Evansination	(FOO(; abtana)		
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	1 (10%)#	Final Examination (50% weightage)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	10	0 %	100 %		10	0 %	100 %			100 %		

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. Sabitha Gauni, SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECE241J	Course Name	SIGNAL PROCESSING FOR AUDITORY SYSTEMS				Professional Elective	1	2	T 0	P C 2 3	
Pre-requisi Courses	18ECC1041	[] a stra mia	Co-requisite Courses Nil	Data Dank / Cadan/Standarda	Progres		18ECE343T					
Course Offer	ing Department	Electronic	cs and Communication Engineering	Data Book / Codes/Standards	Nil							_

Course Offering Department Electronics and	Communication Engineering Data Book / C	odes/Standards	IVII																
Course Learning Rationale (CLR): The purpose of	rse Learning Rationale (CLR): The purpose of learning this course is to:									Progi	ram L	earni	ing O	utcon	nes (F	PLO)			
CLR-1: Learn basics of signal processing			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13 1	14 15
CLR-2: Know Feature Extraction technique used in Speech Processing												λ.						ent	; E
CLR-3: Identify Frequency characteristics of Speech	signal		<u>-</u>	<u></u>					당			E E						E E	Research
CLR-4: Construct the Digital model of speech signal			(Bloom)	Proficiency (%)	t (%)	de		eut	Research			aina		Work		9		onal Management	j a
CLR-5: Identify the Ethical issues of elements of music						N N	S	Development	چ	Usage	Φ	Sustainability				inance		Sions	8 8
CLR-6: Learn the basic of speech signal processing and its model					Attainment	ž	Analysis	l Sel	Design,	S)	Culture	∞ర		Team	ion	- Ε	Learning	ús la	as Analyze
						je.	Å	& De	, D	Tool	ರ ಇ	nen		∞	ical	Mgt.	J Le	Profe nent Proj	ues 3: An
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:					Expected	Enaineerina Knowledae	Problem	Design 8	Analysis,	Modern	Society 8	Environment	Ethics	Individual &	Communication	Project N	Life Long	PSO-1: Achiever PSO - 2	o di o
CLO-1: Appreciate the functioning of the human vocal and auditory systems					75	Н	-	Н	-	Н	-	-	-	-	-	-	-	М	- H
CLO-2: Analyze the function of feature extraction in speech and audio signal processing using Time Domain Characteristics				80	70	Н	-	Н	-	-	М	-	М	-	-	-	-	М	- H
CLO-3: Explore the frequency characteristics of speech signal			3	75	70	Н	-	Н	Н	-	-	-	-	-	-	-	-	М	- H
CLO-4: Apply appropriate Digital models for speech signal				80	75	Н	-	-	-	Н	-	-	-	-	-	-	-	H I	М М
CLO-5: Analyze the elements of music				80	70	-	-	-	М	-	-			-	-	-	-	М	- H
CLO-6: Know about speech signal processing and its model			3	80	70	Н	-	Н	-	Н	-	-	-	-	-	-	-	Н	- M

		Basic Audio Processing using MATLAB	Speech Signal Analysis in Time Domain	Speech Signal Analysis in Frequency Domain	Digital Models for Speech Signal	Time Elements in Music
Durati	ion (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to Digital audio	Speech signal analysis	Short Time Fourier analysis	Introduction to Acoustic Phonetics	Sound vibrations – pure tones and perception of pitch
3-1	SLO-2	Capturing and converting sound	Segmental analysis	Filter bank analysis	Introduction to Acoustic Phonetics	Sound vibrations – pure tones and perception of pitch
S-2	SLO-1	Sampling of sound wave	Sub-segmental	Formant extraction	Acoustic theory of speech production:- Sound propagation	Auditory coding in the nervous system
3-2	SLO-2	Handling audio in MATLAB	Supra segmental levels	Pitch Extraction	Acoustic theory of speech production:- Sound propagation	Auditory coding in the nervous system
S 3-4	SLO-1 SLO-2	Lab 1: Read & write a speech signal, Record a speech signal, playback, convert into a wave file, plot the speech signal, and spectrogram plot.		Lab 7: Estimation of pitch period using simplified inverse filter tracking (SIFT) algorithm	Lab 10: Phoneme-level segmentation of speech	Lab 13:Feature Extraction of speech signal
S-5	SLO-1	Normalization	Time domain parameters of speech signal	Homomorphic speech analysis	Vocal tract transfer function of vowels	Subjective pitch and role of nervous system
3- 3	SLO-2	Audio processing	Time domain parameters of speech signal	Homomorphic speech analysis	Vocal tract transfer function of vowels	Subjective pitch and role of nervous system
S-6	SLO-1	Segmentation	Methods for extracting the parameters Energy	Formant and Pitch Estimation	Effect of nasal coupling	Acoustical energy –perception of loudness, pitch, timbre
3-0	SLO-2	Analysis of window sizing	Methods for extracting the parameters Average Magnitude	Formant and Pitch Estimation	Excitation of sound in vocal tract	Pitch contour Musical Structure
S 7-8	SLO-1 SLO-2	Lab 2: Convert into a wave file, plot the speech signal, and spectrogram plot	Lab 5: Short-time Fourier transform magnitude spectrum	Lab 8: Estimation of pitch period using harmonic product spectrum	Lab 11: Estimation of sound in vocal tract	Lab 14: Speech production mechanism

S-9	SLO-1 Visualization SLO-2 Sound generation	Visualization	Zero crossing Rate	Linear Predictive analysis of speech	Vocal tract transfer function of vowels	Detecting beats, rhythm, meter
3-3		Zero crossing Rate	Linear Predictive analysis of speech	Vocal tract transfer function of vowels	Recognizing pitch – melody	
C 44		Speech production mechanism	Ŭ	Autocorrelation method, Covariance method	Effect of nasal coupling	Auditory streaming
S-10		Speech production mechanism	Silence Discrimination using ZCR and energy	Solution of LPC equations	Excitation of sound in vocal tract	Tonality and context – algorithms
s	SLO-1	Lab 3: Cepstrum smoothed magnitude	1, 1	Lab 9: Pitch and duration modification using time-domain pitch synchronous	Lab 12: Sound vibrations	Lab 15:Study of Feature extraction and
11-1	SLO-2	spectrum	(ii) Estimation of formant frequencies using linear prediction	overlap and add (TD-PSOLA) method	Lab 12. Sound Vibrations	SVM classifier

	1.	Ian McLaughlin, Applied Speech and Audio processing, with MATLAB examples, 1sted., Cambridge University	3.	Lawrence Rabiner, B.H. Juang, Fundamentals of Speech Recognition, 2 nd ed., Prentice-hall,
Learning		Press, 2009		1993
Resources	2.	Ben Gold, Nelson Morgan, Dan Ellis, Wiley, Speech and Audio Signal Processing: Processing and Perception	4.	Ken Pohlmann, Principles of Digital Audio, 6 th ed., McGraw-Hill, 2007
		of Speech and Music, 2 nd ed., John Wiley & Sons, 2011	5.	A.R.Jayan, Speech and Audio Signal Processing, PHI Learning Pvt. Ltd,2016

Learning Asses	ssment													
	Bloom's	Continuous Learning Assessment (50% weightage)								Final Evamination	(E00/ weightege)			
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4	(10%)#	Final Examination (50% weightage)				
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level I	Understand	2070	2070	1370	1370	1370	1370	1370	1370	1370	10/0			
Level 2	Apply	20%	200/	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070			
11 2	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 3	Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Total	10	0 %	100	0 %	100 %		100) %	10	0 %			

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Mrs. K. HariSudha, SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course	18ECE242J Course	PATTERN RECOGNITION AND NEURAL NETWORKS	Course _	Professional Elective	L T P C
Code	Name	PATTERIN RECOGNITION AND NEURAL NETWORKS	Category	FIGURESSIONAL ELECTIVE	2 0 2 3

Pre-requisite Nil	Co-requisite Courses		Progressive Courses	18ECE340T
Course Offering Department	Electronics and Communication Engineering	Data Book / Codes/Standards	Nil	

Course L	ourse Learning Rationale (CLR): The purpose of learning this course is to:			earni	ng					Prog	ram L	_earni	ing Oı	utcom	es (PL	_0)	
CLR-1:	Learn the concepts of pattern reco	ognition	1	2	3	1	2	3	4	5	6	7	8	9	10 1	11	1
CLR-2:	CLR-2: Analyze few parameter estimation methods for pattern recognition																
CLR-3: Acquire knowledge on the fundamental neural networks												>					
CLR-4: Apply the neural network recurrence for pattern recognition studies									arch			apilit					
CLR-5:	Utilize the practical applications of	(Bloom)	y (%)	ıt (%)	Knowledge		ent	Rese			ustainability		Work		වු		
CLR-6 :	Understand the nattern and apply poural network based learning algorithm to analyze the data from real world						Analysis	& Development	Design, Re	l Usage	Culture	& S		E		& Finance	
Course L	earning Outcomes (CLO): At the	e end of this course, learners will be able to:	Level of Thinking	Expected Proficiency	Expected Attainment	Engineering	Problem An	Design & De	Analysis, De	Modem Tool	Society & C	Environment	Ethics	Individual &		Project Mgt.	ا انوم ا مؤا ا
CLO-1:	Identify the fundamentals of recog	gnition of patterns, regularities in data and classifiers	3	80	75	L	-	L	Н	М	-	-	-	-	-	-	-
CLO-2: Classify error estimation, such as definitions, test-set error estimation and training-set error estimation			3	80	70	М	-	-	Н	-	-	-	-	-	-	-	-
CLO-3: Analyze the neuron model and fundamentals on learning algorithms			3	75	70	М	-	-	-	-	-	-	-	-	-	-	-
CLO-4: Realize the error model and calculate the deviation with back propagation networks			3	80	75	М	-	М	Н	-	-	-	-	-	-	-	-
CLO-5:	CLO-5: Identify the applications of neural networks in the area of pattern recognition			80	70	L	-	М	Н	-	-	-	-	-	-	-	-
	Applying and appropriate of notices algorification techniques to real world problems such as decument analysis and																_

CLO-6:

recognition.

Analyze and compare a variety of pattern classification techniques to real-world problems such as document analysis and

	•					•			•		•	•					
2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modem Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO-1: Professional Achievement	PSO – 2: Project Management Techniques	PSO – 3: Analyze & Research	
80	75	L	-	L	Н	М	-	-	-	-	-		-	-	-	-	
80	70	М	-	-	Н	-	-	-	-	-	-	-	-	-	-	Н	
75	70	М	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
80	75	М	-	М	Н	1	ı	1	1	1	ı	1	-	М	-	Н	
80	70	L	-	М	Н	-	-	-	-	-	-	-	-	-	-	Н	
80	70	М	-	М	Н	М	-	-	-	-	-	,	-	L	1	Н	

		Introduction To Pattern Recognition	Parameter Estimation Methods	Introduction to Neural Networks	ANN for Classification and Regression	ANN for Organization and Recognition
Durat	on (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to Statistical Pattern Recognition	Introduction to parameter estimation	Introduction to neural networks	Introduction to Hopfield networks	Self-organizing map
3-1	SLO-2	Overview of Pattern Classifiers	Maximum-Likelihood estimation	Neuron model	Hop-field network- architecture	SOM algorithm
S-2	SLO-1	Process of Classifier Design, Decision making theory	Maximum a Posteriori estimation	Learning methods of ANN, Supervised, Unsupervised and reinforced	Recurrent networks	Learning vector quantization
0-2	SLO-2	Bayesian decision making	Bayesian estimation	Basic learning rules of ANN-	Sample recurrent network structure	Kohonen self-organizing map
S 3-4	SLO-1 SLO-2	Lab1: Digitization of analog signals	Lab4: Programs on Estimation	Lab 7: Logic gate function description with Hebb rule	Lab 10: Programs on training a Hopfield network	Lab 13: programs on orthogonality and evaluating input and output for association
	SLO-1	Bayes Classifier	Unsupervised learning and clustering	McCulloh pitt neuron	Associative memories- Introduction:	Feature selection
S-5	SLO-2	Bayes Classifier for minimizing Risk	Clustering vs. Classification-Supervised vs. unsupervised	Problems on McCulloh pitt	Auto and hetero associative memory	Feature map classifier, applications
S-6	SLO-1	Estimating Bayes Error	Criterion functions for clustering Algorithms for clustering	Hebb learning rule	Bi directional memories	Architecture of Adaptive Resonance Theory
3-0	SLO-2	Effect of sample size in estimation	K-Means clustering	Problems on Hebb learning rule	XOR problem	ATR1 algorithm
S 7-8	SLO-1 SLO-2	Lab 2: Program to count the white pixels from the image	Lab 5: Loading a data set and selecting predictive features	Lab 8: Evaluating function with different learning rules	Lab 11: Programs on Auto and hetero association of memory	Lab 14: Character Recognition
S-9	SLO-1	Minimax Classifiers	Hierarchical methods of clustering	Single layer perceptron architecture Training algorithm	Back-propagation Algorithm	ART2 algorithm - Training

3

	SLO-2	LINEVMANN LIASSITIES	Comparison of methods, cluster distance and validation	IVIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Counter propagation networks- architecture	ART2- network architecture
S-10	SLO-1	Pearson Classifiers	Sequential Pattern Recognition	Adaline architecture	Simulated annealing	Hand written digit recognition
3-10	SLO-2	Applications	Sequential Pattern Recognition	Madaline architecture	Boltzmann machine	Character recognition networks
S 11-12	SLO-1 SLO-2	Lab3: Analysis of a data set with classifiers	Lab 6: Programs on clustering technique	Lab 9 : XOR problem with Perceptron network	Lab 12: Evaluation of error in BPN	Lab 15: Mini Project

	1.	Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer Verlag, 2016	4.	Simon O. Haykin, Neural Network and Learning Machines, 3rd ed., Pearson Education, 2009
Learning	2.	Dionisis Cavouras, S.Theodoridis, K. Koutroumbas, A. Pikrakis, An Introduction to Pattern	5.	Ke-Lin Du ,M. N. S. Swamy, Neural Networks and Statistical Learning, Publisher Springer, 2014
Resources		Classification: A Matlab Approach, Elsevier Science Publishing Co Inc, 2010	6.	Kosko B, Neural Networks and Fuzzy Systems: A dynamical system approach to machine intelligence,
	3.	Martin T.Hagan, Neural network design, Cengage publications, 2010		Prentice Hall, 2009

Learning Asse	essment												
	Bloom's		Continuous Learning Assessment (50% weightage)										
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA -	3 (15%)	CLA – 4	l (10%)#	Final Examinatio	n (50% weightage)		
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %		

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. A. Ruhan Bevi, SRM IST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18ECE260J	Course Name	BIOMEDICA	AL INSTRUMENTATION	Course Category	Ε	Professional Elective	L 2	T 0	P 2	C 3
Pre-requisit Courses Course Offer	18ECC201J	Electronics	Co-requisite Courses and Communication Engineer	Nil Data Book / Codes/Standards	Progres Cours		Nil				

Course O	ffering Department	Electronics and Communication Engineering	Data Book / Codes/Standards	Nil												Project Mgt & Finance Life Long Learning M PSO-1				
Course Le	earning Rationale (CLR):	The purpose of learning this course is to:		L	earni	ng				Prog	ram l	Learn	ing O	utcor	nes (l	PLO)				
CLR-1:	Measure and interpret var	ious physiological parameters		1	2	3	1	2 3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Utilize the working of differ	rent monitoring equipment's										>								
CLR-3:	Utilize the principle and we	orking of different equipment's available for hemodyr	namic measurements	<u>_</u>		_			arch			iii								
		orking of different types of pulmonary function analyz		(Bloom)	(%) k	t (%)	dge	ţ	see			aina		Work		8				
CLR-5:	Utilize the principle and we	orking of clinical laboratory equipment's) (B	Proficiency	Attainment	we we	Analysis Develonment	_ ~	Usage	Ф	Sustainability		M V		inan	g			
CLR-6:	The learner gains knowled	lge in application of various diagnostic medical devic	ces and issues related to device safety	hinking	ofici	ain	ᇫ	Analysis	esign,	l s	Culture	∞ర		Team	.e		a E			
	-		•	ΤĒ			ing	Ans Ans	S O	100	2 2 3	onment		. 8 	icat	¶gt	Pe			
Course Le	earning Outcomes (CLO):	At the end of this course, learners will be able to:		Level of "	Expected	Expected	Engineering Knowledge	Problem		Modern -	Society &	Environn	Ethics	Individual	Communication	ぉ		M PSO-1	PS0-2	PS0-3
CLO-1:	Describe the origin of bio	potential and its measurements using different type of	of electrodes	3	80	75	М	- -	-	-	-	-	-	-	-	-	-	М	-	
CLO-2 :	Illustrate working principle	of cardiac function monitors and devices used for m	neasurement of parameters such as blood	3	80	70	М		-	-	-	-	-	-	-	-	-		-	-
CLU-2:	pressure, blood flow, hear	t rate, cardiac output and blood oxygen content		3	00	70	IVI											IVI		
CLO-3:	Analyze the components a	and working principle of pulmonary function measurir	ng devices and patient monitoring systems	3	75	70	М	- -	-	-	-	-	-	-	-	-	-	Μ	-	-
CLO-4:	Interpret the working princ	iple of different clinical laboratory equipment	·	3	80	75	М		-	-	-	-	-	-	-	-	-	М	-	-
		azards and implement safety methods while using b		3	80	70	-	М -	-	-	-	-	-		-	-	-	М	-	-
CLO-6:	Summarize the working pr	inciples of different diagnostic instruments available	for measuring the physiological variables	3	80	70	М	М -	-	-	-	-	-	-	-	-	-	М	-	-

		Biopotential Electrodes	Bio Signals Recording	Cardiac Function Measurements	Pulmonary Function Measurements and Patient Monitoring System	Bioanalytical Equipments and Patient Safety
Durati	on (hour)	12	12	12	12	12
	SLO-1	Cell structure and its functions, Physiological systems of the body	Electrical conduction system of the heart, Cardiac cycle	Haemodynamic pressure, Measurement of blood pressure: direct methods	Mechanism of respiration	Types of blood cells
S-1	SLO-2	Cardiovascular system Respiratory system, Nervous system	ECG: origin, waveforms, characteristics, Einthoven triangle Lead configurations		Pulmonary function measurements, Respiratory volumes and capacities	Calculation of cell size
S-2	SLO-1	Basic Medical Instrumentation system, Sources of Biomedical Signals	Electrocardiograph, 12 lead ECG machine block diagram,	Blood flow measurement: Electromagnetic blood flow meters, Sine and square wave blood flowmeter	Spirometry: Basic spirometer, wedge spirometer, Ultrasonic spirometer	Blood cell counters –Microscopic method, Automatic optical method
3-2	SLO-2	Resting and Action potential, Nernst equation, Goldman equation, Hodgkin- Huxley model	Common mode and interference reduction circuits	Ultrasonic blood flow meter: Doppler shift principle, Pulsed Doppler blood flowmeter	Pneumotachometers: turbine type Pneumotachometer, Fleisch-type & Venturi type Pneumotachometers	Electrical conductivity based method, Coulter counter, Automatic recognition
S 3-4	SLO-1 SLO-2	Lab1: Language of Anatomy, Overview of organ system	Lab4: Recording and analysis of ECG signal	Lab7: Recording and analysis of heart sounds	Lab10: Pulmonary function measurement and analysis using spirometer	Lab13: Mini project
S-5		Recording Electrodes: Electrode tissue interface, Metal electrolyte interface	Cardiac arrhythmias	NMR blood flow meter	Measurement of gas volume: Flow-Volume curve, Area of the flow volume, Nitrogen wash out technique	Differential counting of cells, Spectrophotometer Colorimeters
	SLO-2	Electrolyte skin interface	Characteristics and origin of heart sound, Phonocardiography	Laser Doppler blood flowmeter	Electro spirometer	Flame photometers, Selective ion electrodes, ion analyser
S-6	SLO-1	Polarization: polarizable and non- polarizable electrodes, Skin contact impedance	EEG : origin, waveforms and their characteristics, 10-20 electrode placement system	Cardiac output measuring techniques: dye dilution method, Indicator dilution, thermal dilution method	Pulmonary function analyzers	Patient safety: Electric shock hazards

		Surface Electrodes: Silver-Silver chloride electrodes, Floating and pre-gelled electrodes, Pasteless electrodes	Block diadram and Working of FFG	Measurement of cardiac output from aortic pressure waveform	Impedance pneumography	Gross shock and effects of electric current on human body
S 7-8	SLO-1 SLO-2		cianal	Lucina Shhvamomanomatar/LahV/IEW/	Lab11: Measurement of Heartrate using LabVIEW Biomedical workbench	Lab14: Mini project
	SLO-1	Air jet electrodes, Micro Electrodes			Respiratory gas analyzers: Infrared gas analyser, Paramagnetic oxygen analyser	Micro current shock
S-9	SLO-2	Needle Electrodes, Ion sensitive field effect transistors, Transcutaneous electrodes	Apexcardiograph	Imernoa	Thermal conductivity analyser, nitrogen gas analyser, Polarographic oxygen analyser	Ventricular fibrillation- electrophysiology
	SLO-1	Biochemical electrodes: pH		,	Heart rate measurement, Monitoring of foetal heart rate	Leakage current and its types
S-10	SLO-2	Biochemical electrodes: pO2, pCO2		Central monitoring & Beasiae monitoring	Measurement of respiration rate: displacement method, thermistor method, CO2 method, Apnoea detector	Precautions and safety codes, Electrical safety analyser
S 11-12	SLO-1 SLO-2	Lab3: Design of bio amplifier		Lab9: Recording and analysis of signals using patient monitoring system	Lab12: Mini project	Lab15: Model Practical Exam

Learning Resources	1. R.S. Khandpur, Handbook of Biomedical instrumentation, 3 rd ed., Tata McGraw Hill, 2014	2. John G. Webster, Medical Instrumentation application and design, 4th ed., Wiley, 2015

Learning Ass	earning Assessment Continuous Learning Assessment (50% weightage)														
	Bloom's	Final Evamination	n (50% weightage)												
	Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4	l (10%)#	FIIIai Examination	ii (50% weightage)				
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%				
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%				
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%				
	Total	100	0 %	100	0 %	10	0 %	10	0 %	10	0 %				

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Dr. A. K. Jayanthy, SRMIST
2. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	2. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	2. Dr. T. Jayanthi, SRMIST

Course Code	18ECE261T	Course Name	MEDICAL IMAGING TEC	CHNIQUES	Course Category	Ε	Professional Elective	L 3	T 0	P 0	C 3
Pre-requisi Courses	Nil		Co-requisite Courses		Progres Cours		Nil				
Course Offer	ring Department	Electron	ics and Communication Engineering	Data Book / Codes/Standards	Nil						

Course Offering Department Lieutorius and Communication Engineering Data Book / Codes/Standards	IVII																	
Course Learning Rationale (CLR): The purpose of learning this course is to:		Learr	ning					Prog	ram L	.earn	ing O	utcor	nes (PLO)				
CLR-1: Utilize the physics behind x ray imaging and Computed tomography	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Utilize the hardware and techniques involved in nuclear imaging										λ.								
CLR-3: Utilize the properties and techniques in ultrasound imaging	(mo	. (%					earch			iii								
CLR-4: Utilize the physics behind magnetic resonance and techniques in resonance imaging	(Bloor	%		gge		ent	Rese			aj.		Work		ance				
CLR-5: Utilize the principle behind modern imaging techniques	(B	enc	Attainment	owle	.02	opment	Ä,	sage	go	Sustainability		E		Finar	В			
CLR-6: Utilize the imaging techniques for various applications	hinkina	olic	tain	Ϋ́	nalys	evel	Design,	\Box	ulture	∞		Tea	ation	∞	ä			
	=	P.	₽	ing	An	~ D		Tool	ر م	nen		∞ —	ica	Mgt	g Fe			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	level of		Expecte	Engineering Knowledge	Problem	Design {	Analysis,	Modern	Society	Environment	Ethics	Individua	Communic	Project I	Life Long	PS0 - 1	PS0-2	PSO - 3
CLO-1: Analyze the physics behind x ray imaging and Computed tomography	3	80	75	М	-	-	-		-	-	-	-	-	-	-	L	-	L
CLO-2: Illustrate the hardware and techniques involved in nuclear imaging	3	80	70	L	-	-	-	-	-	-	-	-	-	-	-	L	-	L
CLO-3: Describe the properties and techniques in ultrasound imaging	3	75	70	L	-		-	-	-	-	-	-	-	-	-	L	-	L
CLO-4: Analyze the physics behind magnetic resonance and techniques in resonance imaging	3	80	75	М	-	-	-	-	-	-	-	-	-	-	-	L	-	L
CLO-5: Identify the principle behind modern imaging techniques			70	М	-	-	-	-	-	-	-	-	-	-	-	L	-	L
O-6: Apply the imaging modality for interpretation			70	М	-	-	-	-	-	-	-	-	-	-	-	L	-	L

		X-ray and Computed Tomography	Nuclear Imaging	Ultrasound Imaging	Nuclear Magnetic Resonance Imaging	Modern optical imaging
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Production of x-ray – Basic principle and its block diagram	Nuclear medicine – Radio isotopes in medical diagnosis	Diagnostic ultrasound	Principles of NMR imaging system	Spectroscopy – Introduction
3-1	SLO-2	Voltage Generators , Collimators and Grids , Automatic Exposure Control	Physics of radioactivity	Physics of ultrasound	Free induction decay	Types of light sources
S-2	SLO-1	Visualization of x rays – X ray film and processing, Fluorescent screen	Radiation detectors – Ionization chamber	Generation and detection of ultrasound	NMR signal – Spin echo	Optical filters – Types
3-2	SLO-2	Image intensifier	Scintillation detectors , Semiconductor detectors, Solid state detectors	frequency, active element diameter and focusing	T1 and T2 relaxation	Need for filters
S-3	SLO-1	Computed radiography - CR imaging	Pulse height analyser	Basic pulse echo apparatus	Pulse sequence	Monochromators - Prism
3-3	SLO-2	CR image manipulation	Uptake monitoring system	System description	Repetition time, Echo time	Grating monochromators
S-4	SLO-1	Digital radiography	Rectilinear scanner	A scan - Introduction	Spin Echo Contrast Weighting – T1 weighting	Optical fibers – Need
3-4	SLO-2	Flat panel detector	Radioisotope rectilinear scanner	Applications of A scan	T2 weighting , Spin proton density weighting	Various configurations using optical fibers
S-5	SLO-1	Mammography – Automatic exposure control	Gamma camera	M Mode principle	Localization MR signal -Magnetic field gradients	Polarizers – Introduction
3-3	SLO-2	Mammography equipment's	Multi crystal gamma camera	Block diagram of an echocardiograph circuit	Slice select gradients	Types of polarisers
S-6	SLO-1	CT – Principle of CT imaging	Emission computed tomography- Principle	B scanner - Introduction	Frequency encode gradient	Fractional Flow Reserve – procedure
3-0	SLO-2	Beers law, Hounsfield unit	Principle of PET and SPECT scanner	Types of B scanner	Phase encoded gradient	Measurement , Interpretation of results , Advantages

S-7	SLO-1	CT scan – Tomographic acquisition	' '	,	0 ,	Microwave imaging – Need
3-1	SLO-2	Generations of CT Various detector configurations Sequential array scanner and phased array scanner		Echo planar image acquisition	Applications of microwave imaging	
S-8		Detectors – Scintillation crystal and Photomultiplier		Modern Imaging systems – block diagram description	MRI scanner components	Optical coherence imaging – Introduction
3-0	SLO-2	Xenon , scintillarc	Gantry and detector modules	Frame grabbers , Digital scan converters	Artifacts	Types – Time domain and Fourier domain
S-9	SLO-1	Data acquisition and Image reconstruction	Dual modality imaging – SPECT/CT	Doppler ultrasound	Functional MRI	Thermal imaging in medicine
3-9	SLO-2	Filtered back projection and artifacts	PET/CT	Intravascular ultrasound techniques	MR spectroscopy	IR detectors , Block diagram of IR imaging

	earning	1.	Khandpur R.S, Hand-book of Biomedical Instrumentation, 2 nd ed., Tata McGraw Hill, 2003	3.	William R. hendee, E, Russell Ritenour Medical imaging physics, 4th ed., 2002	
	Learning Resources	2.	Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomedical Instrumentation and Measurements. 2 nd ed., Prentice-Hall of India, 1997	4.	Wolfgang Drexler James G. Fijimoto, Optical coherence tomography technology and applications, 1st ed., Springer, 2008	
L			Modelaromonto, 2 od., 1 rondoo ridii or mala, 1001		2000	

Learning As	sessment										
	Bloom's	Final Evamination	n (50% weightage)								
			1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Filiai Examination	i (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	30 %		30 %	_	30 %	_	30 %		30%	
Level 1	Understand	30 /0	-	30 /0	-	30 70	_	30 /0	-	3070	-
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%	
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	_	40 /0	-	4070	-
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%	
Level 3	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Dr. S. P. Angeline Kirubha, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. P. Vinupritha, SRMIST

Course Code	T Course Name	BIOMATERIALS AND	ARTIFICIAL ORGANS	Course Category	Ε	Professional Elective	L 3	T 0	P 0	C 3
Pre-requisite Courses Course Offering Departm	nt Electro	Co-requisite Courses Nil	Data Book / Codes/Standards	Progre Cour Nil		Nil				

	1																	
Course Learning Rationale (CLR): The purpose of learning this course is to:	L	earni	ng	Program Learning Outcomes (PLO)														
CLR-1: Identify the phenomena occurring between biomaterials and surrounding tissue in living organism	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 1	15
CLR-2: Acquire the skills on different classes of biomaterials with its degradation process.										>								
CLR-3: Identify the suitable biomaterials for cardiovascular and orthopedic applications.	Ē		_				arch			藚								
CLR-4: Acquire skills to handle different biomaterials for dental, eye and ear applications	(Bloom)	y (%)	ıt (%)	dee		ent	Research			ain		Work		nance				
CLR-5: Proficiency to have an insight on the regulatory approval procedure for artificial organs	g (B	ency	Attainment	we we	, so	Development	Æ,	sage	ø.	Sustainability		eam V		inar	ming			
CLR-6: Acquire the skills on suitable burn dressings and skin substitutes	Thinking	ofici	tain	X	Analysis	Ne le	Design,	\cap	ulture	∞ŏ		Tea	ation	∞ T	alli			
	_ <u>i</u>	P P		ina		S D	Ğ,	Tool	ت ک	nen		<u>∞</u>	ica	Mgt	g Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expecter	Expected	Enaineerina Knowledae	Problem	Design 8	Analysis,	Modern	Society	Environment	Ethics	Individual	Communic	Project I	Life Long		PSO - 2	PSO - 3
CLO-1: Analyze biocompatibility and testing of biomaterials	3	80	75	М	-	-	-		1	-	-	-	-	-	-	L	-	-
CLO-2: Identify relations between structure and properties of various biomaterials	3	80	70	М	-	-	-	-	-	-	-	-	-	-	-	L	-	-
CLO-3: Select materials with suitable properties in cardiovascular and orthopedic devices	3	75	70	М	-	-	-	-	1	-	-	-	-	-	-	-	-	L
CLO-4: Identify biomaterials in dental, vision and auditory devices	3	80	75	М	-	-	-	-	-	-	-	-	-	-	-	-	-	L
CLO-5: Analyze materials for artificial skin and drug delivery applications			70	М	-	-	-	-	1	-	М	-	-	-	-	-	-	-
LO-6: Analyze the regulatory process for different artificial organs comprising codes, reliability, and device testing			70	М	-	-	-	-	-	-	-	-	-	-	-	L	-	-

		Properties of biomaterials	Metals and ceramics	Biomaterials for cardiovascular and orthopedic applications	Biomaterials for eye, ear & dental applications	Biomaterials for artificial skin and drug delivery applications
Durat	on (hour)	9	9	9	9	9
S-1	SLO-1	The nature of matter and materials	Metals: Basic Principles	Substitute Heart Valves	Dental implants to support dental prosthesis	Burn Dressings and Skin Substitutes: Artificial skin, Soft tissue replacement
3-1	SLO-2	Mechanical properties of biomaterials	Stainless Steel, Titanium and Co-Cr alloys: Metallurgical and Chemical Considerations	Heart Valve Function and Dysfunction	Adhesives and Sealants to enhance bond strength and durability	Sutures and Alternatives to Suture
S-2	SLO-1	Physiochemical properties of biomaterials	Mechanical properties		Ophthalmologic Applications: Overview of Eye Anatomy	Drug Delivery Systems: Principles, Origins, Evolution of Controlled Drug Delivery
3-2	SLO-2	Biomaterial characterization – Analytical instruments	Corrosion behavior	Mechanical and Tissue Valve Replacement Devices: Types and Complications	Contact Lenses -General Properties and Corneal Requirements	Liposomes, Polymeric micelles
S-3	SLO-1	Cells: Function and response to Injury	Applications of Stainless steel, titanium, Co-Cr alloys	Trans catheter Valve Replacement	Contact Lens Materials - Surface Modifications	Polymeric and Albuminated Drug Nanoparticles, Dendrimers
3-3	SLO-2	Tissues, the Extracellular Matrix, and Cell– Biomaterial Interactions	Various other types of metals with its biomedical applications	Engineered Heart Valves	Specialty Lenses - Contact Lens Solutions	Injected Depot DDS
S-4	SLO-1	Host Reaction to biomaterials and their evaluation	Polymers: Basic principle	Angioplasty and Stents	Intraocular Lens Implants (IOLS): Scientific Perspective	Implants and Inserts, Infusion Pumps, Inserts
3-4	SLO-2	Inflammation, Wound healing, and the foreign body response	Polyacrylate, Polyamide and Polyolefins: Properties of biomaterials	Vascular Grafts	Optics of the Eye and Cataracts Emerging Functional Variations of IOLS	Smart DDS, Environmentally Response systems
S-5	SLO-1	Systemic toxicity and hypersensitivity	Applications of polymeric biomaterials	Stent Grafts	Biomaterials for IOLS	Transdermal DDS, Passive and Active Transdermal Delivery Systems
3-3	SLO-2	In Vitro assays to assess cell and tissue compatibility in biomaterial/medical device	Various other types of metals with its biomedical applications	Engineered Vascular Grafts	IOLS with Variations of Optical Function	Oral drug delivery – Controlled release in the GI tract
S-6	SLO-1	Evaluation for regulatory purposes	Ceramics: Basic Principles, Bioactive Glasses and Glass-Ceramics	Cardiovascular Devices: Pacemakers and Icds (For Cardiac Arrhythmias)	Corneal Inlays and Onlays	Regulatory Overview of Medical Products Using Biomaterials: Global Regulatory Strategy - Design Control, Risk Analysis

			SVntnetic HVarovvanatites Allimina:	Cardiac Assist and Replacement Devices (For Heart Failure)	Synthetic Biomaterials in the Cornea - Optical Requirements - Biological Requirements - Permeable Intracorneal Lenses	Biocompatibility Assessment for Biomaterials in Medical Devices - Manufacturing Controls and Post Market Oversight
S-7		Future challenges in In Vitro Assessment of cell and tissue compatibility	Mechanical Properties and Porosity	Miscellaneous Cardiovascular Devices	Impermeable Intracorneal Lenses - Synthetic Materials for Corneal Onlays	Premarket Clearance, Premarket Approval (PMA)
3-1	SLO-2	Selection of In Vivo tests according to intended use	Staniiity and Biocomnatiniiity	Implantable Cardiac Assist Devices and IABPs	Glaucoma Drains and Implants	Clinical and Animal Trials of Unapproved Devices
S-8	SI ()-1	Biomaterial and Device perspectives in In Vivo testing	Annlications of caramics highartarials	Ventricular Assist Device and Blood- Contacting Materials	Retinal Prostheses and concerned biomaterials	Sterilization, Shelf-Life, and Aging
3-0	SLO-2		,,		Cochlear Prostheses – Overview of the Auditory System	Ethical Issues in Biomaterials and Medical Devices: Protection of Patients
	SLO-1	Selection of animal models for In Vivo tests	Degradation of metallic and polymeric biomaterials	Knee replacement	Cochlear Prostheses - Materials and Electrode Arrays	Good Laboratory, Manufacturing and Clinical Practice
S-9	SLO-2	Future Perspectives on In Vivo medical device testing	Degradation of ceramic biomaterials	Miscellaneous orthopedic Devices	The role of biomaterials in stimulating bioelectrodes- Active chemical processes and Passive chemical processes	Protection of Research Subjects - Conflicts of Interest

k Schoen, Jack Lemons., Biomaterials Science - And ded., Academic Press, 2012

Learning As	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(E00/ woightogo)
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	l (10%)#	FIIIai Examination	n (50% weightage)
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Total	100	0 %	100	0 %	10	0 %	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Mr. P. Muthu, SRMIST
2. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	2. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	2. Mr. S. Gnanavel, SRMIST

Course Code	18ECE263T	Course Name	Į.	BIOSENSORS	Course Category	Ε		Professional Elective	L 3	T 0	P 0	C 3
Pre-requisite Courses Course Offerin	NII	Electron	Co-requisite Courses iics and Communication Engineer	Nil Ping Data Book / Codes/Standar	Cou	essive	Nil					
Course Learnin	ng Rationale (CLF	R): The purp	pose of learning this course is to:		Lea	ning		Program Learning Outcomes (PLO))			

Course Learning Rationale (CLR): The purpose of learning this course is to:	L	.earni	ng						Prog	ram L	.earni	ing O	utcor	nes (PLO)				
CLR-1: Utilize the various concepts and terminologies of measurement system	1	2	3	Ī	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Utilize the working principles of transducers											^								
CLR-3: Analyze the physiology of human sensory systems	Ē		_					Research			Sustainability								
CLR-4: Utilize the working principles of biological sensors	(Bloom)	y (%)	ıt (%)		dge		ent	ese			aina		Work		9				
CLR-5: Analyze the medical applications of biosensors) (B	ency	Attainment		wle	S	Development	Ę.	age	go.	Sust		m V		inance	ming			
CLR-6: Learn the modern sensors for medical diagnosis	Thinking	Profici	tain		Knc	Analysis	velc	Design,	Tool Usage	ulture	∞ర		Team	ig	× E	ami			
	불				ring	Ana	& De	, De	T00	ت ح	neu		∞ŏ	ical	Mgt	J Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering Knowledge	Problem	Design &	Analysis, I	Modern	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PS0 - 2	PSO - 3
CLO-1: Identify the concepts of measurements and the errors associated with measurement	3	80	75		М	-	-	-	-	-	-	-	-	-	-	-	М	-	-
CLO-2: Analyze the working principles of transducers	3	80	70		М	-	-	-	-	-	-	-	-	-	-	-	М	-	-
ELO-3: Evaluate the physiological functions of human sensory systems					М	-	-	-	-	-	-	-	-	-	-	-	М	-	-
CLO-4: Analyze the principles of various sensors used in medical diagnosis	3	80	75		Μ			-	-	-	-	-		-	-	-	М	-	-
CLO-5: Describe the various modern biosensors used in medical diagnosis	3	80	70		М	-	-	-	-	-	-	-	-	-	-	-	М	-	-
CLO-6: Implement the modern technologies in biosensors	3	80	70		М	-	-	-	-	-	-	-	-	-	-	-	М	-	-

		Fundamentals of measurement system	Transducers	Biological sensors	Biosensors	Fiber optic sensors
Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Functional elements of an instrumentation system	Classification of transducers	Study of biological sensors in the human body: neuronal mechanism	Biosensors – Introduction	Fiber optic sensors: Introduction
3-1	SLO-2	Functional elements of an instrumentation system	Classification of transducers	Study of biological sensors in the human body: neuronal mechanism	Biosensors – Introduction	Fiber optic sensors: Introduction
S-2	SLO-1	Static characteristics	Characteristics for selection of transducers	pacinian - functions	components of Biosensors	Fiber optic biosensors: Introduction
3-2	SLO-2	Static characteristics	Characteristics for selection of transducers	pacinian - functions	components of Biosensors	Working and principle
S-3	SLO-1	Static characteristics	Resistive transducers: RTD	Chemoreceptor	Classification of biosensors	Optical biosensors for measurement of blood glucose level
0-0	SLO-2	Static characteristics	Thermistor	Chemoreceptor	Classification of biosensors	Optical biosensors for measurement of blood glucose level
S-4	SLO-1	Dynamic characteristics	Resistive transducers: Strain gauge	hot and cold receptors	Biocatalysts based biosensor	Smart sensor: Introduction
3-4	SLO-2	Dynamic characteristics	Resistive transducers: Strain gauge	hot and cold receptors	Biocatalysts based biosensor	Working
S-5	SLO-1	Errors in measurements: sources of errors	Piezoelectric effect transducer: Construction	baro receptors	Enzyme immobilisation	Applications of smart sensor
3-3	SLO-2	Errors in measurements: sources of errors	Working	baro receptors	Enzyme immobilisation	Applications of smart sensor
S-6	SLO-1	Errors in measurements: types of errors	Hall effect transducer: Construction	sensors for smell	Glucose Biosensor	Lab on a chip- Introduction, Need
3-0	SLO-2	Errors in measurements: types of errors	Working	sensors for smell	Glucose Biosensor	Block diagram

S-7	SLO-1	Statistical analysis of data	Capacitive transducers	sensors for sound	bio affinity based biosensor	Applications
3-1		,	1	sensors for sound	bio affinity based biosensor	Advantages and Disadvantages
	SLO-1	Standards: international standards, primary standards	Inductive transducers	sensors for vision	microorganism based biosensors	eNose: Construction
S-8	SLO-2	secondary standards and working standards	Construction and Working	sensors for vision	microorganism based biosensors	Working
	SLO-1	Calibration methodologies	Photomultiplier tube	Sensors for osmolality and taste	Advantages and limitations of Biosensor	Applications of eNose
S-9	SLO-2	Calibration methodologies	Construction and Working	Sensors for osmolality and taste	Advantages and limitations of Biosensor	Applications of eNose

Learning Resources	1.	Sawhney A.K, A Course in electrical and electronic measurements and instrumentation, 19 th ed., Dhanpat Rai & Co (P) Ltd, 2014 Patranabis D, "ensors and transducers", 2 nd ed., Prentice Hall of India, 2004	3.	A. D. Helfrick, W. D. Cooper, Modern electronic instrumentation and measurement techniques, 4th ed., Prentice Hall of India, 1998.
	۷.	Fall dilabis D, elistris dilu li diistucers , 2 ¹¹⁰ eu., Fletilice Hali di Illula, 2004		

Learning Ass	sessment										
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	(E00/ weightegs)
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	1 (10%)#	Filiai Examination	n (50% weightage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	30 %	_	30 %	_	30 %	_	30 %	_	30%	_
Level 1	Understand	30 70	_	30 70	_	30 70	_	30 70	_	3070	_
Level 2	Apply	40 %	_	40 %	_	40 %	_	40 %	_	40%	_
Level 2	Analyze	70 /0	_	40 70	_	40 70	_	40 70	_	7070	_
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%	
FEACI 2	Create	JU 70	-	30 /0	-	30 /0	-	30 /0	-	30%	-
	Total	100 % 100 % 100 %	0 %	10	0 %	10	100 %				

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. D. Kathirvelu, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Mr. V. KarthikRaj, SRMIST

Course Code	18ECE264T	Course Name	DIAGNOSTIC AND THEF	RAPEUTIC EQUIPMENT	Course Category	Ε	Professional Elective	L 3	T 0	P 0	C 3
Pre-requisite Courses	e _{Nil}		Co-requisite Nil		Progre Cour		Nil				
Course Offerin	ng Department	Electron	ics and Communication Engineering	Data Book / Codes/Standards	Nil						
			-	·							

Course O	ffering Department	Data Book / Codes/Standards	Nil																	
Course Lo	earning Rationale (CLR):	The purpose of learning this course is to:		L	earnir	ng				Pro	gram	Learn	ing O	utcor	nes (l	PLO)				
CLR-1:	Gain thorough knowledge a	bout the working principle of coronary care equipme	ents	1	2	3	1	2	3 4	1 5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Understand the functioning	and uses of different surgical equipments										>								
CLR-3:	Utilize different components	of respiratory care equipment and Bone mineral de	ensity measuring techniques	<u></u>	· ·	_			- 1 7	5		Ħ								
CLR-4:	Comprehend about the diffe	rent components and working principle of sensory	diagnosis and therapeutic equipments	(Bloom)	oficiency (%)	t (%)	dge		eut	Š		aina		Work		8				
CLR-5:	Understand the functioning of different types of physiotherapy and electrotherapy equipments					nen	»	S	ğ l	Usage	b 0	Sustainability		E S		Finance	ng			
CLR-6:	Understand the functioning of electrotherapy equipments					Attainment	χ	Analysis	Development	Design,	Culture	∞ŏ		Team	ē	∞ ⊤	aming			
			_	Thinking	ᇫ		ing		& C	, E	್ ಶ	neut		∞ŏ	icat	Mgt	Fe			
Course Lo	earning Outcomes (CLO):	At the end of this course, learners will be able to:		Level of	Expected	Expected	Engineering Knowledge	Problem	Design 8	Modern T	Society &	Environment	Ethics	Individual	Communication	Project N	Life Long	PS0 - 1	PS0-2	PSO - 3
CLO-1:	Explain the working principle	le of coronary care equipments		3	80	75	Н	-	-		-	-		-	-	-	-	L	-	-
CLO-2:	Describe the functioning and	d uses of different surgical equipments		3	80	70	L	-	-		-	-		-	-	-	-	L	-	-
CLO-3:	Give an overview about the	different components and working principle of resp.	iratory care equipments and Bone mineral	3	75	70	М											,		
CLU-3:	density measuring techniques					70	IVI	-	-	- -	-	-	-	-	-	-	-	L	-	-
CLO-4:	Give an overview about the	different components and working principle of sens	sory diagnosis and therapeutic equipments	3	80	75	М	-	-		-	-	-	-	-	-	-	L	-	-
CLO-5:	Illustrate the functioning of o	lifferent types of physiotherapy and electrotherapy	equipments	3	80	70	М	-	-		-	-		-	-	-	-	L	-	-
CLO-6:	LO-6: Illustrate the functioning of different types of electrotherapy equipments				80	70	Н	-	-		-	-	-	-	-	-	-	L	-	-

		Coronary care equipments	Surgical equipments	Respiratory care equipments and Bone mineral density measuring equipments	Sensory diagnosis equipments	Physiotherapy and electrotherapy equipments
Durat	on (hour)	9	9	9	9	9
S-1	SLO-1	Need for cardiac pacemaker	Principles of surgical diathermy unit	Mechanics of respiration, Artificial ventilation	Mechanism of hearing, sound conduction system	Short wave diathermy, Simplified circuit diagram, Methods of applying electrodes
3-1	SLO-2	Types of pacemaker and different modes of operation	Surgical diathermy machine Block diagram and description	Respiratory care equipment: humidifier	Measurements of sound, Transducers used to measure sound	Inductive and condenser method, Inductive heating by coil in drum
S-2	SLO-1	External pacemaker – Block diagram	Endoscopy basic components	Nebulizer, aspirators	Block diagram and description of basic audiometer	Micro wave diathermy, Production of microwaves
3-2	SLO-2	Three types of External pacemaker based on the type of output waveform	Types of endoscopy – Fiber optic and rigid types	Ventilators –Functional diagram, Types of ventilator	pure tone audiometer	Simplified circuit diagram of micro wave diathermy
S-3	SLO-1	Implantable pacemakers, requirements, Classification codes for pacemakers	Applications of endoscopy- Laparoscope, gastro scope	Classification of ventilator	Speech audiometer	Ultrasonic therapy unit- Block diagram description
3-3	SLO-2	Types of implantable pacemakers, Various pacing modalities in demand pacemaker	Applications of endoscopy- bronchoscope, arthroscopy	Ventilator- Microprocessor controlled ventilator	Calibration of audiometers	Dosage control in ultrasonic therapy unit
S-4	SLO-1	Ventricular synchronous demand pacemaker	Cobalt T-60 machine – Basic components	Electronics block diagram of ventilator	Block diagram and description of Bekesy audiometer system	Electro diagnosis and electrotherapy basics – Intensity time curve of muscles,
3-4	SLO-2	Rate responsive pacemaker	Gamma Knife	Capnography – Block diagram description	Block diagram and description of Evoked response audiometry system	Different types of waveforms used in electrotherapy
S-5	SLO-1	Need for Defibrillator, AC Defibrillator	Cryogenic surgical techniques	Anesthesia machine – schematic diagram of an anesthesia machine	Hearing aids, Conventional analog type hearing aid	Electro diagnostic/ Stimulating unit – Schematic block diagram
3-3	SLO-2	DC Defibrillator – schematic diagram	Applications of cryogenic surgery	Block diagram & description of an anesthesia monitor	Digital hearing aid	Interferential current therapy – Principle of generation of interference currents
S-6	SLO-1	Defibrillator electrodes, DC Defibrillator with synchronizer	Operating microscope – basic principle	Baby incubator – Principle of operation	cochlear implants	Transcutaneous electrical nerve stimulation

	SLO-2	Automatic or advisory external defibrillator (AED)	"Coeranno microscobe – combonenis	Baby incubator – Block diagram description	Different types of cochlear implants	Spinal cord stimulator
S-7	SLO-1	Implantable Defibrillator architecture and types	Lithotripsy- Schematic of an acoustic shock wave pulse	· · · · · · · · · · · · · · · · · · ·	Tonometry – Impression type, Applanation tonometry	Diaphragm pacing by radio frequency for treatment of Chronic ventilator insufficiency
3-1	SLO-2	Pacer cardioverter defibrillator	The first Lithotripter machine Single X-ray absorptiometry (SXA) – Instrumentation		,, ,	Deep brain stimulation
S-8	SLO-1	Defibrillator analyzer – block diagram	Modern lithotripter system – Block diagram description	, , , ,		Bladder stimulator – schematic diagram of bladder stimulator
3-0	SLO-2	Defibrillator protection circuit in ECG		, , , ,	Measurement of basal skin response and galvanic skin response - Block diagram	Circuit diagram of bladder stimulator
S-9	SLO-1	Heart lung machine	Focussing system, Coupling, Imaging systems in Lithotripsy machine	Quantitative ultrasound bone densitometer - basic principle		Phototherapy unit – Principle of operation and application
3-9	SLO-2	Types of oxygenators used in Heart lung machine	laser lithotripsy	Quantitative ultrasound bone densitometer - Instrumentation	EMG feedback for rehabilitation study	Types of phototherapy unit

		1.	R.S.Khandpur, Handbook of Bio-Medical instrumentation, 3 rd ed., Tata McGraw Hill, 2014
		2.	Albert M.Cook and Webster. J.G, Therapeutic Medical Devices", 1st ed., Prentice Hall, 1982
Learning		3.	Sydney Lou Bonnick, Lori Ann Lewis, Bone Densitometry and Technologists, 3rd ed., Springer, 2013
Resource		4.	Cotton.P. B, and Williams. C. B., Endoscopic Equipment, in Practical Gastrointestinal Endoscopy: The
Resource	:5		Fundamentals, 6th ed., Wiley-Blackwell, 2008
		5.	Marc. Safran, Bobby. Chhabra. A., Mark. Miller.D, Primer of Arthroscopy, 2nd ed., Elsevier Health Sciences,
			2010

- Ventura, Risegari, The Art of Cryogenics Low-Temperature Experimental Techniques, 1st ed., Elsevier Science, 2007
 Leslie Cromwell, Fred J.Weibell, Erich A.Pfeiffer, Bio-Medical Instrumentation and
- Measurements, 2nd ed., Pearson Education, 2007
- 8. John G. Webster, Specifications of Medical Instrumentation Application and Design, 4th ed., Wiley, 2015

Learning Assess	ment														
	Ploom's			Contir	nuous Learning Asse	essment (50% weig	htage)			Final Examination (50% weighta					
	Bloom's Level of Thinking Remember Understand Apply Analyze Evaluate Create	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	i iliai Examination (50 % Weightage)					
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Lovel 1	Remember	30 %		30 %		30 %	_	30 %		30%					
Ι Δ\/ΔΙ Ί	Understand	30 70	-	30 %	-	30 //	-	30 //	1	30%	-				
Level 2	Apply	40 %		40 %		40 %		40 %		40%					
Level 2	Analyze	40 /0	-	40 %	-	40 //	-	40 /0	ı	4070	-				
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%					
Level 3	Create	30 76	-	30 %	-	30 //	-	30 //	ı	30%	-				
	Total	100	0 %	100) %	10	0 %	100) %	10	0 %				

#CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Dr. S. P. Angeline Kirubha, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. P. Vinupritha, SRMIST

Cou		18ECE265J Course Name	BIOMEDICAL SIGNAL PROCESSIN	G		urse egory		Ε				Profe	ssion	al Ele	ctive				-	L 2	T 0	P 2	C 3	
	equisite urses	18ECC204J	Co-requisite Nil				ressiv		Vil															
Course	Offering	Department Electronics and Com	munication Engineering Data Book	/ Codes/Standards	į	Nil																		
Course	Learnin	g Rationale (CLR): The purpose of learning	ng this course is to:			Le	Learning						Progi	ram L	earni	ng O		•	•					
		e the characteristics of various bio signals				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
			lomain filtering techniques to remove noise fr	om bio signals								동			≟									
CLR-3		various signal processing techniques in and e knowledge in Wavelets and speech signal				(mo	(%)	(%)	e G		ŧ	searc			nabi		춪		Ф					
CLR-5		ze the characteristics of non-stationary sign				(B)	ncy	ent	wled		me	Res	g		ıstai		٨		ano	D				
CLR-6		ze the classification of normal and abnorma				king	oficie	ainm	Kno	lysis	/elop	sign,	Usa	lture	ઝ જ		Lean	8	& Finance	in in				
	1 - 7					Thi	Pro	T Aff	l Bui	Ana	Ď	Des	8	no *	nent		~	icati	/gt	l Le				
Course	Learnin	g Outcomes (CLO): At the end of this cou	urse, learners will be able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt	Life Long Leaming	PS0 - 1	PSO-2	PSO - 3	
		ze the physiological origin and characteristic				3	80	75	М	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
			techniques to remove noise from biomedica	l signals		3		70	М	-	-	-	-	-	-	-	-	-	-	-	М	-	-	
		rze various signal processing methods to pro				3	75		M	-	-	-	-	-	-	-	-	-	-	-	М	-	-	
CLO-4	Apply	wavelet transform techniques to analyze the	e biomedical signal als and porform the classification of normal a	nd abnormal signal		3		75 70	M	-	- М	-	M	-	-	-	-	L	M	-	M M	-	- L	
CLO-5	CLO-5: Analyze the characteristics of non-stationary scho-6: Perform the classification of normal and abno		ais and periorni the classification of normal a. I sianal	nu abnomiai signai		3		70	M	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
									1	1				L										
Duratio	n (hour)	12	12	12					12							12								
S-1	SLO-1	Bioelectric signals-ENG, ERG	Time domain filters-Synchronized averaging	ECG waveform analysi	is			Ir	troduction	to wa	avelet	ts			,	Analy	sis of	non-s	statio	nary si	gnals			
	SLO-2	EOG , EEG signal characteristics	Moving averaging filters	Envelope Extraction an	nd Ana	alysis		С	Continuous and Discrete wavelet						Time variant system									
S-2	SLO-1	ECG signal physiological origin	Frequency domain filters Removal of high frequency noise- Butterworth low pass filter	P wave detection				D	Discrete wavelet transform						I	Fixed	segm	nentat	ion					
	SLO-2	characteristics	Design procedure	Estimation of R-R Inter	val			p	yramid alg	gorithr	n				5	Short	time i	Fourie	er trai	nsform				
S 3-4	SLO-1 SLO-2	Lab1: Representation of basic biosignals	Lab4: Design of Butterworth Low pass filter to remove high frequency noise	Lab7: Analysis of ECG				Ρ	ab 10: Wa rocessing					Ü	al L	Lab 1	3: Mir	ni proj	ect					
S-5	SLO-1	PCG signal	Removal of low frequency noise- Butterworth high pass filters	QRS complex detection subtraction method	n-Tem	nplate		W	ompariso avelet tra	nsforn	n				,	Adapt	ive se	egmer	ntatio	n				
3-3	Removal of periodic artefacts-Notch &				nethod	d			ompariso avelet tra			trans	form a	and	,	Algori	thm							
S-6	SLO-1	VAG	Introduction to Adaptive filter	Derivative based methodetection algorithm,	od-Hig	gh spe	ed QR	RS S	peech an	alysis	– Сер	ostrum	1		/	Autoc	orrela	tion f	unctio	on met	hod			
3-0	SLO-2					•		Н	Homomorphic filtering of speech signals						s g	generalized likelihood ratio								
S 7-8	SLO-1 SLO-2	Lab2: Correlation of Biosignals	ignals Lab5: Design of Butterworth high pass filter Lab8: Detection of QRS of ECG			•		L	ab11: Ana	alysis (of spe	ech s	ignal			Lab 14: Mini project								
S-9	SLO-1 Bioacoustic signal-Auscultation Optimal Filtering: Wiener Filter Simple high speed QRS							T	ime frequ	ency r	epres	entati	on			Class. ECG I			signa	gnal: Normal and ectopic				
5-9						hresh	olding																	

S-10	SLU-1	Biomechanical Signal	Wiener Filter(Contd.)	Heart rate variability (HRV)-Introduction	Time scale representation	Case studies- in ECG and PCG
3-10		Biochemical Signal	Wiener Filter	Time & Frequency domain methods	Scalogram	PCG and carotid pulse
S 11-12	SLO-1 SLO-2	Lab3: Analysis of EEG signal	Lab6: Design of Adaptive filters	Lab9: Analysis of Heart rate variability	Lab 12: Mini project	Lab 15: Model Practical Exam

Learning Resources	 Rangaraj.M.Rangayyan, Biomedical signal processing, 2nd ed., Wiley-IEEE press, 2015 Reddy D.C, Biomedical signal processing: Principles and techniques, 2nd ed., Tata McGraw-Hill, 2005 	3. Willis J. Tompkins, Biomedical Digital Signal Processing, PHI, 2004
-----------------------	--	--

Learning Asses	ssment														
_	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Examination (50% weightage					
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	i iliai Examination (50 % weightage)					
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%				
Level I	Understand	20%	2070	1370	1370	1570	1370	1370	1370	1370	13/0				
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%				
Level 2	Analyze	20%	2070	2070	2070	2070	2070	20%	2070	20%	2070				
Level 3	Evaluate	400/	100/	450/	450/	450/	15%	450/	15%	15%	150/				
_evel 3	Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%				
	Total	10	0 %	100 %		10	0 %	10	0 %	100 %					

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers Experts from Industry Experts from Higher Technical Institutions Internal Experts 1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com 1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu 1. Dr. U. Snekhalatha, SRMIST 2. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com 2. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu 2. Dr. T. Rajalakshmi, SRMIST		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Dr. U. Snekhalatha, SRMIST
2. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	2. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	2. Dr. T. Rajalakshmi, SRMIST

Course Code	18ECE266T	Course Name	BIOMEN	MS	Course Category	Ε	Professional Elective	L 3	T 0	P 0	C 3
Pre-requisi Courses Course Offer	INII	Electronics and Co.	Co-requisite Courses mmunication Engineering	Data Book / Codes/Standards	Progres Cours		Nil				

Course Offering Department	Electronics and Communication Engineering Data Book / Codes/Standards	IVII																		
Course Learning Rationale (CLR):	The purpose of learning this course is to:	ı	_earn	ing						Prog	ram L	Learn	ing O	utco	mes (PLO)				
CLR-1: Get an idea about the MEI	MS and Microsystem basics	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Understand the microsyste	em fabrication processes and materials used for MEMS											_								
CLR-3: Understand the micromacl	nining processes		-	_					된			Sustainability								
CLR-4: Acquire the knowledge reg	uired for the development of microfluidic systems	(Bloom)	(%)	t (%)		dge		aut	Research			aina		Work		ance				
CLR-5: Identify the applications of	bioMEMS in healthcare industry	<u> </u>	ency	Attainment		<u>¥</u>	(0	Development	چ	sage	m	nste		×		nan	Б			
CLR-6: Understand the application	ns of MEMS and BioMEMS	Thinking	- Jij	ainr		Š	Analysis	Nelc	Design,		Culture	∞ర		Геаш	<u>.</u>	& Fin	aming			
		je	P			ing	Ana		De	J00		ent		∞ _	icat	Mgt	Ë			
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected	Expected		Engineering Knowledge	Problem	Design &	Analysis,	Modern 7	Society &	Environment	Ethics	Individual	Communication	Project M	Life Long	PS0 - 1	PS0-2	PSO - 3
CLO-1: Analyze the working princi	ple of MEMS & Microsystems in healthcare domain	3	80	75		М	-	L	-	-	-	-	-	-	-	-	-	-	-	-
CLO-2: Explain the microsystem fa	abrication processes and materials used for MEMS	3	80	70		-	-	L	-	-	-	-	-	-	-	-	-	-	-	-
CLO-3: Differentiate the various M	icromanufacturing techniques in miniature applications	3	75	70		-	-	М	-	-	-	-	-	-	-	-	-	-	-	-
CLO-4: Analyze the working princi	ple of Microfluidic Systems in healthcare	3	80	75		-	-	М	-	-	-	-	-	-	-	-	-	М	-	-
CLO-5: Illustrate the concepts of B	ioMEMS with suitable examples	3	80	70		-	-	М	-	-	-	-	-	-	-	-	-	М	-	-
CLO-6: Analyze the applications of	f MEMS in Biomedical domain	3	80	70	Ì	М	-	L	-	-	-	-	-	-	-	-	-	-	-	-

		Microsensor and Microactuator	Materials for MEMS & fabrication Techniques	Basics of Micromachining	Microfluidics	BioMEMS
Durati	ion (hour)	9	9	9	9	9
S-1	SLO-1	MEMS and Microsystems- Introduction	Substrates and Wafers	Bulk micromanufacturing	Microfluidics Introduction	BioMEMS Introduction
3-1	SLO-2	Advantages of MEMS & Microsystems	Silicon as a Substrate Material	Isotropic etching	Fluid Properties	Application of BioMEMS
	SLO-1	Typical MEMS and Microsystem Products	Materials for MEMS: Silicon compounds	Anisotropic etching	Applications of Microfluidic Systems in biomedical	Lab on a chip
S-2	SLO-2	Application of Microsystems in Healthcare Industry	Silicon Piezoresistor	Etch Stop Techniques	Fluid actuation methods	DNA Sensors
S-3	SLO-1	Microsensors- Acoustic wave sensor	Gallium arsenide	Etch Stop Techniques	Dielectrophoresis (DEP)	Hybridization Types
3-3	SLO-2	Microsensors- Optical Sensors	Quartz	Dry Etching	Electrowetting	Microsystem approaches to PCR
S-4	SLO-1	Microsensors- Biomedical Sensors & Biosensors	Piezoelectric crystals	Dry Etching Techniques	Electrothermal	Microsystem approaches to PCR
3-4	SLO-2	Chemical Sensors	Polymers	Dry Etching Techniques	Thermocapillary	Mobile Point of Care Monitors
0.5	SLO-1	Pressure Sensors	Packaging Materials	Surface Micromachining	Electroosmosis	Implantable MEMS for glaucoma therapy
S-5	SLO-2	Thermal Sensors	Photolithography	Surface Micromachining Process Seguence	Optoelectrowetting (Light-actuated microfluidic device)	Implantable MEMS for glaucoma therapy
S-6	SLO-1	Microactuator	Ion Implantation	LIGA Introduction	Microfluidic channel	MEMS based Implantable Drug Delivery System

	SLO-2	Different types of actuation	Diffusion	Application	LMICTORISDERSET	MEMS based Implantable Drug Delivery System
S-7	SLO-1	Application of Microactuations: Microgrippers	Oxidation	LIGA Process	Microneedle	Integrated microsystems for artificial retinal implants
3-1	SLO-2	Application of Microactuations: Microvalve and Micropump	Chemical vapor deposition (CVD)	LIGA Process	Microfilter	Integrated microsystems for artificial retinal implants
S-8	SLO-1	Inch-Worm Technology	(`\/I) Ivnos	Merits and Demerits of Bulk Micromachining	Microseparator	MEMS-based neuronal intervention devices
3-0		Micro-accelerators	(PVD)	Merits and Demerits of Surface Micromachining	Microreactor	MEMS-based neuronal intervention devices
S-9		Examples of biomedical microsensors and microactuators		Merits and Demerits of LIGA Process	Micromixer	Current Point of Care Technology
3-9	SLO-2	Examples of biomedical microsensors and microactuators	Etching	Summary of Micromachining	Capillary Electrophoresis	Current Point of Care Technology

1.	Tai-Ran Hsu, MEMS & Microsystems- Design, Manufacture and Nanoscale Engineering, 2 nd ed., John
	Wiley & Sons, 2008
2.	Nitaigour Premchand Mahalik, MEMS, Tata McGraw Hill, 2008

- 3. Steven S.cSaliterman, Fundamentals of BioMEMS & Medical Microdevices, 1st ed., International Society for Optical Engineering, 2006
- Ellis Meng, Biomedical Microsystems, 1st ed., CRC Press, 2011
- 5. Simona Badilescu, Muthukumaran Packirisamy, BioMEMS Science and Engineering Perspectives, 1st ed., CRC Press. 2011
- 6. Albert Folch, Introduction to BioMEMS, 1st ed., CRC Press, 2013
- 7. Gerald A Urban, BioMEMS, 1st ed., Springer, 2006

Learning

Resources

8. Chang Liu, Foundations of MEMS, 2nd ed., Prentice Hall, 2012

- 9. Abraham P. Lee and James L. Lee, BioMEMS and Biomedical Nanotechnology, Vol. 1, 1st ed., Springer, 2006
- 10. Wanjun Wang & Steven A.Soper, BioMEMS- Technologies and applications, 1st ed., CRC Press,
- 11. Walter Karlen and Krzysztof Iniewski, Mobile Point-of-Care Monitors and Diagnostic Device Design, 1st ed., CRC Press, 2015
- 12. Nam-Trung Nguyen & Steven T Wereley, Fundamentals and Applications of Microfluidics, 2nd ed., Artech House, 2006
- 13. Dongqing Li, Encyclopedia of Microfluidics and Nanofluidics, 1st ed., Springer, 2008
- 14. Chao-Min Cheng, Chen-MengKuan & Chien-Fu Chen, In-Vitro Diagnostic Devices: Introduction to Current Point of Care Diagnostic Devices, 1st ed., Springer, 2016
- 15. Mel L. Mendelson, Learning Bio-Micro-Nanotechnology, 1st ed., CRC Press, 2013

Learning Asse	earning Assessment											
_	Bloom's Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4	(10%)#	Final Examination (50% weightage)		
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	30 %		30 %		30 %		30 %		30%		
Level I	Understand	30 /0	-	30 /0	-	30 %	-	30 %	-	30%	-	
Level 2	Apply	40 %		40 %		40 %	_	40 %		40%		
Level 2	Analyze	40 //	-	40 /0	-	40 70	-	40 //	-	4070	-	
Level 3	Evaluate	30 %		30 %		30 %		30 %		30%		
LEVEI 3	Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	10	0 %	100	0 %	10	0 %	10	0 %	10	0 %	

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Mr. Karthik Raj V, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Dr. D. Ashok Kumar, SRMIST

Course Code	18ECE267J	Course Name		BIOMECHANICS		Course Category		Professional Elective	L 2	T 0	P 2	C 3
Pre-requisi Courses	ite _{Nil}		Co-requisite Courses	Nil		Progres		Nil				
Course Offer	ing Department	Electron	ics and Communication Engin	neering Data Book / Codes	/Standards	Nil						

Course Offering Department	Electronics and Communication Engineering Data Book / Codes/Standards	Nil																		
Course Learning Rationale (CLR):	The purpose of learning this course is to:		Learn	ing						Progi	ram L	_earn	ing O	utco	nes (PLO)				
CLR-1: Utilize concepts of kinemat	ics and kinetics of human motion and functioning of bone.	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Utilize the mechanics of join	nts, skeletal muscle, elbow and hand				İ							>								
CLR-3: Analyze mechanics applied	d in various movement and loads on shoulder, hip and knee.	2	(%	_					arch			Sustainability								
CLR-4: Analyze movements and lo	pads applied on spine, foot and its effect on human gait.	(Bloom)	%) /			gb		ent	Research			aina		Work		ance				
CLR-5: Utilize the fluid medium in I	human movement and application of sports biomechanics.	(8)	ency	Attainment		Ne Ne	S	elopment	, R	age	go.	Sust		am V		inan	ng			
CLR-6: Understand the concepts o	f reactive services applied in human movements	Thinking	ofici	tain		ᇫ	alysi	velc	Design,	Ns	ulture	∞		Tea	tion	& F	ami			
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of Thi	ĕ	Expected At		Engineering Knowledge	Problem Analy	Design & Dev	Analysis, De	Modern Tool	Society & C	Environment	Ethics	Individual &	Communication	Project Mgt	Life Long Le	PS0 - 1	PSO - 2	PSO - 3
CLO-1: Apply principles and conce	pts of biomechanics in the field of kinematics and kinetics of human motion	3	80	75		Μ	Μ	-	-	-	-		-	-	-	-	L	L	-	-
CLO-2: Identify the basic functional	lities of joints, skeletal muscle, elbow and hand.	3	80	70		-	Μ	-	L	М	-	-	-	-	-	-	L	L	L	-
CLO-3: Analyze the functionality ar	nd various forces applied on shoulder, hip and knee.	3	75	70		М	Μ	L	М	М	-		-	-	-	-	-	-	L	Μ
CLO-4: Apply various loads on spir	ne and foot to analyze the information on various human gait.	3	80	75		-	-	М	Μ	М	-		-	-	-	-	-	-	L	Μ
CLO-5: Communicate and impleme	ent the knowledge in various applications related to human movement	3	80	70		М	М	-	1	-	-	-	-	-	-	-	L	L	-	-
CLO-6: Apply rehabilitation service	s in all biomechanical activities	3	80	70		-	М	-	L	М	-		-	-	-	-	L	L	L	-

		Kinetic, kinematics of human motion & Biomechanics of human bone	Biomechanics of skeletal muscle, Elbow and hand	Biomechanics of Shoulder, hip and knee	Biomechanics of spine Analysis of gait	Sports Biomechanics
Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	Forms of motion, Spatial reference systems, analysis of human movement	Joint architecture	Structure of the shoulder	Structure of the spine, Spinal curves	Biomechanics in physical education- Qualitative analysis of kicking
3-1	SLO-2	Standard reference terminology, Joint movement terminology	Articular cartilage and connective tissue	Movements of the shoulder	Movements of the spine	Qualitative analysis of batting
S-2	SLO-1	Basic concepts related to kinetics	Joint stability, Joint flexibility	Muscles of the shoulder	Loads on the spine	Human movement in fluid medium- Nature of fluids
3-2	SLO-2	Mechanical loads on the human body, Effects of loading	Techniques for increasing joint Flexibility, Joint injuries	Loads on the shoulder and common injuries of the shoulder	Common injuries of the back and neck	Laminar and turbulent flow and flow properties
S 3-4	SLO-1 SLO-2	Lab 1: Analysis of mechanical stress and strain	Lab 4: Study of joints	Lab 7: 3D modeling of radius and ulna	Lab 10: Segmentation and modeling of lumbar spine	Lab 13: Mini project
S-5	SLO-1	Linear and angular kinematic quantities	Structural organization of skeletal muscle- Muscle fibers	Structure of the hip	Gait analysis	Buoyancy
3-3	SLO-2	Relationships between linear and angular motion	Motor units and fiber types	Movements at the hip	Various methods in Gait analysis	Drag and lift force
S-6	SLO-1	Kinematics of projectile motion, Factors influencing Projectile trajectory	Factors affecting muscular force generation	Muscles and loads on the hip	Types of phases	Biomechanics in Strength and conditioning Qualitative analysis of squat technique
3-0	SLO-2	Analyzing projectile motion	Muscular strength, power and endurance	Common injuries of the hip Joint	Measurement approaches and systems for gait	Qualitative analysis of Drop jumps
S 7-8	SLO-1 SLO-2	Lab 2: Projectile motion analysis using MATLAB	Lab 5: Study of Body composition parameters	Lab 8: Segmentation and modeling of femur bone	Lab 11: Analysis of gait	Lab 14: Mini project
S-9	SLO-1	Composition and structure of bone tissue	Structure of the elbow	Structure of the knee	Structure of the foot	Qualitative analysis of Throwing technique

	SLO-2	I Kone arowth and develonment	Loads on the elbow and common injuries of the elbow	Movements at the knee	Movements of the foot	Qualitative analysis of Dribbling technique
S-10		Bone response to stress	Structure of the joints of the hand	Muscles and loads on the knee	I nade on the toot	Biomechanics in sports medicine and rehabilitation
3-10		Osteoporosis	Movements of the hand	Common injuries of the knee and lower leg	Common injuries of foot	Dealing with sports injuries
S	SLO-1	Lab 3: Measurement of bone mineral	Lab 6: Segmentation of radius and ulna	Lab 9: Segmentation and modeling of	Lab 12: Repeat class	Lab 15: Model Exam
11-12	SLO-2	density	Lab 6. Segmentation of radius and uma	fibula and tibia	Lab 12. Repeat class	Lab 15. Model Exam

Learning Resources	 Susan J Hall, Basic Biomechanics, 4th ed., Tata McGraw hill, 2004 Duane Knudson, Fundamentals of Biomechanics, 2nd ed., Springer, 2007 	3. Roger Bartlett, Introduction to Sports Biomechanics: Analysing Human Movement Patterns, 2 nd ed., Taylor and Francis, 2007
-----------------------	---	--

Learning Ass	earning Assessment											
	Bloom's Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA –	1 (10%)	CLA – 2	2 (15%)	CLA -	3 (15%)	CLA – 4	l (10%)#	Final Examination (50% weightage)		
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Total	10	0 %	100) %	10	0 %	100	0 %	100 %		

[#]CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
1. Sathyanarayanan J, Mindray Medical India Pvt Ltd, sathyanarayananjayagopal@mindray.com	1. Dr. S. Poonguzhali, Anna University, poongs@annauniv.edu	1. Dr. D Ashok Kumar, SRMIST								
2. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	2. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	2. Ms. A. Bhargavi Haripriya, SRMIST								

Course Code	ECE180J	Course Name	TRANSDUCE	ER ENGINEERING	Course Category	Ε	Professional Elective	L 2	T 0	P 2	3
Pre-requisite Courses Course Offering De	il partment	Electronics and Con	Co-requisite Courses nmunication Engineering	Data Book / Codes/Standards	Progre Cour Nil		Nil				

Course offering bepartment Electronics and Communication Engineering Data Book / Codes/otandards	1 411																	
Course Learning Rationale (CLR): The purpose of learning this course is to:	I	_earni	ng					Prog	ram L	.earn	ing O	utcor	mes (l	PLO)				
CLR-1: Utilize methods of measurement, & know about various types of errors in instruments	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Analyze the behavior of transducers under static and dynamic conditions and to model the transducers										λ			1	1				
CLR-3: Analyze different types of resistive, inductive and capacitive transducers	(mo	(%	_				arch			ij.			.	ı	ıl			
CLR-4: Identify applications of resistive, inductive and capacitive transducer	<u>8</u>) (%	ıt (%)	Knowledge		ent	Se			Sustainability		Work	.	nance	ıl			
CLR-5: Utilize methods of measurement, & know about various types of errors in instruments) (B)	enc	Attainment	₩ K	S	elopment	, Re	sage	ø	Sust		Έ	.	ina.	Вū			
CLR-6: Locate the different type of sensors used in real life applications and paraphrase their importance	hinking	ofici	aj.		ıalysis	>	Design,	\neg	Culture	∞		Tea	ation	∞ ⊤	ami			
	_ 늘	귤	₹	ing	Ang	& De		100	S S	neu		∞ —	unical	Mgt	J Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expecter	Expecter	Engineering	Problem	Design &	Analysis	Modern	Society &	Environment	Ethics	Individua	Commur	Project N	Life Lonç	PS0 - 1	PS0-2	PSO-3
CLO-1: Apply mathematical knowledge, science, engineering fundamentals to solve problems pertaining to various measurements	3	80	75	Н	Н		-	-	-	-	-	-	-	-	-	Н	-	Н
CLO-2: Determine the static and dynamic characteristics of transducer	3	80	70	Н	Н		М	-	-	-	-	-	- 1	-	-	Н	-	Н
CLO-3: Analyze the resistive, inductive and capacitive transducers which are used for measuring various parameters	3	75	70	Н	-	М	М	-	1	-	-	-	-	-	-	Н	-	Н
CLO-4: Select the right transducer for the given application	3	80	75	Н	Н	-	М	-	1	-	-	-				Н	-	Н
CLO-5: Identify the various miscellaneous transducers		80	70	Н	-	Н	-	-	-	-	-	Н	М		[Н	-	Н
CLO-6: Select the right transducer for the given application	3	80	70	Н	Н	-	-	-	-	-	-	-	- 1	-	- 1	Н	-	Н

Durati	on (hour)	12	12	12	12	12
S-1	SLO-1	General configuration and description of measuring Instruments	Characteristics of instruments : Static characteristics: Accuracy, precision, resolution, sensitivity		Miscellaneous Transducers: Piezoelectric transducer	Smart Transducers: Smart Sensors, Components of Smart Sensors
3-1	SLO-2	Basic methods of measurement	Characteristics of instruments : linearity, span and range, threshold, Hysterisis, Dead Time	Reluctance change type	Hall Effect transducer	General architecture of Smart Sensors
	SLO-1	Functional Elements of Measurement Systems	Dynamic characteristics	Magnetostrictive type	Magneto elastic sensor	Evolution of Smart Sensors
S-2	SLO-2	Definition, principles of sensing and transduction	Resistive Transducers: RTD Materials, Temperature measurement change in physical properties, 3 wire and 4 wire RTD	Mutual inductance change type	Digital transducers	Advantages of Smart Sensors
S 3-4	SLO-1 SLO-2	Lab1: Identifying the components of measuring instruments.	Lab 4: Characteristics of RTD	Lab 7: Characteristics of Thermistor	Lab10: Characteristics of Hall effect transducer	Lab13: Temperature measurement using LABVIEW and DAQ Hardware
S-5	SLO-1	Units, Standards	Potentiometer Type- Forms, material	Transformer Type	Radiation sensors: Materials	Application area of Smart Sensors
3-3	SLO-2	Unit conversions	Potentiometer Types- resolution, accuracy, sensitivity.	LVDT: Construction, material, output input relationship, I/O curve, discussion.	Radiation sensors: construction, response	MEMS sensor
S-6	SLO-1	Error: Classification of errors, Limiting error and probable error	Strain gauge: Theory, type, materials, design consideration, sensitivity	RVDT: Construction, material	Photo emissive cell types	NEMS sensor
3-0	SLO-2	Error analysis- Statistical methods	Derivation of gauge factor, variation with temperature, adhesive, rosettes	Synchros, Microsyn	Photovoltaic cells	Proximity sensors
S 7-8	SLO-1 SLO-2	Lab2: Determining the transfer function of a first order transducer	Lab 5: Characteristics of strain gauge	Lab 8: Characteristics of LVDT	Lab11: Characteristics of Synchros	Lab14: Displacement measurement using LABVIEW and DAQ Hardware
S-9	SLO-1	Problems in Statistical methods- mean, median mode, variance	Thermistor: Material, shape, ranges and accuracy specification	Capacitive Transducers: Variable distance- parallel plate type	Photodiodes	Fiber optic sensors

	SLO-2	Problems in Statistical methods- standard deviation, probable error of one reading	Thermocouple:Thermo emf sensor: types, Laws of thermo couple. Reference junction	parallel plate, cylindrical type, variable	Light Dependent Resistor	Biosensors
S-10	SLO-1	Classification of transducers	сотретѕанот	dielectric constant type Capacitive Transducers: calculation of sensitivity. Stretched diaphragm type	Geiger counters	Film sensors
	SLO-2	Selection of transducers		Capacitor Microphone, response characteristics		Environmental Monitoring sensors (Water Quality & Air pollution)
S 11-12		Lab3: Statistical Error analysis- Mean, SD, variance for an open loop response of thermocouple	III an b' Unaracteristics of Thermistor	Lab 9: Characteristics of capacitive transducer		A mini project on MEMS / Nano/ smart/ fiber/ sensor using any software tools

Lograina	1.	Doeblin, E.O., Measurement Systems: Applications and Design, 6th ed., Tata McGraw-Hill, 2011	4.	Murthy, D.V.S., Transducers and Instrumentation, Prentice Hall, 2010
Learning	2.	Bentley, J. P., Principles of Measurement Systems, 4th ed., Addison Wesley Longman, 2004	5.	Neubert H.K.P., Instrument Transducers – An Introduction to their Performance and Design,
Resources	3.	Patranabis, D., Sensors and Transducers, 2 nd ed., Prentice Hall, 2010		Oxford University Press, Cambridge, 2003

Learning Asses	ssment										
	Bloom's			Einal Evaminatio	n (50% weightage)						
	Level of Thinking	CLA –	1 (10%)	CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	1 (10%)#	FIIIai Examinatio	ii (50 % weightage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level I	Understand	2070	2070	1370	1570	1370	1570	1370	1370	15/0	1370
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 2	Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
110	Evaluate	400/	400/	450/	450/	450/	450/	450/	450/	450/	450/
Level 3	Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	10	0 %	10	0 %	10	0 %	100 %		10	0 %

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. D. Karthikeyan, Controlsoft Engineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	1. Mrs.N.Deepa, SRMIST
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Dr. D. Nedumaran, Madras University, dnmaran@gmail.com	2. Mrs.Indirani, SRMIST

Cou		18ECE181T Course Name	MEASUREMENTS AND INSTRUMENT	ATION	Course Categor		Ε				Prof	essior	al Ele	ctive					L 3	T 0	P 0	C 3
	equisite	Nil	Co-requisite Nil			gress		Nil														
	urses	1	Courses			ourse	es	1411														
Cours	Offering	g Department Electronics and Comi	munication Engineering Data Boo	k / Codes/Standards	Nil																	
Cours	e Learnin	ng Rationale (CLR): The purpose of learning	ng this course is to:		L	_earni	ng					Prog	ram L	earn	ing O	utcor	nes (PLO)				
CLR-1	: Utilize	e the various techniques that are used to me	asure Current and Voltage		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2		e the various techniques that are used to me	1 07								_			₹								1
CLR-3		n circuits to measure resistance, capacitance			Ξ	(%	<u>@</u>	a)			arch			apili		¥						
CLR-4		ze different techniques to measure noise and	0 1 0		_ 응	cy (t (e	ledg		nen	Sese	Ф		stain		Wor		Finance				ı
CLR-5	,	ze the working of various display devices an udy the working of various recorders	a recoraers		_ ĝ	icien	J H	Mon	Sis	g	gn, F	Sag	e n	Si		am	u	Fina	ning			,
CLK-0	: 10 80	udy the working or various recorders				Prof	Attai	A gr	ınaly	Deve	Desi	1 00	Crit	ant 8		& Te	atio	jt &	Lear			
Cours	e Learnin	ng Outcomes (CLO): At the end of this cou	rse, learners will be able to:		Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt. &	⊥ Life Long Leaming	PS0 - 1	PS0-2	PSO - 3
CLO-1	: Analy	ze the techniques used to measure current a	and voltage		3		75	Н		-	-	-	Н	-	-	-	-	-	Н	H	-	H
		ze the techniques to measure power and en			3		70	Н	-	-	-	-	Н	-	-		-	-	Н	-	-	Н
		n circuits for measuring resistance, inductan			3		70	Н	Н	М	Н	М	Н	-	-	-	-	-	Н	Н	-	Н
		the knowledge and practices for signal cond			3	80	75	H	Н	М	Н	М	-	-	-	Η	-	-	Н	-	-	Н
CLO-5	117	knowledge of measurement and instrument			3		70 70	H	-	<i>M</i>	-	H -	- Н	-	-	-	-	-	H	- Н	-	H
CLU-0	: Appiy	vknowledge of measurement and instrument	ation in recording devices		J	00	70	П	-	-	-	-	П	-	-	-	-	-	П	П	-	П
Duration	on (hour)	9	9	9						9)							ç	9			
S-1	SLO-1	Introduction to measurements and Instrumentation. Classification of Instruments.	Introduction of power energy measurements	Introduction to measure capacitance, inductance			/	Introduction Electric Qua			remei	nt of N	lon-		Introd record		n to d	isplay	/ devic	es an	nd	
	SLO-2	Galvanometer Introduction and its type.	Measurement of power in A.C. circuits	Classification of resistar	ice types			Non-electric	para	mete	ers				Digita	l disp	lay m	ethod	ds			
S-2	SLO-1	D'Arsonval Galvanometer – construction, working and torque derivation.	Derivation of total power in A.C circuits	Methods of Low resistar Ammeter Voltmeter, Kel method, Potentiometer.				Measureme	ent of	Press	sure				Digita	l Stor	age (Oscillo	oscope),		
	SLO-2	PMMC – construction, working and torque derivation	Measurement of power in D.C. circuits	Methods of Medium resi measurement	stance			low and hig	h pres	ssure					Digita	I Volt	meter	r				
S-3	SLO-1	Vibration galvanometer – construction, working and derivation	Derivation of total power in D.C. circuits	Substitution method & V method	'oltmeter	- amm	neter	Measureme	nt of	Vibra	ition				Ramp	type	, integ	gratin	g, pote	ention	netric)
3-3	SLO-2	Introduction to Moving iron instruments	Introduction to Electrodynamic wattmeter	Wheatstone bridge meth	nod			Nature & its	quan	ntities					Reco	rders						
S-4	SLO-1	Attraction type – construction and working	Electrodynamic wattmeter - Construction, Working and derivation	Methods of High resista	nce meas	sureme	ent	Measurement of Temperature				Conti	านอนร	s and	discre	ete red	order	rs				
J-4	SLO-2	Repulsion type– Construction and working	Errors in Electrodynamic wattmeter	Megger				Thermistor, thermocouple Strip ch			chart	recor	der									
S-5	SLO-1	Electro dynamometer – working principle	Numerical Problem	Methods of Earth resista measurements	nce			Measurement of Radiation X-Y recorder														
3-3	SLO-2	Dynamometer type Instrument- Construction and working	Power measurement in polyphase systems- basics	Introduction and genera Bridges	l equation	ations of A.C. Pyrometers UV Recorde			UV Recorder													
					tance measurements Measurement of Flow Direct recording																	

	SLO-2	Construction and Working	Two & One Wattmeter method	problems	Ultrasonic flow transducer, electromagnetic flow meter	Audio recorder
0.7	SLO-1	Introduction to ammeter and voltmeter	Numerical Problems	Methods of Capacitance measurements	Measurement of Humidity	Advantages and Disadvantages
S-7	SLO-2	Extension of ammeter ranges	Introduction to Single phase induction type energy meter	problems	Using Hygrometers	Video Recorder
S-8	SLO-1	Extension of voltmeter ranges	Single phase induction type energy meter - Construction, working principle	Methods of Mutual inductance	Measurement of Sound	Advantages and Disadvantages
3-0	SLO-2	Calibration of ammeters	Testing of energy meters	Methods of Mutual inductance	I I Isina micronnones	Case Study on Plasma, LCD and Led Displays
S-9	SLO-1	Calibration of voltmeter	Phantom loading	Methods of Frequency measurements	Measurement of Level	Case Study on digital voice recorder
3-9	SLO-2	summary	Meter testing circuits	problems	Ultrasonic method, capacitive methods	Summary

Learning Resources
Resources

- Sawhney, A.K., A Course in Electrical & Electronic Measurements & Instrumentation, Dhanpat Rai and
- Golding. E. W. and Widdis F.C, Electrical Measurements and Measuring Instruments, 5th ed., A.H. Wheeler & Company, 2003
- 3. Carr, J.J., Elements of Electronic Instrumentation and Measurement, Pearson Education India, 2011
- Copper. W.D., Helfrick.. A.D., Modern Electronic Instrumentation and Measurement Technique, 5th ed., Prentice Hall of India, 2002
- 5. Bell, A.D., Electronic Instrumentation and Measurements, 2nd ed., Prentice Hall of India, 2003
- 1. Northrop, R.B., Introduction to Instrumentation and Measurements, Taylor & Francis, New Delhi, 2008

Learning As	sessment												
	Bloom's Continuous Learning Assessment (50% weightage)										(50% woightage)		
	Level of Thinking	CLA -	1 (10%)	CLA – 2	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	Final Examination (50% weightage)			
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	10	0 %	100	0 %	10	0 %	10	100 %		0 %		

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. D. Karthikeyan, Controlsoft Engineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	1. Mr.C. Likith Kumar, SRMIST
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Dr. D. Nedumaran, Madras University, dnmaran@gmail.com	2. Dr. A. Vimala Juliet, SRMIST

																		т.	T -		
Cou		18ECE182T Course Name	AUTOMOTIVE INSTRUMENTATION SYS	TEMS	Course Catego		Ε				Profe	ssiona	al Elec	tive				;	- I 3 0	0	C 3
	equisite ourses	Nil	Co-requisite Nil			ogres Cours		Nil													
		g Department Electronics and Com		/ Codes/Standards	Nil	Jours	69														
Cours	e Learnin	g Rationale (CLR): The purpose of learning			Learn	ing															
CLR-1		ze the basics of automotive systems and rec			1	2	3	1	2	3	4	5	6	7	8	9	10	11	12 1	3 14	4 15
CLR-2 CLR-3		e the principles behind various sensors and i e the various electrical systems pertaining to			_						-F3			iji.							
CLR-4		ze different safety and security systems	ongmo		(moo	(%)	t (%)	ge		aut	sear			ainab		å Y		8			
CLR-5		about the basics of automotive systems and	•		(B)	ienc	men	owlec	. <u>s</u>	opme	n, Re	age	உ	Sust		E N		Finance	.ing		
CLR-6	: Know	about the sensors and various systems of a	utomotive domain.			Profic	Attain	g K	nalys	Jevel	Desig	Š	Cult	nt &		% Tex	ation	t. & F	-earn		
Cours	e Learnin	ng Outcomes (CLO): At the end of this cou	rse, learners will be able to:		evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modem Tool Usage	Society & Culture	Environment & Sustainability	Ethics	ndividual & Team Work	Communication	Project Mgt. &	Life Long Learning	PSO - 2	PSO - 3
		ze the automotive domain and electronic sys	stems in it		3	85	80	Н	Н	-	-	L	-	-	-	-	-	-	H F	1 -	Н
CLO-2 CLO-3		ify the effect of electromagnetic interference ify the sensor and actuator technologies invo	had in a car		3			H	H	- М	L	- М	-	-	-	-	-	-	- Λ Η Ε		
CLO-3		rze the various electrical systems and electro			3			H	Н	M	L	M	-	-	-	-	-		H N		
CLO-5	: Analy	ze new systems on safety, security and bod	y of a car		3	85	80	Н	Н	М	L	М	-	-	-	-	-	-	НΛ	1 H	l M
CLO-6	: Unde	rstand the automotive problems and provide	solutions through new system design.		3	85	80	Н	Н	-	-	L	-	-	-	-	-	-	H F	- 1	Н
Durati	on (hour)	9	9	9						9								9			
	SLO-1	Introduction to Automotive Electronics	Intake Air Temperature (IAT) Sensor	Starting Systems – Requ	iirement	s		Tire pressu	re mo	nitorii	ng sys	stems		F	Power Windows						
S-1	SLO-2	Outline to Automotive Sensors	Engine Coolant Oil Temperature Sensor	Starter Motor – selection principle	and wo	rking		Capacitive	based	l Pres	sure	Senso	r	3	Smart Window Lift Control Module						
S-2	SLO-1	Requirements in Automotive Sensor	Exhaust Gas Recirculation Temperature Sensor	Diagnosing Faults – Syn	nptoms			Anti-lock br	aking	syste	em			C	Centra	l Loc	king S	Systen)		
0-2	SLO-2	Open and Closed Loop Control Strategies	Exhaust Gas Temperature Sensor	Testing Procedures				Anti-lock br	aking	syste	em			F	Power	Seat					
S-3	SLO-1	Shop safety – General safety	Manifold Absolute Pressure (MAP) Sensor	Charging systems – Req	uiremer	nts		Traction Co	ontrol S	Syste	m			A	Autom	atic V	Viper	syster	ns		
	SLO-2	Electrical Safety	High Pressure Fuel Sensor, Engine Oil Pressure Sensor	Components and operat	ion			Adaptive C	ruise (Contro	ol			E	Electro	onic V	ehicle	e Imm	obilizer		
SLO-1 Office Safety Crankshaft Angular Position Sensor				Diagnosing Faults – Syn	nptoms			Types of A	daptiv	e Cru	ise Co	ontrol		(Oil Pre	essure	War	ning S	ystem		
	SLO-2	Lifting Procedures	Testing Procedures				Types of A	daptiv	e Cru	ise Co	ontrol		E	Engin	o Ove	rheat	Warn	ng Sys	stem		
S-5	SLO-1 Electrical wiring, Terminals & Switching Piston Position Sensor Ignition systems – Re				irements	ments Parking guide systems Speed Warning S					g System										
0-0	SLO-2	Multiplexed Networking	Throttle Plate Angular Position	Conventional Ignition Sy	stem			Air Bag System			Door L	.ock I	ndica	tors							
S-6	SLO-1	Circuit Diagrams and Symbols	Knock Sensor	Electronic Ignition System	m		Reversible Seat Belt Pre-tensioner Gea				Gear Neutral Indicator										
		1		I	nn System Electronic Power Steering systems Ar				Anti-Theft Alarm System												

0.7	SLO-1	Electromagnetic Compatibility	Mass Air Flow (MAF) Rate Sensor	Distributor less Ignition System	Vehicle Stabilization System	Brake Actuation Warning System
S-7	SLO-2	Use of Diagnostic Equipment	Rain Sensor	Direct Spark Ignition System	Vehicle Stabilization System	Computer Controlled Air Conditioning Systems
S-8	SLO-1	Look Up Tables	Acceleration Sensor	Fuel Injection System – Requirements	Collision Avoidance System	On Board Diagnostics
3-6	SLO-2	Applications	Yaw Rate Sensor	Components and operation	Collision Avoidance System	Roof Control Module
	SLO-1	Case Study I	Chassis Level Sensor	Types of Fuel Injection System	Case Study II	Case study III
S-9	SLO-2	Case Study I	Fuel Level Sensor	Types of Fuel Injection System	Case Study II	Case study III

		stems Approach to Automotive Technology, Cengage Learning, 2009 Automotive Electronics Reliability, Vol 2, SAE International, 2010
--	--	---

Learning Assess	ment												
	Bloom's	Continuous Learning Assessment (50% weightage)											
		CLA – 1 (10%)		CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	ł (10%)#	Final Examination (50% weightage)			
	Level of Thinking		Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	30 %		30 %		30 %		30 %		30%			
Level I	Understand	30 /0	-	30 %	-	30 //	-	30 /0	-	30%	-		
Level 2	Apply	40 %		40 %		40 %		40 %		40%			
Level 2	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-	4070	-		
Level 3	Evaluate	30 %	_	30 %		30 %		30 %	_	30%			
Level 3	Create	30 /0	-	30 %	-	30 //	-	30 /0	-	3070	-		
	Total	10	0 %	10	0 %	10	0 %	10	0 %	100 %			

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. D. Karthikeyan, Controlsoft Engineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	1. Mr. Arockia Vijay Joseph, SRMIST
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Dr. D. Nedumaran, Madras University, dnmaran@gmail.com	2. Dr. A. Vimala Juliet, SRMIST

Cou		18ECE183T	Course Name	SAFETY INSTRUMENTED SYSTE	M	Cou ateg	rse gory	E					Profe	ession	nal Ele	ective					L 3	T 0	P 0	C 3
	requisite	Nil		Co-requisite Courses		I		ressive urses	٩ ٨	Vil														
		Department	Electronics and Com		(/ Codes/Standards	N																		
Course Learning Rationale (CLR): The purpose of learning this course is to:												ram L		ing O										
			I regulation of SIS design.				1	2 :	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2			nd Preventive maintenance										5			lity								
		the failure diagno	of field device and the cont	roi components.			(mo	(%)	(%)	e		t	searc			nabi		¥		Φ				
				ent model and Industrial application of SIS.			율	ucy	ent	yled		Jue	Res	95		ustai		N W		Finance	D			
CLR-6			afety life cycle and hazard a				king	Jicie	ainm	Kno	lysis	/elop	sign,	Usa	Iture	s Si		eau	Б	& Fir	in in			
			,,				Ē	P. P.	Att	ing	Ana	Ď	De	00		nent		~	icati	/gt	Fee			'n
Cours	e Learnin	g Outcomes (CL	O): At the end of this cou	rse, learners will be able to:			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt	Life Long Leaming	PS0 - 1	PSO-2	6-08d
			maintain the safety systems				3			Н	-	Н	-	-	Н	Н	Н	-	-	-	Н	Н	-	-
			and preventive maintenand						70	Н	-	-	Н	-	Н	-	-	-	-	-	Н	-	Н	-
			edge of field devices and re	liability.					70	-	-	-	-	-	Н	-	-	Н	Н	-	-	Н	-	-
			gnostic technique. naintain the safety systems						75 70	-	H -	H	-	- Н	-	-	-	-	-	-	- Н	-	H	- Н
			ety life cycle and function o						70	Н		H	1 -	-	Н	Н	Н	-	-	-	H	Н	-	-
0_0	. 9	oougo oou.e	oty mo oyoro ana ranoaom o	protective tayorer				00 1			1	1	-	1			1 1							
Durati	on (hour)		9	9	9							ę)							9)			
S-1	SLO-1	Industry Guidelin	nes	Introduction to Safety Instrumentation	Importance of field device				In	troductio	n of fa	ailure	diagn	ostic r	node		Selec	tion o	f Tecl	hnolo	gy			
3-1	SLO-2	Industry Standard	ds and Regulations.	Hazards & risk	Impact of Field Devices or Performance.	Sy:	System Equipment Failure mode Relay system					Pelay systems-PLC based system												
	SLO-1	Set of Standards. AIChE – CCPS,	:.HSE – PES,	Process Hazards Analysis (PHA)	Percentage Split of System	n Fa	ailures	S	Fa	ail –Safe	Fail-	dange	er, Ann	nuncia	ation		Safety	y PLC	s					
S-2 SLO-2 SLO-						ices).		,P	eliability Parallel s Imbols	block /stem	diagra s, Fau	am. Se ult tree	eries s es, Fa	syster ult tre	n e	Safety	y Syst	tem C	Compl	exity			
SLO-1 Technology Choices, Redundancy Choices, Field Devices, Test Intervals. Shutdown/Interlock/Instrumented Systems Sensors Safety Instrumented Systems – SIS).					Sensors					omparisond Fault		Reliab	ility bl	ock di	iagran	1	Comn							
					Switches, Transmitters				Fa	ault tree	AND (gates	,fault t	tree C	R gat	es	Softw relate			omen	t mod	els fo	r safe	ty
S-1	SLO-1 Hazard & Risk Analysis- HAZOP analysis Mitigation Layers Sensor Diagnostics				Sensor Diagnostics				Αŗ	oproxima	tion t	echnic	que				Rapio	proto	otypin	g, V n	nodel			
U-4	SLO-2 Allocation of Safety Functions to Protective Layers Containment Systems Smart Transmitters				Smart Transmitters					ommon i		res					Water	r mod	model, spiral model					
9.5	SLO-1	Requirements		Scrubbers and Flares	Final Elements			·	M	arkov m	odels	_			_		Implementation Procedure					_		
3-3	S-5 SLO-2 Develop Safety Specification Fire and Gas (F&G) Systems Valve Diagnostics								Ma	arkov so	Markov solution technique case study- Introduction						ductio	on						

Smart Valve Positioners

SLO-1 SIS Design & Engineering

Evacuation Procedures.

Realistic safety instrumented system

modeling

The Safety Lifecycle and Its Importance

	SLO-2	Installation , Commissioning	Diversification	Redundancy	Event tree analysis	Case Description: Furnace/Fired Heater Safety Shutdown System
	SLO-1	Validation	Corrective and Preventive maintenance	Voting Schemes and Redundancy	Failure mode and effect analysis	Safety Instrumented system in PLC
S-7	SLO-2	Operations and Maintenance	Types of corrective and preventive maintenance		Mathematical and statistical basis for risk analysis of technical systems	Safety Instrumented system in oil and gas facilities
S-8	SLO-1	Modifications. Decommissioning.		Operator Interface requirement, Communication Interface requirement	Factory Acceptance Test	Nuclear plant safety discussion
5-6	SLO-2	Process Hazard Analysis (PHA)	SIS Requirement for system behavior on detection of a fault	Final Element Design Requirements,	Spurious trip rate	Safety Instrumented system in DCS
S-9		Failure mode, Effects, and criticality analysis(FMECA), Probability of failure on demand(PFD)		Differences between using certified vs. proven-in-use devices	Risk Assessment	Installation, Commissioning and Prestartup Tests
		Examples of usage of standards on specific applications.	SIS Integration: Architectural Issues	Circuit measures to increase the reliability	safety integrity levels (SIL)	Operation and Maintenance Procedures

		1.	Paul Gruhn, Harry Cheddie, Safety Instrumented Systems: Design, Analysis and Justification, 2nd ed.,	3.	Roger L. Brauer, Safety and Health for Engineers, John Wiley Sons, 2006
Le	arning		International Society of Automation, 2005	4.	B.S. Dhillon, Maintainability, Maintenance and Reliability for Engineers, CRC Press, 2006
Re	sources	2.	William M.Goble, Harry Cheddie, Safety Instrumented Systems Verifications: Practical Probabilistic	5.	Swapan Basu, "Plant Hazard analysis and Safety Instrumentation systems" Academic Press,
			Calculations, ISA-2005		2016

Learning Asses	ssment											
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)			Final Evamination	n (E00/ woightage)	
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (15%)		CLA –	3 (15%)	CLA – 4	ł (10%)#	Final Examination (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	30 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-	
Level 3	Evaluate Create	30 %	-	30 %	-	30 %	-	30 %	-	30%	-	
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %	

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. D. Karthikeyan, Controlsoft Engineering India Pvt Ltd, karthikeyan.d@controlsoftengg.in	1. Dr. J. Prakash, MIT, Chennai, prakaiit@rediffmail.com	1. Mrs. K. Vibha, SRMIST
2. V. Venkateswaran, Instrumentation Consultant, vvenkat99@gmail.com	2. Dr. D. Nedumaran, Madras University, dnmaran@gmail.com	2. Dr. G Joselin Retna Kumar, SRMIST

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram 603203, Tamil Nadu, India