15EE305J -MICROCONTROLLER LAB

COURSE MANUAL

LIST OF EXEPRIMENTS

SL.No.	Name of the Experiments	Page No.
CYCLE 1		
1	Introduction to Microcontroller Kit	
2	Arithmetic operation a) Addition of 2-8 bit numbers b) Subtraction of 2-8 bit numbers c) Multiplication of 2-8 numbers d) Division of 2-8 bit numbers	
3	Finding maximum value in an array	
4	Sorting of data a) Ascending order b) Descending order	
5	Code Conversion HEX TO ASCII	
6	Square root of a given data	
CYCLE 2		
7	Transfer data serially between two kits (Study of 8253/8251)	
8	Seven segment display	
9	8 bit DAC	
10	8 bit ADC	
11	Internal Interrupt Program	
12	Stepper motor control using 8051 microcontroller	
13	Traffic light controller	

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	$:$

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

Staff Signature

PRE LAB QUESTION \& ANSWERS

1. What is microprocessor?
2. What is the function of program counter?
3. What is the function of stack pointer?
4. What is an operating system?
5. What is the function of $A L E$, and $S 0, S 1$ pin?

1. STUDY OF 8051 MICROCONTROLLER

Aim
To study the microcontroller 8051
Architecture of 8051 Microcontroller

Architecture of 8051 microcontroller has following features

- 4 Kb of ROM is not much at all.
- 128 Kb of RAM (including SFRs) satisfies the user's basic needs.
- 4 ports having in total of 32 input/output lines are in most cases sufficient to make all necessary connections to peripheral environment.

The whole configuration is obviously thought of as to satisfy the needs of most programmers working on development of automation devices. One of its advantages is that nothing is missing and nothing is too much. In other words, it is created exactly in accordance to the average user's taste and needs. Other advantages are RAM organization, the operation of Central Processor Unit (CPU) and ports which completely use all recourses and enable further upgrade.

Pin out Description

Pins 1-8: Port 1 each of these pins can be configured as an input or an output.
Pin 9: RS A logic one on this pin disables the microcontroller and clears the contents of most registers. In other words, the positive voltage on this pin resets the microcontroller. By applying logic zero to this pin, the program starts execution from the beginning.

Pins10-17: Port 3 Similar to port 1, each of these pins can serve as general input or output. Besides, all of them have alternative functions:

Pin 10: RXD Serial asynchronous communication input or Serial synchronous communication output.

Pin 11: TXD Serial asynchronous communication output or Serial synchronous communication clock output.

Pin 12: INT0 Interrupt 0 inputs.
Pin 13: INT1 Interrupt 1 input.
Pin 14: T0 Counter 0 clock input.
Pin 15: T1 Counter 1 clock input.
Pin 16: WR Write to external (additional) RAM.
Pin 17: RD Read from external RAM.

Pin 18, 19: X2, X1 Internal oscillator input and output. A quartz crystal which specifies operating frequency is usually connected to these pins. Instead of it, miniature ceramics resonators can also be used for frequency stability. Later versions of microcontrollers operate at a frequency of 0 Hz up to over 50 Hz .

Pin 20: GND Ground.

Pin 21-28: Port 2 If there is no intention to use external memory then these port pins are configured as general inputs/outputs. In case external memory is used, the higher address byte, i.e. addresses A8-A15 will appear on this port. Even though memory with capacity of 64 Kb is not used, which means that not all eight port bits are used for its addressing, the rest of them are not available as inputs/outputs.

Pin 29: PSEN If external ROM is used for storing program then a logic zero (0) appears on it every time the microcontroller reads a byte from memory.

Pin 30: ALE Prior to reading from external memory, the microcontroller puts the lower address byte (A0-A7) on P0 and activates the ALE output. After receiving signal from the ALE pin, the external register (usually 74 HCT 373 or 74 HCT 375 add-on chip) memorizes the state of P0 and uses it as a memory chip address. Immediately after that, the ALU pin is returned its previous logic state and P0 is now used as a Data Bus. As seen, port data multiplexing is performed by means of only one additional (and cheap) integrated circuit. In other words, this port is used for both data and address transmission.

Pin 31: EA By applying logic zero to this pin, P2 and P3 are used for data and address transmission with no regard to whether there is internal memory or not. It means that even there is a program written to the microcontroller, it will not be executed. Instead, the program written to external ROM will be executed. By applying logic one to the EA pin, the microcontroller will use both memories, first internal then external (if exists).

Pin 32-39: Port 0 Similar to P2, if external memory is not used, these pins can be used as general inputs/outputs. Otherwise, P0 is configured as address output (A0-A7) when the ALE pin is driven high (1) or as data output (Data Bus) when the ALE pin is driven low (0).

Pin 40: VCC +5 V power supply.

Input/Output Ports (I/O Ports)

All 8051 microcontrollers have 4 I/O ports each comprising 8 bits which can be configured as inputs or outputs. Accordingly, in total of 32 input/output pins enabling the microcontroller to be connected to peripheral devices are available for use.

Pin configuration, i.e. whether it is to be configured as an input (1) or an output (0), depends on its logic state. In order to configure a microcontroller pin as an input, it is necessary to apply a logic zero (0) to appropriate I/O port bit. In this case, voltage level on appropriate pin will be 0 .

Similarly, in order to configure a microcontroller pin as an input, it is necessary to apply a logic one (1) to appropriate port. In this case, voltage level on appropriate pin will be 5 V (as
is the case with any TTL input). This may seem confusing but don't loose your patience. It all becomes clear after studying simple electronic circuits connected to an I/O pin.

Memory Organization

The 8051 has two types of memory and these are Program Memory and Data Memory. Program Memory (ROM) is used to permanently save the program being executed, while Data Memory (RAM) is used for temporarily storing data and intermediate results created and used during the operation of the microcontroller. Depending on the model in use (we are still talking about the 8051 microcontroller family in general) at most a few Kb of ROM and 128 or 256 bytes of RAM is used. However...

All 8051 microcontrollers have a 16-bit addressing bus and are capable of addressing 64 kb memory. It is neither a mistake nor a big ambition of engineers who were working on basic core development. It is a matter of smart memory organization which makes these microcontrollers a real "programmers' goody".

Special Function Registers (SFRs)

Special Function Registers (SFRs) are a sort of control table used for running and monitoring the operation of the microcontroller. Each of these registers as well as each bit they include, has its name, address in the scope of RAM and precisely defined purpose such as timer control, interrupt control, serial communication control etc. Even though there are 128 memory locations intended to be occupied by them, the basic core, shared by all types of 8051 microcontrollers, has only 21 such registers. Rest of locations is intentionally left
unoccupied in order to enable the manufacturers to further develop microcontrollers keeping them compatible with the previous versions. It also enables programs written a long time ago for microcontrollers which are out of production now to be used today.

Program Status Word (PSW) Register

PSW register is one of the most important SFRs. It contains several status bits that reflect the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two register bank select bits, Overflow flag, parity bit and user-definable status flag.
\mathbf{P} - Parity bit. If a number stored in the accumulator is even then this bit will be automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit and receive via serial communication.

- Bit 1. This bit is intended to be used in the future versions of microcontrollers.

OV Overflow occurs when the result of an arithmetical operation is larger than 255 and cannot be stored in one register. Overflow condition causes the OV bit to be set (1). Otherwise, it will be cleared (0).

RS0, RS1 - Register bank select bits. These two bits are used to select one of four register banks of RAM. By setting and clearing these bits, registers R0-R7 are stored in one of four banks of RAM.

RS1	RS2	Space in RAM
0	0	Bank0 00h-07h
0	1	Bank1 08h-0Fh
1	0	Bank2 10h-17h
1	1	Bank3 18h-1Fh

F0 - Flag 0. This is a general-purpose bit available for use.
AC - Auxiliary Carry Flag is used for BCD operations only.
CY - Carry Flag is the (ninth) auxiliary bit used for all arithmetical operations and shift instructions.

Data Pointer Register (DPTR)

DPTR register is not a true one because it doesn't physically exist. It consists of two separate registers: DPH (Data Pointer High) and (Data Pointer Low). For this reason it may be treated as a 16 -bit register or as two independent 8 -bit registers. Their 16 bits are primarly used for external memory addressing. Besides, the DPTR Register is usually used for storing data and intermediate results.

Stack Pointer (SP) Register

A value stored in the Stack Pointer points to the first free stack address and permits stack availability. Stack pushes increment the value in the Stack Pointer by 1 . Likewise, stack pops decrement its value by 1 . Upon any reset and power-on, the value 7 is stored in the Stack Pointer, which means that the space of RAM reserved for the stack starts at this location. If another value is written to this register, the entire Stack is moved to the new memory location.

P0, P1, P2, P3 - Input/Output Registers

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | P0.7 | P0.6 | P0.5 | P0.4 | P0.3 |
| :---: | :---: | :---: | :---: | :---: | :---: |

Value after Reset Bit name

If neither external memory nor serial communication system are used then 4 ports with in total of 32 input/output pins are available for connection to peripheral environment. Each bit within these ports affects the state and performance of appropriate pin of the microcontroller. Thus, bit logic state is reflected on appropriate pin as a voltage (0 or 5 V) and vice versa, voltage on a pin reflects the state of appropriate port bit.

As mentioned, port bit state affects performance of port pins, i.e. whether they will be configured as inputs or outputs. If a bit is cleared (0), the appropriate pin will be configured as an output, while if it is set (1), the appropriate pin will be configured as an input. Upon reset and power-on, all port bits are set (1), which means that all appropriate pins will be configured as inputs.

Counters and Timers

As you already know, the microcontroller oscillator uses quartz crystal for its operation. As the frequency of this oscillator is precisely defined and very stable, pulses it generates are always of the same width, which makes them ideal for time measurement. Such crystals are also used in quartz watches. In order to measure time between two events it is sufficient to count up pulses coming from this oscillator. That is exactly what the timer does. If the timer is properly programmed, the value stored in its register will be incremented (or decremented) with each coming pulse, i.e. once per each machine cycle. A single machine-cycle instruction lasts for 12 quartz oscillator periods, which means that by embedding quartz with oscillator frequency of 12 MHz , a number stored in the timer register will be changed million times per second, i.e. each microsecond.

The 8051 microcontroller has 2 timers/counters called T0 and T1. As their names suggest, their main purpose is to measure time and count external events. Besides, they can be used for generating clock pulses to be used in serial communication, so called Baud Rate.

Timer T0

As seen in figure below, the timer T0 consists of two registers - TH0 and TL0 representing a low and a high byte of one 16 -digit binary number.

Accordingly, if the content of the timer T 0 is equal to $0(\mathrm{~T} 0=0)$ then both registers it consists of will contain 0 . If the timer contains for example number 1000 (decimal), then the TH0 register (high byte) will contain the number 3, while the TL0 register (low byte) will contain decimal number 232.

Formula used to calculate values in these two registers is very simple:
TH0 $\times 256+\mathrm{TL} 0=\mathrm{T}$
Matching the previous example it would be as follows:
$3 \times 256+232=1000$

Since the timer T0 is virtually 16 -bit register, the largest value it can store is 65535 . In case of exceeding this value, the timer will be automatically cleared and counting starts from 0. This condition is called an overflow. Two registers TMOD and TCON are closely connected to this timer and control its operation.

TMOD Register (Timer Mode)

The TMOD register selects the operational mode of the timers T0 and T1. As seen in figure below, the low 4 bits (bit0 - bit3) refer to the timer 0 , while the high 4 bits (bit4-bit7) refer to the timer 1. There are 4 operational modes and each of them is described herein.

Bits of this register have the following function:

- GATE1 enables and disables Timer 1 by means of a signal brought to the INT1 pin (P3.3):
- $\mathbf{1}$ - Timer 1 operates only if the INT1 bit is set.
- $\mathbf{0}$ - Timer 1 operates regardless of the logic state of the INT1 bit.
- $\mathbf{C} / \mathbf{T} 1$ selects pulses to be counted up by the timer/counter 1:
- $\mathbf{1}$ - Timer counts pulses brought to the T1 pin (P3.5).
- $\mathbf{0}$ - Timer counts pulses from internal oscillator.
- T1M1,T1M0 These two bits select the operational mode of the Timer 1.

T1M1	T1M0	Mode	Description
0	0	0	13-bit timer
0	1	1	16-bit timer
1	0	2	8-bit auto- reload
1	1	3	Split mode

- GATE0 enables and disables Timer 1 using a signal brought to the INT0 pin (P3.2):
- $\mathbf{1}$ - Timer 0 operates only if the INT0 bit is set.
- $\mathbf{0}$ - Timer 0 operates regardless of the logic state of the INT0 bit.
- $\mathbf{C / T 0}$ selects pulses to be counted up by the timer/counter 0:
- $\mathbf{1}$ - Timer counts pulses brought to the T0 pin (P3.4).
- $\mathbf{0}$ - Timer counts pulses from internal oscillator.
- T0M1,T0M0 These two bits select the oprtaional mode of the Timer 0 .

T0M1	T0M0	Mode	Description
0	0	0	13-bit timer
0	1	1	16-bit timer
1	0	2	8-bit auto-reload
1	1	3	Split mode

Timer Control (TCON) Register

TCON register is also one of the registers whose bits are directly in control of timer operation.
Only 4 bits of this register are used for this purpose, while rest of them is used for interrupt control to be discussed later.

- TF1 bit is automatically set on the Timer 1 overflow.
- TR1 bit enables the Timer 1.
- $\mathbf{1}$ - Timer 1 is enabled.
- $\mathbf{0}$ - Timer 1 is disabled.
- TF0 bit is automatically set on the Timer 0 overflow.
- TR0 bit enables the timer 0 .
- $\mathbf{1}$ - Timer 0 is enabled.
- $\mathbf{0}$ - Timer 0 is disabled.

Timer 1

Timer 1 is identical to timer 0 , except for mode 3 which is a hold-count mode. It means that they have the same function, their operation is controlled by the same registers TMOD and TCON and both of them can operate in one out of 4 different modes.

Result:

Thus the 8051 Architecture has been studied.

POST LAB QUESTION \& ANSWERS

1. What are the advantages of an assembly language in comparison with high level language?
2. What is the function of HOLD and HLDA signal?
3. What is the function of TRAP, RST7.5, RST6.5, RST5.5 interrupt?
4. What is the function of timing and control unit?
5. What is the function of SID and SOD pin?

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	$:$

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

PRE-LAB

1. Specify the number of registers in a 2 K memory chip?
2. What is an assembler?
3. What are the advantages of an assembly language in comparison with high level language?
4. List the components of computer?
5. What is an operating system?

2. ARTHMETIC OPERATIONS USING 8051

Aim:

To do the arithmetic operations using 8051 microprocessor

Apparatus required:

8085 microprocessor kit
DAC interface kit
Keyboard

Algorithm:

Addition / Subtraction

Step 1 :
Step $2 \quad: \quad$ Add or subtract 1^{H} data with $2^{\text {nd }}$ data
Step 3 : Initialize data pointer.
Step $4 \quad: \quad$ Move result to memory pointed by DPTR.

Multiplication / Division

Step $1: \quad$ Get 1^{H} data and $2^{\text {nd }}$ data to memory
Step $2 \quad: \quad$ Multiply or divide 1^{H} data with $2^{\text {nd }}$ data
Step 3 : Initialize data pointer.
Step $4 \quad: \quad$ Move result to memory pointed by DPTR (first port)
Step 5 : Increment DPTR
Step $6 \quad: \quad$ Move $2^{\text {nd }}$ part of result to register A
Step $7 \quad: \quad$ Move result to $2^{\text {nd }}$ memory location pointer by DPTR

Program: 8-bit Addition:

Memory Location	Label	Opcode	Mnemonics	Comments
4100		7401	MOV A, \#01	Moves data 1 to register A
4102		2402	ADD A, \#02	Add content of A and data 2 and store in A
4104		904500	MOV DPTR,\#4500	Moves data 4500 to DPTR
4107		F0	MOVX @ DPTR,A	Moves control of A to location pointed DTPR
4108		80 FE	SJMP 4108	Short jump to 4108

Execution:

Addition:

ML	Input
4101	
4103	

ML	Output
4500	

Program: 8-bit Subtraction:

Memory Location	Label	Opcode	Mnemonics	Comments
4100		7405	MOV A,\#05	Moves data 1 to register A
4102		9402	SUBB A,\#02	Subtract data 2 from content of A and store result in A
4104		904500	MOV DPTR,\#4500	Moves 4500 to DPTR
4107		F0	MOVX @DPTR,A	Moves result by location by DTPR
4108		80 FE	SJMP 4109	Short jump to 4109

Execution:

Subtraction:

ML	Input
4101	
4103	

ML	Output
4500	

Program: 8-bit Multiplication:

Memory Location	Label	Opcode	Mnemonics	Comments
4100	Start	7403	MOV A,\#03	Move immediate data to accumulator
4101		75 F0 02	MOV B,\#02	Move 2 red register
4105		A4 to B		
4106		904500	MOL AB	 B
4109		F0	MOVX @DPTR,A	Move A t ext RAM
location in 4500				
410A		A3	INC DPTR	Load data 410B
E5 F0	MOV A,B	Move 2		
410D data in A				
410E		F0	MOVX @DPTR,A	Same the ext RAM

Execution:

Multiplication:

ML	Input
4101	
4103	

Output Address	Value
4500	

Program: 8-bit Division:

Memory Location	Label	Opcode	Mnemonics	Comments
4100	Start	7404	MOV A,\#04	Move immediate data to accumulator
4102		75 F0 02	MOV B,\#02	Move immediate to B reg.
4105		84	DIV AB	 B
4106		904500	MOV DPTR, \# 4500	Load data pointer with 4500 location
4109		F0	MOVX @DPTR,A	Move A to ext RAM
410A		A3	INC DPTR	Increment data pointer
410B		E5 F0	MOV A,B	Move remainder to A
410D		F0	MOVX @DPTR,A	Move A to ext RAM
410E		80 FE	SJMP 410E	Remain idle in infinite loop

Execution:

Division:

ML	Input
4101	
4103	

Output Address	Value
4500	

Result:

Thus 8-bit addition, subtraction, multiplication and division is performed using 8051.

POST-LAB

6. Define OPCODE and Operand, and specify the opcode and the operand in the instruction MOV H, L.
7. Find the machine codes and the number of bytes of for the following instructions. Identify the opcode and the operands.
a) MVI $\mathrm{H}, 47 \mathrm{H}$
b) ADI F5H
c) SUB C
8. Find the HEX codes for the following instructions, identify the opcodes and operands, and show the order of entering the codes in memory

STA 2050H
JNZ 2070H
9. Classification of 8085 Instruction set.
10.Find the hex machine code for the following instruction from the instruction set and identify the number of bytes of each instruction and assume that the starting address is 2000 H .

MVI B, 45 H
MVI C, 78 H
MOV A,C
ADD B
OUT 07H
HLT.

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	$:$

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

3.FINDING MAXIMUM VALUE IN AN ARRAY

PRE-LAB

1. What is a bus?
2. How many address lines are necessary to address 2048 K memory?
3. Why is the data bus bidirectional?
4. Why are the program counter and Data Pointer 16 bit registers?
5. What is a transparent latch, why it is necessary to use a latch with output devices such as LEDs?

3.FINDING MAXIMUM VALUE IN AN ARRAY

Aim:

Write an assembly language program to find the biggest number in an array of 8-bit unsigned numbers of predetermined length.

Apparatus required:

8051 microcontroller kit (0-5V) DC battery

Algorithm:

1. Initialize pointer and counter.
2. Load internal memory location 40 H as zero.
3. Move the first element of an array to 55 register.
4. Compare the data stored in memory location 40 H is equal to or less than the value of first element of an array.
5. If it is lesser, then move the data of first element to 40 H memory location ELSE increment pointer and decrement counter.
6. Check the counter. If counter is not equal to zero, repeat from the $2{ }^{\text {nd }}$ step else Move the R5 register to 40H memory location.
7. Stop the program.

Program:

Memory Location	Label	Opcode	Mnemonics	Comments
4100		904200	MOV DPTR,\#4200H	
4103		754000	MOV 40H,\#00H	
4106		7D 0A	MOV R5,\#05H	Give the number of inputs for finding the largest number.
4108	LOOP2:	E0	MOVX A,@ DPTR	Moves into accumulator a byte from external memory
4109		B5 40 08	CJNE A,40H,LOOP1	Compare and jump not equal to 'A'
410 C	LOOP 3	A3	INC DPTR	
$410 D$		DD F9	DJNZ R5,LOOP2	Decrement and Jump not equal to Zero
410 F		E5 40	MOV A,40H	
4111		F0	MOVX @DPTR,A	

4112	HLT	80 FE	SJMP HLT	
4114	LOOP1	$40 \mathrm{F6}$	JC LOOP3	
4116		F5 40	MOV 40H,A	
4118		80 F 2	SJMP LOOP3	

SAMPLE INPUT AND OUTPUT:
INPUT:

Memory address	Data
4200	

OUTPUT:

Memory address	Data

RESULT:

Thus the assembly language program was written to find the largest element in an array and executed using 8051 microcontroller.

POST-LAB

1. Draw the pin diagram of 8051 microcontroller?
2. Write some applications of microcontroller.
3. Explain the operation of MOVX @DPTR, A, MOVX A, @DPTR and MOV DPTR, \#DATA16 instructions?
4. Define DPTR.
5. What is use of EA pin?

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

4. SORTING OF DATA-ASCENDING ORDER-DESCEDING

PRE-LAB

1. Mention any four addressing modes of 8051 ?
2. Mention the timers of 8051 ?
3. Mention the SFR registers used in timer operation?
4. Mention the operating modes of 8051 ?
5. What is RS 232C?

4. SORTING OF DATA-ASCENDING ORDER-DESCEDING

AIM:

To arrange an array of 8-bit unsigned numbers of known length in an ascending order.

Apparatus required:

8051 microcontroller kit
(0-5V) DC battery

Algorithm:

1. Initialize the register and data pointer.
2. Get first two elements in registers $\mathrm{A} \& B$.
3. Compare the two elements of data. If value of B register is high then exchange A \& B data else increment pointer and decrement register R3.
4. Check R3 is zero, and then move the register R5 \& R6.
5. Again increment pointer and decrement R 4 ,
6. Check R4 is zero. If no repeat the process from step 2.
7. Otherwise stop the program.

Program:

Memory Location	Label	Opcode	Mnemonics	Comments
4100		$7 B$ 04	MOV R3,\#4	
4102		7 C 04	MOV R4,\#4	
4104		904500	MOV DPTR,\#4500	
4107	REPT 1:	AD 82	MOV R5,DPL	
4109		AE 83	MOV R6, DPH	
$410 B$		E0	MOVX A,@DPTR	
$410 C$		F5 FO	MOV B,A	
410 E	REPT	A3	INC DPTR	
410 F		E0	MOVX A,@DPTR	
4110		F8	MOV R0,A	
4111		C3	CLR C	
4112		95 F0	SUBB A,B	
4114		5013	JNC CHKNXT	

4116	EXCH	C0 82	PUSH DPL	
4118		C0 83	PUSH DPH	
411A		8D 82	MOV DPL,R5	
411C		8E 83	MOV DPH,R6	
411E		E8	MOV A,R0	
411F		F0	MOVX @DPTR,A	
4120		D0 83	POP DPH	
4122		D0 82	POP DPL	
4124		E5 F0	MOV A,B	
4126		F0	MOVX @DPTR,A	
4127		88 F0	MOV B,R0	
4129	CHKNXT:	DBE3	DJNZ R3,REPT	
412B		1 C	DEC R4	
412C		EC	MOV A,R4	
412D		FB	MOV R3,A	
412E		OC	INC R 4	
412 F		8D 82	MOV DPL,R5	
4131		8E 83	MOV DPH,R6	
4133		A3	INC DPTR	
4134		DC D1	DJNZ R4,REPT1	
4136		80 FE	SJMP HLT	

Algorithm:

1. Initialize the register and data pointer.
2. Get first two elements in registers $\mathrm{A} \& \mathrm{~B}$.
3. Compare the two elements of data. If value of B register is low then exchange A \& B data else increment pointer and decrement register R3.
4. Check R3 is zero, and then move the register R5 \& R6.
5. Again increment pointer and decrement R4,
6. Check R4 is zero. If no repeat the process from step 2 .
7. Otherwise stop the program.

Program for Descending:

Memory Location	Label	Opcode	Mnemonics	Comments
4100		7B 04	MOV R3,\#4	
4102		7C 04	MOV R4,\#4	
4104		904500	MOV DPTR,\#4500	
4107	REPT 1:	AD 82	MOV R5,DPL	
4109		AE 83	MOV R6, DPH	
410B		E0	MOVX A, @DPTR	
410C		F5 FO	MOV B,A	
410E	REPT	A3	INC DPTR	
410F		E0	MOVX A, @DPTR	
4110		F8	MOV R0,A	
4111		C3	CLR C	
4112		95 F0	SUBB A,B	
4114		4013	JC CHKNXT	
4116	EXCH	C0 82	PUSH DPL	
4118		C0 83	PUSH DPH	
411A		8D 83	MOV DPL,R5	
411C		8E 83	MOV DPH,R6	
411E		E8	MOV A,R0	

411 F		F0	MOVX @DPTR,A	
4120		D0 83	POP DPH	
4122		D0 82	POP DPL	
4124		E5 F0	MOV A,B	
4126		F0	MOVX @DPTR,A	
4127		88 F0	MOV B,R0	
4129	CHKNXT:	DBE3	DJNZ R3,REPT	
$412 B$		EC	DEC R4	
$412 C$		FB	MOV A,R4	
412 D		OC	INC R 4	
412 E		8E 83	MOV DPH,R6	
412 F		A3	INC DPTR	
4131		DC D1	DJNZ R4,REPT1	
4133		80 FE	SJMP HLT	
4134				
4136				

SAMPLE INPUT AND OUTPUT ASCENDING

INPUT:

OUTPUT:

Memory address	Data

SAMPLE INPUT AND OUTPUT DESCENDING

INPUT:

Memory address	Data

OUTPUT:

Memory address	Data

RESULT:

Thus the assembly language program was written to sort the data in an ascending order and executed using 8051 microcontroller.

POST-LAB

1. What is the major difference between 8051 and 8052 ?
2. What is the size of the SP register?
3. Which register bank is used if we alter RS0 and RS1 of the PSW by the following two instructions?

SetB PSW. 3
SetB PSW. 4
4. What RAM locations are used for registers R0-R7 for question no. 3 ?
5. When the 8051 is powered on by default SP sets to which bank?

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	$:$

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

Staff Signature

5. HEXTO ASCII CONVERSION

PRE-LAB

1. What is T -state?

2. Define opcode and operand.
3. What is meant by memory mapping?
4. What is Vectored and Non- Vectored interrupt?
5. What is Polling ? What are the different types of Polling?

5. HEX TO ASCII CONVERSION

Aim:
Write an assembly language program to convert a HEX to its equivalent ASCII code and display the result in the address field.

Apparatus required:

8051 microcontroller kit
(0-5V) DC battery

Algorithm:

1. Get the ASCII characters in the range 0 to 9 or A to F as input
2. Compare whether it falls in the range 0 to 9 or A to F
3. If it falls in the range 0 to 9 add 30 H or add 37 H
4. Display the result in the address field.

Program:

Hint: 0 to 9 in ASCII equivalent Hex value is 30 H to 39 H and for A to F in ASCII is 41H to 46 H

Memory Location	Label	Opcode	Mnemonics	Comments
4100		904200	MOV DPTR,\#4200H	Input a HEX Value
4103		E0	MOVX A, @DPTR	
4104		F8	MOV R0,A	
4105		940 A	SUBB A, \#0AH	Compare Value 0-9
4107		5005	JNC LOOP1	Values A-F go to Loop 1
4109		2430	ADD A,\#30H	
410 A		8003	SJMP LOOP	0-9 Add 30H
410 C		E8	MOV A, R0	
410 E	LOOP 1	2437	ADD A, \#37H	A-F Add 37H
410 F		904500	MOV DPTR, \#4500H	
4111	LOOP	F0	MOVX @DPTR, A	Output Hex Value Equivalent to ASCII Character
4114		80 FE	SJMP 4115	
4115				

SAMPLE INPUT AND OUTPUT:

INPUT:

Memory address	Data
4200	Hex $=$

OUTPUT:

Memory address	Data
4500	ASCII equivalent Hex Value $=$

Result:

Thus the assembly language program was written to convert HEX to ASCII and executed using 8051 microcontroller.

POST LAB

1. Which program produces the .obj file?
2. Show the lowest and highest values (in hex) that the 8051 program counter can take.
3. What is PUSH and POP instruction? Give example.
4. What is the difference between SJMP, LJMP and AJMP?
5. What are the addressing modes of 8051 ?

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

6. FIND THE SQUARE ROOT OF A GIVEN DATA PRE-LAB

1. What is the purpose of EA, PSEN and ALE in 8051 ?
2. How many ports are there in 8051 and by default the ports are set as output/input port?
3. Which ports of 8051 are bit-addressable?
4. Give any five Special Function Registers.
5. What is the advantage of register indirect addressing?

6. FIND THE SQUARE ROOT OF A GIVEN DATA

Aim:

To write an assembly language program to find the square root of a given data

Apparatus required:

8051 microcontroller kit
(0-5V) DC battery

Algorithm:

1. Enter a program.
2. Enter the input hex value to location 4200 h .
3. Execute the program.
4. The output square root value stored in a location 4500h.

PROGRAM:

Memory Location	Label	Opcode	Mnemonics	Comments
4100	Origin:	904200	MOV DPTR,\#4200h	Get a input data
4103		E0	MOVX A,@DPTR	
4104		F9	MOV R1,a	
4105		7A 01	MOV R2, \#01h	Initialize counter
4107	L1:	E9	MOV A,R1	
4108		8A F0	MOV B,R2	
410a		84	DIV AB	divide the given value and counter
410b		FB	MOV R3,A	
410c		ACF0	MOV R4,B	
410 e		9A	SUBB A,R2	compare
410f		6003	JZ RESULT	Dividend and counter
4111		0A	INC R2	
4112		80 F3	SJMP L1	
4114	Result:	904500	MOV DPTR, \#4500H	Square Root
4117		EB	MOV A,R3	
4118		F0	MOVX @ DPTR,A	Stored
4119	HLT	80 FE	SJMP HLT	

SAMPLE INPUT AND OUTPUT:

ML	Input
4200	40 (hex value) $=64$ (decimal)

ML	Output
4500	8

Result:

Thus an assembly language program is written to find the square root of a given data and executed successfully

POST-LAB

1. What is the limitation of register indirect addressing mode ?
2. How many ports are there in 8051 and by default the ports are set as output/input port?
3. What is Unpacked BCD and Packed BCD?
4. What is DA instruction and brief it with an example?
5. When is the OV flag is set?

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	$:$

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

Staff Signature

7. Transfer data serially between two kits

 PRE-LAB1. What is the difference serial and parallel data transfer ?
2. What is simplex, Half Duplex and Full Duplex transfers?
3. What are the two methods of Serial Data transfer?
4. Which is most used serial I/O interfacing standard?
5. What is the purpose of start and stop bits?

7. Transfer data serially between two kits

Aim:

To write an assembly language program Transmitting and Receiving the data between two kits.

Apparatus required:

8051 microcontroller kit
(0-5V) DC battery

Algorithm:

1. Initialize TMOD with 20 H
2. Set the values for TCON and SCON
3. Set the input address to DPTR
4. Based on the bit value on SCON store the data in SBUF
5. Increment DPTR and check for the loop end value

PROGRAM FOR RECEIVER.

Memory Location	Label	Opcode	Mnemonics	Comments
4100		758920	MOV TMOD, \#20H	
4103		758 D A0	MOV TH1, \#0A0H	
4106		758 B 00	MOV TL1, \#00H	
4109		758840	MOV TCON, \#40H	
410 C		759858	MOV SCON, \#58H	
410 F		904500	MOV DPTR, \#4500H	Output
4112	RELOAD	7 D 05	MOV R5, \#05H	
4114	CHECK	3098 FD	JNB SCON.0, CHECK	
4117		C2 98	CLR SCON.0	MOV SCON,\#50
4119		E5 99	MOV A, SBUF	
411 B		F0	MOVX @ DPTR, A	
411 C		A3	INC DPTR	
411 D		B4 3F F2	CJNE A, \#3FH,	
4120		DD F2	DJNZ R5, CHECK	
4122		E4	CLR A	
4123		120020	LCALL 0020H	

Algorithm for Transmitter:

1. Initialize TMOD with 20 H
2. Set the values for TCON and SCON
3. Set the input address to DPTR
4. Based on the bit value on SCON store the data in SBUF and move the data to register ' A '.
5. Increment DPTR and check for the loop end value

PROGRAM FOR TRANSMITTER.

Memory Location	Label	Opcode	Mnemonics	Comments
4100		758920	MOV TMOD, \#20H	
4103		758 A A0	MOV TH1, \#0A0H	
4106		758 B 00	MOV TL1, \#00H	
4109		758840	MOV TCON, \#40H	
410 C		759858	MOV SCON, \#58H	
410 F		904500	MOV DPTR, \#4500H	Input
4112	RELOAD	7 D 05	MOV R5, \#05H	
4114	REPEAT	E0	MOVX A, @DPTR	
4115		F5 99	MOV SBUF, A	
4117	CHECK	3099 FD	JNB SCON.1, CHECK	
411 A		C2 99	CLR SCON.1	
411 C		A3	INC DPTR	
411 D		B4 3F F2	CJNE A, \#3FH,	
4120		DD F2	RJNZ R5, REPEAT	
4122		E4	CLR A	
4123		120020	LCALL 0020H	

SAMPLE INPUT AND OUTPUT:

SI.No	Transmitter Input (Hex Values) Input Address 4500	Receiver Output (Hex Values)
1	$\mathbf{0 0}$	$\mathbf{0 0}$
2	11	11
3	22	22
4	33	33

Result:

Thus an assembly language program displaying characters on seven segment display has been executed.

POST-LAB

1. What is meant by Baud Rate?

2. What is purpose of SBUF register?
3. What is the purpose of SCON register ?
4. Which register has the SMOD bit, and What is its status when the 8051 is powered up?
5. Which timer of the 8051 is used to set the baud rate?

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	$:$

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

Staff Signature

8. Seven segment display

PRE-LAB

1. There are different modes that can be used for each timer what are they?
2. What is the equivalent of the instruction SETB TCON.6?
3. What is the function of the ANL C, bit?
4. What is LCALL and ACALL?
5. What is the function of the instruction MOVC A, @ A+DPTR?

8. Seven segment display

Aim:

To write an assembly language program to display characters on a seven display interface.

Apparatus required:

8051 microcontroller kit
(0-5V) DC battery

Algorithm:

1. Enter a program.
2. Initialize number of digits to Scan
3. Select the digit position through the port address C 0
4. Display the characters through the output at address C8.
5. Check whether all the digits are display.
6. Repeat the Process.

PROGRAM:
\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline \begin{array}{c}\text { Memory } \\
\text { Location }\end{array} & \text { Label } & \text { Opcode } & \text { Mnemonics } & \text { Comments } \\
\hline 4100 & \text { START } & 904500 & \text { MOV DPTR, \#address } & \text { Data to be displayed } \\
\hline 4103 & & \text { AA 82 } & \text { MOV R2, DPL } & \\
\hline 4105 & & \text { AB 83 } & \text { MOV R3, DPH } & \\
\hline 4107 & & 78 \text { 07 } & \text { MOV R0, \#07H } & \begin{array}{c}\text { total digit positions in } \\
\text { seven display }\end{array} \\
\hline 4109 & & 7 \text { F 08 } & \text { MOV R7, \#08H } & \begin{array}{c}\text { Initialize no.of digits to } \\
\text { scan }\end{array}
$$

\hline 410 B \& L1 \& E8 \& MOV A, R0 \& Select digit position

\hline 410 \mathrm{C} \& \& 90 FF C0 \& MOV DPTR, \#FFC0H \&

\hline 410 \mathrm{~F} \& \& F0 \& MOVX @ DPTR, A \&

\hline 4110 \& \& 8 A 82 \& MOV DPL, R2 \&

\hline 4112 \& \& 8 B 83 \& MOV DPH, R3 \&

\hline 4114 \& \& E0 \& MOVX A, @DPTR \&

\hline 4115 \& \& 90 FF C8 \& MOV DPTR, \#FFC8H \&

\hline 4118 \& \& F0 \& MOVX @ DPTR, A \&

\hline 4119 \& \& 124122 \& LCALL DELAY \&

\hline 411 \mathrm{C} \& \& 0 A \& INC R2 \&

\hline 411 \mathrm{D} \& \& 18 \& DEC R0 \& Check if 8 digits are

displayed\end{array}\right]\)| |
| :--- |
| 411 E |

SAMPLE INPUT AND OUTPUT:

Sl.No	Input (hex Values)	Output (Characters)

Result:

Thus an assembly language program displaying characters on seven segment display has been executed.

POST-LAB

1. Name some bit addressable register?
2. How the baud rate can doubled?

3. What is TI and RI interrupts?

4. What are the rotate instructions which involve with carry?
5. What is the function of SWAP instruction?

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	$:$

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

PRE LAB QUESTION AND ANSWERS

1. Explain the various steps involved when executing CALL instruction.
2. What is the use of PUSH and POP instruction?
3. What is a subroutine program?

9. Eight-Bit Digital to Analog Converter

Aim:

To write an assembly language program to display Characters on a seven display interface.

Apparatus required:

8051 microcontroller kit
(0-5V) DC battery

Algorithm:

1. Move the Port Address of DAC 2 FFC8 to the DPTR.
2. Move the Value of Register A to DPTR and then Call the delay.
3. Move the Value of Register A (FFh) to DPTR and the call the dalay.
4. Repeat the steps 2 and 3.

PROGRAM TO GENERATE SQUARE WAVEFORM

Memory Location	Label	Opcode	Mnemonics	Comments
4100		90 FF C8	MOV DPTR, \#FFC8H	
4103	START:	7400	MOV A, \#00H	
4105		F0	MOVX @ DPTR, A	
4106		124112	LCALL DELAY	
4109		74 FF	MOV A, \#FFH	
410 B		F0	MOVX @ DPTR, A	
410 C		124112	LCALL DELAY	
410 F		024103	LJMP STTART	
4112	DELAY:	7905	MOV R1, \#05H	
4114	LOOP:	7 FF FF	MOV R2, \#FFH	
4116	HERE:	DA FE	DJNZ R2, HERE	
4118		D9 FA	DJNZ R1, LOOP	
411 A		22	RET	
411 B		80 E6	SJMP START	

PROGRAM TO GENERATE SAW-TOOTH WAVEFORM

Memory Location	Label	Opcode	Mnemonics	Comments
4100		90 FF C8	MOV DPTR, \#FFC8H	
4103		7400	MOV A, \#00H	
4105	LOOP:	F0	MOVX @ DPTR, A	
4106		04	INC A	
4107		80 FC	SJMP LOOP	

PROGRAM TO GENERATE TRIANGULAR WAVEFORM

Memory Location	Label	Opcode	Mnemonics	Comments
4100		90 FF C8	MOV DPTR, \#FFC8H	
4103	START:	7400	MOV A, \#00H	
4105	LOOP1:	F0	MOVX @DPTR, A	
4106		04	INC A	
4107		70 FC	JNZ LOOP1	
4109		74 FF	MOV A, \#0FFH	
410 B	LOOP2:	F0	MOVX @DPTR, A	
410 C		14	DEC A	
410 D		70 FC	JNZ LOOP2	
410 F		024103	LJMP START	

Result:

Thus an assembly language program for Digital to Analog has been executed.

POST LAB QUESTION AND ANSWERS

1. How the instructions are classified according to word size?
2. What is mode $\mathbf{0}$ operation of $\mathbf{8 2 5 5}$.
3. What are the modes of operation supported by 8255 ?

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

PRE LAB QUESTION AND ANSWERS

1. What is NV-RAM?
2. What is the use of PUSH and POP instruction?
3. What is a subroutine program?

10. Eight-Bit Analog to Digital Converter

Aim:

To write an assembly language program to display Characters on a seven display interface.

Apparatus required:

8051 microcontroller kit
(0-5V) DC battery

Algorithm:

1. Make ALE low/high by moving the respective data from A register to DPTR.
2. Move the SOC(Start Of Conversion) data to DPTR from FFD0
3. Check for the End Of Conversion and read data from Buffer at address FFC0
4. End the Program.

PROGRAM:

Port Address for 74LS174 Latch: FFC8
Port Address for SOC: FFD0
Port Address for EOC 1: FFD8
Port Address for 74LS 244 Buffer: FFC0

Memory Location	Label	Opcode	Mnemonics	Comments
4100		90 FF C8	MOV DPTR, \#FFC8	
4103		7410	MOV A, \#10	Select Channel 0 and Make ALE Low
4105		F0	MOVX @ DPTR, A	Make ALE High
4106		7418	MOV A, \#18	M
4108		F0	MOVX @ DPTR, A	
4109		90 FF D0	MOV DPTR, \#FFD0	
410 C		7401	MOV A, \#01	SOC Signal High
410 E		F0	MOVX @ DPTR, A	
410 F		7400	MOV A, \#00	SOC Signal Low
4111		F0	MOVX @ DPTR, A	
4112		90 FF D8	MOV DPTR, \#FFD8	
4115	WAIT:	E0	MOVX A, @DPTR	
4116		30 E0 FC	JNB E0, WAIT	Check For EOC
4119		90 FF C0	MOV DPTR, \#FFC0	Read ADC Data
411 C		E0	MOVX A, @DPTR	
4110		904150	MOV DPTR, \#4150	Store the Data
4120		F0	MOVX @ DPTR, A	
4121	HERE:	90 FE	SJMP HERE	

Result:

Thus an assembly language program is executed for analog to digital conversion.

POST LAB QUESTION AND ANSWERS

1. How the instructions are classified according to word size?
2. What is mode $\mathbf{0}$ operation of 8255 .
3. What are the modes of operation supported by 8255 ?

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

PRE LAB QUESTION AND ANSWERS

1. What is an interrupt?
2. Define Polling.
3. What is the disadvantage of polling?

11. Internal Interrupt

Aim:

To write an assembly language program for Internal Interrupt.

Apparatus required:

8051 microcontroller kit
(0-5V) DC battery

Algorithm:

1. Move the value 081 H to the Interrupt Enable pin to enable it.
2. Press INT0 interrupt is enabled. LED's are on.
3. End the Program.

PROGRAM:

Memory Location	Label	Opcode	Mnemonics	Comments	
4100		758910	MOV TMOD, \#10H	TIMER 1 MODE 1	
4103		75 A8 88	MOV IE, \#88H	TIMER 1 Overflow Interrupt	
4106		75 8D 00	MOV TH1,\#00H		
4109		758 B 00	MOV TL1,\#00H		
410 C		D2 8E	SETB TR1	Start the timer	
410 E	L1:	308 F FD	JNB TF1,L1	check the timer overflow	
411		C2 8E	CLR TR1	clear the timer overflow	
4113		C2 8F	CLR TF1		
4115	L2:	80 FE	SJMP L2		
Interrupt Service Routine					
5030		7412	MOV A,\#12		
5032		90 FF 20	MOV DPTR,\#FF20H		
5035		F0	MOVX @DPTR,A		
5036	HLT:	80 FE	SJMP HLT		

Result:

Thus an assembly language program for the internal interrupt has been done.

POST LAB QUESTION AND ANSWERS

1. What is advantage of interrupts?
2. What is interrupt vector table?
3. How many interrupts are in 8051 ?

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	$:$

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

PRE LAB QUESTION AND ANSWERS

1. What is stepper motor?
2. Define Step angle.
3. What are the applications of stepper motor?

12. SPEED CONTROL OF STEPPER MOTOR

Aim:
To write an assembly program to make the stepper motor run in forward and reverse direction.

Apparatus required:

Stepper motor
8051 microprocessor kit
($0-5 \mathrm{~V}$) power supply

Algorithm:

1. Fix the DPTR with the Latch Chip address FFC0
2. Move the values of register A one by one with some delay based on the 2-

Phase switching Scheme and repeat the loop.
3. For Anti Clockwise direction repeat the step 3 by reversing the value sequence.
4. End the Program

Memory Location	Label	Opcode	Mnemonics	Comments
4100		90 FF C0	MOV DPTR, \#FFC0	
4103		7409	MOV A, \#09	
4105		F0	MOVX @DPTR, A	
4106		124500	LCALL DELAY	
4109		7405	MOV A, \#05	
$410 B$		744500	LCALL DELAY	
$410 C$		F0	MOV A, \#06	
410 F		124500	LCALL DELAY	
4111		740 MOV @DPTR, A		
4112		F0	MOV A, \#0A	
4115		124500	LCALL DELAY	
4117				
4118				

411 B		80 E 3	SJMP 4100	
4500	DELAY:	7855	MOV R0, \#55	
4502	L2	79 FF	MOV R1, \#FF	
4504	L1	D9 FE	DJNZ R1, L1	
4506		D8 FA	DJNZ R0, L2	
4508		22	RET	

1

Result:

Thus an assembly language program to control of stepper motor was executed successfully using 8051 Microcontroller kit.

POST LAB QUESTION AND ANSWERS

1. What are the types of stepper motor?
2. Brief 2-phase on mode?

DEPT. OF ELECTRICAL \& ELECTRONICS ENGINEERING SRM INSTITUTE OF SCIENCE AND TECHNOLOGY, Kattankulathur - 603203.

Title of Experiment	$:$
Name of the candidate	$:$
Register Number	$:$
Date of Experiment	$:$
Date of submission	$:$

S.NO:	MARKS SPLIT UP	MAXIMUM MARKS (50)	MARKS OBTAINED
1	PRE LAB	5	
2	PROGRAM	25	
3	EXECUTION	15	
4	POST LAB	5	
TOTAL		50	

PRE LAB QUESTION AND ANSWERS

1. What is control word?
2. How many modes of operation are available for 8255 ?
3. What is BSR mode in 8255 ?

13. TRAFFIC LIGHT CONTROLLER

Aim:

To write an assembly language program to display Characters on a seven display interface.

Apparatus required:

8051 microcontroller kit
(0-5V) DC battery

Algorithm:

1. Fix the control the control and move the control word to control register.
2. Move the Traffic Light LED Position values to Port A, Port B and Port C respectively based on the logic.
3. Fix the delay based on the requirement.
4. Execute the program.

PROGRAM:

4100		ORG	4100
	CONTRL	EQU	0FF0FH
	PORT A	EQU	0FFOCH
	PORT B	EQU	0FFODH
	PORT C	EQU	0FFOEH

Memory Location	Label	Opcode	Mnemonics	Comments
4100		7480	MOV A, \#80H	
4102		90 FF 0F	MOV DPTR, \#CONTRL	
4105		F0	MOVX @ DPTR, A	
4106	START	7 C 04	MOV R4, \#04H	
4108		90419 B	MOV DPTR, \#LOOK1	
410 B		AA 83	MOV R2, DPH	
410 D		AB 82	MOV 23, DPL	
410 F		90418 F	MOV DPTR, \#LOOK	
4112		A8 83	MOV R0, DPH	
4114		A9 82	MOV R1, DPL	
4116	GO	E0	MOVX A, @DPTR	
4117		A8 83	MOV R0, DPH	
4119		A9 82	MOV R1, DPL	
411 B		90 FF 0C	MOV DPTR, \#PORT A	
411 E		F0	MOVX @DPTR, A	
411 F		09	INC R1	
4120		8883	MOV DPH, R0	
4122		8982	MOV DPL, R1	
4124		E0	MOVX A, @DPTR	
4125		A8 83	MOV R0, DPH	
4127		A9 82	MOV R1, DPL	

4129		90 FF 0D	MOV DPTR, \#PORT B	
412C		F0	MOVX @DPTR, A	
412D		09	INC R1	
412E		8883	MOV DPH, R0	
4130		8982	MOV DPL, R1	
4132		E0	MOVX A, @DPTR	
4133		A8 83	MOV R0, DPH	
4135		A9 82	MOV R1, DPL	
4137		90 FF 0 E	MOV DPTR, \#PORT C	
413A		F0	MOVX @ DPTR, A	
413B		09	INC R1	
413C		124175	LCALL DELAY	
413F		8A 83	MOV DPH, R2	
4141		8B 82	MOV DPL, R3	
4143		E0	MOVX A, @DPTR	
4144		AA 83	MOV R2, DPH	
4146		AB 82	MOV R3, DPL	
4148		90 FF 0 C	MOV DPTR, \#PORT A	
414B		F0	MOVX @ DPTR, A	
414C		0B	INC R3	
414D		8A 83	MOV DPH, R2	
414F		8B 82	MOV DPL, R3	
4151		E0	MOVX A, @DPTR	
4152		AA 83	MOV R2, DPH	
4154		AB 82	MOV R3, DPL	
4156		90 FF 0D	MOV DPTR, \#PORT B	
4159		F0	MOVX @ DPTR, A	
415A		0B	INC R3	
415B		8A 83	MOV DPH, R2	
415D		8B 82	MOV DPL, R3	
415F		E0	MOVX A, @DPTR	
4160		AA 83	MOV R2, DPH	
4162		AB 82	MOV R3, DPL	
4164		90 FF 0 E	MOV DPTR, \#PORT C	
4167		F0	MOVX @DPTR, A	
4168		0B	INC R3	
4169		124182	LCALL DELAY1	
416C		8883	MOV DPH, R0	
416E		8982	MOV DPL, R1	
4170		DC A4	DJNZ R4, GO	
4172		124106	LCALL START	
4175	DELAY	7D 12	MOV R5, \#12H	
4177	L3	7 EFF	MOV R6, \#0FFH	
4179	L2	7 FFF	MOV R7, \#0FFH	
417B	L1	DF FE	DJNZ R7, L1	
417D		DE FA	DJNZ R6, L2	
417F		DD F6	DJNZ R5, L3	
4181		22	RET	
4182	DELAY1	7D 12	MOV R5, \#12H	

4184	L6	7E FF	MOV R6, \#0FFH	
4186	L5	7F FF	MOV R7, \#0FFH	
4188	L4	DF FE	DJNZ R7, L4	
418 A		DE FA	DJNZ R6, L5	
418 C		DD F6	DJNZ R5, L6	
418 E		22	RET	
418 F	LOOK	442712	DB 44H, 27H, 12H	
4192		92 2B 10	DB 92H, 2BH, 10H	
4195		849 D 10	DB 84H, 9DH, 10H	
4198		842 E 48	DB 84H, 2EH, 48H	
419 B	LOOK1	482712	DB 48H, 27H, 12H	
419 E		924 B 10	DB 92H, 4BH, 10H	
$41 \mathrm{A1}$		849 D 20	DB 84H, 9DH, 20H	
41 A 4		042 E 49	DB 04H, 2EH, 49H	

Result:

Thus an assembly language program for the Traffic Light Control has been executed.

POST LAB QUESTION AND ANSWERS

1. What is 8254 ?
2. What is $\mathbf{8 2 5 9 A}$?
3. What is $\mathbf{8 2 3 7}$?
