DEPARTMENT OF COMPUTER APPLICATIONS AND TECHNOLOGY

PROGRAMME OUTCOMES FOR BCA

After the completion of programme the students are able to

- **PO1.** Design solutions for complex problems.
- **PO2.** Choose suitable algorithm to solve computation tasks.
- **PO3.** Interpret the structure and development methodologies of software systems.
- **P04.** Relate business scenarios and contemporary issues in emerging technologies.
- **PO5.** Connect the modern computing tools, skills and techniques necessary for innovative software solutions
- **P06.** Relate the contemporary computing tools, methodologies, and talents required for creative software solutions

PROGRAMME SPECIFIC OUTCOMES (PSO) FOR BCA

After the completion of programme the students are able to

- **PSO1.** Extend the information of computing skills in various domains.
- **PS02.** Discover technical competence in computer application areas.
- **PSO3.** Examine information for innovation, variation, modernization, and research to satisfy global needs.

Course Outcome

SEMESTER I

Core I: Problem Solving using Python

After the completion of this course the students are able to

CO1:	Discuss the fund	lamental concepts	of python.

- CO2: Develop the control flow statements in python.
- CO3: Implement the memory management concepts.
- CO4: Illustrate a turtle programs in Python.
- CO5: Implement the emerging applications of relevant field.
- CO6: Manipulate database using real time Python programs.

SEMESTER II

CORE - II OBJECT ORIENTED PROGRAMMING CONCEPTS USING C++

After the completion of this course the students are able to

- CO1: Describe the procedural and object oriented paradigm.
- CO2: Demonstrate the control structures.
- CO3: Define the dynamic memory management techniques.
- CO4: Describe the concept of polymorphism.
- CO5: Associate the usage of exception handling.
- CO6: Implement the real time applications.

Core III: DATA STRUCTURES

After the completion of this course the students are able to

$\alpha \alpha 1$	D 11 .1	4 .	•	•
<i>('()) :</i>	Llogoribog th	sa data rani	ragantation	in mamari
CO1:	Describes th	ie uala iedi	CSCHIALION	III IIICIIIOI V.

- CO2: Enumerate the common applications of storage structure.
- CO3: Illustrate programs with various storage structures.
- CO4: Implement various traversing methods in tree structure.
- CO5: Identify the dynamic and static data structures.
- CO6: Demonstrate the concepts of Data Structures.

Core IV: JAVA PROGRAMMING

After the completion of this course the students are able to

001	D 11 .1		C 1		•
CO1:	Describes the	nrincinles	ot object	oriented	nrogramming
COI.	Describes the	principies	or object	oriented	programming.

- CO2: Illustrate the basic concepts.
- CO3: Implement OOPS concepts.
- CO4: Design applications with threads in Java.
- CO5: Manipulates its own programs by using java applications.
- CO6: Demonstrate the elementary modifications that solve real-world problems.

Core V: COMPUTER ORGANIZATION

After the completion of this course the students are able to

C()	l :	1	<i>J</i> escribe	the	maj	or	com	ponent	ts o	f a	com	puter	SYS	tem.
----	---	-----	---	------------------	-----	-----	----	-----	--------	------	-----	-----	-------	-----	------

- CO2: Design the microstructure of a processor.
- CO3: Demonstrate the assembly language programs.
- CO4: Illustrate the DMA Interface operations.
- CO5: Explores the fundamentals instruction set architectures
- CO6: Implement the arithmetic operations.