ACADEMIC CURRICULA ## UNDERGRADUATE DEGREE PROGRAMMES Bachelor of Science (B.Sc. Mathematics) Three Years Learning Outcomes based Curriculum Framework(LOCF) Academic Year 2020 - 2021 SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (Deemed to be University u/s 3 of UGC Act, 1956) Kattankulathur-603203, Chengalpattu District, Tamil Nadu, India #### TABLE OF CONTENTS | Department Vision Statement | 4 | |---|----| | Department Mission Statement | 4 | | Program Education Objectives (PEO) | 4 | | Program Specific Outcomes (PSO) | 4 | | Consistency of PEO's with Mission of the Department | 4 | | Consistency of PEO's with Program Learning Outcomes (PLO) | 4 | | Programme Structure | 5 | | Implementation Plan | 6 | | Program Articulation Matrix | 7 | | Structure of UG Courses in Mathematics | 8 | | SEMESTER I | | | Tamil-I | 9 | | Hindi-I | 12 | | French-I | 14 | | English | 16 | | Algebra and Trigonometry | 19 | | Analytical Geometry | 22 | | Numerical Analysis | 25 | | Soft Skills | 28 | | SEMESTER II | | | Tamil-II | 30 | | Hindi-II | 32 | | French-II | 34 | | Differential Equations and Laplace Transforms | 36 | | Calculus | 38 | | Vector calculus, Fourier series and Transforms | 41 | | Quantitative Aptitude and Reasoning | 44 | | Communication Skills | 46 | | NSS/NCC/NSO/YOGA | 48 | | SEMESTER III | 40 | | Probability and Statistics | 49 | | Number Theory | 51 | | <u> </u> | | | Operations Research | 53 | | Combinatorics | 56 | | Allied Physics | 59 | | C Programming | 61 | | Java Programming | 63 | | Scientific Documentation and Statistical Tools | 65 | | Python Programming | 67 | | Universal Human Values | 69 | | SEMSTER IV | | | Discrete Mathematics | 71 | | Fuzzy Mathematics | 74 | | Introduction to Partial Differential Equations | 77 | | Astronomy | 80 | | Allied Chemistry | 83 | | My India Project | 85 | | Mathematical Software Matlab | 86 | | Mathematical Software Scilab | 88 | | Professional Skills | 90 | | SEMESTER V | | |----------------------------------|---------------| | Algebraic Structures | 92 | | Real Analysis | 94 | | Graph Theory | 97 | | Sequence and Series | 100 | | Linear Algebra | 103 | | Environmental Studies | 106 | | Leadership and Management Skills | 108 | | SEMESTER VI | | | Complex Analysis | 110 | | Mechanics | 113 | | Project Work | 116 | | ALLIED | Corner Corner | | Allied Mathematics I | 117 | | Allied Mathematics II | 119 | | 1. Depa | artment Vision Statement | |----------|--| | Stmt - 1 | To impart education and disseminate knowledge with high standards in Mathematics, Engineering and Technology in our academic pursuit. | | Stmt - 2 | To emerge as a world class hub of research that creates a center of excellence in mathematics. | | Stmt – 3 | To develop mathematical thinking and applying it to solve problems, designing mathematical modeling for systems involving global level technology. | | 2. Dep | partment Mission Statement | |---------------|--| | Stmt – 1 | To upgrade the student's knowledge to meet the academic changes. | | Stmt – 2 | To equip the students with the necessary mathematical tools to meet the competitive global environment. | | Stmt – 3 | To provide an environment where students can learn and become competent users of mathematics and its applications. | | Stmt – 4 | To enable students pursue more advanced study in pure mathematics, applied mathematics and related areas. | | Stmt – 5 | Developing the students for professional careers in disciplines which make use of the mathematical sciences. | | • | | | PEO - 1 | Acquire knowledge, Skill, Aptitude and Analytical ability. | |---------|---| | | | | PEO - 2 | Creates mathematical models. | | PEO - 3 | Develops the skill to think critically on abstract concepts of mathematics. | | PEO - 4 | Formulate and develop mathematical arguments in a logical manner. | | PEO - 5 | Acquire domain knowledge to pursue higher education and research. | | 4. Prog | ram Specific Outcomes (PSO) | |---------|--| | PSO - 1 | Graduates will acquire good knowledge and understanding in advanced areas of mathematics and statistics. | | PSO - 2 | Graduates will develop and formulate mathematical arguments in a logical manner. | | PSO - 3 | Graduates will be able to use the facility with mathematical and computational modeling of real decision making. | | 5. Consistency of PEO's with Mission of the Department | | | | | | | | | | | |--|-------------------|-------------------|-------------------|----------------|-------------------|--|--|--|--|--| | | Mission Stmt. – 1 | Mission Stmt. – 2 | Mission Stmt. – 3 | Mission Stmt 4 | Mission Stmt. – 5 | | | | | | | PEO - 1 | H | M | Н | L | M | | | | | | | PEO – 2 | -H | Н | H | M | M | | | | | | | PEO - 3 | H | M | Н Н | Н | H | | | | | | | PEO – 4 | H | L | Н | M | Н | | | | | | | PEO - 5 | H | H | M | Н | M | | | | | | H – High Correlation, M – Medium Correlation, L – Low Correlation | 6. Con: | 6. Consistency of PEO's with Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | |---------|--|---------------------------------|-------------------------------|------------------------|-----------------------------|------------------------------|----|-------------------------|---------------------|------------------------|--------------------------|-----|------------|----------------------------|----------------------| | | | Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. | | DE0. 4 | Eundamental
Knowledge | Application of Concepts | Link with Related Disciplines | T Procedural Knowledge | Skills in
Specialization | Ability to Utilize Knowledge | | Analyze, Interpret Data | Nvestigative Skills | Problem Solving Skills | Communication Skills | | ICT Skills | Professional
⊞ Behavior | ≖ Life Long Learning | | PEO – 1 | | | | | | | | | | | | | | | | | PEO – 2 | Н | M | Н | Н | Н | Н | Н | Н | Н | Н | L | Н | Н | Н | Н | | PEO – 3 | Н | Н | Н | L | Н | Н | Н | Н | Н | Н | Н | М | Н | Н | Н | | PEO – 4 | Н | Н | Н | Н | Н | M | Н | Н | Н | Н | Н | Н | L | Н | Н | | PEO - 5 | Н | Н | Н | Н | Н | Н | Н | L | Н | Н | Н | Н | Н | Н | Н | AS SRMIST STRONGLY ENCOURAGES THE USE OF SWAYAM (Study Web of Active Learning by Learning by Young and Aspiring Minds) PLATFORM, THE STUDENTS ARE ENCOURAGED TO CHOOSE ATLEAST ONE CORE/ ELECTIVE COURSE FROM SWAYAM ON THE RECOMMENDATION OF THE FACULTY ADVISOR AND THE CREDITS WILL BE TRANSFERRED ### 8. Implementation Plan | Semester – I | | | | | | | | |------------------------|-----------------------------|---|--------------|---|----|--|--| | Code | Course Title | | ours
/eek | | С | | | | Code | Code Course Title | | | | | | | | ULT20G01J | Tamil-I | | | | | | | | ULH20G01J | Hindi-I | 2 | 0 | 2 | 3 | | | | ULF20G01J | French-I | | | | | | | | ULE20AE1T | English | 4 | 0 | 0 | 4 | | | | UMA20101T | Algebra and Trigonometry | 5 | 1 | 0 | 6 | | | | UMA20102T | Analytical Geometry | 5 | 1 | 0 | 6 | | | | UMA20103T | Numerical Analysis | 5 | 1 | 0 | 6 | | | | UCD20S01L | Soft Skills | 0 | 0 | 2 | 1 | | | | Total Learning Credits | | | | | | | | | | Total number of hours /week | | | | 30 | | | | Semester – II | | | | | | | | |------------------------|---|---|---|---|----|--|--| | Code | Course Title | ۱ | С | | | | | | | | L | Т | Р | | | | | ULT20G02J | Tamil-II | | | | | | | | ULH20G02J | Hindi-II | 2 | 0 | 2 | 3 | | | | ULF20G02J | French-II | | | | | | | | UMA20201T | Differential Equations and Laplace
Transforms | 5 | 1 | 0 | 6 | | | | UMA20202T | Calculus | 5 | 1 | 0 | 6 | | | | UMA20203T | Vector calculus, Fourier series and
Transforms | 5 | 1 | 0 | 6 | | | | UCD20S02L | Quantitative Aptitude and Reasoning | 0 | 0 | 2 | 1 | | | | UJK20201L | Communication Skills | 0 | 0 | 4 | 2 | | | | UNS20201L | NSS | | | | 0 | | | | UNC20201L | NCC | 0 | _ | 0 | | | | | UNO20201L | NSO | U | 0 | U | 0 | | | | UYG20201L | YOGA | | | | | | | | Total Learning Credits | | | | | | | | | | Total number of hours /week | | | | 30 | | | | Semester – III | | | | | | | | |------------------------|--|---|--------------|---|----|--|--| | Code | Course Title | | lour:
Nee | | С | | | | UMA20301T | Probability and Statistics | 5 | 1 | 0 | 6 | | | | UMA20D01T | Number Theory | | | | | | | | UMA20D02T | Operations Research | 5 | 1 | 0 | 6 | | | | UMA20D03T | Combinatorics | J | ' | U | 0 | | | | UPY20A01J | Allied Physics | 4 | 0 | 4 | 6 | | | | UMA20S01L | C Programming | 0 | 0 | 4 | 2 | | | | UMA20S02L | JAVA Programming | U | U | 4 | 2 | | | | UMA20S03L | Scientific Documentation and Statistical Tools | 0 | 0 | 4 | 2 | | | | UMA20S04L | PYTHON Programming | | | | | | | | UJK20301T | Universal Human values | 2 | 0 | 0 | 2 | | | | Total Learning Credits | | | | | | | | | | Total number of hours /week | | | | 28 | | | | | Total number of nours /week | | | | ∠0 | | | | Semester - IV | | | | | | | | | |------------------------|--|---|--------------|---|----|--|--|--| | Code | Course Title | - | lour.
Vee | - | С | | | | | | | L | Τ | Р | | | | | | UMA20401T | Discrete Mathematics | 5 | 1 | 0 | 6 | | | | | UMA20D04T | Fuzzy Mathematics | | | | | | | | | UMA20D05T | Introduction to Partial Differential Equations | 5 | 1 | 0 | 6 | | | | |
UMA20D06T | Astronomy | | | | | | | | | UCY20A03J | Allied Chemistry | 4 | 0 | 4 | 6 | | | | | UMI20S01L | My India Project | 0 | 0 | 0 | 1 | | | | | UMA20S05L | Mathematical Software MATLAB | 0 | 0 | 4 | 2 | | | | | UMA20S06L | Mathematical Software SCILAB | U | U | 4 | 2 | | | | | UJK20401T | Professional skills | 2 | 0 | 0 | 2 | | | | | Total Learning Credits | | | | | | | | | | | Total number of hours /week | | | | 24 | | | | | Semester –V | | | | | | | | | | | | |-------------------------------|----------------------------------|---|--------------|---|----|--|--|--|--|--|--| | Code | Course Title | | lour:
Nee | | С | | | | | | | | | | L | Τ | Ρ | | | | | | | | | UMA20501T | Algebraic Structures | 5 | 1 | 0 | 6 | | | | | | | | UMA20502T | Real Analysis | 5 | 1 | 0 | 6 | | | | | | | | UMA20D07T | Graph Theory | | | | | | | | | | | | UMA20D08T | Sequence and Series | 5 | 1 | 0 | 6 | | | | | | | | UMA20D09T | Linear Algebra | | | | | | | | | | | | UES20AE1T | Environmental Studies | 3 | 0 | 0 | 3 | | | | | | | | UJK20501T | Leadership and Management skills | 2 | 0 | 0 | 2 | | | | | | | | | Total Learning Credits | | | | 23 | | | | | | | | Total number of hours /week 2 | | | | | | | | | | | | | <u>'</u> | | | | | | | | | | | | | Semester - VI | | | | | | | | | | | | | | |----------------------------------|------------------------|---|-------------|----|----|--|--|--|--|--|--|--|--| | Code | Course Title | | our:
Vee | | С | | | | | | | | | | L T P | | | | | | | | | | | | | | | UMA20601T Complex Analysis 5 1 0 | | | | | | | | | | | | | | | UMA20602T | Mechanics | 5 | 1 | 0 | 6 | | | | | | | | | | UMA20D10L | Project Work | 0 | 0 | 12 | 6 | | | | | | | | | | | Total Learning Credits | | | | 18 | | | | | | | | | | Total number of hours /week | | | | | | | | | | | | | | | UMA20101T Algebra and Trigonometry H H H H H H H H H | H T Professional Behavior | |---|---------------------------------------| | UMA20101T Algebra and Trigonometry | M M M M M M M M M M | | UMA20101T Algebra and Trigonometry H < | M | | UMA20102T Analytical Geometry H< | M H M H I | | UMA20103T Numerical Analysis H </td <td>M H M H I</td> | M H M H I | | UMA20201T Differential Equations and Laplace Transforms H | | | UMA20202T Calculus Calculus H | M H L H I | | UMA20203T Vector calculus, Fourier series and Transforms H | M H L H I | | UMA20501T Discrete Mathematics H | M H L H I | | UMA20501T Algebraic Structures H | M H L H I | | UMA20502T Real Analysis H | M H L H I | | UMA20601T Complex Analysis H <td>M H L H I</td> | M H L H I | | UMA20602T Mechanics H | M H L H I | | UMA20D01T Number Theory H | M <mark>H L H</mark> I | | UMA20D02T Operations Research H< | M <mark>H L H</mark> I | | UMA20D03T Combinatorics H | H H M H I | | UMA20D04T Fuzzy Mathematics H H M M H <td>M H H H</td> | M H H H | | UMA20D05T Introduction to Partial Differential Equations H H H M H | M H H I | | UMA20D06T Astronomy H M H L H | M H M I | | UMA20D07T Graph Theory H | H H H H | | UMA20D08T Sequence and Series H< | M | | UMA20D09T Linear Algebra H | H H H H | | UMA20D10L Project Work H | M H M H | | ULT20G01J Tamil-I H | M H M H | | ULH20G01J Hindi-I H H H H H H M H M H M H M H H M H | H H M H | | ULF20G01J French-I H | H H H H | | ULT20G02J Tamil-II H | H H H H | | ULH20G02J Hindi-II H | H H M H | | UPY20A01J Allied Physics H | H H M H I | | UCY20A03J Allied Chemistry H H H H H H H H H H H H
H <td>H <mark>H M</mark> H I</td> | H <mark>H M</mark> H I | | UMA20S01L C Programming H | M <mark>H M</mark> H I | | UMA20S02L JAVA Programming H H H H H H H H H H H H H H H H H H H | M H M H I | | UMA20S02L JAVA Programming H H H H H H H H H H H H H H H H H H H | L H M M I | | UMAZUSUSI Scientific Documentation and Statistical Tools H H H H H H H H H | L H M M I | | | L H M M I | | UMA20S04L PYTHON Programming H </td <td>L H H M I</td> | L H H M I | | UMA20S05L Mathematical Software MATLAB H H H H H H H H H H H H H H H H H H H | L H H M I | | UMA20S06L Mathematical Software SCILAB H H H H H H H H H H H H H H H H H H H | L H M M I | | UMI20S01L My India Project H H M M H <td>H M M H I
L H M M I</td> | H M M H I
L H M M I | | | H M M H | | | H H H H I | | | L H M M | | | H H H H I | | | H H H H | | | | | | LIHIMIMI | | Program Average | L | [|] Program Average | H - High Correlation, M - Medium Correlation, L - Low Correlation | | | | | Cours | e Structures | | | | | |------------------|--------------------------------------|--|------------------------------------|---|--|------------------|-------------------------|-----|-----| | Semester | Professional
Core
Courses (CC) | Specific Generic (Jeevan Kaushal) Skill Enhancement Courses(SEC) Courses(AECC) | | Enhancement | Extension Activity | Total
Credits | No. of
Periods | | | | Sem I | CC-1(6)
CC-2 (6)
CC-3 (6) | | GE-1 (3)-
Tamil/Hindi/French-I | JI. | SEC-Soft skills(1) | AECC-English(4) | | 26 | 30 | | Sem II | CC-4(6)
CC-5(6)
CC-6 (6) | \$ | GE-2 (3)-
Tamil/Hindi/French-II | JK1(2)-
Com.Skills | SEC-Quantitative Aptitude & Reasoning(1) | | NSS/NCC/NSO
/Yoga(0) | 24 | 30 | | Sem III | CC-7(6) | DSE-1(6) | GE-3 (6)-
Allied Physics | JK2(2)-UHV | SEC- 1 (2)
SEC-2 (2) | 1 | 12 | 24 | 28 | | Sem IV | CC-8(6) | DSE-2(6) | GE-3 (6)-
Allied Chemistry | JK3(2)-
ProfSkills | SEC-3 -My India
Project (1)
SEC-4(2) | | Corre | 23 | 24 | | Sem V | CC-9(6)
CC-10(6) | DSE-3(6) | VII.VI | JK4(2)-
Leadership
&
Managemen
Skills | E P. | AECC-EVS(3) | 5 | 23 | 23 | | Sem VI | CC-11(6)
CC-12 (6) | DSE-4 (6)-
Project | | | | | | 18 | 24 | | Total
Credits | 72 | 24 | 18 | 8 | 8 | 8 | 0 | 138 | 159 | | Cour | | Γ20G01J Cοι
Na | ırse
me | Ta | amil-l | | | | urse
gory | G | | | Ge | neri | ic El | ectiv | /e C | ours | e | | L
2 | T
0 | P
2 | C
3 | |--|---|---|--|--|---|---|-------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|-------------------------|--------------------|-------------------------|------------------------------------|---|----------------------|-------------------|--------|-------------------|--------|--------|--------| | | equisit | e Nil | | Co-requisite
Courses | Nil | | | | Prog | ress | ive
s | Nil | | | | | | | | | | | | | | | se Offe
rtment | ring | Tamil | • | | ta Book /
des/Standards | | | | | • | | | | | Ni | ı | | | | | | | | | | se Lear
nale (C | | The purpos | se of learning this | course is | s to: | | | Lea | rning | 9 | | | Pro | grai | m Le | earning Outcomes (PLO) | | | | | | | | | CLR-
1:
CLR-
2:
CLR-
3:
CLR- | To expendigh Inculciple | plore New histo
ten the studen
ate Ways of lif-
ng Tamil literat | oricism throughts to understands, moralities and ure | ces of modern po
gh the works of an
and the changes i
and ethical factors | rt written i
n the mod
s as an es | in Tamil to
dern society
ssential part of | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 4:
CLR-
5:
CLR-
6: | Streng | mina | al and wri | itten information, | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | ty to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investig <mark>ative Skills</mark> | Problem Solving Skills | Communication Skills | Analytical Skills | 1-1 | -2 | -3 | | | | Outc | omes (C | CLO): At the | vill be abl | e to:
of skills to cater | _ | ш | | | | | Proc | | Ability 1 | - | | | Prob | | | PSO -1 | PSO -2 | PSO-3 | | | | 1: | the ne | eds of the mo | | o Enhance their | 2 | 75 | 60 | Н | Н | Н | - | Н | Н | М | Н | Н | - | Н | Н | Н | Н | Н | | | | 2:
CLO- | thinkin | ng capacity | | m communicate | 2 | 80
70 | 70
65 | Н | Н | - | Н | - | | Н | Ì | | Н | Н | - | Н | Н | Н | | | | 3:
CLO | better
Develo | | f comprehen | sion of texts base | d on diffe | erent culture and | 2 | 70 | 70 | Н | п | Н | Н | -
H | - | Н | - | | Н | Н | - | Н | Н | Н | | 4:
CLO- | Streng | | and written sk | ills of the student | 7 | -3.5 | 2 | 80 | 70 | - | Н | - | М | - | Н | Н | | | Н | H | | Н | Н | Н | | 5:
CLO | | e able to clear | | | | 777 | 2 | 75 | 70 | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | | 6: | | | 157 | 7,10 | ation
our) | 1: | 2 | 12 | Œ. | 1 | 12 | | | | | ď | 12 | ū | d | | | | h | 1 | 2 | | | | | S-1 | SLO-1 | தமிழ் இல
போக்குக
இலக்கிய | ள் | நவீன கவி
தோற்றம்
நவீன கவி | | தமிழரின்
போர் | т வீ | ரேம | ηЦ | G |) ற்ற
தார | ற்ற | ம் | | த் | - T | மொழி வரலாறு
மொழிப் பயிற் சி | | | | | | | | | | SLO-2
SLO-1 | நுட்பங்க
<mark>த</mark> மிழ்க் க
<mark>ம</mark> ரபு | ों । | வரலாறு
நவீன கவில
செல்நெறிக | | விழுமிய
பரணி அ | | | ம் | Ť | ந்த | | | ЭШ | ங்க | ள் | தம | இழு | | | | | | | | S-2 | SLO-2 | <mark>க</mark> ாலந்தே
கவிதை
உள்ளடக் | | செல்நெறிக
கோட்பாடு | களில் | பரணி
இலக்கிய | ர் நி | கள் | | | ்த
நெற்ற | | | | ங்க | ள் | 7 | | வரி | П | Ī | | த்த | 5ல் | | | SLO-1 | <mark>காலந்தே</mark>
கவிதை எ | ாறும் | கவிதை பெ | பழி | கலிங்கத்
(484) | துட | اباذ | ரணி | | துச்
தழ் | | | | щі | י | | | ச்
மக | | ல் | | | | | S-3 | SLO-2 | தற் <mark>கால</mark>
இலக்கிய | | நவீன கவி
மொழியின்
நுட்பங்கள் | | த லைவ | ரில் | ന് ഖ | ரீ
ம | 5 | ண
தழ் | ிக்(| | | | | | ກຎ | ச்ெ | சா | | பந் | 1க(| ज़ं | | | SLO-1 | புதுக்கவி
உருவாக்க | தை
கம் | <mark>நவீன</mark> கவி
ஆளுமைக | | தமிழ் இ
மரபில் த | | | J | எ | ழுத | ந்து | <u>@</u> £ | தழ் | | | <mark>த</mark> ம
கல | | lல்
ச்ெ | சா | ·ṁa | கள் | | | | S-4 | SLO-2 | தாது
இலக்கிய | | | | ഖ | ιπα | ாம் | ЦΠІ | ф (§ | இது | ģ | நி
க | ກຄ | າດເ | ١ۻ | n
D | | | | | | | | | S-5 | \$L0-1 பாரதியார் – விளிம்புநிலை மனிதர்கள் | | | | | அழகர்
கிள்ளை
(கண்ணி | | | ாது | |)று
தா | | | | | | மர | H | 5် မြ | БΠГ | _ _ ர் | | | | | 0-3 | SLO-2 | பாரதியா
பன்முக ஆ | ர் -
ஆளுமை | விளிம்புநில
இலக்கியம் | | தூது மரட
கிளியும்
பாராட்டு | | | | F |) ഇ | கன | ந (| ഖஎ | T ர்ச் | F | தம்
மர | | lல்
56த | БΠ | _ர் | கள் | | | | S-6 | S-6 சேவகன் கைவிடப்பட்ட கலம்
குழந்தை | | | | | கலம்பகம் வரலாறு வழக்காறு | | | | | ள் | | | | | | | | | | | | | | | | குழந்தை
புறக்கணிப்பும் கல | | | | | கலம்பக
இலக்கிய | ங் | கள் | - | | ரீதி
நிறி | | | ள் | | | υμ |)
OL | υпί | ے اگر | அறி | ிமு | கம் |) | | | | | 1 | | 1 | 1 | |------|-------|---|---|---|--|--| | | | சொல்லும் | | | | | | | | வாழ்வியல் | | | | | | S-7 | SLO-1 | 20 ஆம்
நூற்றாண்டுக்
கவிதை மரபில்
பாரதிதாசன் | புலம்பெயர்தல் | நந்திக் கலம்பகம்
(77) | புதினம் தோற்றம் | தமிழில் பழமொழிகள் | | | SLO-2 | தமிழும் | புலம்பெயர்
வாழ்வியல் | மகள் மறுத்தலில்
வீரம் | புதினம் வளர்ச்சி | பழமொழியும்
பயன்பாடும் | | | SLO-1 | பாரதிதாசன் –
தமிழினி
இனிமை, | அனார் - மேலும்
சில இரத்தக்
குறிப்புகள் | குறவஞ்சி
அறிமுகம் | புதினத்தின்
வகைமை | தமிழ் இலக்கண
நுட்பங்கள் | | S-8 | SLO-2 | தமிழின்
பெருமையும்
வளமையும் | உள்நாட்டுப்
போர்ச்சூழலும்
பெண்
உள <mark>வியலும்</mark> | குறவஞ்சி
இலக்கியங்கள் | புதின்
<mark>ஆசி</mark> ரியர்கள் | இலக்கணமும்
பயன்பாடும் | | | SLO-1 | வானம்பாடியில்
அப்துல்ரகும <mark>ான்</mark> | <mark>காலந்தோறும்</mark>
பெண் | குற்றாலக்
குறவஞ்சி (9) | அச்சு ஊடக
வரலாறு | தமிழில் சொல்
வகைகள் | | S-9 | SLO-2 | அப்துல்ரக <mark>ுமான்</mark>
கவிதை <mark>யின்</mark>
தனித் <mark>தன்மை</mark> கள் | பெண் இலக்கியம் | மலையும் வாழ்வும் | அச்சு ஊடகமு
<mark>ம்</mark>
தமிழும் | <mark>ச</mark> ொல்லும்
பயன்பாடும் | | | SLO-1 | அ <mark>ப்துல்ரகு</mark> மான் -
<mark>அவதா</mark> ரம் | சுகிர்தராணியின்
அம்மா | காப்பிய
இலக்கணம் | அச்சு ஊடகமும்
உரைநடை
வளர்ச்சியும் | பெயர்ச்சொற்கள் | | S-10 | | <mark>அவதா</mark> ரம் -
<mark>நம்பி</mark> க்கையும்
வெற்றியின்
<mark>பா</mark> தைகளும் | <mark>பெண்மையும்</mark>
தாய்மையும் | காப்பிய
வகைமைகள் | தமிழில்
உரைநடை | பெயர்ச் <mark>சொற்கள்</mark>
அறிதல் | | | SLO-1 | சுற்றுச்சூழலியல் | சமத்துவம் | தமிழில் பௌத்த
இலக்கியங்கள் | சுவடிகள் | வினைச்ச <mark>ொற்கள்</mark> | | S-11 | | தமிழ்க்
கவிதையில்
சுற்றுச்சூழலியல் | பாலியல் <mark></mark>
சமத்துவம் | ഥഞ്ഞിഥേക്കതെ | சிவதருமோத்திரச்
சுவடி பெற்ற
வரலாறு | வினைச்சொற் <mark>கள்</mark>
அறிதல் | | S-12 | | நரசிம்மன் –
மகனே என்னை
மன்னித்து விடு | நா.
முத்துக்குமாரின்
தூர் கவிதை | பெண் சாபமும்
காயசண்டிகையும் | புழங்குபொருள்
பண்பாடும் தமிழர்
வாழ்வியலும் | தமிழில் பெயர <mark>டை,</mark>
வினையடை | | 3-12 | | நவீன வாழ்வும்
சுற்றுச்சூழலியல்
அறிதலும் | தூர் கவிதை
முன்வைக்கும்
பெண் சமத்துவம் | பெண் வரலாற்றில்
சாபங்களின்
கதைகள் | கூஜாவின் கோபம் | பெயரடை,
வினையடை அ <mark>றிதல்</mark> | # Learning Resources - குறிஞ்சித்தேன், தொகுப்பும் பதிப்பும் தமிழ்த்துறை ஆசிரியர்கள், எஸ்.ஆர்.எம். அறிவியல் மற்றும் தொழில்நுட்பக் கல்விநிறுவனம், காட்டாங்குளத்தூர், 603203, 2<mark>020</mark> வல்லிக்கண்ணன், புதுக்கவிதை தோற்றமும் வளர்ச்சியும், ஆழி பதிப்பகம், செ<mark>ன்ன</mark>ை, 2018 - கா. சிவத்தம்பி, தமிழில் சிறுகதை தோற்றமும் வளர்ச்சியும், என்.சி.பி.எச்., ச<mark>ென்ன</mark>ை, - தமிழ் இணையக் கல்விக்கழகம் http://www.tamilvu.org/ மதுரை தமிழ் இலக்கிய மின் தொகுப்புத் திட்டம் https://www.projectmadurai.org/ | | | 4 | Contin | nuous Le | arning As | sessmen | t (50% we | ightage) | 1 | Final Examination (50% weightage) | | | | | |---------|------------------------------|--------|----------|----------|-----------|---------|-----------|----------|----------|-----------------------------------|------------|--|--|--| | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Filial Examiliat | weightage) | | | | | | | Theory | Practice | | | | | Level 1 | Remember | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | | | | | | Level I | Understand | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | - | | | | | Level 2 | Apply | 40% | 40% | 50% | 50% | 50% | 50% | 50% | 50% | 50% | | | | | | Level 2 | Analyze | 40 /0 | 40 /0 | 30 /6 | 30 /6 | 30 /0 | 50 % | 30 /6 | 30 /6 | 30 /6 | - | | | | | Level 3 | Evaluate | 30% | 30% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | | | | | Level 3 | Create | 30 /6 | 30 /0 | 20 /0 | 20 /0 | 20 /0 | 20 /0 | 20 /0 | 20 /0 | 20 /0 | - | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | • | 100 % | | | | # CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designer | s | | |--------------------------|---|---| | Experts from
Industry | Expert from Higher Technical Institutions | Internal Experts | | _ | Dr. RSrinivasan Associate Professor, Department of
Tamil, Presidency College, Chennai, | 1. B.Jaiganesh, Assistant Professor & Head, FSH, SRMIST | | Cours | | 20G01J | Cour
Nam | | Н | IINDI-I | | | | ours
itego | | G | | | Gen | eric | Ele | ctive | Co | urse | ! | L
2 | T 0 | P
2 | C
3 | | | |-----------------|--|--------------|-------------|---|---|-------------------------|--|-------------------------------|-------------------------|-----------------------|----------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|---------------------------------------|----------------------|----------------------------------|----------------------|-------------------|-----------------------|-----------------|-------------|--------|-------|--| | | quisite
ırses | Nil | | | Co-requisite
Courses | Nil | | | | Prog | jres: | | Nil | | | | | | | | | | | | | | | | Cours
Depar | e Offer
tment | ing | | HINDI | | | Data Book /
Codes/Standards | | | | | | | | | | Ni | I | | | | | | | | | | | Cours
Ration | e Learr
nale (CL | ning
.R): | | The purpose | of learning this | s course | is to: | | | Lea | rnin | ng | | | Pro | grai | n Le | earni | ng (| Outc | ome | es (P | LO) | | | | | | CLR-
1: | To be a | able to co | onvers | e well in the H | lindi Language |) | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | CLR-
2: | To read | d and wri | ite and | clarity | CLR- | To be v | willing lis | teners | and translator | rs –wh <mark>ere nee</mark> | d be | To acq
life. | uire the v | values. | /thought conte | ents of the write | ers and _l | oractice in it in | | | | | | SS | | | O) | | | | | | | | | | | | | | To find | | | ough the vario | us forms of lite | rature a | nd learn to | (moc | (%) | (%) | adae | spts | scipline | e Je | _ | wledge | | ata | | S | so | | | | | | | | CLR- | To disc | over the | impor | tance of the la | nguage in mai | king edu | ıcation as a | ng (Blc | siency | ment | nowle | Concepts | ed Dis | owledg | lizatio | Kno | ng | ret Da | kills | ig Skil | Skills | | | | | | | | 6: | means | or growt | n in iite | e and not mere | e literacy. | | | Thinkii | I Profic | Attair | entalk | Jo uc | Relat | ral Kno | Specia | Utilize | Modeli | Interp | tive S | Solvir | ication | Skills | | | | | | | | At the end of this course, learners will be able to: To expression the Hindi language in its various forms. | | | | | able to: | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Inter <mark>pret Data</mark> | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PSO -1 | PS0 -2 | PSO-3 | | | | | CLO-
1: | To appreciate the Hindi language in its various forms. | | | | | - 10 | 2 | 75 | 60 | Н | Н | Н | - | ŀ. | - | - | F | ŀ | - | - | - | - | - | - | | | | | CLO-
2: | To understand the philosophy of life and living through stories | | | | | | ries. | 2 | 80 | 70 | 1 | Н | - | Н | - | - | - | 7 | | - | - | - | - | - | - | | | | CLO-
3: | O- To help the students learn and develop the fundamentals of life, through | | | | | | | 2 | 70 | 65 | Н | - | - | Н | - | - | - | - | - | - | - | - | - | - | - | | | | | To sha | re the ric | hness | of thought an | d content pres
hat the readers | ented in | the Hindi | 2 | 70 | 70 | Н | Į. | Н | Н | Н | 1 | 4 | - | Ī | | Н | - | - | - | - | | | | | To guid | de the stu | udents | in the learning | g of the technic
ne field of admi | cal aspe | ct of the Hindi | 2 | 80 | 70 | - | Н | - | Н | ī | - | i | - | - | | - | - | - | - | - | | | | | To enc | ourage ti | he stu | dents to comm | nunicate with the Documentary | he public | c, on a large scale | 2 | 75 | 70 | Ţ | | | Ţ | - | - | | - | - | - | 7 | - | - | - | - | | | | | ration | Inedian | II OI IVI | ain sueam and | Documentary | / IIII113. | - | our) | | | 12 | 12
Ekanki aur | | | 12 | | | | | | | 12 | | | | | | | 12 | 4 | | | | | | | SLO-1 | -5 | Kahan | i kya Hai | kya h
Vidhyarthiya | ai | Patrkarita | ka a | aram | bh | | H | F | ilm S | amil | ksha | | | Takniki Shab <mark>davali</mark> | | | | | ⁄ali | | | | | S-1 | SLO-2 | | ivan ka | a anubhav | ke anta
smajhkar
dwara use
kar sakta | r ko
apne
prastut | Vidhyarthi <mark>y</mark> on k
prti ja | | amaj | ke | Film | ı ka ı | orabl | nav I | ko sr | najh | na | /aig | nik ta | | se l | | | n ka | | | | | | SLO-1 | H | Kahan | i ke Tatva | EKANKI KA | ARTH | Aazdi aur Patrka | | | | | 5 | SAMI | KSH | A K | YA H | ΙΑΙ | ď | | | AF | RTH | | | | | | | S-2 | SLO-2 | | Ks | an karne ki
hmta | Vidhyarthi ke
vishklesha
kshamta j | an ki | Vidhyarthiyon k
ihas smajkar san
sahyo | naj n | irma | | | Tai | | rishle
iida k | | | nmta | ۱ ۱ | idhy/
us | arth
ke n | i usk
nahta | ce ar
av sr | th don
injhe | vara
nge | hi | | | | | 01.0.4 | | | har Ye Mera
Shar | 1135 | | | | | | | L | Ī | | ij, | | | | | | | | | | | | | | S-3 - | SLO-1 | Pariv | | Buzargon ke
o Samjhana | PARIBHA | SHA | PATRKARITA | KA N | ИАН | TAVA | Α | | | SHA | | | | | | PA | ARIB | SHAS | SHA | | | | | | 3-3 | SLO-2 | | | Sanskriti Se
yon ko Jodna | Vidvano ke paricha | | Patrkarita se bh
smadhan l | | | | | | а | Vidhy
idhya
us s | aan k | karna
ksha | jiss | e vid | hya | rthi \ | par | nn vi
ibha
smjh | sha | se u | s ba | at ko | | | | SLO-1 | Pyar | Bantne | aiwala
e se dukh kam
ta hai | SWARO | OP | PTRAKARIT | A K | A AF | RTH | | SAM | IIKSI | | | | SHY | Ά } | HAB | DAV | 'ALI | KI A | VSF | IYAł | (TA | | | | S-4 | SLO-2 | | | anavata ka Path /idhyarthiyon me iski Vibhinn vidh
samajh se lekhan vidhyarthiyo | | | | | kik k | | | orati | • | ni ke
bod | | | • | | Vaiç | gniko
n | | a awi
avpu | | kitn | а | | | | S-5 | SLO-1 | Chatr | o me l | adri Pal
Jtsah Vardhar
arna | PATHYA VA | | PTRAKARITA K | | , | HASH | łA |
| FILN | I KA
MAH | SAN | ИАJI | | | BHASHA VAIGYANIK | | | | | | | | | | | SLO-2 | | a-beti | ek saman ke
ko smjhana. | /idhyarthiyon
kaushal bd | | | | | dhan | bhi | Sa | maji | k utta | | | v ko | | Bha | sha | /aigr | nikor | ı ki j | anka | ari | | | | 0.6 | Nadi aur Jeevan SLO-1 Paryavaran ke mahtav se PRASTUTI PRAMUKH | | | | hota hai PRAMUKH SAMACHAR PATR FIL | | | smjhana
FILM KA VISHLESHAN | | | | | KARYALYIN SHABD | | | | | | | | | | | | | | | | 3-0 | Manay Jeeyan me nadi ki Natak khelne par | | | | | Vidhyarthiyon ki | jank | ari b | adhe | gi | Vidh | nyart | hi tar
sikh | kik v
nega | | esha | n h | | kais
Ihyo | | | | | | | | | | S-7 - | SLO-1 | Pachees chauka Ded Sau
Jamindari Pratha se
awagat karana | MAHTVA | TV.PATRKARITA | DRISTIKON NIRMAN | ANGREZI SE HINDI ANUVAD | | |-------|-------|--|---|--|--|--|--| | 3-1 | SLO-2 | Asprishya Vicharao ke
Prati Sakaratamak Bnana. | | TV patrkar ke daiytav ko smajkar
vidhyarthi ise apne rozgar se jod
sakta hai | Vidhyarthi ka drishtikon nirmit
hoga | Hindi adhikarai aur anuvadak
ke pad ke liye tayaar karna | | | | SLO-1 | Kahani ka Uddeshya | PRASHAN-ABHYAS | PHOTO PATRKARITA | DOCUMENTRY FILM | HINDI SE ANGREZI ANUVAD | | | S-8 | SLO-2 | Vidhyarthiyon ko Samaj se
Jode rakhna | Vidhyarthiyon ka
lekhan kshmata
Badhna | /idhyarthiyon me photo patrkarita
ke mahtav ka smajh paida hona | Vidhyarthi samajik dharatal ki
kathinai ko smajhkar desh se
judega | lindi adhikari aur anuvadak ke
pad ke liye tayaar karna. | | | | SLO-1 | Kahani Lekhan | | | | | | | S-9 | SLO-2 | Vidhyarthi Ko likhne ki aur
Prerit karna | Vidhyarthi ko smaj
upyog hito ki jankari
dena | Vifhyarthi apni baat rakhne ki
kshmta vikstit karta hai | Vidhyarthion ko jivan ke
anchue pahluon se bhi
sakshaktkar | Vidhyarthiyon ko rozgaar se
jodna | | | | SLO-1 | Seminar | PARICHARCHA | BHASHA-SHAILI | FILM KE DARSHAK | ATI MAHTVAPURN SHABD | | | S-10 | SLO-2 | Vidhyarthiyon dwara
Prastuti karan | Vidhyarthi me vak-
kaushal bdhana | Vidhyarthi ko apni report me
bhasha-shaili ko sikh kar ek
badhiya reporter ban sakta hai | Vidhyarthiyon ka samajik
gyan | Shabdon ke mahtav ko smajhkar use yaad karna | | | S-11 | SLO-1 | Prashan Abhyas | BHASHA SHAILI | PATRKARITA KE NIYAM | FILM AUR BAZAAR | SAMANYA SHABD AUR
PARIBHASHIK SHABDAVALI
ME ANTAR | | | 5-11 | SLO-2 | Vidhyarthiyon me Lekhn
Kaushal ki kshmata Viksit
karna. | Vidhyarthiyon ko
bhasha ka mahtav
smjhna | Vidhyarthi ise sikh kar ek nyay
priya patrkar ban sakta hai | Vidhyarthiyon ko rozgaar se
jodna | Vidhyarthiyon ko vaighniko
dwara tayaar ki gai bhasha ki
samaj | | | | SLO-1 | Path-Punravarti | EKANKI AUR
RANGMANCH | PATRKAR KA DAIYTVA | FILM DARSHAK KA
MAHTAVA | PARIBHASHIK SHABDAVALI
KA MAHTAV | | | S-12 | SLO-2 | Pariksha ke liye Saksham | Vidhyarthi isse
rangmanch ke
mahtav ko
smajhenge | Vidhyarthiyon ko patrkar ka
daityva sikhkar smaj ke uttar
daityva ko nibhana hai | Vidhyarthiyon ko darshak ki
ruchiyon se awagat karvana | Rozgaar se vidhyarthiyon ko
jodnaw | | | | The Prescribe Text Book Compiled and Edited by Department of Hindi | | |--------------------|--|--| | Learning Resources | <u>www.gadyakosh.com</u> | | | | <u>www.shabdkosh.com</u> | | | Learning | g Assessment | | | | | | | | | | A | |----------|------------------------------|--------|----------|----------|------------|---------|------------|-----------|----------|--------------------|-------------------| | | | | Continu | uous Lea | arning Ass | sessmer | nt (50% we | eightage) | | Final Examination | (E09/ weightens) | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA- | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Filiai Examination | (50% weightage) | | | Level of Tilliking | Theory | Practice Practice | | Level 1 | Remember
Understand | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | | | Level 2 | Apply
Analyze | 40% | 40% | 50% | 50% | 50% | 50% | 50% | 50% | 50% | | | Level 3 | Evaluate
Create | 30% | 30% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | | | Total | 10 | 00 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 | % | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | | | | | | | | |-----------------------|--|--|--|--|--|--|--|--|--| | Experts from Industry | Expert from Higher Technical Institutions | Internal Experts | | | | | | | | | | 1. Prof.(Dr.) S.Narayan Raju, Head, Department of Hindi, CUTN, Tamilnadu | 1. Dr.S Preeti. Associate Professor & Head, SRMIST | | | | | | | | | | | 2. Dr. Md.S. Islam Assistant Professor, SRMIST | | | | | | | | | | | 3 Dr. S. Razia Begum, Assistant Professor, SRM IST | | | | | | | | | Cours | 11111 | 20G01J | | | | | ULF20G01J Course Name French-I | | | | | | | | | | Ge | neri | c El | ectiv | /e C | ours | e | | <u>L</u> | T 0 | P
2 | C
3 | |--|--|--------------------------|-----------------------------|-------------------------|----------|-------------------|--------------------------------|------------------------|------------------------------|--------------------------|---|-------------------------|-----------------------|-------------------------|-------------------------------|-----------------------|--------------------------|--|--------------------|---------------------------------------|---|------------------------|--------------------------------|------------|--------------|--------------|--------|--------| | Cou | equisite
urses
e Offer
tment | INII | 1 | French | C | Co-req
Cour | | | ata Book /
odes/Stan | dards | | | Prog
Co | ress
urse | | Nil | | | | Ni | ı | | | | | | | | | | e Leari
nale (Cl | | | The purp | ose of | f learni | ng this | course | is to: | | | | Lea | rnin | 9 | | | Pro | graı | m Le | arni | ng (| Outc | ome | s (P | LO) | | | | 1: | R- Enable the students to overcome the fear of speaking a foreign language and take position as a foreigner speaking French Make them learn the basic rules of French Grammar. | | | | | | | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-
4:
CLR-
5:
CLR-
6: | CLR- 6: Express their sentiments, emotions and opinions, reacting to information, situations Course Learning | | | | | | | | ion, | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Inte <mark>rpret Data</mark> | Investigative Skills | Problem Solving Skills | Communication Skills | cal Skills | | | | | | Outco | e Leari
mes (C | | At the e | nd of this | s cours | se, lea | rners w | vill be ab | ole to: | | Level of | Expecte | Expecte | Fundan | Applica | Link wit | Proced | Skills in | Ability t | Skills in | Analyze | Investig | Probler | Comm | Analytical | PSO -1 | PSO -2 | PSO-3 | | CLO-
1:
CLO-
2: | | | | | | | | civilizatio | on and trans | slation | 2 | 75
80 | 60
70 | H
- | H | H
- | -
Н | • | -
Н | | 7 | F | | -
М | 1 | - | - | - | | 3:
CLO-
4: | | relop cont
erpret the | | | | | | - | | | 2 | 85
70 | 75
80 | H | | -
Н | Н | -
Н | H
- | | 1 | | | M
H | 1 1 | - | - | - | | CLO-
5:
CLO-
6: | To imp | rove the | commu | ınication, | , interc | cultural | eleme | nts in Fı | rench langu | age | 2 | 80 | 70 | | Н | - | H | 1 | | | | | | H
- | 1 1 | - | 1 | - | | | ation | | 12 | 2 | - | | | 12 | | Ť | i | 1 | 2 | ÷ | | H | | 1 | 2 | | | | | Ī | 12 | Ħ | | i | | S-1 | SLO-1 | | ır, ça v | ra? | | | _ | appelle
, Manisl | | | | -ce
mpl | | ř | H | | s mo | | | 'ai | | 1 | Il est comment ? Les objectifs | | | | | | | S-2 | SLO-1
SLO-2 | | | és | | | | | nels sujets
ous, IIs/Elle | | | essi
mple | | | | | rma
fémir | | du fé | émin | in (3 | | | | | | | | | S-3 | SLO-1 | Les ani | | domestiq | | | | re et av
uxiliaires | | Que | - | es ob | jets | | | | hrase | | | _ | е | - | cara | | | H | | | | S-4 | SLO-1 | | irs de la
ois de l'a | a semain
année | | Les art
Les ex | | 14.1 | indéfinis | + | - | - | entité
entité | - | -+ | - | st – d
exen | Ħ | - | ? | | 1 | | _ | | s de
etc. | | (1) | | S-5 | SLO-1 | Les no | mbres o | <mark>de 0 à 6</mark> 9 | 9 [| La forn | nation (| du fémir | nine (1) | La li | iaiso | n | | | | Qu'e | st – | ce q | ue C | C'est | | Le | s no | mbre | e à p | artir | de 7 | 70 | | | SLO-2 | Les no | mbres | | l | Les fér | minins | | | Les | acti | vités | | | | Les | objet | s | | | | Le | s ex | emp | les | | | | | S-6 | SLO-1 | _ | . , | | | | | du plurie | (1) | _ | sion | | | | | | est – | | | | | _ | 0? | | | _ | | _ | | | SLO-2
SLO-1 | - · | | | - | | emples | | ife | _ | | vités
on de | escer | dre | | | perso
prase | | | Δ | | + | form | | n du | ı fém | inin | (3) |
| S-7 | S-7 SLO-1 L'accent Les adjectifs possessifs SLO-2 L'accent tonique Les exemples | | | | | | | | | cend | | | | | égat | | , | | | + | s ex | | | .5/11 | a 111 f | -1 | | | | S-8 | SLO-1 | Les art | icles dé | éfinis | E | Entrer | en con | tact : sa | | Into | natio | on m | ontar | nte | | C'es | t | | | | | Le | s art | icles | con | tract | és | | | S-9 | SLO-2
SLO-1 | Bonjou | icles ind
r, - Salu | | | Dire co | | | mander | _ | | ntant
on sa | | | | ll est
Les
grou | verbe | es d | u pre | emie | r | Le | | non | par
ns pe | ersor | nel | 3 | | | | Ca va | | | | | | z-vous | ? | _ | obje | | | | | | exen | <u>. </u> | | | | _ | s pro | | | _ | | | | S-10 | SLO-1
SLO-2 | | ppelle <i>F</i>
st votre | | | Se pré
Préser | | elqu'un | | _ | Mot
exp | s
ressi | ions | | | _ | verbe
erbe | _ | _ | | | _ | | | | nterro | ogat | ts | | C 11 | SLO-1 | Les Mo | ots | | I | Demar | nder | | | Den | nanc | der p | olime | ent | Demander et répondre poliment | | | | | Э | Les interrogatifs Les verbes du deuxième group | | |) | | | | | | S-11 | SLO-2 | Les Ex | pressio | ins | I | Demar | nder le | temps | | | Répondre poliment Les exemples Les exemples | | | | | nples | | | | | | | | | | | | | | S-12 | S-12 SLO-1 Entrer en contact Demander la date | | | | | | | info | rmat | der d
ions
elles | | | | | ande
matic | | | onne | elles | Dé | crire | l'as | pect | phy | siqu | е | | | | | SLO-2 | Se présenter. | Dire la date | Les exemples | Les activités | Décrire le caractère | |--|-------|---------------|--------------|--------------|---------------|----------------------| |--|-------|---------------|--------------|--------------|---------------|----------------------| | Learning
Resources | 1. | Theory: "Génération-Al" Méthode de français, Marie-Noëlle COCTON, P.DAUDA, L.GIACHINO, C.BARACCO, Les éditions Didier, Paris, 2018. | |-----------------------|----|---| | Nesources | 2. | Cahier d'activités avec deux discs compacts. | | | Bloom's | | Contin | uous Lea | arning Ass | essment | (50% weig | ghtage) | | Final Examination (50% weightage) | | | | |----------|------------|-------------------|----------|----------|-------------|---------|-----------|---------|----------|-----------------------------------|----------|--|--| | | Level of | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | | | | | | | Thinking | Theory | Practice | | | | l aval 1 | Remember | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | | | | | Level 1 | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | - | | | | Level 2 | Apply | 40% | 400/ | E00/ | 50% | 50% | 50% | 50% | 50% | 50% | | | | | Levei 2 | Analyze | 40% | 40% | 50% | | | | | 30% | 50% | - | | | | Level 3 | Evaluate | 30% | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 20% | | | | | Level 3 | Create | 30% | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 20% | - | | | | | Total | Total 100 % 100 % | | 0 % | 100 % 100 % | | | | 100 % | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | 77 | |-----------------------|--|--| | Experts from Industry | Expert from Higher Technical Institutions | Internal Experts | | | Dr. C.Thirumurugan Associate Professor, Department of French, Pondicherry University | 1. Kumaravel K. Assistant Professor & Head, SRMIST | | | | 2. Ponrajadurai M Assistant Professor, SRMIST | | Cc | urse | | Cours | se | | | | | | | | | Co | ourse | 9 | | | | | | | | | | | L | Т | Р | С | |--|--|--|---|---------------------|-----------------|--|-----------------------|-------|------------------|--------------------------|--|-------------------------|--|---|---------------------------------|----------------------|-------------------------------|------------------------------|--------------------|-------------------------|--|------------------------|--------------------------------------|---------------------------------|---------------------------------|----------------------------|-----------------------------|--------------------|-----------| | | ode | ULE20AE1T | Nam | | | | E | ngli | lish | | | | | ego | | Α | | Abi | lity E | Enha | nce | men | t Co | urse |) | 4 | 0 | 0 | 4 | | | e-requ
Cours | | | | | | quisite | Ni | il | | | | | Prog | gress | sive | Nil | | | | | | | | | | | | | | Co | | Offering | | Englisl | h | | | | | ata Bool
odes/Sta | | 3 | | | | | | | | | Ni | I | | | | | | | | | | | earning (CLR): | | The pur | rpose | of lear | ning this | s coi | ourse is | is to: | | | | Learning Program Learning | | | | | | | ing (| ing Outcomes (PLO) | | | | | | | | | CL
2 | : <i>hii</i>
R- Er
: an | tend and exponented the studented studen | oromise
ents to | overco |
noble
me the | le way
e fear | of living
of speal | king | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CL
CL
5 | : Mi
R- De
: an
R-
: St
R- He | evelop strateg
d life styles
rengthen spok
elp them expre | ies of c | ompreh
d writter | | | | | lture
actions | g (Bloom) | iency (%) | ment (%) | nowledge | Concents | ed Disciplines | wledge | lization | Knowledge | <u>B</u> L | ret Data | dils | g Skills | Skills | | | | | | | | | urse l | earning | oress their sentiments, emotions and opinions, and reactio and situations in a civilized, cultured and humane manner At the end of this course, learners will be able to: | | | | | | anner. | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Annlication of (| Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | | | 1 | : La | 7- To acquire knowledge of becoming better beings through the tools of | | | | | | | | 2 | 75 | 60 | Н | Н | | - | l. | Н | - | Н | - | Н | Н | Н | - | - | - | | | | 2 | O- To acquire a strong knowledge on concept, culture, civilization throug
English Literature | | | | | | | | | 2 | 80 | 70 | - | Н | - | Н | - | Н | - | Н | - | | Н | Н | - | - | - | | | | 3 | : Er | <mark>dev</mark> elop own
<mark>igli</mark> sh Langua | | nt and to | o be a | able to | translat | e us | sing th | ne feature | es in | 2 | 70 | 65 | Н | - | - | Н | - | Н | 1 | Н | ď | | Н | Н | - | - | - | | _ | : 10 | interpret the present an in | | | | | | · | | | | 2 | 70 | | Н | H | Н | Н | Н | Н | • | Н | 4 | j | Н | - | - | - | - | | 5 | : ele | ements acquir
participate in | red thro | ugh En | iglish l | Literati | ıre | | | 200 | 2.1 | 2 | 80 | 70 | - | Н | 1 | Н | 70 | Н | -1 | Н | - | ř | Н | • | - | - | - | | CL
6 | . Er | nglish with bot
ntent of speed | h profic | ciency i | n the l | langua | ge and | posi | itive c | aliber in | the | 2 | 75 | 70 | Н | Н | - | Н | М | Н | М | Н | Н | Н | Н | Н | Н | Н | Н | | | ratio
hour) | _1 | 12 | | | | | 12 | 2 | | | | | 12 12 | | | | | | 12 | | | | | | | | | | | S-
1 | SLO
-1 | Introduction t | | | in the | | al impad
uage ar | | | a as obse
will be | | | olain | ned to the purpose of monologue is explained are to | | | | | | are t | Homophones and Homonyms are to be explained in the class along with examples of usage. | | | | | | | | | | | SLO
-2 | The rationale
unit will be di | | | The s | | 's will be | e en | ncoura | aged to ir | mpart | The aske own imag | d to
stori
es | crea
es fr | te the | nose | are
the | sam
to b
lear | e pro | ovide | | | Hov
as vo
to be | ocab | ulary | | | | | | S-
2 | SLO
-1 | Feminism thr
Kamaladas' p
Kindergarten | ooem' l | n | | | han and
English | | | her tongu
ussion | | are nown storie | nade
carto
es re
es ar | to boons
lated | ring
to te
I to s | thei
II
ocia | The to | e lea
creat
nolo | e the | ir ov | vn | ie | Cros
give
then
diffe
hom | n to i
n und
renc
opho | the s
derst
es ai
ones | tude
and
nd u
and | nts t
the
sage
hom | o ma
of
nony | ake
ms | | | sLO feminist critique's stand through poets like Meena Kandasamy is discussed Students from different regions are ask talk. The peculiarity in their pronunciation to be identified by them | | | | | ation is | How
and | | | | | ass | e cor
sesse
una i | ed ar | nd th | е | | The
by m
hom
on th | akin
opho | g the | эт и | se | | | | | | | | | S-
3 | | | | | ed | Intern
mem
in the | es to | o be | | | cre
and
tha
sho
and
pro | | by the rate of the control co | he st
e the
logue
c a s
nave | tuder
idea
e
tory
a | nts
1 | How
prop
situa
expla | er w
ation | ord a
is to | at a g
be p | giver
oract | i
ically | / | | | | | | | | SLO Questions on her perspectives are to be posed by the students Everymistakefound in the textisanalysed | | | | | | memes on popular issues to be created in the class Memes on popular issues to be created in the class proper beginning middle and an end. | | | | | | o ch | _ , ,,,, | |----------|-----------|--|---|---|---|---| | S-
4 | | Gender inequality is
discussed through A K
Ramanujam and his
poetry | The structure of sentence in English and the distorsion of the sentence isverified | Autobiography and
biography differences
are explained | To ask the students to bringnewspaper to class and makethem select a column and readitloudly. | To give all the parts of speech not according to the grammar book order but according to a method which would easily make one understand correlation of one with the other. For instance – Noun, Pronoun, Adjective, Verb, Adverb will have to be the order | | | | Different legal situations
where both the genders
suffer is explained in the
class | Diffèrent sentences are given and tested | Certain Classic
autobiographies and
biographies are
presented | No meaningis to
beexplained. Just the
flow is to bechecked. | The students are made to use
as many adjectives as
possible for describing their
friends | | S- | SLO
-1 | Kalki the poetisinvited to conduct a guets lecture on herownpoem. | Nobel? What Nobel, asks
MrMathrubootham is discussed | How to give voice to an inanimate object. | Another reading loud
session of the same
passages are to be
conducted along with
dictionary checking for
meanings are to be
done. | The parts of speech must beused in different sentences | | 5 | SLO
-2 | Questions on her
perspectives are to be
posed by the students | The attitudes of people in a ludicrous manner is discussed | Different objects are
given to the students
and they are asked to
give autobiographical
notes to them | The new meanings that the students get must be compared with the given word and the distance between the meanings are to be explained | the teacherought to use the
board to draw a situation to
make one
understandeachpart's usage. | | S-
6 | | Seminar to generate
discussion to enhance
gender sensitivity is
conducted | The Text is analyzed in detail | Practically test the
students in class by
giving them different
concrete objects. | To make them compare
and realize how they
had overcome their fear
for English | Along with parts of speech
particularly when Verb is
being taught Tenses ought to
be taught with same
methodology mentioned
above. | | | SLO
-2 | Case studies are to be incorporated by the students in their seminar | More insights into Indian English is given | Ask the students to
evaluate each other's
autobiography on
concrete objects | The comprehensive techniques are taught | The students are asked to create a lighter vein situation and asked to use all the tenses | | S- | SLO
-1 | Human interest columns in news papers - tragedies on women men and transgender documented is read aloud and discussed in the class room. | Neutral accent is taught along with right pronunciation | Caption writing is taught | To develop the ability to
pick up a conversation
istaugh | The rules of Tenses are taught with live examples in the classes. | | 7 | | . how much are the students able to relate with or able to feel emotionally for those situations is to be checked and analysed | Test is to be conducted to check how far a student is able to understand neutral accent | The purpose of the caption writing is to be instilled | conversation
appropriatelywilllbetaug
ht | Ability to use all the rules in tenses is taught. | | | SLO
-1 | Case studies to be given to the students to document their reactions | Mr Mathruboothamisfullysupporting all new technologies – discussion | Different examples for captions are given | Different situations to be given to the students to engage in a conversation. | The basic way to pick an error is by already knowing the rules of grammar thoroughly. | | S-
8 | SLO
-2 | Find out if there is any student finding it hard to emote or is insensitive toward the moment | Humor and sarcasmisskimmedfrom the text | The studenst are asked to create captions similar to the ones shown in the class | The students are asked to find errors in each others' monologue | Hence all the rules are to be | | S-
9 | SLO
-1 | Students are to made to createtheirownenactable content on the prevailinggenderinequalities | How to write a statement and question is to be taught with reference to the text. | The students are
made to give captions
different news articles,
products and
situations | To test how much one is able to use ironyhumor and sarcasm in one's conversation | Excercises on all sorts of possible errors are given to the students and asked to rectify. | | | SLO
-2 | The students are asked to
improvise on dialogue on theirown | The way sentences are constructed according to the regional impact is discussed | The best is appreciated for its qualities of being best | Natural usage of punisexplained | Mathrabootham's passages are given to the studentsagain to check the errors. | | S-
10 | SLO
-1 | Feminism vs Gender
inequality a test for the
students to chart out the
existing gulf | Pizza maavu : Welcome to Mr
Mathruboothamfoodrecipiewebsiteisdiscuss
ed | Public
Speakingexamplessinc
e Julius Caesar to
Martin Luther isgiven | To teachdifferentkinds
of readingskimming
scanning and intensive
reading extensive
reading is taught | Definesynonym and antonym.
Ask the sudents to
identifysynonyms and
antonyms in text. | | | SLO
-2 | False allegations and
Legal situations
sometimes created by
women to corner men only
degrades the freedom
struggle of women –
discuss | The students are made to explain the textthemselves | The techniques used
by different leaders
sinceagesisdiscussed | Teh students are
practicallyasked to use
thosemethodology to
understand a text | Demonstartetheriunderstandi
ng of synonyms and
antonyms in active learning.
Introduce thesaurus
reference. | |----|-----------|--|---|---|--|--| | S- | SLO
-1 | A detailed discussion on
the 4 poets is done in the
class through comparative
method | Identify the errors and make students to rewrite first two texts | ileader s canvasind is | The students are made to read the passages loudly | Demeonstrateunderstanding
of words by relatingthem to
their opposites (antonyms) | | 11 | -2 | While comparison the students are able to get a deeper analytical way of thinking and are able to present an all encompassed points | Check if they are able to retain the humor in
the text after correcting the sentences | What makes a talk
impressive is identified
and discussed | The students are asked questions from the passages to check their retention capacity | Demonstrateunderstanding of
wordswithsimilar but not
identicalmeanings
(synonyms) | | S- | | The comprehension and retention and application of all the acquired knowledge of the student is checked by initiating an informal discussion in the class. | Identify the errors and make the students to rewrite the last two texts | give impromptu | The learner is made to select phrases and words from the given passages and is asked to use it in own sentences | With the studentsbrainstormshortlist of commonlyusedwords | | 12 | SLO
-2 | The overall development in the student's EQ pertaining to gender oriented issues will be sensible and objective. | Check if they are able to retain the humor in
the text after correcting the sentences.
Explain the result to them | available for
other'srefferences | The ability to converse with humor sarcasm or deep thoughts and with the capacity to emote the desired emotion in the other is checked | Askthem to rapidlygivesynonyms and antonyms to thosewords | | Learning | | Theory: | | |-----------|----|--|--| | Resources | 3. | Horizon- English Text Book - Compiled and Edited by the Faculty of English Department, FSH, SRMIST, 2020 | | | Resources | 4. | English Gramar in Use by Raymond Murphy | | | Learning | g Assessment | | | | | | | | | | | |----------|------------------------------|--------|----------|----------|------------|---------|------------|-----------|----------|---------------------|-------------------| | | | 7 | Continu | uous Lea | arning Ass | sessmer | nt (50% we | eightage) | | Final Family (in) | 500/ | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (| 50% weightage) | | | Level of Thinking | Theory | Practice Practice | | Level 1 | Remember | 30% | | 30% | | 30% | - | 30% | | 30% | | | Level I | Understand | 30% | | 30% | | 30% | | 30% | -6 | 30% | | | Level 2 | Apply | 30% | The | 30% | | 30% | | 30% | 3.0 | 30% | | | | Analyze | 30 /6 | _ | 30 /6 | | 30 /0 | | 30 /6 | - | 30 /6 | | | Level 3 | Evaluate | 40% | | 40% | | 40% | 17:11 | 40% | | 40% | | | revel 2 | Create | 40 /0 | | 40 /0 | _ | 40 /0 | | 40 /0 | - | 40 /0 | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 6 | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | - Askin Mezi | |-----------------------|---|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | 1. Prof. Daniel David, Prof & Head, Department of English, MCC, | 1. Dr. Shanthichitra, Associate Professor, & Head, Department | | | Chennai | of English, FSH, SRMIST | | | | 2. Dr K B Geetha, Assistant Professor, Department of English, | | | | FSH, SRMIST | | | urse
ode | JMA20101T | Course
Name | | ALGEBRA A | AND TRIGON | NOMETRY | (| Cou | | С | | | Prof | essi | onal | Core | e Co | urse | | | L
5 | | P
0 | C
6 | |------------------|-------------------|--|-----------------------------|----------|--|-----------------|--|--------------------------|--------------------------|-------------------------|--------------------------|------------------|----------------------|----------------------------|-------------------|-----------|--|--------|-----------------------|---------------|--------------------------|------------------|--|---------|--------| | re
Co | Pre-
quisite | | | | Co-
requisite
Courses | Nil | | | Pi | • | ssive
ses | Nil | | | | | | | | | | | | | | | | irse Of
artmer | | Mathen | natics | | | a Book /
des/Standards | earning
(CLR): | The pu | ırpose | of learning th | is course is t | 0: | | | Lea | ning | | | | Pro | ograi | m Le | earni | ng O | utco | mes | ; (PL | .0) | | _ | | CLF
1: | diffe | earn rank of
erential equa | | | | ation of a ma | trix and solving | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLF
2:
CLF | 101 | understand t | he relation l | betwee | en roots and | coefficient of | equations | 3:
CLF | Lea | rn the conce | 4:
CLF | Stud | | | | of equations | | 4177 | m) | (%) | (%) | | | | arch | | | ability | | ¥ | | | | | | | | 5 :
CLF | App
R- Get | exposed to | the transfor | | n solving a sy
n of equations | | summation of | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | wedge | Sis | Design & Development | Analysis, Design, Research | sage | <u>e</u> | Environment & Sustai <mark>nability</mark> | | ndividual & Team Work | | Finance | ing | | | | | 6: | Trig | onometric se | eries | | 1 | - | | Thinkir | d Profic | d Attair | Knov | Analys | Deve | , Desig | Tool U | & Culture | nent & | | ıl & Te | ication | ∞ŏ | y Learn | | | | | | | earning
(CLO): | nt the end of | f this c | ourse, learne | rs will be abl | e to: | evel of | Expecter | =xpecter | Scientific Knowledge | Problem Analysis | Jesign 8 | Analysis | Modern Tool Usage | Society 8 | =nvironn | Ethics | ndividue | Communication | Project Mgt. | ife Long Leaming | PSO - 1 | PS0 - 2 | PSO-3 | | CL0
1: |)- Kno | w the fundar | mental appl | lication | of theory of | equations | | 3 | 85 | 80 | Н | Н | L | , , | | - | | | M | L | - | Н | - | - | - | | CL0
2: | | ntify the roots
ree equation | | tric fur | nctions in term | ns of coefficie | ents of third | 3 | 85 | 80 | М | Н | - | М | М | - | H | - | М | Z | - | Н | - | - | - | | CLO
3: |)- Und | derstand the nomials | concept of | differe | nt methods of | f finding the r | oots of a | 3 | 85 | 80 | Н | Н | - | | - | - | - | - | М | - | H | Н | - | - | - | | CLO
4: | App | ly the conce | pts of matri | ices, in | solving a sys | stem of linear | r equations. | 3 | 85 | 80 | Н | Н | Н | М | - | - | - | - | М | ď | - | Н | - | - | - | | CL(
5 : | ASS | ociate Desca | artes' rule i | in findi | ng the roots o | of a polynomi | als | 3 | 85 | 80 | М | Н | L | | | - | | - | М | | | Н | - | - | - | | CL(
6: |)- Solv | ve trigonome | etric series a | and log | garithm of a c | omplex numb | per | 3 | 85 | 80 | М | Н | - | 3 | - | - | - | - | М | - | - | Н | <u> - </u> | - | - | | | ration
our) | Modu | ule-I (18) | T | Module- | ·II (18) | Module-III | (18) | | Ī | N | Modi | ıle-I\ | / (18 |) | | | | ٨ | lodu | ule-V | ′ (18 |) | | | | S- | SLO- | Introduction
matrices-He
Hermitian a | ermitian, Sk | | ntroduction to
quations | polynomial | Introduction to s
powers of the ro
equation | | | roc | oduc
ots of
iven | a gi | ven e | | | | Intro | oduc | tion | to ex | xpan | sion | s of | sinn | θ | | 1 | SLO-
2 |
Orthogonal
matrices-pro
problems | | 5 | tandard ration | | sum of the power
roots of an equa | | f the | roc | blem
ts of
iven | a gi | ven e | | | by | Pro | blem | ns in | ехра | ansic | ons c | of sin | nθ | | | S- | | Linear depe
linear indep
vectors | | F | undamental t
ne theory of e | | sum of the power
roots of an equation
coefficient of por
k+1 | ation | usin | g giv | creas
en ec
antity | quati | | | | | Exp | ansi | ions | of co | snθ | | | | | | 2 | SLO-
2 | Cramer's ru
of linear equ
theorem wit | uations-
th proof | ir | escribe stand
ntegral equation
egree | | sum of the power
roots of an equal
coefficient of por | ation
wer | using | g roc
1 a g | iven | a gi
qua | ven e | equa | tion | | | | | | ansic | ons c | of co | snθ | | | c | SLO-
1 | Solution of s
linear equat
Cramer's ru | tions by | | roblems in po
quations | olynomial | Problems in sun
powers of the ro
equation using of
coefficient division | ots d
detac | of an | roc | rease
its of
iven | a gi | ven e | | | by | Exp | ansi | on o | f tai | nθ | | | | | | S-
3 | SLO-
2 | Introduction
of a matrix a
matrix | n to sub mat
and minor o | of a S | tandard ration
quation of nthe
pes of solution | degree | Solving problem
of the powers of
of an equation u
detached coeffice
division | f the
Ising | roots | | ninish
uatior | | the r | oots | of a | | Pro | blem | ns in | expa | ansic | ons c | of tar | nnθ | | | S- | SLO-
1 | of transpose | | x ra | roblems in St
ational integra
f nth degree | | Newton's theore
sum of the power
roots | ers o | | roc | blem
ots of | an e | quat | ion | g the | | | | | | in ⁿ 0 | | | | | | 4 | SLO-
2 | Elementary
transformati
equivalent r | ions-
matrices | | maginary and
pots | irrational | Describe Newton
theorem on the
the powers of the | sum
e roo | ots | | mova | | | | | | in te | erms | of c | osθ | cos ⁿ
and | sin | θ | | θ | | | SLO- | Rank of a m
elementary | | Т | heorems in i | maginary | Find sum of the
of the roots | pow | ers | | mput
mova | | | | ots | | | | ons ongl | | in ⁿ θ
ofθ |) in t | erms | s of | | Theorems in imaginary and irrational roots Finding the other roots of the equations from the given equation and its roots powers of the roots Possible values of sum of Problems in Removal of terms – square of the roots 1 elementary transformations Problems in finding the rank of a matrix Compute square of roots by Removal of terms Expansions of $\sin^n\theta$ in terms of multiple angles of θ Problems in $sin^n \ \theta$ in terms of multiple angles of $\ \theta$ | | SLO- | Tutorial Session | |----------|-----------|--|--|---|--|--| | S-
6 | 1
SLO- | Tutorial Session | | S- | SLO-
1 | Test for consistency of linear equations | Solving imaginary and irrational roots | Transformation of equations | Transformations in general | $\cos^n \theta$ in terms of multiple angles of θ | | 7 | SLO- | Condition for consistency theorem with proof | Forming the equation from the given roots | Possible ways of transforming the equation | in general | Express $cosn\theta$ in terms of cosines of multiples of θ | | S- | SLO-
1 | Consistency of systems of
linear equations-unique
solution | Problems in imaginary and irrational roots | Multiplication of roots by m | Transforming the equations by removal of terms | Expansion of $tan\theta$ | | 8 | SLO- | Consistency of systems of
linear equations-many | Problems in imaginary and irrational roots | whose roots are | Form the new equation by
Transforming the equations | Introduction to hyperbolic functions and their properties | | | SLO- | solutions Inconsistency of systems of linear equations | Introduction relation between roots and | multiplied by m Problems in forming the equation | by removal of terms Problems in transformations in general | Problems in hyperbolic functions and | | S-
9 | | Problems in solutions of systems of linear equations | coefficients of equations Solving the equations whose roots are in A.P | roots of the equation in A.P | Descarte's rule of signs | their properties inverse hyperbolic functions and their properties | | S-
10 | SLO- | Eigen values of matrices | Solving the equations whose roots are in A.P | Form the equation whose roots are the squares of the difference of roots of | Problems in Descarte's rule of signs | Problems in inverse hyperbolic functions and their properties | | | SLO-
2 | Eigen vectors of matrices | | the given equation Solving roots of the equation with sign changed | Descarte's rule of signs for negative roots of an equation | Eulers's formula and Formula for sinθ and cosθ in terms of exponential functions | | S- | SLO- | Properties of Eigen values
-proof | Problems in relation between roots and coefficients of equations | Problems in roots with sign changed | Find possible real roots -
Descarte's rule of signs | Periodicity of exponential functions,
Addition formulae | | 11 | 2 | Properties of Eigen
vectors –proof | Solving the equations whose roots are in H.P | Problems in roots with sign changed | Imaginary roots - Descarte's rule of signs | Relation between circular and hyperbolic functions | | S- | SLO-
1 | Tutorial Session | | | SLO-
2 | Tutorial Session | | S- | | Problems in Eigen values and Eigen vectors | Solving the equations whose roots are in H.P | Roots multiplied by a given number | Homer's method | Addition formulae for hyperbolic functions | | 13 | | Properties of Eigen values and Eigenvectors | Symmetric functions of
roots in terms of
coefficients of third degree
equation | Problems in Roots
multiplied by m | Real root – Homer's method | Periods of hyperbolic functions | | S- | SLO- | Introduction to Cayley
Hamilton theorem with
proof | Problems in symmetric | Solving problems in Roots multiplied by a given number | Positive roots-Horner's method | Introduction to logarithm of a complex number | | 14 | SLO-
2 | Cayley Hamilton theorem-
characteristic polynomial | Problems in symmetric functions of roots in terms of coefficients of third degree equation | Reciprocal equations | Negative roots - Horner's method | Real parts of logarithm of a complex number | | S- | SLO-
1 | Problems in Cayley Hamilton theorem | | Properties of a reciprocal equation | Solving more problems in
Homer's method | Imaginary parts of logarithm of a complex number | | | SLO-
2 | Computing inverse of a matrix and integral power of the matrix | Problems in cubic equations by cardano's method | Condition for an equation to be a reciprocal equations | Newton's method | Problems in real and imaginary parts of logarithm of a complex number | | S-
16 | | Introduction to Diagonalisation of Matrices by similarity transformation | method | Solving the reciprocal equation of odd degree with like signs | Real root - Newton's method | Logarithm of a negative real number | | 10 | SLO-
2 | Problems in
Diagonalisation of
Matrices | square term | Solving the reciprocal equation of odd degree with unlike signs | Find the real root of an equation - Newton's method | Problems in logarithm of a negative real number | | S- | | Introduction to Diagonalisation of Matrices by Orthogonal transformation | Solving cubic equations by comparing the product and sum | Solving the reciprocal equation of even degree | Negative root of an equation - Newton's method | General and principal values | | 17 | | Problems in Diagonalisation of Matrices by Orthogonal transformation | Finding the roots of cubic equations by cardano's method | Solving the reciprocal equation of even degree with middle term missing | Newton's method, Horners
method to find roots of an
equation | Problems in general and principal values | | S- | SLO-
1 | Tutorial Session | | | SLO-
2 | Tutorial Session | | | 4 | OLI VII ON TEKN TO BE | |-----------|----|--| | | 1. | Calculus, Vol.I, S. Narayanan and T K Manicavachagom Pillay, | | | | S. ViswanathanPrinters and Publishers Pvt. Ltd., 2010 | | Learning | 2. | Calculus Vol.II, S. Narayanan and T K Manicavachagom Pillay, | | Resources | | S. ViswanathanPrinters and Publishers Pvt. Ltd., 2010. | | | 3. | Advanced Engineering Mathematics by H.K. Doss, S.Chand, 2008 | - Mathematics, Volume 1, P. Kandasamy and Thilagavathy, S. Chand, New Delhi, 2004. Calculus, Thomas and Finney, Pearson Education, 9th Edition, | | | | Continu | uous Lea | arning Ass | sessmer | nt (50% we | eightage) | | | | | | |---------|------------------------------|--------|----------|----------|------------|---------|------------|-----------|----------|---------------------|----------------|--|--| | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (| 00% weightage) | | | | | Level of Tilliking | Theory | Practice | | | | Level 1 | Remember | 40% | | 30% | | 30% | _ | 30% | _ | 30% | _ | | | | Leveii | Understand | 40% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | | Level 2 | Apply | 40% | | 40% | | 40% | | 40% | | 40% | | | | | Level Z | Analyze | 40 /0 | - | 40 /6 | _ | 40 /0 | | 40 /0 | | 40 /0 | - | | | | Level 3 | Evaluate | 20% | | 30% | | 30% | _ | 30% | | 30% | _ | | | | Level 3 | Create | 20 /0 | | 30 /6 | _ | 30 /0 | - | 30 /0 | - | 30 /6 | - | | | | | Total | 10 | 0 % | 100 % | | 100 % | | 100 % | | 100 % | | | | #CLA – 4 can be
from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
ProfS. Ganapathy
Subramanian, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Mr. J. Sasi Kumar, SRMIST
Dr. K. Sheena Christy, SRMIST | | Cour | | UMA20102T | Course Name | | ANALYTICAI | L GEOMETF | RY | | | | | urse | , | С | | Prof | fessi | onal | Cor | e Co | ourse | <u>L</u> | T | | |--|------------------------------------|--|--|-------------------------------|---|-------------------------------|-----------------------------|------------------------|---------------|-------|----------------------|------------------------|----------------|--------|---------------------|--------------------------------|----------|---------------------|-----------------|------------------------|----------------------|----------|-----------|-----------| | Pre
requis
Course
Course
Departi | ite I
es
Offer | Nil | Mathematics | Co-
requisite
Courses | Nil Data Bo | ook /
Standards | | P | rogre
Cour | | e
Nil | | | | | | | | | | | | | | | Course
Rationa | | | The purpose of | of learning th | is course is to: | | | | Lea | rning | J | | | Pro | ogra | m Le | earn | ing C | Outco | omes | s (PL | .0) | | | | CLR-
1: | o lea | rn about conic | s in polar coon | dinates. | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR- 1
3: s
CLR- 1
4: CLR- 1 | o gai
phere
o gai | n knowledge a
e.
n knowledge a | | | ension.
volving plane sect | tion of a | (Bloom) | ency (%) | nent (%) | egbe | | pment | , Research | age | 0 | ustainability | | & Team Work | | nance | gr. | | | | | Course Outcom CLO- [| Learr
nes (C
Perive
roble | ning At the equations of ms | conics in polar | urse, learner
coordinates | s will be able to:
and to solve simples and to underst | 100 | ω Level of Thinking (Bloom) | S Expected Proficiency | 80 | | т r Problem Analysis | · Design & Development | | | · Society & Culture | · Environment & Sustainability | · Ethics | S Individual & Tear | - Communication | Project Mgt. & Finance | 工 Life Long Learning | . PSO-1 | , PSO - 2 | . PSO – 3 | | CLO- | | | phere and plan | e section of | the sphere | | 3 | 85 | 80 | Н | Н | | | | | | | М | | - | Н | - | - | - | | 4: | erive | and solve pro | oblems in cone | and right cir | cular cone | 333 | 3 | 85 | 80 | Н | Н | Н | М | Ä | | | F | М | L | - | Н | - | - | - | | CLO | | | | | circular cylinder | , | 3 | 85
85 | | M | Н | L | | 1 | | - | - | M | | | Н | - | - | - | | Dura
(ho | | Modu | ıle-l (18) | Mod | lule-II (18) | Mod | dule- | III (1 | 8) | | | М | odule | -IV (| (18) | | | | М | odul | e- V | (18) | | | | S-1 | SLO
1 | - Introduction | | three dimen | | Introduction | on to | Sph | ere | | ntrod | ductio | on to | con | е | | ı | ntroc | lucti | on to | cor | icoid | ds | | | 3-1 | SLO
2 | Introduction coordinates | | Equation to symmetric for | straight line in
orm | Introduction | on to | Sph | ere | | ntro | ductio | on to | con | е | f | l | ntroc | lucti | on to | cor | icoid | ds | | | S-2 | SLO
1 | Derivation polar coor | of conics in dinates | Equation of general form | straight line in | Equation passing to given poi | hrou
nts | igh f | four | (| Gene | eral E | quat | tion | of a | cone | | Stand | dard | type | s of | coni | coid | S | | 02 | SLO
2 | Derivation
polar coor | of conics in dinates | Equation of general form | straight line in | Equation passing t | hrou | | | (| Gene | eral E | quat | tion (| of a | cone | | Stanc | dard | type | s of | coni | coid | S | | S-3 | SLO
1 | Classification in polar co | on of conics
ordinates | Conditions f
to be Paralle | or the straight line | Equation passing to points of | of S
hrou | igh (| end | | Righ | t Cir | cula | r co | ne | ľ | | Grapl
ypes | | | | ntatio | on o | f | | 3-3 | SLO
2 | types of co | | to be Paralle | | points of | hrou
the | igh (
dian | end
neter | | | | cula | | | | t | Grapl
ypes | of c | onic | oids | | | f | | 0.4 | SLO
1 | Problems to
equation of
given direct
eccentricity | a conic with trix and | Conditions f
to be Perper | or the straight line | Properties | s of S | Sphe | re | Ç | • | ı ver | of a
tex a | | | | | Gene
centra | | | | of the | е | | | S-4 | SLO
2 | Problems to
equation of
given direct
eccentricity | o find the
a conic with
trix and | to be Perper | | | | | | Ç | giver
curv | ı ver | of a
tex a | and | guio | ling | c | Gene
centra | | | | of the | е | | | S-5 | SLO
1 | representat | tion of a conic | a Plane | at a line will lie or | a Sphere | | | | a | as or | igin | of co | | | | , | Simp | le pr | oble | ms | | | | | J-0 | SLO
2 | representat | he Graphical tion of a conic | | at a line will lie or | Problems
a Sphere | | Pla | ne ar | | Equa
as or | | of co | ne v | vith \ | /erte | X S | Simp | le pr | oble | ms | | | | | 0.0 | SLO
1 | | | Tutorial Ses | sion | Tutorial S | | on | | | | | essic | n | | | 1 | utor | ial S | essi | on | | | | | S-6 | SLO
2 | - Tutorial Ses | ssion | Tutorial Ses | sion | Tutorial S | essi | on | | | Tutor | ial S | essic | on | | | Ī | utor | ial S | essi | on | | | | | S-7 | SLO
1 | - Deriving the
Directrix of | | Intersection
Plane | of line and a | Condition touch a sp | | | ne to | | | | of co
s ger | | | hree | | Equa
o the | | | | | t pla | ne | | | 01.0 | Is | T | lo w r · · | le | I= 0 50 | |------|-----------|--|--|--|---|---| | | SLO-
2 | Directrix of a conic | Intersection of line and a Plane | Condition for a plane to touch a sphere | axes as its generators | Equation of the tangent plane to the central conicoid | | 0.0 | SLO-
1 | Problems related to
Directrix of a conic | The necessary and sufficient condition that the two lines will be coplanar | Point of contact of plane and a sphere | Simple problems | Simple problems | | S-8 | SLO- | Problems related to
Directrix of a conic | The necessary and sufficient condition that the two lines will be coplanar | Point of contact of plane and a sphere | Simple problems | Simple problems | | | SLO- | Deriving the Equation of
chord of a conic | Condition of coplanarity of two lines, one in general form and the other in symmetric form | Tangent plane of a sphere | | Necessary and Sufficient conditions for a plane to touch the central conicoid | | S-9 | SLO-
2 | Deriving the Equation of chord of a conic | Condition of coplanarity of two lines, one in general form and the other in symmetric form | | Condition that a general
equation of second degree
may represent a cone | Necessary and Sufficient conditions for a plane to touch the central conicoid | | S-10 | SLO- | Problems related to chord of a conic | Condition of coplanarity of two lines, both in general form | Plane section of a sphere | Equation of a cone with vertex, axis and semi-vertical angle | Simple problems | | | SLO-
2 | Problems related to chord of a conic | Condition of coplanarity of two lines, both in general form | Plane section of a sphere | Equation of a cone with vertex, axis and semi-vertical angle | Simple problems | | S-11 | SLO-
1 | Problems related to conics | | of a sphere | Simple problems | Point of contact of the tangent plane to the conicoid | | | SLO-
2 | Problems related to conics | Condition of coplanarity of two lines, both in symmetric form | Problems in Plane section of a sphere | Simple problems | Point of contact of the tangent plane to the conicoid | | | SLO- | Tutorial Session | | S-12 | SLO-
2 | Tutorial Session | | S-13 | SLO- | Deriving the Equation of
Tangent of a conic | Angle between two lines | Condition for Two Spheres to touch internally and Externally | Enveloping cone of a sphere | Simple problems | | | SLO- | Deriving the Equation of
Tangent of a conic | Angle between two lines | | Enveloping cone of a sphere | Simple problems | | | SLO-
1 | Problems related to
Tangent of a conic | Angle between a line and a
Plane | Equation of sphere through the circle of intersection of two sphere | Introduction to cylinder | Locus of the point of intersection of three mutually perpendicular tangent planes to a conicoid | | S-14 | SLO-
2 | Problems related to
Tangent of a conic | Angle between a line and a
Plane | Equation of sphere through the circle of intersection of two sphere | Introduction to cylinder | Locus of the point of intersection of three mutually perpendicular tangent planes | | | SLO- | Deriving the Equation of
Normal of a conic | Equation of two skew lines in symmetric form | Equation of sphere
through the circle of
intersection of two sphere | General Equation of a cylinder | to a
conicoid Simple problems | | S-15 | SLO-
2 | Deriving the Equation of
Normal of a conic | | | General Equation of a cylinder | Simple problems | | | SLO-
1 | Problems related to Normal of a conic | Shortest distance between two skew lines | Equation of sphere through the circle of intersection of plane and a sphere | Right circular cylinder | Director sphere and Director plane | | S-16 | SLO- | Problems related to
Normal of a conic | Shortest distance between two skew lines | Equation of sphere
through the circle of
intersection of plane and a
sphere | Right circular cylinder | Director sphere and Director plane | | S-17 | SLO-
1 | Problems related to conics | Shortest distance between two skew lines | Angle of intersection of two spheres | Simple problems | Simple problems | | 0-17 | SLO- | Problems related to conics | Shortest distance between two skew lines | Angle of intersection of two spheres | Simple problems | Simple problems | | 0.40 | SLO- | Tutorial Session | | S-18 | SLO-
2 | Tutorial Session | | | 1. | P. Duraipandian, Laxmi Duraipandian , D.Muhilan, Analytical | 4. | T.K.Manicavachagom Pillay, T.Natarajan, A text book of Analytical | |-----------|----|--|----|---| | | | Geometry-3 Dimensional, Emerald Publishers, 1983. | | Geometry- Part-I- Two Dimensions, Viswanathan Publications, | | | 2. | G.S.Pandey, R.R.Sharma, Vectors and Geometry, Wishwa | | 1986. | | Learning | | Prakashan.1988. | 5. | M.L.Khanna, Solid Geometry, Jai Prakashnath & Co Publishers, | | Resources | 3. | N.P. Bali, Solid Geometry, Laxmi Publications (P) Ltd, 2005. | | Meerut, 2008. | | | | | 6. | P.R.Vittal, Coordinate Geometry, Margham Publishers, 2003. | | | | | 7. | G.B.Thomas& R.L.Finney, Calculus & Analytic Geometry, Addison | | | | | | Wesley, Mass (Indian Print), 1998. | | Learning | g Assessment | | | | | | | | | | | |----------|------------------------------|--------|----------|----------|------------|---------|------------|-----------|----------|---------------------|-----------------| | | B | | Continu | uous Lea | arning Ass | sessmer | nt (50% we | eightage) |) | Final Evamination (| EOO/ woightogo) | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (| ou% weightage) | | | Level of Tilliking | Theory | Practice | | Laval 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | Level 1 | Understand | 40% - | | 30% | - | 30% | - | 30% | - | 30% | - | | Level 2 | Apply | 40% | | 40% | | 40% | | 40% | | 40% | | | Level 2 | Analyze | 40% | - | 40% | - | 40% | - | 40% | - | 40% | - | | Level 3 | Evaluate | 20% | | 30% | | 30% | _ | 30% | | 30% | | | Level 3 | Create | 2070 | - | 30% | - | 30% | - | 30% | - | 30% | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 0 | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Dr. V. Srinivasan, SRMIST | | 01. | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. S.Sangeetha, SRMIST
Dr. S. Vidyanandini, SRMIST | | Course | UMA | 20103T Course
Name | NUMERICAL ANALYSIS | | | | urse | | ; | | Pr | ofes | siona | al Co | ore C | ours | ie | | L
5 | T
1 | P
0 | C
6 | |---|---------------------------|--|---|--|--------------------------|--------------------------|-------------------------|----------------------|------------------|----------------------|----------------------------|-------------------|-------------|----------------|---------------|-----------------------|---------------|------------------------|--------------------|---------|---------|---------| | Pre
requis
Course
Course
Depart | site Ni
ses
Offerin | | Co- requisite Courses Nil Data Boo Codes/St | | | F | | ressiv | e Nii | | | | | | | | | | | | | | | | Learnii
ale (CLF | | of learning this course is to: | | | | Lea | arninç |) | | | Pr | ogra | m Le | earn | ing C | Outco | omes | s (PL | .0) | | | | 1: 6 | equation | IS | solve algebraic and transcender | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 2 : I | inear eo
Gain kno | juations
owledge on interpolating a | iterative methods to solve systend extrapolating methods in var | CLD | | in real ife
and the concept of numeric | cal differentiation and integration | n - | | | | | | | _ | | | ity | | | | | | | | | | CLR- | Acquire inal valu | knowledge of various tech | nniques and methods to solve in | nitial and | (moo | (%) ^ | t (%) | θ | | ent | searc | | | Sustainability | | /ork | | ce | | | | | | CLD | | | nerical methods in real life prob | lems | nking (Bl | roficienc | ttainmen | nowledge | alysis | evelopme | sign, Re | ol Usage | & Culture | it & Susta | | Team M | tion | & Finan | aming | | | | | | Learnin | | ourse, learners will be able to: | w | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & Development | Analysis, Design, Research | Modern Tool Usage | Society & C | Environment & | Ethics | ndividual & Team Work | Communication | Project Mgt. & Finance | Life Long Learning | PSO - 1 | PSO - 2 | PSO - 3 | | CLO-
1: | Solve al | gebraic and transcendenta | al equations using numerical me | thods. | 3 | 85 | | 11 | Н | L | - | - | - | - | | M | L | - | Н | Ī | - | - | | CLO-
2: | Apply di | rect and iterative methods | to system of linear equations | 50 | 3 | 85 | 80 | М | Н | - | М | М | - | ŀ | - | М | | - | Н | - | H | - | | CLO-
3: | Apply in | terpolating and extrapolation | ng methods | 2 | 3 | 85 | 80 | Н | Н | - | | - | - | | - | М | - | | Н | - | - | - | | CLO-
4: | Compute | e numerical differentiation | and integration | 3 | 3 | 85 | 80 | Н | н | Н | М | - | - | | - | М | ď | - | Н | ŀ | - | - | | CLO-
5: | nterpret | initial and final value prob | lems in differential equations | THE. | 3 | 85 | 80 | М | Н | L | - | - | - | i | - | М | | | Н | - | - | - | | | Analyse
nethods | | stic cases using existing numer | ical | 3 | 85 | 80 | М | Н | - | | | - | | - | М | - | - | Н | - | - | - | | | ation | 18 | 18 | | 18 | H | | | | 1 | 8 | | I | | | - | - | 18 | | | | | | (ho | SLO- | Introduction and review of fundamentals. | Introduction to Finite Differences | Introduction Numerical | on to | | | Num
ordin | ary d | solu | ution | | | | | | | ion o | | rital | Ī | | | S-1 | SLO- | Algebraic and transcendental | Forward and backward differences | Newton's
difference | forw
form | | | equa
Singl | | p me | ethod | ds- | | | | | Ė | al Pa | | olic e | qua | tion | | | SLO- | equations A solution of numerical equation by Bisection method | Central difference | Numerical
differentia
Examples | l
tion | | | Taylo | or ser | ies r | neth | od | | Fir | nite d | differ | ence | e and | d me | sh p | oints | | | S-2 | SLO- | Bisection method | Relation between operators | Numerical
differentia | Н | 1 | ł | Taylo | r ser | ies r | neth | od | Ì | Ex | plici | t sch | eme | | | | | | | | SLO- | A solution of numerical equation by Method of | Differences of a polynomial – Factorial polynomial | Examples
Numerical
differentia | l
tion | | | Euler | 's me | etho | t | | | С | rank | -Nicl | nolso | on so | hem | ne | | | | S-3 | SLO- | false position. False position method. | Newton's interpolation -
Newton's forward interpolation
for equal intervals | Examples Newton's difference derivatives | bacl
forn | | | Euler | 's me | etho | t | | | Sta | abilit | y of | the a | abov | e sc | hem | es | | | 6.1 | SLO- | False position method. | Newton's forward interpolation for equal intervals | | l
tion | | | Euler | 's me | etho | d | | | pa | | lic e | | dime | | | t | | | S-4 | SLO-
2 | A solution of numerical equation by Fixed point iteration method | Newton's backward interpolation for equal intervals | Numerical
differentia
Examples | l
tion | | | Impro | | | | | | Sc | lutio | n of
lic e | | dime
ion b | | | t | | | S-5 | SLO-
1 | Iteration method | Newton's backward interpolation for equal intervals | Numerical differentia Examples | tion | | | Impro | | | | | | pa
Ni | rabo
chols | lic e
son s | quat
sche | | у Сі | ank- | | | | J-0 | SLO-
2 | iteration method | Newton's forward and backward interpolation for equal intervals | | _ | _ | | Impro | oved | Eule | r's n | neth | od | ра | rabo | | quat | dime
ion b
me | | | | | | S-6 | SLO- | Tutorial Session | Tutorial Session | Tutorial Se | | | | Tutor | | | | | | | | l Se | | | | | | | | J-0 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial So | essi | on _ | | Tutor | ial S | essio | on _ | | | Tu | toria | l Se | ssion | 1 | | | | _ | | | | A solution of numerical | | Numercal Integration | Modified Euler's method | | |------|----------------|--|---
---|---|---| | S-7 | SLO-
1 | equation by Newton-
Raphson method | Central difference interpolation | Trapezoidal rule | Modified Ediel's Metriod | One dimensional Hyperbolic equation | | 0 1 | SLO-
2 | Newton-Raphson
method | Stirling's formula for interpolation - Examples | Trapezoidal rule | Modified Euler's method | Methodology for solving hyperbolic equation | | S-8 | SLO- | A solution of numerical
equation by Newton-
Raphson method | | Simpson's one-third rule | Modified Euler's method | Finite difference scheme | | | SLO-
2 | Newton-Raphson method | Bessel's formula for interpolation – Examples | Simpson's one-third rule | Improved and Modified
Euler's method | Solution of hyperbolic equation with finite difference scheme | | S-9 | SLO-
1 | Solving system of linear equation by Gauss Elimination method | Bessel's formula for interpolation – Examples | Simpson's three-eigth rule | Improved and Modified Euler's method | Examples with various boundary conditions | | | SLO-
2 | Gauss Elimination method | Divided differences and
Properties | Simpson's three-eigth rule | Improved and Modified
Euler's method | Examples with various boundary conditions | | S-10 | SLO- | Gauss Elimination method | Interpolation with unequal intervals by newton's divided difference | Gaussian
quadratures | Examples | Examples with various boundary conditions | | | SLO- | Solving system of linear equation by Gauss Jordan method | Newton's divided difference formula for unequal intervals | Gaussian
quadratures | Examples | Examples with various boundary conditions | | 0.44 | SLO-
1 | Gauss Jordan method | Interpolation for unequal intervals | Gaussian
quadratures | Runge kutta method of fourth order | Practice problems | | S-11 | SLO-
2 | Gauss Jordan method | Interpolation for unequal intervals | Gaussian
quadratures | Examples | Practice problems | | 0.40 | SLO- | Tutorial Session | | S-12 | SLO-
2 | Tutorial Session | | S-13 | SLO-
1 | Solving system of linear equation by Crout's method | Lagrange's interpolation formula for unequal intervals | Best Approximations | Runge kutta method of fourth order | Elliptic equations | | | SLO- | Crout's method | Lagrange's interpolation formula for unequal intervals | Least squares polynomial approximation | Runge kutta method of fourth order | Finite difference scheme | | 0.44 | SLO- | Crout's method | Lagrange's interpolation formula for unequal intervals | Least squares polynomial approximation | Runge kutta method of fourth order | Mesh points | | S-14 | SLO- | Solving system of linear equation by Gauss Jacobi iterative method | Inverse interpolation–
Lagrange's formula for
inverse interpolation | Least squares polynomial approximation | Multi step methods | Diagonal five point finite difference formula | | S-15 | SLO-
1 | Gauss Jacobi iterative method | Lagrange's formula for inverse interpolation | Approximation with
Chebyshev
polynomials | Milne's method | Standard five point finite difference formula | | | SLO-
2 | Gauss Jacobi iterative method | Lagrange's formula for inverse interpolation | Chebyshev polynomials | Milne's method | Solution of elliptic equation using finite difference scheme | | 0.40 | SLO- | Solving system of linear equation by Gauss seidal iterative method | Spline Interpolation | Chebyshev polynomials | Milne's method | Solution of elliptic equation using finite difference scheme | | S-16 | SLO- | Gauss seidal iterative method | Cubic Spline interpolation | Piecewise Linear &
Cubic spline
approximation | Adams Bashforth method | Examples on different regions with various boundary values | | | SLO-
1 | Gauss seidal iterative method | Spline Interpolation | Cubic spline approximation | Adams Bashforth method | Examples on different regions with various boundary values | | S-17 | SLO- | Solving system of linear
equation by Gauss
Jacobi and seidal
iterative method | Cubic Spline interpolation | Cubic spline approximation | Adams Bashforth method | Revision | | | SLO- | Tutorial Session | | S-18 | 1
SLO-
2 | Tutorial Session | | | 1. | Kandasamy P, Thilagavathy. K and G. Gunawathy, Numerical Methods, S.Chand & Sons, 3rd Revised Edition, 2013. | 6. | Atkinson K.E., "An Introduction to Numerical Analysis", Wiley & Sons, 2nd Edition, 1989. | |-----------|----|---|-----|---| | | 2. | Isaacson E. and Keller, H.B., "Analysis of Numerical Methods" | 7. | Brian Bradie (2006), A Friendly Introduction to Numerical Analysis. Pearson. | | Learning | 3. | Dover Publication, 1994. Philips G.M and Taylor P.J., "Theory and Applications of Numerical | 8. | Robert J. Schilling & Sandra L. Harris (1999). Applied Numerical | | Resources | | Analysis", Academic Press, 1996. | | Methods for Engineers Using MATLAB and C. Thomson-
Brooks/Cole. | | | 4. | Jain M.K., "Numerical Methods for Scientific and Engineering computation", 3rd Edition, New Age International, 1999. | | F. B. Hildebrand (2013). Introduction to Numerical Analysis: (2nd edition). Dover Publications. | | | 5. | Conte S.D. and Carl de Boor, "Elementary Numerical Analysis", 3rd Edition, Tata McGraw-Hill Publishing Company. 2004. | 10. | Balagurusamy. E, Numerical Methods, Tata Mcgraw Hill Publishing Company, 3rd Edition, 2000. | | Learning | earning Assessment | | | | | | | | | | | | | | | |----------|------------------------------|--------|----------|-----------------------|----------|--------|----------|-----------------|----------|---------------------|------------|--|--|--|--| | | | | Continu | Final Franciscotion (| -00/ | | | | | | | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (| weightage) | | | | | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory Practice | | Theory | Practice | | | | | | Level 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | | | | | Level | Understand | 40% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | | | | Level 2 | Apply | 40% | | 40% | _ | 40% | | 40% | | 40% | | | | | | | Level 2 | Analyze | 40% | - | 40% | - | 40% | - | 40% | i | 40% | - | | | | | | Level 3 | Evaluate | 20% | _ | 30% | _ | 30% | _ | 30% | _ | 30% | _ | | | | | | Level 3 | Create | 20 /0 | - | 30 /6 | - | 30 /0 | - | 30 /6 | - | 30 /0 | - | | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 0 | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|---|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions
maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Dr. K. Ganesan, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Mrs. T. Leelavathy, SRMIST | | Course | UCD20S01L | Course | Soft Skills | Course | | Skill Enhancement Course | L | Т | Р | С | ; | |--------|-----------|--------|-------------|----------|---|---------------------------|---|---|---|---|---| | Code | UCD20301L | Name | SOIT SKIIIS | Category | 3 | Skill Elinancement Course | 0 | 0 | 2 | 1 | | | Pre-requisite Courses | Nil | Co-requisite
Courses | Nil | Progressive
Courses | Nil | |-----------------------|--------|-------------------------|-----------------|------------------------|-----| | Course Offering | Career | Development | Data Book / | | | | Department | Centre | | Codes/Standards | | - | | Course Lo | | The purpose of learning this course is to: | Le | arni | ng | | | | Pro | grar | n Le | arni | ng C | Outc | ome | s (P | LO) | | | | |----------------|--------------------------------|---|--------------------------|--------------------------|-------------------------|-----------------------|----------------|-------------------------------|----------------------|----------------|-----------------------------|--------------------|---------------------------------------|----------------------|--------------------------|-----------------|---------------------|------------|-----------------------|-------------------| | | pose studen
me through | ts to right attitudinal and behavioral aspects and to build the activities | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | evelop and n
d group activ | urture interpersonal skills of the students through individual vities. | CLR- Inci | crease efficie | ncy and leadership skills and to improve team results. | CLR- Acq
4: | quire time m | anagement skills and develop creative skills | | | | | | sei | | | ae | | | | | | | | | i | | | nderstand int
ofessional er | ercultural communication and etiquettes required in a
vironment | 3loom) | cy (%) | nt (%) | ledge | Concepts | isciplir | dge | ion | owledg | |)ata | | ills | Skills | | | ior | i | | | | ce in students and develop skills necessary to face the ompetitive exams and placements | inking (E | roficiend | ttainme | al Know | | elated D | Knowle | Specialization | ilize Kn | deling | terpret [| e Skills | Iving Sk | |
Skills | | al Behav | eaming | | Course L | - | At the end of this course, learners will be able to: | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of | Link with Related Disciplines | Procedural Knowledge | Skills in Sp | Ability to Utilize Knowledg | Skills in Modeling | Analyze, In <mark>terpret Data</mark> | Investigative Skills | T Problem Solving Skills | □ Communication | T Analytical Skills | ICT Skills | Professional Behavior | Life Long Leaming | | Outcome: | | eir attitude and understand its influence on behavior | _ | | | W | M Ap | M | <u>۔</u> | X
M | HAb | N Sk | . An | <u>≤</u> | H
P | 3
H | H | <u>C</u> | H
P | H | | 1: | ongoor a. | | 3 | 80 | 70 | | | | | | | | ď | | | | | | | | | CLO- Acq | quire inter p | ersonal skills and be an effective goal oriented team player | 3 | 80 | 70 | М | М | М | - | М | Н | М | | Ė | Н | Н | Н | М | Н | Н | | CLO- Und | <mark>iders</mark> tand the | importance of time management and creativity | 3 | 85 | 75 | М | М | М | - | М | Н | М | | | Н | Н | Н | М | H | Н | | CLO- Buil | <mark>iild c</mark> onfidend | e during any presentation | 3 | 85 | 75 | М | М | М | | М | Н | М | , | è | Н | Н | Н | М | Н | Н | | | evelop interp | retation skills and intercultural communication | 3 | 85 | 75 | М | М | М | | М | Н | М | - | - | Н | Н | Н | М | Н | Н | | CLO- Hel | 3 | 80 | 70 | М | М | М | | М | Н | М | - | - | Н | Н | Н | М | Н | Н | | | | | | For the | 7.11.55.2 (4.10) | | C3-50, Real | | |------------|----------------|--|--------------------------------------|---|--|---| | | ration
our) | 6 | 6 | 6 | 6 | 6 | | S-1 | SLO-
1 | IKIGAI | Interpersonal Skills | Creating brands – activity
(posters, flyers, business
cards) | Value of Time | Intercultural communication – beliefs, customs and attitude of people in different countries (US, UK, Japan, West Asia, China, Russia) | | | SLO-
2 | IKIGAI | Emotional Intelligence | Creating brands – activity
(posters, flyers, business
cards) | Diagnosing Time
Management | Social and cultural etiquettes | | S-2 | SLO-
1 | Attitude | ttitude Importance of Team Work | | Weekly Planner, To do list,
Prioritizing work | Communication etiquettes | | 3-2 | SLO-
2 | Factors influencing Attitude | Team Building Activity | How to Manage Stress and Distress? | Time management activity | Telephone etiquettes | | S-3 | SLO-
1 | SWOT Analysis | Leadership skills | Understanding the Circle of Control | Creativity – think out of the box | Dinning etiquettes | | 3-3 | SLO-
2 | Individual SWOT Analysis – activity | Leadership skills based
Activity | Stress Busters | Creativity Activity | Grooming etiquettes | | S-4 | SLO-
1 | Extempore Practice Session | Networking skills | – reasons | Creativity Assessment
Activity | Ice breaking | | 3-4 | SLO-
2 | Extempore Practice Session | Networking skills based
Activity | Approaches to conflict resolution | Creativity Assessment
Activity | Designing ice breaker games | | S-5 | SLO-
1 | Extempore Practice Session | | Conflict resolution – case
studies | Brainstorming, use of groups
and individual brainstorming
techniques to promote idea
generation | Ice breaker activity | | | SLO-
2 | Extempore Practice Session | Negotiation skills based
Activity | Conflict resolution – case studies | Brainstorming session activities | Ice breaker activity | | | SLO-
1 | Extempore Practice Session | , | Importance and necessity of Decision Making | Brainstorming session | Introduction to resume building | | S-6 | SLO-
2 | Entrepreneurial knowledge, Focus, Investment, Risk Fytompore Practice Session Integrance Positions | | Process of Decision Making,
Practical Way of Decision
Making, Weighing Positives
and Negatives | Brainstorming session | Introduction to resume building | | ſ | | 1. | Jeff Butterfield, Soft Skills for Everyone, CENGAGE, India, | | |---|-----------|-----|---|--| | | | | 2015 | 4. Carnegie Dale, How to win friends and influence people, Simon and | | | Learning | 2. | Dr. K. Alex, Soft Skills, S.Chand Publishing & Company, | Schuster, New York, 2016 | | | Resources | | India, 2014 | 5. Thomas A Harris, I am ok, you are ok, Arrow, London, 2012 | | | | 3. | Covey Sean, Seven habits of highly effective teens, Simon | 6. Daniel Coleman , Emotional Intelligence , Bloomsbury, India, 2016 | | | | & 3 | Schuster, New York, 2014 | | | | | Continuous Learning Assessment (100% weightage) | | | | | | | | | | | | |---------|---------------------------|---|-------------|---------------|---------------|--|--|--|--|--|--|--|--| | Level | Bloom's Level of Thinking | CLA-1 (20%) | CLA-2 (20%) | CLA-3 (30%) # | CLA-4 (30%)## | | | | | | | | | | | Thinking | Practice | Practice | Practice | Practice | | | | | | | | | | aual d | Remember | 400/ | 400/ | 200/ | 450/ | | | | | | | | | | Level 1 | Understand | 10% | 10% | 30% | 15% | | | | | | | | | | | Apply | F00/ | 500/ | 400/ | 500/ | | | | | | | | | | Level 2 | Analyze | 50% | 50% | 40% | 50% | | | | | | | | | | 12 | Evaluate | 400/ | 400/ | 200/ | 250/ | | | | | | | | | | ∟evel 3 | Create | 40% | 40% | 30% | 35% | | | | | | | | | | | Total | 100 % | 100 % | 100 % | 100 % | | | | | | | | | # CLA-1, CLA-2 and CLA-3 can be from any combination of these: Online Aptitude Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, Mini Talks, Group Discussions, Mock interviews, etc. ## CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---------------------------------|---|--| | Experts from Industry | Experts from Higher Technical
Institutions | Internal Experts | | | F 100 100 100 100 100 100 100 100 100 10 | 1. Mr Priyanand, Assistant Professor, CDC, E&T, SRMIST | | 1. Ajay Zener, Director, Career | 自由389 | 2. Ms Sindhu Thomas, Head in charge, CDC, FSH, SRMIST | | Lauricher | | 3. Ms Mahalakshmi, Assistant Professor, CDC, FSH, SRMIST | | Cou | | ULT | 20G02J | Cours | | | | 1 | amil-ll | | | | | urse | - 1 (| G | | G | ener | ic El | ecti | ve C | our | se | | L
2 | T
0 | P
2 | C
3 | |--|---------------------------------------|----------------|---|------------|-----------------------------|---------|----------------|---|------------------------------|----------|---|------------------|--------------------------|-------------------------|--------------|--|--------------------|----------------------|------------------|--------------------|--------------------|----------------|---------------|-------------------|---------------|----------------|------------|--------|--------| | C
Cou | requ
ourse
rse C
artme | es
Offeri | INII | | Tamil | | | quisite
ırses | Da | ta Bo | ook /
Standards | | | Prog
Co | ress
urse | | Vil | | | | Ni | ı | | | | | | | | | | rse L
onale | | | | The purpo | ose (| of lean | ning thi | s course is | s to: | | | | Lea | rnin | 9 | | | Pro | grar | n Le | arni | ng (| Outc | ome | s (P | LO) | | | | CLF
1: | sei | gene
nsitiv | | student | s a sensit | itivity | to ger | nder ma | arginalizatio | on an | nd Eco | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLF
CLF | An
2. | | | | | | | | modate all | is de | veloped | 3 :
CLF | 1 n | | | • | and to co | | _ | | dence is in | nitiate | d | 4:
CLF
5: | , | | II langua | | | , | | | | | 177 | (moc | (%) | (%) | edge | epts | Disciplines | Je | u | Knowledge | H | ıta | | <u>s</u> | S | | | | | | CLF
6: | R-
To | give | them all | the his | <mark>storical</mark> ins | sight | ts | | 7 | 4 | | Thinking (Bloom) | oficiency | tainment | I Knowledge | of Concepts | Related Dis | Knowled | Specialization | | leling | Interpret Data | Skills | Solving Skil | Ski | kills | | | | | | rse L | | | At the e | nd of this | s cou | ırse, le | arners | will be able | e to: | | evel of Thir | Expected Proficiency (%) | Expected Attainment (%) | Fundamental | Application | Link with Re | Procedural Knowledge | Skills in Spe | Ability to Utilize | Skills in Modeling | Analyze, Inte | Investigative | Problem Sol | Communication | Analytical Ski | PSO -1 | PSO -2 | PSO-3 | | CLC
1: | 10 | | | | about Tai | | | | | | | 2 | 75 | 60 | Н | Н | Н | - | - | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | | CLC
2: | of | strer
Tami | | ne knov | vledge on | n con | ncept, (| culture, | civilization | n and | translation | 2 | 80 | 70 | Ŧ | Н | - | Н | Н | Н | Н | 1 | - | Н | Н | Н | Н | Н | Н | | 3: | 10 | deve | elop cont | tent usi | ng the fea | ature | es in T | amil lar | nguage | | 7 | 2 | 70 | 65 | Н | | - | Н | - | Н | Н | Н | | Н | Η | Н | Н | Н | Н | | CLC
CLC | 10 | | - | | | | | ш, |
their crea | ÷ | | 2 | 70 | 70 | Н | | Н | М | Н | - | - | - | Н | # | | Н | Н | Н | Н | | 5: | 10 | | | | _ | | - | | on in Tami | il lan | guage | 2 | 80 | 70 | - | Н | - | Н | - | Н | Н | - | - | Н | Н | Н | Н | Н | Н | | 6: | | | ole the st | tudents | to speak | k and | a write | in chas | te ramii | | | 2 | 75 | 70 | Н | Н | Н | H- | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | | | uratio
hour)
SLO |)
)-1 | தமிழி
காலந் | தோ | றும் | Ø: | களப் | 1
பிரர் | 2
காலம் | Ì | பல்லவர | 12
ர்க | i | ம் | i | சங் | பக | ъпе | 12
ഡ ഒ | பரஎ | υпе | ונם | | ழ்
க்ள | | | றக | ഞ | தப் | | | SLO |)-2 | அகமு
அக
போக் | இல | க்கியம
ர | | | ാഥ്
ഖിധള | مَالاِ | | சங்ககால தமிழ்ச்
செய்ககால
இலக்கியம் சங்ககால
மக்களின்
வாழ்வியல் வாழ்விய | | | | | | | தை
ச் | | | ታሮ | றக | | | | | | | | | S-
2 | SLO |)-1 | எ <mark>ட்</mark> டுத்
<mark>நூல்க</mark>
பெயர் | ளும் | | | | குற
ப்டெ | ர்
ரதுமன | -
യ | பக்தியுட | ம் த | மி | ழும் | | | ச்ச
றிடு | | | 1 | F | 1.6 | | து
தல் | | | த்த | ன் | - | | | SLO | | எ <mark>ட்டு</mark>
யில் அ | | ாகை
<mark>ால்க</mark> ள் | | | குற
மைட் | | | பக்தி
இலக்கி | шп | பக | ள் | | மு | ச்ச | ங்க | . ഖ | ரல | ாறு | | | 5ால்
_டு | | | 4 | | - | | S-
3 | SLO | | | | യ്യ (203) | g | தமிழ் | ில் வீ | ിതെ | | சைவ
இலக்கி | ШГ | ப்க | | ш | செ
இச | ும்(
லக் | | | | т | | ල(| | ขด | าดา | ச் ே | | | | | SLO | | தலை
நாட்டு | | ன்
பருடை | | | குற
<mark>எத்த</mark> | ர்
<mark>ட்பம் (</mark> 6 | -
67) | தேவார | ശ | வர் | | | | ட்டு
5ான | | щі | כ | | | | ரை
வச | | | ட்சி
ம் | ١щι | ம் | | \$- \$LO-1 (50) தம்மூர்
(130) தம்மூர்
வாழ்வும் தம்மூர்
பா | | | | | | | | தேவார்
திருஞா
பாடல் | ज | சம் | பந் | –
தர் | <mark>உ</mark> (| ஏட | ாக்
 லட | கட்
ந் | J | | | ٩Īŋ | ண்
ரிய
த்த | தர் | ஷி | னி | | - | | | | | | SLO |)-2 | அகவ
நம்பி
வேர்க | க்சை
ள் | | | நிருச்
104) | குற | ர் - உழ | ₽Щ | தேவார
திருநாவ
பாடல் | | கர | சர் | - | தப
வா | .டு.
பிழ
ரழ் | ர்
விய | பலு | ம் | 5Щ | ம் | கட் | நம்
_ட6 | വര | ப்ப | 1 | | - | | S-
5 | SLO |)-1 | பண்ல
தமிழ
வாழ் | ரின் |) | | Fமன
இலக் | | சப
ங்கள் | | திருவாக
அறிமுக | | ف | | | பத்துப்பாட்டு
உருவாக்கப்
பின்புலம் | | | | | | | மா | ரத
ப்ப
ருந் | ிள் | ഖി
ത | эт | | - | | | SLO | | பண்
உணர் | | தமிழ
ல் | ý
G | நாலட | фтиі | j | | மாணிக்கவாசகர் தமிழர்
பாடல் பாழ்வியலும் எளிய | | | | | | ണി | ன் | கஎ | தை | | | | | | | | | | | S-
6 | SLO-1 அகநானூறு (44) இலக்கியங்களில் வை | | | | | | | வைணவ சமய
வளர்ச்சிப் போக்கு
நூல்கள் சிங்கார வ
தவிப்பு | | | | | | ഖ | ታር፥ | ഖള | ਨੇ। – | | | | | | | | | | | | | | | SLO-2 | புறவாழ்வோடு
கூடிய அகம் | நட்பில் பிழை
பொறுத்தல் (221) | வைணவ சமய
இலக்கியங்கள் | பதினெண்
கீழ்க்கணக்கும்
தமிழர் அற மரபும் | புறக்கணிப்பின்
வலி | |----------|-------|---|---|--|--|--| | S-
7 | SLO-1 | கற்றறிந்தார்
ஏத்தும் கலி | தமிழர் மருத்துவம் | நாலாயிரத் திவ்யப்
பிரபந்தம் | நீதி இலக்கியங்கள் | செய்தி அறிக்கை
அறிமுகம் | | | SLO-2 | கலித்தொகை
கட்டமைப்பு | நீதி இலக்கியத்தில்
மருத்துவ நூல்கள் | பெரியாழ்வார்
பாடல் | நீதி
இலக்கியங்களின்
பன்முகத்
தன்மைகள் | செய்தி அறிக்கை
தயாரித்தல் | | S-
8 | SLO-1 | கலித்தொகை
(149) | திரிகடுகம் | ஆண்டாள் பாடல் | காப்பிய
இலக்கணம் | விமர்சனம் | | | SLO-2 | வாழ்வியல்
அறமும் அகமும் | செங் <mark>கோல் அரசு</mark> | தொண்டரடிப்பொ
<mark>டி ஆழ்வார் ப</mark> ாடல் | காப்பியப்
போக்குகள் | இலக்கியம், கலை
விமர்சனம் | | S-
9 | SLO-1 | தமிழர் புறமரபு | இனியவை <mark>நாற்பது</mark>
அறிமுகம் | தமிழில் இஸ்லாமி <mark>ய</mark>
இலக்கியங்கள் | <mark>ஐம்பெ</mark> ருங்காப்பிய
<mark>ங்கள்</mark> | நேர்காணல்
அறிமுகம் | | | SLO-2 | புற
இலக்கிய <mark>ங்கள்</mark> | <mark>இனியவை</mark>
நாற்பதின்
<mark>தனி</mark> த்தன்மைகள் | இஸ்லாமிய
இலக்கியங்களின்
கொடை | <mark>ஐம்பெருங்கா</mark> ப்பிய
ங்களின் சிறப்புகள் | நேர்காணல் –
நுட்பங்கள் | | S-
10 | SLO-1 | புறநா <mark>னாறு (235)</mark> | இனியவை நாற்பது
(14) | சீறாப்புராணம் | தமிழ்ச் ச <mark>மூகமும்</mark>
சமயத்
தத்துவங்களும் | <mark>நேர்</mark> காணல் கேள்வி
தயாரிப்பு | | | SLO-2 | கையறுநிலை | இனிமையும்
அழகும் | மானுக்குப்
பிணைநின்ற
படலம் (5 பாடல்கள்) | சமயத்
தத்துவங்களும்
வாழ்வியல்
விழுமியங்களும் | <mark>நேர்காண</mark> ல் பதிவும்
எழு <mark>து முறை</mark> யும் | | S-
11 | SLO-1 | <mark>ஆ</mark> ற்றுப்படை
அறிமுகம் | பண்டைக்காலப்
போரும் வாழ்வும் | கிறித்தவ சமய
இலக்கியங்கள் | பன்னிரு திருமுறை
– அறிமுகம் | பேச்சு <mark>க்கலை</mark>
அறிமுகம் | | | SLO-2 | | போர்
இலக்கியங்கள் | கிறித்தவ
இலக்கியங்களின்
கொடை | பன்னிரு திருமுறை
– வரலாறு | தமிழரின்
பேச்சுக்கலை | | S-
12 | SLO-1 | சிறுபாணாற்றுப்
படை | களவழி நாற்பது (14) | ஆதிநந்தாவனப்
பிரளயம் | நாலாயிரத் திவ்யப்
பிரபந்தம் –
அறிமுகம் | பேச்சுக்கலை <mark>யின்</mark>
வகைகள் | | | SLO-2 | நல்லியக்கோடனு
ம்பாணர்
வாழ்வியலும் | தமிழர் வீர்ம் | ஏதேன் தோட்ட
வருணனை | பன்னிரு
ஆழ்வார்கள்
வரலாறு | பேச்சுப் பயிற்சி | #### Learning Resources - மௌவல், தொகுப்பும் பதிப்பும் தமிழ்த்துறை ஆசிரியர்கள், தமிழ்த்துறை, எஸ். ஆர்.எம். அறிவியல் மற்றும் தொழில்நுட்பக் கல்விநிறுவனம், காட்டாங்குளத்தூர், 603203, 2020. - 2. தமிழண்ணல், புதிய நோக்கில் தமிழ் இலக்கிய வரலாறு, மீனாட்சி புத்தக நிலையம், <mark>மதுரை,</mark> 2017 - 3. மு. அருணாசலம், தமிழ் இலக்கிய வரலாறு, நூற்றாண்டு முறை (9ஆம் நூ. முதல் 16 <mark>வரை), தி</mark> பார்க்கர், சென்னை, 2005 - 4. தமிழ் இணையக் கல்விக்கழகம் http://www.tamilvu.org/ - 5. மதுரை தமிழ் இலக்கிய மின் தொகுப்புத் திட்டம் https://www.projectmadurai.org/ | Learning | g Assessment | | | | 177.7 | | | | | | | |----------|------------------------------|--------|----------|---------------|------------|---------------|----------|---------|----------|--------------------|---------------------------------| | | | / | Contin | nuous Le | arning Ass | sessmen | (50% wei | ghtage) | | Final Francis atio | - (F00/ | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examinatio | <mark>n (50% w</mark> eightage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | | | Level I | Understand | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | • | | Level 2 | Apply | 40% | 40% | 50% | 50% | 50% | 50% | 50% | 50% | 50% | | | Level 2 | Analyze | 40 /0 | 40 /0 | 30 /6 | 30 /6 | 50 % | 30 /6 | 30 /6 | 30 /6 | 30 /6 | | | Level 3 | Evaluate | 30% | 30% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | | Level 3 | Create | 30 % | 30 /6 | 2070 | 20 /0 | 2070 | 20 /6 | 2076 | 20 /0 | 20 /0 | ı | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | % 00 | 10 | 0 % | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | | | | | | | | | | |-----------------------|---|---|--|--|--|--|--|--|--|--|--| | Experts from Industry | Expert from Higher Technical Institutions | Internal Experts | | | | | | | | | | | | Dr. RSrinivasan, Associate Professor, Department of Tamil, Presidency College, Chennai. | 1. B.Jaiganesh, Assistant Professor & Head, FSH, SRMIST | | | | | | | | | | | | | 2. T.R.Hebzibah Beulah Suganthi, Assistant Professor, FSH, SRMIST | | | | | | | | | | | | | 3.S.Saraswathy, Assistant Professor, FSH, SRMIST | | | | | | | | | | | Cours | 1111 H21 | 0G02J | Cours | | | Н | INDI-II | | | | | ours | | | G | | Ge | neri | c El | ectiv | re C | ours | е | L
2 | T
0 | P
2 | C
3 | |--------------------------|--|--|---|--|------------------|----------------------------|-------------------------------|---|---|---------------------------------|---------------------------|-------------------------|-----------------------|----------------|--|-------------------------|----------------------------------|------------------------------|---------------------|---------------------------------------|------------------------------------|------------------------|----------------------|-------------------|--------------|--------|--------| | Cours | equisite
urses
e Offerin
tment | Nil
g | | HINDI | | requisite
ourses | | Data Bool
Codes/Sta | | | | P | rogr
Cou | | | Nil | ' | | Ni | ı | | | | | | | | | | e Learnir
nale (CLR | • | | The purpose | of lea | arning this | course | e is to: | | Learning Program Learning Outco | | | | | ome | es (PLO) | | | | | | | | | | | | | CLR-
1: | To be ab | le to co | onverse | e well in the l | Hindi . | Language | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-
2:
CLR-
3: | To read and write and clarity To be willing listeners and translators —where need be To acquire the values/thought contents of the writers and practice in it in | 5: | : life. To find
motivation through the various forms of literature and learn to | | | | | | | | 0 | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Concepts | Link with Related Disciplines | Procedural Knowledge | lization | Ability to Utilize Knowledge | bu | Analyze, Inte <mark>rpret Data</mark> | kills | Problem Solving Skills | Skills | | | | | | 6: | | | the importance of the language in making education as a owth in life and not mere literacy. | | | | | | | | d Profic | d Attair | ental K | ion of | h Relate | ıral Kno | Specia | Utilize | Modeli | , Interp | ative SI | Solvin | nication | al Skills | | | | | | e Learnir
me <mark>s (CL</mark> | | At the e | the end of this course, learners will be able to: | | | | | | | | Expecte | Fundan | Application of | Link wit | Procedu | Skills in Specialization | Ability to | Skills in Modeling | Analyze | Investigat <mark>ive Skills</mark> | Problen | Communication Skills | Analytical Skills | PSO-1 | PS0-2 | PSO-3 | | CLO-
1: | | | | about Medie | 97 | 2 | 75 | 60 | Н | Н | Н | - | Ė | - | | | - | - | | - | | | - | | | | | | 2: | contemp | orary re | e relevance of the present trends in Hindi and their relevance. | | | | | | | | 80 | 70 | - | Н | - | Н | - | | - | - | - | , | | , | = | - | - | | 3: | stories w | ith refe | erence t | understandi
to current rea | ality. | | | | | 2 | 70 | 65 | Н | - | - | Н | ÷ | 1 | h | - | 7 | | - | - | - | - | - | | 4:
CLO- | angles w
To make | ith the
transla | varied ation of | ge of the pre
skills of Hind
good literatu
glish and Vice | li Lan
ıre an | guage.
nd any rele | | | 10.00 | 2 | 70
80 | 70
70 | H
- | - Н | H
- | H | H
- | - | | - | | | H
- | - | - | 1 | - | | 5:
CLO-
6: | To help t | he lean | ner to t | tackle Admin
their daily lif | istrati | ive termino | ologies, | , help then | ı use | 2 | 75 | 70 | Ŀ | - | - | Z | | - | i | - | - | - | - | - | - | - | - | | | ration
lour) | | | 12 | J | -31 | 12 | | | ١ | 12 | | ۳ | | r | I | 12 | 2 | | | | | Ţ | 12 | i | | | | | SLO-1 | Kavy | | uno se awag
a - Jaysi | at | Kaha | ani Idkiy | yan | | VIGYAPAN ANUVAD | | | | | | | Takniki Sha <mark>bdavali</mark> | | | | | | | | | | | | S-1 | SLO-2 | | | evam moksl
wagat karan | | Nari Shak | kti ki sa | ırthakata | Srijnata | | k kshmata jagrit
karna | | | | Vidhyarthiyon ko sikhaya
jayega anuvad kitna upyog
hai | | | | aya
yogi | Vaignik tarik
ka avish | | | | | | aon | | | | SLO-1 | Surd | | atsalya ras s
at karana | se | Prem ki | ani gun
prakasl
at karv | htha se | VIG | YAP | AN I | ΥA | HAI | Vidhyarti | | | | ТН | | 1 | | | A | RTH | 1 | | | | S-2 | SLO-2 | | | 3havna se
yon ko jodna | | Prtantr bh
vyavsth
k | | wagat | Sh
chitrat | tama | | | | | sm | ajka
htav | r sa
purr | maj l | ke liy | e | | yartl
ske i | | | | | | | | SLO-1 | | | anav mulyon
na jagrit karr | | KAHAN | II KE T | ATVA | VIGY | APA | N KI | BHA | SHA | | | | | ASH | | | | | | | SHA | | | | S-3 | SLO-2 | Dharn | | varti se awag
Irana | gat k | Kahani ke
se awa | | | Bhasl
pry | | | ivyal
njhar | | | oarib | n vidv
hash
njher | a se | e us l | baat | ko | | inn v
ribha
smjl | asha | se ı | | aat k | | | | SLO-1 | O-1 Tiruvaluvaar – naitik mulyon ko jagrit karna KAHANI KE AAYAM | | | | | | | VIGYA | PAN | KA | PRB | HAV | | | M | ٩НА | TVA | | | | | | | ALI I
KTA | (I | | | S-4 | 4 SLO-2 Vidhyarthiyon ko nitivaan bhana Vidhyarthiyon ko kahani ke vidhinn ayam se awagat karvana | | | | | | | Shravay
prb | | | a sai | | ke | | ijik ja
uvad
s | | mah | | | Vai | ignik | | a av
tavp | | r kit | na | | | | SLO-1 | De | | m ki bhavna
arna | | LEKHAI | K PARI | ICHAY | VIGYA | PAN | AUI | R BA | ZAR | | | UE | DE | SHY | Α | | Е | BHAS | SHA | VAI | GYA | NIK | | | S-5 | SLO-2 | Kra | | vicharon se
at karana | L | ekhako ke
k | e jivan s
arvana | • | Vidhyar
se baz
kiya ja | ar m | ie ka | ise s | thap | it s | udo
amaj | ni sa | ya k
ogi l
rtha | o sm
karya
k bh | ajhk
krn
umik | ar
e me | me Bhasha vaign | | | | n ki | jank | ari | | | SLO-1 | Bada | | - Desh prem
na bhrna | ki | KAH | ANI PA | ATH | nibhayenge VIGYAPAN AUR ROZGAR HINDI-ENGLISH KARYALY | | | | YIN | SHA | BD | | | | | | | | | | | | | | S-6 | | | | | | | | Vidhyarthi savam ka adajency bhi bna paye Hindi adhikarai aur anuvadak ke pad ke liye tayaar karna Shabd kaise ta | SLO-1 | Pret ka Byaan -Bhukhmari
evam akaal se awagat
karana | KAHANI KA SARANSH | VIGYAPAN KI NIYAM | ENGLISH-HINDI | ANGREZI SE HINDI
ANUVAD | |------|-------|--|---|--|--|--| | S-7 | SLO-2 | Samajik samanta banaye rkhne ki pravarti jagana | Lekhan kshmata ka vikas
hona | Vigyapan ka ek hi niyam
bhasha ka kashav jo
vidhyarthiyon me viksit kiya
jayega | Hindi adhikarai aur
anuvadak ke pad ke liye
tayaar karna | lindi adhikarai aur anuvadak
ke pad ke liye tayaar karna | | S-8 | SLO-1 | Lahro se dark a nauka paar
nhi hoti –chatro ko sahashi
bnana | KAHANI KA UDDESHYA | VIGYAPAN KA MAHTVA | ANUVAD KI UPYOGITA | HINDI SE ANGREZI
ANUVAD | | 3-0 | SLO-2 | Karmaththa purn bhavna ko
jagrit karna | Kahani ke uddeshy unke
jiwan ke mahtav ko smjhne
me sahayk banna | Vartman me uski
prasangikta vidhyarthiyon
ko smjhana | Vidhyarthiyon ko vibhin
karyalayon me hindi
adhikari pad ki jankari prapt | Hindi adhikari aur anuvadak
ke pad ke liye tayaar karna. | | | SLO-1 | Javani –rashtr prem ki
bhavna jagrit karna | KAHANI KA
VISHELESHAN | PRINT VIGYAPAN | ANUVADK KI BHUMIKA | EK DIN EK SHABD | | S-9 | SLO-2 | Vir ras evam virta ki pravati
se awagat karana | Vishleshan kshmata viksit
hota | Vidhyarthi iski bhasha
sikhenge | Vidhyarthiyon ko anuvadak
ki bhumika ka mahtav
smajh aayega jiske adhar
par vo kaam karenge | /idhyarthiyon ko rozgaar se
jodna | | | SLO-1 | Dhool- saman vyavhar ki
pravarti jagana | KAHANI PARICHARCHA | RADIO, TV.VIGYAPAN | SAHITYIK ANUVAD | PRYOJANMULAK SHABD
KA MAHTAVA | | S-10 | SLO-2 | Satah se jude rahne ke prerna dena. | Vaad-vivad se
vidhyarthiyon me apni baat
ko rkhne ki yogyata banna | Vidhyarthiyon ko abhyas
karvaya jayega | Vibhinn bhashaon ke
sahitya ka anuvad kaise
kiya jane ki chunouti ko
samjajh payenge | Vidhyarthiyon ko vaighniko
dwara tayaar ki gai bhasha
ki samaj | | S-11 | SLO-1 | KAVYA BIBM | KAHANI ANDOLAN | Ad agency | ANUVAD KE NIYAM | VIBHINN KSHETRO ME
PRYOJANMULAK
SHABDO KA MAHATAV | | | SLO-2 | Vidhyarthiyon ko naye-naye bibm ki jankari prapt hona | Vibhinn kahani andolan se
bhi awagat karana | Ad agency aur swarozgaar se jodna | Anuvad ke niyamo ko vidhyarthi smajh payenge | Hindi <mark>adhikari pad</mark> par
karyarat | | | SLO-1 | SAMUHIK PARICHARCHA | KAHANI KA BADLTA
SWAROOP | VIGYAPAN KA SWARUP | SHABDO KA MAHATAV | VAIGYANI <mark>K SHABDA</mark> VALI
KI AVS <mark>HYAKATA</mark> | | S-12 | SLO-2 | Vidhyarthiyon ki bolne ki
kaushal kshamta ko bdhana | Smay ke sath unke swarup
ke bdlav ka bhi vidyarthi me
samajh paida hona | Vidhyarthiyon ko vigyapan
lekha ki barikayon ki
samajh utpann hona | Shabda anuvad ke mahtva
ko vidhyarthi smajhenge | Vidhyarthiyon ko shabdo ki
vaignikta se jodna | | Learning | The Prescribe Text Book Compiled and Edited by Department of Hindi | | |-----------|--|--------| | Resources | www.kavitakosh.org | 1 | | | | Person | | Learnin | g Assessment | | | | | | | | | | | | | | | |---------|------------------------------|--------|----------|----------|-----------|---------|------------|---------|----------|-----------------------------------|------------------|--|--|--|--| | | | | Contin | uous Lea | arning As | sessmer | nt (50% we | ightage | - | Final Funningtion | (E00/ weightens) | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | | Level of Tilliking | Theory | Practice | | | | | | 1 | Remember | 200/ | 200/ | 200/ | 200/ | 000/ | 000/ | 000/ | 000/ | 200/ | | | | | | | Level 1 | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | | | | | | | Level 2 | Apply | 40% | 40% | 50% | 50% | 50% | 50% | 50% | 50% | E00/ | | | | | | | Level 2 | Analyze | 40% | 40% | 50% | 50% | 50% | 50% | 50% | 50% | 50% | | | | | | | Level 3 | Evaluate | 30% | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 20% | | | | | | | Level 3 | Create | 30% | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 20% | | | | | | | | Total | 10 | 00 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 | % | | | | | [#]CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |-----------------------|--|--| | Experts from Industry | Expert from Higher Technical Institutions | Internal Experts | | | 1. Prof.(Dr.) S.Narayan Raju, Head, Department of Hindi,CUTN,
Tamilnadu | 1. Dr.S Preeti. Associate Professor & Head, SRMIST | | | | 2. Dr. Md.S. Islam Assistant Professor, SRMIST | | | | 3 Dr. S. Razia Begum, Assistant Professor, SRM IST | | Cours | 1111 - 70 | (4021 | Cours | | | | | Fre | ench- | -II | | | | | our | | | G | | Ger | neric | Ele | ctive | e
Co | urse |) | L
2 | . T | P
2 | C
3 | | | |--------------------------|--|--|--|----------|---------|---------|---------|--------|-----------|--|--------------------------|--------------------------|--|----------------------|-------------------------|--------|-------------------------------|------------------------------|------------------------------|--------------------|---------------------------------|---------------------|------------------------|----------------------|-------------|--------|---------------------------|-----------------------|--------|---------|--|--| | | equisite | lil | | | | | -requ | | Nil | | | | | | | | essiv | re | Nil | | | | | | | | | | | | | | | Cours | urses (
se Offering
tment | | | Frenci | h | C | Cours | es | | | ta Boo | ok / | • | | | Cou | rses | | | | | N | il | | | | | | | | | | | Cours | e Learnin | | | The pu | ırpose | e of le | arnin | a this | cour | | | | | | Lea | arnii | าต | | | Pro | ograi | m Le | earn | ina (| Outo | ome | es (PLO) | | | | | | | | nale (CLR |): | | - 1 | | | | , | | | | | | | | | | L | | | | | | | | | , | | | | | | | 2:
CLR- | Express t situations Make the | heir sen | ntimer | nts, em | otions | and | opinio | ons, r | eacti | | | mation, | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | 3:
CLR- | | | | | | | | | | at ori | ain | 5:
CLR-
6: | Enable th
and take
Extend an
scenario | Learning | | | | | | | | | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Endamental Knowledge | Application of Concents | | Procedural Knowledge | n Specialization | Ability to Utilize Knowledge | Skills in Modeling | e, Inter <mark>pret Data</mark> | nvestigative Skills | Problem Solving Skills | Communication Skills | ical Skills | 1 | 2 | | | | | | | | se Le <mark>arnin</mark>
ome <mark>s (CL</mark> C | | t the e | end of t | this co | urse, | learn | ers v | vill be | able | e to: | | evelo | xpect | xpect | 200 | Silon
Silon | inkw | rocec | Skills in | bility | kills ii | Analyze, I | vesti | roble | omm | Analytical | PSO -1 | PS0 -2 | PSO-3 | | | | CLO- | To acquir | e knowl | ledge about French language | | | | | | | 2 | т
75 | <u>б</u> | ŀ | | | - | - | ٠. | - | ٠. | Ē | - | - | ٠. | - | - | - | | | | | | | 1:
CLO- | | | the knowledge on concept, culture, civilization and translat | | | | | | ranslatio | n 2 | 80 | 70 | 1 | H | - | Н | | | _ | ij | | _ | М | _ | _ | _ | _ | | | | | | | 2:
CLO-
3: | of French
To develo | h
lop content using the features in French language | | | | | | | 7 | 2 | 70 | 65 | F | | - | Н | - | - | h | - | - | Ė | Н | - | - | - | - | | | | | | | CLO-
4: | To interp | et the F | rench | langu | iage i | nto o | ther la | ngua | ige | | - 1 | 40 | 2 | 70 | 70 | ŀ | ı - | Н | Н | Н | 7 | - | - | - | - | Н | - | - | - | - | | | | CLO-
5:
CLO-
6: | To improve | the stu | udents | to ove | ercom | e the | fear | of spe | | | | | 2
e 2 | 80
75 | 70
70 | F | H | -
М- | H | - Н | - | - | - | - | | H
- | - | - | - | - | | | | Du | ıration | | | 12 | | | | | H | 1 | 12 | | | | | Ĭ. | 12 | ŀ | | | | | 12 | | | | | • | 12 | | | | | S-1 | sLO-1 | Les lo | isirs | | ij | | Lar | outir | ie | | | i. | | Où f | aire | ses | cou | rses | ? | Dé | cou | vrez | et d | égu | stez | | mo | ut le | • | | | | | | SLO-2 | Les ac | ctivité | s | | | Les | exen | nples | 8 | | | | Les | cou | rses | | | | Dé | gust | tez | | | | | | mo | | | | | | | SLO-1 | Les ac | tivités | quotic | dienne | s | Les | adjed | ctifs in | nterr | ogatifs | | | Les a | alime | ents | | | | Les | s arti | cles | part | itifs | | | Le | s so | rties | | | | | S-2 | SLO-2 | Les qu | otidie | nnes | | | Les | trois | forme | es | | | | Les | exen | nple | S | | | Du | , De | la, E | De l', | Des | | | Le | s ex | emp | les | | | | | SLO-1 | Les ma | atières | s | | 7 | Les | nomb | ores o | ordir | naux | | | Les | quar | ntités | | | | Le | pron | om | en (l | a qu | antit | é) | | uer o | dans | s le | | | | S-3 | SLO-2 | Les ex | emple | es | 7 | П | Les | nomb | ores | t | N | | Ħ | Les | exen | nple | S | Ŧ | | Le | bon | qua | ntité | | | | | nps
s act | tivité | ės | | | | 6.4 | SLO-1 | Le tem | | | | t | L'he | ure | | | | | | Les | comi | merc | ces | | П | | s? | İ | | | | | _ | s vê | teme | ents | | | | S-4 | SLO-2 | L'heure | е | | | | Que | lle he | eure e | est-il | ? | | | Les | activ | ités | | | | Ве | auco | up ? |) | | | | | cess | | | | | | S-5 | SLO-1 | Les fré | équen | ces | | | Le p | rono | m per | rson | nel CO | D | | Les | com | mer | ants | | | La | phra | ise n | iéga | tive (| (2) | | qu | s ad
otid
vie | | au
— | | | | | SLO-2 | Les activités Les exemples | | | | | | | | | Les | exen | nple | S | | | Les | s nég | gatio | ns | | | | qu | otid | | | | | | | | | S-6 | SLO-1
SLO-2 | Les so
Les so | | | | | | | omina | | oucher | etc | | Dem
Dire | | | prix | | | | est /II | | | | | | dé
Ce | s adj
mon
e, Ce | stra | tifs | | | | | | | | | | | - | | - | | | | | | | | | | | | | | | | | | Ces
La formation | | | | | | | S-7 | SLO-1
SLO-2 | Les loi | | 26 | | | | | | • | mier gr
Poser | | | Les : | | | 2 | | | - | npér
s exe | | D C | | | | du féminin
Les exemple | | | | | | | | SLO-2 | La rout | | 70 | | | | | | | | er,-eter | | | | • | | aiem | ≏nt | | | • | | nir n | OUV | nir | Le | pror | nom | | | | | S-8 | SLO-1 | Les ac | | | | | Ĭ | • | Jeter | | | υι, υ ι υι | er Les moyens de paiement Les verbes devoir, pouvoir La carte de crédits Les verbes savoir, vouloir | | | | | indéfini on
Les activités | | | | | | | | | | | | | | | | | SLO-1 | Les Mo | | | | | + | | prend | | ٠, | | les sons [ā] II faut | | | | Le futur proche | | | | | | | | | | | | | | | | | S-9 | SLO-2 | Les ex | xpress | sions | | | Les | exen | ples | | | | Les sons [an] Le verbe impersonnel | | | | S+Aller+Infinitif
du verbe | | | | | | | | | | | | | | | | | S-10 | SLO-1 | Exprimer ses gouts Parler de ses gouts | | | | | | | | Découvrez ! Au restaurant : Commander et commenter | SLO-2 | Les exemples | Des gouter | Dégustez ! | Les restaurant | Les exemples | |------|-------|--------------------------|---------------------------|---------------------------|---------------------------|--------------------------------| | C 11 | SLO-1 | Exprimer ses préférences | Parler de ses préférences | Au restaurant : commander | Inviter à une invitation | Les verbes
voir et sortir | | S-11 | SLO-2 | Les activités | Les exemples | Au restaurant : commenter | Répondre à une invitation | Décrire une tenue | | S-12 | SLO-1 | Décrire sa journée | Décrire sa journée | Inviter à une invitation | Les Mots | écrire un
message
amical | | | SLO-2 | Les exemples | Les activités | Répondre à une invitation | Les expressions | Lire un
message | | Learning Resources Theory: 1. "Génération-Al" Méthode de français, Marie-Noëlle COCTON, P.DAUDA, L.GIACHINO, C.BARACCO, Les éditions Didier, Paris, 2018. 2. Cahier d'activités avec deux discs compacts. | |--| |--| | Learning | g Assesment | | | | | | | | | | | | | | |----------|------------------------------|------------------------------------|----------|---------------|-----------|---------------|-----------------|-----------|----------|-----------------------------------|--------------------|--|--|--| | | | | Continu | uous Lea | rning Ass | sessmer | nt (50% we | eightage) | | Final Framina | tion (EOO/inhtona) | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | Level of Thinking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | l aval 1 | Remember | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | | | | | | Level 1 | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | | | | | | Level 2 | Apply | 40% | 40% | 50% | 50% | 50% | 50% | 50% | 50% | 50% | | | | | | Level 2 | Analyze | 40% | 40% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | | | | | | Level 3 | Evaluate | 30% | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 20% | | | | | | Level 3 | Create | eate 30% 30% 20% 20% 30% 30% 30% 3 | | 30 /0 | 20 /0 | | | | | | | | | | | | Total | Total 100 % 100 % 100 % | | | 100 % | | | | | | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course D | esigners | | |---------------|--|---| | from Industry | Expert from Higher Technical Institutions | Internal Experts | | | Dr. C.Thirumurugan Associate Professor, Department of French, Pondicherry University | Kumaravel K. Assistant Professor & Head, SRMIST | | | | 2. Ponrajadurai M Assistant Professor, SRMIST | | | urse
ode UM | A20201T Course
Name | | EQUATIONS AND LAPL
RANSFORMS | _ACE | | | ourse
tegory C | | | Professional
Core Course | | | | | | | | | | | C
6 | | |--|---|--|--|--|--------------------------|---|----------------------|-------------------------|----------------------|-------------------|---|--|---|-----------|------------------------|---------------|------------------------|--------------------|-------------|--------|---------|--------|-------| | | Pre-
quisite
ourses | Nil | Co-
requisite
Courses | Nil | | | F | Progressive
Courses | | | | Nil | | | | | | | | | | | | | Course Offering Mathematics Data Book / Codes/Stand | | | | | ırds | rds | | | | | | | | | | | | | | | | | | | Coı | ırse Lear | ning Rationale (Cl | is to: | | | Lea | rning | | | | Pr | ograi | m Le | earn | ing (| Outc | omes | s (Pl | - O) | | | | | | CLR- To understand the concepts of first order differential equations. CLR- To learn the concepts of ODEs by different methods. | | | | | | | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR- To know how to solve differential equations of Lagrange's type. | | | | | | | | Expected Attainment (%) | ge | | nent | | on. | | | | Work | | nce | | | | | | CLR- To learn the concepts of the method of multipliers. CLR- To learn the different types of Laplace transform and properties. | | | | | | | | inme | palwo | ysis | relopn | ign, | Usage | Culture | య | | eam | u | Fina | rning | | | | | CL | | derstand the eval | | evel of Thinking (Bloom) | Expected Proficiency (%) | ed Atta | Scientific Knowledge | Problem Analysis | Design & Development | Analysis, Design, | Modern Tool Usage | oX ∣ | Environment & | | Individual & Team Work | Communication | Project Mgt. & Finance | Life Long Learning | _ | 2 | 3 | | | | Col | ırse l ear | ning Outcomes A | t the end of this course | learners will be able to: | | evel o | xpect | xpecte | cientif | robler | esign | nalysi | odem | Society & | nviron | Ethics | dividu | omm | roject | fe Lor | PS0 - 1 | PS0-2 | PSO - | | Course Learning Outcomes At the end of this course, learners will be able to: CLO- Analyzing the second order differential equations. | | | | | | | 85 | 80 | H | Н | L | · | - | <u>ن</u> | <u>ш</u> | <u>ப்</u> | М | L | - | Н | - | - | - | | CLO- Examine sound Knowledge in mappings of ODE. CLO- Calculate the several facts on testing of Lagrange's. | | | | | | | 85
85 | 80 | H | H | - | M | M | | - | - | M
M | - | - | H | - | - | - | | CL | CLO- To apply the method of multipliers. | | | | | | | 80 | Н | Н | | М | ď. | ÷ | - | - | M | | - | Н | - | - | - | | _ | CLO- Illustrate the periodic function. CLO- To know the applications of Laplace transform. | | | | | | | | M | H | _
_ | | - | | ď | i | M | - | - | H | - | - | - | | Duration 18 18 18 | | | | | | 2 85 80 M H - - | | | | | | | 18 | | | | | | | | | | | | | (hour)
SLO-1 | Introduction | Introduction to | Introduction to | Introd | | | | | | | Initial value theorem | | | | | | | | | | | | | S-
1 | SLO-2 | to differential
Introduction
to differential | Applications of differential equation | Applications of simultaneous | Appli | | 7 | and p | orope | erties | | Problems in initial value theorem | | | | | | | | | | | | | S- | SLO-1 | Applications of Differential | Complementary function | Simultaneous differential equation | Linea | arity | pro | perty | ŀ | Y | | | Problems in initial value theorem | | | | | | | | | | | | 2 | SLO-2 | Applications of Differential | Problems based on complementary | Problems in Simultaneous | Probl | | s ba | sed c | n Lir | neari | ty | Problems in initial value theorem | | | | | | | | | | | | | S- | SLO-1 | Problems in differential | Particular Integral | Linear differential equations with | | First shifting property | | | | | | | Final value theorem | | | | | | | | | | | | 3 | SLO-2 | Problems in differential | Problems in Particular Integral | Problems in Cauchy's homogeneous linear | Probl | | s in | First | shifti | ng | ă | Problems in final value theorem | | | | | | | | | | | | | S- | SLO-1 | Type I –
Solvable for p | Particular Integral -
Type I : e ^{ax} | Method of reduction of order | Chan | ige i | of so | cale c | of pro | y | Laplace transform: Residue theorem | | | | | | | | | | | | | | 4 | SLO-2 | Type I –
Solvable for p | Problems in
Particular Integral - | Problems in method of reduction of order | Probl | | s in | Chan | ge o | f sca | cale of Laplace transform: Residue theorem | | | | | | | | | | | | | | S-
5 | SLO-1 | Equation solvable for p | Particular Integral -
Type II: sin ax or | Transformation of the equation by changing | Lapla | place transform of deriv | | | | | | 6 | Problems on Residue theorem | | | | | | | | | | | | | SLO-2 | Equation solvable for p | Problems in
Particular Integral - | Problem in
Transformation of the | Probl
of de | | | | ice tr | ansf | Problems on Residue theorem | | | | | | | | | | | | | | S- | SLO-1 | Tutorial
Session | Tutorial Session | Tutorial Session | Tutor | rial S | Sess | sion | | | L | d | Tuto | rial S | Sess | ion | | | | | | | | | 6 | SLO-2 | Tutorial
Session | Tutorial Session | Tutorial Session | Tutor | rial S | Sess | sion | | | | | Tuto | rial S | Sess | ion | | | | | | | | | S- | SLO-1 | Problems in solvable for p | Particular Integral - Type III : x ⁿ | Reduction to canonical (or) normal | | | | | ŭ | | | | Laplace transform - Convolution theorem | | | | | | | | | | | | 7 | SLO-2 | Problems in solvable for p | Problems in Particular Integral - | Problems based on Reduction to | Probl
of inte | | | Lapla | ice tr | ansf | orm | | Laplace transform - Convolution theorem | | | | | | | | | | | | S- 8
S- 9 | SLO-1 | Type II –
Solvable for y | Particular Integral –
Type IV : e ^{ax} f(x) | Special types of equations | | aplace transform of periodic
inction | | | | | | | Problem based on Convolution theorem | | | | | | | | | | | | | SLO-2 | Type II –
Solvable for y | Problems in Particular Integral - | Application of special types of equations Special types of | Lapla
functi | | trans | sform | orm of periodic | | | | Problem based on Convolution theorem | | | | | | | | | | | | | SLO-1 | Equations solvable for y | Particular Integral –
Type V :
x ⁿ sin ax or x ⁿ cos | equations
Type I : $f(x, \frac{dy}{x})$ | Probl | lems | s in | perio | dic fu | ıncti | on | | Laplace transform – Partial fractions | | | | | | | | | | | | | SLO-2 | Equations solvable for y | Problems in Particular Integral x ⁿ sin ax or x ⁿ cos | Special types of equations Type $1 \cdot f(x^{dy})$ | Probl | Problems in periodic fur | | | | | | Laplace transform – Partial fractions | | | | | | | | | | | | | S-
10 | SLO-1 | Problems in solvable for y | Particular Integral –
Type VI: x f(x) | Problems based on $f\left(x, \frac{dy}{dx}\right)$ | Inver | se L | _apla | ace T | rans | form | | Problem based on Laplace transform – partial fractions | | | | | | | | | | | | | | SLO-2 | Problems in solvable for y | Problems in Particular Integral Type VI: x f(x) | Problems based on $f\left(x, \frac{dy}{dx}\right)$ | Appli
Trans | | | of Inv | /erse | Lap | aplace Problem based on Laplace transform – partial fractions | | | | | | | | | | | | | | S- | SLO-1 | Type III –
Solvable for x | Problems based on the particular integral | Special types of equations Type II: $f(v, \frac{dy}{dx})$ | Inverse Laplace Transform –
Linearity property | Application of Laplace transform to solve differential equations | |----------|-------|------------------------------------|---|--|---|--| | 11 | SLO-2 | Type III –
Solvable for x | Problems based on the particular integral | Special types of equations Type II: f(v, dy) | Problems in Inverse Laplace
Transform – Linearity property | Application of Laplace transform to solve differential equations | | S- | SLO-1 | Tutorial
Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | 12 | SLO-2 | Tutorial
Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-
13 | SLO-1 | Equations solvable for x | Linear differential equations with | Problems in: $f\left(y, \frac{dy}{dx}\right)$ | Inverse Laplace Transform – first shifting property | Problems in Laplace transform to solve differential equations | | 13 | SLO-2 | Equations solvable for x | Problem in Linear differential | Problems in: $f\left(y, \frac{dy}{dx}\right)$ | Problems in Inverse Laplace
Transform – first shifting | Problems in Laplace transform to solve differential equations | | S- | SLO-1 | Problems in solvable for x | Linear differential equations with | Equations $f(x,y,y',y'') = 0$ | Inverse Laplace Transform – change of scale property | Laplace transform simultaneous linear differential equation | | 14 | SLO-2 | Problems in solvable for x | Problem in Linear differential | Equations $f(x, y, y', y'') = 0$ | Problems in Inverse Laplace
Transform – change of scale | Laplace transform simultaneous linear differential equation | | S- | SLO-1 | Type IV –
Clairaut's | Method of variation of parameters | Problems in equations | Inverse Laplace Transform of derivatives | Problems in simultaneous
linear differential equation | | 15 | SLO-2 | Type IV –
Clairaut's | Applications of Method of variation | Problems in equations | Problems in Inverse Laplace
Transform of derivatives | Problems in simultaneous linear differential equation | | S- | SLO-1 | Problems
based on
Clairaut's | Problems in Method of variation of parameters | Solution of the equation | Inverse Laplace Transform of integrals | Solution of differential and integral equations | | 16 | SLO-2 | Problems
based on
Clairaut's | Problems in Method of variation of parameters | Solution of the equation $\frac{dy}{dt} + Py + Q$ | Problems in Inverse Laplace
Transform of integrals | Solution of differential and integral equations | | S- | SLO-1 | Problems in Clairaut's | Problems in Method of variation of | Problems in $\frac{dy}{dx}$ + | Problems based on inverse
Laplace transform | Problems in Solution of differential and integral equations | | 17 | SLO-2 | Problems in Clairaut's | Problems in Method of variation of | Problems in $\frac{dy}{dx}$ + | Problems based on inverse
Laplace transform | Problems in Solution of differential and integral equations | | S- | SLO-1 | Tutorial
Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | 18 | SLO-2 | Tutorial
Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | ## Learning Resources - T.Veerarajan, Engineering Mathematics II, MC-Graw Hill Education(India) Private Limited, 2014. Chapter 1: Section 1.10 – 1.13; Chapter 2: Section 2.1-2.3, 2.4, 2.7; Chapter 3: Section 3.1 – 3.6; Chapter 3: Section 3.9, 3.10, 3.11. - T. Veerarajan, Transforms and Partial Differential Equations, Third Edition, MC-Graw Hill Education(India) Private Limited, 2016. J.N.Sharma, Kehar Singh, Partial Differential Equations for Engineers and Scientistics, Narosa Publishing house, New Delhi, - 2000. - Narayanan, T.K. Manickavasagam Pillai, Calculus, Vol. I, S. Viswanathan Printers Pvt. Limited, 2007. - 5. K. Thilagavathy, Mathematics for B. Sc Branch – I, Volume 3, 1st Edition, S. Chand and Co.Ltd., New Delhi, 2004. - B.S.Grewal, Higher Engineering Mathematics, 42nd Edition, Khanna Publications. 2012. | Learnin | g Assessment | | | | | | | - | | | | | | | | |---------|------------------------------|--------|-----------------|----------|------------|---------|------------|----------|----------|-----------------------------------|---------------|--|--|--|--| | | | | Contin | uous Lea | arning Ass | sessmer | it (50% we | eightage | | Final Framination (| EOO/einhtone) | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA- | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | | Level 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | | | | | Level I | Understand | 40% | _ | 30% | - | 30% | - | 30% | - | 30% | - | | | | | | Level 2 | Apply | 40% | | 40% | | 40% | | 40% | | 40% | | | | | | | Level 2 | Analyze | 40% | | 40% | - | 40% | - | 40% | - | 40 % | - | | | | | | Level 3 | Evaluate | 20% | | 30% | | 30% | | 30% | | 30% | | | | | | | Level 3 | Create | 20% | _ | 30% | | 30% | | 30% | | 30% | - | | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 0 | | | | | # CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Dr. N. Parvathi, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. B. Vennila, SRMIST
Dr. V. Poongothai, SRMIST | | Course | e I IMΔ' | 20202T | Course | | | CAI | .CULUS | | | Co | urse | С | | | Dr | oface | sions | al Co | ore C | ours | Δ. | | L | Т | Р | С | |------------------------|-----------------|----------------------|--|----------------|--|------------|---------------------|---|------------------|--------------------------|-------------------------|---------------------------|------------------|---------------|-------------|-------------------|-----------|------------------------------|----------------|-----------------------|----------------------|------------------------|------------------|----------|----------|---------| | Code | OIVIA | 202021 | Name | | | OAL | .00103 | | | Cate | egory | / | | | 110 | JICS | SIUITE | 11 00 | <i>ne</i> C | ours | - | | 5 | 1 | 0 | 6 | | Pre
requis
Cours | site Ni | il | | | Co-
requisite
Courses | Nil | | | | Р | rogre | essive
rses | Nil | | | | | | | | | | | | | | | Course
Depart | Offerin
ment | g | Mathe | matics | ' | | Data Boo
Codes/S | ok /
tandards | | | | | , | | | | | | | | | | | | | | | | Learninale (CLF | | The p | urpose o | of learning thi | s course | is to: | | | | Lea | ırning | | | | Pr | ogra | m Le | earn | ing C | Outco | mes | s (PL | .0) | | | | 1: (| concept | of partia | ıl derivativ | es of ho | two function | unctions | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 2: 8 | | rstand the variab | | t of extre | eme values of | f function | ns involvir | ng two | CLR-
3:
CLR- | earn th | e conce | pt of integ | ration by | means of va | rious me | ethods | | | | | | | | | | | _ | | | | | | | | | | 4:
CLR- | Study in | detail th | ne topic on | definite | integrals as | well as re | eduction t | formulae | om) | (%) | (%) | | | Ħ | Research | | | nability | | ork | | Ф | | | | | | 5: ' | , | | | | of integration | | | | Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | Sis | & Development | ın, Res | sage | e e | Environment & Sustainability | | ndividual & Team Work | ر | Project Mgt. & Finance | guir | | | | | 6: | Apply th | e conce | pt of integ | ration in | area and volu | ume | | | Thinki | d Prof | d Attai | c Kno | Problem Analysis | & Deve | , Design, F | Modern Tool Usage | & Culture | nent & | | al & Te | Sommunication | Mgt. & | ife Long Leaming | | | | | Course | Learnin | | t the end o | of this co | urse, learner | s will be | able to: | | evel of | xpecte | xpecte | cientifi | roblem | Design | Analysis, | lodem | Society | nviron | Ethics | dividu | ommo | roject | fe Lon | PSO - 1 | PS0-2 | PSO - 3 | | CIO | | | mental app | olication | of partial deri | vatives | | | 3 | в
85 | во
80 | Н | Н | L | | ≥ | <i>-</i> | <u>ш</u> | ш
- | M | L | - | Н | <u>-</u> | <u>-</u> | - | | CLO-
2: | dentify t | the extre | mum of a | a function | with two an | d three | variables | 1.57 | 3 | 85 | 80 | М | Н | - | М | М | - | - | ./ | М | - | - | Н | | , | - | | CLO | Jnderst | and the | concept o | f differen | t methods of | solving i | ntegrals | | 3 | 85 | 80 | Н | Н | - | | - | i | H | - | М | | - | Н | - | - | - | | 4: | Apply th | e reduct | ion formul | a to eval | uate the give | n integra | al. | 130 | 3 | 85 | 80 | Н | Н | Н | M | | - | - | - | М | П | - | Н | | - | - | | 5: | Associa | te the rul | le of integ | gration in | finding leng | th and a | rea of a | curve | 3 | 85 | 80 | М | Н | L | | - | - | ÷ | - | М | | F | Н | - | - | - | | CLO- 6: | Solve m | ultiple in | tegrals | | 4.16 | | -77 | 76 | 3 | 85 | 80 | М | Н | ÷ | | 1 | - | | - |
М | | | Н | - | - | - | | Dura | | | 18 | ١. | | 18 | | | 18 | | | ۳ | | 18 | 3 | | ď | | | 1 | Ä | 18 | H | | | | | (ho | SLO- | Introduc
Differen | ction to
ntial Calcu | lus | Introduction
Minima function | | | Introduction
Integration | n to | ġ | | ntrod
ntegr | | | - | nite | | | | ction | | | | | Ī | | | S-1 | SLO-
2 | Limits a | and Contin | uity | Introduction
Minima function
variables | | | Introduction
Integration | | | | Defini | tion | of de | finite | e inte | egral | Int | | ction | | | | | Ī | | | 711 | SLO- | | ity of Fun
cal meanir
iiity | | Working rule and minima | to find | Maxima | Methods (
Integratio | | | - | Rule t | o fin | \int_a^b | f(x | :)dx | | Ar | eas i | n po | lar c | oord | inate | es | | | | S-2 | SLO-
2 | inverse
hyperb | ntiation on the function of th | is,
inverse | Working rule
and Minima | to find | Maxima | Method of
Integration
Substitution | 1- | etho | j | Prope
ntegr | | of d | efini | te |) | | | a to | | area | s in | pola | r | | | S-3 | SLO- | Functio | n of functi | | Problems in Minima | Maxima | and | Method of
Integration
Substitution | 1- | etho | li | Prope
ntegr | | of d | efini | te | | | | ms ir
nates | | as ir | pol | ar | | | | 3-3 | SLO- | Functio
differen | n of log <mark>ari</mark>
tiation | | Problems in
Minima | Maxima | and | Method of
Integration
Substitution | 1- | etho | (| Proble
definit | | | | rties | of | | | ms ir
nates | | as ir | pol | ar | | | | | SLO-
1 | Differen
function | ntiation of | implicit | Problems in
Minima | Maxima | and | Method of
Integration
Substitution | 1- | etho | 0 | Proble
definit | | | | rties | of | Ш | | ms ir
nates | | as ir | pol | ar | | | | S-4 | SLO- | Problen
derivati | ns in n th
ve | | Problems in
Minima | Maxima | and | Method of
Integration
Decompos
sum. | 1- | in to | | Redu
I _n =∫ | | | mula | ae | | | | ms ir
nates | | as in | pol | ar | | | | | SLO- | Problen
derivati | ns in n th
ve | | Problems in
Minima | Maxima | and | Method of
Integration
Decompose
sum. | 1- | in to | | Redu
I "=∫ | | | mula | ae | | Ш | oble:
ordir | ms
nates | in | are | eas | in | р | olar | | S-5 | SLO- | Problen | ns in n th de | | Problems in
Minima | Maxima | and | Method of
Integration
Decompose | 1- | in to | | Redu
I "=∫ | | | | ae | | Ш | | ms ir | | as in | pol | ar | | | | S-6 | SLO- | Tutorial | Session | | Tutorial Sess | sion | | sum.
Tutorial Se | essic | n | - | Tutori | al Se | essio | n | | | Tu | toria | l Ses | ssion | l | | | | | | | SLO- | Tutorial Session | |------|-----------|--|---|--|--|--| | | 2 | Formation of equations | | Method of | Reduction formulae | | | S-7 | SLO-
1 | involving derivatives | undetermined multipliers | Integration-
Integration by parts | $I_n = \int x^n \cos ax dx$ | Length of a curve in Cartesian coordinates | | 3-7 | SLO-
2 | Formation of equations involving derivatives | Problems in Lagrange's method of undetermined multipliers | Method of
Integration-
Integration by parts | Reduction formulae $I_n = \int x^n \cos ax dx$ | Length of a curve in Polar coordinates | | | SLO- | Problems in Leibnitz formula for the n th | Problems in Lagrange's method of undetermined | Method of
Integration- | Reduction formulae $I_n = \int \sin^n x dx$ | Problems in Length of a curve in
Cartesian coordinates | | S-8 | SLO- | derivative of a product Problems in Leibnitz formula for the n th | multipliers Problems in Lagrange's method of undetermined | Integration by parts Method of Integration- | Reduction formulae $I_{n} = \int \cos^{n} x dx$ | Problems in Length of a curve in
Cartesian coordinates | | | SLO- | derivative of a product Problems in Leibnitz formula for the n th derivative of a product | multipliers Problems in Lagrange's method of undetermined multipliers | Integration by parts Method of Integration- Successive reduction | Reduction formulae $I_{n} = \int \cos^{n} x dx$ | Problems in Length of a curve in
Cartesian coordinates | | S-9 | SLO-
2 | Partial differentiation | Problems in Lagrange's | Method of Integration-Successive reduction | Reduction formulae $I_{m,n} = \int \sin^m x \cos^n x dx$ | Problems in Length of a curve in Cartesian coordinates | | S-10 | SLO- | Partial differentiation | Problems in Lagrange's method of undetermined multipliers | Method of Integration-Successive reduction | Reduction formulae $I_{mn} = \int \sin^m x \cos^n x dx$ | Problems in Length of a curve in Polar coordinates | | | SLO- | Successive partial derivatives - problems | Definition of Envelope | Method of
Integration-
Successive reduction | Reduction formulae $I_{n} = \int \tan^{n} x dx$ | Problems in Length of a curve in Polar coordinates | | | SLO- | Successive partial derivatives -Problems | Method of finding the
Envelope | Method of Integration-Successive reduction | Reduction formulae $I_{n} = \int \tan^{n} x dx$ | Problems in Length of a curve in Polar coordinates | | S-11 | SLO- | Successive partial derivatives -Problems | Problems in Envelope | Method of Integration-Successive reduction | Reduction formulae $I_{n} = \int \cot^{n} x dx$ | Problems in Length of a curve in Polar coordinates | | | SLO- | Tutorial Session | | S-12 | SLO-
2 | Tutorial Session | | S-13 | SLO- | Function of function rule -Problems | | Problems in integration by parts | Reduction formulae $I_n = \int \cot^n x dx$ | Area of surface of revolution | | | SLO-
2 | Function of function rule-problems | Problems in Envelope | Problems in integration by parts | Reduction formulae $I_n = \int \sec^n x dx$ | Area of surface of revolution | | S-14 | SLO-
1 | Total differential coefficient-problems | Problems in Envelope | Problems in integration by parts | Reduction formulae $I_n = \int \sec^n x dx$ | Problems in Area of surface of revolution(Cartesian coordinates) | | 3-14 | SLO-
2 | Problems in Implicit functions | Problems in Taylor series | Problems in integration by parts | Reduction formulae $I_n = \int \sec^n x dx$ | Problems in Area of surface of revolution(Cartesian coordinates) | | | SLO-
1 | Problems in Implicit functions | Problems in Taylor series | Problems in Bernoulli's formula | Reduction formulae $I_{n} = \int \csc^{n} x dx$ | Problems in Area of surface of revolution(Cartesian coordinates) | | S-15 | SLO-
2 | Problems in Homogeneous function | Problems in Taylor series | Problems in
Bernoulli's formula | Reduction formulae $I_{n} = \int \csc^{n} x dx$ | Problems in Area of surface of revolution(Cartesian coordinates) | | | SLO- | Problems in
Homogeneous function | Problems in Taylor series | Problems in
Bernoulli's formula | Reduction formulae $I_{m,n} = \int x^m (\log x)^n dx$ | Problems in Area of surface of revolution(Polar coordinates) | | S-16 | SLO- | Problems in Euler
theorem | Problems in Jacobians | Problems in Bernoulli's formula | Reduction formulae $I_{m,n} = \int x^m (\log x)^n dx$ | Problems in Area of surface of revolution (Polar coordinates) | | | SLO- | Problems in Euler theorem | Problems in Jacobians | Practice problems | Reduction formulae $I_{n} = \int \csc^{n} x dx$ | Problems in Area of surface of revolution(Polar coordinates) | | S-17 | SLO- | Problems in partial differential equation of function of two functions | Problems in Jacobians | Practice problems | Problems involving reduction formula | Problems in Area of surface of revolution (Polar coordinates) | | | SLO- | Tutorial Session | | S-18 | SLO-
2 | Tutorial Session | | | | 1. | Calculus, Vol.I, S. Narayanan and T K ManicavachagomPillay, | Mathematics, Volume 1, P. Kandasamy and Thilagavathy, S. Chand, | | |----|----------|------|--|---|---| | | | | S. Viswanathan Printers and Publishers Pvt. Ltd., 2010. | New Delhi, 2004. | | | | | | Chapter 3: Sections 1.1 – 1.6, 2.1, 2.2, Chapter 8: Sections 1.1 – | | | | ١. | earning | | 1.6, Chapter 8: Sections 4.1, 5, Chapter 10: Sections 1.1, 1.2, 1.3. | 4. Calculus, Thomas and Finney, Pearson Education, 9th Edition, 2006. | | | | earning | 2. | CalculusVol. II, S. Narayanan and T K ManicavachagomPillay, | · | | | K | esources | | S. ViswanathanPrinters and Publishers Pvt. Ltd., 2010. | | | | | | | Chapter 1: Sections 5, 6.1 – 6.6, 7.1 – 7.5, 8, 9, 10, 12, 15.1, | | | | | | Chap | oter 1: | | l | | | | | Sections 11, 13.1 – 13.10,14, | | | | Chapter 2: Sections 1.4, 4.1, 4.2, 5 | | |--------------------------------------|--| | | | | Learning | g Assessment | | | | | | | | | | | |----------|------------------------------|--------|----------|----------|------------|---------|------------|-----------|----------|---------------------|-----------------| | | | | Continu | uous Lea | arning Ass | sessmer | nt (50% we | eightage) | | Final Examination (| EOO/ waightaga) | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | rinai Examination (| weightage) | | | Level of Tilliking | Theory | Practice | | Level 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | Level | Understand | 4070 | - | 30% | - | 30% | - | 30% | - | 30% | - | | Level 2 | Apply | 40% | | 40% | | 40% | | 40% | | 40% | | | Level 2 | Analyze | 40 /0 | - | 40 /0 | - | 40 /0 | - | 40 /0 | i | 40 /0 | - | | Level 3 | Evaluate | 20% | | 30% | | 30% | | 30% | | 30% | | | Level 3 | Create | 20 /0 | Ī
 30 // | | 30 // | | 30 /0 | | 30 /0 | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 0 | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | r apor oto., | | | |---|---|---| | Course Designers | 1133 124 | | | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Prof. K. S. Ganapathy
Subramanian, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. S. Vidyanandini, SRMIST
Mrs. V. Padma | | Cou | 11111 | MA20203T Course
Name | /ector calculus, Fourier series | s and Tran | sforms | ; | | Cours | | | С | | Prof | | onal
urse | Core | 9 | L
5 | T
1 | F (| _ | C
6 | |--------------------|----------------------|--|---|------------------------------------|--------------------------|--------------------------|-------------------------|----------------------|------------------|------------------------|---------------------|-------------------|------------------|---|--------------|------------------------|----------------|------------------------|--------------------|---------|-----|--------| | | Pre-r | | Integral Co-requisite Cours | ses Nil | | | | | | | Prog | ress | ive C | cour | ses | Nil | | | | | | | | Cours | se Offeri | | Mathematics | Data | Book / | / Co | des/ | Stand | lards | Ν | lil | | | | | | | | | | | | | | se Learn
nale (CL | | of learning this course is to: | | | | Lea | arnin | 9 | | | Pr | ogra | m Le | earni | ng C | Outco | mes | s (PL | .O) | | | | CLR-
1:
CLR- | | · · · · · · · · · · · · · · · · · · · | egrals in Cartesian and polar | coordinate | es 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 2 :
CLR- | | tion of line, surface and vol | 3 :
CLR- | | of Fourier series expansion of half range series expansi | | | | | | | | | ۲. | | | lity | | | | | | | | | | 4 :
CLR- | - | | s technique for evaluating inte | egrals | Sloom) | (%) vc | nt (%) | e e | 200 | nent | Research | a | | tainabi | | Nork | | nce | | | | | | 5 :
CLR-
6 : | | of Fourier sine and Cosine t | ransforms and its technique fo | | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & Development | Analysis, Design, R | Modern Tool Usage | Culture | Environmen <mark>t & Sustaina</mark> bility | | Individual & Team Work | ation | Project Mgt. & Finance | Life Long Learning | | | | | Cours | se Learn | ing | 10000 | | - of | ected | ected | ntific | Jem A | ign & [| lysis, [| ern To | Society & | ronme | SS | idual | Communication | ect Mc | Long I | PSO - 1 |)-2 | 0-3 | | Outco | mes (Cl | LO): At the end of this co | ourse, learners will be able to | | | - ш | | | | | Ana | Moc | Soc | Env | Ethics | | | Proj | | PSC | PSO | PSO | | 1 :
CLO- | | ts will be able to evaluate d | | | 1 | 85 | | - | | L | Ė | - | | 7 | i | M | L | - | Н | | - | - | | 2 :
CLO- | | | ne, surface and volume integral given function as a Fourier | | full a | | | | | - | M | M | - | 1 | | M | - | - | Н | | - | - | | 3 :
CLO- | range | | given function as a Fourier co | 100 | | - | | ╀ | | - | | - | - | | | М | | - | Н | - | | - | | 4 :
CLO- | sine se | ries | technique for evaluating integ | | 2 | + | - | - | - | Н | M | - | - | 1 | - | М | L | - | Н | | - | - | | 5 :
CLO- | Fourier | transform | technique for evaluating integ | 3.3 | 3 | | | ╫ | +- | L | Ē | | | i | | М | Ì | - | Н | | 1 | - | | 6: | Convol | | lectifique for evaluating integ | rais using | 3 | 85 | 80 | M | Н | - | - | 1 | - | - | - | М | - | Ī | Н | - | - | - | | D., | | | WING O | | | | h | | | | Ä | | | i | | | | | | 4 | | | | | ration
lour) | Module-I (18) | Module-II (18) | | Module | e-III (| 18) | ¥ | | b | Mod | lule-l | V (1 | 8) | | | | Mod | ule-\ | / (18 | 3) | | | S-1 | SLO-1 | Introduction to the concept of integrals | Introduction to Vector
Calculus | Introduct | tion to F | ouri | er se | eries | | trodi
ourie | | | | | | | oduc | tion
ms | to in | tegr | al | | | | SLO-2 | Evaluation of integrals | Scalar and Vector Point function | Dirichlet | s condi | ition | | | | ine s
ver(0 | | ехр | ansi | on | | Fou | ırier | integ | gral t | heoi | rem | | | S-2 | SLO-1 | Problems in evaluation of integrals | Gradient of the function | Euler co | nstants | | | | | ne se
),π) | eries | ехр | ansid | on o | ver | Fou | ırier | trans | sforn | n(FT | ·) | | | | SLO-2 | Problems in evaluation of integrals | Finding the grad of a scalar function | Converg
in the int | | | ırier | serie | s s | ine s | eries | for | x-x ² | | | FT
f(x) | | (in : | x <1 | | | | | | SLO-1 | Concept of double integrals | Normal vector, unit normal vector | Fourier s
(0,2l) | eries e | xpar | sior | ove | | ne se
ver(0 | | | ansid | on | ď | FT
F(x | | x² in | x <1 | | | | | S-3 | SLO-2 | Evaluation of double integrals | Finding the unit normal vector to the given suface | Finding s
cosine a | | | | | | ine s
(1-x) | eries | ехр | ansi | on fo | or | FT
F(x | | sx in | ۰x>0 | <1 | | | | | SLO-1 | Evaluation of double integrals | Angle between the two surfaces | Fourier s
(0,2l) | eries e | xpar | sior | ove | | osine
ver(0 | | es e | xpan | sion | | App | olica | tion (
rans | Of In | vers | e | | | S-4 | SLO-2 | Evaluation of double integrals | Finding the angle between
two surfaces at a given
point | Finding s
cosine , polynom | sine fur | | | | P | roble | ms | | | | | hen
inte | ice è
gral: | | ating | sor | ne | | | 0.5 | SLO-1 | Double integrals in polar coordinates | Concept of divergence | Fourier s
(-I, I) | eries e | xpar | sior | ovei | | osine
ver(0 | | es e | xpan | sion | l | hen | | k)=a-
evalu
s | | | | nd | | S-5 | SLO-2 | Evaluation of double integrals in polar coordinates | Finding the divergence of a vector function | Finding s | | | | for | Р | roble | ms | | | | | | | | | | | | | S-6 | | Tutorials | Tutorials | Tutorials | | | | | _ | utoria | | | | | | 4 | orial | | | | | | | S-7 | SLO-2
SLO- | Tutorials Concept of triple integrals | Tutorials Solenoidal Field | Tutorials
Fourier s
even fun | eries e | | | of | R | utoria
MS v
),a) | | of t | ne fu | nctio | on in | | orial
seva | s
al's io | denti | ty | | | | 3-1 | SLO-2 | Problems in triple integrals | Problems in solenoidal field | Fourier s
function | eries e | xpar | | of o | 44 | elate | d pro | obler | ns | | | Rel | ated | prol | olem | s | | | | S-8 | SLO-1 | Problems in triple integrals | Concept of Curl | Fourier s
function | eries e | xpar | sior | of o | dd P | arse | /al's | iden | tity | | | | sfor | ns or
m ar | | | | | | Llimit of double integrals or a given region Problems in finding the imits of double integrals Application of double | Problems on divergence and curl of vector function Scalar potential function | Fourier series expansion of neither even nor odd function over (-I, I) Fourier series expansion of e^{ax} in (-I,I) Problems in full range over (- π , π) | Parseval's identity Related Problems | Properties of Fourier transform Properties of Fourier | |---|---|--|---|--| | imits of double integrals Problems in finding the imits of double integrals Problems in finding the imits of double integrals Application of double | and curl of vector function Scalar potential function | in(-l,l) Problems in full range over (-π, | Related Problems | Properties of Fourier | | Problems in finding the imits of double integrals Application of double | | | | transform | | imits of double integrals Application of double | | "'/ | Convergence of Half range series | Problem based on
Properties of Fourier
transform | | Application of double | Problems in finding the scalar potential function | Fourier series expansion of e^{ax} in $(-\pi, \pi)$ | Related Problems | Problem based on
Properties of Fourier
transform | | ntegrals-Using Cartesian coordinates | Vector integrals | Fourier series expansion over (0, 2π) | Problems in sines with deduction | Fourier sine transform | | Problems in finding the area of a given region | Line integrals | Related Problems | Problems in sines with deduction | Sine transform of eax | | Problems in finding the area of a region | Problems on Line integrals | Fourier series expansion of even function over $(-\pi,\pi)$ | Problems in cosine series with deduction | Inverse Fourier sine transform | | Problems in finding the area of a given region | Problems on Line integrals | Series expansion of x-x ² | Problems in cosine series with deduction | Evaluation of integrals | | Problems in finding the area of a
given region using polar coordinates | Surface integrals | Fourier series expansion of odd function over $(-\pi,\pi)$ | Application of sine series expansion | Inverse Fourier cosine transform | | Problems in polarcoordinates | Evaluation of surface integrals | Series expansion of x sinx | Problems | Cosine transform of eaxand evaluating integrals | | <u>Futorials</u> | Tutorials | Tutorials | Tutorials | Tutorials | | Tutorials | Tutorials | Tutorials | Tutorials | Tutorials | | Change of order of ntegration | Green's theorem and its application | Root mean square value of the functions | Application of cosine series expansion | Properties of Fourier sine and cosine transform | | Problems in change of order of integration | Problems on Green's
Theorem | RMS values for f(x)=x2in(-1,1) | Cosine seies for $f(x) = x^2$ | Properties of Fourier sine and cosine transform | | Problems in change of order | Gauss divergence theorem and its Application | Parseval's indentity | Application of sine series expansion | Related problems | | Problems in change of order | Verification of Gauss Divergence Theorem for Cubes | Deduction of Σ(1/n ⁴⁾ | Sine series for f(x)=x | Cosine transform of 1/(x²+a²) | | Change of variable | Verification of Gauss
Divergence Theorem for
Cubes | Deduction of Σ(1/n ⁴⁾ where n is odd | Harmonic Analysis for sine series | Convolution theorem | | Problems in change of variable | Verification of Gauss
Divergence Theorem for
Cuboid | Related problems | Related Problems | Proof of convolution theorm | | Problems in change of variable | Stoke's theorem | Harmonic Analysis | Harmonic Analysis for sine series | Problems using convolution | | Problems in change of variable | Application | Problems | Related Problems | Self reciprocal under sine transform | | Application of triple ntegrals | Verification of Stoke's
Theorem | Harmonic Analysis | Harmonic Analysis for cosine series | Self reciprocal under cosine transform | | Problems Problems | Theorem | Problems | Related Problems | Evaluation of integrals using identities | | | Tutorials | Tutorials | Tutorials | Tutorials | | Futorials | Tutorials | Tutorials | Tutorials | Tutorials | | rot | | rials Tutorials | Theorem Problems rials Tutorials Tutorials | Theorem Problems Related Problems rials Tutorials Tutorials Tutorials | ## Learning Resources - P. R. Vittal & V. Mallini. Vector Calculus, Fourier series and Fourier transforms,Margham Publications, 2004. Grewal B.S. Higher Engineering Mathematics, Khanna Publications, 42nd Edition, 2012. S. Narayanan and Manickavachagam Pillai, Vector algebra and Analysis, S. Viswanathan Pvt, Ltd., 1995. - 4. S.Narayanan and Manickavachagam Pillai, calculus, Volume III,Vija Nicole Imprints Pvt.Ltd, Chennai, 2004. 5. A.R.Vasistha and R.K.Gupta, Integral transforms, Krishna Prakashan media Pvt Ltd., New Delhi, 2011. 6. S.Narayanan, R.Hanumantha and T.K.Manickavachagam Pillai, Ancillary Mathematics, Volume I & II, S.Viswanathan Printers, Chennai, 2007. | | g Assessment | | Contin | uous Lea | arning Ass | sessmer | nt (50% we | eightage |) | Final Evamination / | E00/ weightege) | | | | |---------|------------------------------|--------|----------|----------|------------|---------|------------|----------|----------|--------------------------------|-----------------|--|--|--| | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weighta | | | | | | | Level of Tilliking | Theory | Practice | | | | | Level 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | | | | Leveii | Understand | 4070 | - | 30% | - | 30% | - | 30% | - | 30% | - | | | | | evel 2 | Apply | 40% | | 40% | | 40% | | 40% | | 40% | | | | | | Level 2 | Analyze | 40% | - | 40% | - | 40% | - | 40% | - | 4070 | - | | | | | Lovel 2 | Evaluate | 20% | | 30% | | 30% | | 30% | | 30% | | |---------|----------|-----|-----|-----|-----|-----|-----|-------|---|-------|---| | Level 3 | Create | 20% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 100 % | | 100 % | 6 | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | | | | | | | | | | |--|--|---|--|--|--|--|--|--|--|--|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | | | | Mr. V. Maheshwaran, Cognizant Technology Solutions | | Dr. A. Govindarajan, SRMIST
Dr. K. Ganesan, SRMIST | | | | | | | | | | | maheshwaranv@yahoo.com | | Mr. L. S. Senthilkumar, SRMIST
Mrs. G. Krishnaveni, SRMIST | | | | | | | | | | | Course | | | | Course | | | L | Т | Р | С | l | |--------|-----------|-------------|-------------------------------------|----------|---|--------------------------|---|---|---|---|---| | Code | UCD20S02L | Course Name | Quantitative Aptitude and Reasoning | Category | S | Skill Enhancement Course | 0 | 0 | 2 | 1 | | | Pre-requisite Courses | Nil | Co-requisite
Courses | Nil | Progressive
Courses | Nil | |-------------------------------|---------------------------------|-------------------------|-----------------------------|------------------------|-----| | Course Offering
Department | ('aroor I)ovolonmont ('ontro | | Data Book / Codes/Standards | - | | | | e Learning
ale (CLR): | The purpose of learning this course is to: | Le | arni | ng | | | | Pro | grar | n Le | arni | ng C | Outc | ome | s (P | LO) | | | | |-------------|--|--|--------------------------|--------------------------|-------------------------|-----------------------|----------------|-------------------------------|----------------------|--------------------------|-----------------------------|--------------------|---------------------------------------|----------------------|------------------------|----------------|-------------------|------------|-----------------------|-------------------| | CI D. | | rarious principles involved in solving mathematical concepts | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | Develop intere
calculations ar | st and awareness in students regarding profit/ loss, interest and average | ate basic mathematical concepts related to mixtures and mutation and combination, time and work | nts with skills necessary to generate and interpret data and ed to time, speed and distance and blood relation. | | | | | | Se | | | е | | | | | | | | | | | CLR-
5 : | Enable studen | (mool) | (%) k | ıt (%) | ledge | Concepts | isciplin | age | on | owledg | | ata | | sIIIs | slli | | | ior | | | | 6 · | reate awarenes <mark>s in students r</mark> egarding the various concepts in
uantitative <mark>aptitude and r</mark> easoning skills and also its importance in various
ompetitiv <mark>e exams</mark> | | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledg | Skills in Modeling | Analyze, Inte <mark>rpret Data</mark> | Investigative Skills | Problem Solving Skills | ication Skills | I Skills | • | Professional Behavior | Life Long Leaming | | | e Learning
mes (CLO): | At the end of this course, learners will be able to: | evel of | Expected | Expected | -undam | Application of | ink with | Procedu | Skills in § | Ability to | Skills in I | Analyze, | nvestiga | Problem | Communication | Analytical Skills | ICT Skills | Profession | ife Long | | CLO- (| U <mark>nder</mark> sta <mark>nd</mark> , a | nalyze and solve questions based on numbers, logarithms. | 3 | 80 | 70 | Н | Ĥ | M | Н | Ĺ | М | - | H | Ī | H | - | H | М | - | Н | | | | interpret and apply basic mathematical models which are
ur day to day life | 3 | 80 | 75 | М | Н | М | Н | - | М | • | Н | r | Н | - | Н | М | - | Н | | 2. | combinations, | e concepts of mixtures and alligations, permutation and
probability, time and work and to approach questions in a
inovative method | 3 | 85 | 70 | М | Н | М | Н | | М | Ī | Н | Ì | Н | | Н | М | | Н | | CLO- (| <mark>Und</mark> erstand th | e concept in time ,speed and distance | 3 | 85 | 80 | М | Н | М | Н | ā | М | 1 | Н | - | Н | - | Н | М | - | Н | | | Ability to solve | the problems on reasoning | 3 | 85 | 75 | М | Н | М | Н | - | М | • | Н | - | Н | | Н | М | - | Н | | CLO. | Able to face di | fferent competitive exams | 3 | 80 | 70 | М | Н | М | Н | i | М | - | Н | - | М | - | Н | М | - | Н | | | ration
our) | 6 | 6 | 6 | 6 | 6 | |-----|----------------|---|---|---|---|---| | S-1 | SLO-
1 | Classification of numbers | Profit and Loss-
Introduction | Mixtures and Alligations-
Introduction | Time, Speed and Distance-
Problems on Trains | Direction Sense-
Introduction | | 3-1 | SLO-
2 | Test of divisibility | Profit and Loss- Basic
Problems | Mixtures and Alligations-
Problems | Time, Speed and Distance-
Boats & Streams | Direction Sense-Problems | | S-2 | SLO- | Unit digit | Statistics-Introduction | Permutation –Introduction&
Basics | Data
Interpretation – Bar chart | Number Series | | 3-2 | SLO-
2 | Tailed zeroes | Statistics-Mean, Median,
Mode | Combination-Introduction&
Basics | Data Interpretation – Pie chart | Word Series | | S-3 | SLO-
1 | HCF, LCM | Simple Interest-
Introduction,Formulas
&Problems | Probability-Introduction &Basics | Data Interpretation – Table | Seating Arrangements -
Linear | | 5-3 | SLO-
2 | HCF, LCM - Solving problems | Compound Interest-
Introduction ,Formulas
&Problems | Probability-Problems | Data Interpretation – Line graph | Seating Arrangements -
Circular | | S-4 | SLO-
1 | Logarithm –Introduction of log rules | Word problems on Line equations-Introduction | Time and work-Introduction | Data sufficiency-
Introduction and Basics | Puzzles-Concepts | | 5-4 | SLO-
2 | Logarithm –Applications of
log rules | Word problems on Line equations- Basic problems | Time and work-Men and Work | Data sufficiency-Problems | Puzzles-Problems | | S-5 | SLO-
1 | Percentage -Introduction | Averages-Introduction & Basics | Time and work-Pipes &Cisterns(Introduction) | Blood relation-Introduction | Clocks-Concepts
Discussion | | 3-3 | SLO-
2 | Percentage- Basic problems | Averages-Tricky Problems | Time and work-Pipes
&Cisterns(Problems) | Blood relation-Problems | Clocks-Problems | | 0.0 | SLO-
1 | Percentage-Increasing &
Decreasing functions | Ratio and Proportions-
Introduction | Time, Speed and Distance-
Introduction | Coding – Decoding-
Introduction | Calendars-Introduction of basic concept | | S-6 | SLO-
2 | | Ratio and Proportions-
Basics & problems | Time, Speed and Distance-
Basic problems | Coding – Decoding-
Different types | Calendars-Problems | | | 1. Abhijit Guha, Quantitative Aptitude for Competitive Examinations, Tata | 4. Edgar Thrope, Test Of Reasoning for Competitive Examinations, Tata | |-----------|--|---| | | McGraw Hill, 5th Edition | McGraw Hill, 6th Edition | | Learning | 2. Dr. Agarwal.R.S, Quantitative Aptitude for Competitive Examinations, S. | 5. Dinesh Khattar, The Pearson Guide to Quantitative Aptitude for | | Resources | Chand and Company Limited, 2018 Edition | competitive examinations, Pearson, 3rd Edition | | | 3. Archana Ram, PlaceMentor: Tests of Aptitude for Placement Readiness, | 6. P A Anand, Quantitative Aptitude for competitive examinations, | | | Oxford University Press, Oxford, 2018 | Wiley publications, e book, 2019 | | Learning Assessment | | | | | | | | | | | | | |---------------------|---------------------------|---|-------------|---------------|----------------|--|--|--|--|--|--|--| | | | Continuous Learning Assessment (100% weightage) | | | | | | | | | | | | Level | Bloom's Level of Thinking | CLA-1 (20%) | CLA-2 (20%) | CLA-3 (30%) # | CLA-4 (30%) ## | | | | | | | | | | | Practice | Practice | Practice | Practice | | | | | | | | | Level 1 | Remember | 10% | 10% | 30% | 15% | | | | | | | | | Level I | Understand | 10% | 10% | 30% | 1570 | | | | | | | | | l1 0 | Apply | F00/ | 500/ | 400/ | F00/ | | | | | | | | | Level 2 | Analyze | 50% | 50% | 40% | 50% | | | | | | | | | Laval 2 | Evaluate | 40% | 400/ | 30% | 35% | | | | | | | | | Level 3 | Create | 40% | 40% | 30% | 35% | | | | | | | | | | Total | 100 % | 100 % | 100 % | 100 % | | | | | | | | # CLA-1, CLA-2 and CLA-3 can be from any combination of these: Online Aptitude Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, Mini Talks, Group Discussions, Mock interviews, etc. ## CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | | | | | | | | | |--|--|--|--|--|--|--|--|--|--|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | | | 1. A <mark>jay Zener,</mark> Director, Career Launcher | | Dr. P Madhusoodhanan, HoD, CDC, E&T, SRMIST Dr. M Snehalatha, Assistant. Professor, CDC, E&T, SRMIST | | | | | | | | | | Cou | 1111 | K20201L | Cou
Nar | | Communicati | on Skills | | | | ours
tego | | JK | | | ı | Life : | Skill | Col | urse | | | 0 | T
0 | P
4 | C
2 | | |---|---|---------------------------|----------------------------|--|---|-------------------------|--|-------------------------|--------------------------|--|------------------------|----------------------------------|-------------------------------|--|---|------------------------------|---|-------------------------|---|------------------------|----------------------|-------------------|--------------|--------|--------|--| | Pr | e-requis | ite Cours | es | Nil | Co-requisite Courses | Nil | | | | | gres | | Ni | 1 | | | | | | | | | | | | | | | rse Offe
artment | ring | | English | | Data Book
Codes/Sta | | | | | 0013 | | | | | | Ni | il | | | | | | | | | | | rse Lear
onale (C | | | The purp | ose of learning this coul | rse is to: | | | | Lea | ırnin | g | | | Pro | grai | m Le | earn | ing Outcomes (PLO) | | | | | | | | | _ | CLR-1: To make the students learn the native speakers' accent. CLR-2: To educate them about word stress of English | | | | | | | | | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | CLR
CLR
CLR | LR-3: The enable them to participate in group discussion and debates LR-4: To improve their participation and participation skills LR-5: To improve the listening and speaking abilities in English | | | | | | | | | ment (%) | nowledge | Concepts | ed Disciplines | wledge | ization | Knowledge | <u>b</u> L | et Data | dils | g Skills | Skills | | | | | | | Cou | CLR-6 : LSRW skills all together is developed in every student Course Learning Outcomes | | | | | | | | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of (| Link with Related Disciplines | Procedural Knowledge
Skills in Specialization | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | | CLC
: | Una | lerstand th | ne nat | tive speake | rs' exact pronunciation | | | | 75 | | Н | Н | Н | Н | 7 | 1 | | Н | Н | Н | Н | Н | - | ٠ | - | | | CLC
: | Mas | ster the so | und s | systems of | English | | | 2 | 80 | 70 | Н | Н | Н | - | ١. | - | | Н | Н | Н | Н | Н | - | - | - | | | CLC
: | пач | <mark>re a be</mark> tter | Word | d stress, Ri | nythm and Intonation | - 344 | 37 | 2 | 70 | 65
| Н | Н | Н | - | Н | Н | 1 | ď | Н | Н | Н | Н | - | 1 | - | | | CLC | Dev | relop Neut | - | | n with any native speak | | | 2 | 70
80 | 70
70 | Н | Н | Н | -
Н | Н | - | - | - Н | -
Н | -
Н | H | H
H | - | - | - | | | CLC
: | 0-6 Clea | ar any sta | ndard | | conducted to measure t | | nguage | 2 | 75 | | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | -
H | -
H | - | | | | ration | - | 1: | 2 | 12 | 100 | | H | 12 | 7 | ÷ | Ť | | | 1 | 2 | i | | | í | ŧ | 12 | | | | | | S-1 | SLO-1 | listening | e lab -
skills
ctive | helps in the
by providir
environme | g their speech and lis | sten to it in | | e re | adin | are is used to 10 enable the students to learn g exercises familiarize with word | | | | | rudents are enabled to arn and pronounce ressed and unstressed ords | | | | | | | | | | | | | | SLO- 2 | | ents v | will be able | to One will know hims
he/ she has gone w | | Flow in improve | | ding | will l | be | le | earn | e pul
t by t | he s | tude | ents | | The practice will lead the to acquire neutral acceused and understand foreign accent Common topics in IELT | | | | ccer
eign | nt | | | | S-2 | SLO-1 | Students
functiona | | exposed to
guage | Fluency and Pronu
be evaluated | nciation to | The us | | | hone | tics w | vill le | | _ | | | | 7 | sp
wi | eaki
II be
e stu | ng te | est a
vided | nd T | OFE | EL | | | | SLO- 2 | them pic | k up f
the w | all of Pink | Their standard will Lab 4 Students are situation, they need | given a
d to write a | reading
class
Lab 7 I
convers | ntro | ducti | ion to | the | e a e | nd s
nga
ab 1
o de: | tude
ge in
0 lea
scrib | onts a
con
arne
e so | are a
vers
rs ar | illow
ation
e as | ed to
ns
ked | pr La | sses
ovide | ed fo | or se
dents | f scr | uting | n to | | | S-3
- | SLO-1 | students | | layed for ti | requesting information in the situation | tion or | speake
native | r/ in | tervi | | | ta | able
wn v | natio
/char
word | ts/na | | | | | pass
give | | | | | id | | | S-4 | SLO- 2 | understa
a wall. It | nd the
helps | e isolation | em to English letter conventions fluency by listening using language accurately | | | | | lai | sses:
ngua
ocabi | ige c | omp | | | nd | | | | | | | | | | | | S-5 | the neip o | | | | | d in a
les a
p of | the r
and d
dicti | eadii
check
onari | ng
ked w
es | rith E | vith e
uida | liariz
e-jou
nce,
s, e- | rnals
e-m | s , e-
naga. | | | Listening topics in the IELTS listening test and TOFEL will be provided | | | | | | | | | | | | SLO-2 American and British styles are differentiated is access the mas much as possible list and sentences used in different contexts and sentences | | | | | provided | | | | е | | | | | | | | | | | | | | | | | | S-6 SLO-1 Listening to news bulletins and songswillbeenabled to help them to understand use of vocabulary Learnerscanspeak English and compare the notes and exchange ideas Comprehensive skills are enhanced and checked the level Enable the students to versatile writing | | | | Reading topics in the
IELTS reading test and
TOFEL will be provided to
assess the students. | | | | | to | Will beenabled ti imitae the exact accent and prononciation | From the exchangedideascomprehensive questions willbeasked by the otherstudents | The levels are informed to the students and Icuna is explained | Diffrerence in writing and readingisexplained | Assesment on their capacity is explained | |----------|--|---|---|---|---|---| | S-7 | SLO-1 | Lab 2TedX will be played for the student | Lab 5 introduction to semi-
formal/ neutral discursive essay
will be taught. | Lab 8 television news will
be broadcasted to them | Lab 11learners are given
with a set of images where
they need to write a story
from it | Lab 14 students will listen
to the great monologues of
the time | | S-8 | SLO- 2 | It will help them to improve
their fluency | It will teach them to write coherently and cohesively. | It will help them to
understand the usage of
words and the fluency of
speaker | It helps them to keen on observation as well as to know their creativity. | They will learn the importance of pronunciation, stress and pause in a speech | | S-9 | | authentic sounds of the target language Give different topics to debate to enable them talk fluently | | The right pronunciation is checked with an access to articles fiction verses and speeches | Focus on writing is done | writing topics in the IELTS writing test and TOFEL will be provided to assess the students. | | 3-3 | | To enable them imitate the different sounds and accents and make them repeat it | To check the pace of their speech | Minute details and
differences are marked and
rectified | Conversational skills are enhanced | Writing skills are assessed and tested | | S-
10 | SLO-1 | To enable to practice different accents focusing on intonation and voice modulation | Dialogue delivery be checked
by asking them to prepare for
their own e- learning materials | Read and repeat passages | Help in professionalwriting | Model IELTS and TOFEL test will be conducted for the students | | 10 | SLO- 2 | The differences between intonation stress and modulations are explained | Make the students speak and record | | Check and asses theirwritings | Assessment will be provided to the learners | | S
11 | SLO-1 | Lab3 After listening to
TedX, students need to jot
down set of question. | Lab 6 learners will be taught to
write a review for a film after
watching | | Lab 12 students will listen
to the writers note on
publishing a novel/ short
story | Lab 15 they will listen to
grammar usage in the form
of visual image and song | | S
12 | SLO-2 This will help them to identify the key information in listening text. | | Leaner will need to think for the
apt word. Through this
language competency will be
evaluated | It Will help them to
understand the target
language | It will helps them to
enhance their creativity also
the language compétence | They will the foreign language easily and it enhances their competency of it | Learning Resources - Theory: 1. Horizon- English Text Book Compiled and Edited by the faculty of English Departement, FSH, SRMIST, 2020 2. English Grammar in Use by Raymond Murphy 3. Raymond Murphy, Intermediate English Grammar, Cambridge University Press, 2007 4. R.P. Bhatnagar, English for Competitive Examinations, Trinity Press, 3rd Edition, 2016 - 5. http://www.aptitudetests.org/verbal-reasoning-test - 6. https://www.assessmentday.co.uk/aptitudetests_verbal.htm | Learning A | Assessment | | | | | | | 4 | | | | | | |------------|---------------------------|--------|---|----------|----------|-------------|----------|----------------|----------|--|--|--|--| | | 150 | | Continuous Learning Assessment (100% weightage) | | | | | | | | | | | | Level | Bloom's Level of Thinking | CLA - | 1 (20%) | CLA - | 2 (20%) | CLA - | 3 (30%) | CLA - 4 (30%)# | | | | | | | | THIRMING | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | | Level 1 | Remember | 1 | 30% | | 30% | | 30% | - 40 | 30% | | | | | | Level I | Understand | 100 17 | 1 | as fetti | 1 1 1 1 | | 0070 | | 0070 | | | | | | Level 2 | Apply | 11.15 | 30% | | 30% | 13:33 | 30% | | 30% | | | | | | Level 2 | Analyze | | 30% | | 30% | A. J. L. L. | 30% | | 30% | | | | | | Level 3 | Evaluate | | 40% | | 40% | | 40% | | 40% | | | | | | Level 3 | Create | | 40% | - | 40% | - | 40% | | 40% | | | | | | | Total | 10 | 0 % | 10 | 0 % | 100 |) % | 10 | 0 % | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |-----------------------|---|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | 1. Prof. Daniel David, Prof & Head, Department of English, MCC, | 1. Dr. Shanthichitra, Associate Professor, & Head, Department | | | Chennai | of English, FSH,SRMIST | | | | 2. Dr K B Geetha, Assistant Professor, Department of English, | | | | FSH, SRMIST | | UNS20201L/ | | | | | | L | T | Р | С | | |--|----------------|------------------|--------------------|----|--------------------|---|---|---|---|--| | Course UNC20201L
Code UNO20201L/
UYG20201L | Course
Name | NSS/NCC/NSO/YOGA | Course
Category | EA | Extension Activity | 0 | 0 | 0 | 0 | | | Pre-requisite
Courses | Nil | Co-requisite
Courses | Nil | Progressive Courses | Nil | |-------------------------------|-------|-------------------------|-----------------------------|---------------------|-----| | Course Offering
Department | NSS/N | ICC/NSO/YOGA | Data Book / Codes/Standards | Nil | | ## Assessment is Fully Internal | Learning Assessment | | | | | | | | | | |---|-----------|--|--|--|--|--|--|--|--| | Assessment Tools | Marks | | | | | | | | | | Continuous Learning Assessment –I (CLA-I) | 20 Marks | |
 | | | | | | | Continuous Learning Assessment –II (CLA-II) | 30 Marks | | | | | | | | | | Continuous Learning Assessment –III (CLA-III) | 30 Marks | | | | | | | | | | Continuous Learning Assessment –IV (CLA-IV) | 20 Marks | | | | | | | | | | Total Marks | 100 Marks | | | | | | | | | | Course | | Course | | Course | | | L | Τ | Р | С | |--------|-----------|--------|----------------------------|----------|---|--------------------------|---|---|---|---| | Code | UMA20301T | Name | PROBABILITY AND STATISTICS | Category | С | Professional Core Course | 5 | 1 | 0 | 6 | | Oud | | | lamo | | | | | | out | 90., | | | | | | | | | | | | ٦ | ' | 0 | 1 | |---|-----------|-----------------------------|---------------------------------------|-----------------------------|------------------------------|--------------------------|------------------------|--------------------------|--------------------------|---------------------|----------------------|--|----------------------|-------------------|-------------------|-------------------|------------------------------|--|------------------------|---------------|------------------------|-------------------|---------------------|-------|---| Pre-
requis | site | | Nil | Co-
requisite
Courses | | Nil | | | F | Progre | essiv
rses | е | | | | | | l | Nil | | | | | | | | | Offerin | ng | Ма | thematics | | ata Book /
odes/Stand | ards | Course
CLR) : | | ng Rational | e The pu | ırpose of lea | rning this co | ourse is to: | | | | Lear | ning | | Pro | grar | n Le | arnir | ng O | utco | mes | (PL | O) | | | | | | CLR- | To und | erstand the | concepts of pro | bability and | standard dis | stributions. | | 1_ | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 1 | | CLR- | To lear | nt the conce | epts of two dime | <mark>nsional</mark> rand | lom variable | s. | | | 1 | | | | | | | | | | | | | | | | Ī | | 1 . | To knov | w how to te | st the hypothesi | 3. | 1 | - 11 | | ۱ | | | | | | Ļ, | | | lity | | | | | | | | | | CLR- | To lean | nt the conce | epts of correlation | n and regre | ssion lines. | | | om) | % | (%) | | | ¥ | Research | | | Environment & Sustainability | | ¥ | | Φ | | | | | | CLR | To lear | n <mark>t the differ</mark> | ent types of ana | lysis of varia | ince. | | | <u>용</u> | ancy | nent | adge | " | pme | Res | ge | | usta | | n Wc | | nanc | g | | | | | ĹŔ- | To unde | erstand the | evaluation of qu | ality control | chart. | | | king | oficie | ainm | lowle | Analysis | velo | sign, | Usa | Iture | S
S | | Lean | ion | ĕ
Ei | amin | | | | | <i>C</i> . | | | | 1 | | | | Thi | d Pro | d Att | 조 | Ans | & De | , De | Tool | & CL | ment | 4 | <u>∞</u> | nicat | Mgt. | g Le | | | l | | ourse | Learni | ng Outcom | es At the end of | this source | loornoro wil | ll be able to | 9.7 | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment | Scientific Knowledge | Problem | Design & Development | Analysis, Design, | Modern Tool Usage | Society & Culture | iron | cs | Individual & Team Work | Communication | Project Mgt. & Finance | Life Long Leaming | PSO-1 | 0-2 | | | CLO): | | | | | | ii be abie to | , | _ | _ | _ | | Pro | Des | Ana | Š | Soc | Ē | Ethics | Indi | Š | Po | | PS(| PSO | | | | | | e random variab | | | 1955 | 1 | 3 | 85 | 80 | Н | Н | L | - | - | - | - | - | М | L | - | Н | - | - | | | Λ. | | | ledge in mappin | | rmation. | | | 3 | 85 | 80 | М | Н | - | М | М | - | - | - | М | - | - | Н | - | - | | | _ ^ _ | | | s on testing of h | | | | | 3 | 85 | 80 | Н | Н | - | | - | - | - | - | М | - | - | Н | - | - | | | | | | arson correlatio | , 0 | | rties. | 100 | 3 | 85 | 80 | Н | Н | | М | - | - | - | - | М | 7 | - | Н | - | - | | | | | | ent types of Ana | | | 340 | | 3 | 85 | 80 | М | Н | L | - | - | - | - | - | М | - | - | Н | - | - | | | CLO- | To knov | w the funda | mental concepts | in statistica | l quality con | ntrol. | | 3 | 85 | 80 | М | Н | - | - | - | - | - | - | M | | - | Н | | _ | L | | Dura
(ho | | Mo | odule-I (18) | N | lodule-II (18 |) | Мс | dule | e-III | (18) | | | P | Mod | lule- | IV (1 | 8) | I | | | Mod | ule-\ | / (<mark>18</mark> |) | | | S-1 | SLO- | | on to Probabilit
and Axioms | | tion to two
onal random | | troducti
pothes | | o te | sting | of | | trodu | ictioi
ient | n to | corre | elatio | n | | | ction
conti | | tatis | tical | Ī | | SLO- Conditional probability and Two dimensional random variables and | | | | | | | ampling
nd alterr | nativ | e h | ypoth | esis | CO | effic | | | | H | | Co | ntrol | l cha | rt an | d typ | es | | | S-2 | SLO- | - 11 111 | Rando <mark>m</mark> Variabl | e dimensi | ions of Two
onal discrete | e te | | | | effic | | | | elatio | on | | | l cha | | | | e | | | | | J-Z | SLO-
2 | Cumulativ | y mass function
ve distribution | dimensi | ns in Two
onal discrete | e cr | evel of s
itical re | gion | | | nd | Problems in Karl Pearson's correlation | | | 7 | cha | arts f | tions
for va | ariab | le | | | | | | | S-3 | SLO- | Variable | us Random | function | | sa | troducti
ample te | est | | | | co | rrela | ms b | coef | fficie | nt | Control charts for mean and range Applications of control | | | | | | | | | - | SLO-
2 | Probabilit function, | y density
<mark>Cum</mark> ulative | Cumula function | tive distributi | | arge sar
oportion | | | | | | | ms b | | | | | | | tions
for m | | | | | | | 01.0 | | | 11 4 4 | | | | | | 11.00 | | | | | | | | | 10 | 1.1 | | | | | | | (ho | ur) | Wodule-I (10) | Wodule-II (10) | Wodule-III (10) | Wodule-IV (10) | Woddle-V (16) | |-----|-----------|---|---|--|---|---| | S-1 | SLO-
1 | Introduction to Probability
Concepts and Axioms | Introduction to two dimensional random | Introduction to testing of hypothesis | Introduction to correlation coefficient | Introduction to statistical quality control | | 3-1 | SLO- | Conditional probability and
Multiplication theorem | Two dimensional random variables | Sampling distribution, null and alternative hypothesis | Applications of correlation coefficient | Control chart and types | | S-2 | SLO- | Discrete Random Variable | Applications of Two dimensional discrete | One tailed and two tailed test | Karl Pearson's correlation coefficient | Control charts for variable | | 3-2 | SLO-
2 | Probability mass function,
Cumulative distribution | Problems in Two dimensional discrete | Level of significance and critical region | Problems in Karl
Pearson's correlation | Applications for control charts for variable | | S-3 | SLO- | Continuous Random
Variable | Joint probability mass function | Introduction to Large sample test | Problems based on correlation coefficient | Control charts for mean and range | | 3-3 | SLO-
2 | Probability density function, Cumulative | Cumulative distribution function | Large sample – single proportion | Problems based on correlation coefficient | Applications of control
charts for mean and | | S-4 | SLO- | Expectation and Variance | Marginal probability distribution | Large sample – difference proportion | Spearman's Rank Correlation coefficient | Problems based on control charts for \overline{X} and R. | | 3-4 | SLO-
2 | Problems based on
Expectation and Variance | Problems in Marginal probability distribution | Problems in Large sample – difference proportion | Problems in Spearman's Rank Correlation | Problems based on control charts for \overline{X} and R. | | S-5 | SLO- | Moment Generating Function | Applications of Two dimensional continuous | Large sample – single mean | Repeated Rank Correlation coefficient | Problems based on control charts for \overline{X} and R. | | 3-3 | SLO- | Problems on Moment
Generating Function | Problems in Two dimensional continuous | Problems in Large sample – single mean | Problems based on Repeated Rank | Problems based on control charts for \overline{X} and R. | | S-6 | SLO- | Tutorial Session | | 3-0 | SLO- | Tutorial Session | | S-7 | SLO- | Introduction to Binomial distribution | Joint probability density function | Large sample – difference mean | Introduction to Regression | Control charts for mean
and standard deviation | | 3-1 | SLO-
2 | MGF, mean and variance of Binomial distribution | Cumulative distribution function | Problems in Large sample – difference mean | Properties of Regression coefficient | Applications of control
charts for mean and | | S-8 | SLO- | Applications of Binomial distribution | Marginal probability density function | Introduction to Small samples | Problems based on regression lines | Problems based on control charts for \overline{X} and S | | 3-0 | SLO- | Problems in Binomial distribution | Problems based on
Marginal probability | Small samples – 't' test - single mean | Problems based on regression lines | Problems based on control charts for \overline{X} and S | | S-9 | SLO- | Introduction to Poisson distribution | Conditional probability distribution | Small samples – 't' test – difference mean | Introduction to design of experiments | Problems based on control charts for $\overline{\boldsymbol{X}}$ and \boldsymbol{S} | | | SLO-
2 | MGF, mean, variance of Poisson distribution | Conditional probability | Problems based on 't' test - difference mean | Principles of design of experiments | Problems based on control charts for \overline{X} and S | |------|-----------
---|---|---|---|---| | S-10 | SLO- | Applications of Poisson distribution | Independent random variables | Applications of paired 't' test | Analysis of Variance | Control charts for attributes | | | SLO- | Problems in Poisson distribution | Applications on
Independent random | Problems of paired 't' test | Application of Analysis of Variance (ANOVA) | Applications for control charts for attributes | | S-11 | SLO- | Introduction to Geometric distribution | Expectation and variance for two dimensional | Standard deviation | Analysis of Variance –
One way classification | Control charts for number of defective | | 5-11 | SLO-
2 | MGF, mean, variance and
Memory less Property | Problems based on
Expectation and variance | Difference between standard deviation | Applications of Analysis of Variance – One way | Applications of control charts for number of | | S-12 | SLO-
1 | Tutorial Session | | 5-12 | SLO-
2 | Tutorial Session | | S-13 | SLO-
1 | Applications of Geometric distribution | Covariance and correlation | Introduction to small sample 'F' - test | Problems in ANOVA - one way classification | Problems based on control charts for number | | | SLO- | Problems in Geometric distribution | Problems based on Covariance and | Applications and properties | Problems in ANOVA - one way classification | Problems based on control charts for number | | S-14 | SLO- | Introduction to Exponential distribution | Transformation of random variables. | Problems based on small sample 'F' - test | Problems based on
Analysis of Variance - one | Control charts for fraction defective | | 3-14 | SLO-
2 | MGF, mean, variance and Memoryless Property | Applications of transformation of random | Problems in 'F' - test | Problems based on
Analysis of Variance - one | Applications of control
charts for fraction | | S-15 | SLO- | Applications of
Exponential distribution | Problems in transformation of random | Introduction to Chi square test | Analysis of Variance –
Two way classification | Problems in p - chart | | 3-13 | SLO- | Problems in Exponential distribution | Problems in transformation of random | Applications and properties | Applications of Analysis of
Variance – Two way | Proble <mark>ms in p - ch</mark> art | | S-16 | SLO-
1 | Introduction to Normal distribution | Central limit theorem (theorem without proof) | Chi square test -
Goodness of fit | Problems in ANOVA - Two way classification | Control charts for number of defects per unit | | 3-10 | SLO-
2 | Normal distribution with
Properties | Applications of Central limit theorem | Problems in Chi square test - Goodness of fit | Problems in ANOVA - Two way classification | Applications of control charts for number of | | S-17 | SLO- | Applications of Normal distribution | Problems based on
Central limit theorem | Chi square test - independence of attributes | Problems based on
Analysis of Variance - Two | Problems in C - chart | | 3-17 | SLO-
2 | Problems in Normal distribution | Problems based on
Central limit theorem | Problems in Chi square test - independence of | Problems based on
Analysis of Variance - Two | Problems in C - chart | | S-18 | SLO-
1 | Tutorial Session | | S-10 | SLO-
2 | Tutorial Session | - T. Veerarajan, Probability, Statistics and Random process, Tata Major Core Graw Hill, 1st reprint, 2004. S. C. Gupta & V. K. Kapoor, Fundamentals of Mathematical Statistics, 11th edition, Sultan chand & sons, reprint, 2007. S. P. Gupta, Statistical Methods, sultan chand publication, 35th edition, New Delhi, 2007. - R. A. Johnson, Miller and Freund's, Probability and Statistics for Engineer's, 6th edition, Pearson Education, Delhi, 2006. P. R. Vittal, Mathematical Statistics, Margham Publications, Chennai, - 2013. | Learnin | g Assessment | | | | | | | | | | | | | |-------------|--|--------|----------|--------|---------------|--------|---------------|--------|----------|---------------------|-----------------------------------|--|--| | | Continuous Learning Assessment (50% weightage) | | | | | | | | | F: 15 | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | CLA - 2 (10%) | | CLA - 3 (20%) | | 4 (10%)# | Final Examination (| Final Examination (50% weightage) | | | | | Lever of Thinking | Theory | Practice | | | | Lovel 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | | | Level 1 | Understand | 40% | - | 30% | - | 30% | - | 30% | | 30% | - | | | | Level 2 | Apply | 40% | | 40% | | 40% | _ | 40% | | 40% | | | | | Level 2 | Analyze | 40 /0 | | 40 /0 | - | 40 /0 | - | 40 /0 | - | 40 /0 | - | | | | Level 3 | Evaluate | 20% | | 30% | | 30% | | 30% | | 30% | | | | | Level 3 | Create | 20% | - | 30% | | 30% | - | 30% | | 30% | - | | | | Total 100 % | | | | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 6 | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Dr. V. Srinivasan, SRMIST | | | Prof. B. V. Rathish Kumar, bvrk@iitk.ac.in | Dr. P. Godhandaraman, SRMIST
Dr. V. Suvitha, SRMIST | | Co | ourse Cod | e UMA20D01T | Course Name Nur | mber Theory | У | | C | ours | e Ca | tego | iry | Ε | Di | scipl | | Spec | | Elect | ive | 5 · | T P | - | |-------------------|--|--|--|--------------------|---------------------------|--|---|----------------------|------------------|--------------|---------------------------|-------------------|-----------|------------------------------|--------|------------------------|---------------|------------------------|--------------------|---------|-------|-------| | req
Co
Cour | re-
uisite Ni
urses
se Offerin
artment | | Co-
requisite Nil
Courses Data Bo
Codes/S | ok /
Standards | | | rogre
Cou | | e Nil | | | | | | | | | | | | | | | | se Learnii
nale (CLF | | of learning this course is to: | | | | Lea | rning | | | | Pr | ogra | m Le | earni | ing C | Outco | omes | s (PL | .O) | | | | CLR
1: | introduc | e divisibility conditions in d | etail and the prime numbers | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR
2:
CLR | Employ | congruences and Euler's for | unction residues arithmetic functions | | | | J | ľ | | | | i | | i | | | | | | | | | | 3 :
CLR
4 : | | e the arithmetic functions | | | <u> </u> | | | | | 1 | rch | 1 | 1 | bility | | | ì | | | | | | | CLR
5: | Underst | and the role of sum of squa | ares | i Con | (Bloom | ency (% | %) tuət | dge | | pment | , Research | ge | 0 | ustaina | ŧ. | n Work | ۱ | nance | g | H | | | | CLR
6: | Address | the concept of Fermat's la | 176 | hinking | Proficie | Attainn | Knowle | Analysia | Development | Design | ool Usa | Culture | ent & S | | & Tear | cation | gt. & Fi | Learnir | H | | | | | Outo | se Learnii
omes (CL | O): At the end of this co | urse, learners will be able to: | 5 | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & | Analysis, Design, | Modern Tool Usage | Society & | Environment & Sustainability | Ethics | Individual & Team Work | Communication | Project Mgt. & Finance | Life Long Learning | PSO - 1 | PS0-2 | PS0-3 | | 1: | | insight on elementary num | | Sage | 2 | 70 | 65 | Н | ¥. | ÷ | Н | - | - | | - | | i | - | - | - | - | - | | CLO
2:
CLO | | iar with prime numbers and anding Euler function and | | 17.7 | 2 | 80 | 70 | Н | Н | - | Н | Ť | - | 1 | - | - | | - | - | - | - | - | | 3:
CLO | | thoroughly the arithmetic f | William Co. | | 2 | 75 | 60 | Ė | Н | | • | | | | - | - | | - | - | - | - | - | | 4:
CLO | | thoroughly the antimeter | unctions | | 2 | 70 | 70 | Н | - | | Н | - | | | - | - | | - | - | - | - | - | | 5:
CLO | Classify | the role of sum of two square | | | 2 | 80 | 70 | Ė | Н | Н | H | | - | - | 1 | | Ė | | • | - | - | - | | 6: | Gain an | insight of Fermat's last the | orem | 4 | 2 | 75 | 65 | - | - | Н | Н | - | - | i | - | | - | - | - | - | - | - | | | uration
hour) | 18 | 18 | 8// | 1 | 8 | | | | | | 18 | | | | | | | 18 | H | Ī | | | S-1 | SLO-1 | Introduction- Divisors | Basic properties of congruences | Quadratic | resi | dues | | | | odu
ctior | | of F | Riema | ann | 7 | Sur | n of | squa | ares | | | | | 3-1 | SLO-2 | Properties: (i) If a b and b c then a c, | Modular arithmetic | Group of o | quad | ratic | resid | lues | Rie | man | ın ze | ta fu | ınctio | on | Ų, | Sur | n of | two | squa | ares | | | | S-2 | SLO-1 | (ii) if a b and c d then ac bd, | The arithmetic Zp | Legendre | | | Þ | | Со | nver | geno | е | ١ | H | - | Pig | eonh | nole | princ | iple | | | | 0-2 | SLO-2 | (iii)if m≠0, then a b if and only if ma mb, | Carmichael numbers | Properties symbol | of L | .eger | ndre | | nur | nber | S | | rime | | | Thu | ie's l | emn | na | | | | | S-3 |
SLO-1 | (iv)if d and a≠0 then
 d ≤ a | Carl friedrich gauss | Evaluation | n of (| -1/p) | and | (2/p) | | | nal e
ın fu | | tion (| of | | Fer | mat | theo | rem | | | | | 0-0 | SLO-2 | Bizout's identity | Polynomial congruences modulo p | Gauss' ler | mma | | | | Ra | ndor | n int | eger | s | | | The | Ga | ussia | an in | tege | rs | | | S-4 | SLO-1 | Least common multiples | Lagrange's theorem | Quadratic | reci | oroci | ity | | Eva | aluat | ing (| (2) | | | | Sur | n of | three | e squ | uare | | | | 0 1 | SLO-2 | Linear equation | Linear congruences | Euler's cri | terio | n | | | Eva | aluat | ing ? | (2k) | | | | Eul | er th | eore | m | | | | | S-5 | SLO-1 | Diophantine equation | Chinese remainder theorem | Quadratic | | | | | | chle | t ser | ies | | | | Lag | rang | je th | eore | m | | | | | SLO-2 | Prime numbers | Application of Chinese remainder theorem | Quadratic power mo | | due v | with p | orime | Eul | er p | rodu | cts | | | | Sur | ns o | f fou | r squ | uare | | | | S-6 | SLO-1 | Tutorial Session | Tutorial Session | Tutorial S | essio | n | | | Tut | orial | Ses | sion | | | | Tut | orial | Ses | sion | | | | | | SLO-2 Tutorial Session Tutorial Session T | | | | essio | | 141- | | Tut | orial | Ses | sion | | | | Tut | orial | Ses | sion | | | | | S-7 | S-7 SLO-1 factorisations congruence arb | | | | | uadratic residue with bitrary moduli Complex variables | | | | | Digression on quaternions | | | | | | | | | | | | | | SLO-2 Distribution of primes Simultaneous non-linear congruence Arit | | | | | Arithmetic of function Hurwitz zeta function Minkowsl | | | | | kowski's theorem | | | | | | | | | | | | | S-8 | Binary representations of | | | | | | Integral representation for the Hurwitz zeta function The Hurwitz zeta function Fermat's last the | | | | | | | eorer | n | | | | | | | | | | SLO-2 | Fermat's little theorem | Decimal representations of integers | Multiplicative functions | A contour integral representation for the Hurwitz zeta function | Pythagoras's theorem | |----------|-------|---------------------------------------|---|--|---|--| | S-9 | SLO-1 | pseudoprimes | Residue classes | Qn is multiplicative function | The analytic continuation of the Hurwitz zeta function | Pythagorean triples | | 5-9 | SLO-2 | Wilson's theorem | Complete residue systems | Divisor function are multiplicative | Hurwitz formula | The classification of
Pythagorean triples | | S- | SLO-1 | Fermat-kraitchik factorization method | Reduced residue systems | Perfect numbers | Approximation of $\zeta(s,a)$ by finite sums | Isosceles triangles | | 10 | SLO-2 | Euler's phi-function | Euler-fermat theorem | Example of Perfect numbers | Bernoulli numbers | irrationality | | S- | SLO-1 | Euler's theorem | Solving congruence mod (pe) | The Mobius inversion formula | Properties of Bernoulli numbers | Fermat | | 11 | SLO-2 | Some properties of the phi-function | The principal of cross-
classification | Application of Mobius inversion formula | Bernoulli polynomials | The case n=4 | | S- | SLO-1 | Tutorial Session | | 12 | SLO-2 | Tutorial Session | | S- | SLO-1 | Goldbach conjecture | Groups and subgroups | Mobius function | Inequalities for ζ(s,a) | Odd prime exponents | | 13 | SLO-2 | Mersenne primes | Elementary properties of groups | Properties of Mobius function | Inequalities for L(s,x) | Lame | | S- | SLO-1 | Primality testing | The group Un | The Dirichlet characters | Inequalities for 1/ζ(s) | kummer | | 14 | SLO-2 | factorisations | Primitive roots | Real value Dirichlet characters | Inequalities for ζ'(s)/ ζ(s) | Introduction of partitions | | S- | SLO-1 | Division algorithm | The Group U _{pe} , p is an odd prime | Primitive Dirichlet characters | Zero's free regions for ζ(s) | Goldbach conjecture | | 15 | SLO-2 | Special divisibility test | The group U ₂ e | Dirichlet product | Upper bound for ζ(s) | Representation by squares | | S- | SLO-1 | Euclidean algorithm | The existence of primitive roots | Properties of Dirichlet products | Upper bound for ζ'(s) | Warming's problem | | 16 | SLO-2 | Greatest common divisor | Applications of primitive roots | Dirichlet inverse function | Non-vanishing of $\zeta(s)$ on the line $\sigma=1$ | Geometric representation of partitions | | C | SLO-1 | Sieve of eratesthenes | The algebraic structure of Un | The partial sums of Dirichlet product | Prime number theorem | Generating functions for partitions | | S-
17 | SLO-2 | Application to the divisor function | The universal exponent | Identity function for the partial sum of Dirichlet product | Proof of prime number theorem | Euler's pentagonal-number theorem | | S- | SLO-1 | Tutorial Session | | 18 | SLO-2 | Tutorial Session | | Learning | |-----------| | Resources | | | - David M. Burton (2007). Elementary Number Theory (7th edition). McGraw-Hill. - Gareth A. Jones & J. Mary Jones (2005). Elementary Number Theory. Springer. 3. T.M. Apostol, Introduction to Analytic Number theory, Springer Valley, 1976. 4. Neville Robbins (2007). Beginning Number Theory (2nd edition). Narosa. | Learning | g Assessment | | | | | | . 7.1.4 | | | | | | | | | |----------|---|--------|----------|--------|----------|--------|----------|--------|----------|-----------------------------------|----------|--|--|--|--| | | Continuous Learning Assessment (50% weightage) Bloom's Final Examination (50% weightage) | | | | | | | | | | | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | | Level of Thinking | Theory | Practice | | | | | | Level 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | | | | | LEVELI | Understand | 40 /0 | | 30 /0 | - | 30 % | | 30 /0 | i | 30 /0 | - | | | | | | Level 2 | Apply | 40% | | 40% | | 40% | _ | 40% | | 40% | | | | | | | Levei 2 | Analyze | 40 /0 | | 40% | | 40 % | 1 | 40 /0 | | 40 /0 | - | | | | | | Level 3 | Evaluate | 20% | | 30% | | 30% | | 30% | | 30% | | | | | | | Level 3 | Create | 20 /0 | - | 30 /0 | | 30 /0 | | 30 /6 | | 30 /0 | - | | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 0 | | | | | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|-----------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, | Dr. A. Govindarajan, SRMIST | | maheshwaranv@yahoo.com | sryedida@iitm.ac.in | Dr. N. Parvathi, SRMIST | | | Doct D. V. Dothick Kurron HT Konnun hunk@iitk.co.in | Dr. Bapuji Pullepu, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Mr. U. Rengarasu, SRMIST | | Code | 11 111/12 | A20D02T Course
Name | OPERATIONS RESEARC | Н | | | urse | _ I _ | | Dis | scipli | ine S | pec | ific E | lecti | ve C | ours | е | L
5 | T
1 | P
0 | C
6 | | |-------------------------|---|---|--|------------------------|--|--|-------------------------|----------------------|------------------|----------------------|----------------------------|-------------------|-----------|-----------------|--------|------------------------|---------------|--------------|-------------------|---------|--------|---------|--| | Pre
requis
Course | site N | lil | Co-
requisite Nil
Courses Data Boo | ok / | | F | | ressive | Nil | | | | | | | | | | | | | | | | Depart | | Mathematics | Codes/St | tandards | Course
Rationa | | | of learning this course is to: | | | | Le | arning | | | | Pr | ogra | m Le | earni | ing C | outco | mes | s (PL | .0) | | _ | | | CLR | Γo lear | | ation and assignment problem | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | 3: | | erstand the concepts of que | | | | | H | | H | | 1 | | | | | H | | | | | | ı | | | 4:
CLD | | n the basic concepts of gan | | | (E | (% | (% | | | | arch | 7 | 'n | ability | | ķ | | | | | | ı | | | 5 : | | erstand the scheduling prob | | | (Bloo |) Apue | ment (9 | edge | (O | pment | , Rese | age | O) | Sustainability | | n Wor | | Finance | <u>b</u> L | Ļ | | 1 | | | 6: | I o pro | vide the knowledge of optin | nization techniques and approa | cnes. | hinking | Profici | Attainr | Knowl | nalysi | Develo | Design | ool Use | & Culture | ent & S | 7 | & Tear | ation | ∞ | Learnii | i | | | | | Outcor | Learn
nes (Cl | | ourse, learners will be able to: | 5 | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & Development | Analysis, Design, Research | Modern Tool Usage | Society & | Environment & | Ethics | Individual & Team Work | Communication | Project Mgt. | Life Long Leaming | PSO - 1 | PSO-2 | PSO - 3 | | | 1. | Explain | the linear programming pro | oblem and its properties | | 3 | 85 | 80 | Н | Н | L | - | | H | | | М | L | | Н | - | - | - | | | 2: | Explain | the concepts of transporta | ation and Assignment problem | | 3 | 85 | 80 | М | Н | - | М | М | - | - | - | М | | - | Н | - | - | - | | | 3: | Describ | pe several facts on queuing | theory | N. | 3 | 85 | 80 | Н | Н | | | - | - | | • | М | - | | Н | - | - | -
| | | CLO-
4: | Relate | the different types of game | theory | | 3 | 85 | 80 | Н | Н | | М | - | d | - | - | М | L | - | Н | - | - | - | | | CLO-
5: | Describ | e the different types of sch | eduling problems | | 3 | 85 | 80 | М | Н | L | - | - | Ŧ | - | | М | | | Н | | | | | | | Explain
applica | | in linear programming problem | and its | 3 | 85 | 80 | М | Н | - | W | - | - | - | - | М | | - | Н | | | - | | | Dura | (ho | ur) | 18 Linear programming | 18 Transportation model- | | 18 roduction to | | | Game | tho | 18 | | duat | ion | | | 7 | | 18 | | | | | | | S-1 | 1 | problem –Definition. | Introduction | queuing m | node | | | | | | | | IUII | Introduction -N | | | | | Network schedu | | | | | | | 2 | linear programming
problem-assumptions | Mathematical formulation | Queuing to | | Н | | Two p
game | S | | | | | Network models | | | | | | | | | | | S-2 | SLO-
1 | Formulation of linear programming problem | North west corner rule | Queuing s | Ħ. | | | Main | char | acte | ristic | S | ì | Со | nstr | uctio | n of | Netv | vork | S | | | | | 3-2 | SLO-
2 | Mathematical formulation | problems | Character
Queuing s | istics | of
m | | Saddl | е ро | int | | | | Ne | etwo | rk ar | nd ba | asic | com | oone | ents | | | | | SLO- | Mathematical formulationExamples | Practice Problems | Classifica
queues | itions | of | | Maxir
Princ | | Mini | max | | | Rı | ules | of Ne | etwo | rk co | onstr | uctio | on | | | | S-3 | SLO- | Mathematical formulation
Examples | Vogels approximation method | Poisson a exponentia | | | - | Saddl
the ga | е ро | int a | nd v | alue | of | Ti | me c | calcu | latio | n in | Netv | vorks | 8 | | | | | SLO-
1 | Graphical Method
Introduction | problems | single sen | ver n | node | el | The I | | nini | Princ | ciple- | | Sh | orte | st ro | ute p | robl | em | | | | | | S-4 | SLO- Graphical Method More problems (M/N | | | (M/M/1): (| | FO) | - | The N | 1axm | nini F | rinc | iple- | | Pro | obler | ms b | asec | d on | Sho | test | rout | e | | | | _ | Graphical Method problems | MODI method-Algorithm | Problems
(∞/FIFO) | | //М | /1): | The N | 1axm | nini F | rinc | iple- | | Ma | axim | um fl | ow r | node | el | | | | | | S-5 | 2 | Graphical Method problems | Stepping stone method | Problems
(∞/FIFO) | in (I | Л/M | /1): | Minim | | rinci | ple | | | Ne | etwo | rk sc | hed | uling | by (| CPM | | | | | 0.0 | 1 1 | | | Tutorial Se | essic | n | | Tutori | al Se | essio | n | | | Tu | toria | l Ses | ssion | 1 | | | | | | | S-6 | S-6 SLO- Tutorial Session Tutorial Session Tutorial | | | | ession Tutorial Session Tutorial Session | _ | Types of solution | Unbalanced transportation problem. | Practice P | roble | olems Minimax principle – CPM Procedure problems | | | | | | | | | | | | | | | | | | | S-7 | | Basic and non basic variables | Problems | Problems
(∞/FIFO) | in (N | 1/M/ | '1): | problems | | | | | ER1 | Ī | | | | | | | | | | | - | | | | / | | | | | _ | | | | | | | | | | | | | | | | | SLO- | Slack variables | Maximization case in
Transportation problem | (M/M/1): (N/FIFO)
Introduction | Mixed Strategies, without saddle point | PERT procedure | |------|-----------|-------------------------------------|---|--------------------------------------|---|---| | S-8 | _ | Procedure of simplex method | Problems | Problems in (M/M/1):
(N/FIFO) | Problems based on Mixed
Strategies | Assumptions in PERT | | | _ | simplex method Problems | Practice Problems | Practice Problems | Problems based on Mixed
Strategies | Practice Problems | | S-9 | SLO- | simplex method Problems | Assignment problem—
mathematical formulation | Problems in (M/M/1):
(N/FIFO) | 2 x 2 rectangular Games
introduction | Difference between CPM and PERT | | S-10 | SLO- | simplex method Problems | Assignment algorithm | Problems in (M/M/1):
(N/FIFO) | Solution of 2 x 2 rectangular Games | CPM-PERT calculations | | | | Artificial variable techniques | problems | / | Solution of 2 x 2 rectangular Games | CPM-PERT calculations | | 0.44 | | Big M method -
Introduction | problems | (M/M/C): (∞/FIFO)
Introduction | Domination Property | CPM-PERT calculations | | S-11 | SLO-
2 | Big M method problems | Unbalanced Assignment
Models | Characteristics of (M/M/C): (∞/FIFO) | Domination Property—
General Rule | CPM-PERT calculations | | | SLO- | Tutorial Session | | S-12 | SLO- | Tutorial Session | | S-13 | _ | Big M method problems | problems | Problems in .
(M/M/C): (∞/FIFO) | solving game problem using dominance property | CPM-PERT calculations | | | SLO-
2 | Duality in LPP | Practice Problems | Problems in .
(M/M/C): (∞/FIFO) | solving game problem using dominance property | Cost Analysis | | | SLO- | Formulation of dual problems | Hungarian method | Problems in .
(M/M/C): (∞/FIFO) | solving game problem using dominance property | Crashing | | S-14 | SLO- | Primal-dual relationships | Algorithm | (M/M/C): (N/FIFO)
Introduction | (2 x n) and (m x 2) -
graphical method | Procedure for least cost schedule | | 0.45 | SLO- | Problem solving using duality | Problems based on Hungarian method | Characteristics of (M/M/C): (N/FIFO) | Solving problem graphically | Examples | | S-15 | SLO- | More problems | Practice Problems | | More problems | More problems | | 0.40 | SLO- | Dual Simplex method | Travelling salesman problem | Problems in (M/M/C):
(N/FIFO) | Solving problem graphically | Scheduling and crashing of network | | S-16 | SLO-
2 | Dual Simplex method
Algorithm | Algorithm | | Replacement Problems. | Practice problems | | | | Solve LPP using dual simplex method | Problem in travelling salesman | Problems in (M/M/C):
(N/FIFO) | problems | project scheduling with limited sources | | S-17 | | More problems | More problems | Applications | Practice problems | Practice problems | | | SLO- | Tutorial Session | | S-18 | SLO- | Tutorial Session | | | 1. | Kandiswarup, P. K. Gupta, Man Mohan, Operations | 5. | H.A. Taha, Operations Research, An Introduction, PHI, 2008. | |-----------|----|--|-----|--| | | | Research, S. Chand & Sons Education Publications, New | 6. | H.M. Wagner, Principles of Operations Research, PHI, Delhi, | | | | Delhi, 12th Revised edition,2004. | 13. | 1982. | | | 2. | Prof.V.Sundaresan, K.S.Ganapathy Subramanian, | 7. | J.C. Pant, Introduction to Optimisation: Operations Research, Jain | | | | K.Ganesan, Resource Management Techniques, | | Brothers, Delhi, 2008. | | Learning | | A.R.Publications, 2012. | 8. | Hitler Libermann Operations Research: McGraw Hill Pub. 2009. | | Resources | 3. | Prem Kumar Gupta D. S. Hira, Operations Research, 5th | | | | | | Edition, S. Chand & Company Ltd., Ram Nagar, New Delhi, | | | | | | 1998. | | | | | 4. | S.Dharani Venkata Krishnan, Operations Research | | | | | | Principles and Problems, Keert Publishing House PVT Ltd, | | | | | | 2005. | | | | Learning | g Assessment | | | | | | | | | | | | | | | | |----------|------------------------------|--------|----------|----------|------------|---------|------------|---------|----------|-----------------------------------|-----------------|--|--|--|--|--| | | B | | Continu | uous Lea | arning Ass | sessmer | nt (50% we | ightage | | Final Evamination // | EOO/ waightaga) | | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | | | Level of Tilliking | Theory | Practice | | | | | | | Level 1 | Remember | 40% | | 30% | _ | 30% | | 30% | | 30% | | | | | | | | Level | Understand | 40 /0 | - | 30 /0 | - | 30 /0 | - | 30 /0 | - | 30 /0 | <u>-</u> | | | | | | | Level 2 | Apply | 40% | _ | 40% | _ | 40% | _ | 40% | | 40% | | | | | | | | Level 2 | Analyze | 40 /0 | - | 40% | - | 40 /0 | - | 40 /0 | - | 40 /0 | - | | | | | | | Level 3 | Evaluate | 20% | | 30% | | 30% | _ | 30% | | 30% | | | | | | | | Level 3 | Create | 20% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 0 | | | | | | [#] CLA -4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|-----------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, | Dr. A. Govindarajan, SRMIST | | maheshwaranv@yahoo.com | sryedida@iitm.ac.in | Dr. K. Ganesan, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Mrs. V. Vidya, SRMIST | | Course | UMA20 | DD03T Course
Name | COMBINATO | RICS | | | urse
egory | Е | | Dis | scipli | ne S | Spec | ific E | lect | ive C | Cours | se | L
5 | | P
0 | C
6 | |---|------------------------|--|--|---|---------------------|--------------------------|-------------------------|-----------------------|-------------------------|-------------------------|----------------------------|------------|-------------|----------------|--------|------------------------|---------------|--------------|--------------|---------|--------|-------------| |
Pre
requis
Course
Course
Departr | ite Nil
es Offering | Mathematics | | Data Book /
Codes/Standards | | F | Progre
Cour | | Nil | | | | | | | | | | | | | | | | Learning
ale (CLR) | | of learning this course i | s to: | | | Lea | rning | | | | Pr | ogra | ım Le | earn | ing (| Dutco | omes | s (PL | .0) | | | | CLR-
1: | o learn a | about recurrence relation | n | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 2:
CLR-
3:
CLR- 1 | o unders | about permutation
stand Assignment proble
re the knowledge in Fibe | The second second | 11. | ı | (| J | | | | 1 | | | 1 | | | | | | | | | | 4: | | stand about inclusion a | | | (moo | (%) ^ | t (%) | Φ | | ent | search | 1 | ji | Sustainability | | /ork | | 93 | | | | | | CLD | o <mark>relat</mark> e | the concepts of relations | s | A SHEET | of Thinking (Bloom) | roficienc | ttainmen | nowledg | alysis | evelopm | sign, Re | Tool Usage | Culture | | þ | Team M | tion | & Finance | Learning | | | | | Outcom | Learning
nes (CLO | | course, learners will be a | ible to: | Level of Thi | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & Development | Analysis, Design, Research | Modern Toc | Society & C | Environment & | Ethics | Individual & Team Work | Communication | Project Mgt. | Life Long Le | PSO - 1 | PSO-2 | PSO - 3 | | CLO | | about recurrence relatio | | - | 3 | 85 | | Н | Н | L | | | 4 | | - | М | L | | Н | - | - | - | | 2: | , | he concepts of permuta | | 200 | 3 | 85 | | М | Н. | - | М | М | - | i | - | M | ľ | | Н | - | - | - | | 3: | | r with Assignment problestand Fibonacci relation | lems | | 3 | 85 | | Н | Н | Н | М | | | | | M | | | Н | | | - | | CLO-
5: | | re the knowledge in incl | usion and exclusion prin | ciple | 3 | 85
85 | - | M
M | Н | L
- | | - | 3 | - | - | M
M | | - | Н | - | - | - | | Duratio | n (hour) | 18 | 18 | 18 | Ī | | | | | 18 | 8 | | | Ŧ | | i | | 1 | 18 | ı | ī | | | | SLO-1 | The Rule of Sum | Generalized
Permutations | Generating Funct introduction | | An | Recu | rrenc | e re | atior | n-An | intro | oduc | tion | | n Intr | | | | oup | the | ory | | S-1 | SLO-2 | Problems by using the rule of sum | Problems in
Generalized
Permutation | Ordinary Generat
Functions | ing | | Recu
exam | | e re | ation | n det | initio | on ar | nd | | n Intr | | | | oup | the | ory | | | SLO-1 | Extension of Sum rule | Generalized
Combination | Problems in Ordin
Generating Funct | | | The fi | | | recu | rren | ce re | elatio | n-Aı | III | ne Bu | | de-F | robe | nius | ; | | | S-2 | SLO-2 | Problems by using the extension of sum | Problems in
Generalized | The reciprocal of
Generating Funct | | | Probl | ems | in re | curre | ence | rela | tion | | | oble
ober | | | | Burr | nside | | | | SLO-1 | The Rule of Product | Combination Sequences and selections | Problems in recip | | | Probl | ems | in re | curre | ence | rela | tion | | | ne Bu | | | | | ; | | | S-3 | SLO-2 | Problems using the Rule of Product | Duality Principle of Distribution | Uniqueness of Ba
representation in
Generating Funct | se-b | | The s
homo
with o | geno
const | ous r
ant c | ecur | renc | e rel | | 1 | | ermu | | | | | | | | 0.1 | SLO-1 | Extension of Product rule | Problems in
Sequences and
selections | Partition of Intege | rs | | The s
homo
with o | ecor
geno
const | nd or
ous r
ant o | ecur
coeffi | renc
icien | e rel | | | | ermu
cle ir | | | oups | and | the | r | | S-4 | SLO-2 | Problems by using the extension of Product rule | The Inclusion-
Exclusion Principle | Partition of Intege
Generating Funct | | | The s
homo
with o | ecor
geno
const | nd or
ous r
ant o | der l
ecur
coeffi | inea
renc
icien | e rel | | | Iso | omor | phic | - pro | blen | ns | | | | S-5 SLO-1 The rule of sum and Other Constrained Arrangements Integers | | | | | tion o | of | The shome with control | ecor
geno
const | nd or
ous r
ant o | der l
ecur
coeffi | inea
renc
icien | e rel | | | Су | /clic | and | abeli | ian p | robl | ems | | | | SLO-2 | More problems | Combinatorial Number
Theory | Problems in Partition of
Integers in Generating
Functions | The second order linear homogenous recurrence relation with constant coefficients-Problems with complex roots | Characterization theorem for cyclic group-problems | |------|-------|--|--|---|---|---| | 0.0 | SLO-1 | Tutorial Session | | S-6 | SLO-2 | Tutorial Session | | 0.7 | SLO-1 | Permutations | Mobius function | Self-conjugate -
definition | The second order linear homogenous recurrence relation with constant coefficients-Problems with complex roots | Permutation groups and their cycle indices | | S-7 | SLO-2 | Problems by using
Permutations | Generalized Inclusion-
Exclusion Principle | Problems in Self-
conjugate | The second order linear homogenous recurrence relation with constant coefficients-Problems with repeated real roots | Cauchy's formula-problems | | S-8 | SLO-1 | Permutations with repetition | Problems in
Generalized Inclusion-
Exclusion Principle | Euler's Theorem | The second order linear homogenous recurrence relation with constant coefficients-Problems with repeated real roots | Geometric duals-cube regular octahedron and regular tetrahedron | | | SLO-2 | Circular Permutation | The Permanent of a Matrix | Problems using Euler's Theorem | The non-homogenous recurrence relation-An introduction | Cayley's theorem | | 0.0 | SLO-1 | Combinations | Problems in Permanent of a Matrix | Euler's first identity | The non-homogenous recurrence relation–problems | Regular icosahedrons | | S-9 | SLO-2 | Problems by using Combinations Combinations: The | Rook Polynomials Expansion formula for | Problems using Euler's first identity Euler's second identity | Towers of Hanoi –An introduction Towers of Hanoi related with | Definition of type and weight Problems to find type and | | S-10 | SLO-1 | Binomial Theorem Problems by using | Rook Polynomials Problems by using | Problems using Euler's | recurrence relation-problem Recurrence relation related with | weight Cycle index | | + | SLO-1 | Binomial Theorem Combination with | Rook Polynomials Hit Polynomials | second identity Exponential Generating | mathematics of finance More problems in the non- | Circular or cyclic symmetries | | S-11 | SLO-2 | repetition Combination with | Problems by using Hit | Functions Problems in Exponential | homogenous recurrence relation The method of generating functions- | | | | | repetition Tutorial Session | Polynomials Tutorial Session | Generating Functions Tutorial Session | An introduction The method of generating functions- | Dihedral symmetries Tutorial Session | | S-12 | SLO-1 | Tutorial Session | Tutorial Session | Tutorial Session | Problems The method of generating functions- | Tutorial Session | | | SLO-2 | | | SMT With | Problems | Tatorial Occasion | | S-13 | SLO-1 | Pascal's Identity | Systems of Distinct
Representatives (SDR)
and Coverings in
graphs | Maclaurin series expansions of exponential function | More problems in the method of generating functions | Poliya's enumeration theorems-
An introduction | | | SLO-2 | Problems by using
Pascal's Identity | Rado's Theorem | Dobinski's Equality | Tutorial Session | Poliya's first enumeration theorems | | | SLO-1 | Convolution rule or
Vandermonde identity | Konig-Egervary
Theorem | Problems using
Dobinski's Equality | Tutorial Session | Problems using Poliya's first enumeration | | S-14 | SLO-2 | Problems by using
Convolution rule or
Vandermonde identity | Konig's Theorem | Bernoulli numbers- An introduction | The special kind of non linear recurrence relations-An introduction | Poliya's second enumeration theorems | | S-15 | SLO-1 | Newton's identity | Sperner's Theorem | Bernoulli numbers-
Problems | Problems in the special kind of non linear recurrence relations | Problems using Poliya's second enumeration | | 3-13 | SLO-2 | Problems by using Newton's identity | Types in Sperner's Theorem | Bernoulli polynomial | Problems in the special kind of non linear recurrence relations | More Problems | | S-16 | SLO-1 | Pigeonhole Principle | Symmetric Chain Decomposition | Problems in Bernoulli polynomial | More problems in the special kind of non linear recurrence relations | Fermat's little theorem | | J-10 | SLO-2 | Problems based on
Pigeonhole Principle | Partially Ordered sets | The summation operator | Historical review of the recurrence relation | Problems using Fermat's little theorem | | S-17 | SLO-1 | Generalisation of the
Pigeonhole Principle | Dilworth's Theorem | The summation operator-
Problems | Summary and Historical review of the recurrence relation | Benzene ring | | J 11 | SLO-2 | More Problems | Problems in Dilworth's Theorem | More problems | More summary in the review of the recurrence relation | Problems in Benzene ring | | S-18 | SLO-1 | Tutorial Session | | J 10 | SLO-2 | Tutorial Session | | | 1. Jan Anderson, A Fi | |-----------|-------------------------| | Learning | Applied Mathematics ar | | Resources | 2. R.P.Grimaldi, B.V.Ra | First Course in Combinatorial Mathematics, Oxford 3. V.K.Balakrishnan, Combinatorics, Schuam Series, 1996. nd Computing Science Series, UK, 2013. S 2. R.P.Grimaldi, B.V.Ramana, Discrete and Combinatorial Mathematics-An Applied Introduction, 5th Edition, Pearson Education, 2010 ^{4.} Russell Merris,
Combinatorics, John Wiley & Sons, 2003. | Learning | g Assessment | | | | | | | | | | | | | | | |----------|------------------------------|--------|----------|---------------|-----------|---------|------------|----------|----------|-----------------------------------|---------------|--|--|--|--| | | - | | Contin | uous Lea | arning As | sessmer | nt (50% we | eightage |) | Final Franciscotion / | E00/:= stana) | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | | Level of Tilliking | Theory | Practice | | | | | | Level 1 | Remember | 40% | | 30% | _ | 30% | | 30% | | 30% | | | | | | | Level I | Understand | 40 /0 | - | 30 /6 | - | 30 /0 | - | 30 /6 | - | 30 /0 | - | | | | | | Level 2 | Apply | 40% | | 40% | | 40% | | 40% | | 40% | | | |---------|----------|-------|-----|-------|-----|-------|-----|-------|------|-------|---|--| | Level 2 | Analyze | 40 /0 | - | 40 /0 | - | 40 /0 | - | 40 /0 | - | 40 /0 | - | | | Level 3 | Evaluate | 20% | | 30% | | 30% | | 30% | | 30% | | | | Level 3 | Create | 20% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | | | # CLA -4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Dr. K. Ganesan, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. R. Senthamarai, SRMIST | | Cou | | PY20A01J Course Name Allied Phy | ysics | | | | urse
egory | G | i | | G | ene | ric E | lectiv | ve C | ours | е | | L | . T | P 4 | C
6 | |-------------------------------|------------------------|---|---|--|-------------------------|--------------------------|-------------------------|-----------------------|-------------------------|------------------------------|------------------------|--------------------------|------------------------------|--------------------|-------------------------|---------------------|------------------------|------------------|-------------------|--------|--------|---------| | req | re-
uisite
urses | Nil | Co-
requisite Nil
Courses | | | Р | rogre
Cou | | e
Nil | | | | | | | | | | | | | | | Cour | se Offe
artment | ring Physics and Na | Data B | ook /
Standards | | N | il | | ļ. | | | | | | | | | | | | | | | | se Lear | | ing this course is to: | | Le | earni | ng | | | | Pro | ogra | m Le | earni | ng C | Dutco | mes | s (Pl | . O) | | | | | CLR
1:
CLR
2: | - Evalu | erstand the fundamentals of plus uate and learn the structural, colids | <u> </u> | c properties | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR
3: | Empi | hasize the significance of gree | | tions | | ١ | | | À | | ī | | | | | | | | | | | | | CLR
4:
CLR
5:
CLR | funda
Reco
addre | comprehensive knowledge ar
amentals of light and material
ignize how and when physics
ess problems in their major
the skills on practical, analytic | properties
methods and principles can | - | Sloom) | cy (%) | nt (%) | ledge | cepts | isciplines | dge | ion | owledge | 7 | Data | | kills | Skills | | | | | | Cour
Lear
Outo | rse
ning
omes | At the end of this course, I | | | evel of Thinking (Bloom | Expected Proficiency (%) | Expected Attainment (%) | -undamental Knowledge | Application of Concepts | ink with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | nvestigative Skills | Problem Solving Skills | Communication Sk | Analytical Skills | PSO-1 | PSO-2 | PSO - 3 | | CLO
1:
CLO | Unde | erstand and solve problems or | | 130 | 2 | 80 | 75 | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | М | Н | Н | Н | Н | | 2:
CLO | Acqu | ire knowledge on materials pr | | | 2 | 80 | 70 | Н | M | M | Н | М | Н | Н | Н | M | Н | M | Н | M | M | M | | 3:
CLO | | elate the acquired knowledge
liarize themselves with interact | | itions | 2 | 75
80 | 70
75 | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | М | Н | Н | Н | H | | 4:
CLO
6:
CLO
5: | Apply | y physics methods and principn magnetic, electrical and opti | les to solve problems in the | majors. | 2 | 80 | 75
70 | Н | Н | Н | Н | Н | M | Н | Н | M | Н | M | Н | Н | H | H
H | | | ration
nour) | 24 | 24 | W. | 2 | 4 | | | | | | 24 | | | d | | | | 24 | | | | | , | SLO-1 | Sources of conventional energy | Space lattice basis | Kinetic the | ory | of ga | ses | | | | chai | | | ge | 1 | Tim | | eriod | - an | plitu | ıde - | | | S-1 | SLO-2 | Need for non - conventional energy resources | Unit Cell, lattice parameters | Basic post | ulate | es | ī | | Per | rmitt | ivity | | | | j | Wa | ve n | atur | e of I | ight | | | | S-2 | SLO-1 | Solar energy and solar cells and its applications | Two dimensional and three dimensional Bravais lattices | Ideal gas la | aws | | ľ | | Co | ulom | b's l | aw | 1 | Ī | | Huy | /gen | s's p | orinci | ple | | | | 02 | | calculating energy
generation by a solar cell
Bio mass energy | The seven crystal systems Cubic crystal system | Numerical
on Ideal ga
Van Der W | as la | WS | | • | on | Cou | cal p
lomb
field | 's la | | olvir | ig | on a | | litud | roble
e, ph | | olvin | ıg | | S-3 | | Generation and applications of bio mass | Crystal symmetry | States Derivation equation o | | | er W | aal's | | | pote | | ı | | | You | | s dou | ıble : | slit | | | | | SLO-1 | Wind energy generation and applications | Reciprocal lattice and its importance | Pressure of | | | ıl gas | | Ga | uss': | s law | , | | | | Ė | nerei | | | | | | | S-4 | SLO-2 | Numerical evaluation of | Density and atomic packing fraction | Derivation ideal gas | of P | ress | ure o | fan | Арр | olica | tions | of C | Gaus | s's la | aw | Inte | rfere | ence | fron | n thir | n film | ns | | S-5
to
S-8 | SLO-1
SLO-2 | Introduction to the Lab experimentation | Calculation of lattice cell parameters by X-ray diffraction | Determination heat capaci
Newtons's | city o | of the | liqui | d by | | | tion o | | | eter | | pov | | of a p | on of
orism | | | ve | | S-9 | SLO-1 | structure | Numerical on Density and atomic packing fraction | Laws of the | | | | | on | Gau | cal p
ss's | law | | | • | | | | inte | | | | | 3-3 | SLO-2 | Alpha, beta and gamma radiation | Crystal directions and planes | Problem so
Thermodyr | | | laws | of | | | tors | | diele | ectrio | cs | ligh | t | | Wav | | | of | | S- | SLO-1 | Law of radioactive decay | Introduction to Miller indices | s Entropy | | | | | Ele | ctric | Curi | rent | | | | | nerio
rfere | | roble | em o | n | | | 10 | SLO-2 | Example problems in radioactivity | Numerical on Miller indices | Calculating entropy ch | • | | cal or | 1 | | bler
duc | n on
tors | diele | ectric | cs ar | nd | Lig | ht a | nd C | ptics | 6 | | | | S-
11 | SLO-1 | Decay constant | Interplanar distance | Change of entropy in reversible and irreversible processes | Ohm's law | Fermat's principle | |------------|----------|--|--|---|---|--| | 11 | SLO-2 | Half-life and mean life | Numerical on interplanar distance | Change of entropy in irreversible processes | Magnetic induction | Laws of reflection and refraction | | S- | SLO-1 | Nuclear energy | Hexagonal closely packed (HCP) structure | Low temperature | Permeability and susceptibility | Total internal reflection | | 12 | 510-7 | Applications of nuclear energy | Derivation of HCP atomic packing fraction | Joule - Kelvin effect-
introduction | Numerical problem solving
on Permeability and
susceptibility | Illustrations of total internal reflection | | S-
13- | | Study of the I-V
Characteristic of a Solar | Dielectric constant
Measurement | Determination of thermal conductivity of a bad conductor using Lee's disc | Calibration of Ammeter using | Study of attenuation and propagation characteristics | | S16 | SLO-2 | Cell | | method | | of optical fiber cable | | S- | I SI O-1 | Mass defect and binding energy | Numerical problem solving on HCP structure | J-K effect- theory | Magnetic field due to a
current carrying conductor-
Biot-Savart's law | Problem solving on total internal reflection | | 17 | SLO-2 | Solving numerical based on binding energy and mass defect. | Diamond crystal structure | Applications of J-K effect | Numerical problem solving on Biot-Savart's law | Mirrors and lenses | | S- | SLO-1 | Fission reaction | Derivation of APF for diamond structure | Liquefaction of gases | Ampere's circuital law | Lens makers formula | | 18 | | Evaluating nuclear energy generation by fission reaction | Numerical problem solving on diamond structure | Linde's process | Faraday's law | Problem solving on Lens makers formula | | S- | SLO-1 | Fusion reaction | X-ray
diffraction | Nitrogen gas liquefaction | Basic Electronics | Defects of images | | 19 | SLO-2 | Fusion energy cycles | Problem solving on X-ray diffraction | H, He gas liquefaction | P and N type
semiconductors | Coma distortion | | S- | SLO-1 | Biological effects of radiation | Single crystal diffraction | Adiabatic demagnetization-
introduction | Junction Diode | Spherical aberration in lenses | | 20 | | Numerical problems involving Nuclear energy | powder diffraction | Working principle of adiabatic demagnetization- | Characteristics of Junction Diode | Chromatic aberration in lenses | | S-
21 - | SLO-1 | Hall effect- Hall coefficient determination | Revision class for | Determination of specific heat capacity of the liquid by | Band gap determination using Post Office Box – | Revision class for | | 24 | SLO-2 | determination | experiments | Joule's calorimeter method | Specific resistance | experiments | | 1 | Modern Physics, Murugeshan and K. Sivaprasath, (S. Chand | 3. | Heat and Thermodynamics, Zemansky M. W. and Ditlman | | |-------------|--|----|--|--| | Learning | publications, revised edition, 2015). | | R.H., (Tata McGraw Hill, 2011) | | | Resources 2 | Fundamentals of Physics, Resnick R. and Halliday D., (Wiley Publication, | 4. | Allied Physics I, Sundaravelusamy A., (Priya Publications, | | | | 8th Edition, 2011) | | 2009) | | | Learnin | g Assessment | | | | | | | | | | | | | | | | | |---------|------------------------------|--------|----------|---------------|------------|---------------|-----------|-----------|----------|--------------------------------------|-------------------|--|--|--|--|--|--| | | | | Contin | uous Lea | arning Ass | sessmen | t (50% we | eightage) | | Final Examination (50% weightage) | | | | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | i iliai Examination (30 % weightage) | | | | | | | | | | Level of Tilliking | Theory | Practice Practice | | | | | | | | Level 1 | Remember | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | | | | | | | | Level I | Understand | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | | | | | | | | Level 2 | Apply | 40% | 40% | 40% | 40% | 40% | 40% | 40% | 40% | 40% | 40% | | | | | | | | Level 2 | Analyze | 40 /0 | 40 /6 | 40 /0 | 40 /0 | 40 /0 | 40 /0 | 40 /6 | 40 /0 | 40 /0 | 4070 | | | | | | | | Level 3 | Evaluate | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | | | | | | | | Level 3 | Create | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | | | | | | | | | Total | 10 | 00 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | | | | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|-----------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. R Seshadri, Titan Company Limited, seshadri@titan.co.in | Prof. C Vijayan, IIT Madras, cvijayan@iitm.ac.in | Mr. Sandeep K. Lakhera,
SRMIST | | Dr. N Vijayan, NPL, nvijayan @nplindia.org | Prof. S Balakumar, University of Madras, balakumar@unom.ac.in | Dr. Gunasekran, SRMIST | | Cours | | 0S01L | Course
Name | С | Program | ming | | | urse
egory | S | | | Ski | II En | han | ceme | ent C | Cour | se | | L
0 | T
0 | P
4 | C
2 | |----------------------|--------------------------------------|-----------|-----------------------|-----------------------------|-------------|-----------------------------------|--------------------------|--------------------------|-------------------------|----------------------|------------------|----------------------|----------------------------|-------------------|-----------------------|------------------------------|--------|------------------------|---------------|------------------------|--------------------------------|--------|--------|--------| | Out | | | Italiio | | | | | Out | ogory | | | | | | | | | | | | ľ | U | Ľ | Ľ | | Pre
requi
Cour | site Nil | | | Co-
requisite
Courses | Nil | | | | Prog
Co | ressi | l P | Jil | | | | | | | | | | | | | | Course
Depart | e Offering
ment | 1 | Mathemati | cs | | Data Book /
Codes/Standards | e Learning
ale (CLR) | • | The purpos | se of learning thi | s course i | s to: | | | Lea | rning | | | | Pr | ogra | ım Le | earn | ing C | Dutco | omes | s (PL | .0) | | - | | CLR-1 | To unde | erstand t | he basics of C | language | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 | To relat | e the co | ncepts of oper | ators | | 1117 | | 7 | | | | | | | | | | | | | | | | | | CLR-3 | To unde | erstand o | concepts of ar | ray | 5 | | | h | ч | | | | ī | | | | | | | | | | | | | CLR-4 | To learn | the cor | ncepts of argu | ments | | | | | | | | | ch | | 1 | ility | | | | | | | | | | CLR-5 | To learr | the cor | ncepts of creat | e file | ٠. | | (mool) | (%) KS | nt (%) | e G | | ent | esear | | | tainab | | Nork | | nce | | | | | | CLR-6 | To relat | e the co | ncepts of poin | ters | | . 10 | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | alysis | Design & Development | Analysis, Design, Research | Modern Tool Usage | ulture | Environment & Sustainability | 1 | Individual & Team Work | tion | Project Mgt. & Finance | aming | | | | | | | | | | | | Ē | P P | ed At | ic
Z | n Ana | & De | s, De | Too | & CI | men | 7 | ळ | nica | Mgt. | ng Le | 1 | 0.1 | cc | | | <mark>e Learn</mark> ing
mes (CLC | | the end of this | course, learner | s will be a | ble to: | evel of | Expecte | Expecte | Scientif | Problem Analysis | Design | Analysi | Modern | Society & Culture | ≣nviron | Ethics | ndividu | Communication | Project | Life Long <mark>Leaming</mark> | PSO-1 | PSO-2 | - OSd | | CLO-1 | Identify
useful | situation | ns where comp | outational metho | ds and co | mputers would be | 2 | 75 | | Н | Н | Н | ì | - | _ | - | - | Ī | - | ī | | Ī | - | - | | CLO-2 | | | ational proble | m, identify and a | bstract the | e programming | 2 | 80 | 70 | - | Н | - | Н | Ŧ | - | 3 | - | - | 4 | - | - | - | - | - | | CLO-3 | | ch the pr | rogramming ta | sks using techni | ques lean | ned and write | 2 | 70 | 65 | Н | | - | Ξ | - | - | F | - | - | - | - | | - | - | - | | CLO-4 | | the righ | t data represe | ntation formats b | ased on | the requirements of | f 2 | 70 | 70 | Н | - | Н | Н | Н | - | - | ŀ | - | - | - | - | - | - | | | CLO-5 | Use the | compar | | tations of the var | | | 2 | 80 | 70 | | Н | - | Н | | | - | ŀ | - | - | - | - | - | - | - | | CLO-6 | | e progra | | | | correct, recompile | 2 | 75 | 70 | ŀ | | - | - | - | - | - | - | ď | | - | - | ŀ | - | - | | | una run | | Z 1 | | | - 1/ | Т | | | | | | | | | T | | | | | | | | | | Durati | on (hour) | M | lodule-I (12) | Module- | I (12) | Module- III (1 | 2) | | | Mod | ule- I | V (1 | 2) | | | | | Мо | dule- | - V (| 12) | | | | | S-1 | SLO-1 | Funda | mentals of C
mming | Conditional statement | Contro | Program for one dimensional array | | | Progra
vith re | | | | ents | | Prog | gram | to c | reat | e file | e Ì | | ı | | | | to
S-4 | SLO-2 | | mentals of C | Conditional statement | Contro | Program for one dimensional array | | | Progra
vith re | | | | ents | | Prog | gram | to c | reat | e file | Э | | | | | | S-5 | SLO-1 | 0 | Exercises in C | 111111111111111 | l Contro | Program for two dimensional array | M | F | Progra | am fo | r no | argu | ımer | nts | Prog | gram | for | Struc | cture | | | | | | | to
S-8 | SLO-2 | Basic I | Exercises in C | | l Contro | Program for two dimensional array | | F | Progra | am fo | r no | argu | ımer | nts | Program for Structure | | | | | | | | | | | | | | | | _ | | • | with return value. | | | | | | <u>.</u> | | | | | | | | | _ | | | | | i rogrammiy | Statement | ulliletisional array. | with return value. | | |-----------|-------|----------------------
--|--|---|-----------------------| | S-5 | SLO-1 | Basic Exercises in C | | Program for two dimensional array. | Program for no arguments with return value. | Program for Structure | | to
S-8 | SLO-2 | Basic Exercises in C | | Program for two dimensional array. | Program for no arguments with return value. | Program for Structure | | 6-9 | SLO-1 | Operators | The state of s | Program for multi-
dimensional array. | Program for no arguments with return value. | Pointer | | to
-12 | SLO-2 | Operators | The state of s | Program for multi-
dimensional array. | Program for no arguments with return value. | Pointer | - E. Balagurusamy, Programming in ANSI C, 6e, Mc Graw-Hill Pvt Ltd, New Delhi. Learning Resources - Brian W. Kernighan, Dennis M. Ritchie, C Programming Language, Second Edition, Prentice-Hall Publication-2012 Byron Gotteried, Programming with C, Third edition, Tata Mc Graw-Hill Pvt - Al Kelley, Ira Pohl, A Book on C, Addison Wesley Longman, - Gary J. Bronson, ANSI C Programming, Cengage Learning India Private Ltd, New Delhi. | Learning | Learning Assessment | | | | | | | | | | | | | | | |----------|---------------------|--------|----------|----------|------------|---------|------------|----------|----------|-----------------------------------|-----------------|--|--|--|--| | | B | | Continu | uous Lea | arning Ass | sessmer | nt (50% we | eightage | | Final Evamination // | EOO/ waishtasa) | | | | | | | Bloom's | | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | | Level of Thinking | Theory | Practice | | | | | | Level 1 | Remember | | 40% | | 30% | | 30% | | 30% | | 30% | | | | | | Level I | Understand | - | 40% | | 30% | - | 30% | - | 30% | - | 30% | | | | | | Level 2 | Apply | - | 40% | | 40% | - | 40% | - | 40% | - | 40% | | | | | | | Analyze | | | | | | | | | | | |---------|----------|----|-----|----|-----|----|-----|----|------|-------|-----| | Lovel 2 | Evaluate | | 20% | | 30% | | 30% | | 30% | | 30% | | Level 3 | Create | - | 20% | | 30% | - | 30% | - | 30% | - | 30% | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 0 | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Prof. K. S. Ganapathy
Subramanian, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. M. Suresh, SRMIST | | Cours | 11111/12 | A20S02L | Course | | Java | a Programm | ning | | | | urse
egory | S | | | Ski | ill Er | han | ceme | ent C | Cour | se | | 0 | 0 | P
4 | 2
2 | |----------------------|--------------------|------------|----------------|------------------------------|-----------------------------|--------------------------------|--------------|----------------------|--------------------------|--------------------------|-------------------------|-----------------------------|------------------|----------------------|------------------|-------------------|---------|------------------------------|--------|------------------------|---------------|------------------------|-------------------|-------|--------|--------| Pre
requi
Cour | site N | lil | | | Co-
requisite
Courses | Nil | | | | ı | Progr
Cou | essiv
rses | e N | I | | | | | | | | | | | | | | | e Offerii | ng | Mat | hematics | Oddises | | ata Bool | k /
andards | Бераі | unent | | | | | Į CC | Jues/Sia | anuarus | e Learn | 0 | The | nurnose o | learning thi | s course is t | to: | | | | Lea | rning | | | | Pr | ogra | m I e | earn | ina (| Outco | mes | s (Pl | O) | | | | Ration | ale (CL | R): | | puipodo o | g an | 0 000.00 10 1 | | | | | | | 4 | L | | | 09.0 | | | 9 \ | | | . (| | | | | CLR-
1: | To unde | erstand th | ne basic | s <mark>of Java l</mark> a | nguage | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-
2: | To relat | te the cor | ncepts o | f operators | | 4 | П | CLR- | To unde | erstand c | oncepts | of stateme | ents | | | | | | | | | b | 1 | 7. | | ľ | | | | | | | | | | CLR-
4: | To lean | n the con | cepts of | array | | 1 | | | | | | | | | Ę | 1 | J | lity | | | | H | | | | | | CLR-
5: | To relat | te the cor | ncepts o | f inheritanc | е "А | | THE STATE OF | 2 | (mool) | (%) ٨٥ | t (%) | e e | | ent | esearc | | | tainabi | b | Vork | | nce | ı | | | | | CLR-
6: | To unde | erstand c | oncepts | of class an | d object | | | | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | llysis | Design & Development | Design, Research | Modern Tool Usage | Culture | Environment & Sustainability | 7 | Individual & Team Work | ion | Project Mgt. & Finance | Life Long Leaming | | H | | | 0 | | | ٠, | - | | | 94 | | of Thin | ted Pr | ted Att | fic Kr | m Ana | 8 De | is, De | n Tool | ంగ | nment | ı | nal & | unicat | t Mgt. | ng Le | _ | 2 | က | | | e Learn
mes (Cl | | t the en | d of this cou | ırse, learner | s will be abl | le to: | | Level | Expec | Expec | Scient | Problem Analysis | Design | Analysis, | Moder | Society | Enviro | Ethics | Individ | Communication | Projec | Life Lo | PSO- | PSO- | - OSd | | | ldentify
useful | situation | s where | computation | nal method | s and compu | uters wo | ould be | 2 | 75 | | Н | - | Н | | Н | - | - | - | - | 7 | - | - | - | | - | | CLO- | | | ational p | roblem, ide | ntify and ab | stract the pr | ogramn | ning task | 2 | 80 | 70 | М | Н | | - | | - | 7 | - | - | | - | - | - | - | - | | CLO- | | ch the pro | ogramm | ing tasks u | sing techniq | ues learned | and wri | ite | 2 | 70 | 65 | н | Н | ÷ | Н | Н | Н | - | - | - | - | - | - | - | - | - | | CLO- | | the right | data re | presentatio | n formats ba | sed on the | requirer | ments of | 2 | 70 | 70 | Н | | Н | - | Н | | - | - | - | | - | - | - | - | - | | CLO- | Use the | compari | | d limitations
for the tas | | ous program | nming co | onstructs | 2 | 80 | 70 | М | ia | | w | - | - | - | - | | | - | - | - | - | - | | CLO- | | e progra | | | | , debug, con | rect, rec | compile | 2 | 75 | 70 | М | - | - | - | - | - | | - | 1 | - | - | - | - | | - | | | | | | | | | | | | ٠ | | | | | | | | | | | | | | | | | | | on (hou | Fund | Module | s of OOPS | | odule-II (12)
, variable ar | | Decision | dule
mal | | | | | | · IV (| | | | ď | | dule- | - V (| 12) | | | | | S-1
to | SLO- | Funds | amental | s of OOPS | types | , variable ar | | branchir
Decision | ng . | | | | strin | _ | | | Usin | | | | | | | | | | | S-4 | SLO- | Rasic | | es in Java | types | 177 | 4 | branchir
Class of | ng | | | | strir | | | | Usir | | | age | | | | | | | | S-5
to | SLO- | Racio | | ses in Java | | s and Expre
s and Expre | | methods
Class of | 3 | | 1 | | vect | н | 4 | | Hidi | | | | | | | | | | | S-8 | SLO- | Oven | iew of | | | making and | | methods | | | | | vect | or | | | | ng cl | | ctan | : مام | arce | مااام | | | | | S-9
to | SLO- | 1 Progr | amming | | looping | | | Arrays | | | | | inhe | ritar | ice | | | gons | s, Ba | r ch | art. | | | | | | | S-12 | SLO- | / | iew of camming | | looping |
making and | 1 | Arrays | | | | | Mul | • | ice | | poly | | | | | aics | , emp | ise, | | | | | 1. | Java | How to | Progam, P | aul Deitel, H | arvey Deitel | l, 8e, Ph | I Learnin | l co' | na 2. | , | New De | | mann Gan | Cornell, Vo | ol-1 Sur | | | 4. | | g <mark>inni</mark>
Prin | • | | | | | • | | • | Jona | ntha | ın s, | Hark | oour | , | | Learni
Resou | 9 | | | | ason Educa | | ı, oul | | | 5. | | | | | | | | | | | 4e. | Mc (| Graw | -Hill | Pvt | Ltd. | | | 3. | Desi | gn Patte | rns in Java | , Steven Joh | n Metsker, | William | C. Wake | | | | w De | | J | | , | • | - 3 | | .,, | -, | - ` | | | | , | | | | /e, F | udiishe | u by Dorling | Kindersley | • | Learning | g Assessment | | | | | | | | | | | |----------|------------------------------|--------|----------|----------|------------|---------|------------|-----------|----------|---------------------|-----------------| | | D | | Continu | ious Lea | arning Ass | sessmen | ıt (50% we | eightage) |) | Final Evamination / | EOO/ weightege) | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (| 50% weightage) | | | Level of Tilliking | Theory | Practice | | Level 1 | Remember | | 40% | | 30% | | 30% | | 30% | | 30% | | Level | Understand | - | 40% | | 30% | - | 30% | - | 30% | - | 30% | | Level 2 | Apply | - | 40% | | 40% | - | 40% | - | 40% | • | 40% | | | Analyze | | | | | | | | | | | |---------|----------|----|-----|----|-----|----|-----|----|------|-------|-----| | Lovel 2 | Evaluate | | 20% | | 30% | | 30% | | 30% | | 30% | | Level 3 | Create | - | 20% | | 30% | - | 30% | - | 30% | - | 30% | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 0 | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|-----------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, | Dr. A. Govindarajan, SRMIST | | maheshwaranv@yahoo.com | sryedida@iitm.ac.in | Dr. N. Parvathi, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. M. Suresh, SRMIST | | Course
Code | UMA20S0 | 1 (| ourse
ame | Scier | ntific Doc | cume | ntation | and | d Statistica | al To | ools | (| | urse
egory | S | 1 | | Sk | ill Er | nhan | ceme | ent (| Cour | se | | [| . T | P
4 | C
2 | |------------------------------|--|--|--|--|-------------------------------------|------------------------------|---|----------------------|---|--------------------------|--|---|---|---|---------------------------------|------------------|----------------------|----------------------------|-------------------|-----------------------------|------------------------------|--------|-----------------------|---------------|------------------------|--------------------|----------------------|--------|---------| | Pre-
requisite
Courses | 8 | | | | Co-
requis
Cours | ite | Nil | | | | | ľ | Р | rogre | | e Ni | l | | | | | | | | | ļ | | 1 | | | Course O
Departme | | | Mather | natics | | | | | ata Book /
odes/Stand | | ds | Course Le
Rationale | | | The pu | irpose o | f learnin | g this | course | e is | to: | | | | | Lea | rninç | 3 | | | Pr | ogra | m Le | earn | ing (| Outc | ome | s (P | LO) | | _ | | : w
CLR-2 A | riting. | pecific | packag | es in the | | | | | or the repo | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-3 A | | e bib <mark>lio</mark> | graphy | | s to crea | ate a | bib file | e, jou | ırnal pape | er, | | | | | | l. | | | | | | | | | | | | | | | CIPS | nderstand | | | | - 1 | 4 | | | | | | loom) | (%) A | t (%) | a | | ent | search | 7 | ٠, | ainability | | /ork | | Se | | | | | | CLDG | reate insi | | | 4 | | H | | | | | | inking (B | Proficienc | Attainmen | Knowledg | nalysis | Developm | esign, Re | ol Usage | Culture | nt & Sust | | & Team V | ation | t. & Finar | -earning | 5 | | | | Course Le | | At the | e end of | this cou | urse, lea | rners | will be | e ab | le to: | | H | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & Development | Analysis, Design, Research | Modern Tool Usage | Society & Culture | Environment & Sustainability | Ethics | ndividual & Team Work | Communication | Project Mgt. & Finance | Life Long Learning | PS0 - 1 | PSO-2 | PSO - 3 | | CLO-1 A | | oncept | of Late: | x, to cre | ate a typ | eset | ting pro | ogra | m for repo | ort | | 2 | в
80 | 95 | M | - | Н | ⋖ | H | - | ш
- | - | - | Н | - | Н | - | - | Н | | CLO-2 A | | | | x, to cre | ate a pro | ograr | n for a | doc | ument with | h | | 2 | 80 | 80 | Н | ŀ | Н | Н | Н | 7 | | - | Ŧ | Н | ŀ | Н | - | - | Н | | CLO-3 A | pply the cricle and | oncept
beame | of Late:
r preser | ntation | | | | | roject repo | | X. | 2 | 80
80 | 80 | Н | Н | Н | Н | Н | - | | | Н | Н | Ī | Н | Н | - | -
Н | | CLO-5 A | | | | Descrip | tive stati | istics | to ana | alyze | and prepa | are | а | 2 | 80 | 80 | Н | Н |
Н | Н | Н | | | - | -
Н | Н | | Н | | | Н | | CLO-6 A | port for the color by | oncept | | ierate a | latex do | cume | ent with | n the | images fr | rom | gnu | 2 | 80 | 80 | Н | Н | Н | н | Н | - | - | ŀ | Н | Н | ŀ | Н | - | - | Н | | Duration | (hour) | ~ | Module | 2 1 (12) | 44 | H | Modu | ا مار | 1 (12) | | | Mod | lulo | - III (<i>*</i> | 12) | | | Mo | dula | - IV | (12) | H | ť | | Modu | ulo | V (12 | 2) | | | S-1 to 4 | SLO-2 | Introdu
structur
Preaml
Program
docume
using re | comman
lection Pr
re, Doci
ble, Pac
mming
ent to p
eport do | ds in La
rogram
ument c
kages.
on Late
repare a | x
a letter | math
symb
Prog
docu | e math
mode,
ools
rammir
ment w | n mo
, Ma
ng o | de, Displa
thematica
n Latex
quations. | bi
bi
P
do
P | rogra
ocum
ibliogra
rogra
ocum
roject | mm
ent
raph
mm
ent
t rev | ing
to c
iy w
ing
to c
iew | on La
reate
rith .b
on la
reate
1. | atex
a
ib fil
tex
a | | Ва | | | nupk | | 7 | Pre
Da | PP a | an in | trodi
of E | uctio | n: | | | S-5 to 8 | SLO-1 | docume
bullets
Prograid
docume | ent to pand number and number of the median and number of the median and medi | mbering
on Latex
repare a | a
list | docu | rammir
ment to
tion pa | o cre | n Latex
eate a | e;
,p
P
cr | ype s
xamp
proof,
rogra
reate
burnal | le, t
Bib
mm
a te | heo
liog
ing
mpl | rem,
raph
on La | cord
/,
atex | llary
to | Wo | | y wit | h dat | | les | Нуг | oothe | esis | Tes | ting | | | | S-9 to 12 | SLO-1
SLO-2 | Prograi
docum | mming o | on Late | ulating | docu | ment to | o cre | n latex
eate a mul
paper. | P
Iti pi | rogra
repare | mm
e a l | ing
bea | | tex t | 0 | din
Us | nensi | ional
olor | - Th
plot
for d
on | s - | | Gra | aph, | Corr | elat | eque
on,m
egre | nean | , | | Learning
Resource | Wesley
2. Philip
nd Edit
3. Tho | , Londo
op K. Ja
ion, Ma
mas W | on, 1999
anert, G
Inning P
Villiams |).
nuplot ii
ublicatio | n Action:
ons, 2010
lin Kelle | : Und | lerstan | nding | rd Edition,
g Data with | h Gr | aphs, | 2 5 | j. ' | ee Ph
The
stoph | PS | PP | Gu | ide: | An | İn | trodu | ıctio | n t | 0 | Stati | stica | | | sis , | | Learning | g Assessment | | | | | | | | | | | |----------|------------------------------|--------|----------|----------|------------|---------|------------|-----------|----------|---------------------|-----------------| | | - | | Continu | uous Lea | arning Ass | sessmer | nt (50% we | eightage) |) | Final Examination (| 500/ waishtasa\ | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | rinai Examination (| 50% weightage) | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | Level 1 | Remember | | 40% | | 30% | | 30% | | 30% | | 30% | | Level I | Understand | - | 40% | | 30% | - | 30% | - | 30% | - | 30% | | Level 2 | Apply | | 40% | | 40% | | 40% | | 40% | | 40% | | Level 2 | Analyze | - | 40 /0 | | 40 /0 | - | 40 /0 | - | 40 /0 | - | 40 /0 | | Level 3 | Evaluate | | 20% | | 30% | | 30% | | 30% | | 30% | | revel 2 | Create | , | 20 /0 | | 30 /6 | | 30 /6 | | 30 /0 | | JU /0 | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 0 | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Dr. V. Srinivasan, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. M. Radhakrishnan, SRMIST
Dr. Rajeev Sukumaran, SRMIST | | Course | UMA20S04L | Course | PYTHON PROGRAMMING | Course | 0 | Skill Enhancement Course | L | Т | Р | С | |--------|-----------|--------|--------------------|----------|---|--------------------------|---|---|---|---| | Code | UWAZU3U4L | Name | PYTHON PROGRAMMING | Category | 3 | Skill Enhancement Course | 0 | 0 | 4 | 2 | | Pre-
requisite
Courses | Nil | | Co-
requisite
Courses | Nil | | Progressive
Courses | Nil | |------------------------------|-----|-----|-----------------------------|-----|--------------------------------|------------------------|-----| | Course Offe
Department | 0 | Mat | hematics | | Data Book /
Codes/Standards | Nil | | | Cours
Ration
(CLR) | | The purpose of learning this course is to: | Le | arni | ng | | | | Pro | ogra | m Le | earni | ng C | Outco | mes | (PL | .0) | | | | |--------------------------|-------------------------------|---|--------------------------|--------------------------|-------------------------|-----------------------|------------------|---------------|--------------------|-------------------|-------------------|------------------------------|--------|------------------------|---------------|--------------|-------------------------|---------|-------|---------| | 1: | computation | the python language construct and apply them for scientific | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-
2: | Apply python | vector ,list and plot concept to solve curve fitting | | j | | | | | | | | | | | | | | | | | | CLR-
3: | Applying Diction | onary concept to model Polynomials | | | J | F | | | | | | | H | | | | | | | | | | Create insight them with pyth | s to difference equation based system model and solving | (in | (%) | (9) | 0 | | , | arch | ٠. | | ability | | > | | | | | | | | CLR-
5: | Analyze Monte | Carlo Simulation for computing Probabilities | (Bloo | ncy (9 | Pent (% | wledge | | pment | Rese | ge | 0 | ustain | | n Worl | | & Finance | gı | | | | | | | s to the concepts and programming of SciPy, numpy, solve scientific problem | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Engineering Knowledge | Problem Analysis | & Development | , Design, Research | Modern Tool Usage | Society & Culture | Environment & Sustainability | k | Individual & Team Work | nication | ⁄lgt. & Fii | g <mark>Learning</mark> | | | | | | se Learning
omes (CLO): | At the end of this course, learners will be able to: | Level of | Expecte | Expecte | Enginee | Problem | Design 8 | Analysis, I | Modern | Society | Environ | Ethics | Individua | Communication | Project Mgt. | Life Long | PSO - 1 | PS0-2 | PSO - 3 | | CLO-
1: | Apply python | language construct to compute formula and scientific problem | 2 | 80 | 70 | Н | Н | - | - | | - | h | - | - | 9 | 5 | - | - | - | Н | | CLO-
2: | Analyze Mathe | ematical Models system using f Difference Equations and | 2 | 85 | 75 | Н | Н | - | F | - | - | | | - | | - | | | - | Н | | | Apply time sec | quence concept for generation and processing of audio signal | 2 | 75 | 70 | Н | F | - | Н | - | - | | | - | ı | 1 | 1 | Η | - | - | | CLO-
4: | Apply python I | anguage construct to solve Polynomials | 2 | 85 | 80 | Н | Ή | - | - | - | - | | - | - | | - | | - | - | Н | | CLO-
5: | LL) L) | anguage construct to compute probability by Monte Carlo me design and dynamic random motion creation | 2 | 85 | 75 | Н | - | Н | - | - | - | | - | 1 | | | | - | - | Н | | CLO- | | numpy, matplotlib to statistical analysis, correlation coefficient ing equations- Linear least squares solutions and signal | 2 | 80 | 70 | i | ā | 4 | ù | - | - | | - | | | | - | - | - | Н | | D <mark>urati</mark> on
(hour) | | Module-I (12) | Module-II (12) | Module-IV (12) | Module-V (12) | | |-----------------------------------|-----------|---|--|--|---|--| | S-1 | SLO-
1 | Computing with Formulae | Vectors, Mathematical
Operations on Vectors,
Vector Arithmetics and
Vector Function | by Line, Reading a Mixture | Drawing Random Numbers-
Uniformly Distributed
Random Numbers | SciPy, numpy, matplotlib | | | SLO-
2 | Text and Numbers | Arrays in Python Programs-
Using Lists for Collecting
Function Data | Making Dictionaries | Computing the Mean and
Standard Deviation | Basic array methods in numpy, Changing the shape of an array | | | | | Curve Plotting-The SciTools and Easyviz Packages | Dictionary Operations | The Gaussian or Normal
Distribution- Drawing a
Random Element from a List | Maximum and minimum values | | S-2 | SLO-
2 | Mathematical Functions, | Plotting a Single Curve,
Decorating the Plot, Plotting
Multiple Curves, Controlling
Line Styles | Polynomials as Dictionaries,
File Data in Dictionaries, File
Data in Nested Dictionaries | Drawing random interger | Reading and writing an array to a fle | | S
3-4 | 1
SLO- | Lab 1:programming on
formula and Standard
Mathematical Functions-
Evaluate
a Gaussian
function, Compute the air
resistance on a football | Lab 4: Curve Plotting | Lab 7: reading student
marks file into a dictionary
data with the student name
as key and computing the
average grades | Lab 10: real card games | Lab 13: numpy file reading and data analysis | | S-5 | | Complex Numbers, Complex Arithmetic's in Python | Numerical Python Arrays manipulations | Strings- Common
Operations on Strings | Computing Probabilities-
Principles of Monte Carlo
Simulation | Statistical methods in numpy | | 3-3 | | Keyboard Input-Reading | Higher-Dimensional Arrays-
Two-Dimensional Numerical
Python Arrays | Reading Coordinates | Throwing Dice, Rolling Two
Dice game | Statistical methods in numpy | | S-6 | SLO-
1 | Making Modules, Collecting Functions in a Module File | Matrix Objects | Reading Data from Web
Pages- About Web Pages | Drawing Balls from a Hat | Histograms | | | SLO- | Using Modules | Mathematical Models Based
on Difference Equations-
Interest Rates | Simple Games- Guessing a
Number | Solving equations- Linear
least squares solutions- Beer-
Lambert Law | | |----------------|------------------------|--|---|--|---|--| | S
7-8 | SLO-
1
SLO-
2 | Lab 2: program on Making
Modules and using them | | Lab 8:reading web
temperature text file into
Dictionaries and computing
average Temperature | Lab 11: Simple Games | Lab 14: the correlation coefficient between pressure and temperature | | | SLO- | while loops and for loops | the Factorial as a Difference Equation | Extracting Data from an HTML Page | Random Walk in One Space Dimension | One-Dimensional Fast Fourier Transforms | | S-9 | SLO-
2 | Lists and list manipulation | Payback of a Loan, Making a | Writing a Table to File,
Reading and Writing
Spreadsheet Files | Basic Implementation,
visualization and Computing
Statistics of the Particle
Positions | Matplotlib basics- Plotting on
a single axes object, scatter
plot, Bar charts and pie charts | | S- | | Loops with List Indices,
Nested Lists | Writing Sound to File | | Random Walk in Two Space
Dimensions | Choosing the Length of the DFT | | 10 | SLO-
2 | Tuples, Functions, Lambda
Functions, If Tests | Playing Many Notes | Bank Accounts as class, A
Class for Solving ODEs | Basic Implementation,
visualization and Computing
Statistics of the Particle
Positions | Filters in Signal Processing | | S
11-
12 | SLO-
1
SLO-
2 | Lab 3: Programming on list and loops | Lab 6: Sound generated by formula and difference equation | Lab 9: Programming on class | Lab 12: Random Walk in
One Space Dimension or
Two Space Dimensions | Lab 15: Numpy signal processing | | Learning | 1. | Hans Petter Langtangen," A Primer on Scientific Programming with Python", Springer, 2000. | 3. | Juan Nunez-Iglesias, Stéfan van der Walt, and Harriet Dashnow Elegant SciPy Te Art of Scientific Python, O'Reilly Media, 2017. | |-----------|----|--|----|--| | Resources | 2. | Christian Hill, "Learning Scientific Programming with Python", Cambridge University Press, 2015. | | | | | | | Contin | uous Lea | arning As | Final Fuencination | - (E00/eimbteme) | | | | | | | | |---------|------------------------------|---------------|----------|---------------|-----------|--------------------|------------------|--------|----------|-----------------------------------|----------|--|--|--| | | Bloom's
Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | Laval 1 | Remember | | 40% | | 30% | | 30% | | 200/ | 70 TO 10 | 30% | | | | | Level 1 | Understand | - | 40% | | 30% | -71 | 30% | | 30% | | 30% | | | | | Level 2 | Apply | | 40% | | 40% | | 40% | | 40% | 4.2 | 40% | | | | | Level 2 | Analyze | | 40% | | 40% | | 40% | | 40% | | 40% | | | | | Level 3 | Evaluate | | 20% | | 200/ | | 30% | | 30% | | 30% | | | | | Level 3 | Create | | 20% | 30% | | | 30% | _ | 30% | | 30% | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 | 0 % | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | 77 | |---|---|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govind <mark>arajan, SRM</mark> IST
Dr. N. Parvathi, SRMIST | | WITH THE | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. M. Radhakrishnan, SRMIST
Dr. Rajeev Sukumaran, SRMIST | | Code | UJK20 | 13/11 1 | ourse
lame | | Universal Hu | man Values | | Cou | rse C | Categ | jory | , | JK | | | Life | Skil | l Co | urse | ! | L | T
0 | P
0 | 2
2 | |----------------|----------------------------|---|--|--|--
--|---------------------------|--|--|--|--|--------------------------------------|----------------------|---|--
--|--|-------------------------------|---|----------------------|--|--|---|-----------| | Pre- | requisite | Courses | Nil | Co-requi | site Courses | Nil | | P | rogre | essiv | re Co | ours | es | Ni | ı | | | | | | | | | | | Cours
Depar | e Offering
tment | g | Engli | ish | | Data Book /
Codes/Standards | | | | | | | | Nil | | | | | | | | | | | | Cours | e Learnin | ng Rational | e (CLR |): The pu | urpose of learn | ing this course is to: | | | Lea | rninç | 3 | | | Pro | grar | n Le | arni | ing (| Outc | ome | es (P | LO) | | | | CLR-1 | : issues | | nder <mark>m</mark> a | arginalization | current region
Eco sensitivity | nal and national
v, vision for the | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 | : An exp | anded c <mark>ons</mark>
ped | sciousne | <mark>ess with a</mark> mi | ind to accomm | odate all is | | L | | I | nd to co- exis | | | | | | | | nes | 1 | 7. | ge | | | | | | | | | | | CLR-4 | To inoti | | | | interdependen
and responsib | | (moo | (%) | (%) | edge | epts | scipli | ge | n | wled | | ata | | SI | S | | | | | | CLR-5 | individu | uals and co | mmuniti | ies | | , | g (B) | ienc | ment | nowle | Sonce | d Di | wled | izatic | Kno | g | et De | ills | g Ski | Skill | | L | | | | CLR-6 | : Make t | hem learn t | he basic | c nature of h | uman beings | | inkin | rofic | ıttain | tal | of | elate | Kno | ecial | tilize | delir | terpr | e Sk | Juivic | ation | Skills | | | | | C | a I a a main | or Outson | | At the and a | of this saures. I | oornoro will be oble | of Th | ted F | ted / | men | ation | /ith R | dural | in Sp | to U | in Mo | ze, In | igativ | S me | unic | | 1 | .2 | _ | | (CLO) | | g Outcom | | to: | | earners will be able | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical | PSO -1 | PSO -2 | PSO-3 | | CLO- | | | | every living
niversal value | | le to respect every | 2 | 75 | 60 | Н | Н | Н | Н | - | - | - | Н | Н | Н | Н | Н | - | - | - | | | 2 Every v | vay of life a | nd cultu | | the curiosity in | n them to know them | 2 | 80 | 70 | Н | Н | Н | Н | | - | 4 | Н | Н | Н | Н | Н | | - | - | | CLO-: |) | | | | | ercome by them | 2 | 70 | 65 | Н | Н | Н | Н | | - | | - | - | | - | - | - | - | - | | CLO- | | | d accor | mmodative n | ature will beco | me so natural way of | 2 | 70 | 70 | Н | Н | Н | Н | Н | | | | | ٠ | Н | | | | | | :
CLO- | 5 | g for them | - | | | | | | | Н | | | | ., | | | | | | | | | | | | | They w | | | | inequalities and | i justice | 2 | 80 | 70 | Н | Н | - | Η | | r | - | | - | À | | - | - | - | - | | CLO- | o IVVIII DE | | | ir oum amoti | iona hanna 0 f | oar and he able to | : | | e them ven | | eir own emoti | ions, hopes & f | ear and be able to | 2 | 75 | 70 | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | | : | describ | | bally | eir own emoti | ions, hopes & f | | 2 | 75 | 70 | | | Н | Н | Н | Н | Н | | | Н | Н | Н | | | Н | | :
Du | | e them ven | bally
06 | | ions, hopes & f | ear and be able to | 2 | 75 | 70 | H 06 | | Н | Н | Н | Н | Н | H
06 | | Н | Н | Н | | H
06 | Н | | :
Du | describ | What is lo
For self, p | 06 ve? For arents, pouse, o manity a | rms of love.
family,
community,
and other | | 06
sion empathy sympat | hy | Narra | ative: | | ane | ecdot
ure | | Wh | nat w | H
ill lea
raction | 06
arne | rs lo | se if | | Sh
lea
ind
or | | o6
g
rs'
ual a | and/ | | Du (r | ration | What is lo
For self, p
friends, sp
nation, hu
beings, bo | 06 ve? For arents, couse, comanity a oth for live | rms of love.
family,
community,
and other
ving and | Love compas
and non viole | 06
sion empathy sympat | hhy nnd | Narra
from
include
Practi
Com | atives
histo
ding
pass
if the | oo
s and
ory, lii
local
local
j Love
ion: v | l aneterati | ecdot
lure
lore
d
will t | es | What | aat w
n't p | ill lea | 06
arme.
ce l | rs lo | se if | | Sh
lea
ind
or
ex | aring
arner
dividu | g
rs'
ual a
ip | and/ | | Du (r | ration nour) | What is lo
For self, p
friends, sp
nation, hu
beings, bo
non living | 06 ve? For arents, couse, comanity a oth for live | rms of love.
family,
community,
and other
ving and | Love compas
and non viole
Individuals wi
history for pra
love | 06 sion empathy sympatince no are remembered in | hhy nond | Narra
from
include
Pract
Com
gain
comp | atives
histoding
ticing
pass
if the | 000 s and ory, litilocal local local local local since | aneterati
folkl | ecdote
ure
lore
will t | es | Wh. dor cor | nat w
n't p
mpas
nulat
ividu | rill lea
raction | 06 armecce III | rs lo ove a titions are the h | se iff | they | Shi least or incorrect or ex. | (
marinq
marner
illividu
grou
perie | g
rs'
ual a
up
eence | and/ | | Du (r | ration lour) SLO-1 | What is lo For self, p friends, sp nation, hu beings, bo non living Love and relatedness What is Ti | 06 ve? For verants, souse, comanity is the for line comparison of the | rms of love.
family,
community,
and other
ving and | Love compas
and non viole
Individuals wi
history for
pra
love
Universal trut
fact, | sion empathy sympatince no are remembered in acticing compassion and the full that is a value, as mers lose if they don't | thy nand | Narra
from
include
Practi
Compain
comp | atives
histoding
pass
if the
passi
city,
ng ot | 000 s and ory, lidical local local local local local local local local since local l | l aneteratifolki | ecdot
ure
lore
will t | they | Wh. dor cor | nulatividu
nemlo ha | raction series and are series and series and series and series are series and series are series and series are series and series are series and series are series are series and series are ser | 06 armece III | are the h | se if and | they | Sh lead industrial control con | (aaring
arner
grou
perie | g
g
rs',
ual a
up
ence | and/ | | Du (h | ration lour) SLO-1 SLO-2 | What is lo For self, p friends, sp nation, hu beings, bo non living | 06 ve? For arents, soouse, comanity a mainty m | rms of love. family, community, and other ving and sssion inter | Love compas
and non viole
Individuals wh
history for pra-
love
Universal trut-
fact,
What will lear
practice truth | sion empathy sympatince ho are remembered in acticing compassion and the truth as value, as mers lose if they don't in the sympathy for others as property of the sympathy for others as property in symp | and ee- | Narra
from
include
Practic
Comp
gain
comp
Vera
amon | atives histoding pass if the passification of grant at grant at the passification of grant at the | 000 ss and ory, lidical local local local local local local local local since since since there s | l anederation folking a control of the t | ecdot
ure
ore
d
will t | es they dual ces | Wh. dor corr | nat w
n't p
mpas
nulat
ividu
neml
o ha
ues
nulat | iill learactiil learactiin ssion | 06 arme.ce III ? iituati who din in aractici iituati iituati | are the h cod h | se if and inistoriation in the second are | they
ry
e | Cae Protru Cae Na an ab vic his lite inc | (() () () () () () () () () () () () () | g rs' unal a lip ence | es es and | | Du (h | sLO-1 SLO-2 SLO-2 | What is lo For self, p friends, sp nation, hu beings, bo non living Love and relatedness What is To what will practice to the what is not the will be the whole when the will be the whole when the whole who what is not the whole who what is not the whole who | 06 ve? For arents, soouse, comanity at they gauth they gauth | rms of love. family, community, and other ving and ssion inter ain if they nce – its assion, | Love compas
and non viole
Individuals wh
history for pra-
love Universal trut-
fact, What will lear
practice truth empathy sym-
requisites for | sion empathy sympatince ho are remembered in acticing compassion and the truth as value, as mers lose if they don't in the sympathy for others as property of the sympathy for others as property in symp | nnd ee- | Narra
from
include
Pract
Comp
gain
comp
Vera
amon
Shar
and | atives histoding pass if the passifit passific pa | 06 s and nry, lin local n Love ion: v ion: v since same roup o killin learm t pra | I aneteratifolki | d will t | they dual ces | Who do no con Sin Ind organization of the Sin | nulat
ividu
nemlo ha
ues
nulat
ividu
aniz
own i | ractification in the second se | 06 arme. ce la ? iituat iituat iituat iituat iituat iituat iituat iituat | are the hich hich committees | se if and nisto: | they
ry
e | Carlor Ca | actic ths ase sarratic ecdo out rollence story eratu | g y y y y y y y y y y y y y y y y y y y | es es es | | | | | | | who have practicing righteousness. | about Righteousness from history and literature including local folklore | |-----|-------|--|---|---|--|--| | | SLO-2 | Practicing Righteousness | : Sharing learners' individual and/ or group experiences | what will learners lose if
they don't practice
Righteousness | Simulated situations | Case studies | | S-5 | SLO-1 | What is peace? | Need of peace in Relation with harmony and balance | Narratives and anecdotes about peace from history and literature including local folklore | Individuals who are remembered in the history who have practicing peace | Practicing peace | | | SLO-2 | What will they gain if they practice peace | what will learners lose if they don't practice peace | Sharing learners' individual and/ or group experiences | Simulated situations | Case studies | | S-6 | SLO-1 | What is service and renunciation | Forms of service , & renunciation
Individuals who have recommended
service in history | Practicing service and renunciation | Narratives and anecdotes about Service & renunciation from history and literature including local folklore | Individuals who are remembered in the history who have practicing renunciation | | | SLO-2 | Sharing learners' individual
and/ or group experiences on
renunciation | Sharing learners' individual and/ or group experiences on service | what will learners lose or
gain if they do/don't
practice Renunciation and
service | Simulated situations | Case studies | | Learning | Theory: | |-----------|--| | Resources | "Universal Human Values: Text Book" – Compiled and Edited by the Faculty of Science and Humanites, SRMIST, 2020. | | | | Continuous Learning Assessment (100% weightage) | | | | | | | | | | | |---------|---------------------------|---|----------|--------|----------|--------|----------|--------|-------------------------|--|--|--| | Level | Bloom's Level of Thinking | CLA - | 1 (20%) | CLA - | 2 (20%) | CLA - | 3 (30%) | CLA - | 4 (30 <mark>%) #</mark> | | | | | | Timking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | 1 1 4 | Remember | 400/ | | 400/ | | 400/ | | 400/ | | | | | | Level 1 | Understand | 40% | | 40% | 17.5 | 40% | | 40% | | | | | | Level 2 | Apply | 40% | 1.5 | 40% | | 40% | 400 | 40% | | | | | | Level 2 | Analyze | 40% | L. | 40% | | 40% | A27 [| 40% | | | | | | Laval 2 | Evaluate | 200/ | | 200/ | 45.0 | 200/ | | 20% | | | | | | _evel 3 | Create | 20% | | 20% | 7 | 20% | | 20% | | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 100 % | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | THE PERSON NAMED IN | | |-----------------------|--|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | Prof. Daniel David, Prof & Head, Department of English, MCC, Chennai | 1. Dr. Shanthichitra, Associate Professor, & Head, Department of English, FSH,SRMIST | | | | 2. Dr K B Geetha, Assistant Professor, Department of English, | | | | FSH, SRMIST | | Course | | 1A20401T | Course
Name | | DISCRE | TE MATHEMATIC | S | | | urse
egory | , с | | | Pro | ofess | siona | al Co | re C | ours | ie | | L
5 | 1 | P
0 | C
6 | | | | | |------------------|--|---|-------------------------|-------------|-------------------------------|--|-----------------------------------|---|--------------------------|-------------------------|---|------------------|---------------|----------------------------|-------------------|-------------------------------|------------------------------|--------|------------------------|------------------------|------------------------|--------------------|-------|---------|---------|-----|------|------|-----| | Pre
requis | site | Nil | | | Co-
requisite
Courses | Nil | | | F | rogr | | e Nil | | | | | | | | | | | | | | | | | | | Course
Depart | | ring | Math | ematics | | Data Boo
Codes/S | Course
Ration | | | The | purpose o | of learning thi | is course is to: | 123 | | J | Lea | rning | 1 | | | Pr | ogra | m Le | earn | ing C | Outco | omes | s (PL | .0) | | | | | | | | CLR | Го Іеа | rn about lo | ogic, con | nectives a | and to unders | stand inference the | eory | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | | | 2: 8 | | in k <mark>nowle</mark> c
properties | | it set theo | ry, relations, | types of relation, f | unctions | | | | | | | | 7 | 1 | | | | | | | | | | | | | | | J: | | | | | ns, Generatin | | | h | | | | | 1 | | | | | H | | | H | | H | | | | | | | | 4: I | Pigeo | nhole princ | ciple | | utation, Inclu | sion and exclusion | and | (- | | | | | | ıch | | | bility | 1 | | | | H | H | | | | | | | | 5: | | ow about E | - | • | | | 167 | (Bloon | ency (% | %) tueu | edge | | pment | , Resea | ge | | ustaina | 1 | n Work | | nance | _D | | h | | | | | | | 6: | l o kno | ow about L | anguage | es and Au | tomata | | | hinking | Proficie | Attainn | Knowle | Analysis | & Development | Design | ool Use | Culture | ent & S | | & Tear | cation | gt.
& Fi | Learnir | | | | | | | | | Course
Outcor | nes (C | CLO): | | | | rs will be able to: | 3.4 | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & | Analysis, Design, Research | Modern Tool Usage | Society & Culture | Environment & Sustainability | Ethics | Individual & Team Work | Communication | Project Mgt. & Finance | Life Long Leaming | PS0-1 | PSO - 2 | PSO - 3 | | | | | | 1: | oredic | ate calculu | JS | | | onal calculus and a | | 3 | 85 | 80 | Н | Н | L | Ä | | 1 | | - | М | L | - | Н | - | - | - | | | | | | 2: 1 | unctio | ons | | | | iagram, solve prob
us recurrence rela | | 3 | 85 | | М | Н | ŀ | М | M | - 1 | | ŀ | М | - | - | Н | - | - | - | | | | | | 3: | <mark>oart</mark> ici | ular solutio | n and ge | enerating | functions | ps, abelian groups | | 3 | 85 | 80 | Н | Н | - | ù | - | - | - | - | М | | - | Н | - | - | İ | | | | | | / · I | | nge's theo | | | | morphism, Norma | | 3 | 85 | 80 | Н | Н | Н | М | - | - | 7 | ٠ | M | L | - | Н | ľ | ŀ | - | | | | | | 5: | Γο kno | ow about E | Boolean A | Algebra | | | Mi | 3 | 85 | 80 | М | Н | L | - | - | - | - | - | М | - | | Н | i | • | - | | | | | | CLO
6 : | <mark>Γο kn</mark> α | <mark>ow a</mark> bout L | anguage | es and Au | tomata | | 43 | 3 | 85 | 80 | М | Н | - | - | - | - | | 7 | М | - | - | Н | - | - | - | | | | | | | ation
our) | | 18 | 7 | VV I | 18 | soft. | 18 | | 7 | Ī | T | | | 8 | | ľ | | | H | i | 18 | Ī | | | | | | | | S-1 | SLC
1 |)- Introduc
Proposi | | 1 | Introduction
Theory | to Laws of Set | Introductions | n to | Red | curre | nce | ntrod | lucti | on to | Cor | mbin | atori | | ntrod
algeb | | on to | Boo | olea | 1 | | | | | | | 5-1 | SLC
2 | ,, | of propos | | Solving Prob
Analytical pr | | Examples relations | of re | ecur | rence | . (| Coml | oinat | ion | | | | | ntroc
algeb | d <mark>uct</mark> ion | on to | Во | olea | 1 | | | | | | | | SLC
1 | onned | iction to | | Solving Prob | olems using | Homogen
non homo
recurrence | oger | ieou | IS | | Perm | utati | on | | | | F | Prope | erties | s of I | Bool | ean | alge | ora | | | | | | S-2 | | | | | | | | eous
gene | and
eous | | | Probl | ems | on c | omb | oinati | ion | F | Prope | erties | s of I | of Boolean algebra | | | ora | | | | | | | SLC
1 | | able for
und state | ments | | min set forming
f a set or not | Solution of | | | | | | Prope | erties | s of I | Bool | ean | alge | ora | | | | | | | | | | | | S-3 | SLC
2 |)_ | ction to L
equivalen | | Introduction of relation | to relation, types | | currence relations Problems on combination and permutation Pr | | | | | Prope | erties | s of I | Bool | ean | alge | ora | | | | | | | | | | | | 0.4 | SLC
1 | Truth ta | able appr
equivale | | | show the relation
lence relation | the relation homogene | | | | Solution of non-
homogeneous re-
relations using pa | | | | ce a | Prob
and p | | | | nbina | ation | n F | Probl | ems | on | Воо | lean | alge | bra | | 5-4 | S-4 Solving equivalence SLO- problems using laws of 2 logic Problems to show the relation is an equivalence relation | | | | | Solution of homogenerations unsolution | ous | reci | | | | | | | F | Properties on Boolean algebra | | | | | | | | | | | | | | | | SLO- | Introduction to inference theory | Graphical representation of relations | Solution of non-
homogeneous recurrence
relations using particular | Problems on combination and permutation | Introduction to Grammar
Languages | |------|-----------|--|---|---|---|--------------------------------------| | S-5 | SLO- | Implications | Construction of Hasse
Diagram for a POSET | solution Solution of non- homogeneous recurrence relations using particular solution | Problems on combination and permutation | Introduction to grammar
Languages | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-6 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-7 | SLO- | Procedure to solve implications using Direct method | Composition of relations | Solution of non-
homogeneous recurrence
relations using particular
solution | Principle of inclusion and exclusion | Problems on L(G) | | 3-1 | SLO-
2 | Solving implications using Direct Method | Matrix representation of relations | Solution of non-
homogeneous recurrence
relations using particular
solution | Proof of principle of inclusion and exclusion | Problems on L(G) | | 0.0 | SLO- | Procedure to solve implications using Indirect method | Operation on matrices of two or more relations | Solution of non-
homogeneous recurrence
relations using particular
solution | Problems on inclusion and exclusion | Problems on L(G) | | S-8 | SLO- | Solving implications using Indirect Method | Closure operation on relations
- Reflexive and symmetric
closure on relations | Solution of non-
homogeneous recurrence
relations using particular
solution | Problems on inclusion and exclusion | Problems on L(G) | | S-9 | SLO- | Procedure to solve implications using conditional proof method | Transitive closure on relation using Warshall's Algorithm | Formation of recurrence relations from sequence | Problems on inclusion and exclusion | Introduction to FSM | | 3-9 | SLO- | Solving implications using conditional proof method | Transitive closure on relation using Warshall's Algorithm | Formation of recurrence relations from sequence | Principle of Mathematical
Induction | Introduction to FSM | | S-10 | SLO-
1 | Procedure to solve
implications using
inconsistent | Introduction to Functions | Introduction to generating function | Problems on Mathematical induction | Problems on FSM | | | SLO-
2 | Solving implications using inconsistent | Examples to check whether the relation is a function | Introduction to generating function | Problems on Mathematical induction | Problems on FSM | | | SLO-
1 | Introduction to Predicate Calculus. | Types of functions. Verifying whether function is bijective or | Generating function for standard sequences | Problems on Mathematical induction | Introduction to FSA | | S-11 | SLO- | Introduction to types of quantifiers- Universal and Existential | not
Special types of functions with
examples. | Generating function for standard sequences | Problems on Mathematical induction | Introduction to FSA | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-12 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-13 | SLO- | Introduction to types of variables - Free and Bound | Composition of functions | Solution of homogeneous recurrence relations using generating functions | Pigeon hole principle | Problems on FSA | | | SLO- | Implications with relevant to predicate Calculus | Composition of functions is associative | Solution of homogeneous recurrence relations using generating functions | Problems using Pigeon hole principle | Problems on FSA | | | SLO- | Implications with relevant to predicate Calculus | Solving problems under composition of functions | Solution of non-
homogeneous recurrence
relations using generating
functions | Generalized Pigeon hole principle | Problems on FSA | | S-14 | SLO- | Conditions for applying quantifiers. | Derivation of :If f: A→ B, g: B→ C are 1-1 and onto functions, then g•f: A → C is 1-1 and onto | Solution of non-
homogeneous recurrence | Problems using Generalized
Pigeon hole principle | Problems on FSA | | 0.45 | SLO- | Solving implications in predicate calculus using Direct Method | Introduction to invertible functions. | Solution of non-
homogeneous recurrence
relations using generating
functions | Problems using Generalized
Pigeon hole principle | Recognition of regular
languages | | S-15 | SLO-
2 | Solving implications in
predicate calculus using
Direct Method | Derivation of The inverse of a function f, if exists, is unique | Solution of non-
homogeneous recurrence
relations using generating
functions | Problems using Generalized
Pigeon hole principle | Recognition of regular
languages | | S-16 | SLO-
1 | Solving implications
using Indirect Method | T Derivation of he necessary
and sufficient condition for the
function f: A→ B to be
invertible is that f is 1-1 and
onto | Solution of non-
homogeneous recurrence
relations using generating
functions | Problems using Generalized
Pigeon hole principle | Recognition of regular languages | | | SLO-
2 | using Indirect Method | $B \rightarrow C$ are invertible functions,
then $g \bullet f : A \rightarrow C$ is also | | Problems using Generalized
Pigeon hole principle | Recognition of regular languages | |------|-----------|---|---|--|---|----------------------------------| | S-17 | | Solving implications using conditional proof method | | Applications of Recurrence relations- Tower of Hanoi problem | Problems using Generalized
Pigeon hole principle | Problems on Automata | | 5-17 | | Solving implications using conditional proof method | | Applications of Recurrence relations- Tower of Hanoi problem | Problems using Generalized
Pigeon hole
principle | Problems on Automata | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-18 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | | 1. Alan Doerr and Kenneth LevAsseur, Apllied Discrete Structures for | |-----------|--| | | Computer Science, Galgotia Publications (P) Ltd, 1992. | | Learning | 2. Tremblay J. P. and Manohar R., Discrete Mathematical Structures with 3. Kolmon and Busby, Discrete Mathematical Structures for Computer | | Resources | applications to Computer Science, Tata Major Core Graw Hill Publishing Science, Prentice Hall, 3 rd edition, 1997. | | | Co.,35th edition, 2008. | | | | | | Discoula | | Continu | uous Lea | arning Ass | sessmer | nt (50% we | | Final Examination (50% weightage) | | | | | | |---------|------------------------------|--------|----------|----------|------------|---------------|------------|--------|-----------------------------------|--------|----------|--|--|--| | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA- | 2 (10%) | CLA - 3 (20%) | | CLA - | | | | | | | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | Level 1 | Remember | 400/ | | 200/ | | 200/ | | 200/ | | 200/ | | | | | | | Understand | 40% | | 30% | 107 | 30% | 10.00 | 30% | | 30% | | | | | | evel 2 | Apply | 400/ | | 40% | | 400/ | | 400/ | | 40% | | | | | | _evel Z | Analyze | 40% | 4 - | 40% | | 40% | | 40% | | 40% | | | | | | 212 | Evaluate | 000/ | | 30% | | 30% | | 30% | | 30% | | | | | | Level 3 | Create | 20% | - | 30% | | 30% | e di la | 30% | | 30% | | | | | | | Total | 10 | 00 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 10 | 0 % | | | | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | |--|---|---| | Mr. V. Maheshwaran, Cognizant Technology Solutions
maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Prof. K. S. Ganapathy
Subramanian, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Mr. J. Sasi Kumar, SRMIST
Mrs. T. Karthy, SRMIST
Mrs. D. Thanga Rajathi, SRMIST | | ZIVEN | CA - TEAD ! | | | | Course Code UMA20D04T Course Name FUZZY MATHEMATICS | | | | | | | Co
Cate | urse
egor | | | Dis | scipl | ne S | Speci | ific E | lecti | ve C | ours | е | 5 | T 1 | P
0 | C
6 | |-----------------------------------|---|--------------------------|-------------------|---------------------------------|----------------------|---|-----------------|-------------|-------------------------|--------------------------------------|------------------|----------------------|-------------------|-------------------|---|--|-------------|-----------------------|---------------|--------------|-------------------|--------|--------|---------| | Pre
requis
Course
Depart | site N
ses
Offeri | Nil | Mathematics | Co-
requisite
Courses Nil | Data Boo
Codes/St | | | P | | ressive | Nil | | | | | | | | | | | | | | | Course | | | | | | Lea | arning | | | | Pr | ogra | m Le | earni | ing C | outco | mes | s (PL | .0) | | | | | | | 11. | To kno | w the basic | definitions of fu | zzy set theory | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR
2: | To lear | n the arithm | etic operations | involved in fuzzy sets | | | | | | | ď | , | | ٠. | | | | | | | | | | ì | | CLR
3: | To kno | w where to a | apply the arithr | netic operations | | | | | | | | | | 1 | J | | | | | | | | | ì | | CLD | To kno | w the conce | pts of fuzzy rel | ations and fuzzy logic | JTC3 | 150 | Ì | ä | | | | | 4 | | H | ity | ı | | | ľ | ı | | | 1 | | CLD | To lear | nt the funda | mentals of Fuz | zy Algebra | - | | (moo | (%)/ | (%) I | 0 | | ent | Research | ħ. | | Sustainability | | 'ork | | ce | | | | | | CLD | To be a | aware of the | applications of | Fuzzy sets | 3.57 | 15/1 | hinking (Bloom) | Proficiency | nment | wledge | Sis | elopme | gn, Re | Sage | nre | Susta | М | & Team Work | u | Finance | ning | | | | | 0. | | | | | | | Think | d Prof | d Atta | c Kno | Analy | & Deve | , Desi | Tool | & Culture | nent & | | al & Te | nicatio | ∞ | g Lear | | | | | Course | | | ne end of this c | ourse, learners will be | able to: | | evel of T | Expected | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & Development | Analysis, Design, | Modern Tool Usage | Society | Environment | Ethics | ndividual | Communication | Project Mgt. | ₋ife Long Leaming | PS0 -1 | PSO -2 | PSO - 3 | | CLO- | · | | zv sets fuzzv s | subsets and their prop | erties | 17.7 | 3 | 部
85 | 部
80 | N
H | H
F | L | Ā | ž | . Sc | <u>.</u> | · Et | M M | - C | . Pr | ΞĽif | - 82 | . Pe | . Pe | | CLO- | Will be | capable end | | arithmetic operations | | in fuzzy | 3 | 85 | 80 | М | Н | Ē | М | М | | | | М | i | | Н | | | | | CLO- | | fectively | nderstanding or | f fuzzy logio | | | 3 | 85 | 80 | Н | Н | | IVI | IVI | | | | М | | | Н | | | | | CLO | | | | | a a d an it | | | | н | 1 | | i | | | | | | | | | | | | | | CLO | | | | and to do problems ba | ased on it | - | 3 | 85 | 80 | Н | Н. | | М | - | - | - | | M | L | | Η :: | | ' | | | 5: | | | | als of fuzzy algebra | | | 3 | 85 | 80 | M | Н | L | - | - | - | | - | М | | - | Н | | | | | 6: | lo be a | aware of the | applications o | fuzzy sets | | | 3 | 85 | 80 | М | Н | - | - | - | | | ÷ | М | - | - | Н | | - | - | | Dura
(ho | | | 18 | 18 | | | 18 | | | | | 18 | 8 | | | I | T | | | 18 | Ī | Ħ | | | | S-1 | SLO- | Introduction | n to fuzzy sets | Algebraic product of subsets | two fuzzy | Introductions relations | n to | fuzz | y. | Introd
conne | ective | es e | | | | De | finiti | on o | finva | ariar | nt su | bgro | ups | | | 3-1 | SLO- | | itions of fuzzy | Problems | | Definition | of a | bina | ry | Exam | - | _ | ted t | o it. | | | | le of | inva | rian | t fuz | zy | | | | | SLO- | sets
Examples | of fuzzy sets | Problems | | relation
Examples | | ed (| on | Brief | intro | oduc | tion | on | two | _ | bgro
amp | _ | inva | rian | t fuz | zzy | | | | S-2 | | Examples | of fuzzy sets | Problems | | Examples | on f | uzzy | _ | state
Real I | | | ples | | | Pro | | of pr | | | ns or | n inva | ariar | nt | | 0.3 | 2
SLO-
1 | Definition of subsets | of fuzzy | Algebraic sum of two | o fuzzy | Introduction
intersection
relations | n to | | , | Intro | duct | ion t | o fu | zzy l | logic | Pro | oofs | ubgr
of pr
ubgr | opos | sitior | ns or | ı inva | ariar | nt | | S-3 | SLO- Examples of fuzzy Problems Examp | | | | | | bas | ed o | | Comp | | | | al log | gic | | | | | | ns or | n inva | ariar | nt | | S-4 | SLO-
1 | Definition of ordered se | | Problems | | Definition sum and a product of relations. | lgeb | raic | aic | and funtroom | duci | ng lo | gica | | | fuzzy subgroups Proofs of propositions on invariant fuzzy subgroups | | | | | | nt | | | | | SLO- | Examples I | based on it | Properties of fuzzy s | ubsets | Relevant B | xan | ples | | Approximate reasoning of fuzzy logic | | | | | f Proofs of propositions on invariant fuzzy subgroups | | | | | | | | | | | S-5 | SLO-
Types of fuzzy sets Proofs of properties Some | | | | Some mor | ore examples Concept of fuzzy tautologies, equivalence and contradiction Froofs of propositions on in fuzzy subgroups | | | | | | nvar | iant | | | | | | | | | | | | | | SLO-
2 | Examples | of fuzzy sets | Proofs of properties | | Some mor | е ех | amp | les | Relev | ant e | exan | nples | 3 | | | | of pr
ubgr | | | ns or | n inva | ariar | ıt | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | |------|-----------|---|--|--|---|--| | S-6 | 1
SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-7 | SLO-
1 | Definition of a poset and lattices | Definition of fuzzy subset function | Introduction to composition and complement of fuzzy relations | Introduction to fuzzy subgroupoids | Definition of fuzzy quotient group | | | SLO-
2 | Examples based on it | Illustration based on it | Relevant examples | Theorems on subgroupoids | Example | | S-8 | | Introduction to Boolean
Algebra | Theorems on fuzzy set functions | Similarity relation | Theorems on subgroupoids | Proofs of propositions on fuzzy quotient group | | 3-0 | SLO-
2 | Identities based on it | Theorems | Example explaining similarity relation. | Introduction to lattice of
fuzzy subgroupoids | Proofs of propositions on fuzzy quotient group | | S-9 | SLO-
1 | Definition of L-fuzzy sets | Theorems and their proofs | Introduction to fuzzy preorder relation and fuzzy partial order relation | | Proofs of propositions on fuzzy quotient
group | | | SLO- | Examples | Theorems and their proofs | Examples relating to it | Theorems on lattice of fuzzy subgroupoids | Proofs of propositions on fuzzy quotient group | | S-10 | SLO- | Visual representation of a fuzzy subset | Cartesian product of fuzzy subsets | Introduction to classical logic | Definition of
homomorphic image of a
subgroupoid | Proofs of propositions on fuzzy quotient group | | | SLO- | Operations on fuzzy subsets | Cartesian product of fuzzy subsets | Discussion of
statements and
sentences | Pre-image of a subgroupoid | Proofs of propositions on fuzzy quotient group | | S-11 | SLO-
1 | Problems based on operations | Vector sum of fuzzy subsets | Introduction | Property based on it | Proofs of propositions on fuzzy quotient group | | 3-11 | SLO-
2 | Problems | Scalar multiplication of fuzzy subsets | Different types of connectives | Property based on it | Proofs of propositions on fuzzy quotient group | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-12 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-13 | SLO-
1 | Definition of level set | Propositions based on it | Examples and problems related to connectives. | Proofs of proposition of
homomorphic image of a
fuzzy subgroupoid | Definition of fuzzy subrings | | | SLO-
2 | More on level sets | Propositions and their proofs | Some more examples | Proofs of propositions | Examples | | S-14 | SLO- | Properties of fuzzy subsets of a set | Propositions and their proofs | Discussion of propositional laws relating to logical connectives | Definition of fuzzy
subgroups | Proofs of propositions on fuzzy subrings | | | SLO-
2 | Some more properties | Propositions and their proofs | Definition of a tautology | Theorems involving fuzzy subgroups | Proofs of propositions on fuzzy subrings | | 0.45 | SLO-
1 | Proofs of properties | Propositions and their proofs | Examples | Theorems on fuzzy subgroups | Proofs of propositions on fuzzy subrings | | S-15 | SLO-
2 | Proofs of properties | Propositions and their proofs | Examples for dual of two connectives | Theorems on fuzzy subgroups | Proofs of propositions on fuzzy subrings | | S-16 | SLO-
1 | Problems | Propositions and their proofs | Introducing
functionally complete
set of connectives | Theorems on fuzzy subgroups | Proofs of propositions on fuzzy subrings | | | SLO-
2 | Problems | Propositions and their proofs | Examples | Theorems on fuzzy subgroups | Proofs of propositions on fuzzy subrings | | C 17 | SLO-
1 | Problems | Propositions and their proofs | Examples | Theorems on fuzzy subgroups | Proofs of propositions on fuzzy subrings | | S-17 | SLO-
2 | Problems | Propositions and their proofs | Some more examples on connectives | Theorems on fuzzy subgroups | Proofs of propositions on fuzzy subrings | | 0.40 | SLO-
1 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-18 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | Learning
Resources | S. Nanda and N.R. Das, Fuzzy Mathematical Concepts, Narosa
Publishing House, New Delhi, 2010.
M. Ganesh, Introduction to Fuzzy Sets and Fuzzy Logic, Prentice Hall
of India Pvt. Ltd, 2006.
John.N.Mordeson and Premchand S.Nair, Fuzyy Mathematics, | 0. | George J.Klir / Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and A: Theory and Applications, Pretice Hall of India, 1995 H.J.Zimmermann, Fuzzy Set Theory and its Applications, Allied publishers Ltd, New Delhi, 2001. | |-----------------------|--|----|--| | | Spring verlong, 2001. | | | | Learning | g Assessment | | | |----------|--------------|--|-----------------------------------| | | Bloom's | Continuous Learning Assessment (50% weightage) | Final Examination (50% weightage) | | | Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - 4 (10%)# | | | | | | | |---------|-------------------|--------|----------|--------|----------|--------|----------|----------------|----------|--------|----------|--|--|--| | | | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | Level 1 | Remember | 40% - | | 30% | | 30% | | 30% | | 30% | | | | | | Level I | Understand | 40% | - | 30% | _ | 30% | - | 30% | - | 30% | - | | | | | Level 2 | Apply | 40% | 400/ | | | 40% | | 40% | | 40% | | | | | | Level 2 | Analyze | 40% | - | 40% | - | 40% | - | 40% | - | 40% | - | | | | | Level 3 | Evaluate | 20% | | 30% | | 30% | + | 30% | | 30% | | | | | | Level 3 | Create | 20% - | | 30% | - | 30% | - | 30% | - | 30% | - | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | | | | | # CLA -4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras,
sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST Dr. K. Ganesan, SRMIST | | (-1) | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Mrs Melita Vinoliah, SRMIST | | Course | UMA | 70111051 | ourse INTF
lame | RODUCTION TO F
EQU <i>i</i> | PARTIAL DIFF
ATIONS | ERENTIAL | - | | urse | уЕ | | Dis | scipli | ne S | Speci | fic E | Electi | ve C | ours | se | L
5 | 1 | P
0 | C
6 | | | | |-------------------|---|---|-----------------------------|--------------------------------|------------------------|--|--------------------------|--------------------------|-----------------------------------|---|------------------|---------------|------------------|--------------------------|-------------|------------------------------|--------|------------------------|---------------|------------------------|--------------------|---------|---------|---------|-------|------|--| | Pre-re- | rses | Nil | | Co-requisite
Courses | Nil | | | F | | essive
rses | e
Nil | | | | | | | | | | | | | | | | | | Course
Departr | Offerin
ment | 9 | Mathematics | | Data Boo
Codes/St | Course
Rationa | | • | The purpose | of learning this co | ourse is to: | | | | Lea | arning | | | | Pr | ogra | m Le | earni | ing C | Outco | omes | s (Pl | .0) | | | | | | | CLR-1 | To und | erstand PD | Es and will be | able to study abou | ut its propertie | S | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | | CLR-2 | To rela | te the conc | <mark>epts of</mark> parabo | la, elliptic, and hy | perbola | | | | | | H | | | | | | | | | | | | | | | | | | CLR-3 | Addres | s concepts | related to hea | t equations | | | | | | | | | b | J | h | | | | | | | | | | | | | | CLR-4 | To und | erstand cor | ncepts of heat | and wave equatio | ons | | l. | | | | | | _ | | | ty | | | | | | | | | | | | | CLR-5 | To lear | n the conce | epts of Laplace | transform and pro | operties. | 100 | (moc | (%) | (%) | 0 | | Ħ | search | | | inabil | H | ork | | e | | | | | | | | | CLR-6 | To rela | te the conc | epts of dimens | sion of a Fourier tra | ansform to PD | Es | evel of Thinking (Bloom) | Proficiency | Attainment | Knowledge | nalysis | & Development | Design, Research | ol Usage | Culture | nt & Susta | | & Team W | ation | t. & Financ | earning | | h | | | | | | | Learnii
nes (CL | U I AT THE | e end of this c | ourse, learners will | I be able to: | 1 | Level of Th | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & [| Analysis, D | Modern Tool Usage | Society & (| Environment & Sustainability | Ethics | Individual & Team Work | Communication | Project Mgt. & Finance | Life Long Learning | PSO - 1 | PSO - 2 | PS0 - 3 | | | | | CLO-
1: | Recogi | nize the ma | thematical ide | eas of PDEs | 00 | 15% | 3 | 85 | 80 | Н | Н | L | | Ŧ | - | 3 | - | M | L | Ē | Н | - | - | - | | | | | CLO-
2: | Link the | e fundamen | ital concepts o | f PDEs | 78 | 190 | 3 | 85 | 80 | М | Н | | М | М | - | | - | М | | - | Н | - | - | - | | | | | CIO | Explair | the signific | cance of the cl | assification of PDE | Ēs . | | 3 | 85 | 80 | Н | Н | - | | | - | | - | М | | - | Н | - | - | - | | | | | CLO-
4: | Analyz | e conseque | nces of Lapla | ce Transform | | • | 3 | 85 | 80 | Н | Н | н | М | | | - | - | М | | 1 | Н | | - | - | | | | | CLO- | Learn a | about struct | ure of Laplace | between ODE and | d PDEs | | 3 | 85 | 80 | М | Н | L | - | - | - | _ | - | М | | - | Н | | | _ | | | | | | Know t | | | in PDEs such as h | | place and | 3 | 85 | 80 | М | Н | - | - | - | - | f | - | М | | - | Н | - | - | - | | | | | Dura | ation | | | | | | | | | | | | | | | | 7 | | | | | | | | | | | | (ho | | | ule-I (18) | Module-I | II (18) | Modul | | ` ′ | | | | dule-
 , | | | | 4 | | Mod | ule-\ | V (18 | 3) | | | | | | | | SLO-
1 | Formation differential eliminating arbitrary co | equation by | Classification of | PDEs | Introduction
equation | on to | nea | | Introd | | on to | Lap | ace | | | rodu | | to F | ouri | ier tr | ansf | orm | | | | | | S-1 | Formation of partial SLO- differential equation by Classification of PDEs | | | | | Solution o
dimension
equation | | | Introduction to Laplace transform | | | | | Fo | urier | Inte | gral | Rep | rese | entati | ions | | | | | | | | 0.0 | SLO- | Formation | of partial
equation by | Types of PDEs | | Solution of one dimensional heat equation | | | dimensional hea | | | | Trans | | | of
nctio | | Some | | urier | · Inte | gral | Rep | rese | ntati | ions | | | S-2 | SLO- | Formation | of partial
equation by | Types of PDEs | | Boundary | Boundary condition | | | Transform of Some
Elementary Functions | | | | Fourier Integral Theorem | | | | | | | | | | | | | | | S-3 | SLO- | Solution of
types of fir
equations | fstandard | General formula of PDEs | for all types | One dimension equation and its possible solution | | | neat | Prope
Trans | | | apla | се | | Fo | urier | Inte | gral | The | oren | 1 | | | | | | equation and its Steady state possible solutions conditions and zero boundary conditionsrelated problems General formula for all types General formula for all types of PDEs of PDEs equations Problems Solution of standard Introduction to Cauchy types of first order S-3 S-4 SLO- SLO- Transform Function Transform of a Periodic One dimensional heat Properties of Laplace Sine and Cosine Integral Sine and Cosine Integral Representations Representations | | | Cauchy Problems | | Ctoody atota | Transform of a Dariadia | | |------|-----------|----------------------------------|--|--|--|--| | | SLO-
2 | Cauchy Problems | Parabolic type | Steady state
conditions and zero
boundary conditions-
related
problems | Transform of a Periodic Function | Fourier Transform Pairs | | S-5 | SLO- | Solving Types Non-
Linear PDE | Parabolic type | Steady state
conditions and Non-
zero boundary
conditions related
problems | Transform of Error Function | Fourier Transform Pairs | | 3-3 | SLO-
2 | Solving Types Non-
Linear PDE | Parabolic type problems | Steady state
conditions and Non-
zero boundary
conditions related
problems | Transform of Error Function | Transform of Elementary Functions | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-6 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | 0.7 | SLO- | Type 1 F(p,q)=0 | Elliptic type | Solving one dimensional heat equation | Transform of Bessel's Function | Transform of Elementary Functions | | S-7 | SLO-
2 | Type 1 F(p,q)=0 | Elliptic type | Solving one dimensional heat equation | Transform of Bessel's Function | Properties of Fourier Trasnform | | S-8 | SLO- | Type 2 F(x,p,q) =0; | Elliptic type problems | Method of separation of variables | Transform of Dirac Delta
Function | Properties of Fourier Transform | | 3-0 | SLO-
2 | Type 2 F(x,p,q) =0 | Elliptic type problems | Method of separation of variables | Transform of Dirac Delta Function | Convolution Theorem (Faltung
Theorem) | | S-9 | SLO-
1 | Type 3 F(y,p,q) =0; | Hyperbolic type | One dimensional Wave Equation and its possible solutions | Inverse Transform | Convolution Theorem (Faltung
Theorem) | | 0-3 | SLO-
2 | Type 3 $F(y,p,q) = 0;$ | Hyperbolic type problems | One dimensional Wave Equation and its possible solutions | Inverse Transform | Parseval's Relation | | S-10 | SLO-
1 | Type 4 F(z,p,q) =0 | Hyperbolic type problems | Initial and Boundary
value Problems with
zero velocity –
related problems | Convolution Theorem (Faltung Theorem) | Parseval's Relation | | | SLO-
2 | Type 4 F(z,p,q) =0 | Solving homogeneous PDEs | Initial and Boundary
value Problems with
zero velocity –
related problems | Convolution Theorem
(Faltung Theorem) | Transform of Dirac Delta Function | | | SLO-
1 | Type 5 F(x,p) =F(y,q); | Basic definition of homogeneous PDEs | Initial and Boundary
value Problems with
Nonzero
velocityrelated
problems | Transform of Unit Step
Function | Transform of Dirac Delta Function | | S-11 | SLO-
2 | Type 5 F(x,p) =F(y,q); | Basic definition of homogeneous PDEs | Initial and Boundary
value Problems with
Nonzero
velocityrelated
problems | Transform of Unit Step
Function | Multiple Fourier Transforms | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-12 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-13 | SLO- | Type 6 Clauirts
Equations | Basic property for complementary function | D-Alembert's solution of heat equations | Complex Inversion Formula
(Mellin-Fourier Integral) | Multiple Fourier Transforms | | 0-10 | SLO-
2 | Type 6 Clauirts Equations | Basic property for complementary function | D-Alembert's solution of heat equations | Complex Inversion Formula
(Mellin-Fourier Integral) | Finite Fourier Transforms | | | SLO- | Solve problems Type 1 | Basic property for particular | D-Alembert's solution of heat equations | Solution of Partial Differential Equations | Finite Fourier Transforms | | S-14 | SLO- | Solve problems Type 2 | integral Basic property for particular integral | D-Alembert's | Solution of Partial | Finite Sine Transform | | _ | SLO- | Solve problems Type 3 | Solving Non- homogeneous linear PDEs. | D-Alembert's solution of wave equations | Solution of Diffusion
Equation | Finite Sine Transform | | S-15 | SLO-
2 | Solve problems Type 4 | Basic definition of Non-
homogeneous PDEs | D-Alembert's solution | Solution of Diffusion Equation | Finite Cosine Transform | | _ | SLO- | Solve problems Type 5 | Basic property for complementary function | D-Alembert's solution | Miscellaneous Examples | Solution of Laplace Equation | | S-16 | SLO-
2 | Solve problems Type 6 | Basic property for particular integral | D-Alembert's solution | Miscellaneous Examples | Solution of Laplace Equation | | | | | | | | 78 | | S-17 | SLO- | 1.1 | Applications of homogeneous PDEs | | | Applications of Fourier transform methods | |------|------|------------------|----------------------------------|------------------|------------------|---| | 3-11 | - | | •• | ' ' . | | Applications of Fourier transform methods | | S-18 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | 5-10 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | | 1. | T.Amarnath, An Elementary Course in Partial Differential Equations, | 4. | I. N. Sneddon, Elements of Partial Differential Equations, | |-----------|----|---|----|---| | | 2 | Narosa Publications, 1st Edition. Sankara Rao, Introduction to Partial Differential Equations, Printice | | McGraw-Hill, 1998. | | Learning | ۷. | Hall. | 5. | L. C. Evans, Partial Differential Equations, American | | Resources | 3. | I. P. Stavroulakis and S. A.Tersian, Partial differential equations- an | 6 | Mathematical Society, 2010. W. E. Williams, Partial differential equations, Clarendon Press, | | | | introduction with mathematica and maple, world - Scientific, | 0. | Oxford, 1980 | | | | Singapore, 1999. | | CAIDIA, 1900 | | Learning | g Assessment | | | | | | | | | | | | | | |----------|------------------------------|---|---------|----------|-----------|---------|------------|-----------|----------|-----------------------------------|------|--|--|--| | | | | Continu | uous Lea | rning Ass | sessmen | nt (50% we | eightage) | | First Franciscotion (F | :00/ | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | Level of Tilliking | Theory Practice Theory Practice Theory Practice Theory Practice | | | | | Theory | Practice | | | | | | | | Laural 1 | Remember | 400/ | | 200/ | 77.5 | 200/ | | 200/ | | 200/ | | | | | | Level 1 | Understand | 40% | 13 | 30% | - | 30% | - | 30% | - | 30% | | | | | | Level 2 | Apply | 40% | | 40% | | 40% | | 40% | | 40% | | | | | | Level 2 | Analyze | 40% | 35 | 40% | | 40% | | 40% | - | 4070 | | | | | | Laval 2 | Evaluate | 20% | | 30% | | 30% | | 30% | | 30% | | | | | | Level 3 | Create | 20% | - 70 | 30% | | 30% | 4.7 | 30% | | 30% | 7 | | | | | | Total | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|--------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, | Dr. A. Govindarajan, SRMIST | | maheshwaranv@yahoo.com | sryedida@iitm.ac.in | Dr. N. Parvathi, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr.S. Balamuralitharan, SRMIST | | Code | UMA | A20D06T |
. Course
Name | А | STRONOMY | | | | ourse | Ε | | Dis | scipli | ne S | Speci | fic E | lecti | ive C | cours | se | 5 | 1 | P
0 | 6 | |-------------------|-------------|--------------------|----------------------------|-----------------------------|---------------------|---|--------------------------|--|-------------------------|----------------------|-----------------------------------|----------------------|-----------------------|-------------------|------------|----------------|---------|------------------------|---------------|------------------------|-------------------|----------|--------|-----| | Pre
requis | site N | Nil | | Co-
requisite
Courses | Nil | | | F | | essiv | e
Nil | | | | | | | | | | | | | | | Course
Depart | Offeri | ng | Mathematics | | Data Boo
Codes/S | ok /
Standards | Course
Rationa | | | The purpose | of learning th | is course is to: | | | | Lea | arning | | | | Pr | ogra | m Le | earn | ing C | Outco | ome | s (Pl | .O) | | | | CLR-1 | To un prope | | Celestial Mechan | nics and will be | e able to study abo | out its | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 | | | oncepts of Spher | ical Astronomy | | | | ١ | d | | H | | | | | | | | | | | | | | | CLR-3 | Addre | ss conce | pts related to Pho | otometric Con | cepts and Magnitu | ides | | | | | | | 1 | 7 | 5 | | | | | | | | | | | CLR-4 | To un | derstand | concepts of Rac | liation Mechar | nisms | | | | | | | | £ | | 1 | lity | | | | | | | | | | CLR-5
: | To lea | irn the co | oncepts of The Sc | olar System an | d properties. | | 3loom) | (%) AC | nt (%) | e G | | nent | Research | 0 | | Sustainability | 4 | Nork | | nce | | | | | | CLR-6 | To rel | ate the co | oncepts of dimen | sion of a Sphe | erical Astronomy | | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | alysis | Design & Development | Design, R | Modern Tool Usage | Culture | t & Sus | 1 | Individual & Team Work | tion | Project Mgt. & Finance | Life Long Leaming | | | | | Course | Learn | ina . | | | | | of Thir | cted Pr | cted At | tific K | Problem Analysis | n & De | sis, De | em Too | ty & Cı | Environment & | S | dual & | Communication | ct Mgt. | ong Le | <u>-</u> | -2 | -3 | | Outcon | nes (C | LO): | t the end of this o | | | 13.7 | - | ш | | | Probl | Desig | Analysis, | Mode | Society & | Envir | Ethics | | 1 | Proje | | PSO-1 | PS0-2 | PSO | | 1 :
CLO- | Recog | gnize the | mathematical id | eas of Astrono | omy | 12.7 | 3 | 85 | H- | Н | Н | L | | - | - | 1 | - | М | L | Ĭ. | Н | - | - | - | | 2: | | | mental concepts | | (C - //) | 136 | 3 | 85 | | М | Н | - | М | М | 1 | | - | М | - | - | Н | - | - | - | | 3 :
CLO- | | - | nificance of the c | | | | 3 | 85 | | Н | Н | i | | | | | - | М | | - | Н | - | - | - | | 4 :
CLO- | | | quences of Sphe | | | | 3 | 85 | 80 | Н | Н | Н | М | - | - | - | - | М | L | - | Н | - | - | | | 5: | Magn | itudes | | 10 at 100 at 100 | Photometric Conce | | 3 | 85 | 80 | М | Н | L | - | - | - | | - | М | - | - | Н | - | - | - | | CLO-
6 : | prope | | amental concepts | in Astronomy | such as Solar Sys | stem and | 3 | 85 | 80 | М | Н | - | - | - | - | Ė | - | М | - | - | Н | - | - | _ | | Dura
(ho | | N | Module-I (18) | Mod | dule-II (18) | Modul | e-III | (18) | | | Мо | dule- | -IV (1 | 18) | | | 7 | | Mod | ule-\ | V (18 | 3) | T | | | | SLO- | | ction to Celestial
nics | Introduction
Astronomy | to Spherical | Introduction Photometric Concepts Magnitude | ric
and | | | Introd | | | Rad | iatio | n | Int | rodu | ctior | n to 1 | The : | Sola | r Sys | stem | | | S-1 | SLO-
2 | Introdu
Mechai | ction to Celestial
nics | Spherical Tr | rigonometry | Introduction Photometric Concepts Magnitude | on to
ric
and | | | Introd
Mech | | | Rad | iatio | n | Int | rodu | ction | n to T | The : | Sola | r Sys | stem | | | | SLO- | Equation | ons of <mark>Motion</mark> | Spherical Tr | rigonometry | Intensity | | | | Radia | ition | of A | toms | | | Pla | aneta | ary C | Confi | gura | ition | 3 | | | | S-2 | SLO- | - Equation | ons of Motion | The Earth | | Intensity | | | | Radia | ition | of A | toms | | | Pla | aneta | ary C | Confi | gura | itions | 6 | | | | | SLO- | Solution of Motion | n of the Equation | The Earth | | Flux Dens | sity | | | Mole | cules | 3 | | | | Or | bit o | f the | Earl | th | | | | | | S-3 | SLO- | | n of the Equation | The Celestia | al Sphere | Flux Dens | sity | | | Moled | cules | | | | | Or | bit o | f the | Earl | th | | | | | | · · | SLO- | - Equation | on of the Orbit | The Celestia | al Sphere | Luminosit | у | | | The F | lydr | oger | 1 Ato | m | | Vis | sibilit | y of | the S | Sun | | | | _ | | S-4 | SLO- | - Equation | on of the Orbit | The Horizor | ntal System | Luminosit | | The Hydrogen Atom | | | | | Visibility of the Sun | | | | | | | | | | | | | 0.5 | SLO- | | Elements | The Horizor | ntal System | Apparent Magnitudes Line Profiles The Orbit | | | | | bit o | of theMoon | | | | | | | | | | | | | | S-5 | S-5 | | | | | | Apparent Magnitu | | | | nitudes Line Profiles The Orbit o | | | | of theMoon | | | | | | | | | | | S-6 | | | | | | | | Tutorial Session Tutorial Session Tutorial Session | | | | | | | 1 | | | | | | | | | | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | |-------|-----------|-------------------------------------|---|---|---|----------------------------------| | | 2 | | Tatorial occion | | | | | 0.7 | SLO- | Kepler's Second Law | The Equatorial System | Magnitude Systems | Quantum Numbers | Eclipses | | S-7 | SLO-
2 | Kepler's Second Law | Rising and Setting Times | Magnitude Systems | Quantum Numbers | Eclipses | | S-8 | SLO- | Kepler's Third Law | Rising and Setting Times | Absolute Magnitudes | Selection Rules | Occultations | | 3-0 | SLO-
2 | Kepler's Third Law | The Ecliptic System | Absolute Magnitudes | Selection Rules | Occultations | | 0.0 | SLO- | Systems of Several
Bodies | The Ecliptic System | Extinction | Population Numbers | The Structure | | S-9 | SLO-
2 | Systems of Several
Bodies | The Galactic Coordinates | Extinction | Population Numbers | The Structure | | S-10 | SLO- | Orbit Determination | The Galactic Coordinates | Optical Thickness | Molecular Spectra | Surfaces of Planets | | | SLO- | Orbit Determination | Perturbations of Coordinates | Optical Thickness | Molecular Spectra | Surfaces of Planets | | S-11 | SLO- | Position in the Orbit | Perturbations of Coordinates | Examples | Continuous Spectra | Atmospheres | | 0-11 | SLO-
2 | Position in the Orbit | Perturbations of Coordinates | Examples | Continuous Spectra | Atmospheres | | S-12 | SLO-
1 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | 3-12 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-13 | SLO-
1 | Escape Velocity | Positional Astronomy | Intensity Photometric
Concepts | Blackbody Radiation | Magnetospheres | | | SLO-
2 | Escape Velocity | Positional Astronomy | Intensity Photometric
Concepts | Blackbody Radiation | Magnetospheres | | S-14 | SLO-
1 | Virial Theorem | Constellations | Flux Density
Photometric
Concepts | Temperatures | Albedos | | 0-14 | SLO-
2 | Virial Theorem | Constellations | Flux Density Photometric Concepts | Temperatures | Albedos | | 0.45 | SLO-
1 | The Jeans Limit | Star Catalogues and Maps | Luminosity Photometric Concepts | Other Radiation
Mechanisms | Photometry | | S-15 | SLO-
2 | The Jeans Limit | Star Catalogues and Maps | Luminosity Photometric Concepts | Other Radiation
Mechanisms | Photometry | | S-16 | SLO-
1 | Examples | Calendars | Extinction Photometric Concepts | Radiative Transfer | Polarimetry | | | SLO-
2 | Examples | Examples | Extinction
Photometric Concept | Radiative Transfer | Polarimetry | | S-17 | SLO-
1 | Applications of Celestial Mechanics | Applications of Spherical
Trigonometry | Applications of Photometric Concepts and Magnitudes | Applications of Radiation
Mechanisms | Applications of The Solar System | | O-11 | SLO-
2 | Applications of Celestial Mechanics | Applications of Spherical
Trigonometry | Applications of Photometric Concepts and Magnitudes | Applications of Radiation
Mechanisms | Applications of The Solar System | | 0 / 0 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-18 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | Learning
Resources | 2. | Hannu Karttunen, Fundamental Astronomy, Content Technologies Publications, 2013. V.Thiruvenkatacharya, A text book of Astronomy, Schand & Co. Pvt. Ltd., 1972. | 2 C. Kumarayalu and Suchoola Kumarayalu, Astronomy, SKV | |-----------------------|------------------------|--|---| | | | | | | Learning | Learning Assessment | | | | | | | | | | | | | | |----------|------------------------------|--------|----------|----------|-----------|---------|----------|-----------------------------------|----------|--------------------------------------|----------|--|--|--| | | B | | Continu | ious Lea | rning Ass | sessmer | 1 | Final Examination (50% weightage) | | | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) |
CLA - | 4 (10%)# | i iliai Examination (30 % weightage) | | | | | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | Level 1 | Remember | 40% | _ | 30% | - | 30% | - | 30% | | 30% | | | | | | Level I | Understand | 40 /0 | - | 30 /0 | - | 30 /0 | | 30 /6 | - | 30 /0 | - | | | | | Level 2 | Apply | 40% | | 40% | _ | 40% | - | 40% | _ | 40% | | | | | | Level 2 | Analyze | 40 /0 | - | | _ | 40 /0 | | 40% | | 40 /0 | | | | | | Lovel 2 | Evaluate | 20% | | 30% | | 30% | | 30% | | 200/ | | |---------|----------|------|-----|-----|-----|-----|-----|-----|------|-------|---| | Level 3 | Create | 2070 | - | 30% | _ | 30% | - | 30% | - | 30% | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 6 | # CLA -4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|---------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, | Dr. A. Govindarajan, SRMIST | | maheshwaranv@yahoo.com | sryedida@iitm.ac.in | Dr. N. Parvathi, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. S. Balamuralitharan, SRMIST | | Cours | se , | JCY20A03J | Course | | ΔI | LIEF |) CUI | EMIS' | TDV | | | | | Cour | se | G | | Conor | ric Ele | otivo | L | Т | Р | С | |--------------------------|--|---|--|----------------|------------------------------|--|--------------------------|-------------------------|-----|--|------------------|----------------------|----------------------------|-------------------|-------------------|------------------------------|--------|-----------------------|---|--------------------------|--|---|--|---------------------------| | Cod | e | ICT ZUAUSJ | Name | | AL | LIEL | СП | LIVIIO | IKI | | | | (| Categ | ory | G | , | Jenei | IC EIE | cuve | 4 | 0 | 4 | 6 | | Pr
requ
Cou | | NIL | | | Co-requisit
Courses | e _{NII} | _ | | | | | | | | gres | | NIL | | | | | | | | | Cours
Depar | e Offer
tment | ring | Chemi | istry | | | | | | ook /
Standa | rds | | | NIL | | | , | | | | | | | | | Course | e Learn | ing The p | urpose of le | earning th | is course is | | | | | | | | | | | | 0 | | (DI | 0) | | | | | | Ration | ale (CL | | | | | | earni | | | | | | | Progra | | | | | , | | 40 | | | 4.5 | | :
CLR-2
:
CLR-3 | Bondii
Provid
hydrog
Make
deterg | ng in compou
le basic kno
gen, silicon a
aware of th | nds
wledge ab
nd oth <mark>er m</mark> | oout the etals | chemistry of | 1
(wo | 2 (%) | 3 (% | | 1
egb | 2 | 3 | earch + | 5 | 6 | 7 vability | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-4
:
CLR-5
: | Under | stand the bas | | | nical kinetics | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | | -undamental Knowledge | Problem Analysis | Design & Development | Analysis, Design, Research | Modern Tool Usage | Society & Culture | Environment & Sustainability |) | ndividual & Team Work | Communication | Project Mgt. & Finance | ife Long Leaming | _ | 2 | 3 | | Course | Learn | ing At the | | course, l | earners will | evel o | xpecte | Expecte | 'n | undan | roblen | esign | Analysi | Aodem | society | inviron | Ethics | ndividu | Somm | Project | ife Lor | PSO - 1 | PSO - 2 | PSO - | | CLO-
1 : | Gain | knowledge
nic chemistry. | | oasic fun | damentals in | 2 | 2 | 75 | | Н | Н | Н | Н | - | - | ħ, | - | Ē | - | - | - | Н | - | - | | CLO-
2: | | ire knowledg | e about l | hydrocarb | on and their | 2 | 2 | 80 | ï | | - | Н | Ŀ | Н | - | - | - | - | - | - | - | Н | - | - | | CLO-
3: | | ote the import | ance of sili | icon and r | netals. | 2 | 2 | 70 | | Н | Н | - | ¥, | Ä. | | - | 1-1 | - | 5 | - | ļ. | - | М | - | | CLO-
4: | | stand the fa | icts in | chemical | kinetics and | 2 | 2 | 70 | Ñ | Н | Н | | Н | Н | Н | - | - | - | - | 7 | - | Н | М | - | | CLO-
5: | | stand the bas | sic concept | ts in indus | trial | 2 | 2 | 80 | | Н | - | Н | | Н | ,- | - | - | Ŧ | - | - | - | Н | - | - | | CLO-
6: | | re knowledge
ochemistry | in the prin | ciples of | 1.35 | 2 | 2 | 75 | | Н | | 7 | - | | 7 | - | - | - | - | - | - | Н | М | - | | | | Lear | ning Modu
1 | le | Learnin | g Mo | dule | ÷ | | Le | earnir | ng Mo | dule | i | ī | Le | arning | g Mod | dule | Ī | Lear | ning
5 | Modu | ıle | | | ation
our) | 1 | 24 | 7 | | 24 | | ı | h | | T | 24 | le | | | | 2 | 24 | 10 | ī | | 24 | | | | S-1 | SLO- | Introduction
and Isomeri
sp, sp ² and | sm: Hybrid | | Chemical Kine reaction | etics:l | Rate | of | Go | b <mark>a</mark> r gas | and | natur | al ga | s | CI | nelati | on | | 7 | | lectro
arada | | | | | 3-1 | SLO-
2 | Bond length dipole mome | | gle- | order- molecu | larity | | d | | 3 | | ٠, | | | In | dustr | al ap | plicat | ions | | lectro | , | W3 UI | | | S-2 | SLO- | inductive eff
effect and h | | | first order rate
problems | law | and s | simple | Fe | rtilizers | –NPI | K and | mixe | ed | Ha
Te | ardne
empo | ss of | wate
and
ardne | r– | е | pecific
quival | ent | | ance, | | | SLO-
2 | Isomerism-
optical isom | | al and | Half-life period reaction | d of fi | rst or | der | so
| aps and | dete | rgent | S. | | | sadva
ater | antag | es of | hard | С | ell co | nstan | t | | | | SLO-
1 | optical activ | | netry- | pseudo first or | der r | eacti | on | | | | | | | | | | | | е | rrheni
lectrol | ytic | eory | of | | S-3 | SLO-
2 | elements o notations. | f symmeti | ry- R, S | zero and seco
reactions | nd o | rder | | He | arbohyd
eterocyc
ompoun
rbohydr | lic
ds:Cla | | | | | oiler s
udges | | s and | | e
c
v
fc
el | conduction duction duc | ent a
tivity
n witl
k and
ytes.
tivity | nd mand the diluter of o | their
tion
ng
ar | | S-4
TO
S-8 | O LAB INTRODUCTION Estimation | | | | | Estimation of FAS using standard oxalic acid Estimation of Zn/Mg | | | | | | | | | us
of | ing d | ecino | rmal | K ₂ Cr ₂
soluti
Sodiu | O ₇ D
on N | eterm
lolecu
olyme | inatio | | of
t of a | | S-9 | SLO-
1 | Hydrocarbons: Methods of preparation of alkanes | Arrhenius and collision | Properties and uses of glucose and fructose | Softening of hard water –
Zeolite process | Ostwald"s dilution law | |--------------------|------------------------|---|---|---|---|--| | 3-9 | SLO-
2 | Properties - Reactions | theories | Mutarotation | demineralization process | Kohlrausch law of
independent
migration of ions | | 0.40 | SLO- | Free radical mechanism of halogention of alkanes | Arrhenius and collision theories | Chemistry of benzene | reverse osmosis | Nernst equation | | S-10 | SLO-
2 | Methods of preparation of alkenes | Arrhenius and collision theories | Preparation | Purification of water for domestic use | Standard electrode | | S-11 | SLO- | Stereochemistry of
dehydrohalogenation (E1, E2,
E1CB mechanism) | Industrial | Mechanism of electrophilic substitution reactions | use of Chlorine | (reduction) potential
and its application to
different kinds of half- | | 5-11 | SLO-
2 | Properties of alkenes,
Electrophilic and nucleophilic
addition mechanisms. | Chemistry:Introduction-Fuel gases | Mechanism of electrophilic substitution reactions | Ozone and UV light | cells. | | S-12
TO
S-15 | SLO-
1
SLO- | Estimation of NaOH using standard sodium carbonate | Estimation of FAS using standard potassium dichromate | Estimation of ascorbic acid | Estimation of Copper using decinormal solution of Potassium dichromate solution | Conductometric
Titrations- II (
KClvs AgNO ₃) | | S-16
TO
S-20 | SLO-
1
SLO-
2 | Estimation of HCl using standard oxalic acid | Estimation of KMnO ₄ using standard potassium dichromate | Estimation of phenol / aniline | Estimation of Nickel using decinormal solution of EDTA | | | S-21 | SLO-
1
SLO-
2 | Chemistry of Hydrogen, Silicon
and Metals: Occurrence-
extraction of iron- cobalt- nickel
and copper | Water gas | Heterocyclic compounds—
Preparation of pyrrole and
pyridine. Propertiesofpyrrole and pyridine. | Phase Rule and
Adsorption: Phase rule-
Definition of terms
involved | Electromotive force of a cell and its measurement | | S-22 | SLO-
1
SLO-
2 | chemical properties of iron-
cobalt- nickel and copper | vvaler gas | Coordination Chemistry:Nomenclature and isomerism of coordination compounds | phase diagram of H ₂ O | Nernst equation;
Standard electrode
(reduction) potential | | 0.00 | SLO- | atomic hydrogen and isotopes of hydrogen | | EAN rule | Adsorption - Langmuir | Nernst equation | | S-23 | SLO- | Preparation and structure of borazole | producer gas | VB Theory | adsorption isotherms | application to different kinds of half-cells | | | SLO- | Preparation and structure of borazole | | Crystal field theories of | Principles of | Application of EMF
measurements in
determining (i) free | | S-24 | SLO- | SiO ₂ , SiC and SiCl ₄ | LPG gas | octahedral, tetrahedral and square planar complexes | chromatography (Paper, TLC and column). | energy, enthalpy and
entropy of a cell
reaction, (ii)
equilibrium constants | | Learni
Resou | 0 | Hyderabad, Univers 2. R.T. Morrison and Chemistry, 7th edition 3. B.R. Puri, L.R. Sha | t Book of Inorganic Chem
sities Press, (India), 2012.
d R.N. Boyd, S. K. Bhatta
on, Pearson India, 2011.
arma and M.S. Pathania, Prir
tion, New Delhi ShobanLalNag | acharjee, Organic and Sons 2. B.S. Furr Vogel's vin Chand and Co. | teswaran, R.Veeraswamy, As of Practical Chemistry, 2nd | A.R.Kulandaivelu, Basic
dedition, Sultan Chand
G. Smith, A.R. Tatchell. | | Learnin | Learning Assessment Continuous Learning Assessment (50% weightage) | | | | | | | | | | | | | | |---------|---|--------|----------|----------|----------|--------|---------------------|----------------|----------|---------------------|----------------|--|--|--| | | B | | Continu | uous Lea | ightage) | | Final Examination (| OO/ weightege) | | | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA- | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (| ou% weightage) | | | | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | Level 1 | Remember | 20% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | | | Level i | Understand | 20% | 15% | 15% | 13% | 13% | 13% | 15% | 13% | 15% | 15% | | | | | Level 2 | Apply | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | | | | Level 2 | Analyze | 20 /0 | 20 /0 | 20 /0 | 20 /0 | 20 /0 | 20 /0 | 20 /0 | 20 /0 | 20 /0 | 2070 | | | | | Level 3 | Evaluate | 10% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | | | Level 3 | Create | 10 /0 | 15/0 | 13/0 | 15/0 | 13/0 | 15/0 | 13/0 | 13/0 | 15 /0 | 1370 | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | % 00 | 100 % | 0 | | | | [#] CLA -4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |-----------------------|--|------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. SudarshanMahapatra, EncubeEthicals Pvt. Ltd,sudarshan.m@encubeethicals.com | 1. Prof. G. Sekar, IIT Madras, gsekar@iitm.ac.in | 1. Dr. S. Rajeswari,
SRMIST | |--|--|--------------------------------| | 2. Dr. ShanmukhaprasadGopi, Dr. Reddy's Laboratories, | 2. Prof. Vivek Polshettiwar, TIFR Mumbai, | 2. Dr. T.Pushpa Malini, | | shanmukhaprasadg@drreddys.com | vivekpol@tifr.res.in | SRMIST | | Course
Code | UMI20S01 | IL Course
Name | My India Project | Course
Category | S | Skill Enhancement course | L ⁻ | | C
1 | |----------------------------|----------|--------------------------|--------------------------------|----------------------|---|--------------------------|----------------|--|--------| | Pre-requisite
Courses | Nil | Co-requisite
Courses | Nil | Progressi
Courses | | Nil | | | | | Course Offer
Department | ing | Computer
Applications | Data Book /
Codes/Standards | Nil | | | | | | ## Assessment Method – Fully Internal | Assessment Tools | Marks | |---|-------| | Review – I (Activities) | 50 | | Review – II (Project report and Presentation) | 50 | | Total | 100 | | Course
Code | UMA | A20S05L | Course
Name | Mathematical Software | - MATLAB | | | urse
egory | S | | | Sk | ill Er | nhan | cem | ent o | cours | se . | | 0 | T 0 | P
4 | C
2 | |---------------------|-----------------------|--|--|--|---|--------------------------|--------------------------|-------------------------|-----------------------|----------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------------------|----------------|----------------|-------------|----------------|--------| | Pre
requis | site Nil | | | Co-
requisite
Courses | | | | Prog
Co | ress
urse | | Nil | | | | | | | | | | | | | | | Offering | | Mathematics | Data I | Book /
s/Standards | Learning | | purpose of lea | rning this course is to: | | L | earni | ng | | | | Pr | ogra | m Le | arni | ng C | Outco | mes | (PL | .0) | | | | | CLR-1
: | | he numeri | cal ma <mark>nipulatio</mark> | n towards scientific advancer | nent using | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2
:
CLR-3 | Employ | various <mark>nu</mark> | ımerical methoc | ds in MATLAB | CLR-4 | Address | the conce | epts related to n | umerical techniques | | | | | | | Se | 1 | | Ф | | | | | | | | | | | CLR-4
:
CLR-5 | | | -4- | e MATLAB for scientific com | | (mool) | (%) k: | ıt (%) | ledge | Concepts | iscipline | dge | lon | owledg | - | ata | | SIIIS | SII | | |
 | | : | Utilize th | ne basic m | athematical prin | ring computational methods in
naciples applied in various scient
solutions using MATLAB | | inking (B | Proficience | Attainmer | tal Know | of Con | telated D | Knowled | ecializat | tilize Kn | odeling | iterpret [| ve Skills | olving Sk | ation Skills | Skills | | | | | | Learning
nes (CLC | g | ~ / | ourse, learners will be able to |): | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical: | PSO -1 | PSO -2 | PSO-3 | | CLO-1 | Remem | bering the | knowledge of n | umerical methods by adopting | ng MATLAB | 2 | 75 | 60 | Н | Н | Н | - | - | | - | | - | Ť | - | - | - | - | - | | CLO-2 | Perceive
problem | | rtance of MATL | AB and its usage to solve ma | athematical | 2 | 80 | 70 | - | Н | | н | | - | ١ | | - | 7 | | - | - | - | - | | CLO-3 | <mark>U</mark> nderst | and the co | ncept of various | s numerical techniques | | 2 | 70 | 65 | Н | - | - | | - | - | F | - | - | Ξ | 3 | - | - | - | - | | CLO-4 | Basic co | mputation | s using the fund | ctions and variables of MATL | AB | 2 | 70 | 70 | Н | - | Н | Н | Н | - | | - | - | - | - | - | - | - | - | | CLO-5 | Underst | and the im | portance and a | pplication of computations | | 2 | 80 | 70 | t | Н | Ē | Н | - | ī | - | - | - | ÷ | | - | - | - | - | | CLO-6 | | oncepts in
perception | | or scientific advancements ba | ased on the | 2 | 75 | 70 | ŀ | | - | ¥ | - | - | - | - | | | - | - | - | - | - | | Duratio | on (hour) | | 12 | 12 | | 12 | | | | l | | 12 | | | T | | - | | 12 | | | | | | S-1 | SLO-1 | MATLAB | ercises in | Solution of algebraic and transcendental equations: Bisection method Solution of algebraic and | Solution of direct methor inversion m | Line
ods:
etho | ar Ed
Matr
d | ix | | and | st so | quare
ve fit | es lir
ting | | Ed | quati | on of
ons | usin | inary
g bui | / Diff | ODE | E sol | ver | | S-4 | SLO-2
SLO-1 | MATLAB
Using M | ATLAB as a | transcendental equations:
Bisection method
Solution of algebraic and | direct methor
inversion m
Solution of | ods:
etho
Line | Matr
d.
ar Ed | ix
quatic | ns- | and | rpol | ve fit | ting | 1 | So | quation
olution | ons on of | usino
Ord | g bui | ilt-in
Diff | ODE
erer | E sol
ntial | ver | | S-5
to
S-8 | SLO-1 | vectors a
Using Ma
calculato | or- Creating
and Matrices
ATLAB as a
or- Creating | transcendental equations:
Regula-Falsi method
Solution of algebraic and
transcendental equations: | Solution of direct methodirect methodirect | metl
Line
ods: | nod
ar Ed
Gau | quatic | ns- | Inte | rpola | ation | | | So
Ec | etho
olutio
quati | on of
ons | Ord | inary | / Diff | erer | ntial | | | S-9
to | SLO-1 | Generati
Sequence
condition
while loo | and Matrices ng Fibonacci be using if- n, for loop and | Regula-Falsi method Solution of algebraic and transcendental equations: Newton Raphson methods. | Elimination Solution of l direct method | Line:
ods: | ar Eo
Gau | ss-Se | eidel | plot
poly | nstru
ting
non | give
nials | n | | Co | | ariso
iilt-in | | | | -K M | etho | d | | S-12 | SLO-2 | Sequenc | ng Fibonacci
ce using if-
n, for loop and
p | Solution of algebraic and transcendental equations: Newton Raphson methods. | Solution of direct method | | | | | plot
poly | nstru
ting
non
ction | give
nials | n | | | | ariso
ıilt-in | | | | -K M | etho | d | | Learnin
Resour | | Applied
Andrew | Mathematics (S | ing MATLAB, Society for Ind
SIAM), 1969.
s of MATLAB and Beyond | | | 3. | Ke
to N | /in R | . Co
.AB | omb
for B | es, J
egin | ohn
ners | ipsm
E. O
and | sboı | n, aı | nd G | arre | tt J. | Stuc | k, A | Guid | de | | Learn | ing Assessment | | | | | | | |-------|------------------------------|-----------------|------------------|------------------|-----------------|---------------------|-----------------| | | B | Contin | uous Learning As | sessment (50% we | eightage) | Final Examination (| E00/ weightege) | | | Bloom's
Level of Thinking | CLA - 1 (10%) | CLA - 2 (10%) | CLA - 3 (20%) | CLA - 4 (10%)# | Final Examination (| 50% weightage) | | | | Theory Practice | Theory Practice | Theory Practice | Theory Practice | Theory | Practice | | Level 1 | Remember | | 40% | | 30% | | 30% | | 30% | | 30% | |---------|------------|---|-------|----|-------|----|-------|----|-------|-------|-------| | Level I | Understand | - | 40 /0 | | 30 /6 | - | 30 /6 | - | 30 /0 | - | 30 /0 | | Level 2 | Apply | | 40% | | 40% | | 40% | | 40% | | 40% | | Level 2 | Analyze | - | 40 /0 | | 40 /0 | - | 40 /0 | - | 40 /0 | = | 40 /0 | | Level 3 | Evaluate | | 20% | | 30% | _ | 30% | | 30% | _ | 30% | | Level 3 | Create | - | 20 /0 | | 30 /6 | - | 30 /6 | - | 30 /0 | - | 30 /0 | | | Total | | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 6 | # CLA -4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Dr. V. Srinivasan, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. S. Athithan, SRMIST | | Course | | Course | | | | | Col | urse | | | | | | | | | | | | L | T | Р | С | |-------------------|---------------------------|----------------------|------------------|------------|--------------------------------|----------|--|-------|----------|----------|-----|------|-------|------|--------|------|------|-----|-----|----------|----|----|----| | Code | UMA20S06 | Name | Mather | natical S | Software-SCILAB | | | egory | S | | | Skil | I Enl | hand | emen | t Cc | ours | e | | 0 | 0 | 4 | 2 | Pre-
requis | | | Co-
requisite | Nil | | | | Progr | essi | - 11 | Nil | | | | | | | | | | | | | | Cours | | | Courses | | | | | 000 | JI 500 | , | | | | | | | | | | | | | | | Course
Departn | Offering
nent | Mathematics | | | Data Book /
Codes/Standards | Learning
le (CLR): | The purpose of le | arning this co | urse is to | o: | L | earni | ing | | | | Pro | grar | n Le | arning | Ou | utco | mes | (PL | .0) | | | | | | Exploit the nur
Scilab | nerical manipulation | on towards sc | entific a | dvancement using | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 8 | 3 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | | | | | \vdash | | _ | — | - | | _ | _ | | | _ | -+ | | - | \vdash | | | | | | Learning
ale (CLR): | The purpose of learning this course is to: | L | earni | ng | | | | Pro | ogra | m Le | arni | ng C | utco | mes | (PL | .0) | | | | |------------|----------------------------------|--|--------------------------|--------------------------|-------------------------|-----------------------|----------------|------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------------------|---------------|-------------------|------|-----|-------| | CLR-1 | Exploit the nu Scilab | merical manipulation towards scientific advancement using | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 | Employ variou | s nume <mark>rical methods in Sci</mark> lab | | 7 | | | | | | | | T. | | | | | | | | | | CLR-3 | Address the c | oncepts related to numerical techniques | | 1 | d | | | es | | | e | | | | | | | | | | | CLR-4 | Gain the know | vledge on how to use Scilab for scientific computations | (mool) | (%) | ıt (%) | ledge | Concepts | isciplin | dge | ion | owledg | |)ata | | dills | SIIIS | | | | | | CLR-5 | Identify the m | ethodology for applying computational methods in Scilab | king (E | ficienc | ainmer | Know | | ated D | nowle | ializat | ze Kn | eling | rpret [| Skills | ing Sk | on Skills | SIII | | | | | CLR-6
: | | ic mathematical principles applied in various scientific identify appropriate solutions using Scilab | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of | Link with Related Discipline | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical Skills | -1 | -5 | ~ | | | Learning
nes (CLO): | At the end of this course, learners will be able to: | Level | Expec | Expec | Funda | Applic | Linkw | Proce | Skills | Ability | Skills | Analy | Invest | Proble | Comm | Analy | PSO- | PSO | PSO-3 | | CLO-1
: | Remembering | the knowledge of numerical methods by adopting Scilab | 2 | 75 | 60 | Н | Н | Н | - | | - | | - | | - | - | - | - | - | - | | CLO-2 | Perceive the i | mportance of Scilab and its usage to solve mathematical | 2 | 80 | 70 | - | Н | | Н | | - | | - | | | | - | - | - | - | | CLO-3 | Understand th | e concept of
various numerical techniques | 2 | 70 | 65 | Н | E | - | | - | - | 4 | - | - | ď | - | - | - | - | - | | CLO-4 | Basic comput | ations using the functions and variables of Scilab | 2 | 70 | 70 | Н | | Н | Н | Н | - | - | - | - | | | - | - | - | - | | CLO-5 | Understand th | e importance and application of computations | 2 | 80 | 70 | - | Н | - | Н | - | | | - | - | | - | - | - | - | - | | CLO-6 | Utilize concep
level of perce | ts in mathematics for scientific advancements based on the otion | 2 | 75 | 70 | | - | | | - | 1 | - | - | - | · | - | - | - | - | - | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |------------|-----------|---|---|--|---|---| | S-1 | SLO-1 | Basic Exercises in
Scilab | Solution of algebraic and transcendental equations: Bisection method | Solution of Linear
Equations-direct
methods: Matrix
inversion method | Least squares line and curve fitting | Solution of Ordinary Differential Equations using built-in ODE solver | | S-4 | SLO-2 | Basic Exercises in Scilab | Solution of algebraic and transcendental equations: Bisection method | Solution of Linear
Equations-direct
methods: Matrix
inversion method. | Least squares line and curve fitting | Solution of Ordinary Differential Equations using built-in ODE solver | | S-5 | SLO-1 | Using Scilab as a calculator- Creating vectors and Matrices | Solution of algebraic and transcendental equations: Regula-Falsi method | Solution of Linear
Equations-direct
methods: Gaussian
Elimination method | Interpolation | Solution of Ordinary Differential Equations using Euler and R-K Methods | | to
S-8 | SLO-2 | Using Scilab as a calculator- Creating vectors and Matrices | Solution of algebraic and transcendental equations: Regula-Falsi method | Solution of Linear
Equations-direct
methods: Gaussian
Elimination method. | Interpolation | Solution of Ordinary Differential Equations using Euler and R-K Methods | | S-9 | SLO-1 | Generating Fibonacci
Sequence using if-
condition, for loop and
while loop | Solution of algebraic and transcendental equations: Newton Raphson methods. | Solution of Linear
Equations-direct
methods: Gauss-Seidel
method. | Constructing and plotting given polynomials and functions | Comparison of Euler, R-K Method and built-in ode solver | | to
S-12 | SLO-2 | Generating Fibonacci
Sequence using if-
condition, for loop and
while loop | Solution of algebraic and transcendental equations: Newton Raphson methods. | Solution of Linear
Equations-direct
methods: Gauss-Seidel
method | Constructing and plotting given polynomials and functions | Comparison of Euler, R-K Method and built-in ode solver | | Learning
Resources | Eike Rietsch, An Introduction to Scilab from a Matlab User's Point of View Version 2.6-1.0, 2001, 2002. Nino Boccara - Modeling and Simulation in Scilab_Scicos with ScicosLab 4.4-Springer (2005) (Graduate Texts in Contemporary Physics) Hema Ramachandran, Achuthsankar S. Nair, SCILAB (A free Software to MATI AB), S. Chand & Company Ltd., First Edition, 2012. | Engineers and Scientists, Tata Major Core Graw Hill Publishing | |-----------------------|---|--| | | B | | Continu | uous Lea | arning As | sessmer |) | Final Examination (50% weightage) | | | | | | | |---------|------------------------------|--------|------------|--------------------|-----------|---------|----------|-----------------------------------|----------|---------------------|------------|--|--|--| | | Bloom's
Level of Thinking | CLA - | 1 (10%) | 10%) CLA – 2 (10%) | | | 3 (20%) | CLA - | 4 (10%)# | rinai Examination (| weightage) | | | | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | Level 1 | Remember | | 40% | | 30% | | 30% | _ | 30% | | 30% | | | | | Level I | Understand | - | 40 /0 | | 30 /6 | - | 30 /6 | - | 30 /0 | - | 30 // | | | | | Level 2 | Apply | | 40% | | 40% | _ | 40% | _ | 40% | | 40% | | | | | Level 2 | Analyze | - | 70 | | 40 /0 | - | 40 /0 | - | 40 /0 | - | 4070 | | | | | Level 3 | Evaluate | | 20% | | 30% | | 30% | | 30% | | 30% | | | | | Level 3 | Create | - | 20% | | 30% | - | 30% | - | 30% | - | 30% | | | | | | Total 100 % | | 00 % 100 % | | | 10 | 0 % | 10 | 00 % | 100 % | 0 | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|-----------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, | Dr. A. Govindarajan, SRMIST | | maheshwaranv@yahoo.com | sryedida@iitm.ac.in | Dr. V. Srinivasan, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. S. Athithan, SRMIST | | Course | | Course | | Course | Jeevan | | L | T | Р | С | | |--------|-----------|--------|---------------------|----------|----------|-------------------|---|---|---|---|--| | Code | UJK204011 | Name | Professional Skills | Category | Kausnai- | Life Skill Course | 2 | 0 | 0 | 2 | | | Pre-
requisite
Courses | | Co-
requisite A
Courses | il | Progressive
Courses | Nil | |------------------------------|-----------------|-------------------------------|----------------------------------|------------------------|-----| | Course O
Departme | Offering
ent | Career Development Ce | ntre Data Book / Codes/Standards | - | | | Course Learning
Rationale (CLR): | The purpose of learning this course is to: | Learning Program Learning Outcomes (PLO | | | | | | | | | | | | | LO) | | | | | |-------------------------------------|--|---|--------------------------|-------------------------|-----------------------|----------------|------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|-----------------|---------------|-------------------------|------------|--------------|---------------| | CLR- expose stude | nts to the requirements of job market | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR- develop result | and the last of th | | | J | ľ | | | | | | | | | | | | | | | | 3: | i <mark>ency in spe</mark> aking during group discussions | | | | | | b | 1 | ٠, | | | | | | | | | | | | 4: | ents for job interviews | æ | (%) | (9) | е | S | olines | | 1 | adge | | | | | | | | | | | 5 : | nce in students and develop skills necessary to face audience | (Bloo | ency (9 | nent (% | owledg | Concepts | Discip | ledge | ation | Knowle | | t Data | ls | Skills | Skills | ï | | Behavior | Ď. | | CLR-
6: develop spea | king and presentation skills in students | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | | ink with Related Disciplines | Procedural
Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | | al Skill <mark>s</mark> | S | onal Beh | Long Learning | | Course Learning
Outcomes (CLO): | At the end of this course, learners will be able to: | Level of | Expecter | Expecter | Fundam | Application of | Link with | Procedu | Skills in | Ability to | Skills in | Analyze, | Investiga | Problem | Communication | Analytical | ICT Skills | Professional | Life Long | | CLO- understand th | e importance of resume preparation and build resume | 3 | 80 | 70 | М | М | L | L | M | Н | | - | | М | Н | Ĺ | Н | Н | Н | | CLO- acquire group | discussion skills | 3 | 85 | 75 | М | М | L | L | М | Н | 1 | - | - | М | Н | L | Н | Н | Н | | CLO- face interview | 's confidently | 3 | 85 | 80 | М | М | L | L | М | Н | - | - | • | М | Н | L | Н | Н | Н | | CLO- Ask approprie | ate questions during an interview | 3 | 85 | 80 | М | М | L | L | М | Н | - | - | - | М | Н | L | Н | Н | Н | | | arious types of presentation and use presentation skills in | 3 | 85 | 80 | М | М | L | L | М | Н | - | - | - | М | Н | L | Н | Н | Н | | | ace during any presentation | 3 | 85 | 80 | М | М | L | L | М | Н | - | - | | М | Н | L | Н | Н | Н | | | ration
lour) | 6 | 6 | 6 | 6 | 6 | |-------------|-----------------|---|---|--|---|---| | | SLO- | Introduction of resume and its importance | Meaning and methods of group discussion | Meaning and types of interview (face to face, telephonic, video) | Types - Informative,
Instructional, Arousing,
Persuasive, Decision-making | PowerPoint presentation—
body language and stage
etiquettes | | S-1 | | Difference between a CV,
Resume and Bio Data | Procedure of group discussion | Dress code, background research | Structure of a presentation –
Introduction of the event,
Introducing the speaker, vote
of thanks | PowerPoint presentation—
body language and stage
etiquettes | | S-2 | 1 | Essential components of a good resume, common errors people make while preparing a resume | Group discussion – simulation | STAR Technique (situation,
task, approach and
response) for facing an
interview | Working with audience – ice-
breaking, Creating a 'Plan B', | | | | SLO-
2 | Resume building format | Group discussion – common errors | Interview procedure
(opening, listening skills,
closure, asking questions) | Getting the audience in the mood, working with emotions, | PowerPoint presentation–
practice session | | S-3 | 1 | Resume building using templates | Group discussion – types –
Topic based | Important questions
generally asked in an
interview | Improvisation and
unprepared presentations,
man-woman view, feedback
– appreciation and critique | PowerPoint presentation—
practice session | | 3- 3 | SLO- | Resume building using templates | Group discussion – types –
Case study based | Important questions
generally asked in an
interview | Improvisation and
unprepared presentations,
man-woman view, feedback
– appreciation and critique | PowerPoint presentation—
practice session | | 6.4 | SLO-
1 | Resume building activity | Group discussion – practice
session- Topic based | Mock interview – face to face | Power point presentation,
skit, drama, dance, mime,
short films and documentary
– Dos and Don'ts | PowerPoint presentation–
practice session | | S-4 | | Resume building activity -
Feedback | Group discussion -
Feedback | Mock interview- Feedback | Power point presentation,
skit, drama, dance, mime,
short films and documentary
– Dos and Don'ts | PowerPoint presentation–
practice session | | | | - | | Group discussion – practice session- Topic based | Mock interview - face to face | PowerPoint presentation – content preparation | PowerPoint presentation–
practice session | |----|-----------|-----------------------------------|--------------------------------|--|---|---|--| | S. | | Video resume – Do's and
Don'ts | Group discussion | | PowerPoint presentation–
logical arrangement of
content | PowerPoint presentation—
practice session | | | c | | LO-
1 | | Group discussion – practice
session- Case study based | Mock interview - face to face | PowerPoint presentation—
using internet source,
citations, bibliography | PowerPoint presentation—
practice session | | 3. | SLO-
2 | Video resume – Templates | Group discussion -
Feedback | | PowerPoint presentation—
using internet source,
citations, bibliography | PowerPoint presentation—
practice session | | | | 1. | Scott Bennett, The Elements of Resume Style: Essential | | |-----------------------|----|---|--| | | | Rules for Writing Resumes and Cover Letters That Work, | 4. Paul Newton, How to deliver a presentation ; e-book | | Lagraina | | AMACOM, 2014 | 5.Eric Garner, A-Z of Presentation, Eric Garner and Ventus Publishing ApS, | | Learning
Resources | 2. | David John, Tricks and Techniques of Group Discussions, | 2012, bookboon.com | | Nesources | | Arihant, 2012 | | | | 3. | Singh O.P., Art of Effective Communication in Group | | | | | Discussion and Interview, S Chand & Company, 2014 | | | Learning Assessm | ent | 11-11-11 | N /: | | | |------------------|------------------------------|-------------|-------------------------|-------------------------|----------------| | | | 75/11/2 | Continuous Learning Ass | essment (100% weightage |) | | Level | Bloom's Level of
Thinking | CLA-1 (20%) | CLA-2 (20%) | CLA-3 (30%)# | CLA-4 (30%) ## | | | - N | Theory | Theory | Theory | Theory | | evel 1 | Remember | 400/ | 400/ | 200/ | 450/ | | _evel 1 | Understand | 10% | 10% | 30% | 15% | | 10 | Apply | 500/ | 500/ | 400/ | 500/ | | _evel 2 | Analyze | 50% | 50% | 40% | 50% | | | Evaluate | 400/ | 400/ | 200/ | 250/ | | Level 3 | Create | 40% | 40% | 30% | 35% | | | Total | 100 % | 100 % | 100 % | 100 % | # CLA-1, CLA-2 and CLA-3 can be from any combination of these: Online Aptitude Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, Mini Talks, Group Discussions, Mock interviews, etc. ## CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | The Control of Co | | |---------------------------------------|--|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | 1. Mr Priyanand, Assistant Professor, CDC,
E&T, SRMIST | | 1. Ajay Zener, Director, Career Launc | her - | 2. Ms Sindhu Thomas, Head in charge, CDC,
FSH, SRMIST | | | | 3. Ms Mahalakshmi, Assistant Professor,
CDC, FSH, SRMIST | | Course | UI | MA2050 | O1T Course
Name | | Alge | ebraic St | ructures | | | | urse
egory | , C | | | Pro | ofes | siona | al Co | re C | ours | e | | L
5 | T | P
0 | C
6 |
---|---|------------------------|----------------------------------|-----------------|-----------------------------|------------------|----------------------|-------------------------------|--------------------------|--------------------------|-------------------------|---------------------------|------------------|----------------------|----------------------------|-------------------|-------------------|------------------------------|--|------------------------|---------------|------------------------|-------------------|--------|--------|---------| | Pre
requis | site | Nil | | | Co-
requisite
Courses | Nil | | | | | rogre | essive
rses | e Nil | | | | | | | | | | | | | | | Course
Departi | Offe | | Mathe | ematics | | | Data Boo
Codes/St | Course
Rationa | | - | The p | ourpose o | of learning thi | is course | e is to: | | | | Lea | ırning | | | | Pr | ogra | m Le | earni | ng C | Outco | omes | s (PL | _O) | | | | CLR-
1: To understand groups and will be able to study about its properties. CLR-
2: groups. | | | | | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | CLR-
3: To relate the concepts of homomorphism, isomorphism and automorphism
CLR-
4: To understand concepts of Ring and ideals | | | | | | | | orphism. | ŀ | (| j | ŀ | | | 4 | | | lity | | | | | | | | | | CLR-
5: To learn the concepts of field and integral domain. CLR-
6: | | | | | | | | | evel of Thinking (Bloom) | oficiency (%) | ainment (%) | owledge | lysis | velopment | Analysis, Design, Research | Usage | lture | Environment & Sustainability | | Team Work | ion | & Finance | aming | | | | | Outcom | Course Learning Outcomes (CLO): At the end of this course, learners will be able to: | | | | | | | | Level of Thin | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & Development | Analysis, De. | Modern Tool Usage | Society & Culture | Environment | Ethics | Individual & Team Work | Communication | Project Mgt. & Finance | Life Long Leaming | PSO-1 | PSO-2 | PSO - 3 | | 1. | Reco | <mark>gn</mark> ize th | ne mathemation | cal object | ts called gro | ups | 3.73 | 50 | 3 | 85 | 80 | Н | Н | L | - | - | - | ŀ | | M | L | - | Н | - | - | - | | ۷. | | | lamental cond | | | | | | 3 | 85 | 80 | М | Н | - | М | М | - | | - | M | · | H | Н | - | - | - | | 3: f | | ain the s
r groups | ignificance of | the notic | ons of cosets | , normal | subgroup | s and | 3 | 85 | 80 | Н | Н | 4 | | - | - | ł | - | М | , | ŀ | Н | - | - | - | | 4: | , | | sequences of | 0 0 | | | | 14 | 3 | 85 | 80 | Н | Н | Н | М | - | - | Ė | - | М | L | ż | Н | - | - | - | | 5: 0 | onse | equence | | | | | | tia nt via na | 3 | 85 | 80 | М | Н | L | | - | - | - | - | М | - | - | Н | - | - | - | | 6: ii | ntegi | ral dom | ndamental cor
ains and fields | ncepts in
s. | ring theory s | such as i | deais, quo | tient rings, | 3 | 85 | 80 | М | Н | - | ٠ | i | - | - | - | М | - | - | Н | - | - | - | | Dura
(ho | | | 18 | | Colin | 18 | - | N _A | 18 | 1 | Ì | Ť | t | 1 | 8 | | | | | C | ī | 18 | | Ī | Ī | | | | SLO
1 | | up-Definition, | | Normal sub | groups | | Ring-Defi
examples | | ١, | | Ideal | s-De | finitio | on, e | xam | ples | Qı | uotie | nt rir | ngs-[| Defir | nitior | ı, ex | amp | les | | S-1 | SLO
2 | O- Grou | up-Simple Pro | perties. | Properties a | | | Ring-Sim
Properties | ple | | | Ideals-Simple Properties. | | | | | | Pr | Properties of quotient rings | | | | | | | | | S-2 | SLO
1 | O- Prop | perties based
up. | on | Properties of normal subg | of cosets | | Theorems
problems
Ring. | s and | | | Probl | ems | on i | deals | 3 | | Pr | ime i | idea | ls, P | rinci | pal i | deals | S | | | 3-2 | SLO
2 | | er of a Group | 7. | Properties of normal subs | of cosets | based on | | asse | s of | | Theo | rems | on i | ideal | S | 1 | Ma | Maximal ideals | | | | | | | | | | SLO
1 | O- Orde | er of an eleme | ent in a | Simple grou | | | Homomoi
rings | phis | m of | | More | | rem | s ba | sed | on | Th | eore | ms | base | ed or | n prir | ne io | deals | 3 | | S-3 | SLO
2 | O- The | orems based | on | Properties b | ased on | simple | Theorems
homomor
rings. | | | | Sum | of tw | o ide | eals | | | | eore | ms | base | ed or | n pri | incip | al | | | | SLO
1 | O- Sub | groups | | Quotient gro | oup | | Quotient I
Definition | • | | | Prod | uct o | f two | idea | als | | Th | eore | ms | base | ed or | n ma | xima | al id | eals | | S-4 | SLO
2 | | erties of subo | groups | Properties a | | | Quotient I | Ring | | ple | Exan | | | | deal | but | Th | eore | ems | base | ed or | n ma | xima | al id | eals | | 0.5 | SLO- Cyclic groups Cauchy's theorem for finite Co | | | | | | Commuta | | rings | ; | Exan | nples | for | right | ide | al bu | | elatio | | teara | al do | maiı | n and | d fiel | id | | | SLO- Properties of cyclic groups Cauchy's theorem for finite Ex | | | | | | Examples commuta | | ings | | Hom | | | | ring | S. | Re | elatio | n | | | | | | | | | | 0.6 | SLO
1 | O- Tuto | rial Session | | Tutorial Ses | | | Tutorial S | | | | Tutor | ial S | essi | on | | | _ | between integral domain and field Tutorial Session | | | | | | | | | S-6 | SLO
2 | | rial Session | | Tutorial Ses | ssion | | Tutorial S | essi | on | | Tutor | ial S | essi | on | | | Τι | ıtoria | l Se | ssior | n | | | | | | S-7 | SLO
1 | grou | | | Centralizer | of a grou | ıp | Zero divis | ors | | | Propo
homo | mor | phisi | m of | a rir | ng | | ıclide | | • | | | | | | | 3-1 | SLO
2 | a cy | ber of genera | ators of | Normalizer | | ıp | Examples divisors. | | | | More
home | mor | phisi | m of | ring | S | | oper | ties | of E | uclid | ean | rings | s | | | S-8 | SLO
1 | O- Cos | ets | | Centre of a | group | | Integral d | omai | n | | More
homo | | | | | | W | ilson | the | orem | 1 | | | | | | | SLO-
2 | Partitioning of a group by Cosets | Normalizer and centre of a group | Properties of integral domain | Isomorphism of rings | Fermat's theorem | |------|-----------|-------------------------------------|--|--|--|--| | | SLO-
1 | Lagrange's theorem | Product of two subgroups | Division ring | Theorems based on isomorphism of rings | Polynomial rings | | S-9 | SLO-
2 | Euler's phi function | Classification of subgroups of cyclic groups | Examples of division ring | Fundamental theorem of
ring homomorphism | Properties of polynomial rings | | S-10 | SLO-
1 | Euler's theorem | Cycle notation for permutations | Field | First theorem of isomorphism | The division algorithm | | | SLO-
2 | Euler's theorem | Properties of permutations | Field-simple properties | Embedding of rings | Problems based on division algorithm | | | SLO-
1 | Fermat's theorem | Even and odd permutations | Theorems based on field | Embedding of a ring into a ring with unity | Polynomial rings over rational field | | S-11 | SLO-
2 | Fermat's little theorem | Even and odd permutations | Theorems based on integral domain | Embedding of a ring into a ring with unity | Polynomial rings over rational field | | | | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-12 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-13 | | Practice problems for groups | Alternating groups | Subrings | Endomorphism of a rings | Gauss Lemma | | | SLO-
2 | Practice problems for groups | Problems for alternating groups | Sum of two subrings | Embedding of a ring into a ring endomorphism | Eisenstein's criterion | | | SLO- | Practice problems for subgroups | Cayley's theorem | Theorems and problems based on subrings. | Practice problems for ideals | Problems based on Eisenstein's criterion | | S-14 | SLO-
2 | Practice problems for subgroups | Applications of Cayley's theorem | Centre of the ring | Practice problems for homomorphism of ideals | Euclidean Domain | | | SLO- | Practice problems for cyclic groups | Group homomorphisms | Centre of a guaternion ring | Practice problems for homomorphism of ideals | Theorems based on Euclidean | | S-15 | SLO- | Practice problems for cyclic groups | Properties of homomorphism | Characteristic of a | Comaximal ideals | Prime and irreducible elements | | S-16 | SLO- | Permutation group | Group isomorphisms | Properties of characteristic of a ring | Properties of comaximal ideals | Principal ideal domain | | | SLO-
2 | Problems for groups | Properties of isomorphisms | Symmetry Group-
Simple Properties. | More on ideals | Theorem based on principal ideal domain | | | SLO- | Quaternion groups. | First isomorphism theorems for groups | Product of two rings | More on ideals | Unique Factorization domain | | S-17 | SLO-
2 | Problems for quaternion groups | Second isomorphism
theorems for groups | Product of two rings | More on ideals | Theorem based on unique factorization domain | | | | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-18 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | | 1. | I. N. Herstein (2006). Topics in Algebra (2nd edition). Wiley India. John B. Fraleigh (2007). A First Course in Abstract Algebra (7th | 5. | |-----------------------|----
--|----| | Learning
Resources | 3. | edition). Pearson. Joseph A. Gallian (2017). Contemporary Abstract Algebra (9th | | | | 4. | edition). Cengage. N. S. Gopalakrishnan (1986). University Algebra, New Age | 7 | | | | International Publishers. | ŏ | P. B. Bhattacharya, S. K. Jain & S. R. Nagpaul (2003). Basic Abstract Algebra (2nd edition). Cambridge University Press. David S. Dummit & Richard M. Foote (2008). Abstract Algebra (2nd edition). Wiley. Thomas W. Hungerford (2004). Algebra (8th edition). Springer. Serge Lang (2002). Algebra (3rd edition). Springer-Verlag. | Learning | g Assessment |----------|------------------------------|--------|----------|----------------|------------|---------------|------------|----------|----------|-----------------------------------|-----------------|-----|--|-----|--|-----|--|-----|--|-----|--| | | 6 | | Continu | uous Lea | arning Ass | sessmer | nt (50% we | ightage) |) | Final Evamination (| E00/ weightege) | | | | | | | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) |) CLA – 2 (10% | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | | | | | | | | Level of Thinking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | | | | | | | | aual 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | | | | | | | | | | | _evel 1 | Understand | 40% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | | | | | | | | | | Level 2 | Apply | 400/ | 400/ | 400/ | 40% | 40% | 40% | 40% | 40% | 40% | 40% | 40% | | 40% | | 40% | | 40% | | 40% | | | _evei Z | Analyze | 40% | - | 40% | - | 40% | - | 40% | - | 40% | - | | | | | | | | | | | | _evel 3 | Evaluate | 200/ | | 30% | | 30% | | 30% | | 30% | | | | | | | | | | | | | Create | Create | 20% - | | 30% | - | 30% | - | 30% | - | ა0% | - | | | | | | | | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | ,
0 | | | | | | | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | " I O" | Dr. A. Govindarajan, SRMIST
Dr. K. Ganesan, SRMIST | | | | | | | F | Prof. B. V. Ra | athis | h Kı | umar | , IIT I | Kanp | ur, b | vrk@ | giitk. | ac.ir | 1 | | R. P
R. A | | | | | MIST | Г | |----------------------|-------------------|---|--|---|---------------------|---------------------------|--------------------------|--------------------------|-------------------------|----------------------|------------------|------------------------|---------------------|-------------------|-------------------|------------------------------|--------|-----------------------|---------------|------------------------|-------------------|--------------|---------------|----------| | С | ourse | Code | UMA20502T | Course Name | Re | eal Analysis | | | (| Cours | se Ca | atego | ory | С | Pi | rofes | ssion | nal C | ore (| Cour | rse | L 5 | T P | C 6 | | red | Pre-
quisite | | | Co-
requisite Nil
Courses | | | | F | Progre | | e Ni | l | | | | | | | | | | | | | | Cou | rse Of
artme | ffering | Mathematics | , | Data Boo
Codes/S | ok /
Standards | | | | | | | | | | | | | | | | | | _ | | | | earning
(CLR): | The purpose of | of learning this cou | urse is to: | | | | Lea | ırning | 3 | | | Pr | ogra | m Le | earn | ing C | Outco | ome | s (Pl | -0) | | | | CLF
CLF
CLF | re: | al numbe
mploy var | ous number systems in r system ious techniques for a one concept of metric s | detail analysis of i | real number s | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | :
CLF
:
CLF | R-4 Ur | nderstand | the role of continuous concept of derivative | s functions | | | (Bloom) | (%) | ent (%) | lge | | ment | Research | ale | 2 | stainability | | Work | | ance | - | | | | | | rse Le | earning | ntegration in real number | 4 | I he able to: | | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & Development | Analysis, Design, F | Modern Tool Usage | Society & Culture | Environment & Sustainability | Ethics | ndividual & Team Work | Communication | Project Mgt. & Finance | Life Long Leaming | PSO - 1 | PSO-2 | 0-3 | | | | <mark>s (CL</mark> O):
<mark>ain</mark> an ins | ight on real and comp | | The able to. | 5 | 9
2 | 70 | | H Sci | - Pro | - De | H
An | - Mo | . Soc | -
En | ± | lnd . | OO . | - Pro | - Life | - PS | . PS | - PSO | | :
CLC |)-2 Be | e familiar | with metric spaces an | d various kinds | | V | 2 | 80 | | Н | Н | | Н | | | | - | | | - | - | - | - | - | | CLC |)-3 De | efine som | e topologies | | | 28 | 2 | 75 | 60 | - | Н | | | | - | 7 | - | - | ď | - | - | - | - | - | | CLC
: |)-4 CI | assify the | role of continuous fur | nctions and unifor | mly continuo | us functions | 2 | 70 | 70 | н | - | | Н | - | - | H | - | - | | - | - | - | - | - | | CLC
: |)-5 Ap | oply the d | erivatives in Taylor se | ries expansion of | various func | tions | 2 | 80 | 70 | | Н | Н | - | - | - 1 | - | - | - | - | - | - | - | - | - | | CLC
: |)-6 Ch | naracteriz | e those functions whi | ch are Reimann-S | tieltjes inegra | able | 2 | 75 | 65 | - | | Н | Н | - | | - | - | - | | | - | - | - | - | | | ration | | 18 | 18 | | H | 18 | 3 | | H | f | - | | 18 | | | | f | | Ť | 18 | i | | | | - (1 | our)
SLO-
1 | | ction- Review of N, number systems | Function – defini | tion; types | Limit of a fu | ıncti | on | | | Def | initic | n of | deri | vativ | es | | High | her c | order | r der | ivativ | ves | | | S-1 | | | on of irrationals not | Injective, surjecti
bijective function
examples | | Uniquenes
function in | | | | e | | rivati
ction | ves o | of ele | emer | ntary | 7 | Leib | niz 1 | form | ula | Ī | | | | S-2 | SLO-
1 | Solution exist in | ofor p²-2=0 does not Q | Finite and infinite | esets | Algebra of | | | | | con | tinui | | | eads | to | Ì | , | | theo | | | | | | 0 2 | 2 | | on for p ² -5=0. | Examples and ba | | Examples of function | of al | gebr | ra of I | imits | cou | nter | e and
exam | ple | 1 | Ī | | func | ction | S | | | fsor | | | S-3 | SLO-
1
SLO- | product | d set; Cartesian of sets trichotomy and | Countable and u
sets
Every infinite sub | | Continuous
Continuity | | | | _ | fun | ction | differ
s is o | diffe | rentia | able | | | | is ba
eriva | | | nighe | ∌r
—— | | | 2
SLO- | illustrati
Bounde | on
d above and | countable set is Basic set operati | countable | functions
Composition | | | | | and
Pro | duct | ng w
intere | exan | nples | 3 | | Diffe | eren | | on of | vec | | | | S-4 | SLO-
2 | | ining upper and lower
or R and secondary | Illustrations | | Illustration | with | exa | mple | s | Que | mple
otien
imple | t rule | e – p | roof | and | | | | | | xam | ples | | | S-5 | SLO- | | pper and greatest | Countable union countable sets is | | Characteriz
continuous | | | | | Cha | ain rı | ule | | | | | thec | | in v | | mea
r val | an va
lued | ilue | | | SLO-
2 | for subs | ining LUB and GLB
sets of R | Proof and conse | quences | Illustration | with | еха | mple | S | Арр | olica | tion o | of ch | ain r | ule | | Pro | of | | | | | | | S-6 | SLO- | Tutorial | Session | Tutorial Session | | Tutorial Se | ssio | n | | | Tut | orial | Ses | sion | | | | Tuto | orial | Ses | sion | | | | | 3.0 | SLO- | Tutorial | Session | Tutorial Session | | Tutorial Se | | | | | | | Ses | | | | | Tuto | orial | Ses | sion | | | | | S-7 | SLO- | | operty of R | Q is countable | | Algebra of functions | | | | | | al m
ima | axim | a ar | nd lo | cal | | Parl | tition | of a | an in | terva | ıl | | | - | SLO-
2 | Applicat | tion of LUB property | Set of infinite bin
sequences is un | | Illustration continuous | | | | | Illus | strati | ng e | xam | ples | | | Exa | mple | e an | d pro | pert | ies | | | | SLO- | Binary operation on a | Markin and definition | Continuous function on | First desired to the | Riemann integral of a | |----------|-----------|---|---|--|--|---| | S-8 | 1 | nonempty set | Metric space – definition | Euclidean space Rk | First derivative test | function over an interval | | 00 | SLU- | (F,+) and (F,*) are abelian | Examples- discrete metric
and usual metric | Algebra of continuous function on Rk | Proof and critical or | Definition – upper and lower | | | 2 | groups | Open ball, closed ball, | iunction on K* | stationary points | Riemann integrals | | S-9 | | Field – ordered field | convex set; open and closed
set, limit point, perfect and
dense set, closure of set | Bounded function | Second derivative test | Function f is Riemann integrable | | | SLO- | Q and R are fields | Examples and proof of balls | Example and
 Proof and application for | Examples and | | | 2 | | are convex. Every neighbourhood is | counterexample | maxima/minima | counterexamples | | S-
10 | SLO-
1 | Properties of ordered field | open; every neighbourhood
of a limit point contains
infinitely many points of the
set | Continuity and compactness | Generalized mean value theorem | Riemannn Stieltjes integral | | 10 | SLO-
2 | Some basic proofs on properties of ordered field | Set is open iff its complement is closed; union and intersection of open and closed sets | Continuous image of a compact set is compact | Proof and illustration | Definition, examples | | S- | SLO-
1 | Archimedian property of R | Open relative and some basic theorems | Upper and lower bounds of continuous function on a compact set | Lagrange's Mean value theorem | Riemann integral is special case of Riemann-Stieltjes integral | | 11 | SLO-
2 | Application of Archimedian property | Open cover, subcover, finite subcover, compact set | Supremum and infimum of continuous function on a compact set | Proof | Illustrative examples | | S- | SLO-
1 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | 12 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | | SLO-
1 | Q is dense in R | K is compact relative to X iff it compact relative to any compact subset of X. | Uniformly continuous function | Application to Mean value theorem | Refinement, Common refinement | | S-
13 | SLO-
2 | Z is not dense in R | Compact subsets of metric
space are closed; closed
subset of compact set is
closed; some results on
intervals | Continuous function on a compact set is uniformly continuous | Problems based on Mean value theorem | The sup and inf values increase on a refinement - Proof and consequences | | S-
14 | SLO- | Existence of unique nth root of positive real number | K-cell | Continuous image of connected set is connected | Differentiability | Necessary and sufficient condition for a function to be Reimann-Stieltjes inegrable | | 14 | SLO- | Proof and illustration | Every k-cell is compact | Intermediate value theorem | Illustrating examples | Proof | | S- | SLO- | Extended R; Complex field | Heine-Borel theorem | Discontinuity of a function | Monotonicity | Consequences of the above characterization result | | 15 | SLO-
2 | Properties | Equivalence statements | Kind of discontinuities –
examples
Monotonic functions - | Illustrating examples | Examples and counterexamples | | S-
16 | SLO-
1 | Schwarz inequality | Weierstrass Theorem | Monotonic functions have no second kind of discontinuities | Intermediate value theorem for derivatives | Continuous function on an interval is always Riemann Stieltjes integrable | | 10 | SLO-
2 | Normalization technique and proof of Schwarz inequality | Every nonempty perfect set in Rk is uncountable | Monotonic functions have atmost countable discontinuities | Proof and consequences | The condition on a monotonic function to be Riemann Stieltjes integrable | | S-
17 | SLO-
1 | Euclidean space | Cantor set | Infinite limits and limits at infinity | L'Hospital rule | If f is Riemann Stieltjes integrable and g is continuous, then their composition is Riemann Stieltjes integrable. | | | SLO-
2 | Some basic results | Connected Set – every
interval in R is connected | Illustrating examples | Proof and application | Proof | | S- | SLO-
1 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | 18 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | ## Learning Resources - Walter Rudin, Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill Publications, Singapore, Reprint 2012. - Tom M. Apostol, Mathematical Analysis, 2nd edition, Pearson, Narosa Publishing House, New Delhi, 2002. - Richard R. Goldberg, Methods of Real Analysis, Oxford & IBH Publishing Co, Pvt. Ltd., New Delhi, 1970. - Sterling K.Berberian, Fundamentals of Real Analysis, Springer India Pvt. Ltd., 2013. - Royden, H.L., Real Analysis, The Macmillan Company, New York, 2001. - R. G. Bartle, D.R. Sherbert, Introduction to Real Analysis, 4e, John Wiley & Sons, 2011. | Learni | ng Assessment | | | | | | |--------|-------------------|---------------|------------------|------------------|----------------|------------------------------------| | | Bloom's | Contin | uous Learning As | sessment (50% we | eightage) | Final Evenination (FOO) weighters) | | | Level of Thinking | CLA - 1 (10%) | CLA - 2 (10%) | CLA - 3 (20%) | CLA - 4 (10%)# | Final Examination (50% weightage) | | | | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | |---------|------------|--------|----------|--------|----------|--------|----------|--------|----------|--------|----------| | Lovel 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | Level 1 | Understand | 40% | - | 30% | - | 30% | - | 30% | - | 30% | - | | Level 2 | Apply | 40% | | 40% | | 40% | | 40% | | 40% | | | Level 2 | Analyze | 40 /0 | - | 40 /0 | - | 40 /6 | - | 40 /0 | - | 40 /0 | - | | Level 3 | Evaluate | 20% | | 30% | | 30% | | 30% | | 30% | | | Level 3 | Create | 20% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | Ď | # CLA -4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Dr. K. Ganesan, SRMIST | | 77-1 | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. V. Subburayan, SRMIST
Dr. A. Anuradha, SRMIST | | С | ourse (| Code | UMA20D07T | Course Na | me Gr | raph Theory | / | | C | Cours | e Ca | itego | iry | Е | Di | scipl | | Spec | | Elect | ive | L ⁷ | T P | +- | |-----------|---------------------------|---------------------------------|---|---|--|--------------------------------------|--------------------------|--------------|-------------------------|----------------------|------------------|------------------------|----------------------------|-------------------|-------------------|----------------|--------|-----------------------|---------------|----------------|---------------|----------------|-------|-------| | rec | Pre-
quisite
purses | Nil | | Co-
requisite
Courses | Nil | | | F | Progre | | e Ni | | | | | | | | | | | | | | | Cou | rse Off
artmen | | Mathematics | 000.000 | Data Bo
Codes/S | ok /
Standards | rse Lea | | The purpose of | of learning thi | is course is to: | | | | Lea | rning | ı | | | Pr | ogra | m Le | earn | ing C | Outco | omes | s (PL | .0) | | | | CLR | R-1 To | introduc | e the students to the b | peautiful and | elegant theory of | graphs | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | : | R-2 To
tecl | equip th
hniques
understa | e students with proble
that may be used to s
and the concepts of Eu
s in solving real life pro | m solving, cr
olve a host o
ulerian and H | itical, thinking and
f problems in othe | d algorithm
er fields | | , | | | | | | | | | | | | | | | | | | CLF | R-4 To | understa | and the concept of col | ouring in grap | ohs | | (mo | (%) | (%) | | j | ıt. | search | | | Sustainability | | ork | | e | | | | | | : | 10 | | the planarity of graph
the students to apply g | | cal techniques to | solve | ing (Blo | Proficiency | inment | wledge | ysis | elopme | ign, Res | Jsage | ture | & Susta | | eam Wo | LC | Finance | Leaming | | | | | : | pro | blems in | other fields. | | | | evel of Thinking (Bloom) | Expected Pro | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & Development | Analysis, Design, Research | Modern Tool Usage | Society & Culture | Environment 8 | S | ndividual & Team Work | Communication | Project Mgt. & | Long Lea | -1 | -2 | -3 | | Out | rse Leacomes | (CLO): | At the end of this co
sight on the interesting | | | ts essentia | | Expe | Expe | Scier | Prob | Desig | Analy | Mode | Socie | Envir | Ethics | Indiv | Com | Proje | Life | PSO-1 | PSO | PSO | | 1 : | par | ameters | | | | | 2 | 70 | 65 | Н | | - | I | | 1 | 1 | - | - | ł | | - | - | - | - | | CLC
2: | | | e concept of connective | - 1 | | 100 | 2 | 80 | 70 | Н | Н | - | Н | - | - | · | - | | | - | - | - | - | - | | CLC
3: |)- Be | thorougl | h with trees and spanr | ning trees | 100 | 451 | 2 | 75 | 60 | - | Н | - | - | | - | - | - | - | 5 | - | - | - | - | - | | CLC
4: |)- Kno | ow the in | mportance of Eulerian | and Hamiltor | nian graphs | | 2 | 70 | 70 | Н | - | - | Н | - | ٠. | - | - | - | | - | - | - | - | - | | CLC
5: |)- Und | derstand | the concept of planar | rity and its ap | plications | | 2 | 80 | 70 | Ε | Н | Н | Ŧ | - | - | - | - | - | - | - | - | - | - | - | | CLC
6: |)- Be | familiar | with colouring of grapl | hs and its crit | icality | | 2 | 75 | 65 | - | | Н | Н | - | - | - | - | - | Ē | - | - | | - | - | | | ration
lour) | | 18 | | 18 | E Y | 1 | 8 | | | | | | 18 | | | | f | | | 18 | | | | | S-1 | SLO- | Introdu | ction to the subject | Matrix repre | esentation
of | Connecte | d gra | ph | | | Eul
gra | erian
phs | and | Hai | nilto | nian | | Plar | nar a | ınd p | olane | gra | phs | | | 3-1 | 2 | in other | | Need for ma
representati | | Illustrating | amp | es | | | COU | nter | exam | ples | ; | | 7 | Illus
app | | | xamı | ples, | , | | | S-2 | 1 | | nary definition of and its types | Adjacency r | matrix | Connected | | | | | atle | iph w
ast 2 | is a | lway | /s cy | clic | | K₅ is | s nor | n-pla | ınar | | | | | | 2 | | tion with examples | Examples, p | | Bounds or
to be conr
Character | necte | d | 10 | | res | nsequ
ult
uivale | | | 1 | ш | | Pro | of by | illus | strati | on | | | | S-3 | SLO-
1 | | of a graph, regular | moderice ii | iduix | connected respect to | gra | phs v | with | | con | nect
erian | ed g | | | | | Fac | es o | fap | lane | grap | ph | | | 3-3 | SLO-
2 | | naking lemma – proof
nsequences | Examples, p | properties | Character connected respect to | d gra | phs v | with | | Pro | of ar | nd co | nse | quer | nces | | | | | ic pr | | | | | C 4 | SLO- | | ph – different types | Binary oper | ations on graphs | Result on a graph ar | conr | ecte | dnes | s of | | trati | | | nigst | erg | | Fary | | neore | em – | stat | teme | nt | | S-4 | SLO-
2 | Illustrat | ing examples | Illustration | | Nordhaus
results on | -Gad | ldum | type | | Res | ults | base | o be | | | се | | | ral g | ıraph | ı - pr | ope | rties | | S-5 | SLO-
1 | | e of a triangle-free
of order p is atmost | | ations on graphs
omposition | Character bipartite g | | | sult fo | or | Arb | itrari | ly tra | vers | able | gra | ph | Eule | er's p | oolyh | nedro | on fo | rmu | la | | | SLO-
2 | | nd consequences | Illustration | | Character bipartite g | | | sult fo | or | Fle | ury's | algo | rithr | n | | | | | | f Eul
ormu | | | | | S-6 | SLO-
1 | Tutoria | l Session | Tutorial Ses | ssion | Tutorial S | essic | n | | | Tut | orial | Sess | sion | | | | Tuto | orial | Sess | sion | | | | | 5-0 | SLO-
2 | Tutoria | l Session | Tutorial Ses | | Tutorial S | essic | n | | | | orial | | | | | | | | Sess | | | | | | S-7 | SLO-
1
SLO- | Isomor | phism | Result on or graph opera | rder and size of | Cutpoint, | hrida | _ | | | | ry H | | onia | ın gr | aph | is | | | | es o | | ler's | | | | | Examp | | Illustrating p | | Outpoint, | onug | | | | | onne
cessa | cted | | | | | | | | ormu
nar g | | | | | S-8 | SLO- | Properties of isomorphism and some basic results | Degree sequence, graphic sequence | Equivalent statements for a vertex to be cutpoint of a graph | Converse of the above result is not true | Homeomorphic graphs | |----------|-----------|--|--|---|--|--| | | SLO-
2 | Proof | Examples | Results based on the above theorem | Dirac's theorem | Properties; Kuratowski's theorem; | | S-9 | SLO-
1 | Automorphism group of a graph | Problems on graphic sequence | Equivalent statements for a line to be bridge of a graph | Closure of a graph | Contractible graph, dual of a planar graph | | 3-3 | SLO-
2 | Illustration | Solution to problems | Consequences | Closure is a well defined property | Illustration and properties | | S- | SLO-
1 | Self complementary graph-
definition, example and
counterexample | Characterization of a graphic sequence | Characterization for a line to be a bridge in a graph | G is Hamiltonian ifff its closure is Hamiltonian | Chromatic number, n-
colourable graph | | 10 | SLO-
2 | Results on self-
complementary graphs | Suffiencient condition is not necessary | Existence of non-cutpoints in a graph | Chavatal's theorem | Determination of chromatic
number for some known
graph families | | S- | SLO-
1 | Covering number, independence number | Algorithm to determine a graphic sequence | Block – definition | Petersen graph is nonhamiltonian | Equivalent conditions for a graph to be 2-colourable | | 11 | SLO-
2 | Illustrating Examples | Explanation with example | Examples and counterexamples | Petersen graph is nonhamiltonian | Illustration of the above conditions | | S- | SLO-
1 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | 12 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S- | SLO- | Result on sum of independence and covering numbers | Necessary condition for a partition to be graphic | Equivalent conditions for a graph to be a block | Trees | k-critical graph; bounds on
minimum degree of a k-
critical graph | | 13 | SLO-
2 | Result on sum of independence and covering numbers | Proof and consequences | Illustration of the above conditions | Construction of all trees with the same order | Consequences of the above result | | | SLO-
1 | <mark>α' + β' =</mark> p | Walk, trail, path, cycle | Connectivity and line-
connectivity of graphs | Equivalent conditions for a graph to be a tree | χ ≤ Δ+1 | | S-
14 | SLO-
2 | Proof and consequences | Examples | Determination of connectivity and line-connectivity for some known graph families | Proof and consequences | Bounds on chromatic
number of graph with
respect to minimum degree
of its induced subgraphs | | | SLO-
1 | Intersection graph | Any walk will contain a path | $k \le \lambda \le \delta$ | Every connected graph has a spanning tree | Uniquely colourable graph | | S-
15 | SLO-
2 | Every graph is an intersection graph | Converse is not true in general | Proof by case studies | Adding an edge of graph
which is not in its spanning
tree T yields a unique cycle
in it | Conditions for a graph to be uniquely colourable | | S-
16 | SLO-
1 | Line graph | Graph will always contain a
path of length equal to its
minimum degree | n-connected and n-line connected graphs | Centre of a tree, Eccentricity, radius, diameter | Every uniquely n-colourable graph is (n-1)-connected | | 10 | SLO-
2 | Basic results | Proof | Illustrating examples | Examples | Edge colouring, edge chromatic number | | S- | SLO-
1 | Theorems of Whitney and Beineke | An odd length closed walk will always contain an odd cycle | Bound on size of a k-
connected graph | Existence of centre in any tree | Vizing's theorem – statement only | | 17 | SLO-
2 | Consequences | An odd length closed walk
will always contain an odd
cycle | Nonexistence of a 3-
connected graph with size 7 | Illustrating examples with one and two centres | Edge chromatic number for complete graphs | | S- | SLO-
1 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | 18 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | ## Learning Resources - S. Arumugam, S. Ramachandran, Invitation to Graph Theory, Scitech 7. Publications (India) Pvt Ltd., 2006. - Jonathan L. Gross, Jay Yellen, Mark Anderson, Graph Theory and Its Applications, 3e, Chapman and Hall (CRC Press), 2018. - Gary Chartrand, Introductory Graph Theory, Dover Publications Inc. New York, 1977. - Robin J. Wilson, Introduction to Graph Theory, Fourth Edition, Pearson, 2009. - Arthur Benjamin, Gary Chartrand, Ping Zhang, The Fascinating World of Graph Theory, Princeton University Press, 2015. - S. A. Choudham, A First Course in Graph Theory, Macmillan India Ltd, 2000. - J. A. Bondy and U. S. R. Murthy, Graph Theory with Applications, Macmillon, 2008. | Learning | g Assessment | | | | | | | | | | | | | | | | |----------|------------------------------|--|----------|--------|----------|---------------|----------|--------|----------|--------------------------------------|----------|--|------|--|--|--| | | Discoule | Continuous Learning Assessment (50% weightage) | | | | | | | | Final Examination (50% weightage) | | | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - 3 (20%) | | CLA - | 4 (10%)# | i iliai Examination (30 % weightage) | | | | | | | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | | | aual 1 | Remember | 40% | 40% | 40% | 40% | | 30% | | 30% | | 30% | | 200/ | | | | | Level 1 | Understand | 40% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | | | | | Level 2 | Apply | 40% | | 40% | | 40% | | 40% | | 40% | | | | | | | | -evel Z | Analyze | 40% | - | | - | 40% | - | 40% | - | 4070 | - | | | | | | | Lovel 2 | Evaluate | 20% | | 30% | | 30% | | 30% | | 200/ | | |---------|----------|------|-----|-----|-----|-----|-----|-----|------|-------|---| | Level 3 | Create | 2070 | - | 30% | - | 30% | - | 30% | - | 30% | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 6 | # CLA -4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|---|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions
maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Dr. K. Ganesan, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Mrs. T. Karthy,
SRMIST
Dr. A. Anuradha, SRMIST | | Course | UM | A20D08T | Course
Name | | SEQUE | NCES AN | ND SERIE | S | | | urse
egory | E | | Dis | scipli | ne S | peci | ific E | lecti | ve C | ours | e | <u>L</u> | T
1 | P
0 | C
6 | |---|------------------------|---------------|--------------------------|--------------------------|--|-------------|----------------------|-----------------------|--------------------------|--------------------------|-------------------------|----------------------|------------------|----------------------|----------------------------|-------------------|-------------------|--|--------|--|---------------|--------------|---------------------|--------|--------|---------| | Pre
requis
Cours
Course
Departi | site 1
ses
Offer | Nil | Math | ematics | Co-
requisite
Courses | Nil | Data Boo
Codes/St | | | F | rogre
Cour | | Nil | | | | | | | | | | | | | | | Course
Rationa | | | The | purpose o | of learning thi | is course | is to: | | | | Lea | rning | | | | Pr | ogra | m Le | earn | ing C | outco | omes | s (PL | .0) | | | | 1. | Γο lear | rn about C | Converge | nce of sec | quences | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-
2: | Γo gai | in knowled | dge abou | ıt converge | ence of serie | s | | | | | | Н | | | | | | | | | | | | | | ı | | J : | Γo kno | w about t | ests of co | o <mark>nve</mark> rgend | ce of infinite r | eal serie | s | 133 | ř | , | | | | | | | | | | | | | | | | ı | | 4: | Γo stud | dy about A | Alternativ | e series | - | 4 | | | | h | u | ď | | | ch | | | ility | | | | | | | | ı | | ο. | | | | | Exponential | | | | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | ge | | ment | Analysis, Design, Research | ө | ı, | Environment & Sustainabilit <mark>y</mark> | | Work | | Finance | | | | 1 | | | o kno
series | w about S | Summatio | on of serie | s, Successiv | e differe | nce and re | ecurring | nking (| roficien | Itainme | Scientific Knowledge | alysis | Design & Development | sign, F | Modern Tool Usage | ulture | t & Su | | ndividual & Team Work | tion | ∞ | Leaming | | | ı | | Course | Learr | ning | - | ٠, | | | | | of Thi | cted Pr | cted At | tific K | Problem Analysis | In & De | sis, De | m Too | Society & Culture | onmen | 9 | dual & | Communication | Project Mgt. | <mark>ong Le</mark> | - 1 | -2 | က | | Outcon | | | t the end | of this co | urse, learner | s will be | able to: | | Level | Expe | Expe | Scien | Probl | Desig | Analy | Mode | Socie | Envir | Ethics | Indivi | Com | Proje | Life Long | PSO-1 | PSO- | PSO - 3 | | CLO-
1: | Solve | problems | on conve | ergence of | sequences | | 323 | - | 3 | 85 | 80 | Н | Н | L | - | - | - | - | - | М | L | | Н | - | - | - | | 2:
CLO- | Solve p | oroblems | on conve | ergence of | series | | - 13 | | 3 | 85 | 80 | М | Н | | М | М | - | - | - | М | | | Н | - | - | - | | 3: | | | | ŭ | alternative s | | | | 3 | 85 | 80 | Н | Н | - | | | - | - | - | М | ď | - | Н | - | - | - | | 4: 8 | eries | nowleage | about Bi | nomiai in | eorem, Expo | onentiai a | and Logar | tnmic | 3 | 85 | 80 | Н | Н | Н | М | | | - | - | М | L | - | Н | - | - | - | | 5: | | | | on of serie | | - diff | | | 3 | 85 | 80 | М | Н | L | | - | | - | - | М | - | - | Н | - | - | - | | | eries | w about s | Summaud | on or serie | s, Successiv | e dillere | nce and re | ecurring | 3 | 85 | 80 | М | Н | | | | • | - | - | M | | - | Н | - | - | - | | Dura
(ho | | М | lodule-l (| 18) | Mod | dule-II (18 | 3) | Mod | dule- | III (1 | 8) | Ì | t | М | odule | e-IV | (18) | | Ī | t | N | lodu | le-V | (18) | ī | | | (IIO | | Introduc | tion to se | quences | Introduction | to infinite | e series | Introduction condensa | | | ıchy's | | ntrod | duction | on to | Bin | omia | al | 9 | Sumr | natio | on of | seri | es | Ī | | | S-1 | SLO- | Limits of | fsequen | ces | Convergence | e of infin | ite series | Cauchy's | | | ation | E | Binor | nial t | heor | em i | for ra | ation | al | | | | i | | | | | | SLO- | | | | divergence of | of infinite | series | Problems | | | uchy | 's F | | ems | | on | Bi | inom | | Applio | | ns o | f pai | rtial | | | | S-2 | SLO- | | eorems i | | 101 | - 11 | 7.7 | Problems | usin | g Ca | auchy | 's F | | ems | on E | Binor | nial | t | | raction of the control contro | | on A | Appli | catio | ns o | of | | | 2 | sequence | ces | 100 | divergence of | or infinite | series | condensa | | | <u>.</u> | | heor | | <u> </u> | 4 | | | ŗ | artia | I fra | ction | IS | | | | | | SLO-
1 | converg | s principl
ence | e of | Oscillation of | of infinite | series | Problems
condensa | | _ | aucny | | ntrod | ductions | on to | mia | ale 1 | term | | Proble
partia | | | | catio | ons o | ìΤ | | S-3 | SLO- | Cauchy | 's sequ <mark>e</mark> i | nce | Oscillation o | f infinite | series | Problems
condensa | | | auchy | | Probl
erm | ems | of fi | ndin | g mi | ddle | | Proble
partia | | | | catio | ns o | of | | 0.4 | SLO- | | 's first the | | Necessary of Convergence | | | Problems
condensa | | | auchy | | Probl
erm | ems | of fi | ndin | g the | nth | | Proble
Partia | | | | catio | ns o | of | | S-4 | SLO-
2 | Bounded | d sequen | ces | Problems us
condition for
series | | | Problems
condensa | | | auchy | | Probl
erm | ems | of fi | ndin | g the | nth | | Proble
partia | | | | catio | ons o | of | | C.F. | SLO-
1 | Monotor | nic seque | nces | Convergence series | e of Geo | metric | Problems condensa | | | auchy | | ntrod | ductions | on to | Exp | one | ntial | | Sum series | | e n t | erm | s of t | he | | | S-5 | SLO-
2 | Basic monotor | theorer | | Convergence series | e of Geo | metric | Problems condensa | usin | g Ca | uchy | 's E | хро | nent | ial se | eries | | | | Problerms | | | | | e n | | | _ | SLO- | | | | Tutorial Ses | sion | | Tutorial S | | | | 7 | Tutor | ial S | essio | on | | | _ | utor | | | | | | | | S-6 | SLO- | Tutorial | Session | | Tutorial Ses | sion | | Tutorial S | essic | n | | T | Tutor | ial S | essi | on | | | 1 | utor | ial S | essi | on | | | | | | | | 1 | Ti- | 1 | | |------|-----------|---|---|---|---|--| | S-7 | SLO-
1 | Limit superior | Introduction to Comparison test | Introduction to Cauchy's root test | Problems on Exponential series | Problems on sum to the n terms of the series | | | SLO-
2 | Limit inferior | Comparison test | Cauchy's root test | Problems on Exponential series | Problems on Sum to the n terms of the series | | | SLO-
1 | Problems on limit inferior and limit superior | Problems using Comparison test | Problems using Cauchy's root test | Introduction to Logarithmic series | Problems on sum to the n terms of the series | | S-8 | SLO-
2 | Problems on limit inferior and limit superior | Problems using Comparison test | Problems using Cauchy's root test | Logarithmic series | Problems on sum to the n terms of the series | | | SLO-
1 | Problems on Bounded sequences | Introduction to D'Alembert's ratio test | Problems using Cauchy's root test | Problems on Logarithmic series | Introduction to Summation by difference series | | S-9 | SLO-
2 | Problems on Bounded sequences | D'Alembert's ratio test | Problems using Cauchy's root test | Problems on Logarithmic series | Summation by difference series | | S-10 | SLO-
1 | Problems on monotonic increasing sequences | Problems using D'Alembert's ratio test | Problems using Cauchy's root test | Introduction to summation of series |
Introduction to Successive differences series | | | SLO-
2 | Problems on monotonic decreasing sequences | Problems using D'Alembert's ratio test | Problems using Cauchy's root test | summation of series | Problems on Summation by difference series | | S-11 | SLO-
1 | Problems on Cauchy's sequences | Problems using D'Alembert's ratio test | Problems using Cauchy's root test | Applications of the Binomial theorem to the summation of series | Problems on Summation by difference series | | 3-11 | SLO-
2 | Problems on Cauchy's sequences | Problems using D'Alembert's ratio test | Problems using Cauchy's root test | Applications of the Binomial theorem to the summation of | Problems on Summation by difference series | | S-12 | SLO-
1 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | 5-12 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-13 | SLO-
1 | Problems on convergence of sequences | Introduction to Rabbe's test | Introduction to Alternative series | Problems of Finding the sum to infinity of the series | Introduction to Recurring series | | | SLO-
2 | Problems on convergence of sequences | Rabbe's test | Examples of Alternative series | Problems of Finding the sum to infinity of the series | Generating function of Recurring series | | S-14 | SLO-
1 | Problems on convergence of sequences | Problems using Rabbe's test | convergence of alternative series | Introduction to Sum of coefficients | Problems of finding the nth term of recurring series | | 3-14 | SLO-
2 | Problems on convergence of sequences | Problems using Rabbe's test | convergence theorems of alternative series | Problems on sum of coefficients | Problems of finding the nth term of recurring series | | 0.45 | SLO- | Problems on convergence of sequences | Problems using Rabbe's test | Problems on convergence of alternative series | Approximate values | Problems of finding the nth term of recurring series | | S-15 | SLO-
2 | Problems on convergence of sequences | Problems using Rabbe's test | Problems on convergence of alternative series | Finding approximate values | Problems of finding the nth term of recurring series | | S-16 | SLO- | Problems on convergence of sequences | Problems on all the above tests | Problems on convergence of alternative series | Modification of the logarithmic series | Problems of finding the nth term of recurring series | | 5-16 | SLO-
2 | Problems on convergence of sequences | Problems on all the above tests | Problems on convergence of alternative series | Problem on Modification of
the logarithmic series s | Problems of finding the nth term of recurring series | | S-17 | SLO- | Problems on convergence of sequences | Problems on all the above tests | Problems on convergence of alternative series | Problem on Modification of the logarithmic series s | Problems of finding the nth term of recurring series | | 3-11 | SLO-
2 | Problems on convergence of sequences | Problems on all the above tests | Problems on convergence of alternative series | Problem on Modification of the logarithmic series s | Problems of finding the nth term of recurring series | | 0 :- | SLO-
1 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-18 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | | 1. | T.K Manicavachagam Pillai, T. Natarajan, K.S. Ganapathy, | | |-----------------------|----|--|--| | Learning
Resources | 2 | Algebra, Volume 1, S. Viswanathan Pvt Limited, Chennai, 2004 | 3. Dr. S Arumugam, Sequences and series, New Gamma Publishers, 1999. | | 1103001003 | 2. | R. Chand & Co., 1999 | | | Learnin | g Assessment | | | | | | | | | | | |---------|------------------------------|--------|----------|----------|-----------|---------|------------|-----------|----------|---------------------|----------------| | | B | | Continu | uous Lea | arning As | sessmer | nt (50% we | eightage) |) | Final Examination (| 500/ weightege | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | rinai Examination (| 50% weightage) | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | Level 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | |---------|------------|-------|-----|-------|-----|-------|-----|-------|------|-------|---| | Level I | Understand | 40 /0 | - | 30 /6 | - | 30 /6 | - | 30 /6 | - | 30 /0 | - | | Level 2 | Apply | 40% | | 40% | | 40% | | 40% | | 40% | | | Level 2 | Analyze | 40 /0 | - | 40 /0 | - | 40 /0 | - | 40 /0 | - | 40 /0 | - | | Level 3 | Evaluate | 20% | | 30% | | 30% | | 30% | | 30% | | | Level 3 | Create | 20 /0 | - | 30 /0 | - | 30 /0 | - | 30 /0 | - | 30 /0 | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | 6 | # CLA -4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Prof. K. S. Ganapathy
Subramanian, SRMIST | | 17-1 | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Mrs. D. Thanga Rajathi, SRMIST | | Course | UMA | A20D09T Course
Name | Linear Algebra | | | | urse | | Ξ | Di | scipl | ne S | Speci | fic E | lecti | ve C | ours | ie | L
5 | . T | P
0 | C
6 | |--|-----------------------|---|---|-------------------------------------|--------------------------|--------------------------|-------------------------|----------------------|------------------|----------------------|----------------------------|-------------------|--------------|----------------|--------------|-----------------------|---------------|------------------------|------------------|--------|--------|--------| | Pre
requis
Course
Course
Departr | ite N
es
Offeri | ng Mathematics | Co- requisite Courses Nil Data Boo Codes/St | | | F | | ressiv | | I | | | | | | | | | | | | | | Course
Rationa | | | of learning this course is to: | | | | Le | arnin | g | | | Pr | ogra | m Le | earni | ng C | Outco | omes | s (Pl | _O) | | | | : | | stand the concepts of vector
eir properties. | or spaces, subspaces, bases, di | imension | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2
:
CLR-3 | | e matrices and linear transfo | : | • | 0 | vectors of linear transformation
spaces and determine orthogor | | | 7 | | | | | | | | | | | | | | | | | | : | inner p
Realis | product spaces | linear transformation and its ca | | om) | (%) | (%) | ľ | R | t- | earch | 3 | | Sustainability | | ork | | е | | | | | | :
CLR-6
: | form
Learn | triangular forms of a vector | r space | | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | VSiS | Design & Development | Analysis, Design, Research | Usage | ture | & Sustai | | ndividual & Team Work | LC | Project Mgt. & Finance | ming | | | | | Course | Loom | ing | AUT | 43 | of Think | ted Pro | ted Atta | ific Kno | Problem Analysis | n & Dev | sis, Des | Modern Tool Usage | by & Culture | Environment & | J | lual & T | Communication | xt Mgt. 8 | ife Long Leaming | 1 | 2 | - 3 | | Outcom | nes (Cl | At the end of this co | urse, learners will be able to: | | Level | Expec | Expec | Scien | Proble | Desig | Analy | Mode | Society & | Enviro | Ethics | Individ | Comr | Projec | Life Lo | PSO-1 | PS0-2 | PSO- | | 1: | Know
dimen | | vector spaces, subspaces, base | es and | 3 | 85 | 80 | Н | Н | L | - | - | - | ŀ | | М | L | - | Н | - | - | - | | CLO-
2 : | Link m | natrices and linear transform | nations. | | 3 | 85 | 80 | М | н | - | М | М | - | H | - | М | - | K | Н | - | - | - | | CLO-
3: | Learn | to compute eigen values ar | nd eigen vectors of linear transf | ormations. | 3 | 85 | 80 | Н | Н | - | | - | - | | | М | r | | Н | - | - | - | | CLO | Explai | n the significance of inner p | roduct spaces and their proper | ties. | 3 | 85 | 80 | Н | Н | Н | М | - | - | | - | М | L | | Н | - | - | - | | CLO-
5: | Analyz | ze adjoint of a linear transfo | rmation. | | 3 | 85 | 80 | М | Н | L | | | | - | - | М | - | | Н | - | - | - | | | Under | stand concepts of canonica | l and triangular forms of a vect | tor space. | 3 | 85 | 80 | M | Н | | - | ī | 3 | - | | М | | - | Н | - | - | - | | Dura
(ho | | 18 | 18 | B), | 18 | ٩ | H | Ť | H | 1 | 8 | | | | | ď | ī | 18 | | I | | | | | SLO- | Vector space-Definition | Inner product space-
Definition | Linear
Transform
Definition | natio | า- | | Isom | | ism (| of ve | ctor | | | near
amp | | ator | -Defi | initic | n an | ıd | | | S-1 | SLO- | Vector space -Examples. | Inner product space-
Examples | Linear
Transform
examples | atio | Դ- | | Theo | | | ed o | n | | Ad | joint | of a | Line | ear o | pera | ator | | | | | | Problems based on vector space | Inner product space-
Applications | Properties
Transform | | | ar | Dual | spa | ce-D | efini | tion | | Pr | oble | ms b |
ased | d on | line | ar op | erat | or | | S-2 | SLO-
2 | Elementary Properties of vector spaces. | Norm of a vector | Algebra of transforma | f Lin | ear | | Dua | spa | ce-E | xam | ples | | | itary | • | rato | rs-D | efini | tions | and | I | | | SLO- | Elementary theorems of vector spaces | Properties on Norm of a vector | Product of transforma | | | | Prob | lems | on [| Dual | spac | е | Th | eore | ms o | on U | nitar | у ор | erat | ors | | | S-3 | SLO- | Vector subspaces-
Definition, examples | Schwarz inequality | Theorems
of Linear
transforma | | | luct | Dua | bas | s-De | finitio | ons | | | rma
istra | | | rs-D | efini | tions | and | i | | | SLO- | Problems based on vector subspace | Triangle inequality | Algebra of operator | | | | Theo | orem | s bas | ed o | n du | al | Th | eore | ms (| on N | orma | al op | erat | ors | | | S-4 | SLO- | Problems based on vector subspace | Orthogonal vectors | Range spa | | | near | Prob | | on c | lual I | oasis | 3 | Не | rmit | ian f | orms | -Det | finitio | ons | | | | S-5 | SLO- | Elementary Properties of vector subspaces | Theorems based on Orthogonal vectors | Theorems
space | | | e | Seco | | | расе |)- | | Не | ermit | ian f | orms | s-Exa | amp | les | | | | 3-3 | SLO- | Algebra of subspaces | Problems involving
Orthogonal vectors | Null space | | | ır | | ond o | | расе |)- | | | eore | ms l | oase | d on | Hei | rmitia | an | | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Se | | | | | rial S | | on | | | _ | toria | l Se | ssior | 1 | | | | | | S-6 | 1
SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Se | essio | n | | Tuto | rial S | essi | on | | | Tu | toria | l Se | ssior | 1 | | | | | | S-7 | | Linear sum of two subspaces | Orthonormal vectors | Theorems space | on | Null | | Theo
space | orem
e | s on | seco | nd d | ual | Pr | oble | ms ir | non I | Herm | nitiar | n for | ms | | | | | Direct sum of two | Theorems based on | Sylverster theorem | Natural mapping | Jordan canonical form | |------|----------------|---|---|---|---|---| | | 2
SLO-
1 | subspaces Quotient space-Definition and example | Orthonormal vectors Problems involving | Invertible Linear transformation | Annihilator | Problems based on Jordon canonical form | | S-8 | SLO- | Elementary Properties of Quotient space | Orthonormal vectors Orthogonal basis -Definition, examples | Theorems on Invertible Linear transformation | Theorems on Annihilator | Rational canonical form | | 0.0 | SLO- | Internal direct sum of vector spaces | Problems on Orthogonal basis | | Annihilator of an Annihilator | Trace of a matrix-Definition and examples | | S-9 | SLO- | External direct sum of vector spaces | Orthogonal complement of a subspace | Non -singular Linear transformation | Eigen values and Eigen vectors of a Linear transformation | Theorems based on trace | | S-10 | SLO- | Linear combination of vectors | Gram-Schmidt process for constructing orthonormal basis | Theorems on non-
singular linear
transformation | Theorems based on Eigen values | Properties of Trace | | | SLO-
2 | Linear dependence and Independence of vectors | Problems based on Gram-
Schmidt process for
constructing orthonormal
basis | Matrix representation of a linear transformation | Theorems based on Eigen vectors | Problems on trace | | | | Problems based on Linear dependence of vectors | Bessel's Inequality | Problems on Matrix representation | Problems on Eigen values | Determinant of a linear transformationon of a finite dimensional vector space | | S-11 | | Problems based on Linear independence of vectors | Orthogonal Expansion | Similarity of matrices | Problems on Eigen vectors | Problems on Determinant of a linear transformation | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-12 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-13 | SLO- | Problems based on linear independence | The Adjoint of a Linear Transformation | Similarity of linear transformation | Monic polynomial | Transpose-Definition | | | SLO- | Basis of vector space | Properties of the Adjoint | Triangular forms | Cayley-Hamilton Theorem | Transpose- Examples | | 0.44 | SLO-
1 | Problems on basis of vector space | Self-Adjoint Transformation-
Definitions | Characteristics root-
Problems | Problems based on Cayley-
Hamilton Theorem | Properties of Transpose | | S-14 | SLO-
2 | Dimension of a vector space | Properties of Self-Adjoint
Transformation | Theorems based on
Triangular forms | Minimal polynomial-
Definition and examples | Theorems based on Transpose | | | 1 | Dimension of subspace of a vector space | Theorems on Self-Adjoint
Transformation | Canonical forms | polynomial | Problems based on Transpose | | S-15 | SLO-
2 | Elementary theorems based on the dimension of a vector space. | Problems on Self-Adjoint
Transformation | Theorems based on Canonical forms | minimal polynomial | Rank and Nullity –Definitions | | S-16 | SLO-
1 | Linear Span-Definition and examples | Congruent Operators | Nilpotent
Transformations-
Definitions | Primary Decomposition theorem | Rank and Nullity -Examples | | 3-10 | | Elementary Properties of Linear Span. | Theorems on Congruent
Operators | Nilpotent
Transformations-
Examples | Diagonalization | Theorems based on Rank and Nullity | | S-17 | | Homomorphism
Problems | Inner Product Vector Space
Isomorphism
Orthogonal Projections | Basic properties Lemmas | Geometric multiplicity Algebraic multiplicity | Invariant subspaces Problems based on invariant | | | 2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | subspaces Tutorial Session | | S-18 | 1
SLO- | | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | | 2 | | | | | | | Learning
Resources | 1.
2.
3.
4.
5. | Stephen H. Friedberg, Arnold J. Insel & Lawrence E. Spence (2003). Linear Algebra (4thedition). Prentice-Hall of India Pvt. Ltd. Kenneth Hoffman & Ray Kunze (2015). Linear Algebra (2nd edition). Prentice-Hall. I. M. Gel'fand (1989). Lectures on Linear Algebra. Dover Publications. Dr.Sudhir Kumar Pundir(2015). A competitive approach to Linear Algebra(1st Edition). CBS Publishers & Distributors Pvt. Ltd. Nathan Jacobson (2009). Basic Algebra I & II (2nd edition). Dover Publications | 7.
8. | Serge Lang (2005). Introduction to Linear Algebra (2nd edition). Springer India. Vivek Sahai & Vikas Bist (2013). Linear Algebra (2nd Edition). Narosa Publishing House. Gilbert Strang (2014). Linear Algebra and its Applications (2nd edition). Elsevier. I.N. Herstein, Topics in Algebra, 2nd Edition, John Wiely, NewYork, 2013. | |-----------------------|----------------------------|---|----------|---| | | | Publications. | | NewYork, 2013. | | Learning | g Assessment | | | | | | | | | | | | | | | |----------|------------------------------|--------|--|--------|----------|--------|----------|--------|----------|-----------------------------------|----------|--|--|--|--| | | ъ. | | Continuous Learning Assessment (50% weightage) Final Examination (50% weightage) | | | | | | | | | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | | Level 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | | | | | Level I | Understand | 40% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | | | | Level 2 | Apply
Analyze | 40% | - | 40% | - | 40% | - | 40% | - | 40% | - | | | | |---------|------------------|-----|-----|-----|-----|-------|---|-----|------|-------|---|--|--|--| | Level 3 | Evaluate | 20% | | 30% | | 30% | | 30% | | 30% | | | | | | Level 3 | Create | 20% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | | | | Total | | 0 % | 10 | 0 % | 100 % | | 10 | 00 % | 100 % | | | | | # CLA -4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|---|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions | D (VV) O O O O O O O O O O O O O O O O O O | Dr. A. Govindarajan, SRMIST | | maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras,
sryedida@iitm.ac.in | Prof. K. S. Ganapathy
Subramanian, SRMIST | | | Def D. V. Delhick Konser HT Konser had Oiltheadin | Dr. R. Perumal, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. R. Arulprakasam, SRMIST | | | urse
ode | UES20AE1T | IMENTAL S | TUDIES | | | (| Cou
Cate | | | Α | | Abil | | Enha
ours | | men | ıt | L
3 | . T | P
0 | C
3 | | | | | | |----------------|---|----------------------------|----------------------------|--|------------------------------------|--------------------|---|--------------------------|--|-------------------------|----------------|---------------------|---------------|--------------------|----------------------|--------------------|-------------------------|---|------------------------|-----------------------------|-------------------|--------|--------|-------|--|--|--| | Pre | -requisi | ite Courses | Nil | Co-requisite
Courses | | Nil | | | | Prog | ress | | | | | | | | Nil | | | | | | | | | | | e Offer
tment | ing | Computer Ap | oplications | Data Boo
Codes/St | | | | | | | | | | | N | il | | | | | | | | | | | | Cours
(CLR) | | ning Rationale | The purpo | se of learning this | course is to |): | | | Lea | rnin | g | | | Pro | grar | m Le | earn | ing (| Outo | ome | es (F | PLO) | | | | | | | CLR-
1: | To tead | ch the importan | nce of environm | ent | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | | CLR-
2: | To imp | art the knowled | dge about ecos | ystem | CLR-
3: | To tead | ch about Biodiv | versity | | | | | , | CLR-
4: | 4: To create awareness about environmental pollution | | | | | | | | | | | sei | | | e Je | | | | | | | | | | | | | | CLR-
5: | | | | | | | | | t (%) | inment (%)
Knowledge | Concepts | Related Disciplines | dge | ion | to Utilize Knowledge | |)ata | | sills | S | | | | | | | | | | | | | | | | | oficien | ainme | Know | of Con | lated D | Knowledge | Specialization | ize Kn | eling | erpret [| Skills | ving St | ion Sk | cills | | | | | | | | | se Learr
omes (C | | At the end of this | s course, learners | will be able | to: | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental | Application of | Link with Re | Procedural k | Skills in Spe- | Ability to Util | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | | | | CLO-
1: | To ga | in knowledge o | n the important | ce of natural resou | rces and en | ergy | 2 | 75 | 60 | Н | Н | Н | - | - | - | Ē | Ì | - | | - | - | - | - | - | | | | | CLO-
2: | To und | derstand the st | ructure and fun | ction of an ecosys | tem | | 2 | 80 | 70 | - | Н | - | Н | - | - | | - | - | - | - | - | - | - | - | | | | | CLO-
3: | threat | | | spect to biodiversi
preciate the concep | | nd the | 2 | 70 | 65 | Н | ĕ | - | | | - | - | - | - | 2 | - | - | - | - | - | | | | | CLO-
4: | To un | derstand the ca | auses of types of | of pollution and dis | aster manag | gement | 2 | 70 | 70 | Н | - | Н | Н | Н | - | - | - | - | - | | - | - | - | - | | | | | CLO-
5: | To ob: | serve and disc | over the surrou | nding environment | through fiel | ld work | 2 | 80 | 70 | Ŀ | Н | ŀ | Н | - | - | - | - | - | - | - | - | - | - | - | | | | | | ation | - | 9 | 9 | | | | 9 | I | ï | ī | i | ū | 9 | | | ľ | T | - | | 9 | i | | | | | | | | SLO-1 | Environment
Concept | al Studies- | Concept of an ed | cosystem | Biodive | | | | | . (| Caus | es, L | ffec | ts ar | nd | | | ed t | for e | quita | able | | | | | | | S-1 | SLO-2 | | mportance of
al Studies | Ecosystem degra | | India as
Nation | India as a Mega Diversity Control Measures of | | | | | | | Equity – Disparity | | | | | | | | | | | | | | | S-2 | SLO-1 | Need for pub | olic awareness. | Structure and Fu
an ecosystem | unctions of | habitat wildlife | | | | | (| Caus | es, E | Effec | Mana
ets ar | nd | | | ban | – ru | ral e | quity | iss / | ues | | | | | | SLO-2 | Institutions in | n Environment | Producers, cons
decomposers | umers and | man-wi | ldlife | con | flicts | | | | | | ures
Was | | rbar | 1 / | The need for Gender | | | | | | | | | | | SLO-1 | People in En | vironment | Energy flow in the ecosystem | ie . | Endang
India | ered | d spe | cies | of | | Ì | | Ī | | | | | | rving
gene | | | es fo | r | | | | | S-3 | SLO-2 | Awareness a
Environment | | The water cycle
Carbon cycle, T
cycle, The Nitro
The energy cycle
Integration of cyc
nature | he Oxygen
gen cycle ,
e and, | Endemi | ic sp | ecie | s of I | ndia | | | | | duals
rentic | | | Ti | ne rig | generations ghts of animals | | | | | | | | | S-4 | SLO-1 Introduction to natural resources- Associated Ecological succession Defi | | | | | | | ital F | Pollut | ion- | | Disa:
Vatu | | nana | agen | nent | - | | | hicai
nmei | | | | and | | | | | | SLO-2 Renewable and Nonrenewable resources Food chains, Food webs and Ecological pyramids | | | | | | | | | | ŀ | lood | ls, E | arth | quak | es | | av | varei | ness | ; | | | | | | | | S-5 | S-5 SLU-1 Forest resources features, Structure and functions Polli | | | | | | Mea | ects
asure | and
es of | Air | | | ones
slide | | | | | The conservation ethic and traditional value systems of India | | | | | | | | | | | | SLO-2
SLO-1 | | | Forest ecosyster
Grassland ecosy | | Causes | Fff | ects | ts and Environment From Unsustainable to Sustainable Development | S-6 | SLO-2 | Food Resoul | rces | Desert ecosyste | m | | Mea | | | | | | | | | | Wasteland Reclamation | | | | | 1 | | | | | | | S-7 | SLO-1 | Energy Reso | ources | Aquatic ecosyste (ponds, lakes, st | | | | | | | | | | | vatic | | | | imat
armii | e ch
ng | ange | e & (| Glob | al | | | | | | SLO-2 | Land Resources | Aquatic ecosystems (rivers, estuaries, oceans) | Causes, Effects and
Control Measures of Soil
Pollution | | | |-----|-------|--|--|--|---|-------------------------| | | SLO-1 | Renewable and non-
renewable resources- Wind | Value Of Biodiversity | Causes, Effects and | Rain Water Harvesting | Acid rain & Ozone layer | | S-8 | SLO-2 | Renewable and non-
renewable resources-
geothermal | Consumptive Value And
Productive Value | Control Measures of Marine pollution | Watershed | depletion | | S-9 | SLO-1 | Renewable and non-
renewable resources- Solar | Social Value and Ethical
Value | | Environmental Ethics:
Issues and Possible
Solutions | Nuclear Accidents and | | 3-9 | SLO-2 | Renewable and non-
renewable resources-
Biomass | Aesthetic Value and
Option Value | L.Ontrol Meachires of | Resource consumption patterns | Nuclear Holocaust | | | Theory: | |-----------|---| | | Bharucha Erach, (2013), Textbook of Environmental Studies for Undergraduate Courses (Second edition). | | | Telangana, India: Orient BlackSwan. | | Learning | Basu Mahua, Savarimuthu Xavier, (2017), SJ Fundamentals of Environmental Studies. Cambridge, United Kingdor | | Resources | Cambridge University Press | | | 3. Dr.R.Jeyalakshmi.2014.,Text book of Environmental Studies, Devi publications, Chennai | | | 4. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad – 380013, India, | | | Email:mapin@icenet.net (R) | | Level | | | Co | Final Examination (50% | | | | | | | | | | |---------|------------|--------|----------|------------------------|----------|--------|----------|--------|----------|------------|----------|--|--| | | | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | weightage) | | | | | | Thinking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | Remember | 40 | / | 40 | | 40 | | 40 | | 40 | | | | | Level 1 | Understand | 40 | | 40 | 5.583 | 40 | 217 | 40 | - 1 | 40 | | | | | Level 2 | Apply | 30 | | 30 | 16.00 | 30 | 43.00 | 30 | | 30 | | | | | LeverZ | Analyze | 30 | | 30 | 200 | 30 | 97.3 | 30 | 14. | 30 | | | | | Level 3 | Evaluate | 30 | | 30 | | 30 | | 30 | 77.5 | 30 | | | | | Level 3 | Create | 30 | 411 | 30 | 27.4% | 30 | 257 | 30 | | 30 | | | | | | Total | 100 % | | 10 | 0 % | 10 | 0 % | 10 | 0 % | 100 % | | | | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|---|---| | Experts from Industry | Experts from Academic | Internal Experts | | 1. Mr. Suresh S, Program Head,
Hello FM | Dr. G Balasubramania Raja, Prof & Head, Manonmaniam
Sundranar University
Mail- gbs_raja@yahoo.com | 1. Dr. Rajesh R, Head, SRM IST | | | ZIVIARN-LEIP. | 2.Dr.S.Albert Antony Raj, Associate Professor and Head,
SRMIST | | Course
Code | UJK20501T | Course
Name | Leade | ership | and Management Skills
 3 | Course
Category | JeevanKaushal-
JK | Life Skill Courses | L T P C 2 0 0 2 | |------------------------------|-----------------------|----------------|-----------------------------|--------|--------------------------------|--------------------|--------------------|----------------------|---------------------------------|-----------------| | Pre-
requisite
Courses | | | Co-
requisite
Courses | Nil | | Progress
Course | ive
S Nil | | | | | Course
Departm | U | *Parent [| Department | | Data Book /
Codes/Standards | - | | | | | | Rationa | Learning
le (CLR): | | pose of learni | • | course is to: | | Learnin | g | Program Learning Outcomes (PLO) | | | | Learning
le (CLR): | The purpose of learning this course is to: | Le | earni | ng | | | | Pro | ogra | m Le | earni | ng C | Outco | mes | s (PL | .0) | | | | |------------|------------------------|---|--------------------------|--------------------------|-------------------------|-----------------------|----------------|-----------------------------|----------------------|--------------------------|---|--------------------|---------------------------------------|----------------------|--------------------------|-----------------|-------------------|------------|---------------------|--------------| | CLR-1
: | help students | to develop essential skills to influence and motivate others | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | Inculcate eme | otional and social intelligence and integrative thinking for ership | CLR-3
: | create and ma | intain an effective and motivated team to work for the society | | 1 | | H | | | | | | | | | | | | | | | | CLR-4
: | nurture a crea | tive and entrepreneurial mindset | u) | (9) | (6 | Ф | | lines | 1 | | agpa | | | | | | | | | | | | | s understand the personal values and apply ethical principles all and social contexts | (Bloor | ency (% | nent (% | owledg | Concepts | Discip | ledge | zation | Knowle | 0 | t Data | S | Skills | Skills | | | Behavior | БL | | CLR-6
: | manage comp | petency-mix at all levels for achieving excellence with ethics | hinking | Proficie | Attainr | ıtal Kn | J of C | Related | Know | pecializ | Jtilize | odeling | nterpre | ve Skil | solving | cation | Skills | | ıal Beh | Long Leaming | | | Learning
les (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of | Ink with Related Discipline | Procedural Knowledge | Skills in Specialization | Shility to Utilize Knowledge ■ Ability Knowle | Skills in Modeling | Analyze, Interpret Da <mark>ta</mark> | Investigative Skills | ▼ Problem Solving Skills | □ Communication | Analytical Skills | ICT Skills | Professional | Life Long | | CLO-1 | | bus leadership models and understand / assess their skills, abilities that affect their own leadership style and can create ip vision | 3 | 80 | 75 | L | M | H | - | M | M | | | | М | Н | L | - | H | Н | | | | nonstrate a set of practical skills such as time management,
nent, handling conflicts, team leadership, etc | 3 | 80 | 75 | L | M | Н | İ | М | М | | - | Ī | М | Н | L | Ī | Н | Н | | | | e basics of entrepreneurship and develop business plan | 3 | 75 | 70 | L | М | Н | Ä | М | М | | | - | М | Н | L | 1 | Н | Н | | CLO-4 | apply the des | ign thinking approach for leadership | 3 | 75 | 70 | L | М | Н | Ē | М | М | | | - | М | Н | L | - | Н | Н | | | appreciate the | e importance of ethics and moral values for making of a sonality | 3 | 75 | 70 | L | Н | Н | | М | М | - | - | - | М | Н | L | - | Н | Н | | | be an integral | | 3 | 75 | 70 | L | Н | Н | ù | М | М | | | - | М | Н | L | - | Н | Н | | - | ration
lour) | 6 | 6 | 6 | 6 | 6 | | | | |-----|-----------------|--|----------------------------|--|---|---|--|--|--| | | SLO- | Leadership - definition | Team building | Management – definition | Women in management | Entreprene <mark>urship</mark> | | | | | S-1 | SLO-
2 | Leadership – qualities | Team dynamics | Manager – traits | Global gender perspective in
business. Do women make
good managers? -
discussion | Entrepreneurship | | | | | S-2 | SLO- | Leadership – styles | Work delegation | Scheduling work | Confronting problems faced by women managers – case study | Successful Indian entrepreneurs – case study | | | | | 5-2 | SLO-
2 | Leadership – styles | Work delegation – activity | by women managers – cast
study | | | | | | | S-3 | 1 | Difference between leader and boss | Decision making | Strategic planning | Successful women managers – documentary screening | Successful women entrepreneurs – case study | | | | | 5-3 | | Case study (based on leadership styles) | Decision making - activity | Strategic planning | Successful women
managers – documentary
screening | Successful women entrepreneurs – case study | | | | | | 1 | Case study (based on leadership styles) | Motivation | Change management | Women labour force in work place | Ethics – definition | | | | | S-4 | SLO-
2 | Case study (based on leadership styles) | Motivating for results | Change management – activity | Problems faced by women labour force in work place - case study | Corporate ethics | | | | | S-5 | 1 | Leadership in diverse
organizational structures,
cultures and communications | Argumentation, Persuasion | Energy management | Sexual harassment of
women at workplace
(prevention, prohibition, and
redressal) Act, 2013 | Essential elements of business ethics | | | | | | SLO-
2 | Leadership in diverse organizational structures, cultures and communications | Negotiation , Networking | Novel ways to manage energy in work place – activity | Documentary screening -
Sexual harassment of
women at workplace | Activity (students formulate ethical code of their business organization) | | | | | | | SLU-
1 | Leading the organisation through stability and turbulence | Budget planning | Work force management | Transgender persons protection of rights act, 2019 | Ethical dilemma | | |---|-----|-----------|---|-----------------|-----------------------|--|------------------------------|--| | ľ | S-6 | SLO-
2 | Case study | | in organisations | hased on inclusiveness of | Ethical dilemma - case study | | | | 1. | Craig E Johnson, Meeting the ethical challenges of leadership, | 4. | Alexander Osterwalder, Business Model Generation, Wiley, 2013 | |-----------|----|--|----|---| | | | Sage publications, 2018 | 5. | Deborah Tannen, Talking from nine to five: Women and men in the | | Learning | 2. | Allan R Cohen, David L Bradford, Influence without authority, | | workplace, Harper Collins publishers, 2010 | | Resources | | Wiley, 2018 | 6. | Amish Tandon, Law of sexual harassment at workplace: Practice | | | 3. | T V Rao, Managers who make a difference: Sharpening your | | and procedure, Niyogi books, 2017 | | | | management skill, Random house India, 2016 | 7. | Rashmi Bansal, Connect the dots, Westland books, 2012 | | Learning Assessment | | | | | | |---------------------|---------------------------|-------------|------------------------|------------------------|----------------| | | |
Co | ontinuous Learning Ass | essment (100% weightag | ge) | | Level | Bloom's Level of Thinking | CLA-1 (20%) | CLA-2 (20%) | CLA-3 (30%) # | CLA-4 (30%) ## | | | | Theory | Theory | Theory | Theory | | Level 1 | Remember | 10% | 10% | 30% | 15% | | Level I | Understand | 10% | 10% | 30% | 15% | | Level 2 | Apply | 50% | 50% | 40% | 50% | | Level 2 | Analyze | 30 % | 50 /6 | 40 // | 30 /6 | | aval 2 | Evaluate | 400/ | 400/ | 200/ | 250/ | | Level 3 | Create | 40% | 40% | 30% | 35% | | | Total | 100 % | 100 % | 100 % | 100 % | # CLA-1, CLA-2 and CLA-3 can be from any combination of these: Online Aptitude Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, Mini Talks, Group Discussions, Mock interviews, etc. ## CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | THE RESERVE OF THE RESERVE OF THE PARTY T | Carrier and Carrie | |--|--|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Ajay Zener, Director, Career Launcher | | 1. Ms Sindhu Thomas B, AssistantProfessor& Head in Charge, CDC, FSH, SRMIST 2. Mr Rajsekar, Assistant Professor, CDC, FOM, SRMIST | | Course | | 0601T | Course
Name | C | OMPLEX AI | NALYSIS | | | urse
egory | С | C Professional Core Course L T P | | | | | | | C
6 | | | | | | | |---|---|-----------|----------------|-------------|-----------------------------|---------------------------------------|-------------------|--------------------------|-------------------------|----------------------|--|----------------------|----------------------------|-------------------|-------------------|------------------------------|--------|----------------|---------------|----------------|---------------|---------|-------|---------| | Pre
requis | site Nil
ses | | | | Co-
requisite
Courses | Nil | | P | rogre | | Nil | | | | | | | | | | | | | | | Course
Depart | e Offering
ment | l | Mathe | ematics | | Data Book /
Codes/Standards | Course Learning Rationale (CLR): The purpose of learning this course is to: Learning Program Learning Outcomes (PLO) | CLR-1 | To unde | rstand | the conce | pts of ana | alytic functio | n. | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 | To learn | the cor | ncepts of | transform | ation in com | plex variable. | CLR-3 | To know | how to | integrate | the com | plex functio | n | | ľ | | | | | | | ì | | | | | | | | | | | CLR-4
: | To learn | the cor | ncepts of | different t | ypes of sing | ularities | | 1 | | | | | 4 | | | lity | | | | | | | | | | CLR-5 | To learn | the cal | culation o | f residues | S | | (Bloom) | y (%) | t (%) | 9 | | ent | searc | d | 'n | ainabi | | Vork | | ool | | | | | | CLR-6 | To unde | rstand | the evalua | ation of in | tegrals of di | fferent types | king (B | oficienc | ainmen | owledg | lysis | velopm | ign, Re | Usage | lture | & Sust | H | Team Work | on | & Finance | Learning | | | | | Outcon | Learning | | the end o | of this cou | ırse, learner | s will be able to: | Level of Thinking | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | Problem Analysis | Design & Development | Analysis, Design, Research | Modern Tool Usage | Society & Culture | Environment & Sustainability | Ethics | Individual & T | Communication | Project Mgt. 8 | Life Long Lea | PSO - 1 | PSO-2 | PSO - 3 | | CLO-
1: | Explain | the ana | lytic funct | ion and it | s properties | 12.4 | 3 | 85 | 80 | Н | Н | L | - | | | - | - | М | L | - | Н | - | - | - | | CLO-
2 : | Explain | the tran | sformatio | n concep | ts in comple | x variable. | 3 | 85 | 80 | М | Н | - | М | М | - | | - | М | 7 | - | Н | - | - | - | | CLO-
3: | Explain | several | facts on o | complex i | ntegration | E 245 | 3 | 85 | 80 | Н | Н | - | | - | | - | | М | 1 | ÷ | Н | - | - | - | | CLO-
4: | expansion of Taylor's and Laurent's series. | | | | | | | 85 | 80 | Н | Н | | М | - | - | - | - | М | L | ď | Н | - | - | - | | CLO-
5 : | Evaluate | e the dif | ferent typ | es of real | definite inte | egrals. | 3 | 85 | 80 | М | Н | L | H | - | | - | ŀ | М | E | - | Н | - | - | - | | CLO- | | | | | in complex
ontour integr | analysis such as analyticity, ration. | 3 | 85 | 80 | М | Н | - | | - | - | - | - | М | - | 1 | Н | - | - | - | | | ation
our) | Module-I (18) | Module-II (18) | Module-III (18) | Module-IV (18) | Module-V (18) | |-----|---------------|--|----------------------------------|--|---|---| | S-1 | SLO-
1 | Complex function-
Definition, examples. | Mappings Introduction | Integration of complex function | Power series | Residues -Definition | | 5-1 | SLO-
2 | Extended complex plane | Conformal Mapping | Simple curve | Radius of convergence of the power series | Calculation of residues | | S-2 | SLO- | Stereographic projection | Isogonal mapping | Contour integral | Taylors series | Calculation of residuesExamples | | 5-2 | SLO-
2 | Riemann Sphere | Magnification | Simple integral using definition | Taylors theoremproof | Problems based on residue | | S-3 | SLO-
1 | Complex variable ,Limit of a function | Magnification and rotation | Definite integrals of function |
Uniqueness theorem | Cauchy Residue theorem | | 5-3 | SLO-
2 | Continuity of a function | Inversion and reflection | Definite integrals
problems. | Taylor's theorem-Examples | Cauchy Residue theorem with proof | | S-4 | SLO- | Theorems based on continuity | w=az+b transformation | . Definite integrals
problems | Taylor's theorem-Examples. | Cauchy Residue theorem with proof | | 5-4 | SLO-
2 | Uniform continuity | ,w=1/z transformation | Simply connected region | Zeros of an analytic function. | Problems based on Cauchy
Residue theorem | | ۲ | SLO- | Differentiability of a function | Problems based on transformation | Cauchy fundamental theorem | Laurent's theorem with proof | Practice Problems | | S-5 | SLO- | Theorems based on differentiability | w=z ² transformation | Integral along an arc joining two points | Laurent's theorem with proof | Problems based on Cauchy
Residue theorem | | S-6 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | 5-6 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | 0.7 | SLO- | .Analyticity of a function | w=√z transformation | Practice Problems | Laurent Series | Real definite integral | | S-7 | SLO-
2 | Necessary condition for differentiability | Problems based on transformation | Cauchy goursat theoremstatement | Problems based on Laurent theorem | Real definite integral | | S-8 | 91.0 | Sufficient condition for differentiability | W= e ^z transformation | Cauchy integral theorem | Problems based on Laurent
theorem | Evaluation of Integral of the type $\int_{0}^{2\pi} f(\cos\theta,\sin\theta)d\theta.$ | | | SLO- | CR equations in polar form | Problems based on transformation | Problems based on theorem | Problems based on Laurent theorem | Evaluation of Integral of the type | |------|-----------|---|--|---|--|---| | | 2 | | | | | $\int_{0}^{\cdot} f(\cos\theta,\sin\theta)d\theta.$ | | | SLO- | Practice Problems | Theorems based on transformation | Practice Problems | Singularity-Definition | Practice Problems | | S-9 | SLO-
2 | Harmonic function Definition, examples | Bilinear transformation | integral theorem for
first derivatives | Singularity-Examples | Jordan's lemmaStatement | | S-10 | SLO- | Analytic function
Properties | Cross ratio and its invariance property | Integral formula for
nth derivative | Isolated Singularity-
Definition | Evaluation of Integral of the type $\ddot{\int} f(x) \sin ax dx, a > 0$ | | | SLO- | Analytic function
Properties | Theorems based on Bilinear transformation | Problems based on theorem | Isolated Singularity
Examples | Evaluation of Integral of the type $\int_{0}^{\infty} f(x) \sin ax dx, a > 0$ | | | SLO- | Problems based on properties | Theorems based on Bilinear transformation | Problems based on theorem | Removable Singularity-
Definition | Practice Problems | | S-11 | SLO- | Harmonic conjugate | Theorems based on Bilinear transformation | Problems based on theorem | Removable Singularity -
Example | Problems based on properties | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-12 | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-13 | SLO- | Determination of harmonic conjugate examples | Problems based on Bilinear transformation | Related integral theorem. | Essentialsingularity-
Definition | Evaluation of Integral of the type $\bar{\int} f(x) \cos ax dx, a > 0$ | | 0 10 | SLO- | Determination of harmonic conjugate examples | Problems based on Bilinear transformation | Related integral
theorem—Morera's
theorem | Essential singularity-
Examples | Evaluation of Integral of the type $\int_{-\infty}^{\infty} f(x) \cos ax dx, a > 0$ | | | SLO- | Construction of an
Analytic function | Special Bilinear transformation | Related integral theorem—Liouville's theorem | pole-Definition | Practice Problems | | S-14 | SLO-
2 | Construction of an
Analytic function when
real part is known | Practice Problems | Related integral
theorem—Cauchy
Inequality | Pole-examples | Problems on the above | | S-15 | SLO-
1 | Problem on the above | Problem on the above | Problem on the above | Problem on the above | Evaluation of Integral of the type $ \bar{\int} \frac{p(x)}{q(x)} dx $ | | | SLO- | More problems | More problems | More problems | More problems | More problems | | S-16 | SLO- | Construction of an
Analytic function when
real part is known. | Theorems based on special bilinear transformation. | Related integral
theorem-
Fundamental
theorem of Algebra | Nature of singularities | Evaluation of Integral of the type $ \bar{\int} \frac{p(x)}{q(x)} dx $ | | | SLO- | Construction of an Analytic function when imaginary part is known | Theorems based on special bilinear transformation | Poisson integral formula | Determination of Nature of singularities | Practice problems | | | SLO- | Construction of an Analytic function when imaginary part is known | Theorems based on special bilinear transformation | Maximum modulus
principle | .Nature of singularities
problems | Evaluation of Integrals of the form $ \bar{\int} f(x)dx $ | | S-17 | SLO-
2 | Construction of an
Analytic function when
imaginary part is known | Theorems based on special bilinear transformation | Maximum modulus principle with proof | Nature of singularities-
problems | Evaluation of Integrals of the form $\int_{-\infty}^{\infty} f(x)dx$ | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-18 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | Learning
Resources | 1.
2.
3.
4. | S.Narayanan and T.K.Manicavachagompillai, Complex Analysis, Revised Edition.S.Viswanathan Printers & Publishers,2002 P.Duripandian and LaxmiDuraipandian, Complex Analysis,EmeraldPublishers,Chennai, 2006. S.Ponnusamy,Foundations of Complex Analysis,Narosa Publishing House,New Delhi,2nd edition,2013. Murray R.Spiegel, Theory and problems of complex variable,Tata McGraw Hill Edition,New Delhi 2005 | 7. | James Ward Brown and Ruel V. Churchill, Complex Variables and Applications, 8th Ed.,McGraw – Hill International Edition, 2009. Joseph Bak and Donald J. Newman, Complex analysis, 2nd Ed., Undergraduate Texts inMathematics, Springer-Verlag New York, Inc., New York, 3rd edition 2010. J.N. Sharma, Functions of a Complex variable, Krishna Prakasan Media(P) Ltd, 13th Edition, 1996-97. B.S.Thagi, Functions of a Complex variable,Kedarnath Ramnath,Meerut,2015 | | |-----------------------|----------------------|---|----|---|--| |-----------------------|----------------------|---|----|---|--| | Learning | earning Assessment | | | | | | | | | | | | | | |----------|------------------------------|--------|----------|-----------------------|-----------------|--------|----------|--------|----------|-----------------------------------|----------|--|--|--| | | | | Continu | Final Franciscotion (| -00/ai-abta-a-) | | | | | | | | | | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | Level 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | | | | Level | Understand | 40% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | | | Level 2 | Apply | 40% - | | 40% | _ | 40% | | 40% | | 40% | | | | | | Level 2 | Analyze | 40% | - | 40% | - | 40% | - | 40% | i | 40% | - | | | | | Level 3 | Evaluate | 20% | _ | 30% | _ | 30% | _ | 30% | _ | 30% | _ | | | | | Level 3 | Create | 20 /0 | - | 30 /6 | - | 30 /0 | - | 30 /6 | - | 30 /0 | - | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 %
 10 | 00 % | 100 % | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Dr. K. Ganesan, SRMIST | | 171 | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Mrs. V. Vidya, SRMIST | | Course | UMA | \20602T | Course
Name | | | Mechanics | | | | urse | С | | | Pro | ofess | siona | ıl Co | re C | ours | e | | L
5 | T
1 | P
0 | C
6 | |---|---|--|--|---|---|---|---|---------------------------------------|--------------------------|-------------------------|--|-------------------------------------|-----------------------------------|---------------------------------|---------------|--|----------------------|---|-----------------------|---------------------------------|------------------------|------------------------|-------------|-----------|-----------| | Pre
requis
Cours
Course
Departr | ite N
es
Offeri | lil | Mathen | matics | Co-
requisite
Courses | | a Book /
des/Standards | | F | | essiv | e Nil | | | | | | | | | | | | | | | Course | | | The pu | ırpose o | of learning thi | is course is to | D: | | | Lea | arning | | | | Pr | ogra | m Le | earni | ing C | Outco | omes | s (PL | .0) | | | | CLR-1
:
CLR-2 | To uno
study
To rela | derstand t
simple ha
ate the co | rmonic mo | tion and | d its properti | | will be able to | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-3
:
CLR-4
:
CLR-5
:
CLR-6 | CLR-4 To understand concepts of motion and study in detail motion of a projectile and trajectories CLR-5 To learn the concepts of central forces and orbit | | | | | | | | Expected Proficiency (%) | Expected Attainment (%) | Scientific Knowledge | nalysis | Development | Analysis, Design, Research | ool Usage | & Culture | ent & Sustainability | | ndividual & Team Work | sation | Project Mgt. & Finance | Learning | | | | | 1 :
CLO-
2 : | Ackno
object
Prior k | wledge the called s | ne existenc
imple harm
e about the | e of the
nonic mo | mathematica
otion
nentals of sin | nple harmoni | tion of physical | ω Level of Thinking (Bloom) | Expected F | 08 Expected / | ▼ T Scientific I | т Problem Analysis | · r Design & [| | | · Society & (| - Environment & | · · Ethics | S S Individual 8 | Communication | · Project Mg | 工 工 Life Long Learning | PSO -1 | . PSO - 2 | . PSO - 3 | | 3: | | op a broades and ela | | of the | topics on imp | oulse, impulsi | ive forces , | 3 | 85 | 80 | Н | Н | | | 7 | F | | - | М | 1 | - | Н | | - | , | | 4: | Exami | ne the sig | gnificance o | of motio | n of a project | tile and trajed | ctories | 3 | 85 | 80 | Н | Н | Н | М | - | - | | - | М | ľ | | Н | - | - | - | | 6 · | Know
compo | the funda | mental cor | ncepts in | n two dimens | its properties
sional rigid bo
entre of oscilla | | 3 | 85
85 | 80 | M | Н | L . | | - | | - | - | M
M | | | Н | - | - | - | | Dura | | Mo | odule-I (18) |) | Module | e- II (18) | Module- | III (1 | 8) | | | Mod | dule- | IV (| 18) | | | Ī | | Mod | ule-\ | V (18 | 3) | | | | S-1 | | Statics-C
example:
Statics-P
,example | DDE-Probles.
PDE- Proble | ems, | Impact- Defi
Examples | nition, | Projectiles- De
Examples
Forces on a pr
Horizontal rang
Maximum heig
flight, Range or
plane- Definition
Examples | rojec
ge,
ght, to | on,
tile-
me o | of | Centr
Orbits
Centr
Equia
Defin | ral Or
s- De
ral for
ingul | rbits-
finiti
rce,
ar sp | Ger
on, E
conic
oiral- | neral
Exan | | Kir
Mc | vo dir
dy- [
netic
omer
efiniti | men:
Defin
ene | siona
ition
rgy,
effec | al mo | otion
amp | of a
les | J | | | S-2 | | Definition | s-Rigid boon, example | S | Conservation momentum | n of linear | Displacement
combination of
and horizontal
displacements
examples | f ver
- De | tical
finition | ď | Centr
coord
exam | inate | | force
[| | pola
nition | a f | ixed
omer | axis
ntum | - Kin | etic | ene | rgy, a | angu | ılar | | | SLO-
2 | | s- Parallel
law, exam | | Kinetic energimpulsively | gy generated | Nature of a tra
Definition, Exa | | | | Apse
minin
Defin | num a | angu | ılar v | eloc | ity- | a f | otion
ixed
locity | axis | | | | | | out | | SLO- particle describing a circle Impact More problems Derive the | | | | | | | Nature of a tra
Derive the patt
projectile is a p | path of a | | | Areal
mome
examp | | city, | moi | men | | Mc | otion | of a | | | | | | out | | S-3 | SLO-motion, Rectilinear motion Impact of spheres-with a constant Definition, examples | | | | Height of the d
Distance of for
point of project
Definition, exa | cus f
tion- | rom | | Copla
exam | | motio | on- E | Defin | ition | Mc | otion
ixed | | | | | | | out | | | | S-4 | | | | | ed c | f a
int | | Veloce
a cope
the cope
perpe | lana
ompo | r mo | tion-
ts in | find
two | ing
fixed | | | on of a rigid body rotating about ed axis- more problems | | | | | | | | | | | Forces on a rigid body- SLO- 2 Moment of a force- Definition, Examples Laws of Impact – Law 2 Newton's Experimental Results motion of | | | Motion of a p | projectile,
aining to the
ojectile- | II | | 1 | T | T | |------|----------------|--|--|--|--|--| | S-5 | | Equations of motion of a rigid body- Problems | Impact of two smooth spheres – Definition, Examples | Motion of a projectile,
Results pertaining to the
motion of projectile-
Definition, results | Central orbits- more problems | Compound pendulum, centre of suspension, Definition, examples | | 5-5 | SLO- | Kinetic energy of a rigid
body- Definitions,
Examples | Direct and oblique impacts- Definition, Examples | Kinetic energy, potential
energy- Definitions and in
case of projective sum be
a constant | Central orbits- more problems | Period, simple equivalent pendulum, centre of oscillation- Definition, examples | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial
Session | | S-6 | 1
SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | | SLO- | Coplanar motion-Angular velocity- Definition, Examples | Direct impact of two
smooth spheres-
Definition, Examples | Maximum horizontal range for a given velocity-
Definition, examples | Central orbit-practice problems | To find the Period of small oscillations of a compound pendulum | | S-7 | SLO- | Coplanar motion- velocity
and acceleration in a
coplanar motion-
Definition, Examples | Direct impact of two
smooth spheres – Derive
the velocities of two
smooth spheres between
them | Two trajectories with a given speed and range-Introduction | Central orbit- practice problems | Period of small oscillations-
Problems | | 0.0 | | Simple Harmonic motion-
Amplitude, Period, Phase-
Definition, examples | Two smooth spheres collide directly- Derive its Impulse imparted to each sphere | Nature of a trajectory -
more problems | Central orbit- motion of a particle subject to the action of a central force | Period is unaltered when the centre of suspension and oscillation are interchanged | | S-8 | | Simple Harmonic motion-
Finding velocity and
acceleration | Two smooth spheres collide directly- find the change in the total kinetic energy of the spheres | Nature of a trajectory -
more problems | Central orbit- finding a central orbit is a plane curve | Finding minimum period of the compound pendulum | | | SLO- | Projection of a particle
having a uniform circular
motion - Problems | Direct impact of two
smooth spheres- More
problems | Nature of a trajectory -
more problems | Differential equation of a central orbit in polar coordinates-the motion is a coplanar | Compound pendulum- More problems | | S-9 | SLO-
2 | Composition of two
simple harmonic motions
of same period- Problems | Direct impact of two
smooth spheres- More
problems | Nature of a trajectory -
more problems | Differential equation of a central orbit in polar coordinates- coplanar motion | Compound pendulum -Practice Problems | | S-10 | SLU- | Simple Harmonic motion
along a horizontal line-
Derive the motion of a
light spiral spring pulled
through a distance | Impact of a smooth
sphere on a fixed plane-
Introduction, Definition,
examples | Projectile projected horizontally- Introduction | Differential equation for an attractive central force-
Derivation | Compound pendulum- More problems | | | | Simple Harmonic Motion
along a horizontal line –
Examples, Problems | Impact of a smooth sphere on a fixed plane-Problems | Projectile projected on an inclined plane- time of flight, range on the plane | Differential equation for an attractive central force – constancy of moment of momentum | Compound pendulum -Practice Problems | | S-11 | 1 | Simple Harmonic Motion
along a vertical line-
Derive the motion of light
elastic strings and earths
gravitation | Direct impact of a
smooth sphere on a
plane- Definition,
Examples | Maximum range on an inclined plane- finding angle between the inclined plane and the vertical line | Differential equation of a central orbit in p-r coordinates- Derivation | Reaction of the axis on a rigid body revolving around it | | 3-11 | SLO-
2 | Simple Harmonic Motion
along a vertical line-
Examples, Problems | Oblique impact of a smooth sphere on a plane- Definition, Examples | Maximum range down an inclined plane formula | Differential equation of a central orbit in p-r coordinates- finding equation for an attractive central force | Resultant reaction of the axis on the rigid body | | | SLO- | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-12 | _ | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-13 | | Motion under gravity in a resisting medium-
Definitions, examples | Direct impact of a
smooth sphere on a
plane-Derive its Velocity
of rebound, impulse
imparted to the sphere | Projectile projected on an inclined plane- more problems | | Reaction of the axis on a rigid body revolving around it- Problems | | | | a square of velocity-
Derive its motion of a
particle | smooth sphere on a
plane-Derive its loss in
Kinetic energy- | Projectile projected on an inclined plane- more problems | Method to find the central orbit | Reaction of the axis on a rigid body revolving around it- Problems | | S-14 | 1 | Resistance proportional to
a square of the speed-
Derive its motion of a
particle | Direct impact of a smooth sphere on a plane- More problems | Enveloping parabola or bounding parabola - Introduction | Central orbit of a particle
under an attractive central
force inversely as the
square of the distance | Equation of motion for a two dimensional motion | | J-14 | SLO-
2 | Motion under gravity in a resisting medium-
Problems | Direct impact of a smooth sphere on a plane- More problems | Finding the envelope of a family of trajectories from a fixed point and constant velocity | Central orbit of a particle
under an attractive force-
find its nature of the orbit
and critical velocity | Angular acceleration, point of contact, centre of mass- Definition, examples | | S-15 | SLO-
1 | Motion under gravity in a resisting medium-
Problems | Oblique impact of a smooth sphere on a plane- Derive its Velocity | Trajectories touch the enveloping parabola-Remarks, examples | Central orbit and its nature in p-r coordinates | Motion of a uniform circular disc rolling down an inclined plane | | | | | of rebound, impulse imparted to it , loss in kinetic energy | | | | |------|-----------|--|---|--|---|---| | | SLO- | Motion under gravity in a resisting medium-
Problems | Oblique impact of a smooth sphere on a plane- more problems | Motion of a projectile-
more problems | Central orbit of a particle
under an attractive force
varying as the distance | Motion of a uniform circular disc
rolling down an inclined plane-
Acceleration, distance travelled in
time | | | 3LU-
1 | Resistance proportional to velocity- Definitions, Examples | | Motion of a projectile-
more problems | Central orbit under an attractive force- more problems | Motion of a uniform circular disc rolling down an inclined plane-Other rolling bodies | | S-16 | SLO-
2 | Resistance proportional to velocity- Derive its motion fall rest, resistance varies as the speed. | | Moment of inertia- simple bodies- Definitions, Examples | Conic as a central orbit-
Introduction, examples,
problems | Motion of a uniform circular disc rolling down an inclined plane-Condition for rolling without sliding | | S-17 | SLO-
1 | Resistance proportional to velocity- Derive its motion projected vertically upwards, whose resistance varies as the speed. | smooth spheres- find the | Moment of inertia -
Perpendicular axis
theorem- Statement only | Central orbit is a conic –
find its law of force | Motion of a uniform circular disc rolling down an inclined plane-
Problems | | | | Resistance proportional to velocity- more Problems | Oblique impact of two smooth spheres-problems | Moment of inertia- Parallel axis theorem- statement only | Central orbit is a conic – find its speed of a particle | Motion of a uniform circular disc rolling down an inclined plane-
Problems | | - 1- | SLO-
1 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | S-18 | SLO-
2 | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | Tutorial Session | | | 1. | M.K. Venkataraman, Statics, A. Rajhans Publications, 16th Edition, | 3. | Naik, K.V and Kasi, M.S, Statics and Dynamics, Emerald | |-----------|----|--|----|--| | Learning | | Meerut, 1990. | | Publishers, 1992. | | Resources | 2. | A.V Dharmapadam, Mechanics, S. Viswanathan Printers and | 4. | P. Duraipandian and others , S. Chand and company Pvt. Ltd., New | | | | Publishers, Chennai, 1991. | 16 | Delhi, 1979. | | | Discontinuity | | Continu | uous Lea | arning As | sessmer | nt (50% we | eightage) | | Final Examination | (50% woightage) | | | | | |---------|------------------------------|--------|----------|---------------|-----------|---------------|------------|-----------|----------|-----------------------------------|-----------------|--|--|--|--| | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | | | Lovel 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | | | | | evel 1 | Understand | 40% | 1 | 30% | | 30% | | 30% | 7.7 | 30% | - | | | | | | Lavel 2 | Apply | 40% | | 40% | | 40% | | 40% | | 40% | | | | | | | Level 2 | Analyze | 40% | 4.5 | 40% | 1111 | 40% | | 40% | 300 | 40% | - | | | | | | Lovel 3 | Evaluate | 20% | | 30% | | 30% | | 30% | | 30% | | | | | | | Level 3 | Create | 20% | | 30% | | 30% | | 30% | | 30% | | | | | | | | Total | 10 | 00 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 | % | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs,
Certifications, Conf. Paper etc., | Course Designers | | | |---|---|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Dr. V. Srinivasan, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. G. Sheeja, SRMIST | | Course
Code | UMA20D10L | Course
Name | | Project \ | Vork | Course
Category | D | Discipline Specific Elective | 0 | T
0 | P
12 | 6 | |---------------------------|----------------|----------------|-----------------------------|-----------|--------------------------------|--------------------|--------------|------------------------------|---|--------|---------|---| | Pre-
requisi
Course | ite <i>Nil</i> | | Co-
requisite
Courses | Nil | | Progres
Cours | ssive
ses | Nil | | | | | | Course Departm | · | Mathematics | | • | Data Book /
Codes/Standards | Nil | | | | | | | ## Assessment Method | | Continuous Learning Assessme | nt (50% weightage) | Final Evaluation (5 | 0% weightage) | |--------------|------------------------------|--------------------|---------------------|---------------| | Project Work | Review – 1 | Review – 2 | Project Report | Viva-Voce | | | 20% | 30 % | 30 % | 20 % | | | urse
ode | UMA20A | A01T | Course
Name | | Allied Mathem | atics-I | | | | ourse
tegoi | - (| 3 | | Ge | eneri | c Ele | ectiv | e Co | urse |) | | L 3 | T P | C
3 | |------------------|--|-----------------------|-----------|----------------|---------------------------|------------------|----------------------------------|--------------------------|--------------------------|-------------------------|-----------------------|--|----------------|--------------|------------|-------------|--|--------|---------------------------------------|---------------|----------------|-----------|---------|-------|---------| | req
Co
Cou | Pre-
uisite
urses
rse Off
artmen | | MA | ATHEMATIC | Courses | Nil Data B Codes | ook /
'Standards | | | Progre
Coul | | e Nil | | | | | | | | | | | | | | | | se Lea | - | The purp | oose of lear | ning this cours | e is to: | | Le | earni | ng | | | | Pro | grai | n Le | arni | ng C | utco | mes | (PL | 0) | | | | | CLR | 1 | | he conce | ept of sets, | relations and fu | unctions | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR | -2 Ga | in knowled | lge on th | ne basics of | logic | CLR | -3 Ob | tain the kr | nowledg | e on polyno | mial equations | CLR | -4 gai | in knowled | ge on M | latrices and | its applications | 3 | CLR | -5 cor | mprehend | the work | king principle | e of various ca | Iculus techniqu | ies | (mc | (% | (% | e e | | + | Research | | | nability | | 논 | | • | | | | | | CLR
: | Understand various Mathematical evaluation procedure rse Learning comes (CLO): At the end of this course, learners will be ab | | | | | | | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Engineering Knowledge | Analysis | & Development | Design, Rese | Tool Usage | & Culture | Environment & Sust <mark>ainability</mark> | | ndividual & Team Work | ation | . & Finance | Learning | | | | | Outo | onderstand various Mathematical evaluation procedure Tree Learning comes (CLO): At the end of this course, learners will be at the course of | | | | | | دماد | Level of Th | Expected F | Expected A | Engineering | Problem Ar | Design & D | Analysis, | Modern To | Society & C | Environme | Ethics | Individual 8 | Communication | Project Mgt. & | Life Long | PS0 - 1 | PSO-2 | PSO - 3 | | : | 0.2 | | | | nd functions | | 100 | 3 | 80 | 85 | М | Н | - | - | 1 | | | | | | - | Н | - | | - | | : | 0.3 | | | | e and engineer | ing problems l | ogically | 1 | 75 | 80 | М | Н | - | - | - | - | | 1 | | | - | - | - | | - | | : | Uni | derstand th | ne basic | ideas abou | t polynomial ed | quations | | 3 | 85 | 80 | М | Ì | | | | | 1 | - | | ė | | - | | | - | | CLO
: | App | preciate the | e conce | pts of Matric | ces in real life s | situations | 333 | 3 | 80 | 75 | М | Н | | i | | | | | | Ì | - | - | Ī | Ī | Ī | | CLO | App | ply the kno | wledge | of different | calculus techni | iques | 42.3 | 1 | 75 | 85 | М | | | Н | 1 | | | | - | | | - | - | - | - | | CLO
: | obt | ain the kno | owledge | on Mathem | atical evaluation | on method | 11.79 | 3 | 80 | 85 | М | - | | | Ī | | | | - | - | - | Н | - | 1 | - | | | | | | 12 0- | 250 | | | | | | ۳ | | | | | ď | | | | h | | | | | | | | ation
our) | N | 1odule 1 | (9) | Modu | ıle 2 (9) | Mo | odul | e 3 (| 9) | | | | Mod | ule 4 | 1 (9) | | ı | | ż | Mod | ule 5 | 5 (9) | | | | 0.4 | SLO-
1 | Sets - set | | | Statements | | Polynomia | l equ | atio | ns | | Sym | nmet | ric m | atrio | ces, | ř | | Intro | duc | tion 1 | to ca | ılculı | JS | | | S-1 | SLO-
2 | Examples
represent | | and | Examples for | statements | Examples equations | for F | olyn | omia | | Skew symmetric matrices | | | | | | | Differential calculus - | | | | | | | | | SLO- | Types of sets, Veni | | | connectives, | conjunction | Irrational ro | oots | Ħ | | | | mitia
rices | | ew | Herm | nitia | | Max | | | mini | ma- | | | | S-2 | SLO- | Examples | for type | es of sets | Examples for conjunction | connectives, | Problems of | on ir | atio | nal ro | ots | Exa | | s for | diff | eren | typ | | Sim
and | ple p
mini | | of fu | | | | | | | Relation - | Types | of Relation | Disjunction, n | egation | complex ro | | | | | Orth | nogo | nal, I | Unita | ary m | atri | ces | Mor | | obler | | n ma | axim | а | | S-3 | | Examples relation | for type | es of | Examples for negation | Disjunction, | Problems of complex ro | on e | | | vith | | mple
ary r | | | hogo | nal, | | Mor | | bler | ns o | n ma | axim | а | | | | Equivalen | ice Rela | tion | Tautology, Co | ontradiction | Reciprocal | equ | atior | าร | | Cay | ley F | lami | lton | The | ren | 1 | | e pro | obler | ns o | n ma | axim | а | | S-4 | SLO- | | | | Problems on contradiction | tautology, | Problems of equation | on re | cipro | ocal | | | olem
niltor | | | | | | Rad | | of cu | rvatı | ıre – | | | | S-5 | SLO- Equivalence Relation SLO- Examples for types of relation SLO- Equivalence Relation SLO- equivalence relation SLO- Function - Introduction | | | | logical equiva | llence | Approxima polynomial | | | | fa | Prol | olem | s on | Cay | ley | | | Prol
curv | olem | s on
e- Ca | | | | | | 0-3 | SLO- | Types of | functions | S | Examples for equivalence | r logical | Newton's N | | od- | | | Eige | en va | lues | – Ei | gen v | /ect | ors | Prol | | s on | Rac | lius (| of | | | | SLO- | | for diffe | rent | tautological in | nplications | Newton's r | neth | od- I | indir | g | | | | | en va | lue | S- | Mor | e pro | oblèr | nes | on ra | adiu | s of | | S-6 | SLO- 2 SLO- 1 Types of functions 2 SLO- 1 Composite of two function SLO- 2 SLO- 2 Examples for composite | | | functions | Examples for implications | tautological | More prob
method- Fi
roots | lem | | | | Eigen vectors Problems on Eigen values— Eigen vectors | | | | | | S- | curvature Partial differentiation | | | | | | | | 6 - | SLO- 1 Relation - Types of Re SLO- 2 Examples for types of relation SLO- 1 Equivalence Relation SLO- 2 equivalence relation SLO- 1 Function - Introduction SLO- 1 Types of functions 2 SLO- 1 Problems for
different functions SLO- 2 Composite of two func | | | nposite | arguments , \ | /alidity of | Problems of method- Fi | indin | g re | | al of | | olem
en ve | | | en va | lue | S- | - Problems on partial differentiation | | | | | | | | S-7 | | Composit | e of thre | e functions | Normal forms | i | Problems of method- Fi | on N
indin | ewto
g So | | root | | olem
en ve | | | en va | lue | 3- | | | obler
ation | | n pa | rtial | | | C | 4 | H 6 12 | | Homer's method-
Introduction | Cramer's rule-Introduction | Euler's theorem- Introduction | |----|-----------|--|------------------------------|---|--|----------------------------------| | 3- | SLO-
2 | Problems on functions | I Problems for bont | | Solving system of linear equations- Crammer's rule | Problems on Euler's theorem | | S- | 1 | Problems on composite of two functions | Principle conjunctive normal | Problems on Horner's method- finding roots between given values | Problems on Crammer's rule | More Problems on Euler's theorem | | 3- | SLO- | Problems on composite of three functions | | More Problems on Horner's method | | More Problems on Euler's theorem | | | 1. | T. Veerarajan, Discrete Mathematics, 7th Edition, Tata-Mcgraw | 3. P. R. Vittal, Allied Mathematics, 4th Edition Reprint, Margham | |-----------|----|---|---| | Learning | | hill, New Delhi, 2006. | Publications, Chennai, 2013. | | Resources | 2. | A. Singaravelu, ALLIED MATHEMATICS, 3rd Edition, Meenakshi | 4. S.G. Venkatachalapathy, Allied Mathematics, 1st Edition Reprint, | | | | Agency, Chennai, 2011. | Margham Publications, Chennai, 2007. | | Learnin | g Assessment | | | | | | | | | | | |----------|------------------------------|-------|----------|------------------------|----------|---------|-----------|----------|----------|-----------------------|---------------| | | | | Continu | u <mark>ous</mark> Lea | rning As | sessmer | t (50% we | ightage) | | Final Forming tion (F | 00/ | | | Bloom's
Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (5 | u% weightage) | | | Level of Tilliking | | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | Laural 1 | Remember | 40% | | 30% | | 30% | | 30% | | 30% | | | Level 1 | Understand | 40% | | 30% | | 30% | | 30% | - | 30% | | | Level 2 | Apply | 40% | | 40% | | 40% | | 40% | | 40% | | | Level 2 | Analyze | 40 /0 | ٠, | 40 /0 | | 40 / | | 40 /0 | _ | 40 /8 | | | Level 3 | Evaluate | 20% | 7 | 30% | | 30% | 7.4 | 30% | | 30% | | | Level 3 | Create | 2076 | / | 30 /6 | | 30 /6 | 1 | 30 /6 | | 30% | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | 30 0 | |---|---|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions maheshwaranv@yahoo.com | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in | Dr. A. Govindarajan, SRMIST
Prof. K.S. Ganapathy
Subramanian, SRMIST | | · 泛《 物學學 | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac. | Dr. N. Balaji, SRMIST
Dr. P. Sampath, SRMIST | | | urse | UMA20A02T | Course
Name | | Allie | d Mathema | | | | urse
egory | G | | | G | enei | ic El | ectiv | /e C | ours | е | | L
3 | T
0 | P
0 | C
3 | | |----------|--|---|----------------------------|-----------|--|---------------|----------------------|---|------------------|----------------|----------------|----------------------|------------------|---------------|--|--------------------------------|-----------------|----------------|--------------|-----------------------|----------------------------------|------------------------|-------------------------|----------|--------|--------| | re
Co | Pre-
quisite
ourses
urse O
partme | offering | 01T
Mathe | matics | Co-
requisite
Courses | | ata Book
odes/Sta | | | P | rogre
Cour | | Nil | | | | | | | | | | | | | | | | | earning
(CLR): | The p | urpose o | of learning th | is course is | s to: | | | | Lea | rning | | | | Pr | ogra | m Le | earn | ing (| Outc | ome | s (PL | .0) | | | | CLI | R-1 To | o understand | the basics | of integ | gration. | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLI
: | 10 | o learn the fu | ndamental | concep | t of Trigonon | netry. | CLI
: | ₹-3 | Inderstand to | solve ordi | nary diff | ferential equa | ations. | | | | | | | | | Ч | | | iţ | | | | | | | | | | CLI
: | R-4 To | o understand | concepts | of Lapla | ce Transform | n and its pro | operties. | 2.5 | loom) | y (%) | t (%) | Φ | | ent | searc | | | Sustainability | | /ork | | 90 | | | | | | CLI
: | R-5 To | o learn the co | on <mark>cepts of i</mark> | nverse l | Laplace Trar | nsform. | | | Thinking (Bloom) | Proficiency (% | Attainment | Scientific Knowledge | Problem Analysis | & Development | Analysis, Design, Res <mark>earch</mark> | Tool Usage | Culture | nt & Sust | | ndividual & Team Work | ation | Project Mgt. & Finance | Life Long Learning | | | | | Cou | urse Le | earning | | · · · | | | | | | Expected P | Expected A | tific K | em Ar | yn & D | /sis, D | em Too | య | Environment & | S | dual 8 | Communication | ct Mgt | ong L | <u>-</u> | -2 | ر
ا | | Out | comes | s (CLO): | | 76 | ourse, learner | | | | Level of | Expe | Expe | Scier | Prob | Design | Anal | Modern | Society | Envir | Ethics | Indiv | Com | Proje | Life | PSO - 1 | PSO-2 | PSO | | : | ar | t <mark>udents wi</mark> ll a
rea, surfaces, | | | | egrai caiculi | us, in find | ling | 3 | 85 | 80 | Н | Н | L | - | - | - 1 | ٩ | è | М | L | - | Н | - | - | - | | CL(| 51 | tudents will a | | | | | | 100 | 3 | 85 | 80 | М | Н | - | М | М | F | - | | М | - | - | Н | - | - | - | | CL(| | <mark>tuden</mark> ts will u
ith constant c | | | | | | | 3 | 85 | 80 | Н | Н | - | | - | - | ŀ | - | М | - | - | Н | - | - | - | | CL(| O-4 St | tudents are a | ble to unde | erstand t | the concept of | | | | 3 | 85 | 80 | Н | н | Н | М | - | - | | - | М | L | | Н | - | - | - | | CL(| O-5 St | tudents are a
ansformation | ble to unde | erstand t | the concept of | | aplace | 24 | 3 | 85 | 80 | М | Н | L | | | - | 1 | - | М | ď | - | Н | - | - | - | | | ration
our) | 1 | 9 | | 10 | 9 | The second | 75 | | 9 | | | | | Ŧ | | 9 | i | | | | Ī | 9 | | | | | S-
1 | SLO- | Integral calc
integral form | nulae. | pc | xpansion of simple wers of Simple en being | ηθ and co | sθ,
integer. | Introducti
differentia
constant
Finding th | al ec
coef | uati
ficie | ons w
nts. | /ith | | Lap | ij, | e Tra | to
ensfo | | | L | apla | luction
ce T | rans | form | S | | | | SLO-
2 | integral form | nulae. | E) | xpansion of | tan nθ. | | the differ | entia | l eq | uatio | ns. | <i>,</i> 0 0 1 | Lap | olace | e tra | nsfor | ms | | lr
tr | nvers | | d results of
Laplace | | | | | S-
2 | SLO-
1 | $\int \frac{dx}{ax^2 + b}$ | | P | roblems bas | ed on Sinr | NO . | Solution equation
function a | – Co
and p | omp | lemer
cular | ntary | | res | rivat
ults
nsfoi | | of the | | anda
apla | ce | | le pro | | ns b | ase | k | | 2 | SLO-
2 | Problems re above integr | | | roblems base | ed on sinn | - | Problems (aD ² + | | | | = 0 | | res | | of La | of the
aplac | | ndaı | 5 | | le pro | | ns b | ase | t | | S- | SLO- | Integrals of the second secon | | | dditional prob
inn 0 | olems based | d on | Additiona
(aD ² + | | | | | L | | nple
resu | | olems | s ba | sed | | | le pro
sults | | ns b | ase | t | | 3 | SLO-
2 | Problems re
above integr | lated to the | Pr | oblems base | ed on COS | nθ | Problems (aD ² + | bD | + c |) y = | | | Ш | nple
resu | | olems | s ba | sed | | | le pro | | ns b | ase | t | | S-
4 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | ns or
) y = | | | | | perties of Lap | | plac | ace | | Simple problems base on results. | | ase | t | | | | 7 | SLO-
2 | Problems re
above integ | lated to the ral type. | | dditional prob $\cos n heta$ | olems based | d on | Problems (aD ² + | bD | + 0 | e)y = | = sin | ax | Tra | nsfo | perties of Laplace
nsforms. | | | | tr | anst | se La
forms | - | | (s) | | | | SLO-
1 | Integrals of $\frac{px}{\sqrt{ax^2 + ax^2}}$ | | dx Pr | roblems base
an nθ | ed on COS | | Problems (aD ² + | bD | + (| e)y = | | | pro | | ies c | elate
of Lap | | | | | ems
[s F | | oase | d _ | on | | S-
5 | | | | | | | | | | | | | | pro | | ies c | elate
of Lap | | | | | | al problems on F(s)] | | | | | S- | SLO- | Integration by Partial fraction method (Simple algebraic functions only) | Problems based on $\sin^n \theta$ interms of $\sin \theta$. | Additional problems based on $(aD^2 + bD + c)y = \sin ax$ | Additional problems related to the first shifting property. | Inverse Laplace transforms of $\frac{F(s)}{s}$ | |---------|-----------|--|---|---|---|--| | 6 | | Problems related to the partial fraction method. | Problems based on $\sin^n\theta$ interms of $\cos\theta$. | Problems based on $(aD^2 + bD + c)y = \cos ax$ | Laplace transform of $tf(t)$ | Problems based on $L^{-1}\Bigg[\frac{F(s)}{s}\Bigg]$ | | S-
7 | SLO- | Additional problems related to the partial fraction method. | Problems based on $\sin^n \theta$ interms of $\cos \theta$. | Additional problems based on $(aD^2 + bD + c)y = \cos ax$ | Problems on Laplace transform of $tf(t)$ | Additional problems $ \text{based on } \ L^{-1} \Bigg[\frac{F(s)}{s} \Bigg] $ | | | | Bernoulli's formula and related problems. | Problems based on $\cos^n\!\theta$ interms of $\cos\theta$. | Additional problems based on $(aD^2 + bD + c)y = \cos ax$ | Problems on Laplace transform of $\frac{f(t)}{t}$ | Inverse Laplace
transforms -partial fraction
method | | | SLO-
1 | Reduction formula for $\int \sin^n x \ dx$ | Problems based on $\cos^n \theta$ interms of $\cos \theta$. | Problems based on $(aD^2 + bD + c)y = x^n$ | Additional problems on Laplace transform of $\frac{f(t)}{t}$ | Partial fraction method-
Related problems. | | S-
8 | SLO-
2 | Evaluation of $\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx$ | Problems based on $\sin^n\theta$ $\cos^n\theta$ interms of multiples of $\sin\theta$ and $\cos\theta$ | Additional problems on $(aD^2 + bD + c)y = x^n$ | Problems on Laplace transform of teat f(t) | Additional problems on partial fraction method. | | S-
9 | SLO-
1 | Reduction formula for $\int \cos^n x \ dx$ | Problems based on $\sin^n\theta$ $\cos^n\theta$ interms of multiples of $\sin\theta$ and $\cos\theta$ | Additional problems on $(aD^2 + bD + c)y = x^n$ | Additional problems on Laplace transform of te ^{at} f(t) | Additional problems on partial fraction method. | | | SLO-
2 | Evaluation of $\int_{0}^{\frac{\pi}{2}} \cos^{n} x dx$ | Problems based on $\sin^n\theta$ $\cos^n\theta$ interms of multiples of $\sin\theta$ and $\cos\theta$ | Additional problems on $(aD^2 + bD + c)y = x^n$ | Additional problems on Laplace transform of $t e^{at} f(t)$ | Additional problems on partial fraction method. | | | | A STANDARD TO THE REAL PROPERTY. | | NO 5724 A 100 | |-----------|----|--|----|---| | | 1. | Singaravelu. A, Allied Mathematics, 6th Revised Edition, | | 10.5 (5.0) = (5.4) (5.4) | | | | Meenakshi Agency, 2014. | 5. | E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons. | | | 2. | Vittal. P.R, Allied Mathematics, 4th Edition Reprint, Margham | | Singapore, 10th edition, 2012. | | Learning | | Publications, 2013. | 6. | T. Veerajan, "Engineering Mathematics I", Tata McGraw Hill | | Resources | 3. | Venkatachalapathy, S.G, Allied Mathematics, 1st Edition Reprint, | - | Publishing Co., New Delhi, 5th edition, 2006. | | | | Margham Publications, 2007. | 7. | B.S. Grewal, Higher Engineering Mathematics, Khanna Publications, | | | 4. | T.K. Manickavasagam Pillai and S. Narayanan, Ancillary | | 42nd Edition, 2012. | | | | Mathematics, Reprint, S.Viswanathan Printers and Publishers Pvt. | | | | | | Ltd., Chennai. | | | | Learning | g Assessment | | | | | | | | | | | |----------|------------------------------|--|----------|---------------|----------|---------------|----------|----------------|----------|-----------------------------------|----------| | | | Continuous Learning Assessment (50% weightage) | | | | | | | | First Franciscotion (FOO) | | | | Bloom's
Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - 4 (10%)# | | Final Examination (50% weightage) | | | | Level of Thinking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | Level 1 | Remember | 40% | 4 | 30% | | 30% | | 30% | 1. | 30% | - | | Level I | Understand | | | | | | | | | | | | Level 2 | Apply | 40% | - | 40% | - | 40% | - | 40% | - | 40% | | | Level 2 | Analyze | | | | | | | | | | - | | Level 3 | Evaluate | 20% | | 30% | - | 30% | - | 30% | - | 30% | | | Level 3 | Create | | | | | | | | | | - | | Total | | 100 % | | 100 % | | 100 % | | 100 % | | 100 % | | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|-----------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. V. Maheshwaran, Cognizant Technology Solutions | Prof. Y.V.S.S. Sanyasiraju, IIT Madras, | Dr. A. Govindarajan, SRMIST | | maheshwaranv@yahoo.com | sryedida@iitm.ac.in | Dr. N. Parvathi, SRMIST | | | | Mr. M. Balaganesan, SRMIST | | | Prof. B. V. Rathish Kumar, IIT Kanpur, bvrk@iitk.ac.in | Dr. T. Nirmala, SRMIST | | | | Mrs.T.N.Saibhavani, SRMIST |