# **ACADEMIC CURRICULA** ## UNDERGRADUATE DEGREE PROGRAMME Bachelor of Science in Chemistry Three Years / Bachelor of Science (Honours) in Chemistry Four Years Learning Outcomes Based Curriculum Framework (LOCF) Choice Based Flexible Credit System Academic Year 2023-2024 # SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (Deemed to be University u/s 3 of UGC Act, 1956) Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India ## Content | I. Department Vision Statement | 1 | |--------------------------------------------------------------|----| | 2. Department Mission Statement | 1 | | B. Program Education Objectives (PEO) | 1 | | 4. Program Specific Outcomes (PSO) | 1 | | 5. Consistency Of PEO's With Mission of The Department | 1 | | 6. Consistency of PEO's With Program Learning Outcomes (PLO) | 1 | | Curriculum B.Sc. Chemistry | | | 7. Programme Structure | 2 | | B. Implementation Plan | 4 | | 9. Program Articulation Matrix | 8 | | 10. Structure of Course | 10 | | SEMESTER I | | | |-------------------------|-----------------------------------------------------------|----| | ULT23G01J | Tamil-I | 11 | | ULH2 <mark>3G01J</mark> | Hindi-I | 15 | | ULF23G01J | French-I | 17 | | ULE23AE1T | English | 19 | | UCY23101T | Atomic Structure and Chemical Bonding | 23 | | UCY23102T | Basic Organic Chemistry | 26 | | UCY23103J | States of matter, solutions and phase equilibria | 29 | | UCD23S01L | Quantitative Aptitude and Logical Reasoning | 32 | | UCD23V01T | Universal Human Values | 34 | | SEMESTER II | | | | JLT23G02J | Tamil-II | 36 | | JLH23G02J | Hindi-II | 40 | | JLF23G02J | French-II | 42 | | JES23AE1T | Environmental Studies | 44 | | JCY23201J | Chemistry of s and p-Block Elements | 47 | | JCY23202T | Basic Reactions in Organic Chemistry | 50 | | JCY23203T | Chemical Equilibria, Acids and Bases | 53 | | JCD23S02T | Verbal Ability and Skill Development | 56 | | JEN23V01L | Communication Skills | 58 | | JNS23M01L | NSS | 62 | | JNC23M01L | NCC / I I I I I I I I I I I I I I I I I I | 62 | | JNO23M01L | NSO | 62 | | JYG23M01L | YOGA | 62 | | SEMESTER III | | | | JCY23301T | Radioactive and Nuclear Chemistry | 63 | | JCY23302J | Functional Groups in Organic Chemistry | 66 | | JCY23303T | Thermodynamics and Surface Chemistry | 70 | | JPY23G01J | Allied Physics | 73 | | JPY23G02T | Laser Physics | 75 | | JLT23AE1J | Applied Tamil – I | 77 | | JLH23AE1J | Applied Hindi – I | 80 | | JLF23AE1J | French for Specific purpose-I | 82 | | JCY23S03L | Instrumental Methods of Analysis | 84 | | JCD23V02T | Industry Oriented Employability Skills for Science | 86 | | JCY23P01L | Internship-I | 88 | | SEMSTER-IV | | | | JCY23401T | Coordination Chemistry | 89 | | JCY23402T | Heterocyclic Compounds, Natural Products and Biomolecules | 92 | | JCY23403T | Chemical Kinetics and Electrochemistry | 96 | | JPY23G03T | Data, Statistics, and Inference | 99 | | UMA23G11T | Allied Mathematics | 101 | |------------------------|--------------------------------------------------------------------------------|------------| | ULT23AE2J | Applied Tamil – II | 104 | | ULH23AE2J | Applied Hindi – II | 107 | | ULF23AE2J | French for Specific purpose-II | 109 | | UCY23S04L | Inorganic Qualitative Analysis | 111 | | UCD23V05T | Career Readiness and Professional Skills | 113 | | UMI23M01L | My India Project | 114 | | SEMESTER-V | 1 ) | | | UCY23501T | Chemistry of d and f-block elements | 115 | | UCY23502J | Analytical chemistry | 118 | | UCY23503T | Statistical Thermodynamics and Group Theory | 121 | | UCY23D01T | Nanomaterials and Nanochemistry | 124 | | UCY23D02T | Energy and Fuels | 127 | | UCY23G02T | Polymer chemistry and its uses | 129 | | UPY23G04T | Solar Technology | 131 | | UCY23S05L | Organic Chemistry Practical-II | 134 | | UCY23P02L | Internship-II | 136 | | SEMESTER-VI | Interioris II | 100 | | UCY23601T | Pericyclic Reaction, Photochemistry and Polycyclic Aromatic Hydrocarbons (PAH) | 137 | | UCY23602T | Quantum chemistry and Molecular spectroscopy | 140 | | UCY23603T | Research Methodology | 143 | | UCY23D03T | Polymer and Industrial Chemistry | 146 | | UCY23D04T | Supramolecular Chemistry | 150 | | UCY23G03T | Food Chemistry | 153 | | UPY23G05T | Structure and Properties of Materials | 156 | | UCY23P04L | Mini Project | 158 | | SEMESTER-VII | INITIAL TOJECT | 130 | | UCY23701T | Reagents in Organic Reactions | 159 | | UCY23D05T | Solid State Chemistry and its applications | 162 | | UCY23D06T | Chemical Technology and Society | 165 | | UCY23G04T | Pharmaceutical Chemistry | 168 | | UPY23G06T | Thin Films | 171 | | UCY23G05T | Chemistry in everyday life | 174 | | UPY23G07T | Group Theory | 176 | | UCY23P03L | Internship-III | 178 | | UCY23P05L | Project Phase-I | 179 | | SEMESTER-VIII | Irioject riidse-i | 119 | | UCY23801T | Organometallic & Bioinorganic Chemistry | 180 | | UCY23D07T | Organic Spectroscopy | 182 | | UCY23D07T | Materials chemistry and their use in everyday life | 185 | | UCY23D09T | Medicinal Chemistry and Drug design | 188 | | UCY23D10T | Green Chemistry | 191 | | UCY23G06T | Computational Modelling in Chemistry | 194 | | UPY23G08T | | 194 | | UCY23G081<br>UCY23P06L | Applications of Nanotechnology Project Phase-II | 200 | | | Pric Elective courses for other department | 200 | | UCY23G01J | Basic Chemistry | 201 | | | ing Additional Credits | 201 | | UCD23P01L | Ing Additional Credits Internship Report– I | 204 | | | Project Work – I | | | UCD23P02L | Apprenticeship – I | 205<br>206 | | UCD23P03L | | | | UCD23P04L | Internship Report- II | 207 | | UCD23P05L | Project Work – II | 208 | | UCD23P06L | Apprenticeship – II | 209 | | 1. | Department Vision Statement | |----------|--------------------------------------------------------------------------------------------------------| | Stmt - 1 | To be a nationally and an internationally-acclaimed hub for high-level teaching in chemistry | | Stmt - 2 | To impart research-based education to students in the field of chemistry. | | Stmt - 3 | To Implement the global standards and nurturing the students through innovation and quality education. | | 2. | Department Mission Statement | | | | | | | |----------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--| | Stmt - 1 | To provide comprehensive specialist expertise in the domain of chemistry | | | | | | | | Stmt - 2 | To motivate the next generation graduates to effectively contribute to the advancement of society with integrity and commitment. | | | | | | | | Stmt - 3 | To attain entrepreneurship and self-empowerment in the area of chemical sciences. | | | | | | | | Stmt - 4 | To expose the students to a breadth of experimental techniques using modern instrumentation. | | | | | | | | Stmt - 5 | To contribute to industry and address problems of societal importance. | | | | | | | | 3. | Program Education Objectives (PEO) | |---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------| | PEO - 1 | To develop critical analysis and problem-solving skills required in the field of Chemistry | | PEO - 2 | To prepare students with a working knowledge of experimental techniques and instrumentation required to work independently in research or industrial environments. | | PEO - 3 | To develop student strength in organizing and presenting acquired knowledge coherently both orally and in written discourse. | | PEO - 4 | To prepare the students to successfully compete for current employment opportunities | | PEO - 5 | To develop an ability to be socially intelligent with good SIQ (Social Intelligence Quotient) and EQ (Emotional Quotient) | | 4. | Program Specific Outcomes (PSO) | |---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | PSO - 1 | To provide in-depth knowledge about the terms, concepts, methodologies, principles and experimental techniques involved in the various fields of chemical sciences. | | PSO - 2 | To work in the pure, interdisciplinary and multidisciplinary areas of chemical sciences and its applications | | PSO - 3 | To prepare the students with a working knowledge of experimental techniques and instrumentation required to work independently in research or in other industrial environments. | | | | | | Mission Stmt 1 | Mission Stmt 2 | Mission Stmt 3 | Mission Stmt 4 | Mission Stmt 5 | |---------|----------------|----------------|----------------|----------------|----------------| | PEO - 1 | Н | - L. H | Н | Н | Н | | PEO - 2 | М | Н | M | Н | Н | | PEO-3 | M | Н | Н | Н | Н | | PEO - 4 | (H) | Н | M | M | Н | | PEO - 5 | M | M | M | н | / . L | | 6. | Consiste | ncy of P | EO's wi | th Progra | am Learr | ning Out | comes (l | PLO) | | | | | | | | |---------|---------------------------|-------------------|-----------------|-------------------------|-----------------|-----------|-------------------------|------------------------|---------------------------|-----------------------------|------------------------------------|-------------------------|------------|-------------------|-----------------------| | | \ · | | | | | Pro | gram Lea | rning Ou | tcomes (F | PLO) | | | | | | | | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. | | | Disciplinary<br>Knowledge | Critical Thinking | Problem Solving | Analytical<br>Reasoning | Research Skills | Team Work | Scientific<br>Reasoning | Reflective<br>Thinking | Self-Directed<br>Learning | Multicultural<br>Competence | Ethica <mark>l</mark><br>Reasoning | Community<br>Engagement | ICT Skills | Leadership Skills | Life Long<br>Learning | | PEO - 1 | Н | Н | Н | Н | Н | L | Н | L | Н | L | L | Н | М | Н | Н | | PEO - 2 | Н | М | М | Н | Н | Н | Н | М | М | М | М | М | Н | Н | Н | | PEO - 3 | Н | Н | Н | Н | Н | Н | Н | М | Н | Н | Н | Н | Н | L | H | | PEO - 4 | Н | Н | М | Н | Н | Н | Н | Н | Н | Н | Н | Н | М | М | Н | | PEO - 5 | М | М | Н | Н | М | Н | М | Н | Н | Н | Н | Н | Н | Н | Н | ## **Curriculum B.Sc. Chemistry** | | 1. Professional Core Courses (C)<br>(20 Courses) | | | | | | | 2. Discipline Specific Elective<br>Courses (D) | | | | | | | | |-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|-----------------------|---------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--|--| | Course | Course | Но | | | eek | | | (5 Courses) | | | | | | | | | Code | Title | L | T | P | 0 | С | Course | Course | Hours/ We | | ours/ Week | | | | | | UCY23101T | Atomic Structure and Chemical | 3 | 1 | 0 | 2 | 4 | Code | Title | | | | | | | | | | Bonding | | | | | | | Manager Colored | L | Τ | Р | 0 | | | | | | Basic Organic Chemistry | 3 | 1 | 0 | 2 | 4 | UCY23D01T | Nanomaterials and | | , | | | | | | | UCY23103J | States of matter, solutions and | 3 | 0 | 3 | 2 | 4 | //O\/OODOOT | Nanochemistry | 3 | 1 | 0 | 2 | | | | | | phase equilibria | J | U | 3 | | 4 | UCY23D02T | | | | | | | | | | UCY23201J | Chemistry of s and p-Block | 3 | 0 | 3 | 2 | 4 | | Polymer and Industrial Chemistry | 3 | 1 | 0 | 2 | | | | | 001232013 | Elements | 3 | U | J | _ | | UCY23D04T | Supramolecular Chemistry | Ĭ | Ċ | Ľ | | | | | | LIOVOCOOT | Basic Reactions in Organic | 2 | _ | ^ | ^ | 4 | UCY23D05T | Solid State Chemistry and its | | | | | | | | | UCY23202T | Chemistry | 3 | 1 | 0 | 2 | | 001200001 | Applications | 3 | 1 | 0 | 2 | | | | | | Chemical Equilibria, Acids and | | | | | 4 | UCY23D06T | Chemical Technology and | 3 | ' | 0 | _ | | | | | UCY23203T | Bases | 3 | 1 | 0 | 2 | • | 001230001 | Society | | | | | | | | | | Radioactive and Nuclear | | | | | 4 | UCY23D07T | Organic Spectroscopy | | | | | | | | | UCY23301T | Chemistry | 3 | 1 | 0 | 2 | ' | LIOVOODOOT | Materials chemistry and their use | 4 | 0 | 0 | 2 | | | | | | Functional Groups in Organic | | | | | 4 | UCY23D08T | in everyday life | | | | | | | | | UCY23302J | Chemistry | 3 | 0 | 3 | 2 | 7 | //O//OODOOT | Medicinal Chemistry and Drug | | | | | | | | | | Thermodynamics and Surface | | | | | 4 | UCY23D09T | Design | 4 | 0 | 0 | 2 | | | | | UCY23303T | 1 | 3 | 1 | 0 | 2 | 4 | UCY23D10T | Green Chemistry | | - | | | | | | | 110\/02404T | Chemistry | 2 | 4 | 0 | 2 | 1 | | Total Learning Credits | | | 1 | | | | | | UCY23401T | Coordination Chemistry | 3 | 1 | 0 | 2 | 4 | | 3. Generic Elective Courses (G) | | | | | | | | | UCY23402T | Heterocyclic Compounds, Natural Products and Biomolecules | 4 | 0 | 0 | 2 | 4 | | (9 Courses) | | | | | | | | | UOV00400T | Chemical Kinetics and | 3 | 1 | ^ | ^ | 4 | Course | Course Title | Н | | _ | | eek | | | | UCY23403T | Electrochemistry | 3 | 1 | 0 | 2 | | Code | odardo mad | L | Τ | F | | | | | | 110\100504T | Chemistry of d and f-Block | 3 | 1 | 0 | _ | 4 | ULT23G01J | Tamil-I | 3 | 0 | 0 | 2 | 2 | | | | UCY23501T | | 1.1 | '/ | | | | | | | _ | ( | 2 | 2 | | | | | Elements | _ | <i>'</i> | U | 2 | | ULH23G01J | Hindi-I | 3 | 0 | U | | _ | | | | UCY23502J | | | | | | 4 | | Hindi-I<br>French-I | 3 | 0 | _ | 2 | 2 | | | | | Analytical chemistry | 3 | 0 | 3 | 2 | 4 | ULF23G01J | French-I | 3 | 0 | ( | | | | | | | Analytical chemistry Statistical Thermodynamics and | | | | | | ULF23G01J<br>ULT23G02J | French-I<br>Tamil-II | 3 | 0 | 0 | 2 | 2 | | | | | Analytical chemistry Statistical Thermodynamics and Group Theory | 3 | 0 | 3 | 2 | | ULF23G01J<br>ULT23G02J<br>ULH23G02J | French-I<br>Tamil-II<br>Hindi-II | 3<br>3<br>3 | 0<br>0<br>0 | 0 | 2 | 2 | | | | UCY23502J<br>UCY23503T<br>UCY23601T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, | 3 | 0 | 3 | 2 | 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J | French-I Tamil-II Hindi-II French-II | 3<br>3<br>3 | 0 0 0 | | 1 2 | 2 | | | | UCY23503T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic | 3 | 0 | 3 | 2 | | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J | French-I Tamil-II Hindi-II French-II Allied Physics | 3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 2 2 2 | | | | UCY23503T<br>UCY23601T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) | 3 3 | 0 | 3<br>0 | 2 2 | 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G02T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics | 3<br>3<br>3<br>3<br>3<br>3 | 0 0 0 | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 2 2 | | | | UCY23503T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular | 3 | 0 | 3 | 2 | 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G02T<br>UPY23G03T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics Data, Statistics, and Inference | 3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>0<br>1<br>1 | | | 2 2 2 2 | | | | UCY23503T<br>UCY23601T<br>UCY23602T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular spectroscopy | 3<br>3<br>3<br>3 | 0 1 1 | 3<br>0<br>0 | 2<br>2<br>2<br>2 | 4 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G02T<br>UPY23G03T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics | 3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0 | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 2 2 | | | | UCY23503T<br>UCY23601T<br>UCY23602T<br>UCY23603T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular spectroscopy Research Methodology | 3<br>3<br>3<br>3<br>4 | 1 1 0 | 3<br>0<br>0<br>0 | 2<br>2<br>2<br>2<br>2 | 4 4 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G03T<br>UPY23G03T<br>UMA23G11T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics Data, Statistics, and Inference | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>0<br>1<br>1 | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 2 2 2 2 2 | | | | UCY23503T<br>UCY23601T<br>UCY23602T<br>UCY23603T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular spectroscopy Research Methodology Reagents in Organic Reactions | 3<br>3<br>3<br>3<br>4<br>3 | 1<br>1<br>1<br>0<br>1 | 3<br>0<br>0 | 2<br>2<br>2<br>2 | 4 4 4 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G03T<br>UPY23G03T<br>UMA23G11T<br>UPY23G04T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics Data, Statistics, and Inference Allied Mathematics | 3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>1<br>1<br>1 | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 2 2 2 2 | | | | UCY23503T UCY23601T UCY23602T UCY23603T UCY23701T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular spectroscopy Research Methodology Reagents in Organic Reactions Organometallics & Bioinorganic | 3<br>3<br>3<br>3<br>4 | 1<br>1<br>1<br>0<br>1 | 3<br>0<br>0<br>0 | 2<br>2<br>2<br>2<br>2 | 4 4 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G02T<br>UPY23G03T<br>UMA23G11T<br>UPY23G04T<br>UCY23G02T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics Data, Statistics, and Inference Allied Mathematics Solar Technology | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1 | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 2 2 2 2 2 | | | | UCY23503T UCY23601T UCY23602T UCY23603T UCY23701T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular spectroscopy Research Methodology Reagents in Organic Reactions Organometallics & Bioinorganic Chemistry | 3<br>3<br>3<br>4<br>3<br>3 | 1<br>1<br>1<br>0<br>1 | 3<br>0<br>0<br>0<br>0 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 4 4 4 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G02T<br>UPY23G03T<br>UMA23G11T<br>UPY23G04T<br>UCY23G02T<br>UPY23G02T<br>UPY23G05T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics Data, Statistics, and Inference Allied Mathematics Solar Technology Polymer chemistry and its uses Structure and Properties of Materials | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1 | | | 2 2 2 2 2 2 2 2 | | | | JCY23503T JCY23601T JCY23602T JCY23603T JCY23701T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular spectroscopy Research Methodology Reagents in Organic Reactions Organometallics & Bioinorganic | 3<br>3<br>3<br>4<br>3<br>3 | 1<br>1<br>1<br>0<br>1 | 3<br>0<br>0<br>0<br>0 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 4 4 4 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G02T<br>UPY23G03T<br>UMA23G11T<br>UPY23G04T<br>UCY23G02T<br>UPY23G05T<br>UCY23G03T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics Data, Statistics, and Inference Allied Mathematics Solar Technology Polymer chemistry and its uses Structure and Properties of Materials Food Chemistry | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1 | | 2 | 2 2 2 2 2 2 2 2 2 | | | | UCY23503T UCY23601T UCY23602T UCY23603T UCY23701T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular spectroscopy Research Methodology Reagents in Organic Reactions Organometallics & Bioinorganic Chemistry | 3<br>3<br>3<br>4<br>3<br>3 | 1<br>1<br>1<br>0<br>1 | 3<br>0<br>0<br>0<br>0 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 4 4 4 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G03T<br>UPY23G03T<br>UMA23G11T<br>UPY23G04T<br>UCY23G02T<br>UPY23G05T<br>UCY23G03T<br>UCY23G03T<br>UCY23G06T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics Data, Statistics, and Inference Allied Mathematics Solar Technology Polymer chemistry and its uses Structure and Properties of Materials Food Chemistry Thin Films | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | | 2 | 2 2 2 2 2 2 2 2 2 | | | | UCY23503T UCY23601T UCY23602T UCY23603T UCY23701T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular spectroscopy Research Methodology Reagents in Organic Reactions Organometallics & Bioinorganic Chemistry | 3<br>3<br>3<br>4<br>3<br>3 | 1<br>1<br>1<br>0<br>1 | 3<br>0<br>0<br>0<br>0 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 4 4 4 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G03T<br>UPY23G04T<br>UPY23G04T<br>UPY23G05T<br>UCY23G03T<br>UCY23G03T<br>UCY23G06T<br>UCY23G04T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics Data, Statistics, and Inference Allied Mathematics Solar Technology Polymer chemistry and its uses Structure and Properties of Materials Food Chemistry Thin Films Pharmaceutical Chemistry | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | | 1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | UCY23503T UCY23601T UCY23602T UCY23603T UCY23701T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular spectroscopy Research Methodology Reagents in Organic Reactions Organometallics & Bioinorganic Chemistry | 3<br>3<br>3<br>4<br>3<br>3 | 1<br>1<br>1<br>0<br>1 | 3<br>0<br>0<br>0<br>0 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 4 4 4 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G02T<br>UPY23G03T<br>UMA23G11T<br>UPY23G04T<br>UCY23G02T<br>UPY23G05T<br>UCY23G03T<br>UCY23G04T<br>UCY23G04T<br>UCY23G04T<br>UCY23G04T<br>UCY23G04T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics Data, Statistics, and Inference Allied Mathematics Solar Technology Polymer chemistry and its uses Structure and Properties of Materials Food Chemistry Thin Films Pharmaceutical Chemistry Group Theory | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | | 1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | UCY23503T UCY23601T UCY23602T UCY23603T UCY23701T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular spectroscopy Research Methodology Reagents in Organic Reactions Organometallics & Bioinorganic Chemistry | 3<br>3<br>3<br>4<br>3<br>3 | 1<br>1<br>1<br>0<br>1 | 3<br>0<br>0<br>0<br>0 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 4 4 4 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G02T<br>UPY23G03T<br>UMA23G11T<br>UPY23G04T<br>UCY23G05T<br>UCY23G03T<br>UCY23G04T<br>UCY23G04T<br>UCY23G04T<br>UCY23G04T<br>UCY23G07T<br>UCY23G07T<br>UCY23G05T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics Data, Statistics, and Inference Allied Mathematics Solar Technology Polymer chemistry and its uses Structure and Properties of Materials Food Chemistry Thin Films Pharmaceutical Chemistry Group Theory Chemistry in everyday life | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | UCY23503T<br>UCY23601T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular spectroscopy Research Methodology Reagents in Organic Reactions Organometallics & Bioinorganic Chemistry | 3<br>3<br>3<br>4<br>3<br>3 | 1<br>1<br>1<br>0<br>1 | 3<br>0<br>0<br>0<br>0 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 4 4 4 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G02T<br>UPY23G03T<br>UMA23G11T<br>UPY23G04T<br>UCY23G02T<br>UPY23G05T<br>UCY23G03T<br>UCY23G04T<br>UCY23G04T<br>UCY23G04T<br>UCY23G04T<br>UCY23G04T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics Data, Statistics, and Inference Allied Mathematics Solar Technology Polymer chemistry and its uses Structure and Properties of Materials Food Chemistry Thin Films Pharmaceutical Chemistry Group Theory Chemistry in everyday life Applications of Nanotechnology | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | UCY23503T UCY23601T UCY23602T UCY23603T UCY23701T | Analytical chemistry Statistical Thermodynamics and Group Theory Pericyclic Reaction, Photochemistry, and Polycyclic Aromatic Hydrocarbons (PAH) Quantum chemistry and Molecular spectroscopy Research Methodology Reagents in Organic Reactions Organometallics & Bioinorganic Chemistry | 3<br>3<br>3<br>4<br>3<br>3 | 1<br>1<br>1<br>0<br>1 | 3<br>0<br>0<br>0<br>0 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 4 4 4 4 | ULF23G01J<br>ULT23G02J<br>ULH23G02J<br>ULF23G02J<br>UPY23G01J<br>UPY23G02T<br>UPY23G03T<br>UMA23G11T<br>UPY23G04T<br>UCY23G05T<br>UCY23G03T<br>UCY23G04T<br>UCY23G04T<br>UCY23G04T<br>UCY23G04T<br>UCY23G07T<br>UCY23G07T<br>UCY23G05T | French-I Tamil-II Hindi-II French-II Allied Physics Laser Physics Data, Statistics, and Inference Allied Mathematics Solar Technology Polymer chemistry and its uses Structure and Properties of Materials Food Chemistry Thin Films Pharmaceutical Chemistry Group Theory Chemistry in everyday life | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | | | | | | | | 5. Ability Enhancement Courses | (AE) | | | | | | |----------------|----------------------------------------|-------|-------|--------|----------|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|------|------|-----|---|---| | | 4. Skill Enhancement Courses(S) | | | | | | | | (4 Courses) | | | | | | | | | (5 Courses) | | | | | | | Course | Course | 1 | Hou | rs/V | | | | | | | | | | | | | Code | Title | | L | Τ | Р | 0 | | | 0 | 0 | | lours | ./14/. | 1- | | | ULE23AE1T | | | 4 | 0 | 0 | 2 | | | Course<br>Code | Course<br>Title | П | ours | 5/ VV6 | еек | | | UES23AE1T | Environmental Studies | | 3 | 0 | 0 | 2 | 3 | | | | L | T | Р | 0 | ( | C | ULT23AE1J | Applied Tamil – I | | | | | | Г | | UCD23S01L | Quantitative Aptitude and Logical | 0 | 0 | 2 | 2 | | 1 | | I Applied Hindi – I | | 1 | 0 | 2 | 2 | 2 | | | Reasoning | U | U | | 2 | | ' | | French for specific purpose-I | | | | _ | - | Ī | | LICDAACAAT | Verbal Ability and Skill | 2 | 0 | ^ | 2 | | 2 | | Applied Tamil – II | | | | | | T | | UCD23S02T | Development | | 0 | 0 | 2 | 1 | 2 | | Applied Hindi – II | | 1 | 0 | 2 | 2 | 2 | | UCY23S03L | Instrumental Methods of Analysis | 0 | 0 | 3 | 2 | | 1 | | French for specific purpose-II | | • | | _ | - | Ī | | UCY23S04L | Inorganic Qualitative Analysis | 0 | 0 | 4 | 2 | | 2 | OLI ZOALZO | Total Learning Credits | | | | | | 1 | | | Organic Chemistry Practical-II | 0 | 0 | 3 | 2 | | 1 | | | | | | | | _ | | | Total Learning Credits | - | | | | _ | 7 | | <b>7. Mandatory Courses(M)</b><br>(2 Course) | | | | | | | | | | | | | | | | Course | Course | ŀ | lour | rs/W | eek | | T | | | C. Visher added Occurs of O. | | | | | | | Code | Title | L | _ | _ | 0 | _ | 2 | | | 6. Value added Courses (V) | | | | | | | UMI23M01L | My India Project | 0 | 0 | 0 | 0 | | ) | | | (4 courses) | | | | Нои | uro/ | | UNS23M01L | NSS | | | | | | Γ | | Course | Course | | | | We | | | | | 0 | 0 | 0 | | | ) | | Code | Title | | | 1 | | P ( | ОС | UNO23M01L | | 0 | 10 | U | 0 | | , | | LICD23V01T | Universal Human Values | | | 2 | | 0 2 | | UYG23M01L | YOGA | | | | | | | | | Communication Skills | | | 0 | | 4 2 | | | Total Learning Credits | | | | | | ) | | | Industry Oriented Employability Skills | for | | | | | | | | | | | | | | | | Science | OI . | | 2 | 0 | 0 2 | 2 2 | 100 | | | | | | | | | | Career Readiness and Professional S. | kills | | 2 | 0 | 0 2 | 2 2 | 100 | | | | | | | | | | Total Learning Credits | uno | | 1-1 | | | 4 | A DESCRIPTION OF THE PARTY T | | | | | | | | | | 8. Internship/Apprenticeship / Proje | of | | | | | | FARTE. | | | | | | | | | | (6 courses) | ;() | | | | | | Maria de la companya della | | | | | | | | | Course | Course | | I | lour | s/W | /eek | | 1 | | | | | | | | | Code | Title | | 1 | T | _ | | _ | | | | | | | | | | UCY23P01L | | | - - | | <u>'</u> | | 1 | | | | | | | | | | UCY23P02L | | | | | | | 1 | | | | | | | | | | UCY23P03L | | | | | | | 2 | | | | | | | | | | UCY23P04L | | | 0 | 0 | 5 | 0 | | | | | | | | | | | | Project Phase-I | | 0 | | | | | | | | | | | | | | | Project Phase-II | | 0 | 0 | 12 | 2 | 6 | | | | | | | | | | | Total Learning Credits | | | | | | 16 | | | | | | | | | | | | 17 | | | | | Ш | . TEA | | | | | | | | | | | | | | | | | LEF | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As SRMIST strongly encourages the use of SWAYAM (Study Web of Active Learning by Learning by Young and Aspiring Minds) platform, the students are encouraged to choose at least one core/ elective course from SWAYAM on the recommendation of the faculty advisor and the credits will be transferred. ### 8. Implementation Plan | | Semester - I | | | | | | |-----------|--------------------------------------------------|---|---|----|---|----| | Course | Course Course Title | | | | | | | Code | Course ride | L | Τ | Р | 0 | | | ULT23G01J | Tamil-I | | | | | | | ULH23G01J | Hindi-I | 2 | 0 | 2 | 2 | 3 | | ULF23G01J | French-I | | | | | | | ULE23AE1T | English | 4 | 0 | 0 | 2 | 4 | | UCY23101T | Atomic Structure and Chemical Bonding | 3 | 1 | 0 | 2 | 4 | | UCY23102T | Basic Organic Chemistry | 3 | 1 | 0 | 2 | 4 | | UCY23103J | States of matter, solutions and phase equilibria | 3 | 0 | 3 | 2 | 4 | | UCD23S01L | Quantitative Aptitude and Logical Reasoning | 0 | 0 | 2 | 2 | 1 | | UCD23V01T | Universal Human Values | 2 | 0 | 0 | 2 | 2 | | | Total Learning Credits | | | | | 22 | | | Total Number of Hours | | | 26 | | | | | Semester – II | | | | | | | | | | | |-----------|--------------------------------------|---|------|------|----|----|--|--|--|--|--| | Code | Course Title | Н | ours | / We | ek | С | | | | | | | Code | Course Tille | L | Τ | Ρ | 0 | U | | | | | | | ULT23G02J | Tamil-II | | | | | | | | | | | | ULH23G02J | Hindi-II | 2 | 0 | 2 | 2 | 3 | | | | | | | ULF23G02J | 1.000.0 | | | | | | | | | | | | UES23AE1T | Environmental Studies | 3 | 0 | 0 | 2 | 3 | | | | | | | UCY23201J | Chemistry of s and p-Block Elements | 3 | 0 | 3 | 2 | 4 | | | | | | | UCY23202T | Basic reactions in organic chemistry | 3 | 1 | 0 | 2 | 4 | | | | | | | UCY23203T | Chemical Equilibria, Acids and Bases | 3 | 1 | 0 | 2 | 4 | | | | | | | UCD23S02T | Verbal Ability and Skill Development | 2 | 0 | 0 | 2 | 2 | | | | | | | UEN23V01L | Communication Skills | 0 | 0 | 4 | 2 | 2 | | | | | | | UNS23M01L | NSS | | | | | | | | | | | | UNC23M01L | NCC | 0 | 0 | 0 | 0 | 0 | | | | | | | UNO23M01L | NSO | U | U | U | U | U | | | | | | | UYG23M01L | G23M01L YOGA | | | | | | | | | | | | | Total Learning Credits | | | | | 22 | | | | | | | | Total number of hours /week | | | | | 27 | | | | | | | Semester – III | | | | | | | | | | | | |----------------|----------------------------------------------------|---|------|------|---|----|--|--|--|--|--| | Course | Course Title | Н | ours | / We | С | | | | | | | | Code | Course Tille | L | Τ | Р | 0 | | | | | | | | UCY23301T | Radioactive and Nuclear Chemistry | 3 | 1 | 0 | 2 | 4 | | | | | | | UCY23302J | Functional Groups in Organic Chemistry | 3 | 0 | 3 | 2 | 4 | | | | | | | UCY23303T | Thermodynamics and Surface Chemistry | 3 | 1 | 0 | 2 | 4 | | | | | | | UPY23G01J | Allied Physics | 3 | 0 | 3 | 2 | 1 | | | | | | | UPY23G02T | Laser Physics | 3 | 1 | 0 | 2 | 4 | | | | | | | ULT23AE1J | Applied Tamil – I | | | | | | | | | | | | ULH23AE1J | Applied Hindi – I | 1 | 0 | 2 | 2 | 2 | | | | | | | ULF23AE1J | French for specific purpose-I | | | | | | | | | | | | UCY23S03L | Instrumental Methods of Analysis | 0 | 0 | 3 | 2 | 1 | | | | | | | UCD23V02T | Industry Oriented Employability Skills for Science | 2 | 0 | 0 | 2 | 2 | | | | | | | UCY23P01L | 0 | 0 | 0 | 0 | 1 | | | | | | | | | Total Learning Credits | 5 | | | | 22 | | | | | | | | Total Number of Hours | 3 | | | | 28 | | | | | | | | Semester - IV | | | | | | |-------------|-----------------------------------------------------------|---|------|------|-----|----| | Course Code | Course Title | Н | ours | / We | eek | _ | | Course Code | Course Title | L | Τ | Ρ | 0 | C | | UCY23401T | Coordination Chemistry | 3 | 1 | 0 | 2 | 4 | | UCY23402T | Heterocyclic Compounds, Natural Products and Biomolecules | 4 | 0 | 0 | 2 | 4 | | UCY23403T | Chemical Kinetics and Electrochemistry | 3 | 1 | 0 | 2 | 4 | | UPY23G03T | Data, Statistics, and Inference | 3 | 1 | 0 | 2 | 4 | | UMA23G11T | Allied Mathematics | | | | | 4 | | ULT23AE2J | Applied Tamil – II | | | | | | | ULH23AE2J | Applied Hindi – II | 1 | 0 | 2 | 2 | 2 | | ULF23AE2J | French for specific purpose-II | | | | | | | UCY23S04L | Inorganic Qualitative Analysis | 0 | 0 | 4 | 2 | 2 | | UCD23V05T | Career Readiness and Professional Skills | 2 | 0 | 0 | 2 | 2 | | UMI23M01L | My India Project | 0 | 0 | 0 | 0 | 0 | | | Total Learning Credits | | | | | 22 | | | Total Number of Hours / Week | | | | | 25 | | | Semester - V | | | | | | |-----------|---------------------------------------------|---------|--------|------|---|----| | Course | Course Title | Но | urs/ W | 'eek | | | | Code | Course Title | L | Τ | Р | 0 | | | UCY23501T | Chemistry of d and f-Block Elements | 3 | 1 | 0 | 2 | 4 | | UCY23502J | Analytical chemistry | 3 | 0 | 3 | 2 | 4 | | UCY23503T | Statistical Thermodynamics and Group Theory | 3 | 1 | 0 | 2 | 4 | | UCY23D01T | Nanomaterials and Nanochemistry | 2 | 1 | 0 | 2 | 1 | | UCY23D02T | Energy and Fuels | 3 | 1 | 0 | 2 | 4 | | UCY23G02T | Polymer chemistry and its uses | 2 | 4 | 0 | 2 | 1 | | UPY23G04T | Solar Technology | 3 | 1 | 0 | 2 | 4 | | UCY23S05L | Organic Chemistry Practical-II | 0 | 0 | 3 | 2 | 1 | | UCY23P02L | Internship-II | 0 | 0 | 0 | 0 | 1 | | | Total Learning Credits | | | | 2 | 22 | | | Total Number o | f Hours | | | 2 | 25 | | | Semester - VI | | ١. | | | | |-----------|--------------------------------------------------------------------------------|---|----|------|---|---| | Course | 그 회사장 기탁들이는 하는 모든 방안이다. | | | urs/ | ′ | | | Code | Course Title | | We | ek | | C | | Oodo | | L | Τ | Р | 0 | | | UCY23601T | Pericyclic Reaction, Photochemistry and Polycyclic Aromatic Hydrocarbons (PAH) | 3 | 1 | 0 | 2 | 4 | | UCY23602T | Quantum chemistry and Molecular spectroscopy | 3 | 1 | 0 | 2 | 4 | | UCY23603T | Research Methodology | 4 | 0 | 0 | 2 | 4 | | UCY23D03T | Polymer and Industrial Chemistry | 3 | 1 | 0 | 2 | 4 | | UCY23D04T | Supramolecular Chemistry | J | ı | U | 2 | 4 | | UCY23G03T | Food Chemistry | 3 | 1 | 0 | 2 | 4 | | UPY23G05T | Structure and Properties of Materials | J | 1 | U | 2 | 4 | | UCY23P04L | Mini project | 0 | 0 | 5 | 0 | 2 | | | Total Learning Credits | | | | 2 | 2 | | | Total Number of Hours | | | | 2 | 5 | | | Semester – VII | | | | | | |-----------|--------------------------------------------|----|--------|-------|---|----| | Course | Course Title | ŀ | lours/ | / Wee | k | С | | Code | Course Tille | L | Τ | Р | 0 | C | | UCY23701T | Reagents in Organic Reactions | 3 | 1 | 0 | 2 | 4 | | UCY23D05T | Solid State Chemistry and its Applications | 3 | 1 | 0 | 2 | 4 | | UCY23D06T | Chemical Technology and Society | J | ' | U | | 4 | | UCY23G04T | Pharmaceutical Chemistry | 3 | 1 | 0 | 2 | 4 | | UPY23G06T | Thin Films | 4 | 0 | U | 2 | 4 | | UCY23G05T | Chemistry in everyday life | 3 | 1 | 0 | 2 | 4 | | UPY23G07T | Group Theory | 3 | 1 | U | 2 | 4 | | UCY23P03L | Internship-III | 0 | 0 | 0 | 0 | 2 | | UCY23P05L | Project Phase-I | 0 | 0 | 9 | 2 | 4 | | | Total Learning Credits | ٠. | | | | 22 | | | Total Number of Hours | | | | | 25 | | | Semester - VIII | | | | | | | | | | | |-------------|----------------------------------------------------|---|-------|------|---|----|--|--|--|--|--| | Course Code | Course Title | H | ours/ | Week | | ) | | | | | | | Course Code | Course Title | L | T | Р | 0 | C | | | | | | | UCY23801T | Organometallics & Bioinorganic Chemistry | 3 | 1 | 0 | 2 | 4 | | | | | | | UCY23D07T | Organic Spectroscopy | 1 | 0 | 0 | 2 | 1 | | | | | | | UCY23D08T | Materials chemistry and their use in everyday life | 4 | O | U | 2 | 4 | | | | | | | UCY23D09T | Medicinal Chemistry and Drug Design | 1 | 0 | 0 | 2 | 1 | | | | | | | UCY23D10T | Green Chemistry | 4 | O | U | | 4 | | | | | | | UCY23G06T | Computational Modelling in Chemistry | 3 | 1 | 0 | 2 | 1 | | | | | | | UPY23G08T | Applications of Nanotechnology | J | ' | U | 2 | 4 | | | | | | | UCY23P06L | Project Phase-II | 0 | 0 | 12 | 2 | 6 | | | | | | | | Total Learning Credits | | 7 | | | 22 | | | | | | | | Total Number of Hours | | | | | 28 | | | | | | | Courses for earning Ad | ditional Credits | | | | | | | | | | | |------------------------|------------------------|---|-------------|---|---|---|--|--|--|--|--| | Osuma Osda | Course Title | | Hours/ Week | | | | | | | | | | Course Code | Course Title | L | Τ | P | 0 | С | | | | | | | Semester – II | • | • | | • | • | | | | | | | | UCD23P01L | Internship Report– I | | | | | | | | | | | | UCD23P02L | Project Work – I | 0 | 0 | 8 | 0 | 4 | | | | | | | UCD23P03L | Apprenticeship – I | | | | | | | | | | | | Semester – IV | | • | • | • | • | | | | | | | | UCD23P04L | Internship Report– II | | | | | | | | | | | | UCD23P05L | Project Work – II | 0 | 0 | 8 | 0 | 4 | | | | | | | UCD23P06L | Apprenticeship – II | | | | | | | | | | | | | Total Learning Credits | 0 | 0 | 8 | 0 | 4 | | | | | | | g | culation Matrix | | | | P | rogi | ramn | ne L | earn | ing ( | Programme Learning Outcomes | | | | | | | | | | | | | |-------------|--------------------------------------------------------------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|-----------------------------|----------------------|-------------------|-----------------------|-------------------------|-------------------------------|--|--|--|--|--|--|--| | Course Code | Course Name | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | | | | | | | | | UCY23101T | Atomic Structure and Chemical Bonding | Н | H | Н | Н | Н | M | L | <u>∢</u> | <u>-</u><br>М | - | 0 | ٠. | Н | ٠. | - | | | | | | | | | UCY23102T | Basic Organic Chemistry | Н | Н | Н | М | Н | М | Н | Н | Н | L | - | - | - | - | - | | | | | | | | | UCY23103J | States of matter, solutions and phase equilibria | Н | - | Н | - | Н | _ | Н | | | L | - | Н | - | - | Н | | | | | | | | | UCY23201J | Chemistry of s and p-Block Elements | Н | Н | Н | Н | М | L | | - | - | | - | - | Н | Н | - | | | | | | | | | UCY23202T | Basic Reactions in Organic Chemistry | Н | Н | Н | T | Н | М | Н | | М | - | - | - | - | - | - | | | | | | | | | UCY23203T | Chemical Equilibria, Acids and Bases | Н | Н | Н | - | Н | Н | L | _ | | М | Н | Н | _ | _ | - | | | | | | | | | UCY23301T | Radioactive and Nuclear Chemistry | Н | Н | - | Н | Н | L | М | ī, | - | L | | Н | - | Н | - | | | | | | | | | UCY23302J | Functional Groups in Organic Chemistry | Н | Н | Н | Н | Н | М | Н | | - | | | - | - | - | - | | | | | | | | | UCY23303T | Thermodynamics and Surface Chemistry | Н | Н | _ | Н | М | М | М | L | 7 | - | - | Н | - | - | - | | | | | | | | | UCY23401T | Coordination Chemistry | Н | Н | _ | Н | Н | L | М | - | | - | | - | Н | Н | - | | | | | | | | | UCY23402T | Heterocyclic Compounds, Natural Products and Biomolecules | Н | Н | Н | | Н | L | М | Ī | L | | - | | | - | - | | | | | | | | | UCY23403T | Chemical Kinetics and Electrochemistry | Н | Н | 1- | Н | Н | L | М | - | М | ٠, | - | Н | - | - | - | | | | | | | | | UCY23501T | Chemistry of d and f-Block Elements | Н | Н | Ţ | Н | Н | - | М | L | М | ī | - | Н | Н | Н | - | | | | | | | | | UCY23502J | Analytical chemistry | Н | Н | - | Н | Н | М | М | - | L | - | - | Н | - | - | - | | | | | | | | | UCY23503T | Statistical Thermodynamics and Group Theory | Н | Н | | Н | Н | L | М | - | L | - | - | Н | - | - | - | | | | | | | | | UCY23601T | Pericyclic Reaction, Photochemistry and Polycyclic Aromatic Hydrocarbons (PAH) | Н | Н | Н | Н | М | М | Н | Н | - | - | - | | - | - | - | | | | | | | | | UCY23602T | Quantum chemistry and Molecular spectroscopy | Н | Н | - | Н | Н | М | М | - | - | - | L | Н | - | - | - | | | | | | | | | UCY23603T | Research Methodology | М | - | - | Н | Н | Н | Н | Н | Н | - | - | Н | - | - | - | | | | | | | | | UCY23701T | Reagents in Organic Reactions | Н | Н | - | Н | Н | | М | - | Н | - | - | Н | - | - | - | | | | | | | | | UCY23801T | Organometallics & Bioinorganic Chemistry | Н | Н | Н | Н | Н | - | М | - | М | - | - | - | Н | Н | - | | | | | | | | | UCY23D01T | Nanomaterials and Nanochemistry | Н | Н | - | Н | Н | М | М | 7 | М | - | -, | Н | - | - | - | | | | | | | | | UCY23D02T | Energy and Fuels | Н | Н | H | Н | М | М | М | - | - | - | 1 | 1 | • | 1 | - | | | | | | | | | UCY23D03T | Polymer and Industrial Chemistry | Н | Н | - | Н | Н | | М | - | - | - | - | Н | - | - | - | | | | | | | | | UCY23D04T | Supramolecular Chemistry | Н | Н | - | Н | Н | | М | Н | - | - | - | Н | - | - | - | | | | | | | | | UCY23D05T | Solid State Chemistry and its Applications | Н | Н | Н | Н | Н | - | М | , e | - | • | - | 1 | Н | М | - | | | | | | | | | UCY23D06T | Chemical Technology and Society | Н | Н | L | М | Н | Н | 1 | - | - | Н | - | | Н | Н | - | | | | | | | | | UCY23D07T | Organic Spectroscopy | Н | Н | - | Н | Н | - | Н | Н | М | - | - | Н | - | - | - | | | | | | | | | UCY23D08T | Materials chemistry and their use in everyday life | Н | Н | - | М | Н | - | Н | Н | - | - | - | Н | - | - | - | | | | | | | | | UCY23D09T | Medicinal Chemistry and Drug Design | Н | Н | Н | - | - | - | Н | - | L | - | Н | Н | - | - | - | | | | | | | | | UCY23D10T | Green Chemistry | Н | Н | - | Н | Н | - | Н | - | - | • | • | Н | • | • | - | | | | | | | | | ULT23G01J | Tamil-I | Н | М | Н | М | Н | Н | М | Н | Н | М | Н | Н | - | - | - | | | | | | | | | ULH23G01J | Hindi-I | Н | Н | Н | Н | М | Н | М | Н | М | М | Н | Н | - | - | _ | | | | | | | | | ULF23G01J | French-I | Н | Н | М | Н | Н | Н | Н | Н | М | М | Н | М | | | _ | | | | | | | | | ULT23G02J | Tamil-II | Н | М | Н | М | Н | Н | М | Н | Н | М | Н | Н | - | - | | | | | | | | | | ULH23G02J | Hindi-II | Н | Н | Н | Н | М | Н | Н | Н | Н | М | Н | Н | _ | _ | _ | | | | | | | | | ULF23G02J | French-II | Н | Н | Н | Н | Н | Н | Н | Н | М | Н | Н | Н | _ | _ | _ | | | | | | | | | UPY23G01J | Allied Physics | Н | Н | - | - | - | - | - | Н | - | - | - | Н | - | - | - | |-----------|----------------------------------------------------|---|---|-----|---|---|---|----|---|---|---|---|---|---|---|---| | UPY23G02T | Laser Physics | Н | Н | - | - | - | - | - | - | - | - | - | Н | - | - | - | | UPY23G03T | Data, Statistics, and Inference | - | - | Н | Н | - | - | - | Н | - | - | - | - | - | - | - | | UMA23G11T | Allied Mathematics | М | Н | - | Н | - | - | - | - | - | - | - | Н | - | - | - | | UPY23G04T | Solar Technology | Н | Н | Н | - | Н | Н | - | Н | - | Н | - | Н | - | - | - | | UCY23G02T | Polymer chemistry and its uses | Н | М | - | Н | Н | - | Н | Н | - | - | - | Н | - | - | - | | UPY23G05T | Structure and Properties of Materials | Н | Н | - | Н | М | - | - | М | - | М | - | - | - | - | - | | UCY23G03T | Food Chemistry | Н | Н | - | - | - | - | Н | - | - | - | - | Н | - | - | - | | UPY23G06T | Thin Films | Н | Н | 7.1 | - | - | - | - | Н | - | - | - | - | - | - | - | | UCY23G04T | Pharmaceutical Chemistry | Н | Н | - | Н | - | - | Н | - | - | L | L | Н | - | - | - | | UPY23G07T | Group Theory | Н | - | - | - | - | - | ٠, | - | - | Н | - | Н | - | - | - | | UCY23G05T | Chemistry in everyday life | Н | Н | - | Н | Н | Н | Н | | - | - | - | Н | - | - | - | | UPY23G08T | Applications of Nanotechnology | Н | Н | -( | | - | | - | - | 4 | Н | - | - | - | - | - | | UCY23G06T | Computational Modelling in Chemistry | Н | Н | - | Н | Н | L | Н | - | М | - | - | Н | - | - | - | | UCD23S01L | Quantitative Aptitude and Logical Reasoning | Н | М | М | М | L | М | М | Н | М | Н | Н | Н | Н | Н | Н | | UCD23S02T | Verbal Ability and Skill Development | М | Н | М | М | М | Н | L | М | М | Н | Н | Н | М | М | Н | | UCY23S03L | Instrumental Methods of Analysis | Н | - | - | Н | Н | L | Н | - | Н | L | - | Н | - | - | - | | UCY23S04L | Inorganic Qualitative Analysis | Н | Н | - | Н | Н | М | Н | - | Н | Н | - | Н | Н | Н | - | | UCY23S05L | Organic Chemistry Practical-II | Н | Н | L | Н | Н | Н | - | | - | Н | - | - | - | - | - | | ULE23AE1T | English | Н | Н | М | М | М | М | - | М | М | М | Н | М | - | - | - | | UES23AE1T | Environmental Studies | Н | | L | М | L | Н | М | М | М | Н | L | М | - | - | М | | ULT23AE1J | Applied Tamil – I | М | Н | Н | Н | Н | 1 | Н | - | - | Н | Н | Н | Н | Н | Н | | ULH23AE1J | Applied Hindi – I | Н | Н | Н | Н | М | Н | М | М | М | М | Н | Н | - | - | - | | ULF23AE1J | French for specific purpose-I | Н | Н | Н | Н | Н | Н | Н | Н | М | М | Н | М | - | - | - | | ULT23AE2J | Applied Tamil – II | Н | М | Н | М | Н | Н | М | Н | Н | Н | Н | Н | - | - | - | | ULH23AE2J | Applied Hindi – II | Н | Н | Н | Н | М | Н | Н | Н | Н | М | Н | Н | - | - | - | | ULF23AE2J | French for specific purpose-II | Н | Н | М | Н | Н | Н | Н | Н | М | М | Н | М | - | - | - | | UCD23V01T | Universal Human Values | М | М | L | Н | L | L | L | М | L | L | М | L | М | Н | Н | | UEN23V01L | Communication Skills | Н | М | Н | М | Н | Н | М | Н | Н | М | Н | Н | - | - | - | | UCD23V02T | Industry Oriented Employability Skills for Science | М | М | Н | М | М | Н | L | М | Н | М | Н | Н | М | L | Н | | UCD23V05T | Career Readiness and Professional Skills | Н | М | М | М | Н | Н | М | Н | L | Н | Н | Н | М | Н | Н | | UNS23M01L | NSS | Н | Н | F | Н | Н | L | Н | 1 | - | L | - | Н | - | Н | - | | UNC23M01L | NCC | Н | Н | - | Н | Н | L | Н | - | - | L | - | Н | - | Н | - | | UNO23M01L | NSO | Н | Н | 1 | Н | Н | L | Н | - | - | L | - | Н | - | Н | - | | UYG23M01L | YOGA | Н | Н | - | Н | Н | L | Н | - | - | L | - | Н | - | Н | - | | UMI23M01L | My India Project | Н | Н | | Н | Н | | Н | L | М | - | - | Н | Н | Н | - | | UCY23P01L | Internship-I | Н | Н | - | - | | Н | - | - | М | - | М | - | - | Н | Н | | UCY23P02L | Internship-II | Н | Н | - | - | - | Н | - | - | М | - | М | - | - | Н | Н | | UCY23P03L | Internship-III | Н | Н | - | - | - | Н | - | - | М | - | М | - | - | Н | Н | | UCY23P04L | Mini Project | Н | Н | - | Н | Н | - | М | - | Н | - | - | Н | - | - | - | | UCY23P05L | Project Phase-I | Н | Н | Н | Н | Н | - | М | - | М | - | - | - | Н | Н | - | | UCY23P06L | Project Phase-II | Н | - | Н | Н | Н | Н | Н | - | - | - | - | Н | - | - | - | H – High Correlation, M – Medium Correlation, L – Low Correlation ## 10.Structure of UG Courses in B.Sc. Chemistry Distribution of different Courses in each semester with their credits in the bracket | Semester | Discipline Specific Core Courses (C) | Discipline Electives Courses (D) | Generic<br>Electives<br>Courses<br>(G) | Skill<br>Enhancement<br>Courses<br>(S) | Ability<br>Enhancement<br>Courses<br>(A) | Extension<br>Activity<br>(E) | Value<br>addition<br>Courses<br>(V) | Internship/<br>Apprenticeship<br>Project/<br>Community<br>Outreach<br>(P) | Total<br>Credits | |------------------|----------------------------------------|----------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|------------------------------|-------------------------------------|---------------------------------------------------------------------------|------------------| | Sem I | CC-1 (4)<br>CC-2 (4)<br>CC-3 (4) | | GE – 1(3) | SE – 1 (1) | AE-1 (4) | | VA-1(2) | | 22 | | Sem II | CC-4 (4)<br>CC-5 (4)<br>CC-6 (4) | | GE – 2(3) | SE – 2 (2) | AE-2 (3) | EA-1 (0) | VA-2(2) | | 22 | | Sem III | CC-7 (4)<br>CC-8 (4)<br>CC-9 (4) | | GE – 3(4) | SE – 3 (1) | AE-3 (2) | | VA-3(2) | P -1(1) | 22 | | Sem IV | CC-10 (4)<br>CC-11 (4)<br>CC-12 (4) | | GE – 4(4) | SE – 4 (2) | AE-4 (2) | EA-2(0) | VA-4(2) | | 22 | | Sem V | CC-13 (4)<br>CC-14 (4)<br>CC-15 (4) | DSE - 1 (4) | GE – 5(4) | SE – 5 (1) | | | | P - 2(1) | 22 | | Sem VI | CC-16 (4)<br>CC-17 (4)<br>CC-18 (4) | DSE - 2 (4) | GE -6(4) | | | | | P - 3(2) | 22 | | Sem VII | CC-19 (4) | DSE - 3 (4) | GE – 7(4)<br>GE – 8(4) | S – 3 (2) | | | | P -4 (2)<br>P - 6 (4) | 22 | | Sem VIII | CC-20 (4) | DSE - 4 (4)<br>DSE - 5 (4) | GE – 9(4) | | | | | P-7 (6) | 22 | | Total<br>Credits | 80 | 20 | 34 | 9 | 11 | 0 | 08 | 16 | 176 | # Syllabus for B.Sc. Chemistry SEMESTER I | Course Code UL | .T23G01J | Course Nar | Name Tamil-I Cou<br>Cate | | | | | G | Ge | ener | ic E | lecti | ve C | Cour | se | L<br>2 | T<br>0 | P<br>2 | 2 | <b>C</b> 3 | | | |------------------------------------------|-----------------------------------------------|---------------------------------|-------------------------------------------------------------------|------------------------|--------------------------|--------------------------|-------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------------------|----------------------|-------------------|------------|--------|-------| | Pre-requi<br>Course | | | Co-requisite<br>Courses | Nil | | | | | ogre<br>Cou | | | Nil | | | | | | | | | | | | Course Of<br>Departmen | | Tamil | | Data Bool<br>Codes/Sta | | rds | | | | | | | | | Nil | | | | | | | | | Course Le<br>Rationale | | The purpos | se of learning this | s course is to | ).' | | | Le | arni | ng | | P | rog | ram | Lea | rnin | g O | utco | mes | (PL | .O) | | | CLR-1: | புதுக்கவி | ிதை மர | ற்றம் பெற்ற<br>பின்<br>அறியச் செட | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | <mark>புதுக்</mark> கவி<br>வாழ்விய<br>தெரியச் | ிதையின்<br>பல் விழுப<br>செய்தல் | ர் வழி மனி<br>மியங்களை<br>ல | த<br>த் | | 20.0 | | | | | | | 1 | | 5 | | | | | | | | | CLR-3: | கற்பிக்கு<br>வாழ்விய | நம் தமிழ்<br>பலை அற | ள், காப்பிய<br>ச் சமூகத்தி<br>றியச் செய்த | ன்<br>தல் | | | | l i | Ž. | | | de. | | | | | | | | | | | | CLR-4: | | | க்கிய வளர்<br>பியச் செய்த | | | 5 | | | 3 | Se | Ģ | | Ф | | 1 | 7 | | | | | | | | CLR-5: | | நட்பங் | வழி மொழி<br>களைத் தெ | | (Bloom) | ciency (%) | nment (%) | nowledge | Concepts | ed Discipline | owledge | alization | <b>Knowledge</b> | jug | ret Data | kills | ng Skills | n Skills | S | | | | | Course<br>Learning<br>Outcomes<br>(CLO): | At the end o | of this course | e, learners will be | able to: | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | CLO-1: | | ந்தனைச் | நவாக்கித் த<br>களங்கலை<br>தல் | | 2 | 75 | 60 | Н | L | Н | М | Н | Н | 7 | М | Н | М | L | Н | | 1 | - | | CLO-2: | நவீன கல<br>பெற்று எ<br>விழுமிய<br>தெரிந்து | பரும் மா<br>ங்களை | 5 | றம் | 2 | 80 | 70 | Н | М | Н | L | М | Н | L | Н | М | L | Н | Н | , | ı | - | | CLO-3: | தமி <mark>ழ்ச்ச</mark><br>வாழ்விய<br>உணர்ந் | மூகத்தி<br>பல் முரை<br>துகொள் | ன் இடைக்க<br>றகளை<br><mark>ளுதல்</mark> | | 2 | 70 | 65 | Н | L | Н | М | Н | Н | М | Н | L | Н | М | Н | - | 1 | - | | CLO-4: | தமிழ்க் க<br>வரலாறு | கல்வி வர<br>பெற்ற எ | <mark>வரலாறு வழ</mark><br>ரலாறு, சமூல்<br>வளர்ச்சி<br>நரிந்துகொஞ் | 5. | 2 | 70 | 70 | Н | М | Н | L | Н | М | М | Н | Н | L | Н | Н | - | - | - | | CLO-5: | மொழியி | ின் நுட்ட<br>ஆளுமை | பங்களை அ<br>யோடு செய | றிந்து | 2 | 80 | 70 | Н | М | Н | Н | М | Н | L | М | Н | L | Н | Н | - | - | - | | | ation<br>our) | 12 | 12 | 12 | 12 | 12 | | | | | | |-----|---------------|-----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------|-----------------------------------------------------|--|--|--|--|--| | S-1 | SLO-1 | தமிழ்<br>இலக்கியத்தி<br>ன் வளர்ச்சிப்<br>போக்குகள் | நவீன கவிதை<br>தோற்றம் | தமிழரின்<br>வீரமரபு | சிற்றிலக்கியத்<br>தோற்றம் | தமிழ்<br>உரைநடை<br>மரபில்<br>உ.வே.சா. | | | | | | | | SLO-2 | இலக்கிய<br>உத்திகள் | நவீன கவிதை<br>வரலாறு | போர்<br>விழுமியங்கள் | சிற்றிலக்கிய<br>வகைமை | ராஜ வைத்தியம் | | | | | | | | SLO-1 | தமிழ்க்<br>கவிதை மரபு | நவீன கவிதை<br>செல்நெறிகள் | பரணி அறிமுகம் | <mark>சிற்றிலக்</mark> கியங்கள் | வைத்தியர்களி<br>ன் சிறப்பு | | | | | | | S-2 | SLO-2 | காலந்தோறு<br>ம்<br>கவிதையின்<br>கரு | செல்நெறிகளி<br>ல்<br>கோட்பாடுகள் | பரணி<br>இலக்கியங்கள் | முதன்மைச்<br>சிற்றிலக்கியங்கள்<br>– | கழனியூரன் –<br>அறிமுகம் | | | | | | | S-3 | SLO-1 | <mark>கால</mark> ந்தோறு<br><mark>ம்</mark><br>கவிதையின்<br>கட்டமைப்பு | கவிதை<br>மொழி | கலிங்கத்துப்பர<br>ணி 477,490 | | | | | | | | | Ä | SLO-2 | தற்கால<br>இலக்கியம் | நவீன கவி<br>ஆளுமைகள் | தலைவனின்<br>வீரம் | புதுக்கவிதையில்<br>சமூகம் | ப <mark>ொன் காத்த</mark><br>ஐய <mark>னார்</mark> | | | | | | | | SLO-1 | புதுக்கவிதை<br>உருவாக்கம் | | | புதுக்கவிதையும்<br>இதழ்களும் | விரு <mark>ந்து – க</mark> ள்ளர்<br>செயல்கள் | | | | | | | S-4 | SLO-2 | புதுக்கவிதை<br>வளர்ச்சிநெறி<br>கள் | கவிதையில்<br>நாட்டுப்புற<br>வடிவம் | தூது<br>இலக்கியங்கள் | மணிக்கொடி இதழ் | பிழ <mark>ை நீக்கி</mark><br>எழுது <mark>தல்</mark> | | | | | | | S-5 | SLO-1 | பாரதியார் –<br>புதுக்கவிதை<br>யின்<br>அடையாளம் | ்<br>இளம்பிறை –<br>அம்மா | தமிழ் விடு தூது<br>(184 – 186) | எழுத்து இதழ் | எழுத் <mark>துப் ப</mark> ிழை | | | | | | | 3-3 | SLO-2 | பாரதியார்<br>பன்முக<br>ஆளுமைத்தி<br>றன் | பெண்களின்<br>கல்வி நிலை | தமிழின்<br>பெருமை | வானம்பாடி இதழ் | <mark>தொடர்ப</mark> ிழை | | | | | | | | SLO-1 | <mark>பா</mark> ரத தேசம் | பெண்<br>அடக்குமுறை | செய்யுள் மரபில்<br>கலம்பகம் | சிறுகதை<br>தோற்றம் | <mark>உயர்</mark> திணை,<br>அஃறிணை | | | | | | | S-6 | SLO-2 | பாரததேசத்தி<br>ன் வளம் | ப. கல்பனா –<br>கீறல் விழுந்த<br>மாலைக்<br>காலங்கள் | கலம்பக<br>இலக்கியங்கள் | சிறுகத <mark>ை வளர்ச்</mark> சி | பிறமொழிச்<br>சொற்கள்<br>வரலாறு | | | | | | | | SLO-1 | வெள்ளிப்<br>பனிமலையி<br>ன்<br>மீதுலவுவோம்<br> | ஆண் பெண்<br>சமத்துவம் | நந்திக்<br>கலம்பகம்-<br>வானுறு மதியை<br>(110) | சிறுகதை –<br>வரலாறு | பிறமொழிச்<br>சொற்களை<br>நீக்கி எழுதுதல் | | | | | | | S-7 | SLO-2 | 20 ஆம்<br>நூற்றாண்டுக்<br>கவிதை<br>மரபில்<br>பாரதிதாசன் | விளிம்புநிலை<br>வாழ்வியல் | <b>കെ</b> ധ <b></b> ്യതിതെ | சிறுகதை<br>ஆசிரியர்கள் | ஷ, ஜ, ஸ, ஹ<br>மாற்றொலிகள் | | | | | | | | SLO-1 | பாரதிதாசன்<br>- அழகின்<br>சிரிப்பு | திருநங்கை<br>குணவதி -<br>சமூகப்பார்<br>வை | குறவஞ்சி<br>அறிமுகம் | இதழ்களும்<br>சிறுகதையும் | தமிழ் இலக்கண<br>நுட்பங்கள் | |------|-----------------------------------|------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|---------------------------------------------| | S-8 | SLO-2 | ஆல் -<br>ஆயிரம்<br>கிளைகள்<br>கொண்ட<br>அடிமரம் | திருநர்களும்<br>சாதனைகளும் | குறவஞ்சி<br>இலக்கியங்கள் | புதினம் தோற்றம் | இலக்கணமும்<br>பயன்பாடும் | | S-9 | SLO-1 | இயற்கையி<br>ன் அழகியல் | புலம்பெயர்<br>வாழ்வியல் | குற்றாலக்<br>குறவஞ்சி –<br>ஆடுமர<br>வீனுமணி (3) | தொடக் <mark>கக்காலப்</mark><br>புதினங்கள் | தமிழில் சொல்<br>வகைகள் | | | SLO-2 | <mark>வா</mark> னம்பாடி<br>யில்<br>மு.மேத்தா | ஸர்மிளா<br>ஸெய்யித் –<br>புராதன ஊர் | மலையும்<br>வாழ்வும் | புதினம் வளர்ச்சி | சொல்லும்<br>பயன்பாடும் | | S-10 | SLO-1 | மு.மேத்தா -<br>கவிதையின்<br>தனித்தன்மை<br>கள் | புலம் பெயர்<br>வாழ்வின்<br>வலியும்<br>நம்பிக்கையும் | பெ <mark>யர்ச்ச</mark> ொற்க<br>ள் | | | | 3-10 | | மனிதனைத்<br>தேடி –<br>கவிதை | காலந்தோறும்<br>கவிதை<br>வடிவில்<br>மாற்றங்கள் | காப்பிய<br>வகைமைகள் | புதின ஆசிரியர்கள் | பெயர்ச்சொற்க<br>ள் அறிதல் | | S-11 | SLO-1 | மனிதநேயம் | ஹைக்கூ,<br>லிமரைக்கூ,<br>சென்ரியூ –<br>தேர்ந்தெடுத்த<br>கவிதைகள் | சிலப்பதிகாரம் –<br>அறிமுகம் | தமிழ்<br>இலக்கியத்தில்<br>உரைநடைக்கூறுக<br>ள் | வின <mark>ைச்ச</mark> ொற்க<br>ள் | | | SLO-2 | தமிழ்க்<br>கவிதையில்<br>சுற்றுச்சூழலி<br><mark>ய</mark> ல் | ஹைக்கூ –<br>மு.முருகேஷ் | கட்டுரைக்காதை | உரைநடையின்<br>தோற்றம் | வினைச்சொற்க<br><mark>ள் அ</mark> றிதல் | | | SLO-1 | <mark>பழனி</mark> பாரதி<br>யின் காடு | லிமரைக்கூ –<br>ஈரோடு<br>தமிழன்பன் | ஊழ்வினை | தமிழில் உரைநடை | <mark>தமி</mark> ழில்<br>பெயரடை,<br>வினையடை | | S-12 | இயற் <mark>கையும்</mark><br>SLO-2 | | சென்ரியூ –<br>மாமதயானை | கோவலனின்<br>முற்பிறப்பு<br>வரலாறு | உ <mark>ரைநடை</mark><br>வளர்த்த<br>அறிஞர்கள் | பெயரடை,<br>வினையடை<br>அறிதல் | # Learning Resources - 1. முல்லைக்காடு, தொகுப்பும் பதிப்பும் தமிழ்த்துறை ஆசிரியர்கள், எஸ்.ஆர்.எம். அறிவியல் மற்றும் தொழில்நுட்பக் கல்விநிறுவனம், காட்டாங்குளத்தூர், 603203, 2023 - 2. வல்லிக்கண்ணன், புதுக்கவிதை தோற்றமும் வளர்ச்சியும், ஆழி பதிப்பகம், சென்னை, 2018 - 3. கா. சிவத்தம்பி, தமிழில் சிறுகதை தோற்றமும் வளர்ச்சியும், என்.சி.பி.எச்., சென்னை, 2013 - 4. தமிழ் இணையக் கல்விக்கழகம் http://www.tamilvu.org/ - 5. மதுரை தமிழ் இலக்கிய மின் தொகுப்புத் திட்டம் https://www.projectmadurai.org/ | | Bloom's | | Continu | ious Lea | rning Ass | sessmen | ıt (50% we | eightage) | | Final Evenineti | on (500/ weightens) | |---------|------------------------|-----------------------------|---------|---------------|-----------------|---------|------------|-----------|----------|-----------------|---------------------| | | Level of | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA- | 3 (20%) | CLA - | 4 (10%)# | Finai Examinati | on (50% weightage) | | | Thinking | Theory Practice Theory Prac | | Practice | Theory Practice | | Theory | Practice | Theory | Practice | | | Level 1 | Remember<br>Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | - | | Level 2 | Apply Analyze | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | - | | Level 3 | Evaluate<br>Create | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 2 1 | 00 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | | |-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------| | Experts from Industry | <b>Expert from Higher Technical Institutions</b> | 7 | Internal Experts | | 1. Dr. P.R.Subramanian,<br>Director, Mozhi Trust,<br>Thiruvanmiyur, Chennai – 600<br>041. | 1. Dr. V. Dhanalakshmi, Associate<br>Professor, Subramania Bharathi School of<br>Tamil Language & Literaturel, Pondicherry<br>University, Pondicherry | I. | Dr. B.Jaiganesh, Associ <mark>ate Prof</mark> essor<br>& Head, Dept. of Tamil, FSH, SRMIST,<br>KTR. | | | | 2. | Dr. R. Ravi, Assistant Professor and<br>Head, Dept. of Tamil, FSH, SRMIST,<br>VDP. | | | | 3. | Mr. G. Ganesh, Assistant Professor,<br>Dept. of Tamil, FSH, SRMIST, RMP. | | | | 4. | Dr. T.R. Hebzibah beu <mark>lah Sug</mark> anthi,<br>Assistant Professor, Dept. of Tamil,<br>FSH, SRMIST, KTR. | | | 188 | 5. | Dr. S.Saraswathy, Assistant Professor, | | 7 | TEARN, IDEA | | Dept. of Tamil, FSH, SRMIST, KTR. | | Cour | | GO1T Course<br>Name | HINDI-I | | | Cour<br>ateg | | G | | | Gen | eric | Elec | tive | Cou | rse | | F | L T | P 2 | 0 | C<br>3 | |-------|---------------------------------------------------|----------------------------------------------------------------------|------------------------------------|----------------------------------------|--------------------------|-------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------------------|----------------------|-------------------|--------|--------|-------|--------| | Pre-i | requisite<br>ourses | Nil | Co-requisite Nil | | | | Prog | gress | sive | Nil | | | | | | | | | | | | | | Cour | se Offerir<br>ertment | g HINDI | Oourses | Data Book /<br>Codes/Standards | S | | 5 | Juist | | | | | | N | il | | | | | | | | | | se Learni<br>onale (CLF | | of learning this cou | ırse is to: | | | Le | arnin | ıg | | | Pr | ogra | m L | earn | ing | Outc | ome | s (Pl | LO) | | | | | | ommunicate in Hindi withou | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | _ | | preciate the Hindi Language<br>alyze the different writing s | ms | <u></u> | | ( | Φ | " | lines | | | dge | | | | | | | | | | | | CLR | To dis | splay moral and social value<br>ntegrity | | cial Responsibility | Bloor | %) Ko | ent (% | wledg | ncept | Discip | edge | ation | nowle | | Data | | skills | ≅<br>IS | | | | | | CLR | | wil <mark>ling listeners and</mark> Transl | ators-where need | be | lking ( | oficier | tainme | I Kno | of Co | ated | (now | cializa | ize K | deling | erpret | Skills | ving S | tion S | dills | | | | | | | | 110 | | Thi | ed Pn | ed Att | menta | ation o | th Re | lural k | n Spe | to Util | n Moc | e, Inte | gative | m Sol | unica | cal St | _ | ~ | | | | se Lea <mark>rni</mark><br>ome <mark>s (CL</mark> | | e able to: | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | 1- OSd | PSO -2 | PSO-3 | | | | | nderstand the Philosoph | | g through Stories | 2 | 75 | 80 | Н | Н | Н | М | L | Н | L | М | L | L | Н | М | - | - | - | | | | <mark>x</mark> amine Travelogue writii<br>lentify Irony and essay bo | | | 2 | 80<br>75 | 90<br>95 | H | H | H | M<br>L | L | Н | H | M | L<br>M | L | H | M<br>H | - | - | - | | | -4: Evalu | uate the various social is | sues depicted in t | | 2 | 80 | 90 | Н | Н | L | Н | М | Н | L | Н | Н | М | H | Н | - | - | - | | CLO | | nderstand the basic and slation | fundamental pri | ncipal of | 2 | 85 | 90 | М | Н | М | Н | L | Н | Н | L | Н | М | Н | Н | - | - | - | | | <mark>rat</mark> ion | 12 | 12 | A NOV. HOLD | 12 | | | | | T | | 12 | | | | | | | 12 | | • | | | (1 | hour)<br>SLO-1 | KAHANI | REKHACHITRA | & NIBANDH | 'n | 7 | Ġ | ĕ, | NA7 | TAK | Ŧ | | | | | | IVAL | | ARIL | ЗНА. | SHII | K | | S-1 | | AVDHARNA | YATRAVITRAN1<br>VDHARNA | IBANDH KI AVI | DHA | RNA | ÷ | H | AVE | DHAI | RNA | | | | | SHABDAVALI<br>RTH | | | | | | | | | SLO-2<br>SLO-1 | SWARUP | WAROOP | WARUP | | | | | VATA | AK K | 'A SI | NAR | RUP | | | ARIE | BHAS | SHA | | | | | | S-2 | SLO-2 | PARIBHASHA | HUMIKA | ARIBHASHA | × | i | × | | PARI | ARIBHASHA | | | | | | WAF | RUP | ł | | | | | | | SLO-2 | KAHANI KE TATVA | 1AHATVA | 1AHATVA | | | | | ΓΑΤ | VA | | | 7 | ٦ | | RAK | 4R | ŀ | i | | | | | S-3 | SLO-2 | KAHANI KA MAHATVA | DDESHYA | DDESHYA | | | | | PRAI | KAR | | | | h | | 1AHATVA | | | | | | | | | SLO-1 | PARIKSHA- | ISHA- | UTAJ- NIBAND | ЭН | | | | JDD | ESH | ΥA | | 7 | ۲ | | DDE | SHY | Ά | | | | | | S-4 | | PREMCHAND<br>KAHANI KA PARICHAY | EKHACHITRA<br>EKHIKA PARICH | AJARI PRASHA<br>AY EKHIKA PARICI | | | )I | | RAN | IGN | 1AN | сн к | Ά | | | NUN | 'AD | KA I | PRA | YOLA | ٩N | | | | SLO-2 | | DAD | M rm | | | | | PAF | RICH | AY | | | 7 | | | | | | | | | | C E | SLO-1 | VISLESHAN | ATH KA<br>ISHLESHAN | АТН КА МАНА | AIVA | F | | L | NA | IAK | KA I | VIAH | IATV | 'A | | NU | /AD | KA I | PRA | YOG | | | | S-5 | SLO-2 | EMANDARI KA<br>MAHATVA | URU SHISHYA K<br>AMBANDH | (A IPRIT PARISHT<br>EEVAN KI ASH | HITI | IYON | I ME | | PRA | YOJ | AN | | | | • | HRO | T BF | IASI | HA K | Ά G | YAN | J | | S-6 | SLO-1 | HONHARI KA PARICHAY | GURU KE PRAT<br>SMARPAN<br>BHAVANA | I MANAV KI AK | ANK | (SHA | YEN | | BHA | ARTE | R NA<br>NDI<br>CHA | U | I-(NA | ATA. | | LAK<br>GYA | SHY | 'A BI | HAS | HA P | KA | | | | SLO-2 | UDDESHYA | PATH KA<br>MAHATVA | SHANGHARSH | IIL JI | EEVA | AN | | LEK | HAK | ( PAI | RICH | HAY | | | ANL | IVAL | ) KA | DA | YITV | Ά | | | 0.7 | SLO-1 | MALBE KA MALIK-<br>MOHAN RAKESH | HELE PAR<br>IMALAY<br>(YATRAVITRAN | SANGHARSH I | KA P | PARII | VAM | 1 | NA7 | ΓΑΚ | KA 1 | VISL | ESH | IAN | | ANL | IVAE | ) KA | ABI | HYA | SH | | | S-7 | SLO-2 | LEKHAK PARICHAY | LEKHAK<br>PARICHAY | BHOLARAM K.<br>(VYANGYA) H.<br>PARSHAI | | | IKAF | ? | NA7 | ΓΑΚ | АВН | INA | Y | | | ANGREJI SE HINDI | | | | | | | | | SLO-1 | BATWARE KA<br>YATHARTH VARNAN | YATRAVITRANI<br>KA MAHATVA | VYANGYA KI A | VAL | DHAI | RNA | LALCH KA DUSHPARINAI | | | | | AM | // HINDI SE ANGREJI | | | | | | | | | | S-8 | SLO-2 | TATKALIN PARISHTHITI<br>KA VARNAN | YATRA KA<br>YATHARTH<br>CHITRAN | MAHATVA | | | | | SHI | SHY | 'A KI | AG | YAN | ΤΑ | | ANUVAD PRIYOJNA KARYA | | | | | RYA | | | S-9 | SLO-1 | APNI MITTI SE LAGAV | PATH KA<br>VISLESHAN | LEKHAK PARI | СНА | Υ | | | | | SHISI<br>NDH | | | | | PUN | IRIK. | SHA | N | | | | | | SLO-2 | RAJNITIK VIDWESH KA<br>PARINAM | HIMALAY KA<br>VARNANA | PATH KA VIHLESHAN | VIVIDH PRAYOG | | |---------------|-------|--------------------------------|--------------------------------------|----------------------------------|------------------------------------------|----------------------------------| | C 10 | SLO-1 | PROPKAR KI BHAVANA | HIMALAY KA LOK<br>JEEVAN | PARIBHASHIK<br>SHABDAVALI | | | | S-10<br>SLO-2 | | KAHANI PATH | LOK SAMASYA | SARKARI TANTRA KA<br>KHOKHLA RUP | ATI MAHTVAPURN SHABD | | | S-11 | SLO-1 | KAHANI KA<br>VISHLESHAN | UDDESHYA | PAURANIK KATHA KA<br>CHITRAN | GURU KI AVAGYA KA<br>DUSHPARINAM | TAKANIKI SHABDAVALI KA<br>MHATVA | | | SLO-2 | PRASHO KI CHARCHA | PRASHNA<br>ABHYASH | SANVEDANSHIL BHAVANA | TATKALIN SAMAJIK<br>VYAVASTHA KI CHARCHA | HINDI SE ANGREZI SHABD | | | SLO-1 | PRASHN ABHYASH | PATH<br>PRICHARCHA | PARICHARCHA | PARICHARCHA | ANGREZI SE HINDI SHABD | | S-12<br>SLO-2 | | | MAHATVAPURN<br>BIBDUON KI<br>CHARCHA | PRASHANA ABHYASH | PRASHNARHYASH | SHABDAVALI KI<br>AVSHYAKTA | | | Edited Book: ""SAM | ANYA HINDI", SRIJONLOK PUBLICATION, 2023, New Delhi. | |-----------------------|--------------------|------------------------------------------------------| | | 1. | KABIR – HAZARI PRASAD DWEDI | | Loorning | 2. | SURDAS – RAM CHANDRA SHUKL | | Learning<br>Resources | 3. | BHAKTI ANDOLAN AUR SURDAS KA KAVYA – MANAGER PANDEY | | Resources | 4. | BIHARI – VISHVNATH PRASAD MISHR | | | 5. | Aadhunik Vigyapan aur Jansampark – Taresh Bhatia | | | 6.39 | | | | | | Cont | inuous Le | earning As | sessment | (50% weig | ghtage) | | First Franciscotion (FOO) and inhouse | | | | | |----------|------------------------------|---------------|----------|---------------|------------|----------|-----------|---------|----------|---------------------------------------|----------|--|--|--| | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | | Theory | Practice | | | | | _evel 1 | Remember | 200/ | 200/ | 200/ | 30% | 200/ | 200/ | 200/ | 20% | 200/ | | | | | | | Understand | 30% | % 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | | | | | | l aval 0 | Apply | 400/ | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | | | | | | _evel 2 | Analyze | 40% | 50% | 50% | | 50% | | 50% | 50% | 30% | | | | | | _evel 3 | Evaluate | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | | | | | | evel 3 | Create | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | | | | | | | Total | 10 | 00 % | 100 % | | 100 % | | 10 | 00 % | 100 % | | | | | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | | | | | | | |----------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | Shri. Santosh Kumar<br>Editor : Srijanlok Magazine | 1. Prof.(Dr.) S.Narayan Raju, Head, Department of | Dr.S Preeti. Associate Professor & Head. SRMIST | | | | | | | | Place: Vashishth Nagar, Ara – 802301 | Hindi,CUTN, Tamilnadu | 1. D. 3 Fleeti. Associate Floresson & Fleeti, Skivilo F | | | | | | | | | | 2. Dr. Md.S. Islam Assistant Professor, SRMIST | | | | | | | | | | 3.Dr. S. Razia Begum, Assistant Professor, SRM IST | | | | | | | | | | 4, Dr.Nisha Murlidharan Assistant Professor,<br>VDP,SRM IST | | | | | | | | Code | | 3G01J Cours | | Frer | nch-l | | | Cour<br>ateg | | G | | | Gene | eric | Elec | tive | Cou | rse | | _ F | L T | P 2 | 2 | <b>C</b> | |-------|-------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------|--------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|-------------------------------|--------------------------|-------------|------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|---------------------|---------------|--------|--------|-------|-----|----------| | Pre-r | equisite<br>urses | Nil | | Co-requisite<br>Courses | Nil | | | | | gress | | Nil | | | | | | | | | | | | | | Cours | se Offeri<br>rtment | ng | French | | Data Bo<br>Codes/S | ok /<br>Standards | 3 | | | | ', | | | | | N | il | | | | | | | | | | se Learn<br>nale (CL | | The purpose | of learning this | course is to: | | | | Le | arnin | g | | | Pr | ogra | ım L | earn | ing | Outc | ome | s (P | LO) | | _ | | | scen<br>2: Enab<br>langu<br>3: Make | ario<br>ble the studen<br>uage and take<br>them learn t | e acquisition of<br>eaking a foreign<br>king French<br>nmar.<br>f different origin | n | 1 (moolg) | 2 (%) YOU | 3 (%) tue | 1 egbelw | 2 stdeou | Link with Related Disciplines | 4 egbe | 5 uoita | Ability to Utilize Knowledge | 7 | Data & | 9 | Skills 01 | 11<br>Siis | 12 | 13 | 14 | 15 | | | | CLR- | | ngthen the lan | | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Related | Procedural Knowledge | Skills in Specialization | Utilize K | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | al Skills | | | | | | | | Outco | se Learn<br>omes (Cl | - | ∼ Level of | 75 Expecte | % Expecte | ∓ Fundam | Applicat | H Link with | ∓ Procedu | W Skills in | | H Skills in | r Analyze | ≥ Investiga | Problem | H Commu | - Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | | | | | CLO- | . To st | | knowledge on | ench language<br>concept, cultui | nd | 2 | 80 | 90 | М | Н | L | Н | Н | М | Н | M | L | L | Н | М | - | - | - | | | CLO- | 3: To de 4: To in | evelop contenter | nt using the fea<br>ench language | atures in Frenc<br>e into other lan | guage | | 2 | 85<br>75 | 75<br>80 | H | H<br>L | L<br>M | M<br>H | Н | M<br>H | L | H | M | M<br>H | H<br>M | H<br>L | - | - | - | | CLO- | 5: To in langu | | mmunication, | intercultural ele | ments in Frenc | ch | 2 | 80 | 75 | М | Н | Н | L | М | М | Н | Н | М | L | Н | М | - | - | - | | | Duration (hour) 12 12 | | | | | | | 12 | | | | 12 | | | | | | 12 | | | | | | | | S-1 | SLO-1 | Contacts | #17 | Les verbes du | premier group | e Qu'e | Qu'est-ce qu'ils font ? Portraits Les ver groupe | | | | | | es di | u dei | uxièr | ne | | | | | | | | | | | SLO-2 | Emma la ch | ampionne | Les exemples | 14 | Les | exe | nple | s | | ι | In ca | stin | g | | | ı | _es e | exem | nples | 3 | | | | | S-2 | SLO-1 | Les nombres<br>31 | 44.9 | La liaison | | Où e | est n | non | sac | ü | | | emp | | | | | es p | orono<br>ues | oms | pers | onn | els | | | | | Les activités | | Les activités | | | exer | _ | | | | | | | | | | Les exemples | | | | | | | | S-3 | | Les pays<br>les nationalit | és | Entrer en cont | act | | lque<br>exer | | | | - | | | | | | es verbes faire et lire | | | | | | | | | | | Les jours de | | Présenter et se | e présenter | Y | profe | <u> </u> | | | _ | | ect pl | | que | | | | Sons | - | | | | | | S-4 | SLO-2 | Les jours | 7 | Les activités | RN. | La fi | che | d'ide | ntité | | Le | es ac | tivité | és | | 7 | l | _es e | exem | ples | 6 | | | | | S-5 | SLO-1 | Les mois de | l'année | Demander et o | dire la date | (2) | | | | minir | L | e car | actè | re | | 1 | I | Décr | ire l'a | aspe | ect p | hysid | que | | | | SLO-2 | Les activités | | Les activités | | | hras<br>ielle | | errog | gative | Le | es ex | emp | les | | | I | Décr | ire le | e car | actè | re | | | | S-6 | | | | une rencontre. | | | | | e c'es | st? | | | ats d | - | е | | -+ | | ande | | | ľhe | ıre | | | | | Les activités<br>La famille (1) | | Les activités Contacts | | | est-c<br>at / II | | 1) | | Le | es pr | etivité<br>épos | | is de | lieu | . | | exem<br>est c | • | | ? | | | | S-7 | SI O-2 | Les activités | • | Les activités | • | l es | eve | mnle | · · | | (1 | | cemp | les | | | | 25.6 | exem | nles | : | | | | | S-8 | SLO-1 | La formation | | Emma la Char | mpionne | | Les exemple<br>La phrase né | | | | - | | nille ( | | | | | Porti | | ipicc | , | | | | | J-0 | SLO-2 | Les activités | | Les activités | | Les exemple | | | 3 | | Le | es ac | tivité | és | | | - | _es e | exem | nples | 3 | | | | | S-9 | | Les adjectifs | | Mots et expres | ssions | Les verbes a | | | ler e | t ven | ir La | | | | | | 1 | Mots et Expressions | | | | | | | | 0-9 | SLO-2 | Les exemple | es | Les activités | | L'élision | | | | | Le | es ac | tivité | és | | | l | Les activités | | | | | | | | S-10 | SLO-1 | La phrase in | terrogative | Grammaire - | | polit | Les formules de politesse Demander des | | | La formation du pluriel (2) | | | | | - | Grammaire. | | | | | | | | | | | SLO-2 | Les exemple | es | Les exemples | | infor<br>pers | mati<br>onne | | | | Le | es ac | tivité | és | | | l | _es e | exem | ples | 6 | | | | | S-11 | | Les activités | Communication | C'est qui ? | II y a | Les activités | |------|-------|--------------------------|--------------------------|------------------------------|-------------------------|---------------| | 3-11 | | Les nombres | Les activités | Qu'est-ce qu'ils font ? | Les activités | Communication | | S-12 | SLO-1 | intonation et est-ce que | Les verbes du ER –groupe | Mots et Expressions | Les articles contractés | Les activités | | 3-12 | | Les exemples | Les exemples | Grammaire –<br>Communication | Les exemples | Les exemples | | | The | ory: | |-----------|-----|----------------------------------------------------------------------------------------------------------------------------------------| | | 1. | "" Nouvelle Génération-Al" Méthode de français, Marie-Noëlle COCTON, P.DAUDA, L.GIACHINO, C.BARACCO, Les éditions Didier, Paris, 2018. | | Learning | 2. | Cahier d'activités avec deux discs compacts. | | Resources | 3. | https://www.fluentu.com/blog/french/french-grammar | | | 4. | https://www.elearningfrench.com/learn-french-grammar-online-free.html | | | 5. | https://www.lawlessfrench.com/grammar | | | 6. | https://blog.gymglish.com/2022/12/15/basic-french-grammar | | | Learning A | Assessm | nent | | | | | | | | | | | | |----------|------------------------------|---------|----------|----------|------------|---------|------------|---------------|----------|-----------------------------------|--------------|--|--|--| | | | *** | Continu | ious Lea | arning Ass | sessmer | nt (50% we | eightage | | Final Franciscotion | (F00/inlate) | | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - 4 (5%)# | | Final Examination (50% weightage) | | | | | | | Level of Thinking | Theory | Practice | | | | | Laural 4 | Remember | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | | | | | | Level 1 | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | | | | | | Level 2 | Apply | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | F00/ | | | | | | Level 2 | Analyze | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | | | | | | Level 3 | Evaluate | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | | | | | | Level 3 | Create | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | | | | | | | Total | 10 | 00 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 | % | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---------------------------------------|------------------------------------------------|-------------------------------------------------------------| | Experts from Industry | Expert from Higher Technical Institutions | Internal Experts | | Mr. Kavaskar Danasegarane | 1. Dr. C.Thirumurugan Professor, Department of | | | Process Expert | French, Pondicherry University | 1. Mr. Kumaravel K. Assistant Professor & Head, SRMIST, KTR | | Maersk Global Service Center Pvt. Ltd | French, Pondicherry University | | | 2.Mr. Sharath Raam Prasad | 100 | | | Character Designer, | | 2. Mrs. Abigail, Assistant Professor, SRMIST, VDP | | Animaker Company Pvt. | | | | Cour<br>Code | 1111 - 2 | ' <b>₹Δ</b> Ε11 | urse<br>me | Eng | lish | | | | Cou<br>Cate | | y A | \E | Abil | ity E | nha | ncer | nen | t cou | ırse | | . T | | C<br>4 | |-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------|-----------------------|-------------------------|------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|---------------------|------------------------|----------------------|------------|--------|--------|--------| | Cour | | Nil | Co-r<br>Cou | equisite<br>rses | Nil | | | | | ogre<br>urse | ssiv<br>es | 'e N | il | | | | | | | | | | | | Cour<br>Offer<br>Depa | | Departr<br>SRMIS | nent of Englis<br>T | h, FSH, | Data Bo<br>Codes/S | | lard | S | Nil | 1 | | | | | | | | | | | | | | | | se Learn<br>onale (CL | | ourpose of lea | rning this course | is to: | | | | _earı | ning | | Prog | gram | Lea | arni | ng C | utc | ome | s (P | LO) | | | | | CLR- | 1: | | nsciousness t | ing and sensibili<br>hrough gender i | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR- | 2 : | stay with i | ntegrity with t | deeper underst<br>he fellow human | beings | | | | | 4 | 4 | 1 | þ | | | | | | | | | | | | CLR- | | learner . | | guage competen | icy of the | | | | | | Si | | 1 | 0 | h | | N | | | | | | | | CLR- | : / | Learn to e | express the the guments and exaction skills. | uage skills<br>oughts clearly, d<br>enhance the ove | levelop<br>rall | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | ink with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | nvestigative Skills | Problem Solving Skills | Communication Skills | al Skills | | | | | Course Learni<br>Outcomes (CL | | | | | | | | | Fundam | Applicat | Link with | Procedu | Skills in | Ability to | Skills in | Analyze | nvestiga | Problem | Commu | Analytical | PSO -1 | PSO -2 | PSO-3 | | CLO- | 1: | | | texts to identify<br>related to gend | | 2 | 75 | 60 | Н | М | М | Ĺ | - | М | - | М | Н | L | Н | L | - | _ | - | | CLO- | - <mark>2</mark> : | | ical thinking s<br>o academic te | kills to analyze a<br>xts. | and | 2 | 80 | 70 | М | Н | L | | - | - | - | М | М | Н | Н | М | - | - | - | | CLO- | | issues thre | ough online a | | orary | 2 | 70 | 65 | М | М | М | - | L | L | - | Н | М | Н | Н | L | - | - | - | | CLO- | | | eir general wri<br>heir language | ting skills<br>application skills | 2 | 2 | 70<br>80 | 70<br>70 | H | M<br>H | L | -<br>М | M<br>- | H<br>M | - | -<br>L | -<br>I | -<br>М | H<br>H | L<br>M | - | - | - | | OLO | | improve ti | icii iarigaage | аррисаноп экш | , | - | 00 | 10 | ,, | , , | | IVI | W | | 7 | _ | _ | IVI | | IVI | | | | | Durat | SLO-1 | Introduction<br>to the<br>poetry and<br>the poet-<br>Sukirtharani | Introduction to<br>Short stories.<br>Introducing the<br>short story<br>writer<br>Katherine<br>Mansfield. | Introduction to Cr<br>Writing. Explainin<br>elements of creat | g the | Building the discourse- The significance of conversation and the key elements of discourse are the points of discussion in this class hour. | | | | | | Reviev | w writ | ing | | | | | | | | | | | | Reading and Reading the recitation of the poem - Debt Reading the Stand-up comedy show translate the audio conte English. (any regional language) | | | | | disco<br>Poen | urse-<br>n of w<br>sgend | versa<br>Lee I<br>vhat it<br>der. Ti<br>ION | Mocko<br>mean | be's<br>s to b | A Poi<br>be a | werfu | 1 | Choo | sing | the si | ubjec | et for | revie | wing. | | | | | S-2 | Analysis and Critical interpretation of the poem. Explaining the story through depiction of characters and representation of injustices. Explaining the story through depiction of belonging to Students- groups -Students other than Tamilnadu | | | | | Reflecting on the style and the tone of the poem. | | | | | | | | | | | | | | | | | | | | SLO- 2 | to the poet<br>Kalki | Analysis and critical interpretation of the short story Doll's House. | Practice the writing activity - creative ways of engaging in translation. | Practicing conversation | Understand the review process how effectively a review of any work can be done. | |--------------|--------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| | S-3 –<br>S-4 | SLO-1 | Reading<br>and<br>recitation of<br>the poem<br>Phallus I<br>cut. | Introduction to<br>the writer<br>Haruki<br>Murakami. | | Introducing Content writing in Social<br>Media- the importance of content<br>writing. | Introducing the students to the review of the various works. | | 3-4 | SLO- 2 | Analysis<br>and Critical<br>interpretatio<br>n of the<br>poem. | Reading the<br>Confessions of<br>a Shinawaga<br>monkey. | Identifying equivalent terms<br>to certain regional words -<br>learn the art of translation. | .BLOG WRITING - Subtleties Of<br>Workplace Inclusion: Mental Health And<br>Queer Community- Salik Ansari. | Reviewing -recorded -posted in the social media pages of SRMIST | | S-5 | SLO-1 | Introduction<br>to the poet<br>Imtiaz<br>Dharker | Discussion and<br>analysis of the<br>Confessions of<br>a Shinawaga<br>monkey. | Introducing famous art<br>works and the contexts of<br>creation.<br>Salvador Dali- The Face of<br>War<br>Pablo Picasso- Guernica<br>Edward Munch- The Scream<br>Pieter Bruegel- The Tower of<br>Babel | writer's conversation with the readers -<br>the blog in other blog articles | Thoughtful conversation with your team member post the same in the official social media page of SRMIST. | | | SLO- 2 | Reading<br>and reciting<br>the poem<br>Purdah 1 | Introduction to<br>Crystal<br>Wilkinson | creative and/ or thoughtful<br>writing - contemporary<br>themes of modern day<br>relevance | Practice blog writing | Choosing the team based on the abilities that are comfortable to match the peer members | | | SLO-1 | Analysis<br>and Critical<br>interpretatio<br>n of the<br>poem-<br>Purdah 1 | Reading<br>Endangered<br>Species: Case<br>47401. | Students -writing abilities-<br>building stories- a visual treat<br>of variety of pictures. | Apprehending Life by reading the texts of influence- Chimamanda Ngozi Adiche's Notes on Grief- A BRIEF NOTE, We should all be Feminists- An Essay. | Choosing the topics for a thoughtful conversation | | S-6 | SLO- 2 | Reading<br>and reciting<br>the poem<br>Purdah 2 | Discussion and<br>analysis of<br>Endangered<br>Species: Case<br>47401. | Elements of writing | Discussion- essay by the author -<br>subjective depiction of life.<br>Understand -subjective opinions -<br>perspectives - | Planning and preparation for the script of conversation with a team member | | | SLO-1 | | Introduction to<br>C.S Lakshmi<br>also known as<br>Ambai. | Incorporate the elements of story in story writing. | Class discussion | Drafting , editing and revising the script of conversation and enacting the conversation with the team members | | S-7 –<br>S-8 | SLO- 2 | Introduction<br>to the poet<br>Arundathi<br>Subramani<br>an | Reading the<br>short story- In a<br>Forest, A Deer. | Practice -write stories -<br>pictures given or shown . | Practising the task multiple times with all the students in the classroom. | Enactment -proper rehearsal -final performance -<br>conversation- whole performance should be<br>recorded. | | S-9 | SLO-1 | Reading<br>and reciting<br>the poem-<br>Home | | is introduced in the | Interposing opinions in famous<br>interviews- | The recording should be posted in the official media page and social handles of SRMIST. | | | SLO- 2 | Analysis<br>and Critical<br>interpretatio<br>n of the<br>poem-<br>Home | Retrospecting<br>the writing<br>styles of the<br>authors-<br>Katherine<br>Mansfield,<br>Haruki<br>Murakami,<br>Crystal<br>Wilkinson and<br>Ambai. | creative scripts inspiring from<br>the dialogues of their<br>favourite films by changing<br>the scenario to their own<br>wish according to their own<br>whims and fancies. | Interposing opinions in famous<br>interviews-<br>FII Interviews: Tasveer Co-Founder And<br>Filmmaker Rita Meher On The Seattle<br>Legislation, Minority Rights And The<br>Fight Against Oppression- INTERVIEW | work for this social post - reflect on their experience of learning communicative English course and the testimonial has to be recorded and posted in the social media pages of SRMIST | |-------------------|--------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | S-10 | SLO-1 | Recollection of study of the writing styles and intentions of the poets prescribed in the syllabus. | Revision- The<br>Doll's House | Creative writing -writing news reports. recreated with new characters, places, scenes, incidents. | Students -enact as interviewer and interviewee and practice building the discourse. | Involving the students for the project work. Introducing what is project work and inculcating the interest -Giving instructions to do the project works - | | 4 | SLO- 2 | Revision of<br>the poems<br>Debt and<br>Phallus I<br>cut | Revision-<br>Confessions of<br>a Shinawaga<br>Monkey | Watch debate shows -<br>summarising the arguments<br>Enhance -descriptive writing<br>skill. | Certain role plays like celebrity<br>personalities, political personalities -<br>conduct the interview and be the<br>interviewer and interviewee. | Discussion of ideas and generation of creative ideas | | S 11<br>-<br>S 12 | SLO-1 | Revision of<br>the poems<br>Purdah 1<br>and 2 | Revison-<br>Endangered<br>Species: Case<br>47401 | Practice the improvement of writing skill. | The art of conversation and the ability to build a discourse | Assignment on any piece of creative writing (OR) Presentation- Mastering the art of Public Speaking. (OR) Project on compiling the real life influential events on gender inclusive issues and a presentation of the same. Interview Scripting /Blog writing. | | | SLO- 2 | Revision of<br>the poem<br>Hiome. | Revision- In a<br>Forest, A Deer. | Repetitive practice and continuous assessment - writing skiills-master the writing skill. | The evaluation and assesment of the conversation -constructive feedbacks to the students. | Students can opt any of the project from the given choice. | # Learning Resources Horizon- English Text Book – Compiled and Edited by the faculty of English Departement, FSH, SRMIST, 2020 English Grammar in Use by Raymond Murphy Raymond Murphy, Intermediate English Grammar, Cambridge University Press, 2007 R.P. Bhatnagar, English for Competitive Examinations, Trinity Press, 3rd Edition, 2016 http://www.aptitudetests.org/verbal-reasoning-test https://www.assessmentday.co.uk/aptitudetests\_verbal.htm | | jo | Continue | ous Learn | ing Asse | ssment (5 | 50% we | ightage) | | | Final Examination | | | |-------|------------------------|----------|-----------|----------|-----------|--------|----------|---------------|----------|-------------------|----------|--| | | Level | CLA-1 ( | 10%) | CLA-2 ( | 10%) | CLA-3 | (20%) | CLA-<br>(10%) | | (50% weightage) | | | | Level | Blooms L<br>Thinking | Theory | Practice | | | 1 | Remember<br>Understand | 30% | - | 30% | - | 30% | - | 30% | _ | 30% | - | | | 2 | Apply<br>Analyze | 40% | - | 40% | _ | 40% | - | 40% | _ | 40% | - | | | 3 | Evaluate<br>Create | 30 % | - | 30% | - | 30% | - | 30 % | _ | 30% | - | | | | Total | 100 % | | 100 % | | 100 % | | 100 % | ) | 100 % | | | # CLA - 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Krishna Raj<br>Sutherland<br>Krishna.Raj1@sutherlandglobal.com | Dr. J Mangayarkarasi<br>Associate Professor and Head, Dept. of English Ethiraj<br>College for Women<br>Chennai<br>jmbwilson97@gmail.com | Dr. Pushpanjali Sampathkumar, Assistant<br>Professor, Department of English, FSH, SRMIST | | Ann Mariya Thomson<br>RA2232105010015<br>II M.A English Literature<br>CSH, SRM IST<br>az1160@srmist.edu.in | Dr. K S Antonysamy Associate Professor and Head, Dept. of English Loyola College Chennai antonysamyks@loyolacollege.edu | Dr. Dr. Shanthichitra, Associate Professor, & Head, Department of English, FSH,SRMIST Dr Anchal Sharma, Prof & Hod EFL SRMIST NCR Campus Dr T Sridevi, Assistant Professor English, FSH Ramapuram SRM Dr Shanmuga Priya, Assistant Professor SRMIST Trichirapalli Campus | | Code | UCY23101T | Course<br>Name | Atomic Structure and Chemical<br>Bonding | Course Category | С | Discipline Specific Core | L T P O C<br>3 1 0 2 4 | |------|-----------|----------------|------------------------------------------|-----------------|---|--------------------------|------------------------| |------|-----------|----------------|------------------------------------------|-----------------|---|--------------------------|------------------------| | Course<br>Learning<br>Rationale<br>(CLR): | The purpose of learning | this course is to: | Learning | Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | |-------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|---------------------------|---------------------------------|-------------------------|-------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|----------------|---------------|------------|--------|--------|-------| | CLR-1: | Employ the quantum me<br>structure for energy calc | echanical concepts of atomic ulation. | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | | erties of elements for bulk<br>wards scientific advancement | | | | S | | | | | | | | | | | | | | CLR-3: | Address the fundamenta of chemical bonds | al concepts in different types | E . | dge | pts | cipline | Φ | _ | Knowledge | | ā | | w | | | | | | | CLR-4: | structures and geometries of molecules | | | | Conce | d Disc | wledg | ization | | БL | et Da | dills | g Skill | Skills | | | | | | CLR-5: | | the bonding to design various | Thinking | ental K | on of ( | Relate | ral Kno | Special | Utilize | Modelir | Interpr | ative Sk | Solving Skills | ication | al Skills | | | | | Course Learn<br>(CLO): | ning Outcomes | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | CLO-1: | Utilize the knowledge of<br>understand the atomic s | | 4 | Н | - | Н | - | - | М | | 4 | - | - | - | - | - | - | - | | CLO-2: | Correlate the periodic prochemical properties | operties of elements with their | 4 | | Н | - | Н | - | - | - 1 | - | - | - | - | - | - | - | - | | CLO-3: | | of lattice energy using Born-<br>expression and Bom-Haber | 4 | Н | | ŧ | ď | | - | L | - | 7 | - | | | Н | - | - | | CLO-4: | Perceive the importance of molecules using VSE | of structures and geometries PR and MO theory | 4 | Н | 10 | | | Н | j | - | - ( | М | 5 | - | - | - | - | - | | CLO-5: | | es of semiconductor using<br>seous behavior using weak | 4 | | Н | | Н | | М | - | - | - | | - | - | - | - | - | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |-------------|-----------|-------------------------------------------|------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------| | S-1 | SLO-1 | Introduction to<br>Atomic Structure | Introduction to periodic properties | Introduction to chemical bonding: | Introduction to Covalent Bonding | Introduction to metallic bond | | 3-1 | SLO-2 | Bohr's atomic model and limitations | Groups and<br>Periods in the<br>Periodic Table | Types of chemical bonds | Lewis theory-Octet rule | Electron sea theory | | S-2 | SLO-1 | Line spectrum of hydrogen atom | Slater rules | Definition and General characteristics of Ionic bond | Valence Bond theory -<br>Postulates and limitations | Conductor and Insulator | | | SLO-2 | Wave mechanics – duality of matter | Effective nuclear charge | lonic crystal formation:<br>Closed packing | Modified VB theory: Types of hybridization | Semiconductor | | | SLO-1 | de Broglie<br>equation | shielding constant | Radius ratio rule and its applications | VSEPR theory | Band Theory | | S-3 | SLO-2 | Heisenberg's<br>Uncertainty<br>Principle | Trend of the periodic table properties | Derivation for AX3 type compound | VSEPR theory to predict the type of hybridization | Multiple bonding (s and π bond approach) and Example for π-back bonding | | | SLO-1 | Tutorial: Solving problems in de | Tutorial: Solving problems in | Tutorial: Solving problems in AX3 type | Tutorial: Solving problems related to hybridization in | Tutorial: Solving problems in Insulator | | S-4 | SLO-2 | Broglie equation | Effective nuclear charge | prosent in a to type | VSEPER | | | S-5 | SLO-1 | Failure of Bohr's atomic model | factors affecting periodic proiperties: | Lattice energy | and geometry of molecule | Van der Waals forces:<br>Definition and types | | <b>3-</b> 3 | SLO-2 | Quantum<br>mecahanical<br>concept of atom | a) atomic radii | Born-Lande equation | Molecular Orbital Theory | ion-dipole force | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|----------------|-----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------| | S-6 | SLO-1 | Schrödinger's<br>wave equation<br>(time-<br>independent) | b) ionic radii | Kapustinskii Equation | LCAO method | dipole-dipole forces | | | SLO-2 | Significance of ψ and ψ <sup>2</sup> | c) ionization<br>energy | Madelung constant | formation of bonding, anti-<br>bonding and nonbonding<br>molecular orbitals | dipole-induced dipole forces | | | SLO-1 | Probability distribution curves, | Successive ionization energy | Born-Haber cycle and its applications. | Types of overlapping - S-S ,S-px, | Instant dipole-Induced dipole forces | | S-7 | SLO-2 | Radial wave<br>functions and<br>nods. Angular<br>wave functions<br>and nods | d) electronaffinity e) electronegativity | Relationship between<br>lattice energy and<br>solubility of ionic<br>compounds | Types of overlapping Px-Px,<br>Py-Py and Pz-Pz | London forces | | | SLO-1 | Tutorial: Solving problems in | Tutorial: Solving problems in | Tutorial: Solving problems in Lattice | Tutorial: Solving problems in MO theory | Tutorial: Solving problems related to | | S-8 | SLO-2 | Schrödinger's wave equation | periodic<br>proiperties | energy | INO triebry | different forces | | S-9 | SLO-1 | Shapes of orbitals | Variation of electronegativity with bond order | Relationship between lattice energy and solubility of ionic compounds | MO diagram for homonuclear and heteronuclear diatomic molecule | hydrogen bonding | | | SLO-2 | Significance of quantum numbers | Electronegativity scales: Pauling, | Covalent character in ionic compounds | Calculation of bond order.<br>H <sub>2</sub> +,H <sub>2</sub> , He <sub>2</sub> +, He <sub>2</sub> molecules | Types of hydrogen bonding | | 0.40 | SLO-1 | Pauli's Exclusion<br>Principle | Allred Rochow | Fajan's Rule and applications. | Calculation of bond order.<br>H <sub>2</sub> +,H <sub>2</sub> , He <sub>2</sub> +, He <sub>2</sub> molecules | VB approach of hydrogen bonding | | S-10 | SLO-2 | Hund's rule of maximum multiplicity | Mulliken's scales of electronegativity | Polarization | Li <sub>2</sub> , B <sub>2</sub> , C <sub>2</sub> molecules | Effects of hydrogen bonding in density | | | SLO-1 | Aufbau principle | metallic and non-<br>metallic character | and Polarizing power | N <sub>2</sub> , O <sub>2</sub> , O <sub>2</sub> -, O <sub>2</sub> <sup>2-</sup> molecules | solubility | | S-11 | SLO-2 | elements | Variation of oxidation state in periodic table | dipolemoment | CO, HCI molecules | melting point and boiling point. | | S-12 | SLO-1<br>SLO-2 | Tutorial: Solving problems in quantum numbers | Tutorial: Solving problems in Electronegativity | Tutorial: Solving problems related to Covalent character | Tutorial: Solving problems in MO theory | Tutorial: Solving problems related to hydrogen bonding | - 1. J.D. Lee, Concise Inorganic Chemistry, Fifth Edn., Wiley India 2008. - 2. J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, Inorganic Chemistry- Principles of Structure and Reactivity, Pearson Education 2009. - 3. B.E. Douglas, D. H. McDaniel, J. J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn., John Wiley & Sons, Inc. ### Learning Resources - . P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong, Shriver and Atkins' Inorganic Chemistry, 5th Edn, W. H. Freeman and Company, 41 Madison Avenue, New York, NY 10010 <a href="https://www.whfreeman.com">www.whfreeman.com</a>. 2010. - 5. L. G. Miessler, J. P. Fischer, D. A. Tarr, Inorganic Chemistry, Fifth edition, Pearson, 2014. - 6. P.L. Soni, Textbook of Inorganic Chemistry, Mohan Katyal, Sultan Chand & Sons Publishers 2006. - 7. S. Prakash, G.D. Tuli, S. K. Basu, R.D. Madan, Advanced Inorganic Chemistry I Sultan Chand & Sons Publishers 2000. | Learning Assessment | | | | | | | | | | | | | | |------------------------------|--------|------------------------------------------------|---------------|----------|---------------|----------|--------|----------|--------------------------------------|----------|--|--|--| | | | Continuous Learning Assessment (50% weightage) | | | | | | | Final Examination (50% weightage) | | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA – 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | i iliai Examination (50 % weightage) | | | | | | Level of Tilliking | Theory | Practice | | | | | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | |---------|------------|-------|------|------|-----|------|-----|-------|------|-------|-------| | Level I | Understand | 30% | - | 30% | ı | 20% | - | 20% | - | 30 % | = | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | Level 2 | Analyze | 40 /0 | - | 50 % | ı | 30 % | - | 30 /0 | - | 50 /0 | - | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | Level 3 | Create | 30% | - | 20% | - | 30% | - | 30% | - | 20% | - | | | Total | 10 | 00 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 1 | 100 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |----------------------------------------------|--------------------------------------------|----------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | Prof. G. Sekar, Department of Chemistry, | | | Dr. Ravikiran Allada, Director, | IIT Madras | Dr. M. Ganesh Pandian, SRM IST | | Analytical Sciences and Technology Transfer, | Email: gsekar@iitm.ac.in | | | Novugen Pharma, Malaysia | Prof. Sukhendu Mandal, Department of | | | Email: ravianalytical@gmail.com | Chemistry, IIISER, Thiruvananthapuram | Prof. M. Arthanareeswari, SRMIST | | | Email: sukhendu@iisertvm.ac.in | | | Course LOVOGA COURSE | | Course | | L T P O C | |----------------------|-------------------------|----------|--------------------------|-----------| | Code UCY231021 Name | Basic Organic Chemistry | Category | Discipline Specific Core | 3 1 0 2 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|--------------------------------|------------------------|-----| | Course Offer<br>Department | ing | Chemistry | | | Data Book /<br>Codes/Standards | | Nil | | Course Learning<br>Rationale<br>(CLR): | The purpose of learning this course is to: | Learning | ٠. | | | Pro | grai | n Le | arni | ng C | Outco | ome | s (Pl | LO) | | | | |----------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|-------------------|----------------------|--------------|--------------|--------------------|-------------------------|----------------------|-----------------|---------------|--------------|--------|--------|-------| | | tructure of organic molecules | 1 2 3 4 5 6 7 8 9 10 11 1 | | | | | | | 12 | 13 | 14 | 15 | | | | | | | | hemistry of molecules | | | | | | | ge | | | | | | | | | | | | reochemistry of molecules | Ê | ge | ş | | _ | | Knowledge | | æ | | | | | | | | | CLR-4: Recognize aroma | tic molecules | 90 | led | eb | | dge | .o. | NO. | | Jate | | Skills | <u>s</u> | | | | | | CLR-5 : Understand react reactions | ion rates and determine the mechanism of | Thinking (Bloor Thinking (Bloor lental Knowled ion of Conceptor Nelated Irral Knowledge Specialization Utilize Know Modeling Interpret Datative Skills inication Skills inication Skills | | | | Skills | | | | | | | | | | | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related | Procedural Knowledge | Skills in Sp | Ability to U | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | Communication | Analytical ( | PSO -1 | PSO -2 | PSO-3 | | CLO-1: Know the name a | nd structure of molecules | 4 | Н | - | Н | - | - | М | - | - | - | - | - | - | - | - | - | | | D arrangement of substituents in a molecule | 4 | Н | 4 | - | - | М | - | - | Н | ŀ | - | - | - | - | - | - | | CLO-3: Know how to dete | ermine the stereochemistry of molecules | 4 | Н | + | - | L | - | - | | ŀ | Н | - | - | - | | - | - | | CLO-4: Predict the acidity | and basicity of molecules | 4 | | Μ | - | Н | 2 | - | Н | - | - | - | - | - | - | - | - | | CLO-5: Understand the rathermodynamics | ate of a reaction based on kinetics and | 4 - H H L | | | | | | - | - | - | | | | | | | | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |------------|-----------|--------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------| | S-1 | SLO-1 | Concept of bonds (σ& π) | Projection formulae:<br>Interconversion | Connect of sterogenic atom or center | S <sub>N</sub> <sup>1</sup> , S <sub>N</sub> <sup>2</sup> and SN <sup>i</sup> reactions with examples | Introduction to<br>heterocyclic<br>compounds: and<br>classifications | | , i | SLO-2 | Explain with MOT | Isomerism in Organic<br>Compounds: Structural<br>isomerism | Topicity of ligands and faces | S <sub>N</sub> <sup>1</sup> , S <sub>N</sub> <sup>2</sup> and SN <sup>i</sup> reactions with examples | Introduction to<br>heterocyclic<br>compounds: and<br>classifications | | S-2 | SLO-1 | Hybridization | Geometrical<br>isomerism;<br>Confirmational<br>isomerism and<br>configurational<br>isomerism | Re/Si faces | Elimination reactions:<br>E1, E2 and E1CB | Basic synthesis of heterocyclic compounds | | | SLO-2 | Hybridization | Stereoisomerism:<br>Asymmetry, Chirality | Optical isomerism and optical activity | Elimination reactions:<br>E1, E2 and E1CB | Reactivity of heterocycles | | S-3 | SLO-1 | Sigma π and σ bond calculations | Chirality in molecules with one or more stereocenters | Brief introduction of symmetry elements | Addition reactions<br>(Markownikoff/Anti-<br>markowikoff) | Directing effect of<br>groups in electrophilic<br>substitution:<br>Activating groups | | <b>3-3</b> | SLO-2 | Different types of functional groups | Chirality in molecules<br>with one or more<br>stereocenters | Brief introduction of symmetry elements | Addition reactions<br>(Markownikoff/Anti-<br>markowikoff) | Directing effect of groups in electrophilic substitution: Activating groups | | | SLO-1 | Tutorial - Problem | Tutorial – Discussion | Tutorial – Discussion | Tutorial – Discussion on addition, elimination and | Tutorial -Discussion on reactivity of | | S-4 | SLO-2 | discussion on MOT,<br>hybridization | on structural isomers<br>and stereoisomers | on symmetry elements | substitution reactions<br>with examples | heterocyclic<br>compounds | | S-5 | SLO-1 | IUPAC Nomenclature | Chirality in molecules with no stereocenter (Allenes and biphenyls) | Confirmation analysis<br>of alkanes<br>(Conformations,<br>Relative stability and | Oxidation reactions | Concept of<br>aromaticity, Huckel's<br>rule of aromaticity;<br>aromatic, anti-<br>aromatic, non- | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|----------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------| | | , | | | energy diagrams, | | aromatic and | | | SLO-2 | IUPAC Nomenclature | Chirality in molecules<br>with no stereocenter<br>(Allenes and<br>biphenyls) | ethane) Confirmation analysis of alkanes (Conformations. Relative stability and energy diagrams, propane) | Reduction reactions | homoaromatic Concept of aromaticity, Huckel's rule of aromaticity; aromatic, anti- aromatic, non- aromatic and homoaromatic | | | SLO-1 | IUPAC Nomenclature | Relative configurations:<br>D/L designations | Confirmation analysis of alkanes (Conformations. Relative stability and energy diagrams, butane) | Basic named reactions:<br>Aldol condensation<br>Cannizzaro reaction | Concept of aromaticity, Huckel's rule of aromaticity; aromatic, antiaromatic, nonaromatic and homoaromatic | | S-6 | SLO-2 | IUPAC Nomenclature | Relative<br>configurations: D/L<br>designations | Confirmation analysis of alkanes (Conformations. Relative stability and energy diagrams, butane) | Clemmenson reduction,<br>Friedel-Craft Reactions,<br>Grignard reaction,<br>Reimer-Tieman<br>Reaction, Sand Mayer<br>Reaction | Concept of aromaticity, Huckel's rule of aromatic, antiaromatic, non-aromatic and homoaromatic | | 6.7 | SLO-1 | IUPAC Nomenclature | Relative<br>configurations: D/L<br>designations | Confirmation analysis of cycloalkanes: cyclohexane | Wittig reaction, Wolf-<br>Kirshner reduction,<br>Wurtz reaction, Ullman<br>reaction | Reaction rates with examples | | S-7 | SLO-2 | Oxidation state oc carbon in molecules | Geometrical isomerism:<br>Cis/Trans Isomerism | Cyclohexane<br>confirmation with<br>energy diagram | Sand-Mayer reaction,<br>Gattermann reaction,<br>Étard reaction, Suzuki<br>reaction | Act <mark>ivation en</mark> ergy,<br>trans <mark>ition stat</mark> e and<br>intermediates | | S-8 | SLO-1<br>SLO-2 | Tutorial - Discussion<br>with example of<br>IUPAC nomenclature | Tutorial - Discussion<br>with example D/L<br>designations | Tutorial – Discussion<br>on Confirmations of<br>cyclohexane, butane | Tutorial – Discussion on<br>oxidation, reduction and<br>named reactions | Tutorial - Huckel's<br>rule of aromaticity<br>with examples | | S-9 | SLO-1 | Strain in the<br>molecules, dihedral<br>angle, torsion angle,<br>Dipole moment | Geometrical isomerism:<br>Cis/Trans Isomerism | Axial and equatorial positions | Electronic displacements<br>and their applications:<br>Inductive effect | Thermodynamic and kinetic requirements | | 0-3 | SLO-2 | Strain in the<br>molecules, Dihedral<br>angle, torsion angle,<br>dipole moment | Geometrical isomerism:<br>Syn/Anti | Stability of conformation with two or more substituents | Mesomeric effect | Hammond postulate, | | 0.40 | SLO-1 | Projection formulas:<br>Fischer | Geometrical isomerism:<br>Syn/Anti | Stability of conformation with two or more substituents | Resonance effect | Curtin-Hammett<br>Principle | | S-10 | SLO-2 | Sawhorse, Newman, | E/Z nomenclature | Effects on stability of confirmations of cyclohexane | Hyperconjugation effect | Hammett equation | | S-11 | SLO-1 | Flying-Wedge,<br>Zigzag | E/Z nomenclature | Introduction to the organic reactions: discussion on electrophile, nucleophile and free radical | Electrophilic aromatic<br>substitution:<br>Halogenation with<br>mechanism | Concept of pH and<br>PKa) | | | SLO-2 | Flying-Wedge,<br>Zigzag | CIP rule | Brief account on<br>Nucleophilic,<br>Electrophilic, Free radical<br>substitution reactions | Electrophilic aromatic<br>substitution:<br>Halogenation with<br>mechanism | Concept of acids and bases (Lewis and Bronsted) | | | SLO-1 | Tutorial - on | Tutorial -on Cis/Trans | Tutorial -Discussion on | Tutorial - Discussion on | Tutorial - | | S-12 | SLO-2 | projection formulas<br>and discuss their<br>stabilities | and E/Z nomenclature | factors effecting on the stability of confirmation | inductive, mesomeric, resonance effects | Understanding the reaction mechanism | | Theory | |--------| | | Learning Resources 1. 2. - S. Sengupta, Basic Stereochemistry of Organic Molecules, third edition, 2003 Paula Y. Bruice, Organic Chemistry. Global Edition, 1995 M. B. Smith and J. March, March's Advance Organic Chemistry, 6th Ed., John Wiley and Sons, Inc, 2007 3. - 4. J. Clayden, N. Greeves, S. Warren, Organic Chemistry, 2nd edition, 2001 - D. N. Nasipuri, Stereochemistry of Organic Compounds: Principles & Applications South Asia Books, 1994 5. | Learning | Assessment | | | | | | | | | | | | |----------|------------------------------|---------------|-----------------|--------------------|----------|---------------|----------|--------|----------|-----------------------------------|----------|--| | | <b>5</b> | | Final Evaminati | on (EOO) weightens | | | | | | | | | | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | Level of Tilliking | Theory | Practice | | | Laval 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | Level 1 | Understand | 30% | | 30% | - | 20% | _ | 20% | | 30% | - | | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | Leveiz | Analyze | 40% | | 30% | | 30% | 7 FH. | 30% | - | 30 % | - | | | Level 3 | Evaluate | 30% | <b>TAK</b> 1 | 20% | | 30% | | 30% | 1 | 20% | | | | Levers | Create | 30% | 115 | 20% | - | 30% | - | 30% | 1/2/ | 20 70 | - | | | | Total | 10 | 00 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 1 | 00 % | | # CLA - 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | \$100 Sept \$100 Co. | | |-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director, Analytical Sciences and Technolog Transfer. | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@iitm.ac.in | 1. Dr. Sus <mark>nata Pram</mark> anik,<br>SRMIST | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | 2. Prof. M. Arthanareeswari<br>SRMIST | | Course | UCY23103J | ourse | States of matter, solutions and phase | Course | | | L | T | Р | 0 | C | |--------|-----------|-------|---------------------------------------|----------|---|--------------------------|---|---|---|---|---| | Code | UCY23103J | Vame | equilibria | Category | С | Discipline Specific Core | 3 | 0 | 3 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|--------------------------------|------------------------|-----| | Course Offer<br>Department | ing | Chemistry | | | Data Book /<br>Codes/Standards | | Nil | | Course Le<br>Rationale<br>(CLR): | arning | Learning | Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | | |---------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|---------------------------------|-----------------------|----------------|-------------------|----------------------|--------------------------|--------------------|--------------------|--------------------|----------------------|------------------------|---------------|---------------|--------|--------|-------| | CLR-1. G | Gain knowledge a | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | UIR-/ 1 | cquire kno <mark>wledge</mark><br>system | e about the miscibility of liquids and CST of | n) | ge | ts | | | | Knowledge | | <b>~</b> | | | | | | | | | CLR-3: In | nfer the various p | hase equilibrium existing in a system | evel of Thinking (Bloom) | 9 | Concepts | 1 | ge | .io | Š | | Data | | il S | <u>s</u> | | | | | | CLR-4: U | Inderstand the co | lligative properties of a system | (B) | Š | ē | - | - | zat | 조 | D | | <u>s</u> | Š | Skills | | | | | | CLR-5 : <i>U</i> | <mark>Inderstand</mark> the so | lution-making and dilution | ing | 조 | 0 | ate | 6 | <u></u> | Se Z | 듩 | ğ | Š | .E | 9 | Skills | | | | | Course Learning Outcomes (CLO): At the end of this course, learners will be able to: | | | | Fundamental Knowledge | Application of | Link with Related | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret | Investigative Skills | Problem Solving Skills | Communication | Analytical Sk | PSO -1 | PSO -2 | PSO-3 | | | tate laws of distril<br>artition coefficien | bution and determine the distribution and<br>t | 4 | Н | | - | - | М | - | - | - | | - | - | - | - | - | Н | | ( ()-/: | ifferentiate types<br>ystem | of solutions and determine the CST of a | 4 | Н | | Ī | ī | - | - | Н | Ē | | L | - | | - | - | - | | | lustrates the exist<br>aterpret the phase | tence of phase equilibria and constructs & e diagram | 4 | Н | | Н | | М | 7 | - | - | - | - | - | - | - | - | - | | ( . ( )=/1 ' | etermine the moi<br>olligative properti | ecular weight of a compound using es | 4 | Н | | Н | 7 | М | | - | - | - | | - | - | - | - | Н | | | Make concentration of different colutions, everyone the | | | | ÷ | | 7 | Н | - | - | - | | - | - | Н | - | - | - | | | | | and the second | 4 3 | | | |---------------|-----------|------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------| | Duratio | on (hour) | 18 | 18 | 18 | 18 | 18 | | S-1 | SLO-1 | | Liquid state: The origin of intermolecular forces | Solid state: Types of solids | Solutions: Concentration terms | Phase equilibria;<br>Phase,<br>component | | | SLO-2 | Parameters of gases | Ion-dipole forces | Symmetry of crystals | Molality, Molarity, Normality | Degrees of freedom | | S-2 | SLO-1 | The gas laws | dipole-dipole forces | Miller indices | Solutions of gases in gases | Derivation of the<br>Phase rule | | 3-2 | SLO-2 | Boyle's law | London forces | Determination of Miller indices | Henry's law | Activity – terms of phase equilibria | | | SLO-1 | Charle's law | Hydrogen bonding | Crystal lattice | Solutions of liquids in | | | S-3 | SLO-2 | Gay Lussac's<br>law, Avagadro<br>law | Effect of hydrogen bonding on boiling point | Unit cells | liquids- Phenol water system | One component system | | S-4 to<br>S-6 | SLO-1 | Introduction to<br>the lab,<br>discussion of<br>all the<br>experiments | Determination of transition temperature of | Determination of molecular formula of copper-ammonia complex by | Determination of critical solution temperature and composition at CST of the | Construction of<br>the phase diagram<br>using cooling<br>curves or ignition<br>tube method: a. | | | SLO-2 | Discussion on<br>lab protocols<br>and evaluation | a hydrated salt | distribution method.<br>Cu2+ (aq) + nNH3<br>⇒ [Cu (NH3) n] <sup>2+</sup> | phenol water system | simple eutectic<br>and b. congruently<br>melting systems | | <b>S-</b> 7 | SLO-1 | The ideal gas equation | Vapour pressure | X-Ray<br>Crystallography | Vapour pressures of liquid-<br>liquid solutions | Two component –<br>Simple eutectic<br>system | | | SLO-2 | Derivation | Determination of vapour pressure – Static method | Bragg's equation, derivation | Types of mixtures of miscible liquids | Silver – Lead<br>system | | Duratio | n (hour) | 18 | 18 | 18 | 18 | 18 | |---------|--------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------| | S-8 | SLO-1 | Dalton's law of<br>partial<br>pressure | Dynamic method | Classification of<br>crystals - Ionic<br>liquids (ILs) | Theory of fractional distillation | Zn-Cd system | | | SLO-2 | Graham's law<br>of diffusion | Effect of vapour pressure on boiling point | Molecular crystals | Vapour pressure of mixture of non-miscible liquids | Interpretation with diagram | | | SLO-1 | Kinetic<br>molecular<br>theory of<br>gases | Surface Tension | Metallic crystals | Colligative properties | Two component system with a solid compound | | S-9 | SLO-2 | Kinetic<br>molecular<br>theory of<br>gases -<br>Derivation | Determination of surface tension | Structure of metal crystals | Raoult's law | Congruent melting point | | | SL0-1 | Distribution of acetic acid/benzoic | Determination of the composition of a given | Construction of the phase diagram using | Study of the effect of | Construction of | | S-10-12 | SLO-2 | acid between<br>water and<br>benzene or<br>chloroform or<br>cyclohexane | binary mixture (ethanol-<br>water) from the study of<br>the viscosity-composition<br>curve | cooling curves or ignition tube method: a. simple eutectic and b. congruently melting systems | impurities NaCl / succinic acid on CST of the phenol water system | phase diagram of simple eutectic system | | S-13 | SLO-1 Distribution of Molecular velocities | | Viscosity | Crystal defects | Determination of molecular mass from vapour pressure lowering | Mg- <mark>Zn system</mark> | | | SLO-2 | Collision properties | Measurement – The Ostwald method | Metal alloys | Measurement of lowering of<br>vapour pressure | Incongruent melting point | | | SLO-1 | Deviation from ideality | Effect of temperature on viscosity of a liquid | Semiconductors | Elevation of boiling point | Ferric chloride –<br>water system | | S-14 | SLO-2 | Vander Waals equation | Refractive index | P type<br>semiconductor | Determination of molar mass from elevation of boiling point. | Interp <mark>retation with diagram</mark> | | | SLO-1 | Liquefaction of gases | Specific refraction | N type semiconductor | Freezing point depression | Ternary phase diagram | | S-15 | SLO-2 | Law of corresponding state | Molar refraction | Liquid crystals | Activity and activity coefficient | Three component mixtures | | S-16-18 | SLO-1 | The partition coefficient of lodine between benzene and water | Determination of<br>molecular weight of a<br>compound using<br>Viscosity average<br>method | Making solutions of<br>different ppm, ppb,<br>and serial dilution of<br>the prepared<br>solutions | Determination of critical solution temperature and composition at CST of the Aniline - water system | Repetition lab | | Learning | Assessment | | | | | | | | | | | | | | |----------|------------------------------|--------|----------|-----------|------------------------------------|--------|----------|--------|----------|-----------------------------------|----------|--|--|--| | | | | Cont | inuous Le | Final Examination (500/ weighters) | | | | | | | | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | Level of Thinking | Theory | Practice | | | | | Level 1 | Remember | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | 20% | | | | | Level I | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | 20% | | | | | Level 2 | Apply | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | 50% | | | | | Level 2 | Analyze | 40% | 50% | 30% | 40% | 50% | 50% | 50% | 30% | 50% | 50% | | | | | Level 3 | Evaluate | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | 30% | | | | | Level 3 | Create | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | 30% | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | | | | | ### Theory: - P.W. Atkins, L.L. Jones, Chemical Principles: The quest for insight. H. Freeman and Company, New York, 2010 B.R. Puri, L.R. Sharma, K.K. Kalia, Principles of Inorganic Chemistry, Shobulal Nagin Chand and Co, 2001. P. L. Soni, A Textbook of Inorganic Chemistry, Sultan Chand and Co., 1977. - 2. - 3. ### Learning Resources - R. Gopalan, Text Book of Inorganic Chemistry, 2<sup>nd</sup> edition, Hyderabad, Universities Press, (India), 2012. 4. - 5. - R.T. Morrison and R.N. Boyd, S. K. Bhattacharjee, Organic Chemistry, 7th edition, Pearson India, 2011. B.R. Puri, L.R. Sharma and M.S. Pathania, Principles of Physical Chemistry, 35th edition, New Delhi ShobanLal Nagin Chand and Co, 2013. # CLA - 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director, Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@iitm.ac.in | 1. Dr. Srinivasarao Kancharla,<br>SRMIST | | Novugen Ph <mark>arma, Malay</mark> sia<br>Email: <u>ravianalytical@gmail.com</u> | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | 2. Dr. T. Pushpa Malini, SRMIST | | Course | | Course | Quantitative Aptitude and Logical | Course | • | 2 | L | T | P | 0 | С | |--------|-----------|--------|-----------------------------------|----------|---|--------------------------|---|---|---|---|---| | Code | UCD23S01L | Name | Reasoning | Category | S | Skill Enhancement Course | 0 | 0 | 2 | 2 | 1 | | Pre-requisite Courses | Nil | Co-requisite<br>Courses | Nil | Progressive<br>Courses | Nil | | | |-----------------------|----------|-------------------------|-----------------|------------------------|-----|--|--| | Course Offering | Caroor ( | Guidance Cell | Data Book / | | | | | | Department | Career | Juluance Cell | Codes/Standards | s/Standards | | | | | Course L<br>Rationale | earning (CLR): | The purpose of learning this course is to: | Le | arni | ng | | | | Pro | grar | n Le | arni | ng ( | Outc | ome | s (P | LO) | | | | |-------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|-------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|---------------|------------|---------------|--------------|-----------|--------------|------------| | CLR-1: | Demon | nstrate various principles involved in solving matical concepts | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | Critical<br>profit, I | | | | | | | 74. | | | | | | | | | | | | | | CLR-3: | Enable students to understand reasoning skills | | | | | 1 | | es | j. | | Ф | | | | | | | | | | | CLR-4: | Use the basic mechanics of Grammar | | | (%) k | ıt (%) | ledge | epts | isciplin | ge | on | wledg | | ata | | Skills | <u>s</u> | | | iour | | | CLR-5: | CLR-5: Acquire time management skills and expose students to the requirements of the job market | | | oficienc | ainmer | l Know | f Conc | ated D | nowlec | cializati | ize Kno | eling | rpret D | Skills | Solving Sk | ion Skills | Skills | | Behaviour | Learning | | Course L<br>Outcome<br>(CLO): | - | At the end of this course, learners will be able to: | evel of Thinking (Bloom | Expected Proficiency | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative | Problem So | Communication | Analytical S | CT Skills | Professional | ife Long L | | CLO-1: | proport | stand the concepts of LCM, HCF, ratio and<br>tions, percentages and approach questions in a<br>r and innovative method | 3 | 80 | 70 | Ħ | M | | M | i. | M | - | Ĥ | M | H | - | M | - | - | - | | CLO-2: | | p, solve, analyze, and use simple mathematical<br>s that are relevant to daily life. | 3 | 80 | 75 | Н | М | À | М | L | М | - | Н | М | Н | - | М | - | - | - | | CLO-3: | Solve p | problems on reasoning | 3 | 85 | 70 | G, | М | | - | - | М | М | Н | - | Н | - | Н | - | - | - | | CLO-4: | Unders | stand the different parts of speech and use them in<br>ces appropriately | 3 | 85 | 80 | Н | i | | - | ľ | - | М | М | - | - | - | Н | Н | - | М | | CLO-5: | Instill confidence in students and develop skills necessary to face the audience | | | 85 | 75 | - | Ŧ | М | - | - | М | - | - | М | - | Н | М | - | Н | Н | | | ration<br>nour) | 6 | 6 | 6 | 6 | 6 | |-----|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------| | | SLO-1 | Speed Maths and Simplification | Profit and Loss-<br>Introduction | Number Series | Most Logical Choice | Self-Introduction -<br>Introduction | | S-1 | SLO-2 | Simplification<br>Techniques and Tricks | Profit and Loss- Basic<br>Problems | Number Series – Solving<br>Problems | Most Logical Choice – solving problems | Self-Introduction - Session<br>1 | | 0.0 | SLO-1 Divisibility | | Simple Interest-<br>Introduction, Formulas W<br>&Problems | | Logical Order | Self-Introduction - Session<br>2 | | S-2 | SLO-2 | Power cycle, Reminder cycle | Compound Interest-<br>Introduction, Formulas<br>&Problems | Word Series – Solving<br>Problems | Logical Order – tips and tricks | Self-Introduction - Session<br>3 | | | SLO-1 | Problems On H.C.F<br>and L.C.M | Averages-Introduction&<br>Basics | Odd man out | Synonyms | Self-Introduction - Session 4 | | S-3 | SLO-2 | Problems On H.C.F<br>and L.C.M Solving<br>problems | Averages-Tricky Problems | Missing number and wrong number | Antonyms | Self-Introduction - Session<br>5 | | | SLO-1 | Linear and<br>Simultaneous Equation | Algebra –Introduction | Image Based Problems-<br>Introduction | Essential Part | Self-Introduction - Session 6 | | S-4 | SLO-2 | Linear and<br>Simultaneous Equation<br>–solving problems | Algebraic Expressions<br>Concepts | Image Based Solving<br>Problems | Parts of Speech -<br>Worksheets | Self-Introduction - Session<br>7 | | S-5 | S-5 <b>SLO-1</b> Ratio and Proportions-Introduction | | Data Interpretation – Bar<br>chart, Pie Chart | Inequalities | Spotting Error | Basics of Written Communication | | | SLO-2 | Ratio and Proportions-<br>Basics Problems | Data Interpretation –<br>Table, Line Graph | Inequalities - methods | Spotting Error –Concord,<br>Prepositional usage,<br>Usage of Articles | Basics of Written<br>Communication Methods | |-----|-------|-------------------------------------------|-----------------------------------------------|---------------------------------------|-----------------------------------------------------------------------|--------------------------------------------| | S-6 | SLO-1 | Percentage -<br>Introduction | Quadratic Equations | Coding – Decoding-<br>Introduction | Sentence Correction –<br>Vocabulary based | Time Management Skills | | 3-0 | SLO-2 | Percentage- Basic problems | Quadratic Equations –<br>Formulas and Methods | Coding – Decoding-<br>Different types | Sentence Correction –<br>Grammar Based | Time Management Skills -<br>Activity | | | 1. Abhijit Guha, Quantitative Aptitude for Competitive Examinations, | 4. Edgar Thrope, Test of Reasoning for Competitive Examinations, | |-----------|----------------------------------------------------------------------|-------------------------------------------------------------------| | | Tata McGraw Hill, 5th Edition 2020. | Tata McGraw Hill, 6th Edition 2020. | | Loarning | 2. Dr. Agarwal.R.S, Quantitative Aptitude for Competitive | 5. Singh O.P., Art of Effective Communication in Group Discussion | | Decourage | Examinations, S. Chand Machine Translation of April 19 Competitive | and Interview, S Chand & Company, 2014 | | Resources | 3. Archana Ram, PlaceMentor: Tests of Aptitude for Placement | Beans 2006 | | | Readiness, Oxford University Press, Oxford, 2018 | Press, 2016 | | | 11. | 441. | | Learning Assessme | | Co | ntinuous Learning As | sessment (100% weigh | tage) | | | | | |-------------------|-----------------------------------------|--------------|----------------------|----------------------|----------------|--|--|--|--| | Level | Bloom's Level of Thinking CLA – 1 (20%) | | CLA – 2 (20%) | CLA – 3 (30%) | CLA – 4 (30%)# | | | | | | | | Practice | Practice | Practice | Practice | | | | | | Level 1 | Remember | 30% | 30% | 30% | 10% | | | | | | Level 1 | Understand | 1 . How Here | | the William | 10 /8 | | | | | | | Apply | 200/ | 200/ | 200/ | F00/ | | | | | | Level 2 | Analyze | 30% | 30% | 30% | 50% | | | | | | 112 | Evaluate | 400/ | 400/ | 400/ | 400/ | | | | | | Level 3 | Create | 40% | 40% | 40% | 40% | | | | | | | Total | 100 % | 100% | 100% | 100% | | | | | CLA-1, CLA-2 and CLA-3 can be from any combination of these: Online Aptitude Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, Mini Talks, Group Discussions, Extempore, etc. # CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | Cou <mark>rse Desi</mark> gners | | | | | | | | | | | | | |-------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Exp <mark>erts</mark> | | | | | | | | | | | | | Mr. M. Ponmurugan , Executive PMOSS,<br>Cognizant Technology Solutions India Pvt.<br>Limited, Chennai | | Dr. Sathish K, HOD, Department of Career Guidance,<br>FSH, SRMIST<br>Ms. Deepalakshmi S, Assistant Professor, Department of<br>Career Guidance, FSH, SRMIST | | | | | | | | | | | | | Course | | Cou | rse | | | Course | | | L | T | P | 0 | С | |-------------------------------|-----------------------|----------------------|-----|--------------------------------|-----|------------------|---|-----------------------|---|---|---|----|---| | Code | UCD23V01T | Name | | Universal Human Values | | Category | V | Value Addition Course | 2 | 0 | 0 | 2 | 2 | | Pre-requis | Pre-requisite Courses | | | requisite<br>courses | Nil | Progres<br>Cours | | Nil | 1 | | | Į. | | | Course Offering<br>Department | | Lareer Guidance Cell | | Data Book /<br>Codes/Standards | - | | | | | | | | | | Course Learning Rationale (CLR): | Le | earni | ng | | | | Pro | grar | n Le | arni | ng ( | Outc | ome | s (P | LO) | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|-------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|---------------|-----------------|---------------|-------------------|------------|-----------------------|--------------------| | Help the students to understand need of value education, appreciate the essential complimentarily between 'values' and 'skills' and to ensure sustained happiness and prosperity which are the core aspirations of all human beings, | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: Help students initiate a process of dialog within themselves to know what they really want to be' in their life and profession. | | | | | d | | | | | | | | | | | | | | | Help students to understand the meaning of happiness and prosperity for a human being. understanding holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way. | | | | ř | | | Q | ) | 2 | | | | | ١ | | | | | | Help students on right understanding of the Human reality and the rest of existence, harmony at all the levels of human living and live accordingly. | | | Ε, | | | səı | | | Φ | | | | | | | | | | | CLR-5: Highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behavior and mutually enriching interaction with Nature. | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | odeling | Analyze, Interpret Data | e Skills | olving Skills | ation Skills | Skills | | Professional Behavior | earning | | Course Learning Outcomes (CLO): At the end of this course, learners will be able to: | Level of Th | Expected F | Expected / | Fundamen | Application | Link with R | Procedural | Skills in Sp | Ability to U | Skills in Modeling | Analyze, In | Investigative | Problem Solving | Communication | Analytical Skills | ICT Skills | Profession | Life Long Learning | | CLO-1: Evaluate the significance of value inputs in formal education and start applying them in their life and profession | 3 | 80 | 70 | М | | 1 | Н | F | - | - | - | - | - | М | - | - | Н | Н | | CLO-2: Distinguish between values and skills, happiness and accumulation of physical facilities, the Self and the Body, Intention and Competence of an individual, etc. | 3 | 80 | 75 | Y. | М | | Н | - | L | - | ě | | - | - | | - | Н | Н | | CLO-3: Analyze the value of harmonious relationship based on trust and respect in their life and profession | 3 | 85 | 70 | - | - | - | Н | - | - | -4 | М | L | - | - | | - | Н | Н | | CLO-4: Examine the role of a human being in ensuring harmony in society and nature. | | 85 | 80 | - | - | - | Н | Z | - | L | - | L | L | - | L | М | Н | Н | | CLO-5: Apply the understanding of ethical conduct to formulate the strategy for ethical life and profession. | 3 | 85 | 75 | | | L | Н | L | -4 | - | - | 7 | - | - | - | М | Н | Н | | | | | TUARN. | I Dan | | | |----------------|----------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------| | | ration<br>our) | 6 | 6 | LEA6 L | AD 6 | 6 | | S-1 | | Right Understanding,<br>Relationship and<br>Physical Facility | Understanding Human<br>being as the Co-existence<br>of the Self and the Body | Harmony in the Family –<br>the Basic Unit of Human<br>Interaction | Understanding Harmony<br>in the Nature | Natural Acceptance of<br>Human Values | | S-2 SLO | | Understanding Value<br>Education | Distinguishing between<br>the Needs of the Self and<br>the Body | 1.03 | | Definitiveness of (Ethical)<br>Human Conduct | | S-3 | SLO | Self-exploration as the<br>Process for Value<br>Education | The Body as an<br>Instrument of the Self | Respect – as the Right<br>Evaluation | Exploring the Four Orders of Nature | A Basis for Humanistic<br>Education, Humanistic<br>Constitution and Universal<br>Human Order | | S-4 | SLO | Continuous Happiness<br>and Prosperity – the<br>Basic Human<br>Aspirations | Understanding Harmony in the Self | | Realizing Existence as<br>Co-existence at All Levels | Competence in<br>Professional Ethics | | S-5 <b>SLO</b> | | Happiness and<br>Prosperity – Current<br>Scenario | Harmony of the Self with the Body | Understanding Harmony in the Society | The Holistic Perception of<br>Harmony in Existence | Holistic Technologies,<br>Production Systems and<br>Management Models-<br>Typical Case Studies | | S-6 | SLO | Basic Hilman | Programme to ensure self-<br>regulation and Health | | Exploring Co-existence in<br>Existence | Strategies for Transition<br>towards Value-based Life<br>and Profession | |-----|-----|--------------|----------------------------------------------------|--|----------------------------------------|-------------------------------------------------------------------------| |-----|-----|--------------|----------------------------------------------------|--|----------------------------------------|-------------------------------------------------------------------------| | Learning<br>Resources | 1.<br>2. | Gaur R.R., Sangal R., Bagaria G.P., 2019 (2nd Revised Edition), A Foundation Course in Human Values and Professional Ethics, Excel Books, New Delhi. E.F. Schumacher, 1973, Small is Beautiful: a study of economics as if people mattered, Blond & Briggs, Britain. | | 3.<br>4. | A Nagraj, 1998, Jeevan Vidya EkParichay, Divya Path<br>Sansthan, Amarkantak.<br>A N Tripathy, 2003, Human Values, New Age<br>International Publishers. | |-----------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------| |-----------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------| | | | Co | ntinuous Learning As | sessment (100% weigh | tage) | | |---------|------------------------------|-------------------------------------------------|----------------------|----------------------|----------------|--| | Level | Bloom's Level of<br>Thinking | $(1 \Delta - 1 (20\%))$ $(1 \Delta - 2 (20\%))$ | | CLA - 3 (30%) | CLA - 4 (30%)# | | | | | Theory | Theory | Theory | Theory | | | Level 1 | Remember | 30% | 30% | 30% | 30% | | | Level 1 | Understand | s caller Vilva | | | 3070 | | | Laval O | Apply | 400/ | 400/ | 400/ | 400/ | | | Level 2 | Analyze | 40% | 40% | 40% | 40% | | | Laval 2 | Evaluate | 200/ | 200/ | 200/ | 200/ | | | Level 3 | Create | 30% | 30% | 30% | 30% | | | | Total | 100 % | 100% | 100% | 100% | | CLA-1, CLA-2 and CLA-3 can be from any combination of these: MCQ Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, Mini Talks, Group Discussions, Extempore, etc. #CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, etc... | ourse Designers | THE THE PARTY OF T | | |-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | 107 | Dr. Supraja P, UHV University Coordinator, SRMIST | | | 4/4 | Dr. Sathish K, HOD, Department of Career Guidance FSH, SRMIST | | | -48 | Dr. Sweety Bakyarani E, Department of Computer Science, FSH, SRMIST | # Semester - 2 | Course<br>Code | JLT23G02J | Course<br>Name | | Tamil-II | | | | Cours | | G | | Ger | eric | Ele | ctiv | e Co | ours | е | <b>L</b> | T | P 0 | 1 | |-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|---------------------------|--------------------------|-------------------------|-----------------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------------------|----------------------|-------------------|--------|--------|-------| | Pre-<br>requisit<br>Course<br>Course C | s<br>Offering | Tamil | Co-<br>requisite<br>Courses | Nil Data Bool | | rds | - | Progressive Courses Nil Nil | | | | | | | | | | | | | | | | Course L<br>Rationale | earning | The pu | rpose of learning | | | | | Le | arnii | ng | | P | rog | ram | Lea | rnin | g Oı | utco | mes | s (PL | _0) | | | CLR-1: | தொன் | - | பங்கள் வழி<br>5, புற வாழ்வ | വിധതെ | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | தமிழ்ச்<br>குறித்த<br>பக்தி இ<br>மனித | சமூகத்<br>ப தெரிய<br>இலக்கிய<br>மாண்பு | தித்த | 3 | 21.0 | 1000 | | 100 | | | \ | 1 | 3 | | | | | | | | | | | CLR-4 : | செய்தல்<br>பண்டைத் தமிழ்ச்சமூகத்தின் தொறி<br>இலக்கியங்கள் வளர்ச்சி பெற்ற<br>வரலாற்றைப் புரியச் செய்தல்<br>சிறுகதைகள் சொல்லும் வாழ்வியல்<br>நெறி, மொழியின் நுட்பங்கள்<br>ஆகியவற்றைத் தெரியச் செய்தல் | | | | | iciency (%) | inment (%) | Knowledge | Concepts | Link with Related Disciplines | owledge | alization | Ability to Utilize Knowledge | ling | oret Data | Skills | ng Skills | n Skills | S | | | | | Course<br>Learning<br>Outcome<br>(CLO): | | end of this | course, learners | will be able to: | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Rela | Procedural Knowledge | Skills in Specialization | Ability to Utiliz | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | CLO-1: | புற வா<br>மேம்பா | ழ்வியல் | ழ்ச் சமூகத்!<br>இன்றைய<br>வழிகாட்டி<br>ளுதல் | சமூக | 2 | 75 | 60 | Н | L | Н | М | Н | Н | 1 | М | Н | М | L | Н | 1 | - | - | | CLO-2 : | வலியுற<br>மானுட<br>தெரிந் | <mark>அத்</mark> திய க<br>அறத்ன<br>துகொள் | ாளுதல் | | 2 | 80 | 70 | Н | М | Н | L | М | Н | L | Н | М | L | Н | Н | , | - | - | | CLO-3: | தெரிந்து <mark>க</mark> ொள்ளுதல்<br>பக்தி இலக்கியம் மூலம் இறைத்<br>தந்துவங்களை அறிந்து மானுட<br>ஒற்றுமை மேம்பாட்டை<br>அறிந்துகொள்ளுதல் | | | | 2 | 70 | 65 | Н | L | Н | М | Н | Н | М | Н | L | Н | М | Н | • | - | - | | CLO-4: | தழைத்தோங்கியதைத்<br>தெரிந்துகொள்ளுதல் | | | | 2 | 70 | 70 | Н | М | Н | L | Н | М | М | Н | Н | L | Н | Н | - | - | - | | CLO-5: | வாழ்வி<br>சொல்ള<br>திறனே | தெரிந்துகொள்ளுதல்<br>வாழ்வியலின் நெறிகளைச்<br>சொல்லும் கதைகளைப் படைக்கு<br>திறனோடு மொழி ஆளுமையையு<br>அறிந்துகொள்ளுதல் | | | | | | Н | М | Н | Н | М | Н | L | М | Н | L | Н | Н | - | - | - | | | ration<br>nour) | 12 | 12 | 12 | 12 | 12 | |-----|-----------------|---------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------| | S-1 | SLO-1 | காலந்தோறு<br>ம் தமிழ்<br>அகத்திணை<br>மரபு | சங்க மருவிய<br>காலம் | பல்லவர் காலம் | பண்டைக்காலத்<br>தமிழகம் | தமிழ்ச்<br>சிறுகதைப்<br>போக்குகள் | | | SLO-2 | அக<br>இலக்கியத்தி<br>ன்<br>கட்டமைப்பு/<br>உள்ளடக்கம் | அறமும்<br>வாழ்வியலும் | பல்லவர் கால<br>இலக்கியங்கள் | சங்ககால<br>மக்களின்<br>வாழ்வியல் | தமிழ்ச்<br>சிறுகதையும்<br>தமிழ்ச் சமூக<br>வாழ்வியலும் | | S-2 | SLO-1 | எ <mark>ட்டுத்தொ</mark><br>கை<br><mark>நூல்க</mark> ளும்<br>பகுப்புமுறை<br>யும் | உலகப்பொதும<br>றை -<br>திருக்குறள் | பக்தியும்<br>தமிழும் | முச்சங்கம் –<br>அறிமுகம் | புதுமைப்பித்தன்<br>-<br>சங்குத்தேவனின்<br>தர்மம் | | 7 | SLO-2 | ஐங்குறுநூறு<br>(375) | திருக்குறளின்<br>கட்டமைப்பு | பக்தி<br>இலக்கியத்<br>தோற்ற நிலை | முச்சங்க<br>வரலாறு | கள்வனின் தர்மம் | | S-3 | SLO-1 | உடன்போக்கு<br>ம் நற்றாய்<br>புலம்பலும் | திருக்குறள்<br>வான்சிறப்பு (2) | சைவ சமய<br>இலக்கியங்கள் | பத்துப்பாட்டும்<br>எட்டுத்<br>தொகையும் | ந.பிச் <mark>சமூர்</mark> த்தி –<br>வேப்ப <mark>மரம்</mark> | | | SLO-2 | ஐங்குறுநூறு<br>(391) | மழையும்<br>வாழ்வும் | சைவக்குரவர்<br>நால்வர் | சங்க கால<br>மக்களின்<br>வாழ்வியல் | மரபும்<br>நம்பிக் <mark>கைக</mark> ளும் | | S-4 | SLO-1 | உடன்<br>போக்கும்<br>தமிழர்<br>பறவையியல்<br>அறிவும் | திருக்குறள் –<br>புலவி<br>நுணுக்கம் | தேவாரம் –<br>திருஞான<br>சம்பந்தர் -<br>பாடல் – 2834 | எட்டுத்தொகை<br>நூல்களின்<br>வரலாறு | தமிழர <mark>ுவி</mark><br>மணியன் –<br>ஒற்றைச் சிறகு | | | SLO-2 | குறுந்தொகை<br>(02) | ஊடலின்<br>அழகியல் | தேவாரம் –<br>திருநாவுக்கரசர்<br>–பாடல் - 4262 | எட்டுத்தொகை<br>நூல்களின்<br>கட்டமைப்பு | உற <mark>வின்</mark><br>மே <mark>ன்மை</mark> | | S-5 | SLO-1 | இயற்கைப்<br><mark>ப</mark> ுணர்ச்சியும்<br>தலைவி நலம்<br>பாராட்டலும் | நீதி<br>இலக்கியங்கள் | திருவாசகம்<br>அறிமுகம் | பத்துப்பாட்டு<br>நூல்களின்<br>வரலாறு | ஆர். சூடாமணி –<br>மூடநம்பிக்கை | | | SLO-2 | கு <mark>றுந்தொகை</mark><br>(03) | <mark>நா</mark> லடியார் | மாணிக்கவாச<br>கர் பாடல் -<br>ஆனந்த<br>பரவசம் –<br>பாடல் 10 | பத்துப்பாட்டும்<br>தமிழர்<br>வாழ்வியலும் | சமூகத்தில்<br>மூடநம்பிக்கைக<br>ள் | | S-6 | SLO-1 | தலைவனின்<br>மேன்மைத்<br>தன்மையும்<br>இயற்கையும் | வைகலும் -<br>பாடல் (39) | வைணவ<br>சமயம் | பதினெண்<br>கீழ்க்கணக்கு<br>நூல்கள் | மூடநம்பிக்கைக<br>ளின் சிக்கல்கள் | | | SLO-2 | அகநானூறு<br>(238) | நிலையாமையு<br>ம் அறமும் | வைணவ சமய<br>வளர்ச்சிப்போக்<br>கு | பதினெண்<br>கீழ்க்கணக்கும்<br>தமிழர் அற<br>மரபும் | கிருஷ்ணா<br>டாவின்ஸி –<br>காலா அருகே<br>வாடா | | S-7 | SLO-1 | இயற்கையும்<br>அகவாழ்வுச்<br>சித்திரிப்பும் | தமிழர்<br>மருத்துவம் | நாலாயிரத்<br>திவ்யப்<br>பிரபந்தம் | நீதி<br>இலக்கியங்கள் | மனித வாழ்வில்<br>மருத்துவம் | |----------|-------|-----------------------------------------------------------------|------------------------------------------|------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------| | | SLO-2 | நள்ளியின்<br>கொடைத்திற<br>ம் | நீதி<br>இலக்கியத்தில்<br>மருந்து நூல்கள் | குலசேகராழ்வா<br>ர் பாடல் - 678 | நீதி<br>இலக்கியங்களி<br>ன் பன்முகத்<br>தன்மைகள் | பாரம்பரிய<br>மருத்துவம் | | S-8 | SLO-1 | கலித்தொகை<br>ப் பாடல் –(11) | சிறுபஞ்சமூலம்<br>(64) | ஆண்டாள்<br>பாடல் – 574. | காப்பிய<br><mark>இலக்</mark> கணம் | மொழிப்பயிற்சி | | | SLO-2 | அறம்<br>பொருள்<br>இன்பம்<br>சிறப்பு | <mark>ஈகையின்</mark><br>சிறப்பு | திருமழிசை<br>ஆழ்வார் பாடல்<br>–<br>கணிகண்ணன் | காப்பியத்தின்<br>போக்குகள் | சொற்களை<br>உருவாக்குதல் | | S-9 | SLO-1 | <mark>சூழ</mark> லியலும்<br>மனித<br>வாழ்வும் | பழமொழி<br>நானூறு<br>அறிமுகம் | தமிழில்<br>இஸ்லாமிய<br>இலக்கியங்கள் | காப்பியங்களி <mark>ன்</mark><br>வகைமை | <mark>எ</mark> ழுத்துகளில்<br>இருந்து<br>சொற்களைக்<br>கண்டுபிடித்தல் | | 4 | SLO-2 | தமிழர்<br>புறமரபு | பழமொழி<br>நானூறு –<br>தனித்தன்மைக<br>ள் | இஸ்லாமிய<br>இலக்கியங்களி<br>ன் கொடை | ஐம்பெருங்காப்பி<br>யங் களின்<br>தனித்தன்மைகள் | பட <mark>ம் பார்</mark> த்துக்<br>கதை எழுதுதல் | | S-<br>10 | SLO-1 | புறநானூறு<br>(107)<br>பாரியும்<br>மாரியும் | பழமொழி<br>நாணுறு (184) | சீறாப்புராணத்<br>தின் அமைப்பு | தமிழ்ச் சமூகமும்<br>சமயத்<br>தத்துவங்களும் | படம் பார்த்துக்<br>கவிதை எழுதுதல் | | | SLO-2 | புறநானுறு<br>(110)<br>பாரியின்<br>வள்ளல்<br>தன்மை | பழமொழியும்<br>அறிவுரையும் | விடமீட்டப்<br>படலம் (10<br>பாடல்கள்) | சமயத்<br>தத்துவங்களும்<br>வாழ்வியல்<br>விழுமியங்களும் | கற்பன <mark>ன</mark> த்திறன்<br>– வளர் <mark>த்தல்</mark> | | S-<br>11 | SLO-1 | புறநானூறு<br>(112)<br>கையறுநிலை | பண்டைக்கால<br>ப் போரும்<br>வாழ்வும் | கிறித்தவ சமய<br>இலக்கியங்கள் | சைவத்<br>திருமுறை –<br>அறிமுகம் | கற் <mark>பனை</mark> யும்<br>ப <mark>டைப்ப</mark> ும் | | | SLO-2 | சிறுபாணாற்<br><mark>ற</mark> ுப்படை (84-<br>1 <mark>1</mark> 5) | புற<br>இலக்கியங்கள் | கிறித்தவ<br>இலக்கியங்களி<br>ன் தமிழ்க்<br>கொடை | பன்னிரு<br>திருமுறை –<br>வரலாறு | தமிழில் வாசகம் | | S-<br>12 | SLO-1 | க <mark>டையெழு</mark><br>வள்ளல்களின்<br>சிறப்புகள் | களவழி நாற்பது<br>(40) | கிறித்துவின்<br>அருள்வேட்டல் –<br>திரு.வி.க | நாலாயிரத்<br>திவ்வியப்<br>பிரபந்தம் –<br>அறிமுகம் | விளம்பரத்திற்கு<br>வாசகம் எழுதுதல் | | | SLO-2 | பட்டினப்பா<br>லை (40-50)<br>அட்டில்<br>சாலைகளின்<br>நிலை | போர்க்களமும்<br>யானைப்படை<br>யும் | அலகிலொளி –<br>5 பாடல்கள் | வைணவ<br>ஆழ்வார்கள்<br>வரலாறு | வாசகம் எழுது<br>முறைகள் | | o o uning | 1. | கொன்றை, தெ | நாகுப்பும் பதி | ப்பும் - தமி | ிழ்த்துறை ஆசிரிய | பர்கள், தமிழ்த்துறை, | |----------------------|----|--------------|-----------------|--------------|------------------|----------------------| | earning<br>Resources | | எஸ்.ஆர்.எம். | அறிவியல் | மற்றும் | தொழில்நுட்பக் | கல்விநிறுவனம், | | Resources | | காட்டாங்குளத | த்தூர், 603203, | 2023 | | | - 2. தமிழண்ணல், புதிய நோக்கில் தமிழ் இலக்கிய வரலாறு, மீனாட்சி புத்தக நிலையம், மதுரை, 2017 - 3. மு. அருணாசலம், தமிழ் இலக்கிய வரலாறு, நூற்றாண்டு முறை (9ஆம் நூ. முதல் 16 வரை), தி பார்க்கர், சென்னை, 2005 - 4. தமிழ் இணையக் கல்விக்கழகம் http://www.tamilvu.org/ - 5. மதுரை தமிழ் இலக்கிய மின் தொகுப்புத் திட்டம் https://www.projectmadurai.org/ | Learnir | ng Assessment | | | | | | | | | | | | | | | |---------|-------------------------------|--------|----------|---------|-----------|--------|-----------|----------|----------|----------------------------------|------------------|--|--|--|--| | | Bloom's | | Continu | ous Lea | rning Ass | essmer | it (50% w | eightage | ) | Final Eveninetic | - (500/oiabtoas) | | | | | | | Level of | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA- | 4 (10%)# | Final Examination (50% weightage | | | | | | | | Thinking | Theory | Practice | | | | | | Level 1 | Remember | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | | | | | | | | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | | | | | | | Lovol 2 | Apply | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | | | | | | | Level Z | Analyze | 40 /0 | 30 /6 | 30 % | 40 /0 | 30 % | 30 /6 | 30 /6 | 30 /6 | 30 /6 | - | | | | | | Level 3 | Evaluate | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | | | | | | | revel 2 | Create | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20 70 | | | | | | | | Total 100 % 100 % 100 % 100 % | | | | | | 00 % | 100 % | | | | | | | | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.. | Course Designers | | 100 | 57.3 | |-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------| | Experts from Industry | <b>Expert from Higher Technical Institutions</b> | | Internal Experts | | 1. Dr. P.R.Subramanian,<br>Director, Mozhi Trust,<br>Thiruvanmiyur, Chennai – 600<br>041. | 1. Dr. V. Dhanalakshmi, Associate Professor, Subramania Bharathi School of Tamil Language & Literaturel, Pondicherry University, Pondicherry | 1. | Dr. B.Jaiganesh,<br>Associate Professor & Head,<br>Dept. of Tamil, FSH, SR <mark>MIST</mark> | | 3 3 | With the same | 2. | Dr. R. Ravi, Assistant Professor and Head, Dept. of Tamil, FSH, SRMIST, VDP. | | | 11/4 | 3. | Mr. G. Ganesh, Assistant Professor,<br>Dept. of Tamil, FSH, SRMIST, RMP. | | 1. 0. | | 4. | Dr. T.R. Hebzibah b <mark>eulah Su</mark> ganthi,<br>Assistant Profess <mark>or, Dept.</mark> of Tamil,<br>FSH, SRMIST, KTR. | | 7 2 | LEARN · LEAP · I | 5.<br>E A | Dr. S.Saraswathy, Assistant Professor, Dept. of Tamil, FSH, SRMIST, KTR. | | Cou | | 23G02T Cou | | HIN | DI-II | | | Cour<br>Sateg | | G | | | Gene | eric I | Elect | tive | Cour | rse | | | L T | Ť | 0 | C<br>3 | | | | |-----|------------------------|-------------------------------------|---------------------------------------------------|--------------------------------------|-------------|---------------------------------|-----------------------------------------------|-------------------------|-----------------------|----------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|-----------------------------------------------------------|----------------------|------------------------|-------------|--------|-------|--------|--|--|--| | U ( | requisite<br>ourses | | | Co-requisite<br>Courses | Nil | | | | Pro<br>C | gress | sive<br>es | Nil | | | | | | | | , | ' | ' | ' | | | | | | | rse Offeri<br>artment | ing | HINDI | | - | ta Book /<br>des/Standard | s | | | | | | | | | N | il | | | | | | | | | | | | | rse Learn<br>onale (CL | | The purpose | e of learning this | course is | s to: | | | Le | earnin | g | | | Pr | ogra | m L | earn | earning Outcomes (PLO) | | | | | | | | | | | CLR | To u | nderstand th | Ancient ,Medi<br>e Significance<br>hari and Dhana | like | 1 | 2 | 3 | 1 | 2 | 3 seull | 4 | 5 | 6 esp | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | | | | CLR | -4: Med | | Enrich their kn<br>lerstanding for<br>ing skills | EN | king (Bloor | oficiency (% | ainment (% | l Knowledg | of Concepts | ated Discip | nowledge | cialization | ize Knowle | eling | erpret Data | Skills | ving Skills | ion Skills | ills | | | | | | | | | | | rse Learn | | end of this co | urse, learners w | e to: | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PS0 -1 | PSO -2 | PSO-3 | | | | | | CLO | Aadl | <mark>hun</mark> ikkal) 📑 | | of Hindi poetry(B | | | 2 | 75 | 80 | Н | Н | Н | М | L | Н | L | М | L | L | Н | М | - | - | - | | | | | | -2: Hind | li<br>ıs on Evaluat | <u> </u> | changes through | S | of poetry in | 2 2 2 | 80<br>75<br>80 | 90<br>95<br>90 | H<br>H<br>H | H<br>H<br>H | H<br>M<br>L | M<br>L<br>H | L<br>H<br>M | H<br>H | H<br>M<br>L | M<br>H<br>H | L<br>M<br>H | L<br>M<br>M | H<br>H<br>H | M<br>H<br>H | - | - | - | | | | | CLO | To g | uide the stud | lents in the lea | ming of the tech<br>hem in the field | | | 2 | 85 | 90 | М | Н | M | Н | L | Н | Н | L | Н | М | Н | Н | - | - | - | | | | | | ration<br>nour) | 2 | 12 | 12 | 18 | 17/19 | 12 | 7 | | | | ď | 1 | 2 | | | | 12 | | | | | | | | | | | S-1 | SLO-1 | <i>BHAKTI</i> F<br>KAVITA | KALIN | RITI <i>KALIN</i><br>KAVITA | | ADHUNI | K KA | AVIT | ΓΑ | | VIGYAPAN | | | | | | | PATRA <i>LEKHAN</i> &<br><i>PARIBHASHIK</i><br>SHABDAVALI | | | | | | | | | | | | SLO-2 | BHAKTIU K<br>KI AVADHA | ALIN KAITA<br>ARNA | AVADHARNA | | AVADHAR | NA | | × | H | AWADHARNA | | | | | | | VADHARNA | | | | | | | | | | | S-2 | SLO-1 | SWARUP<br>MAHATVA | | SWARUP<br>RITI KAL VIBH | HAJAN | SWARUP<br>1AHATVA | • | | | | RTH | | SHA | | H | i | | RTH<br>WARUP | | | | | | | | | | | | SLO-2<br>SLO-1 | UDDESHYA | | MAHATVA | | DDESHYA | | | | | SW/ | RUI | D | ł | _ | 7 | AF | RIBH | IASH | ŀΑ | | | | | | | | | S-3 | SLO-2 | BHAKTIKAL<br>PRASANGII | | UDDESHYA | | MATHLI SI<br>NAR HO N<br>MAN KO | | | | | VIGY | /AP | AN K | E P | RAK | AR | RA | AYO | JAN | | 7 | | | | | | | | S-4 | SLU-1 | DOHE- KAE | 11 | DOHE- BIHAR | | KAVI PARI | - | 4 | | Ш | VISH | IESH | AN K | ΈN | | | | AYO | ď | | | | | | | | | | | 3LU-2 | SANT PARI | | DOHE KA VIS | | ASHAVAD | | | | | | | AN N | | | HAV | | HAT<br>FRAI | | IAN | KAL | A | | | | | | | S-5 | SLO-1<br>SLO-2 | GURU KA N | | KANAK KA M | | SANGHAR | | | | | VIG | /APA | AN N | 1AH. | ATV | Ά | R/ | 4KA | R | | | | | | | | | | | SLO-1 | GURUTVA . | | VIPRIT SWAB | HAV KI | SURYAKAI | | | ТНІ | | VIG | /AP/ | AN K | І ВН | IASH | IA | V | YAK | TIGA | 4 <i>T P</i> | PATR | PA | | | | | | | S-6 | SLO-2 | ISHVARAT\<br>GURUTVA .<br>ISHVARAT\ | SE | PRAKRITI KA | ATAL RU | NIRALA- V<br>IP KAVI PARI | | | | | VIG | /AP/ | AN A | UR | BAZ | AR | A | UPC | HAF | RIK F | PATF | RA | | | | | | | 0.7 | SLO-1 | | AMBAR KA | YAMAK ALAN<br>PRAYOG | KAR KA | KAVITA KA | KAVITA KA VISLES | | | | VIG | 'APA | AN A | UR | ROZ | GAI | R SA | SARKARI PATRA | | | | | | | | | | | S-7 | SLO-2 | MURTI POO<br>VIRODH | OJA KA | SNEH KE MA<br>CHARCHA | HATVA K | (I SARSHWA<br>SAMARPA | TRI | | PRINT VIGYAPAN | | | | | | ARDHA SA | | | SARKARI PATRA | | | | | | | | | | | S-8 | SLO-1 | GHARELU \<br>KI UPYOGI | VASHTUON<br>TA | BIHARI KI KA<br>SHAILI KA M | | 4 | BHAKTI KI BHAVANA<br>NAGARJUN AKAL AUR | | | | | | ELECTRONIC VIGYAPAN | | | | | | | PARIBHASHIK SHABDAVALI | | | | | | | | | 5-0 | SLO-2 | | A PARITYAG | DOHE- GHAN | ANAND | USKE BAD | ) | | | ₹ , | VIG | /AP | AN P | ARI | YOJA | 1NA | A | VAD | НАЕ | RNA | | | | | | | | | S-9 | SLO-1 | DOHE- TUL | SHIDAS | KAVI PARICH. | 'ASH | IAV | AVIK VIGYAPAN AUR SAMAJ SHABDAVALI KI AVSHYAI | | | | | | | (TA | | | | | | | | | | | | | | | | SLO-2 | PAROPKAR KI<br>BHAVANA | DOHE KA VISLESHAN | AKAL KE PURVA KA<br>CHITRAN | VIGYAPAN KI VYAPAKTA | KARYALYIN SHABDAVALI | |----------|-------|------------------------|--------------------------------------------|-----------------------------------|-----------------------------------|------------------------| | | SLO-1 | DAYA KA MAHATVA | SNEH KI SARLTA KA<br>VARNAN | AKAL KE BAD KA CHITRAN | VIGYAPANLEKHAN KALA | EK DIN EK SHABD | | S-<br>10 | SLO-2 | ISHVAR KI MHATTA | | | VIGYAPAN AUR<br>JAGRUPTA | HINDI SE ANGREJI SHABD | | S- | SLO-1 | | NAYIKA KE PRATI<br>SMARPAN | SAMBAND VICCHED KI<br>PARICHARCHA | UDDESHYA | ANGREJ SE HINDI SHABD | | 11 | SLO-2 | RAM KI MAHIMA | GHANANAND KI<br>KAVYA SHAILI KA<br>MAHATVA | SWARTH NIHIT BHAVANA | VIGYAPAN KI SPASTTA | ABHYASH KARYA | | S- | SLO-1 | DHOHA PARICHARCHA | DHOHA PARICHARCHA | KAVYA PARICHARCHA | <mark>VIGYAPA</mark> NPARICHARCHA | PARICHARCHA | | 12 | SLO-2 | PRASHNAABHYASH | <mark>PRASHNA</mark> ABHYASH | PRASHNAABHYASH | PRASHNAABHYASH | PRASHNAABHYASH | | | Edited Book: ""SAMANYA HINDI", SRIJONLOK PUBLICATION, 2023, New Delhi. 1. KABIR – HAZARI PRASAD DWEDI | |-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Learning<br>Resources | <ol> <li>SURDAS – RAM CHANDRA SHUKL</li> <li>BHAKTI ANDOLAN AUR SURDAS KA KAVYA – MANAGER PANDEY</li> <li>BIHARI – VISHVNATH PRASAD MISHR</li> <li>Aadhunik Vigyapan aur Jansampark – Taresh Bhatia</li> </ol> | | Learning | g Assessment | | 1000 | 201 | 1777 | | 3942 | | | 140 | | | | | | |----------|--------------------------------------|--------|----------|-----------|------------|---------|-------------|---------|----------|-----------------------------------|----------|--|--|--|--| | | | | Cont | inuous Le | earning As | sessmen | t (50% weig | ghtage) | | Final Examination (50% weighters) | | | | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA- | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | | Level of Tilliking | Theory | Practice | | | | | | | Remember | 200/ | 200/ | 200/ | 200/ | 000/ | 000/ | 000/ | 000/ | 200/ | | | | | | | Level 1 | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | - | | | | | | Level 2 | Apply | 40% | 50% | 50% | 40% | E00/ | F09/ | E00/ | E00/ | 50% | | | | | | | Level 2 | Analyze | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | | | | | | | Level 3 | Evaluate | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 200/ | | | | | | | Level 3 | Create 20 % 20 % 30 % 30 % 30 % 30 % | | | | | | 30% | 20% | | | | | | | | | | Total 100 % 100 % 100 % 100 % | | | | | | 00 % | 100 % | | | | | | | | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Cour <mark>se Designe</mark> rs | | | | | | | | | | | | |----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|--|--|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | | | | Shri. Santosh Kumar<br>Editor : Srijanlok Magazine | Prof.(Dr.) S.Narayan Raju, Head, Department of | 1. Dr.S Preeti. Associate Professor & Head. | | | | | | | | | | | Place: Vashishth Nagar, Ara – 802301 | Hindi, CUTN, Tamilnadu | SRMIST | | | | | | | | | | | | | 2. Dr. Md.S. Islam Assistant Professor, SRMIST | | | | | | | | | | | | | 3.Dr. S. Razia Begum, Assistant Professor, SRM<br>IST | | | | | | | | | | | | | 4, Dr.Nisha Murlidharan Assistant Professor,<br>VDP,SRM IST | | | | | | | | | | | Cours | | 23G02J | Cour<br>Nam | | | ( | Cou<br>Cate | | | G | | | Gene | eric I | Elect | tive | Cour | se | | 1 | L T | P<br>2 | 0 | C<br>3 | | | | | | | | |-------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|----------|-----------|------------------------|---------|--------------------|-----------|-------------------------------------------------|--------------------------|-------------------------|--------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------------------------------------|-------------------------------------------|------------------------------|--------------|--------|--------|-------|--|--| | | equisite<br>urses | e <sub>Nil</sub> | | | | | equisite | Nil | | | | | Pro | ogr | ess | ive | Nil | | | | | | | | | | | | | | | | Cours | urses<br>se Offe<br>rtment | ring | | Fren | ch | L C | ourses | | Data Bo<br>Codes/S | | ls | | | Cou | irse | S | | | | | N | il | | | | | | | | | | | Cours | se Lear | | | The p | ourpose | e of lea | arning thi | is cour | | , turidar | | | L | _ear | ning | g | | | Pr | ogra | am L | earn | ing ( | Outc | ome | s (Pl | LO) | | | | | | | nale (C | | امطلاما | | | | اميام اميا | د دا دا | ندر ادما در | :44 | | 1 | _ | | 4 | 2 2 4 5 6 7 | | | | | | | B 9 10 11 12 13 14 | | | | | | | | | | CLR | F | | | | | | | | ral and wri | | 1 | 2 | 3 | - | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | CLR | K-2 : ir | nformatio | n, situ | uations | | .01 | | | | | | | | | | Н | Set | | | ge | | | | | | | | | | | | | CLR | | Make the | | | | | | | | | om) | (%) | (%) | (o/ ) | dge | pts | ciplir | е | _ | vled | | 每 | | S | | | | | | | | | CLR | . <u></u> E | Develop strategies of comprehension of texts of different origin Enable the students to overcome the fear of speaking a foreign language and take position as a foreigner speaking French | | | | | | | | | | | Expected Attainment (%) | | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | deling | Analyze, Interpret Data | Skills | Problem Solving Skills | Communication Skills | Skills | | | | | | | | | | | | - | 4 | | | | | ○ Level of Thinking (Bloom) | P P | Pd At | 2 | nent | tion | th Re | ural | Spe | o Uti | Mo | e, Int | gative | n So | nica | SalS | | | | | | | Outco | omes (C | At the end of this course, learners will be able to: | | | | | | | | | | Expected Proficiency (%) | Expecte | | | | | | | | Skills in Modeling | Analyze | Investigative Skills | | | Analytical ( | PSO -1 | PS0 -2 | PSO-3 | | | | CLC | | o acquir | | | | | | | oj ilizotio | n and | 2 | 75 | 80 | 0 | Η | М | Н | Н | М | Н | Н | L | М | М | Н | L | - | - | - | | | | CLC | | ranslatio | | | wieage | OH CO | пс <del>е</del> рі, сі | ullure, | civilizatio | i anu | 2 | 80 | 90 | 0 | М | Н | L | Н | Н | М | Η | М | L | L | Н | М | - | - | - | | | | CLC | | | | | | | | | anguage | | 2 | 75 | | | Н | Н | L | М | Н | М | L | Н | М | М | Н | Н | - | - | - | | | | CLC | 7 | o interpi | | | | | | | age<br>ents in Fre | noh | 2 | 75 | | = - | Н | L | М | Н | М | Н | Н | М | L | Н | М | L | - | - | - | | | | CLC | 1- <b>3</b> : la | anguage | | COMM | unicalio | ni, iiite | rcuiturai | elelli | ents in Fre | encn | 2 | 80 | 75 | 5 | М | Н | Н | L | М | М | Н | Н | М | L | Н | М | - | - | - | | | | | ation<br>our) | | 1 | 12 | ند | P. | 18 | 12 | 19 | 70 | | 1 | 2 | i | ú | | í | Ľ | 12 | | | 7 | 12 | | | | | | | | | | S-1 | | Temp | | | 19 | <u> </u> | onom in | défini | on | 37. | ndre | ľ | 36 | 3 | ď | | faut | Les gall | | | | | | | es gallicism <mark>es</mark> | | | | | | | | | SLO-2 | Les ac | ctivités | quotid | iennes | Les | activités | | | Les | s exe | mple | S | | | C, | C'est / II est | | | | | | | Les activités Les pronoms personnels COI | | | | | | | | | S-2 | SLO-1 | Les e | xemple | es | K. | Les a | adjectifs | interro | gatifs | Ac | cheter Le verbe devoir Les pr | | | | | | | | | | | | | | | | | | | | | | | SLO-2 | Les ac | tivités | | | Les | activités | | | Les | exe | mple | es | | | Le | es ac | ctivité | és | | | L | es e | exem | ples | 3 | | | | | | | S-3 | SLO-1 | Les m<br>journé | | ts de la | | | prépositi<br>raphique | | vec les n | oms<br>Le | s alir | nent | S | | | Le | e ver | be p | oouv | oir | | Ţ | Le pron <mark>om y</mark> | | | | | | | | | | | SLO-2 | Les ex | emple | es | | Les | activités | | | Les | s exe | mple | es | | | Le | e ver | be s | avoi | r | | L | es e | exem | ples | 3 | | | | | | | S-4 | SLO-1 | Les m | | | ires | _ | verbes po<br>activités | rendre | et sortir | | s eml | _ | | | | | e ver | be v | vould | oir | | | _ | pron<br>activi | | com | plér | nent | S | | | | S-5 | SLO-1 | Les ac | ctivités | / | | Les | sons | | | Les | s qua | ntité | S | | | De | ema | nder | et d | ire le | e pri | x | Les | nom | bres | ord | nau | X | | | | | | SLO-2 | Les lo | isirs | | | Les | activités | | | Les | s exe | mple | s | | | Le | es ac | ctivite | és | | | L | es e | exem | ples | 3 | | | | | | | | SLO-1 | Les ex | emple | es | | Parle | er de ses | gouts | } | Les | s con | nmer | ces | | | Fa | aire ( | des a | acha | ts | T | L | es v | /erbe | es éc | crire | et vo | oir | | | | | S-6 | SLO-2 | Les ac | ctivités | | | Les a | activités | | | Les | s acti | vités | | | | | cpliq<br>iisin | uer ı<br>e | ıne ı | recet | tte d | e l | es a | activi | tés | | | | | | | | S-7 | | La fré | quence | е | | Parle | er de ses | préfé | rences | les | com | mer | ants | S | | Le | es ac | ctivité | és | | | L | ₋e E | cad | uc o | u ins | table | ) | | | | | 0-1 | SLO-2 | _ | | | | + | activités | | | Les | s exe | mple | es | | | Le | es co | ourse | es | | | | | exem | • | | | | | | | | S-8 | SLO-1 | | | | | | | | | | npér | | | | | | | ctivité | | | | _ | | ente | | | | | | | | | | | - | | | iinaux | + | activités | | | | acti | | | r:r:c | | | | e et | | | | -+ | | ente | | | | | | | | | S-9 | SLO-1 | Les ex | | | | | recherch<br>activités | ne d'ui | n cadeau - | | s art | | <u> </u> | uuis | 6 | | | et ex | • | sions | S | -+ | | ente | | | | - | | | | | | SLO-2 | l oc pr | | s perso | nnels | | ps libre | | | | s exe | | | ир ( | de) | | | nane | | n | | | inviter à une invitation répondre à une invitation | | | | | | | | | | S-10 | SLO-2 | Les ex | cemple | es | | Les | activités | | | Les | Les exemples | | | 3 | | | Tout le monde s'amus | | | | | | e Les exemples | | | | | | | | | | | SLO-1 | Les ac | tivités | i | | Mots | et expre | ession | s | | Le pronom en (la quantité) | | | | | n (la Les sorties | | | | | | | Écrire un message amical | | | | | | | | | | S-11 | SLO-2 | .0-2 Les adjectifs démonstratifs Les activités L | | | | | | | | | s exe | mple | es | | | Le | es sa | aison | ıs | | | L | es e | exem | kemples | | | | | | | | S-12 | SLO-1 | 0-1 Les exemples Grammaire –Communication | | | | | | | | | La phrase négative (2 Les fêtes Parler au télép | | | | | | | | phor | ne | | | | | | | | | | | | | SLO-2 | Les activités | | Les activités Les exemples | | Les messages | Un coup de fil | |-----------|---------------|-----------------|-----------------------------------|---------------------------|-------------------------|-------------------------------| | | The | ory: | | | | | | | 1. | | nération-Al" Méthode de françai | s, Marie-Noëlle COCTON, I | P.DAUDA, L.GIACHINO, C. | BARACCO, Les éditions Didier, | | | | Paris, 2018. | | | | | | Learning | 2. | Cahier d'activ | ∕ités avec deux discs compacts | i. | | | | Resources | 3. | https://www.flu | ientu.com/blog/french/french-grai | <u>mmar</u> | | | | | 4. | https://www.el | earningfrench.com/learn-french-g | rammar-online-free.html | | | | | 5. | https://www.la | wlessfrench.com/grammar | | | | | | 6 | https://blog.gv | malish com/2022/12/15/hasic-free | nch-grammar | | | | | Learning A | Assessn | nent | | | | | | | | | | | | | |----------|------------------------------|---------------|----------|---------------|------------|---------------|------------|----------|-----------|-----|-----------------------------------|-----------|--|-----|--| | | | | Continu | ious Lea | arning Ass | sessmer | nt (50% we | eightage | ) | | Final Francis etia | ' (F00/ ' | | | | | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | · 4 (5%)# | | Final Examination (50% weightage) | | | | | | | Level of Tilliking | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | Theory | Practice | | | | | 11 | Remember | 200/ | 200/ | 200/ | 200/ | 200/ | 20% | 200/ | 200/ | | 200/ | | | | | | Level 1 | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 7 | 30% | - | | | | | Level 2 | Apply | 400/ | 40% | 400/ | 400/ | 50% | 50% | 40% | 50% | 50% | 50% | 50% | | 50% | | | Level 2 | Analyze | 40% | 50% | 50% | 40% | 30% | 50% | 50% | 50% | | 30% | | | | | | l aval 2 | Evaluate | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | | 20% | | | | | | Level 3 | Create | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | | 20% | | | | | | | Total | 10 | 0 % | 100 % | | | 0 % | 10 | 00 % | | 10 | 0 % | | | | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | | | | | | | | | |----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|--|--| | Experts from Industry | Expert from Higher Technical Institutions | Internal Experts | | | | | | | | | | Mr. Kavaskar Danasegarane Process Expert Maersk Global Service Center Pvt. Ltd | Dr. C.Thirumurugan Professor, Department of French, Pondicherry University | 1. Mr. Kumaravel K. Assistant Professor & Head, SRMIST, KTR | | | | | | | | | | 2.Mr. Sharath Raam Prasad Character Designer, Animaker Company Pvt. | SE VICE | 2. Mrs. Abigail, Assistant Professor, SRMIST, VDP | | | | | | | | | | | ırse<br>de | UES23AE1T | Course<br>Name | Environ | mental St | udie | es | | | | urse<br>egor | | ΑE | Ab | | Enl<br>Cou | | ceme | ent | <b>L</b> | T<br>0 | P C | + | | |----------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|---------------------|----------------------------------|--------------------------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------------------------------------------|----------------------|------------------------|----------------|-------------------|-----------------|-----------------------|--------------------|------|--| | Pre-ı | requis | site Courses | Nil | Co-requisite<br>Courses | | Nil | | | | | gres | | ) | | | | | Nil | | | | | | | | Cour | | fering<br>nt | Computer | Applications | Data Boo<br>Codes/S | | lards | 3 | Nil | | | | | | | | | | | | | | | | | | | arning<br>(CLR): | The purp | oose of learning th | nis course | is to | : | | Le | arni | ng | | P | rog | ram | Lea | rnin | ıg O | utco | mes | s (PI | _O) | | | | CLR | | | | vable resources | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | CLR | | | | stem and Biodive | ersity | | | | | | - | | | | | | | | | | | | | | | CLR | | To underst <mark>and</mark><br>of the e <mark>nviro</mark> ni | | and anthropogeni<br>on | c impact | ١ | | | þ | | | | | | ٠. | | | | | | | | | | | CLR | _1 . | | | ferent environme | ntal | | | | 7 | 4 | တ္သ | 1 | 5 | • | 1 | | | | | | | | | | | CLR | -5 : / | To create awareness on various Environment Protection acts and the impact of human population on environment | | | | of Thinking (Bloom) | iciency (%) | inment (%) | Knowledge | Concepts | ted Discipline | owledge | alization | e Knowledge | ling | oret Data | skills | ng Skills | n Skills | S | | ehavior | ming | | | Learr<br>Outco | Course Learning Outcomes CLO): At the end of this course, learners will be to: Applying knowledge on Renewable and Non- | | | | Level of Think | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical Skills | ICT Skills | Professional Behavior | Life Long Learning | | | | | CLO-1: Applying knowledge on Renewable and Non-renewable resources | | | | 1.42% | 2 | 80 | 65 | L | Η | L | М | L | Η | L | L | L | Н | L | М | - | - | М | | | CLO | -2: | | | ystem and Biodiv | | 2 | 80 | 70 | М | Н | L | М | L | Н | L | L | L | Н | L | М | - | - | М | | | CLO | -3 : | Gathering kno<br>pollution | owledge on ir | mpact of environn | nental | 2 | 80 | 70 | L | Η | L | Μ | L | Η | Μ | М | М | Н | L | М | - | - | М | | | CLO | <b>-4</b> : | | | environmental pr | | 2 | 80 | 70 | Μ | Η | L | М | L | Н | М | М | М | Н | L | Μ | - | - | М | | | CLO | <b>-5</b> : | | | ous Environment<br>nan population on | | 2 | 80 | 65 | М | Н | L | М | L | Н | L | М | L | Н | L | М | - | - | М | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ratior<br>lour) | 1 | 9 | 9 | | U | | 9 | | | | | | 9 | | 7 | 7 | 9 | | | | | | | | S-1 | SLO | nature of environm | tature of ecosystem Energy flow in the ecosystem biodiversity Ex-situ conbiodiversity | | | | ecosystem Ex-situ conservation of Disaster | | | In-situ and ervation of Dis | | | | Disaster managemen | | | | Ac | t | | nt Pı | | | | | | SLO | Importan<br>Environm | n <mark>ental Studies</mark> | ococyctom | Energy flow in the | | | ment<br>n | ntal Pollutior | | | Floo | ods, | Eart | hqua | akes | | Co<br>Ac | ntro<br>t | of F | tion<br>Pollu | tion) | ) | | | | SLO | awareness. Causes, Effect | | Need for public Ecological succession | | | | | Cvc | lono | | | | | | | | vent<br>Pollui | | and<br>Act | | | | | | S-2 | SLO | D-2 Institutions in Environment webs and Ecological Pollution pyramids | | | sures | ures of Air Landslic | | | | | | | | Wi | ldlife | Pro | tect | ion A | lct | | | | | | | S-3 | SLO | Structure and functions Causes, Effe | | | | | | cts and Enviro | | | | | | | | | | Ac | t | est Conservatio | | | 1 | | | S-3 | | | ion to natural<br>s- Associated<br>s | | em | - Control Meas<br>Water Pollutio | | | | | | | | | Issues involved in enforcement of environmental legislation | | | | | | | | | | Public awareness Grassland ecosystem Desert ecosystem Causes, Effects and Control Measures of Soil Pollution Urban problems related Water Conservation to energy Renewable and Nonrenewable resources SLO-2 Forest resources SLO-1 S-4 | S-5 | SLO-1 | Water Resources Mineral Resources | Aquatic ecosystems<br>(ponds, lakes, streams)<br>Aquatic ecosystems<br>(rivers, estuaries,<br>oceans) | Causes, Effects and<br>Control Measures of<br>Marine pollution | Rain Water Harvesting,<br>Watershed | Human Population and<br>the Environment:<br>Population growth,<br>variation among<br>nations | |-----|-------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------| | S-6 | SLO-1 | Food Resources | Biodiversity and its<br>conservation- genetic,<br>species and ecosystem<br>diversity | Causes, Effects and<br>Control Measures of<br>Noise Pollution | Environmental Ethics:<br>Issues and Possible<br>Solutions | Population explosion –<br>Family Welfare<br>Programme | | | SLO-2 | Energy Resources | Biogeographical classification of India | NOISE I Ollution | Solutions | Environment and human health | | | SLO-1 | Land Resources | Value of Biodiversity | Causes, Effects and | | Human Rights | | S-7 | SLO-2 | Role of an individual in conservation of natural resources Role of an individual National and Local Levels | | Control Measures of<br>Thermal Pollution | Climate change &<br>Global warming | Value Education | | S-8 | SLO-1 | Equitable use of resoureces for sustainable lifestyles | India as a Mega<br>Diversity Nation | Causes, Effects and<br>Control Measures of | Acid rain & Ozone layer | HIV/AIDS | | | SLO-2 | Concept of an ecosystem | Hot-spots of biodiversity | Nuclear hazards | depletion | | | S-9 | SLO-1 | Structure and<br>Functions of an<br>ecosystem | Threats to biodiversity:<br>habitat loss, poaching of<br>wildlife man-wildlife<br>conflicts | Solid Waste Management Causes, Effects and Control Measures of Urban and Industrial Waste | Nuclear Accidents and<br>Nuclear Holocaust | Women and Child<br>Welfare | | | SLO-2 | Producers, consumers and decomposers | Endangered and endemic species of India | Role of Individuals In<br>Pollution Prevention | Wasteland Reclamation | Role of Information<br>Technology in<br>Environment and<br>human health | | Learning | |-----------| | Resources | - Bharucha Erach, Textbook of Environmental Studies for Undergraduate Courses (Second edition). Telangana, India: 1. Orient BlackSwan 2013. - Basu Mahua, Savarimuthu Xavier, SJ Fundamentals of Environmental Studies. Cambridge, United Kingdom: Cambridge University Press 2017. - R.Jeyalakshmi ,Text book of Environmental Studies, Devi publications, Chennai 2014. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380013, India, 2002. | Learning | <b>Assessment</b> | 1 | _ | | | 3.25 | | | 4 | | | | | |----------|-------------------|--------|----------|------------------------|----------|--------|----------|--------|----------|------------|----------|--|--| | | Bloom's | 7 | Con | Final Examination (50% | | | | | | | | | | | Level | Level of Thinking | CLA - | 1 (10%) | CLA – 2 (10%) | | CLA - | 3 (20%) | CLA - | 4 (10%)# | weightage) | | | | | | | Theory | Practice | | | | Level 1 | Remember | 40% | | 40% | | 40% | | 40% | | 40% | | | | | Level i | Understand | 40% | _ | 40% | - | 40% | - | 40 % | | 40 % | - | | | | Level 2 | Apply | 30% | | 30% | | 30% | | 30% | | 30% | | | | | Level 2 | Analyze | 30% | | 30% | | 30% | | 30 % | - | 30 % | - | | | | Level 3 | Evaluate | 30% | | 30% | | 30% | | 30% | | 30% | | | | | Level 3 | Create | 30% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | | | Total | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 100 % | | | | | <sup>#</sup>CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | |------------------| |------------------| | Experts from Industry | Experts from Academic | Internal Experts | |--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------| | Dr.Arumugam Perumal,<br>Director ARMATS<br>BIOTEK Training and<br>Research Institute,<br>Chennai | Dr.N.Banu, Assistant Professor<br>Bharathi Womens College (Autonomous),<br>Chennai | 1. Dr. P. Parthipan, Assistant Professor,<br>Department of Biotechnology, FSH, SRMIST | | | | 2.Dr. D. Sankari, Professor and Head,<br>Department of Biotechnology, FSH, SRMIST | | Course | UCY23201J | Course | | Course | | 5 | L | T P | 0 | С | |--------|-----------|--------|-------------------------------------|----------|---|---------------------------------|---|-----|---|---| | Code | UCY23201J | Name | Chemistry of s and p-Block Elements | Category | C | Discipline Specific Core course | 3 | 0 3 | 2 | 4 | | Course Learning Rationale (CLR): | The purpose of learning this course is to: | Learning | | | | Pro | gra | m Le | earni | ing ( | Outc | ome | s (Pl | LO) | | | | |---------------------------------------------------------------------------|------------------------------------------------------|---------------------------|-------------|----------------|------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|-----------------|---------------|---------------|--------|--------|-------| | CLR-1: Exploit the general p | rincipals of s-block elements in Metallurgy | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: Utilize the general pr | operties of s-block elements in Industry | | | | | | | | | | | | | | | | | | CLR-3: Get knowledge on m | etals and non-metals to prepare different | (u | ge | ts | plines | | | edge | | | | | | | | | | | CLR-4: Address the physical | and chemical properties of p-block elements | 000 | led | Sep | isci | dge | ю | No. | | )ats | | Skills | <u>s</u> | | | | | | CLR-5 : Utilize the basic nucl | ear chemistry principles for modern science | ing (Bl | Knowledge | f Concepts | ated D | nowled | ializat | ze Kn | eling | rpret [ | Skills | ing Sk | on Skills | Skills | | | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental | Application of | Link with Related Discipline | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | Communication | Analytical Sk | PSO -1 | PSO -2 | PSO-3 | | | rinciples of metallurgy | 4 | Н | - | Η | - | Μ | - | - | - | - | - | - | - | Н | - | - | | CLO-2 : Perceive the importa | nce of periodicity of the s-block elements | 4 | Н | - | | Н | | L | - | - | - | - | - | - | - | - | - | | CLO-3: Understand the chemmetals | nical properties of alkali and alkaline earth | 4 | - | - | - | Н | М | ÷ | - | 1 | - | - | - | - | - | - | - | | CLO-4 : Gaining the knowled block elements | ge about hydrides, oxides and oxoacids of p- | 4 | Н | М | - | 1 | - | E | 9 | - | | - | - | - | Н | - | - | | CLO-5: Design and develop industrially valuable p-block element compounds | | | | Н | Н | T. | - | - | 4 | À, | - | - | | - | - | H- | - | | Durati | on (hour) | 18 | 18 | 18 | 18 | 18 | |------------------|-----------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------| | S-1 | SLO-1 | General Principles of Metallurgy | Relationship between lattice energy, hydration energy and solubility | Thermal stability of salts of alkali earth metals | hydrides of Group<br>13 | halides of silicon | | 3-1 | SLO-2 | General Principles of Metallurgy | Trend of thermal stability of hydrides of alkali metal compounds | Solubility of salts of alkali earth metal compounds | hydrides of Group<br>14 | halides of phosphorus | | | SLO-1 | Chief modes of occurrence of metals based on standard electrode potentials. | Trend of thermal<br>stability of oxides,<br>peroxides of alkali<br>metal compounds | Important alkaline earth metal compounds | hydrides of Group<br>15 (EH <sub>3</sub> where E =<br>N, P) | Preparation of Borazine | | S-2 | SLO-2 | Ellingham diagrams for reduction of metal oxides using carbon and carbon monoxide as reducing agent | Trend of thermal<br>stability of carbonates,<br>nitrates, sulphates of<br>alkali metal compounds | Structure and uses of beryllium nitrate | hydrides of Group<br>15 (EH <sub>3</sub> where E =<br>As, Sb) | structure of Borazine | | S-3 | SLO-1 | Electrolytic<br>Reduction | Trend of thermal stability of hydroxides and halides of alkali metal compounds | EDTA complexes of Ca<br>and Mg | hydrides of Group<br>15 (EH3 where E =<br>Bi) | uses of Borazine | | 3-3 | SLO-2 | Hydrometallurgy<br>with reference to<br>cyanide process<br>for silver and gold. | Trend of thermal stability of hydroxides and halides of alkali metal compounds | Determination of hardness | hydrides of Group<br>15 (EH <sub>3</sub> where E =<br>Bi) | Preparation and structure of<br>Silicates | | | SLO-1 | Lab Introduction | Acid-Base Titrations: | Estimation of carbonate | Oxidation- | Estimation of Fe(II) with | | S-4<br>to<br>S-6 | SLO-2 | Lab Introduction | Principles Estimation of<br>sodium carbonate using<br>standardized HCI | and bicarbonate present together in a mixture | Reduction<br>Titrimetry:<br>Estimation of oxalic<br>acid using<br>standardized<br>KMnO <sub>4</sub> | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> using internal<br>indicator (diphenylamine, N-<br>phenylanthranilic acid) | | Duration | on (hour) | 18 | 18 | 18 | 18 | 18 | |--------------------|-----------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------| | S-7 | SLO-1 | Methods of purification of metals | anomalous behaviour of Li, | Chemistry of p Block<br>Elements: Electronic<br>configuration, atomic<br>and ionic size | hydrides of Group<br>16 | Preparation and properties of silicones | | | SLO-2 | Electrolytic process | diagonal relationship of<br>Li with Mg | metallic/non-<br>metalliccharacter,<br>melting point | hydrides of Group<br>16 | structure and uses of silicones | | | SLO-1 | van Arkel-de Boer<br>process | Structure and<br>Importance of alkali<br>metal compounds | ionization enthalpy | hydrides of Group<br>17 | Preparation of Phosphonitrilic halides {(PNCl <sub>2</sub> ) <sub>n</sub> where n = 3 and 4} | | S-8 | SLO-2 | Zone refining | Coordination complexes of Li | electron gain enthalpy | hydrides of Group<br>17 | properties of Phosphonitrilic<br>halides {(PNCl <sub>2</sub> ) <sub>n</sub> where n =<br>3 and 4} | | S-9 | SLO-1 | Chemistry of s-<br>Block Elements:<br>General<br>characteristics | Crown ethers, | electronegativity | oxides of phosphorus | Structure of Phosphonitrilic halides {(PNCl <sub>2</sub> ) <sub>n</sub> where n = 3 and 4} | | | SLO-2 | melting point and flame colour | cryptates | Catenation | oxides of phosphorus | Uses of Phosphonitrilic halides {(PNCl <sub>2</sub> ) <sub>n</sub> where n = 3 and 4} | | S-10 | SLO-1 | Titrimetric | Estimation of carbonate | Estimation of free alkali | Estimation of oxalic | Estimation of Fe(II) with | | to<br>S-12 | SLO-2 | Analysis:<br>Calibration and<br>use of apparatus | and hydroxide present together in a mixture | present in different soaps/detergents | acid and sodium oxalate in a given mixture. | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> using external indicator . | | 0.40 | SLO-1 | Trend of atomic size, ionization energy, density | Properties of alkali<br>metals in liquid<br>ammonia | Allotropy of C, P and S | oxides of sulphur | Preparation and properties of Interhalogen compounds | | S-13 | SLO-2 | reducing power,<br>melting and boiling<br>points | biological importance of alkali metals | inert pair effect | oxides of sulphur | Preparation and properties of pseudohalogen compounds | | S-14 | SLO-1 | Reactions of alkali<br>metals with oxygen<br>and hydrogen, and<br>nitrogen | periodic properties of<br>alkaline earth metals,<br>Chemical properties | Diagonal relationship<br>between B and Si and<br>anomalous behaviour of<br>first member of each<br>group. | oxides of chlorine | structure and uses of pseudohalogen compounds | | | SLO-2 | Reactions of alkali<br>metals with water<br>and liq ammonia | periodic properties of<br>alkaline earth metals,<br>Chemical properties | Structure, bonding and properties: acidic/basic nature, stability | oxides of chlorine | Preparation and properties of Clathrate compounds of noble gases | | | SLO-1 | Reactions of alkali<br>earth metals with<br>water | Chemical properties of alkaline earth metals, | ionic/covalent nature,<br>oxidation/reduction, | peroxoacids of<br>sulphur | structure and uses of<br>Clathrate compounds of<br>noble gases | | S-15 | SLO-2 | Common features<br>such as ease of<br>formation of alkali<br>metal compounds | Chemical properties alkaline earth metals, | hydrolysis, action of<br>heat of Hydrides | peroxoacids of<br>sulphur | Preparation and properties of xenon fluorides. Structure and uses of xenon fluorides, MO treatment of XeF <sub>2</sub> . | | | SLO-1 | Preparation of | Estimation of amount of | Estimation of Hardness | Repeat | Repeat of experiments | | S-16<br>to<br>S-18 | SLO-2 | solutions of titrants<br>of different<br>Molarity/Normality. | chloride content of a water sample | of water using EDTA | experiments | | | | Theory: | Practicals: | |-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Learning<br>Resources | <ol> <li>J.D. Lee, Concise Inorganic Chemistry, Fifth Edn., Wiley India 2006.</li> <li>J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, Inorganic Chemistry- Principles of Structure and Reactivity, Pearson Education 2009.</li> <li>B.E. Douglas, D. H. McDaniel, J. J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edn., John Wiley &amp; Sons, Inc. 1993.</li> <li>P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong, Shriver and Atkins' Inorganic Chemistry, 5th Edn W. H. Freeman and Company, 41 Madison Avenue, New York, NY 10010 2010. <a href="www.whfreeman.com">www.whfreeman.com</a>.</li> <li>L. G. Miessler, J. P. Fischer, D. A. Tarr, Inorganic Chemistry, Fifth edition, Pearson, 2014.</li> <li>P.L. Soni, Textbook of Inorganic Chemistry, Mohan Katyal, Sultan Chand &amp; Sons Publishers 2006.</li> </ol> | 1. Jeffery, G.H., Bassett, J., Mendham, J., Denney, R.C. Vogel's Textbook of Quantitative Chemical Analysis, 5th Edn., Longman Scientific & Technical, England, (John Wiley and Sons Inc, 605 Third Avenue, NewYork NY 10158) | 7. S. Prakash, G.D. Tuli, S. K. Basu, R.D. Madan, Advanced Inorganic Chemistry – I Sultan Chand & Sons Publishers 2008. | Learning | Assessment | | | | | | | | | • | | | | |----------|------------------------------|---------------|----------|---------------|-----------------------------------|---------------|----------|--------|----------|-----------------------------------|----------|--|--| | | D | | Cont | inuous Le | Final Examination (50% weightage) | | | | | | | | | | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | Level of I ninking | | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | | Laval 1 | Remember | 200/ | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | 20% | | | | Level 1 | Understand | 30% | 30% | 30% | 30 /6 | 20 /0 | 2070 | 2076 | 20 /0 | 30% | 20% | | | | Level 2 | Apply | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | 50% | | | | Level 2 | Analyze | 40% | 30% | 30% | 40% | 30% | 30% | 30% | 30% | 50% | 50% | | | | Level 3 | Evaluate | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | 30% | | | | revel 2 | Create | 30% | 20% | 2070 | 30% | 30% | 30% | 30% | 30% | 2070 | 30% | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 1 | 00 % | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | | | | | | | |------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|--|--|--| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | Dr. Ravikiran Allada, Director, Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: gsekar@iitm.ac.in | Dr. M. Ganesh Pandian, SRM IST | | | | | | | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | Prof. M. Arthanar <mark>eeswari,</mark> SRMIST | | | | | | | | Cours | UCY23202T | Course | | Course | | | L | T | P | 0 | С | : | |-------|-----------|--------|--------------------------------------|----------|---|--------------------------|---|---|---|---|---|---| | Code | UCY232021 | Name | Basic Reactions in Organic Chemistry | Category | C | Discipline Specific Core | 3 | 1 | 0 | 2 | 4 | | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | | | |------------------------------|-----|-----------|-------------------------|-----|-----------------|------------------------|-----|--|--| | Course Offer | ing | Chemistry | | | Data Book / | | Nil | | | | Department | | Chemisary | | | Codes/Standards | 1111 | | | | | Course Learning<br>Rationale<br>(CLR): | The purpose of learning this course is to: | Learning Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | | | |----------------------------------------|------------------------------------------------------|------------------------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------|--------------------|--------------------|-------------------------|----------------------|------------------------|---------------|------------|--------|--------|-------|--| | CLR-1: Lean how to prepa | re the reaction intermediate and their stability | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | CLR-2 : Gain knowledge reaction | about the mechanism and use of addition | | | | | | | | | | | | | | | | | | | CLR-3: Know the mechan | ism and use of elimination reaction | Ê | ge | ste | 큺 | 45 | | 9 | | æ | | | | | | | | | | CLR-4: Understand the al | phatic substitution reaction | 90 | led<br>led | 9 | SC | dge | . <u>.</u> | Knowledge | | ati | | SIIS | Skills | | | | | | | CLR-5 : Learn the mechan | ing (Bl | Know | Know | Know | Con | ated D | nowle | Specialization | | eling | rpret [ | Skills | ing St | ion Sk | Skills | | | | | | | Ę | Ital | 0 | Seli | $\leq$ | 9 | 1 | ğ | æ | ě | 8 | äti | S | | | | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | evel of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Sp | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | | CLO-1: Gain deep unders their use | tanding about the reaction intermediates and | 4 | | Н | - | - | - | М | Н | - | | - | - | - | - | - | - | | | CLO-2: Learn how to use | addition reaction in organic transformation | 4 | - | Н | - | - | L | - | Н | - | - | - | - | - | - | - | - | | | CLO-3: Know how to prep | are unsaturated compounds | 4 | - | | Н | - | Н | М | - | - | 7 | - | - | - | - | - | - | | | CLO-4: Gain understandir compounds | 4 | Н | М | - | 7 | Н | 3 | - | - 1 | - | ļ. | - | - | - | - | - | | | | CLO-5 : Gain understandir compounds | 4 | 1 | Н | ¥. | - | Н | - | - | - | М | - | - | - | - | - | - | | | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |--------|--------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------| | | SLO-1 | Introduce reactive intermediates | Introduce Addition reaction | Elimination reactions and their types, | Introduce S <sub>N</sub> <sup>2</sup> mechanism | Mecha <mark>nism of ni</mark> tration, | | S-1 | SLO-2 | Importance of these,<br>how affecting the rate<br>of a reaction | Electrophilic addition<br>to alkenes and<br>alkynes, compare the<br>reactivity of alkenes<br>and alkynes | Different types of ⊩<br>elimination | Explain stereochemical outcomes | reagents for nitration, | | S-2 | SLO-1 | Carbocation<br>(classical and<br>nonclassical),<br>structure | dihalogens and stereoselectivity | E <sub>1</sub> , and E <sub>2</sub> mechanisms | Proof of mechanism | Effect of external functional groups in product distribution | | 5-2 | SLO-2 | Synthesis and stability | Reaction with haloacids and stereoselectivity, regeoselectivity | E <sub>1CB</sub> mechanism and their comparative study | Compared oxo-and halo-<br>nucleophiles | Sulphonation, reagents | | S-3 | SLO-1 | Carbanion, structure | Hydration to alkene and alkynes | Stereoelectronic criteria<br>of E <sub>1</sub> , E <sub>2</sub> and E <sub>1CB</sub><br>elimination, use examples<br>of acyclic and cyclic<br>halocompounds | Nucleophilicity of chalcogens | Mechanism, KCP and TCP | | | SLO-2 | Synthesis, stability | Oxymercuration and demercuration and their use | Explain the steric effects in product distribution using projection formula | Nucleophilicity of amines, ambient nucleophiles | Synthetic utility of sulphonic acid group | | S-4 | SLO-1 | Tutorial: Discuss examples on reaction | Tutorial: Problem | Tutorial: Problem solving | Tutorial: Problem solving | Tutorial: Discuss examples to prepare | | 3-4 | SLO-2 | intermediates and their stabilities | solving on addition reaction | on elimination reaction | on nucleophilic substitution reaction | substituted aromatic compounds | | S-5 | S-5 SLO-1 Carbene, struc | | Addition of hydroborane, stereoselectivity | Explain Hoffmann and<br>Saytzeff products | Effect of substrates, solvent, leaving groups in mechanisms | Aromatic nucleophilic substitution reaction | | Duration | on (hour) | 12 | 12 | 12 | 12 | 12 | | |-------------|------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|--| | | SLO-2 | Synthesis, stability,<br>Evidence for singlet<br>and triplet carbenes | regeoselectivity and hydrolysis | substitution vs<br>elimination (substrate,<br>nucleophile/base,<br>solvents) | Transforming a bad leaving group into good leaving group | Activation of substrates, reactivity of haloarenes | | | | SLO-1 | Nitrene, structure | Addition to alkynes, synthetic utility | Pyrolytic elimination | Nucleophilic catalysts | Types: carbanion intermediate | | | S-6 | SLO-2 | Stability and reactions | Scope of hydroboration reaction (functional group interconversion) | Stereoselctivity of products, | Phase Transfer Catalyst | Types: benzyne mechanism | | | S-7 | SLO-1 | Benzyne: structure,<br>synthesis, stability<br>(orbital pictures) | Ozonolysis of alkenes and alkynes | Chugaev Reaction | Introduce S <sub>N</sub> i mechanism | Types: diazonium salt, | | | <b>0</b> -7 | SLO-2 | trapping of benzynes,<br>Reactions using<br>benzynes | Addition of radicals | Cope elimination | NGP | Orientation effect | | | | SLO-1 | Tutorial: Discuss<br>examples on reaction | Tutorial: Problem | Tutorial: Problem | Tutorial: Problem solving | Tutorial: Discuss examples to prepare | | | S-8 | SLO-2 | intermediates and their stabilities | solving on addition reaction | solving on elimination reaction | on nucleophilic substitution reaction | substituted aromatic compounds | | | 1 | SLO-1 | Radicals, synthesis, structure | Hydrogenation reaction | Introduce Nucleophilic<br>Substitution reactions | Aromatic electrophilic<br>substitution reaction,<br>reactivity of substituted<br>arenes | Grignard Reagents, synthesis, structure | | | S-9 | SLO-2 | Reactions | Willkinson's catalyst,<br>Lindlar's catalyst | Nucleophiles,<br>electrophilic<br>centers,leaving groups,<br>types of substitution in<br>aliphatic compounds | ⊩, ⊩complex | Mechanism, reactivity of aliphatic and aromatic halides, halides | | | 0.40 | SLO-1 | Redox reaction | Birch reduction of alkenes and alkynes | Introduce S <sub>N</sub> ¹ mechanism | Friedel-Craft alkylation and acylation | Reactions with ketone, epoxide, ester | | | S-10 | SLO-2 | Determination of<br>Oxidation states | Benzylic halogenation | Explain stereochemical outcomes | Merits and demerits, Orientation effect, | 1,2- vs 1,4 addition,<br>dialkyl cuprate reagent | | | S-11 | SLO-1 | Oxidation of alcohols, alkenes | Addition to allenes<br>and conjugated<br>alkenes | Effect of substrates,<br>nucleophiles, Ritter<br>reaction | Halogenation reaction | Organolithium compounds, synthesis and use | | | 3-11 | SLO-2 | Reduction of ketones, alkenes | Nucleophilic adition to conjugated alkenes | Effect of solvent, leaving groups, Salt effect | Different reagents,<br>Reactivity of halogens as<br>electrophiles | Organozinc compounds, synthesis and use | | | 0.46 | SLO-1 | Tutorial: Problem | Tutorial: Problem | Tutorial: Problem | Tutorial: Problem solving | Tutorial: Use of<br>organometallic | | | S-12 | SLO-2 discussion on Redox reaction | | solving on addition reaction | solving on elimination reaction | on electrophilic substitution reaction | compounds, Green organic synthesis | | - M. B. Smith and J. March, March's Advance Organic Chemistry, 6th Ed., John Wiley and Sons, Inc 2006. J. Clayden, N. Greeves, and S. Warren, Organic Chemistry 2nd Ed., Oxford University Press 2012. 1. 2. - 3. J. McMurry, Organic Chemistry 5th Ed., Thomson business information 2007. - Learning 4. Resources - 5. - T. W. G. Solomons and C. B. Fryhle, Organic Chemistry 10th Ed., John Wiley and Sons, Inc 2011. I. L. Finar and A. L. Finar, Organic Chemistry Vol. 2, Addison-Wesley 1988. D. N. Nasipuri, Stereochemistry of Organic Compounds: Principles & Applications South Asia Books 2012. | | Dia | | Cont | inuous Le | Final Examination (50% weightage) | | | | | | | | |---------|------------------------------|---------------|----------|---------------|-----------------------------------|---------------|----------|--------|----------|------------------------------------|----------|--| | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA – 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examination (30 % weightage) | | | | | Level of Thinking | | Practice | Theory | Practice | Theory | Practice | Theory | Practice | Theory | Practice | | | Level 1 | Remember | 30% | | 30% | _ | 20% | | 20% | | 30% | | | | Level I | Understand | 30% | - | 30 /6 | _ | 20% | - | 2070 | _ | 30 /0 | - | | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | Level 2 | Analyze | 40% | - | 30% | - | 50% | - | 50% | - | 50 % | - | | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 200/ | | 200/ | | | | Level 3 | Create | 30% | - | 20% | - | 30% | - | 30% | - | 20% | - | | | Total | 100 % | 100 % | 100 % | 100 % | 100 % | |-------|--------|--------|--------|--------|--------| | | .00 /0 | .00 /0 | 100 /0 | .00 /0 | .00 /0 | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |----------------------------------------------|--------------------------------------------|--------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | Prof. G. Sekar, Department of Chemistry, | · | | Dr. Ravikiran Allada, Director, | IIT Madras | 1. Dr.Susnata Pramanik, SRMIST | | Analytical Sciences and Technology Transfer, | Email: gsekar@iitm.ac.in | , | | Novugen Pharma, Malaysia | Prof. Sukhendu Mandal, Department of | 0 0 0 14 14 | | Email: ravianalytical@gmail.com | Chemistry, IIISER, Thiruvananthapuram | 2. Prof. M. Arthanareeswari, | | | Email: <u>sukhendu@iisertvm.ac.in</u> | SRMIST | -----<del>----</del>----- | Course | UCY23203T | Course | | Course | | | L | T | P | 0 | C | |--------|-----------|--------|--------------------------------------|----------|---|--------------------------|---|---|---|---|---| | Code | UCY232031 | Name | Chemical Equilibria, Acids and Bases | Category | С | Discipline Specific Core | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|-----------------|------------------------|------| | Course Offer | ing | Chemistry | | | Data Book / | | Nil | | Department | | J | | | Codes/Standards | | •••• | | Course Learning<br>Rationale | The purpose of learning this course is to: | Learning | | | | Pro | graı | n Le | arni | ng C | outc | ome | s (Pl | LO) | | | | |---------------------------------|------------------------------------------------------|---------------------------|-----------------------|-------------------------|-------------------|----------------------|----------------|--------------------|--------------------|-------------------------|----------------------|-----------------|---------------|--------------|--------|--------|-------| | (CLR): | d manipulate the progress of a reaction | | 4 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 10 | 11 | 12 | 12 | 11 | 15 | | | d manipulate the progress of a reaction | | I | | J | 4 | 5 | 6 | - | 0 | 9 | 10 | 11 | 12 | 13 | 14 | 10 | | | e acidity or basicity of various compounds | Ê | ğ | stc | | a) | _ | | | Ø | | " | | | | | | | CLR-3: Understand the | pH of solutions of weak acids and bases | 8 | ě | <u>8</u> | | ğ | ior | | | Sat | | Skills | Skills | | | | | | CLR-4: Understand bu | ffer and its design | (B | ŏ | 6 | - | <u>\$</u> | zai | | D | 1 | 2 | S | ॐ | | | | | | CLR-5 : Gain knowledg | e of solubility product | nking | alKr | of C | elate | Kno | Specialization | illize | delin | terpre | e Ski | olving | ation | Skills | | | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related | Procedural Knowledge | Skills in Sp | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | Communication | Analytical S | PSO -1 | PSO -2 | PSO-3 | | CLO-1: Select and alte | r the parameters to drive the reaction forward or | 4 | Н | Н | - | - | - | М | | Ä | - | - | - | - | - | - | - | | CLO-2: Asses the acid | ity or basicity of various chemical compounds | 4 | Н | - | - | - | - | - | L | - | - | - | - | Н | - | - | - | | CLO-3: Calculate the p | H of mono and polyprotic acids | 4 | - | - | Н | - | М | - | - | - | - | - | Н | - | - | - | - | | CLO-4: Make buffers of | f desired capacity and components | 4 | Н | L | - | | - | Н | - | - | | - | - | - | - | - | - | | CLO-5 : Manipulate the | solubility of sparingly soluble salts | 4 | - | Н | | - | Н | | - | - | | М | - | - | - | - | - | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |--------|-----------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------| | | SLO-1 | Reactions at equilibrium: | The nature of acids and bases | Solutions of weak bases | Aqueous equilibria | Stoichiometry of<br>Polyprotic Acid<br>Titrations | | S-1 | SLO-2 | The reversibility of reactions | Brønsted–Lowry<br>Acids and Bases | Examples discussion | Mixed solutions | Identifying the<br>number of pKa<br>values of polyprotic<br>acids | | S-2 | SLO-1 | Equilibrium | Lewis Acids | How to calculate pH<br>of a solution of a weak<br>base | Buffers | Solubility Equilibria | | | SLO-2 | the Laws of mass action | Lewis Bases | Steps involved in the calculation | Buffer action | The Solubility product | | | SLO-1 | The thermodynamic origin of equilibrium constants | Acidic, Basic,<br>Amphoteric Oxides | pH of salt solutions | Designing a buffer | Determining the solubility product | | S-3 | SLO-2 | Relation between equilibrium constant and free energy | Proton exchange<br>between water<br>molecules | Acidic character and Ka values of common cations in water; Acidic and basic character of common anions in water | Key points in buffer design | Writing the solubility product for various compounds | | | SLO-1 | Exercises on writing equilibrium constant expression for different reactions | Writing the formulas of conjugate acids and bases | Calculating the pH<br>and percentage<br>protonation of a weak<br>base | Calculating the pH of a buffer solution | Estimating the molar solubility from the solubility product | | S-4 | SLO-2 | Calculating Gibbs<br>free energy of<br>reaction from the<br>reaction quotient | Identify (a) the Brønsted acids and bases in both reactants and products in the proton transfer equilibrium (b) Which species (not necessarily | Calculating the pH of<br>a salt solution with an<br>acidic cation Calculating the pH of<br>a salt solution with a<br>basic anion | Calculating the pH change of a buffered solution | Estimating the effect of a common ion on solubility Predicting whether a precipitate will form when two solutions are mixed | | Duratio | on (hour) | 12 | shown explicitly) are<br>Lewis acids and<br>which are Lewis<br>bases? | 12 | 12 | 12 | |---------|-----------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------| | | SLO-1 | The extent of the reaction progress | The pH scale | Polyprotic acids and bases: | Selecting the composition of a buffer solution with a given Ph | The common ion effect | | S-5 | SLO-2 | Predicting the direction of the reaction | Calculating pH from a concentration | The pH of a polyprotic acid solution | Correlating the composition and pH | Estimating the effect of a common ion on solubility | | S-6 | SLO-1 | Equilibrium calculations: Equilibrium concentration in terms of the molar concentration of gases | Calculating<br>hydronium ion<br>concentration from<br>pH | Solutions of salts of polyprotic acids | Buffer capacity | Predicting precipitation | | | SLO-2 | Relation between K and K <sub>c</sub> | The pOH of solutions | Different examples of polyprotic acids | Examples of precipitates | | | | SLO-1 | Alternative forms of equilibrium constants | Weak acids and bases | The concentration of solute species | Selective<br>Precipitation | | | +\$-7 | SLO-2 | summarize the relations between equilibrium constants for the same reaction written in different ways | Acidity and basicity constants | Method to calculate<br>the concentrations of<br>all species in a<br>polyprotic acid<br>solution | Strong Acid–Weak Base and | Predicting the order of precipitation | | | SLO-1 | Calculating equilibrium constant | The conjugate seesaw | Estimating the pH of a solution of amphiprotic salt | Calculating points on the pH curve for a strong acid–strong base titration | Examples of determining the order of precipitation | | S-8 | SLO-2 | (i) Learn how to setup and use an equilibrium table (ii) calculate the equilibrium composition of a reaction mixture | Deciding which of the<br>two species is the<br>stronger acid or base | Calculating the concentrations of all solute species in a polyprotic acid solution | Calculating the pH before the stoichiometric point in a weak acid–strong base titration | Examples of calculating the concentration of the first ion to precipitate that remains in solution when the second ion precipitates | | S-9 | SLO-1 | The response of equilibria to changes in conditions (Le chatelier's principle) | Molecular structure and acid strength | Composition and pH | Estimating the pH at the stoichiometric point of the titration of a weak acid with a strong base | Dissolving<br>Precipitates | | | SLO-2 | adding and removing reagents | comparison | correlation | Analyzing the graph | Key points to make the precipitates to dissolve | | | SLO-1 | Calculating the equilibrium composition after the addition of a reagent | The strengths of oxoacids and carboxylic acids | Autoprotolysis and pH | Weak Acid–Strong Base<br>Titrations | Complex Ion<br>Formation | | S-10 | SLO-2 | Compressing a reaction mixture | The strengths of carboxylic acids | Very dilute solutions of Strong acids and bases | Analyzing the graph | Calculating molar<br>solubility in the<br>presence of<br>complex<br>formation | | | SLO-1 | Temperature and reaction equilibrium | pH solutions of weak acids and bases: | Very dilute solutions of weak acids | Acid-Base indicators | Qualitative Analysis | | S-11 | SLO-2 | Predicting the effect of temperature on an equilibrium | Solutions of Weak<br>Acids | Examples discussion | Molecular structures and their mode of action | Examples of various ions | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------| | S-12 | SLO-1 | Predicting the effect<br>of compression on<br>an equilibrium | Calculating the pH<br>and percentage<br>deprotonation of a<br>weak acid | Estimating the pH of a dilute aqueous solution of a weak acid and when the autoprotolysis of water must be considered | Explain what happens to (a) the pH of a solution of phosphoric acid after the addition of solid sodium dihydrogen phosphate; (b) the percentage deprotonation of HCN in a hydrocyanic acid solution after the addition of hydrobromic acid; | Examples of calculating molar solubility in the presence of complex formation | | | SLO-2 | (i) Predict the value<br>of the equilibrium<br>constant at a<br>different temperature<br>(ii) Catalysts and<br>Haber's<br>Achievement | Calculating the K <sub>a</sub> and pK <sub>a</sub> of a weak acid from the pH | Calculating the pH of<br>a very dilute aqueous<br>solution of a strong<br>acid | (c) the concentration of H <sub>3</sub> O <sup>+</sup> ions when pyridinium chloride is added to an aqueous solution of the base pyridine. | Correlating the different examples solved | - P.W. Atkins, L.L. Jones, Chemical Principles: The quest for insight. H. Freeman and Company, New York, 2010 - B.R. Puri, L.R. Sharma, K.K. Kalia, Principles of Inorganic Chemistry, Shobulal Nagin Chand and Co, 2001. ## Learning # Resources - P. L. Soni, A Textbook of Inorganic Chemistry, Sultan Chand and Co., 1977. R. Gopalan, Text Book of Inorganic Chemistry, 2<sup>nd</sup> edition, Hyderabad, Universities Press, (India), 2012. - R.T. Morrison and R.N. Boyd, S. K. Bhattacharjee, Organic Chemistry, 7th edition, Pearson India, 2011. B.R. Puri, L.R. Sharma and M.S. Pathania, Principles of Physical Chemistry, 35th edition, New Delhi ShobanLal Nagin Chand 6. and Co, 2013. | Learning | g Assessment | | W W. | E | 177 | 7111 | 11 1 | | 4 17 3 | | | | | |----------|------------------------------|--------|----------|-----------|------------|---------|-------------|---------|----------|--------------------------------------------------|---------------------|--|--| | | | 1977 | Cont | inuous Le | earning As | sessmen | t (50% weig | ghtage) | | Final Evaminati | on (EOO/ waimbtone) | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA- | 4 (10%)# | Final Examination (5 <mark>0% weigh</mark> tage) | | | | | | Level of Tilliking | Theory | Practice | | | | Lovel 1 | Remember | 30% | 77.7 | 30% | - 111 | 20% | Carrie | 20% | | 30% | | | | | Level 1 | Understand | 30% | 100 | 30% | | 20% | | 20% | - | 30% | | | | | Level 2 | Apply | 40% | - 711 | 50% | | 50% | | 50% | | 50% | | | | | Level 2 | Analyze | 40% | - | 30% | - / | 30% | - | 30% | - | 30 % | | | | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | | | Level 3 | Create | 30% | | 20% | 3/4 | 30% | - | 30% | | 20% | | | | | | Total | 10 | 00 % | 10 | 00 % | 10 | 00 % | 10 | 00 % | / 1 | 00 % | | | # CLA - 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |----------------------------------------------|----------------------------------------------|------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | Prof. G. Sekar, Department of Chemistry, | 1 | | Dr. Ravikiran Allada, Director, | IIT Madras | 1. Dr. Srinivasa Rao, SRMIST | | Analytical Sciences and Technology Transfer, | Email: gsekar@iitm.ac.in | | | Novugen Pharma, Malaysia | Dr. Kanishka Biswas, Jawaharlal Nehru Centre | | | | for Advanced Scientific Research (JNCASR), | 2. Prof. M. Arthanareeswar | | Email: <u>ravianalytical@gmail.com</u> | Bengaluru | SRMIST | | | Email: kanishka@jncasr.ac.in | | | Course | | | | Course | _ | | L | T | Р | 0 | С | | |--------|-----------|-------------|--------------------------------------|----------|---|--------------------------|---|---|---|---|---|--| | Code | UCD23S02T | Course Name | Verbal Ability and Skill Development | Category | S | Skill Enhancement Course | 2 | 0 | 0 | 2 | 2 | | | Pre-requisite Courses | Nil | Co-requisite<br>Courses | Nil | Progressive<br>Courses | Nil | |-------------------------------|----------|-------------------------|--------------------------------|------------------------|-----| | Course Offering<br>Department | Career ( | Guidance Cell | Data Book /<br>Codes/Standards | - | | | Course<br>Learning<br>Rationale<br>(CLR): | The purpose of learning this course is to: | Le | arni | ng | | | | Pro | gran | n Le | arni | ng C | Outc | ome | s (P | LO) | | | | |-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|-------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|--------------------|----------------------|-----------------|---------------|-------------------|------------|----------------|--------------------| | | y evaluate basic mathematical concepts related to<br>s and alligations, Numbers, time and work | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | (.I R-/ ' | ir logical thinking and <mark>analytical abilities to solve</mark><br>ng problems | | | | | | | | | | | | | | | | | | | | CLR-3: Develop | o soft skills relating to the need for job recruitment | | | | | | | | | | | | | | | | | | | | CLR-4: interpret | students with the necessary skills to generate and<br>t data sufficiency, problems on Chain Rule, Pipes and<br>s, Boats and streams, | (mc | (%) | (%) | ge | ş | iplines | 40 | | edge | | a | | | | | | _ | | | | students to understand problems on graphs and also<br>e their ability in language skills | ing (Bloc | iciency ( | inment ( | Knowled | Concept | ted Disc | owledge | alization | e Knowl | ling | pret Data | Skills | ng Skills | on Skills | <u>s</u> | | Behaviour | ning | | Course<br>Learning<br>Outcomes<br>(CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret | Investigative Skills | Problem Solving | Communication | Analytical Skills | ICT Skills | Professional E | Life Long Learning | | CLO-1: time and | and the concepts of mixtures and alligations, Numbers,<br>d work and to approach questions in a simpler and<br>ve method | 3 | 80 | 70 | М | Н | - | | | М | 15 | М | М | Н | - | Н | | - | - | | | h a student's interest and awareness in seating<br>ments, mathematical operations, logical reasoning | 3 | 80 | 75 | М | Н | - | Š | | М | 1 | М | М | Н | - | Н | - | - | - | | CLO-3: Acquire | soft skills that will help for applying jobs | 3 | 85 | 70 | | å. | М | Н | М | | L | - | - | )- | Н | - | М | М | Н | | CLO-4 : Demons | strate various principles involved in aptitude problems | 3 | 85 | 80 | 75 | 12.5 | | | М | - | L | Н | - | Н | - | Н | - | - | L | | CLO-5 : Ability to | o solve problems on reasoning and to interpret English<br>re | 3 | 85 | 75 | - | Н | - | L | 1 | Н | - | М | М | - | Н | - | М | - | М | | _ | uration<br>(hour) | 6 | 6 | 6 | 6 | 6 | |------|-------------------|-----------------------------------------|--------------------------------------------------------------|--------------------------------------|-------------------------------------------------|-----------------------------------------------------------| | S-1- | SLO-1 | Time and Distance –<br>Introduction | Seating Arrangements<br>(Circular and table)<br>Introduction | Resume Building -<br>Introduction | Chain Rule, Pipes and<br>Cistern – Introduction | Functions and Graphs<br>Introduction | | 3-1 | SLO-2 | Time and Distance – Problems | Seating Arrangements<br>(Circular and table) –<br>Problems | Resume Building | Chain Rule, Pipes and<br>Cistern – Problems | Functions and Graphs – Problems | | S-2 | SLO-1 | Time & Work-<br>Introduction | Mathematical Operations – Basic Problems | Group Discussions -<br>Introduction | Data Sufficiency –<br>Introduction | Comprehension | | 3-2 | SLO-2 | Time & Work –<br>Problems | Mathematical Operations –<br>Tricky Problems | Group Discussions – Mock<br>GD | Data Sufficiency –<br>Problems | Comprehension – Practise session | | | SLO-1 | Alligation or Mixture –<br>Introduction | Data Arrangements - Introduction | Group Discussions -<br>Activity 1 | Logarithms - Introduction | Idioms and Idiomatic<br>Expressions – Introduction | | S-3 | SLO-2 | Alligation or Mixture - Problems | Data Arrangements –<br>Problems | Group Discussions -<br>Activity 1 | Logarithms – Problems | Idioms and Idiomatic<br>Expressions – Practise<br>Session | | S-4- | SLO-1 | Numbers – Basic<br>Problems | Logical Deductions –<br>Introduction | Group Discussions -<br>Activity 2 | Boats and Streams –<br>Basic Problems | Cause and Effect -<br>Introduction | | 3-4 | SLO-2 | Numbers – Tricky<br>Problems | Logical Deductions –<br>Problems | Group Discussions -<br>Activity 2 | Boats and Streams –<br>Tricky Problems | Cause and Effect –<br>Practise Session | | S-5 | SLO-1 | Problems on Trains –<br>Introduction | Letter and Symbol Series – Basic Problems | Leadership Skills Introduction | True Discount –<br>Introduction | Theme detection –<br>Introduction | | 5-5 | SLO-2 | Problems on Trains –<br>Problems | Letter and Symbol Series – Tricky Problems | Leadership Skills | True Discount – Problems | Theme detection – Activity | | S-6 | SLO-1 | Races and Games –<br>Basic Problems | Input Output Tracing Introduction | How to Handle Criticism and Feedback | Geometry and Mensuration Introduction | Ordering of words _<br>Introduction | | 3-0 | SLO-2 | Races and Games –<br>Tricky Problems | Input Output Tracing – Problems | How to Handle Criticism and Feedback | Geometry and<br>Mensuration – | Ordering of words –<br>Practise Session | | | | | | | | Problems | | |---|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------| | L | 1 | , | | | | | | | | Learning<br>Resources | practice questions for ab-<br>spatial and systems tests,<br>2. Kathy A. Zahler & Ove<br>verbal reasoning and anal<br>York, 2020 Second Editior | Mentor: Tests of Aptitude | rbal, physical,<br>Fourth edition<br>nquering GRE<br>ducation, New | 4. David Bar<br>thrive, Scion<br>5.Zsolt Nagy | tlett, The art of general practi<br>, Banbury, 2018, eBook, 201<br>, Soft skills to advance your co<br>o maximize your potential, A | 8 developer career: actionable | | | | Continuous Learning Assess <mark>ment (100% we</mark> ightage) | | | | | | | | | |---------|------------------------------|----------------------------------------------------------------|---------------|---------------|----------------|--|--|--|--|--| | Level | Bloom's Level of<br>Thinking | CLA – 1 (20%) | CLA – 2 (20%) | CLA – 3 (30%) | CLA – 4 (30%)# | | | | | | | | | Theory | Theory | Theory | Theory | | | | | | | Level 1 | Remember | 30% | 20% | 30% | 30% | | | | | | | Level I | Understand | 30% | 2070 | 30% | | | | | | | | | Apply | 000/ | F00/ | 200/ | 30% | | | | | | | Level 2 | Analyze | 30% | 50% | 30% | | | | | | | | | Evaluate | 400/ | 200/ | 400/ | 400/ | | | | | | | _evel 3 | Create | 40% | 30% | 40% | 40% | | | | | | | 7.0 | Total | 100% | 100% | 100% | 100% | | | | | | CLA-1, CLA-2 and CLA-3 can be from any combination of these: Online Aptitude Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, Mini Talks, Group Discussions, Mock interviews, etc. # CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | | | | | | | |------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | Mr. M. Ponmurugan, Executive PMOSS, | | Dr. Sathish K, HOD, Department of Career Guidance, FSH, SRMIST | | | | | | | | Cogni <mark>zant Tech</mark> nology Solutions India Pvt.<br>Limited, Chennai | Amrita Vishwa Vidhyapeedam, Coimbatore | Dr. Muthu Deepa M, Assistant Professor, Department of Career Guidance, FSH, SRMIST | | | | | | | | Course | | Course | | Course | | | L | T | Р | 0 | С | |--------|-----------|--------|----------------------|----------|----|-----------------------|---|---|---|---|---| | Code | UEN23V01L | Name | COMMUNICATION SKILLS | Category | AE | Value Addition Course | 0 | 0 | 4 | 2 | 2 | | Pre-requisite Courses | Nil | Co-requisite<br>Courses | Nil | Progressive Courses | Nil | |-----------------------|--------------|-------------------------|-----------------|---------------------|-----| | Course Offering | Department o | f English, FSH, | Data Book / | Nil | | | Department | SRMIST | | Codes/Standards | INII | | | Course Learning | The purpose of learning this course is to: | 1 | Learning | Program Learning Outcomes (PLO) | |------------------|--------------------------------------------|---|----------|---------------------------------| | Rationale (CLR): | The purpose of learning this course is to. | | Learning | Program Learning Outcomes (PLO) | | Rational | e (CLR): The purpose of learning this course is to. | | | | | L | arn | mg | ľ | rog | I alli | Lea | 111111 | g O | ulco | illes | S (PL | -0) | | |---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|------------------------|---------------|------------|--------|--------|-------| | CLR-1: | Develop fluency in spoken English by practicing and engaging in various speaking activities. | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | Improve pronunciation and intonation to enhance clarity and effectiveness in oral communication. | | | | | | | | | | | | | | | | | | | | CLR-3: | Expand vocabulary and idiomatic expressions to communicate more accurately and expressively. | | VI. | | | | | | | | | h., | | | | | | | | | CLR-4: | Enhance listening skills to understand and respond appropriately to spoken English in different situations. | | | -41 | IJ | A | Set | | | ge | | | | | | | | | | | CLR-5 : | Employ effective communication strategies, such as active listening, summarizing, paraphrasing, and asking clarifying questions, to enhance interpersonal and intercultural communication. | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | ze Knowledge | eling | Analyze, Interpret Data | Skills | Problem Solving Skills | ion Skills | Skills | | | | | | | - Fi | J Pro | Att | enta | o uo | Re | ra K | Spec | 35 | Mod | Inte | ative | Solv | icat | | | | | | Course L<br>Outcome | earning At the end of this course, learners will be able to: | evel of | Expected | Expected | -undam | Applicati | ink with | Procedu | Skills in | Ability to Utilize | Skills in Modeling | Analyze, | Investigative Skills | Problem | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | CLO-1 : | Demonstrate improved fluency in spoken English by expressing ideas and thoughts confidently and coherently. | 2 | 75 | 60 | Н | М | М | L | - | М | - | М | Н | L | Н | L | - | - | - | | CLO-2: | Pronounce English words and phrases accurately, using appropriate intonation and stress patterns. | 2 | 80 | 70 | М | Н | L | | 7 | - ] | - | М | М | Н | Н | М | - | - | - | | CLO-3: | Expand and effectively use a range of vocabulary and idiomatic expressions to enhance communication. | 2 | 70 | 65 | М | М | М | 4 | L | L | - | Н | М | Н | Н | L | - | - | - | | CLO-4: | Understand and comprehend spoken English in various contexts, including informal conversations, lectures, and presentations. | 2 | 70 | 70 | Н | М | L | | М | Н | - | - 1 | - | | Н | L | - | - | - | | CLO-5 : | Deliver well-structured and engaging oral presentations, incorporating effective body language and visual aids. | 2 | 80 | 70 | Н | Н | - | М | - | М | | L | L | М | Н | М | - | - | - | | Durat<br>(hour | | 12 | 12 A D M | 12 | 12 | 12 | |----------------|--------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------| | | SLO-1 | Introduction to<br>Listening Skills. | Introduction to Reading<br>Skills. Discussion of<br>techniques of Reading<br>Skill | Introduction to Speaking Skills.<br>Explaining the importance of<br>phonetics and vocabulary | Introduction to Writing Skills<br>Importance of writing skills | Introduction to appreciation of texts. | | S-1 | SLO- 2 | Exploring Effective<br>Ways of Listening.<br>Barriers of<br>Listening. Active<br>and Passive<br>Listening. | Identifying common<br>reading problems in<br>students after making<br>them read a few<br>passages. | Explaining the usage of the Oxford Learner's Dictionary to learn phonetics of the words at the fundamental level. | Explaining various forms of writing with examples:. | Encouraging the students to share a few of their favourite lines from any sources they have read or sharing a few lines from paditthadhil piditthadhu. | | S-2 | SLO-1 | Introduction to<br>Digital language<br>lab/ usage of<br>mobile<br>applications | Learners are enabled to<br>record their speech and<br>listen to it in order to<br>correct their problematic<br>areas | The right enunciation of certain words to be taught through phonetic representation and decoding the phonetic symbols by learning to use the dictionary | Introduction to letter writing.<br>Types of letters- Formal<br>and Informal letters with<br>examples.<br>Learning E-mail etiquette. | Explaining why<br>appreciating texts<br>creates a good<br>reader. | | | SLO- 2 | Equipping the listening skill of the learners | repetitive practices of reading select paragraphs from web resources, their standard will be measured. | Observe and repeat and learn the phonetic pronunciation of words by practicing continuously. | Class Assignment - write a<br>formal letter and informal<br>letter and check for e-mail<br>etiquettes in writing. | Enabling the students to reflect in the classroom about any of their favourite books/ articles or magazines. | | |--------------|--------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | | SLO-1 | | The speed, fluency,<br>pronunciation,<br>comprehension of the<br>words in the paragraph | Teaching the usage of<br>Thesaurus to understand and<br>develop various words and<br>improve vocabulary. | Enabling the students to unleash their potentials in creative writing through writing transcripts for advertisements of any product. | Introducing the text<br>of Letters by<br>Mathrubootham<br>published in the<br>Hindu. | | | S-3 –<br>S-4 | | | hints and tricks to follow<br>where the pauses are to<br>be followed. | Identifying common errors in concord, preposition, direct speech and indirect speech. | write a review of any book<br>or a movie or an interview<br>or a debate. | Reading and recitation of the text of the first letter-Enjoy within limits, says Mr. Mathrubootham Understanding characters by analyzing the usage of their style of language | | | S-5 | SLO-1 | Imitating the speakers by listening to them and attempting to | Students group 1- reads<br>– group 2 identifies the<br>flaws in reading. | Identifying common errors in<br>tenses, punctuation, and<br>syntactical errors | Mechanics of writing like capitalization, punctuation, spelling, correct pronoun, preposition, concord usage can be taught. | Reading of the<br>second letter-<br>Nobel? What<br>Nobel, asks Mr.<br>Mathrubootham. | | | | SLO- 2 | Repetitive listening<br>to enhance<br>pronunciation skills | The roles have to be exchanged between the two groups and the activity should be practiced. | Rectifying the common errors<br>and instructing the learners<br>about the right usage in order<br>to avoid common errors. | meachnaics of writing -<br>assessed and evaluated. | Mathrubootham's humour and the language of code switching from Tamil to English and vice –versa. | | | S-6 | SLO-1 | TALK American Speakers. Listening to the native speakers of English Language through TED | Identify the key arguments in a passage - introductory point, lead point, supportive argument statement, concluding point and the common connecting word between all the key words in the passage. | Practicing how to avoid common errors. | Teaching effective writing by learning to avoid common errors in concord, preposition, conjunction, relative pronouns, question tags. | Reading of the<br>third letter -Mr.<br>Mathrubootham is<br>fully supporting all<br>new technologies | | | | SLO- 2 | Listening to the native speakers of | encouraged to identify<br>the key arguments in<br>other passages on their<br>own. | The learners are introduced to collocations for quick choice of learning how to speak in short time and how to speak effectively. | Practicing effective writing<br>by learning to avoid<br>common errors in concord,<br>preposition, conjunction,<br>relative pronouns, question<br>tags. | Mathrubootham's frustration over the failure of technologies and the language that he positively uses to denote hopelessness over technologies. | | | S-7 –<br>S-8 | | American and<br>British styles can<br>be differentiated. | Guiding the act of reading through scanning and skimming by model reading of the passages by the instructor. | Practice collocations | common errors in tenses,<br>direct and indirect speech<br>and syntax structure. | Reading of the fourth letter in the classroom and discussion Pizza maavu: Welcome to Mr. Mathrubootham food recipe website, | |-------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | SLO- 2 | The recognition of different accents should be practiced by speaking after listening. | scanning and skimming<br>activities | ldioms and phrases | Practicing effective writing by learning to avoid common errors in tenses, direct and indirect speech and syntax structure. | Mathrubootham's love for food and the miscommunication about food. | | | 8101 | Learning advanced pronunciation and vocabulary through various computer applications like Woodpecker. | Loud reading and slow<br>mind reading | A speaking task to learn-<br>collocations, idioms and<br>phrases, vocabulary and<br>phonetic pronunciation | Teaching how to write statement of purpose for admission to higher educations, and practicing the same. | Analyisng the text<br>for regional<br>relevance and<br>National<br>significance. | | S-9 | SLO- 2 | imitate the different sounds and accents - repeat it after listening to any of the videos from the library based on individual interest. | Pauses, pronunciation, comprehension and fluency can be checked for improvement at this stage through repetitive practices. | Their speaking activity is to be recorded and played again to rectify the errors and highlight the problematic areas in speaking. | Teaching how to write a<br>story by looking at a<br>picture.<br>Developing the writing skill<br>through word ladders. | Appreciating the aesthetics of the comic element and the embodiment of humour in the narrative in the letter | | S-10 | SLO-1 | Repeat listening to<br>the same time<br>frames and move<br>from 02.01 to<br>03.00 | Students -groups -<br>checking the<br>comprehension skills.<br>Analyse the text of a<br>passage. | Automating vocabulary through engaging the students in various activity games like solving crossword puzzle and playing scattergories. | Introduction to blog writing<br>and steps to become an<br>effective blog writer. | importance of<br>bringing in the<br>Indianized way of<br>speaking the<br>English Language<br>in order to depict<br>the character<br>called<br>Mathrubootham. | | | SLO- 2 | Choosing any<br>particular time<br>frame and<br>practicing it. | Brainstorming the comprehension skills-questioning the key points in the passage. | Engaging the students to play<br>the games in order to learn the<br>vocabulary. | Encourage the readers to create their own blogs and post articles on a regular basis. | relatable<br>characters of both<br>formal and informal<br>everyday life<br>experiences. | | S 11<br>-<br>S 12 | SLO-1 | Interested students can complete listening and reflecting the complete audio listening practice and speaking. | Cross check with<br>misunderstanding if any<br>and rectify- match the<br>question and answers. | Spur of the moment speech.: | Selecting any news article<br>and learning the writing<br>style in it. | Talk about their favourite letter from the letters of Mathrubootham by recollecting the appreciation of the text according to their perception and understanding. | | | | Group activities<br>and games can be<br>conducted to test<br>the listening skills<br>by responding to | Passages for reading comprehension are to be given for practice that tests their reading skills. | Prepared speech :<br>Giving a speaking task to the<br>students to speak on their own<br>choice | Students are given chances to write reports on various topics. | Enabling the<br>students to share<br>their appreciation<br>of any of their<br>favourite lines form | | | the speech given | · | | | the books they | | | | | | |-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|-------------------------------------|------------------------------|--|--|--|--|--| | | by other students | | | | have read. | | | | | | | | 2020 | | | | sh Departement, FSH, SRMIST, | | | | | | | Learning | | | mond Murphy Cambridg | | | | | | | | | Resources | <ol> <li>Raymond Murphy, Intermediate English Grammar, Cambridge University Press, 2007</li> <li>R.P. Bhatnagar, English for Competitive Examinations, Trinity Press, 3<sup>rd</sup> Edition, 2016</li> </ol> | | | | | | | | | | | | | • | • | s, Trinity Press, 3 <sup>rd</sup> E | dition,2016 | | | | | | | | | aptitudetests.org/ve | | | | | | | | | | | https://www.assessmentda | y.co.uk/aptitudetests | s_verbal.htm | | | | | | | | | Learning As | ssessment | | | | | | | | | | | | | Continuous Lear | ning Assessment (10 | 0% weightage) | | | | | | | | Level | Bloom's Level of Thinking | CLA – 1 (20%) | CLA – 2 (20%) | CLA – 3 (30%) | CLA – 4 (30%) # | | | | | | | 7. – | | Practice | Practice | Practice | Practice | | | | | | | Level 1 | Remember | 10% | 10% | 30% | 15% | | | | | | | Level I | Understand | 10% | 10% | 30% | 10% | | | | | | | Laval | Apply | 500/ | F00/ | 400/ | F00/ | | | | | | | Level 2 | Analyze | 50% | 50% | 40% | 50% | | | | | | | Lovel 2 | Evaluate | 400/ | 400/ | 200/ | 250/ | | | | | | | Level 3 | Create | 40% | 40% | 30% | 35% | | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., 100 % 100 % 100 % 100 % Total | Course Designers | | | |-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Krishna Raj<br>Sutherland<br>Krishna.Raj1@sutherlandglobal.com | Dr. J Mangayarkarasi<br>Associate Professor and Head, Dept. of English<br>Ethiraj College for Women<br>Chennai<br>imbwilson97@qmail.com | 1. Dr. Shanthichitra, Professor, & Head, Department of English, FSH,SRMIST | | Ann Mariya Thomson<br>RA2232105010015<br>III M.A English Literature<br>CSH, SRM IST<br>az1160@srmist.edu.in | Dr. K S Antonysamy<br>Associate Professor and Head, Dept. of English<br>Loyola College<br>Chennai<br>antonysamyks@loyolacollege.edu | 2.Dr. Pushpanjali Sampathkumar, Assistant Professor, Department of<br>English, FSH, SRMIST<br>3.Dr Anchal Sharma, Prof & Hod EFL SRMIST NCR Campus<br>4.Dr T Sridevi, Assistant Professor English, FSH Ramapuram SRM<br>5.Dr Shanmuga Priya, Assistant Professor SRMIST Trichirapalli Campus | | Course Co | ode UN | NS23M01L<br>NC23M01L<br>NO23M01L<br>YG23M01L | Course Name | NSS/NCC/NSO/YOGA | Course Category | М | Extension Activity Course | 0 ( | 0 | |--------------------------------|--------|----------------------------------------------|--------------------------------|-----------------------------|-------------------------|---|---------------------------|-----|---| | Pre-<br>requisite 1<br>Courses | Nil | | Co-<br>requisite Ni<br>Courses | I | Progressive Nil Courses | | | | | | Course Offe<br>Department | - | *** | | Data Book / Codes/Standards | Nil | | | | | ## Assessment is Fully Internal | Learning Assessment | | |-----------------------------------------------|-----------| | Assessment Tools | Marks | | Continuous Learning Assessment –I (CLA-I) | 20 Marks | | Continuous Learning Assessment -II (CLA-II) | 30 Marks | | Continuous Learning Assessment -III (CLA-III) | 30 Marks | | Continuous Learning Assessment –IV (CLA-IV) | 20 Marks | | Total Marks | 100 Marks | # Semester - III | Course | Ourse UCY23301T Cours | | 5 " " IN I I I | Course | | 2: : :: 2 ::: 2 | L | T | P | 0 | С | | |--------|-----------------------|------|-----------------------------------|----------|---|--------------------------|---|---|---|---|---|--| | Code | Code UCY23301T | Name | Radioactive and Nuclear chemistry | Category | C | Discipline Specific Core | 3 | 1 | 0 | 2 | 4 | | | | | | | | | | | | | | | | | Pre-<br>requisite<br>Courses | ı | Nil | Co-requisite<br>Courses | Nil | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|--------------------------------|------------------------|-----| | Course Offeri<br>Department | ing | Chemistry | | Data Book /<br>Codes/Standards | | Nil | | Course Learning Rationals (CLR): | | | | | | Pro | grar | n Le | arni | ng C | utco | ome | s (PL | <b>-</b> O) | | | | | | | | | | | | | |---------------------------------------------------|--------------------------------------------------------------------------------------|----------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|-----------------|---------------|--------------|--------|--------|-----------|----|------|--|--------|--------|--|--|--|--| | CLR-1: Employ application and carbon dating. | s of radioactive chemistry in nuclear power | Learning | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | | | | | | | | CLR-2 : Exploit rate of char decay. | decay. | | | | 7 | 1 | | | 4 | | | | | | | | | | | | | | | | | | | CLR-3: Utilize the proper is | | | | | nes | | | ge | | ١. | | | | | | l | | | | | | | | | | | | CLR-4 : Address types of n and decay reaction | Sloom) | Sloom) | loom) | loom) | (moo | (mool | (mool | (mool | (mool | (mool | (mool | ledge | cepts | iscipli | dge | ion | Knowledge | ١, | Jata | | Skills | Skills | | | | | | CLR-5: Employ the binding nucleus. | evel of Thinking (Bloom) | Know | f Con | ated D | nowle | ializat | | eling | rpret [ | Skills | ing SI | | Skills | | | | | | | | | | | | | | | Course Learning Outcomes (CLO): | Course Learning butcomes CLO): At the end of this course, learners will be able to: | | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | Communication | Analytical S | PSO -1 | PSO -2 | PSO-3 | | | | | | | | | | | CLO-1 : Understand the bas | sics of Radioactive chemistry applications: carbon dating. | 4 | Н | | - | ş | j. | - | М | - | - | - | - | Н | - | - | - | | | | | | | | | | | CLO-2 : Realize the concept context of nuclear of | t of rate of change and half- life in the decay. | 4 | 1.74 | Н | | | Н | L | - | - ( | - | - | - | - | - | - | - | | | | | | | | | | | CLO-3 : Use proper isotopic nuclear reaction. | 4 | М | | | 4 | М | - | - | - | - | - | - | - | - | Н | - | | | | | | | | | | | | CLO-4 : Identify and define processes including | 4 | Н | | | Н | _ | - | L | 1 | - | )- | - | - | - | - | - | | | | | | | | | | | | CLO-5 : Define binding ene | 4 | - | Н | - | - | - | - | Н | - | - | L | Ī | - | - | -<br> | - | | | | | | | | | | | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |--------|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------| | S-1 | SLO-1 | Radioactivity:<br>introduction. Types<br>and Units of<br>Radioactivity | Transmutation or disintegration of elements. Discovery of artificial transmutation | Isotope effects | Relation between nucleus stability and its packing fraction value | Nuclear fusion:<br>Discovery and<br>Examples | | 3-1 | SLO-2 | Detection and measurement of Radioactivity: | Important particles: alpha,<br>beta, deuteron, triton,<br>Neutrino, neutron, proton<br>and positron | Study of individual isotopes: ordinary and heavy hydrogen | Variation of packing fraction<br>with mas number and<br>relation between the packing<br>fraction and nuclear stability | Conditions necessary for nuclear fusion | | | SLO-1 | Electroscope method<br>Wilson's cloud<br>chamber method | artificial transmutation<br>reactions induced by<br>alpha, proton, gamma, | Preparation of deuterium | Mass Defect: Binding energy of a nucleus and its calculation | Energy released in nuclear fusion reactions | | S-2 | SLO-2 | Geiger-Muller counter method | deuterons, neutron and triton | Chemical properties and uses of deuterium | Variation of nuclear binding energy with mas number and its relation with nuclear stability | Amount of energy<br>released in the form<br>of one <sup>4</sup> <sub>2</sub> He nucleus<br>by the fusion of four<br><sup>1</sup> <sub>1</sub> H nuclei | | | SLO-1 | Types of Radioactive rays | Applications of artificial transmutation reactions: | Preparation of Tritium | Binding energy per nucleon: | Origin of the energy of the sun and stars | | S-3 | SLO-2 | Nature, mass, charge<br>and representation of<br>alpha, beta and<br>gamma rays | Discovery of new fundamental particles and their uses | Chemical properties and uses of Tritium. | Variation of binding energy<br>per nucleon with mass<br>number and its relation with<br>nuclear stability | Solar energy | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------| | S-4 | SLO-1 | Tutorial: Examples<br>showing natural<br>Radioactivity | Tutorial: construct the equations | Tutorial: construct the equations related to deuterium | Tutorial: Calculation of Mass<br>Defect | Tutorial: Nuclear fusion reactions | | S-5 | SLO-1 | Comparison between a beta particle and electron | Preparations of isotopes of various elements | Uses of radioactive isotopes as tracers: Medical, industry, agriculture, biological field and analytical chemistry | Nuclear shell model: Magic<br>numbers.<br>Nuclear reactions:<br>Introduction | Proton-proton cycle | | | SLO-2 | Soddy-Fajans and<br>Russel group<br>displacement law | Release of atomic energy in nuclear fission and fusion reactions | • | Difference between chemical and nuclear reaction | Carbon-nitrogen cycle | | S-6 | SLO-1 | Emission of an alpha,<br>Beta and positron<br>particles | Natural radioactive series:<br>4n, 4n+2, 4n+3 series | Isotones-definition and composition | Classifications of nuclear reaction | Hydrogen bomb | | 3-0 | SLO-2 | Addition of an electron:<br>Electron capture<br>process | artificial radioactive series:<br>4n+1 series | Isobars: characteristics<br>Production of isobars.<br>Isobaric isotopes | Bohr's theory of nuclear reactions. Q-value of a nuclear reaction | Comparison between hydrogen bomb and atomic bomb | | 1 | SLO-1 | Half-life of a radioactive substance | Isotopes: Representation and Characteristics | Nucleus: Discovery and properties | Nuclear fission: discovery | Detectors: scintillation counter and gas ionisation chamber | | S-7 | SLO-2 | Amount of a<br>radioactive substance<br>left undisintegrated or<br>disintegrated in n half-<br>life | Discovery and types of isotopes | Atomic number, Mass<br>number, atomic weight<br>and fractional atomic<br>mass | Bohr yield curve and Amount of energy released | proportional counter<br>and Cerenkov<br>counter | | S-8 | SLO-1 | Tutorial: Calculation of number of alpha and beta particles emitted | Tutorial: U-Pb Series | Tutorial: Calculation of age of wood | Tutorial: Calculation of binding energy | Tutorial:: Different<br>Detectors | | | SLO-1 | Disintegration constant | Separation of isotopes:<br>gaseous and Thermal<br>diffusion method | Calculation of atomic<br>mass of an element<br>having isotopes of<br>different mass numbers | Liquid drop model | Accelerators, cyclotron | | S-9 | SLO-2 | Relation between half-<br>life period and<br>disintegration constant | Fractional evaporation,<br>distillation process Gravity<br>and electromagnetic<br>method | Atomic forces operate inside the nucleus of an atom | Types of fission reactions<br>Chain reaction | Synchrocyclotron,<br>betatron | | S 40 | SLO-1 | Relation between t and to.5 Average life period. Relation between tav and to.5 | Identification of isotopes:<br>Aston's mass spectrograph | Meson exchange theory of the origin of nuclear forces | Atom bomb: Principle and explosion | applications of radioactivity | | S-10 | SLO-2 | Radioactive equilibrium: Law of successive disintegration | Dempster's mass<br>spectrograph | Nuclear stability. Factor affecting the nuclear stability | Components of Nuclear<br>reactor: Moderators,<br>controlling rods, fuel<br>element, heat transfer agent,<br>and protective chamber | activation<br>analysis | | S-11 | SLO-1 | Comparison between radioactive and chemical equilibrium | Production of an isotope<br>by the emission of one<br>alpha and two beta<br>particles | Even and odd number of proton and neutron | Uses of Nuclear reactor | isotopic dilution<br>technique | | | SLO-2 | Activity of a radioactive substance | Isotopes of hydrogen: structure and properties | Neutron to proton ratio and Packing fraction | Nuclear power plant:<br>Constitution and working | Radiometric titration. | | S-12 | SLO-1 | Tutorial: Calculation of N | | Tutorial: Calculate percentage of isotopes | Tutorial: Nuclear fission reactions | Tutorial: activation analysis | | | SLO-2 | | atomic weight | percentage of isotopes | TOUCHOITS | unaiyəiə | | 1. | S. Prakash, | G.D. | Tuli, S. | K. Basu. | R.D. | Madan, | Advanced | Inorganio | : Chemistry | <ul> <li>– I Sultan</li> </ul> | Chand 8 | Sons | Publishers | |----|-------------|------|----------|----------|------|--------|----------|-----------|-------------|--------------------------------|---------|------|------------| | | | | | | | | | | | | | | | 2. P. L. Soni, A Textbook of Inorganic Chemistry, Sultan Chand and Co., 1977. P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong, Shriver and Atkins' Inorganic Chemistry, 5th Edition 2010, W. H. Freeman and Company, 41 Madison Avenue, New York, NY 10010 - L. G. Miessler, J. P. Fischer, D. A. Tarr, Inorganic Chemistry, Fifth edition, Pearson, 2014. - D. L. Walter, J. M. David, T. S. Glenn, Modern Nuclear Chemistry, John Wiley & Sons, 2005 - P. A C McPherson, Principles of Nuclear Chemistry, Uk 2017 | Į | _earn | ing | Assessment | |---|-------|-----|------------| | | | | | Learning Resources | | <b>.</b> . | | Continuous Learning Assessment (50% weightage) | | | | | | | Final Examinati | on (50% weightage) | | |---------|------------------------------|--------|------------------------------------------------|-----------------------|----------|---------------|----------|----------------|----------|-----------------|--------------------|--| | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | 1 (10%) CLA – 2 (10%) | | CLA - 3 (20%) | | CLA - 4 (10%)# | | rınaı Examınatı | on (50% weightage) | | | | Level of Tilliking | Theory | Practice | | | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | Level I | Understand | 30% | - | 30% | | 20% | 7 | 20% | | 30 % | - | | | Level 2 | Apply | 40% | 1 | 50% | | 50% | 7/ 1 | 50% | | 50% | | | | Leveiz | Analyze | 40% | | 30% | _ | 30% | _ | 30% | 200 | 30 % | - | | | Lovel 2 | Evaluate | 30% | 77 | 20% | | 30% | | 30% | 7 | 20% | | | | Level 3 | Create | 30% | | 20% | - | 30% | - | 30% | W. | 20% | - | | | | Total | 10 | 0 % | 10 | 100 % | | 100 % | | 00 % | 100 % | | | # CLA - 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | |------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director, Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@jitm.ac.in | Dr. S. Shanmugan, SRMIST | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | Prof. Dr. M. Arthan <mark>areeswa</mark> ri, SRN<br>IST | | Course | UCY23302J | Course | | Course | | | L | T | P | 0 | C | | |--------|-----------|--------|----------------------------------------|----------|---|--------------------------|---|---|---|---|---|--| | Code | UCY23302J | Name | Functional Groups in Organic Chemistry | Category | С | Discipline Specific Core | 3 | 0 | 3 | 2 | 4 | | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|------------------------------|------------------------|-----| | Course Offer<br>Department | ing | Chemistry | | | ata Book /<br>odes/Standards | | Nil | | Course Learning<br>Rationale<br>(CLR): | Learning | Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | | |----------------------------------------------------------|------------------------------------------------------|---------------------------------|-----------------------|-------------------------|------------------------------|----------------------|-------------|--------------------|--------------------|-------------------------|----------------------|------------------------|---------------|------------|--------|--------|-------| | CLR-1: Gain knowledge o | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | CLR-2 : Acquire knowledge | on alcohols, ethers, thiols, phenols. | Tarre | | | | į | | | | | | | | | | | | | CLR-3 : Promote the impo | rtance of carboxylic acid and 'N' containing | (moc | 7 | septs | isciplines | dge | | ge | • | ata | | cills | <u>s</u> | | | 1 | | | CLR-4 : Understand the transformations | uses of functional groups and their | | ledge | | | | ioi | Knowledge | | | | | | | | 1 | | | CLR-5 : Acquire basic und | ing (Bl | Know | Con | ated D | nowle | Specialization | | eling | rpret [ | Skills | ing Sk | on Skills | Skills | | | | | | | A PURE | i<br>¥ | ıtal | 0 0 | Seli | ΞK | bec | 1 | bo | nte | Ve | 50 | Sati | S | | i | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | evel of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | ink with Related Disciplines | Procedural Knowledge | Skills in S | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | CLO-1: Understand the ba | sic concepts of functional groups | 4 | H | - | H | - | - | - | Н | | - | - | - | - | - | - | - | | | bout the organic reaction mechanism | 4 | Н | Н | - | - | Н | - | - | - | - | - | - | - | - | - | - | | CLO-3 : Understand the imcompounds | 4 | Н | Ŧ | Н | l. | - | М | - | 1 | ÷ | - | - | - | - | - | - | | | CLO-4 : Apply knowledge of new organic mo | 4 | Н | | 2 | Н | - | 1,2 | L | - ( | - | > | - | - | - | - | - | | | CLO-5: Gain basic unders chemical reaction applications. | | Н | Н | d | | i | _ | Н | - | - | - | - | - | - | - | - | | | Duratio | on (hour) | 18 | 18 | 18 | 18 | 18 | |---------|-----------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------| | S-1 | SLO-1 | SLO-1 Alcohols: 1°, 2°, 3° alcohols; properties Aldehyde and ketone: properties | | Monocarboxylic acids preparation | Introduction: Active methylene compounds | Nitro compounds (Aliphatic and Aromatic): Nomenclature & classification | | | SLO-2 | Synthesis:redu-<br>ction reaction,<br>addition reaction<br>to carbonyl<br>compounds | Polarization of carbonyl bond and its reactivity | Properties | Introduce different substituents | General<br>methods of preparation | | S-2 | SLO-1 | Protection of alcohol Synthesis and reactions of diols | Synthesis using oxidation reactions, reduction and hydration reactions | Reactions of monocarboxylic acids | Acidity and synthesis | Properties and reaction with alkali and its synthetic Applications Condensation reaction with mechanism | | | SLO-2 | Synthesis and reactions of triols Introduction of thiols | Synthesis using oxidation reactions, reduction and hydration reactions | Reactions of monocarboxylic acids | Preparation and synthetic applications of diethyl malonate | Mannich reaction and<br>Hydrolysis reaction | | S-3 | SLO-1 | Thiols: acidity and reactivity. | Tautomerization<br>Schiff base formation and<br>their stability | Typical reactions of dicrboxylic acids. | Preparation and synthetic applications of diethyl malonate | Reaction with nitrous acid | | Duratio | n (hour) | 18 | 18 | 18 | 18 | 18 | | | |---------|----------------|------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | | SLO-2 | Phenols: acidity and reactivity | Reduction of carbonyl<br>group to alkane and<br>alcohol | Reactions of hydroxy acids and unsaturated acids | Preparation and synthetic applications of diethyl malonate | Electrophilic substitution:<br>Halogenation, Nitration<br>and sulphonation | | | | S-4-6 | SLO-1<br>SLO-2 | Introduction,<br>Safety Measures | Lassaigne's Test for N,<br>S, Cl, Br, I | Functional Group test for amine and nitro | Preparation of derivatives of amine | Single detection of organic compounds | | | | | SLO-1 | Reimer–Tiemann<br>reaction; Kolbe's–<br>Schmidt Reactions; | Addition of Grignard reagents Addition of Gilman reagents | Succinic/phthalic acid | Preparation and synthetic applications of acetylacetone | Amines: Classification<br>General methods of<br>preparation | | | | S-7 | SLO-2 | Vilsmeier-Haack reaction. | Aldol condensation | Lactic, malic acid | Preparation and synthetic applications of acetylacetone | Physical properties Basicity of amines: Effect of substituent Solvent and steric effects | | | | S-8 | SLO-1 | Fries and Claisen rearrangements with mechanism | Cannizzaro reaction Benzoin condensation | Tartaric, citric acids<br>Maleic and fumaric<br>acids | Preparation and synthetic applications of ethyl acetoacetate. | Distinction between 1°,<br>2° and 3°,<br>amines<br>using Hinsberg"s<br>method, nitrous acid<br>method | | | | 3-0 | SLO-2 | Fries and Claisen<br>rearrangements<br>with mechanism | Knoevenagel condensation | Preparation and reactions of acid chlorides | Preparation and synthetic applications of ethyl acetoacetate. | Reactions with Mechanism: Gabriel Phthalimide Synthesis, Hoffmann Bromamide reaction | | | | S-9 | SLO-1 | Ethers:<br>properties;<br>synthesis | Claisen–Schmidt condensation Mannich reaction | Preparation and reactions of esters and amides | Reactions of<br>Acetylacetone and ethyl<br>acetoacetate (alkylation,<br>conversion to ketone,<br>mono-and dicarboxylic<br>acid). | Carbylamine<br>Reaction<br>Mannich<br>Reaction | | | | | SLO-2 | Williamson ether synthesis | Stork enamine reactions | Preparation and reactions of amides | Reactions of Acetylacetone and ethyl acetoacetate (alkylation, conversion to ketone, mono-and dicarboxylic acid). | Hoffmann's exhaustive methylation Hofmann elimination reaction | | | | S-10-12 | SLO-1<br>SLO-2 | Lassaigne's Test<br>for N, S, Cl, Br, I | Functional Group test for alcohol, phenol and carboxylic acid | Preparation of derivatives of alcohol, phenol | Preparation of derivatives of carbonyls | Single detection of organic compounds | | | | | SLO-1 | Synthesis and hydrolysis of t-butyl ethers | Wittig reaction Horner-Wadsworth- Emmons reaction | Comparative study of nucleophilic substitution at acyl group | Reactions of Acetylacetone and ethyl acetoacetate (alkylation, conversion to ketone, mono-and dicarboxylic acid). | Cope<br>Elimination<br>Nucleophilic<br>substitution on the ring | | | | S-13 | SLO-2 | Synthesis and hydrolysis of t-butyl ethers | Baeyer Villiger oxidation, α-substitution reactions | Mechanism of acidic<br>and alkaline<br>hydrolysis<br>of esters | Reactions of Acetylacetone and ethyl acetoacetate (alkylation, conversion to ketone, mono-and dicarboxylic acid). | Nitriles: Nomenclature<br>and uses; Preparation<br>from the dehydration of<br>amides, aldoximes,<br>Grignard reagents,<br>dehydrogenation of<br>primary amines; | | | | Duratio | on (hour) | 18 | 18 | 18 | 18 | 18 | |---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | S-14 | SLO-1 | Epoxide:<br>synthesis,<br>opening in<br>presence of<br>Lewis acid | Oxidations and reductions<br>(Clemmensen, Wolff-<br>Kishner, LiAIH <sub>4</sub> ,<br>NaBH <sub>4</sub> , MPV, PDC and<br>PCC) | Claisen condensation Dieckmann reactions | Reactions of<br>Acetylacetone and ethyl<br>acetoacetate (alkylation,<br>conversion to ketone,<br>mono-and dicarboxylic<br>acid). | Preparation using substitution reaction in alkyl halides and tosylates; Addition reaction with HX, NH3 and reaction with aqueous ROH with mechanism | | | SLO-2 | Epoxide: synthesis, opening in absence of Lewis acid Epoxide: Oxidations and reductions (Clemmensen, Wolff-Kishner, LiAlH4, NaBH4, MPV, PDC and PCC) | | Reformatsky reactions | Uses in synthesis of cycloalkanes | Reduction reactions-<br>catalytic reduction and<br>Stephen's reaction,<br>Condensation reactions-<br>Thorpe Nitrile<br>Condensation with<br>mechanism. | | S-15 | SLO-1 | Reactions of<br>epoxides with<br>alcohols,<br>ammonia<br>derivatives and<br>LiAlH <sub>4</sub> | Oxidations and reductions<br>(Clemmensen, Wolff-<br>Kishner, LiAlH <sub>4</sub> ,<br>NaBH <sub>4</sub> , MPV, PDC and<br>PGC); | Hofmann bromamide<br>degradation. | Uses in synthesis of cycloalkanes | Isonitriles: Nomenclature and uses; Preparation of Isonitriles from Carbylamine reaction, substitution in alkyl halides and dehydrogenation of N-substituted formamides; | | ******* | SLO-2 | Reactions of<br>epoxides with<br>alcohols,<br>ammonia<br>derivatives and<br>LiAIH4 | Addition reactions of unsaturated carbonyl compounds: Michael addition | Curtius<br>rearrangement | Uses in synthesis of cycloalkanes | Discussion on reactions with mechanism of hydrolysis and reduction; addition with – HX, X2 and sulphur | | S-16-18 | SLO-1<br>SLO-2 | Lassaigne's Test<br>for N, S, Cl, Br, I | Functional Group test for carbonyls, ester, unsaturation | Preparation of derivatives of alcohol, phenol | Single detection of organic compounds | Repe <mark>at experi</mark> ment | - R.T. Morrison and R.N. Boyd, S. K. Bhattacharjee, Organic Chemistry, 7th edition, Pearson India, 2011. 1. - 2. J. Clayden, N. Greeves, and S. Warren, Organic Chemistry (Second Edition) Oxford publication 2012. - I. L. Finar, Organic Chemistry, Vol. 1, 6th edition, Pearson Education India 2002. 3. - 4. S. H. Pine, Organic Chemistry 5th edition, Mcgrawth Hill, Newyork, 1987. ### Learning Resources #### 5. Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc 2017. - 1. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, Practical Organic Chemistry, 5th Ed., Pearson, 2012 - 2. V. K. Ahluwalia, R. Aggarwal, Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press, 2000. - 3. V. K. Ahluwalia, S. Dhingra, Comprehensive Practical Organic Chemistry: Qualitative Analysis, University Press 2000. ## Learning Assessment | _ | D | | Conti | inuous Le | Final Examination (50% weightage) | | | | | | | | | |---------|------------------------------|---------------|----------|---------------|-----------------------------------|---------------|----------|--------|----------|-----------------------------------|----------|--|--| | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | Theory | Practice | | | | Level 1 | Remember | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | 30% | | | | Level I | Understand | | | | | | | 2070 | 20 /0 | 30 % | 30 % | | | | Level 2 | Apply | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | 50% | | | | Level 2 | Analyze | | 30 /6 | | | | | 30% | | | 30 /0 | | | | Level 3 | Evaluate | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | 20% | | | | Level 3 | Create | 30 /6 | 20% | 20% | 30% | 30 /0 | 30 /6 | 30 /6 | 30 /0 | 20 /0 | 20 /0 | | | | | Total | 100 % | | 100 % | | 100 % | | 10 | 00 % | 100 % | | | | <sup>#</sup> CLA - 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | | | | | | | | | | |---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | | | | Or. Ravikiran Allada, Director,<br>unalytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@jitm.ac.in | 1. Dr. Palash Sanphui, SRMIST | | | | | | | | | | | Novugen Pharma, Malaysia<br>Email: <u>ravianalytical@gmail.com</u> | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | 2. Prof. M. Arthanareeswar<br>SRMIST | | | | | | | | | | | Course | UCY23303T | Course | | Course | | | L | T | P | 0 | C | |--------|-----------|--------|--------------------------------------|----------|---|--------------------------|---|---|---|---|---| | Code | UCY23303T | Name | Thermodynamics and Surface Chemistry | Category | С | Discipline Specific Core | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|----------------|------------------------|-----| | Course Offer | ing | Chemistry | | Da | ata Book / | | Nil | | Department | | Chemistry | | Co | odes/Standards | | NII | | Course I<br>Rational<br>(CLR): | Learning<br>e | The purpose of learning this course is to: | Learning | | | | Pro | grar | n Le | arni | ng C | Outco | ome | s (Pl | <b>_O</b> ) | | | | |----------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------|-----------------------|-------------------------|------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|------------------------|---------------|---------------|--------|--------|-------| | CLR-1: | Learn the thermody | rnamics properties and its limitations | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | | cepts of energy, heat, work, enthalpy,<br>ies, and the relation between them. | In | b | | S | | | | | | | | | | | | | | CLR-3: | Understand the concept of entrany and it's change in | | Ê | ge | ste | ine. | a) | | Knowledge | | а | | | | | | | | | CLR-4: | reversible and irreversible processes. | | (Bloo | owlec | once | d Disc | wledge | zation | | <b>D</b> | et Dat | S | Skills | Skills | | | | | | CLR-5: | Understand the sur | face chemistry of solids and thin films. | king | 국 | S | ate | Š | ciali | ize | eli | udi | S | ving | ion | Skills | | | | | Outcom<br>(CLO): | | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Discipline | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical Sk | PSO -1 | PSO -2 | PSO-3 | | CLO-1: | Explain three laws | of thermodynamics | 4 | Н | - | - | - | - | М | - | - | | - | - | Н | - | - | - | | CLO-2: Explain the concept of thermochemistry and partial molar properties | | 4 | Н | Н | | | Н | - | - | 1 | - | - | - | | - | - | - | | | CLO-3: | Derive the expressi | on of equilibrium constants | 4 | Н | - | 1 | | М | - | L | - | 1 | - | - | - | - | - | - | | CLO-4: Explain the concept of partial molar properties | | 4 | Н | | | Н | М | 7 | - | - | - | 1 | - | - | - | - | - | | | CLO-5: | Explain the surface | chemistry of the materials | 4 | | Н | ٠, | ١- | - | - | Н | L | - | - | - | - | - | - | - | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------| | S-1 | SLO-1 | Introduction to chemical thermodynamics | Second law of thermodynamics | Free energy function | Third law of thermodynamics | Surface Chemistry -<br>Introduction | | 3-1 | SLO-2 | Applications and<br>limitations of<br>thermodynamics | Need for second law of thermodynamics | Helmholtz free energy equation | Entropy, molar properties and free energy | Adsorption by solids | | | SLO-1 | System- open,<br>closed and<br>isolated system | Spontaneous process-<br>Cyclic process | Variation of free<br>energy with T, P and<br>V | Gibbs-Duhem equation | Chemisorption | | S-2 | SLO-2 Macroscopi properties Phase, variand state o system | | Cyclic process - Carnot cycle- Efficiency of heat engine | Criteria for irreversible process | Dependence of<br>thermodynamic parameter<br>on composition,<br>temperature, pressure | Applications of adsorption | | SLO-1 | | Thermodynamics | Thermodynamics equilibrium, Entropy change- | | Chemical potential in case of<br>system of ideal gas - | Adsorption of gases by solids | | S-3 | SLO-2 | processes and properties of the system | Isothermal, Isobaric and Isochoric process | Criteria for reversible process | derivation | Solids | | S-4 | SLO-1 | Tutorial:<br>Properties of | Tutorial: Calculation of change of internal | Tutorial: Calculation of | Tutorial: Gibbs-Duhem equation – Practice | Tutorial: Calculate the volume of the gas | | J-4 | SLO-2 | macroscopic<br>system | energy | Temperature | | | | | SLO-1 | First law of | | Limitation of criteria of | Clapeyron-Clausius | Factors influencing | | S-5 | SLO-2 | thermodynamics -<br>Internal energy,<br>State functions | Boltzmann equation | reversible and irreversible process | equation - derivation | adsorption | | S-6 | Heat capacity- | | Standard entropy | Gibbs Helmholtz<br>equation - derivation | Application of Clapeyron-<br>Clausius equation for liquid<br>– vapour equilibria | The Freundlich adsorption isolhenn | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |------------|-------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------| | | | Cv in gaseous system | | | | | | | SLO-2 | Isothermal expansion | Entropy change in an isothermal expansion of. an ideal gas | | Application of Clapeyron-<br>Clauses equation for solid-<br>liquid equilibria | The Langmuir theory of adsorption | | | SLO-1 | Work done in reversible isothermal expansion | Physical significance of entropy | Fugacity and physical significance | Chemical equilibria: Criteria of thermodynamic equilibrium | The Langmuir theory of adsorption | | <b>S-7</b> | SLO-2 | Work done in irreversible isothermal expansion and Adiabatic expansion | Calculation of entropy<br>changes of an ideal gas<br>with change in P, Vand<br>T | Activity coefficient and significance | Law of mass action - Vant<br>Hoff reaction isotherm | The BET theory of multilayer adsorption | | • | SLO-1 | Tutorial: Nature of | Tutorial: Expansion of | Tutorial: | Tutorial- Applications of law of mass action | Tutorial: Calculation of adsorption of gases on | | S-8 | SLO-2 | heat and work-<br>practice | ideal gas - properties | Determination of<br>Fugacity | ( ) A | solids | | 7 | SLO-1 | Nature of heat | Work. done in | Determination of | Tutorial - Applications of law of mass action | Calculation of adsorption of gases on solids | | S-9 | SLO-2 | and work-practice | Reversible Isothermal<br>Expansion | Fugacity | | | | | SLO-1 | Enthalpy of | Epolitic Walter | 1 | Thermodynamic derivation of relation between Gibbs | Derivation of the BET equation | | S-10 | SLO-2 | solutions -<br>Kirchoff equation | Entropy of mixture of ideal gas | Inversion temperature and standard states | free energy of a reaction and reaction coefficient. | oquation | | | SLO-1 | Bond energies- | THE WAY | As I has yet | Equilibrium constants and their dependence on T and | Types of adsorption isotherms | | S-11 | SLO-2 Introduction and applications | | Boltzmann equation | Maxwell equation | P | 130th Offina | | | SLO-1 Hess law of constant heat summations and applications | | Standard entropy and | Relation between Joule-Thomson | Raoults law, Osmotic pressure- relation between | Adsorption from solution and Insoluble surface | | S-12 | | | physical significance of entropy | coefficient and other<br>thermodynamic<br>parameter | osmotic pressure, | films on liquids | ### Theory: # Learning Resources 1. B.R. Puri, L.R. Sharma, K.K. Kalia, Principles of Inorganic Chemistry, Shobulal Nagin Chand and Co, 2001. B.R. Puri, L.R. Sharma and M.S. Pathania, Principles of Physical Chemistry, 35th edition, New Delhi ShobanLal Nagin Chand and Co, 2013. P.W.Atkins, Physical Chemistry, W.H. Freeman and Company 2006. 4. P.C. Hiemenz, Principles of colloids and surface chemistry, 2ndEd., Marcel DekkerInc., 1986 | earning | Assessment | |---------|------------| | | | | | Division | | Conti | inuous Le | arning Ass | sessment | (50% weig | jhtage) | | Final Examination (50% weightage) | | | | | | | |---------|------------------------------|--------|----------|-----------|------------|----------|-----------|---------|----------|-----------------------------------|--------------------|--|--|--|--|--| | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Filiai Examinati | on (50% weightage) | | | | | | | | Level of Tilliking | Theory | Practice | | | | | | | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | | | | | Level I | Understand | 30% | - | 30% | | 20% | | 20% | - | 30% | - | | | | | | | Level 2 | Apply | 40% | | 50% | _ | 50% | | 50% | | 50% | | | | | | | | Level 2 | Analyze | 40% | - | 30% | - | 30% | - | 30% | - | 30 % | - | | | | | | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | | | | | | Level 3 | Create | 30% | - | 20% | - | 30% | - | 30% | - | 2076 | - | | | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 1 | 00 % | | | | | | <sup>#</sup> CLA - 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: gsekar@iitm.ac.in | Dr. G. Madhuraiveeran,<br>SRMIST | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | <b>2.</b> Prof. M. Arthanareeswari<br>SRMIST | | Course | Course | | Course | _ | | L | T | P | 0 | C | 1 | |--------|----------|----------------|----------|---|-------------------------|---|---|---|---|---|---| | | <br>Name | Allied Physics | Category | G | Generic Elective Course | 3 | 0 | 3 | 2 | 4 | | | Pre-<br>requisite<br>Courses | Nil | | Co-<br>requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|---------------|-----------------------------|--------|--------------------------------|------------------------|-----| | Course Of<br>Departmen | • | Physics and I | Nanotechi | ากไกสบ | Data Book /<br>Codes/Standards | Nil | | | Course<br>Learning<br>Rationale<br>(CLR): | The purpose of learning this course is to: | Le | arni | ing | | | | Pro | gran | n Le | arni | ng C | Outc | ome | es (P | LO) | | | | |------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|----------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|--------------------|-----------------|-----------------|---------------|-------------------|---------|---------|---------| | CLR-1: un | derstand the fundamentals of physics | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | aluate and learn the structural, optical, nuclear and electronic operties of solids | | | | | A | | | | | | | | | | | | | | | | phasize the significance of green technology and its<br>plications | | | | 4 | ۹, | 4 | 1 | | | | | | ħ. | | | | | | | | in comprehensive knowledge and sound understanding of<br>adamentals of light and material properties | (mc | (% | (% | ge | ts | iplines | | 1 | edge | l. | <b>~</b> | | | | | | | | | recognize how and when physics methods and principles can help address problems in their major | | | | Attainment (%) | Knowled | Concep | ted Disc | owledge | alization | e Knowl | ling | pret Data | Skills | ng Skills | on Skills | S | | | | | Course<br>Learning<br>Outcomes<br>(CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret | Investigative S | Problem Solving | Communication | Analytical Skills | PSO - 1 | PSO - 2 | PSO - 3 | | <b>CLO-1</b> : Un | derstand and solve problems on fundamentals of physics | 2 | 80 | 75 | Н | Н | - | 1 | - | - | - | Н | - | - | - | Н | - | - | - | | CLO-2: Ac | quire knowledge on materials properties | 2 | 80 | 70 | Н | Н | - | 7-5 | - | - | - | Н | - | - | - | Н | - | - | - | | (.) ()=.5 ' | rrelate the acquired knowledge and use it for various<br>olications | 2 | 75 | 70 | Н | Н | ď, | - | | - | - | Н | - | - | - | Н | - | - | - | | <b>CLO-4</b> : Fa | miliarize themselves with interaction of light and matter | 2 | 80 | 75 | Н | Н | | - | - | - | - | Н | - | - | - | Н | - | • | - | | CLU-J. | ply physics methods and principles to solve problems in the jors. | 2 | 80 | 75 | Н | Н | 'n | - | | - | - | Н | - | - | - | Н | - | - | - | | Duratio | on (hour) | 18 | 18 | 18 | 18 | 18 | |---------|-----------|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------| | S-1 | SLO-1 | Sources of conventional energy | Space lattice basis | Kinetic theory of gases | Electric charge -<br>conservation of charge,<br>Permittivity | Time period - amplitude – phase | | 3-1 | SLO-2 | Need for non -<br>conventional<br>energy resources | Unit Cell, lattice parameters | ldeal gas laws | Coulomb's law | Wave nature of light | | S-2 | SLO-1 | Solar energy and solar cells and its applications | Two dimensional and three dimensional Bravais lattices | Van Der Waal's equation of states | Electric field | Huygens's principle | | | SLO-2 | Bio mass energy | The seven crystal systems | Derivation of Van Der<br>Waal's equation of states | Electric potential | Interference and Coherence | | S-3 | SLO-1 | Generation and applications of bio mass energy | Cubic crystal system and symmetry | Pressure of an ideal gas | Gauss's law | Young's double slit experiment | | 3-3 | SLO-2 | Wind energy<br>generation and<br>applications | | Derivation of Pressure of an ideal gas | Applications of Gauss's<br>law | Interference from thin films | | S-4 to | SLO-1 | Introduction to the | Calculation of lattice cell | Determination of specific<br>heat capacity of the liquid | Calibration of Voltmotor | Determination of | | S-6 | SLO-2 | Lab<br>experimentation | parameters by X-ray<br>diffraction | by Newtons's law of cooling | using potentiometer | dispersive power of a prism using spectrometer | | S-7 | SLO-1 | Nuclear energy -<br>Atomic structure | Density and atomic packing fraction | Laws of thermodynamics | Conductors and dielectrics | Michelson's interferometer | | 3-1 | SLO-2 | Alpha, beta and gamma radiation | Crystal directions and planes | Entropy | Electric Current | Diffraction - Wave theory of light | | S-8 | SLO-1 | Law of radioactive<br>decay, Decay<br>constant | Introduction to Miller indices | Change of entropy in reversible processes | Ohm's law | Light and Optics | | | SLO-2 | Half-life and mean life | Interplanar distance | Change of entropy in<br>irreversible processes | Magnetic induction | Fermat's principle | |-----------------------|-------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------| | | SLO-1 | Nuclear energy | Hexagonal closely packed (HCP) structure | Low temperature | Permeability and susceptibility | Laws of reflection and refraction | | S-9 | SLO-2 | Applications of nuclear energy | Derivation of HCP atomic packing fraction | Joule - Kelvin effect-<br>introduction | Numerical<br>Problems/Demos/<br>Simulations/Seminars on<br>Permeability and<br>susceptibility | Total internal reflection | | S-10 to | SLO-1 | Study of the I-V | Dielectric constant | Determination of thermal conductivity of a bad | Calibration of Ammeter | Study of attenuation and propagation | | S-10 to | SLO-2 | Characteristic of a<br>Solar Cell | Measurement | conductor using Lee's disc method | using potentiometer | characteristics of optical fiber cable | | S-13 | SLO-1 | Mass defect | Diamond crystal structure | J-K effect- theory | Magnetic field due to a current carrying conductor-Biot-Savart's law | Mirrors and lenses | | | SLO-2 | Nuclear binding energy | Derivation of APF for diamond structure | Applications of J-K effect | Ampere's circuital law | Lens makers formula | | | SLO-1 | Fission reaction | X-ray diffraction | Linde's process | Faraday's law | Defects of images | | S-14 | SLO-2 | Evaluating nuclear energy generation by fission reaction | Problems/Demos/<br>Simulations/Seminars on<br>X-ray diffraction | H, He, Nitrogen gas<br>liquefaction | P and N type<br>semiconductors | Coma distortion | | 0.45 | SLO-1 | Fusion reaction | Single crystal diffraction | Adiabatic<br>demagnetization-<br>introduction | Junction Diode | Spherical aberration in lenses | | S-15 | SLO-2 | Fusion energy cycles | powder diffraction | Working principle of<br>adiabatic<br>demagnetization- | Characteristics of<br>Junction Diode | Chromatic aberration in lenses | | S-16 to S | SLO-1 | Hall effect- Hall | Revision class for | Determination of specific<br>heat capacity of the liquid | Band gap determination | Revision class for | | - 18 | SLO-2 | coefficient<br>determination | experiments | by Joule's calorimeter<br>method | using Post Office Box –<br>Specific resistance | experiments | | Learning<br>Resources | Z | (S. Cha<br>2. Fundan | Physics, Murugeshan and<br>nd publications, revised edi<br>nentals of Physics, Resnick<br>ey Publication, 8th Edition, | tion, 2015).<br>R. and Halliday 4. | Ditlman R.H., (Tata Mo | | | | Bloom's | Continuous Learning Assessment (50% weightage) | | | | | | | | | Final Examination (50% weightage) | | | | |---------|------------------------|------------------------------------------------|----------|---------------|----------|--------|----------|---------|----------|--------|-----------------------------------|--|--|--| | | Level of | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - | 3 (20%) | CLA – 4 | (10%)# | | | | | | | | Thinking | Theory | Practice | | | | | Level 1 | Remember<br>Understand | 30 % | 30 % | 30 % | 30 % | 30 % | 30 % | 30 % | 30 % | 30 % | 30 % | | | | | _evel 2 | Apply<br>Analyze | 40 % | 40 % | 40 % | 40 % | 40 % | 40 % | 40 % | 40 % | 40 % | 40 % | | | | | _evel 3 | Evaluate<br>Create | 30 % | 30 % | 30 % | 30 % | 30 % | 30 % | 30 % | 30 % | 30 % | 30 % | | | | | | Total | 100 % 100 % 100 % | | | | | | | ) % | 100 % | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | oralised story | | | |-------------------------------------------------------------|---------------------------------------------------------------|---------------------------| | Course Designers | | | | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. R Seshadri, Titan Company Limited, seshadri@titan.co.in | Prof. C Vijayan, IIT Madras,<br>cvijayan@iitm.ac.in | Dr. Rohit Dhir,<br>SRMIST | | Dr. N Vijayan, NPL, nvijayan @nplindia.org | Prof. S Balakumar, University of Madras, balakumar@unom.ac.in | Dr. Gunasekran,<br>SRMIST | | | | G | Generic elective course | LTPOC | |--|--|---|-------------------------|-------| | Course | | Course | | Course | | 2 | 4 | 0 : | 2 | 1 | |--------|-----------|--------|---------------|----------|--|---|---|-----|-----|---| | Code | UPY23G02T | Name | Laser Physics | Category | | J | 1 | ٠ | ۱ ۲ | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-<br>requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|---------------|-----------------------------|------|--------------------------------|------------------------|-----| | Course Of<br>Departmen | • | Physics and N | lanotechno | loav | Data Book /<br>Codes/Standards | Nil | | | Course<br>Learning<br>Rationale<br>(CLR): | The purpose of learning this course is to: | Le | arni | ng | | | | Pro | gran | n Le | arni | ng C | Outc | ome | s (P | LO) | | | | |-------------------------------------------|------------------------------------------------------------------------------------|---------------------------|--------------------------|----------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|---------------|-----------------|---------------|-------------------|---------|---------|---------| | CLR-1: | acquire the knowledge on laser beam characteristics | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | acquire knowledge for solving problems in laser physics | | | | | | es | | | е | | | | | | | | | | | CLR-3: | analyze Fabry-Perot cavity to understand laser resonator | Ē | % | (% | ge | ts | plir | | | g | | ~ | | | | | | | | | CLR-4: | gain knowledge on Q-switched and mode-locked lasers | 8 | <u>ج</u> | ) t | 9 | Эер | isci | ge | on | × | | ate | | Skills | S | | | | | | CLR-5 : | acquire the knowledge on lasers classes and laser safety | ing (E | icienc | Attainment (%) | Know | Conc | ted D | owlec | alizati | e Knc | ling | pret [ | Skills | | on Skills | <u>_s</u> | | | | | Course<br>Learning<br>Outcomes<br>(CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Atta | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative | Problem Solving | Communication | Analytical Skills | PS0 - 1 | PS0 - 2 | PSO - 3 | | CLO-1: | understand the basic characteristics of a laser | 2 | 80 | 75 | Н | Н | - | - | | - | ٠. | | | | | Н | - | - | - | | CLO-2: | analyse Fabry Perot cavity to understand a laser resonator | 2 | 80 | 70 | Н | Н | - | - | - | - | -1 | - | - | - | - | Н | - | - | - | | CLO-3: | learn Rate equations to understand the dynamics of a laser | 2 | 75 | 70 | Н | Н | - | | - | - | - | - | - | - | - | Н | - | - | - | | CLO-4: | understand the conditions of stable resonators | 2 | 80 | 75 | Н | Н | - | - | 1 | - | - | - | - | - | - | Н | - | - | - | | CLO-5: | Knowledge on various types of lasers and the physics of higher harmonic generation | 2 | 80 | 70 | Н | Н | ď | | | - | - | - | | | - | Н | - | - | - | | | ration<br>our) | 12 | 12 | 12 | 12 | 12 | |-----|----------------|-----------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------| | | SLO-1 | General Introduction to lasers | | Geometrical optics<br>analysis of optical<br>resonators | Introduction to Q-switching | Coherence properties of laser light | | S-1 | SLO-2 | Spontaneous and<br>stimulated emission<br>Stimulated absorption | Ultimate line width of a | Condition for stable resonators | Dynamics of the Q-<br>switching process | Tempo <mark>ral cohere</mark> nce | | | SLO-1 | The laser idea | Einstein's A and B<br>Coefficients | Stability diagram for optical resonators | Electro-optical Q-switching | Spa <mark>tial cohere</mark> nce | | S-2 | SLO-2 | Gain medium,<br>pumping scheme and<br>optical feedback | Ratio of A and B at thermal equilibrium | Sources of resonator loss | Introduction to mode<br>locking | Young's double slit<br>experiment to understand<br>spatial coherence | | S-3 | SLO-1 | Properties of laser beams: Monochromaticity | Introduction to resonators | Laser rate equations | Mathematical interpretation for mode locking | Specific laser systems | | 3-3 | SLO-2 | Directionality,<br>coherence | Fabry-Perot cavity | Introduction to four level<br>laser system | Mathematical interpretation for mode locking | Ruby laser | | S-4 | SLO-1 | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | | | SLO-2 | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | | S-5 | SLO-1 | Modes of a cavity | Basic apparatus | Mathematical formulation of rate equations for four level laser system | Passive mode locking | He:Ne laser | | 3-3 | SLO-2 | Black body radiation | Elementary theory of<br>Fabry-Perot cavity | Mathematical formulation of rate equations for four level laser system | Active mode locking | Carbon dioxide laser | | S-6 | SLO-1 | Black body radiation | Transmission spectrum of a Fabry-Perot cavity | Condition for population inversion | Concept of Gain saturation | Dye lasers, semiconductor lasers | | 3-0 | SLO-2 | Calculation of mode density for black body | Coefficient of finesse/Quality factor | Threshold condition for four level system | Hole burning | DBR lasers | | S-7 | SLO-1 | Calculating number of<br>photons<br>per mode for black<br>body | Fundamental Gaussian<br>beam | Calculating threshold for<br>He-Ne laser | Spatial hole burning | Nd:YAG laser | |------|-------|----------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------------------------| | | SLO-2 | Comparison of black<br>body radiation with<br>laser radiation | Gaussian beam in<br>homogeneous medium | Integrating cavity rate equation | Longitudinal and transverse mode selection | Higher harmonic generation | | S-8 | SLO-1 | Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | | | SLO-2 | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | | S-9 | SLO-1 | Line shape functions | Gaussian beam focusing | Rate equations under steady state condition | Single mode operation | Physics of harmonic generation | | 3-3 | SLO-2 | Line-broade <mark>ning</mark><br>mechanisms | Gaussian beam focusing | Rate equations under<br>steady state condition | Multi-mode lasers | Physics of harmonic generation | | 0.40 | SLO-1 | Homogeneous<br>broadening | Higher order Hermite<br>Gauss beams | Variation of laser power around the threshold | Gain competition | Second harmonic generation | | S-10 | SLO-2 | Inhomogeneous<br>broadening | Higher order Hermite<br>Gauss beams | Variation of laser power around the threshold | Gain competition | Third harmonic generation | | 0.44 | SLO-1 | | Analysis of higher order<br>Hermite Gauss beams | Optimum output coupling | Optical amplifiers | Classification of lasers | | S-11 | SLO-2 | Natural, Doppler and Collison broadening | Analysis of higher order<br>Hermite Gauss beams | Laser spiking | Optical amplifiers | Laser safety | | | SLO-1 | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | | S-12 | SLO-2 | | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | | <b>Learning</b> | |-----------------| | Resources | - K. Thyagarajan and A.K. Ghatak, Lasers Theory and Applications, 1st Ed., Macmilan Publishers, 2010. O. Svelto, Principles of lasers, 4th Ed., Springer, 1998. - 3. A. Yariv, Quantum Electronics, 3rd Ed., John Wiley, New York, 1989 - Seigman, Lasers, 3rd Ed., Oxford Univ. Press, 1986. - B.E.A. Saleh and M.C. Teich, Fundamentals of Phtonics, 5. 2nd Ed., Wiley, 2012. | Learning | Assessment | | | | | | | | | | | |----------|------------------------|--------|----------|--------------|--------------|-------------|-------------|---------|----------|------------|--------------| | | Bloom's | | ( | Continuous L | earning Asse | essment (50 | % weightage | | | Final Exam | ination (50% | | | Level of | CLA - | 1 (10%) | CLA - | 2 (15%) | CLA - | 3 (15%) | CLA – 4 | 1 (10%)# | weig | ntage) ` | | | Thinking | Theory | Practice | | Level 1 | Remember<br>Understand | 30 % | 4- | 30 % | | 30 % | - | 30 % | | 30% | - | | Level 2 | Apply<br>Analyze | 40 % | Little | 40 % | · 17 | 40 % | TE/ | 40 % | - | 40% | - | | Level 3 | Evaluate<br>Create | 30 % | - | 30 % | - | 30 % | | 30 % | | 30% | - | | | Total | 100 | 0 % | 100 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. N Vijayan, NPL, nvijayan @nplindia.org | Dr. N Vijayan, NPL, nvijayan @nplindia.org | Dr. K Shadak Alee,<br>SRMIST | | Mr. R Seshadri, Titan Company Limited, seshadri@titan.co.in | Dr. M. Ameen Poyli, International School of<br>Photonics, Cochin University of Science and<br>Technology; ameenpoyli@cusat.ac.in | Dr. Anand M Shrivastav,<br>SRMIST | | Cours<br>Code | 1111 1 | 23AE1 | J Cou | ırse<br>me | A | ppli | ed Tamil – I | | | | Cour<br>ateg | | AE | Abi | lity E | nhai | ncem | ent ( | Cour | ses ( | AE) | L<br>1 | T F | | C<br>2 | |-------------------|-------------------------------------------------------------|--------------------------|-----------------------------|----------------------------|--------------------------------------|--------------------------|-------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------------------|----------------------|-------------------|---------|--------|--------|-------|-----|--------| | Pr<br>requ<br>Cou | isite | Nil | | | Co-<br>requisit<br>Course | | Nil | | | | Pro | gres<br>ours | | Nil | | | | | | | | | | | | | Cours<br>Depar | | ring | Ta | amil | | | Data Boo<br>Codes/S | | ards | | | | | | | | | Nil | | | | | | | | | Cours<br>Ration | | | T | he purpos | se of learni | ing ti | his course is | to: | | | Le | arni | ng | | P | rog | ram | Lea | rnin | g O | utco | mes | s (Pl | _O) | | | | | | | | <mark>ால்</mark> வள<br>செய்த | | · <b>F</b> | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-<br>2: | மொ<br>ஆற் | ழி <mark>ை</mark><br>றகை | யப் ப<br><mark>v அ</mark> ன | ிழைய<br>நடயச் | பின்றி எ<br>செய்த<br>ருகளி | <del>ாழு</del><br>ல் | தும் | | | | | 4 | V | 1 | 7 | | | | | h | | | | | | | 3:<br>CLR- | கடித | 5ம் எ | ழுதுப் | ் மு | <u>யச் செ</u><br>ற, கட்டு<br>படத் செ | ിഞ | σ . | | | b | | | ines | | | ge | | 5 | | | | ١ | | | | | CLR- | CLR-<br>படைப்பாற்றல் திறனை வளரச்<br>5: செய்தல் | | | | | ing (Bloom | iciency (%) | inment (%) | Knowledge | Concepts | ted Discipli | owledge | alization | e Knowlec | ling | pret Data | Skills | ng Skills | on Skills | SI<br>S | ١ | | | | | | Learni | Course<br>_earning<br>Outcomes<br>CLO):<br>சாற்களைச் சரியான | | | ill be able to: | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | | | | CLO-<br>1: | சொ<br>பொ<br>பெற | ருண்<br>பதல் | ாமை | பில் ப | பன்படு | 20 | தம் திறன் | г 2 | 75 | 60 | Н | L | Н | М | Н | Н | L | М | Н | М | L | Н | - | - | - | | 2: | வழி | மொ | பூபி ஆ | ,ளுபை | െ பெறு | தல் | | 2 | 80 | 70 | Н | М | Н | L | М | Н | L | Н | М | L | Н | Н | - | - | - | | CLO- | மக்ச | எளின் | ர் வாடி | | கூறுக<br>ல் விழுப | | வழி,<br>ங்களை | 2 | 70 | 65 | Н | L | Н | М | Н | Н | М | Н | L | Н | М | Н | _ | - | - | | CLO-<br>4: | மேம் | эпп( | ) ஆ <del>E</del> | | டு, திற<br>றை துட<br>ம | | மாகத் | 2 | 70 | 70 | Н | М | Н | L | Н | М | М | Н | Н | L | Н | Н | - | - | - | | | | | | படை<br><mark>ள</mark> ுதல் | க்கும் அ | ஆற் | றலை | 2 | 80 | 70 | Н | М | Н | Н | М | Н | L | М | Н | L | Н | Н | - | - | - | | | Duration 9 9 | | 9 | | | | | 9 | | | | | 9 | | | | | | 9 | | | | | | | | S-1 | SLO-1 தமிழின் மெய்யெழுத்த<br>தொன்மை ன் வகைகள் | | | | களி | | மர<br>மர | • | ரமு | த்த | J | | தா<br>பை | _ர்<br>மப் | Ц | | | | ந்<br>தை | • | ரறு | ம் | | | | | | SLO-2 தமிழின்<br>சிறப்புகள்<br>மவினம் | | | тю | | | மர | ய்<br>பில்<br>றப | ) | | | ദ | ளிu | ച ഒ | தா | ГШ | | | தை<br>வம் | | | | | | | | S-2 | SLO-1 கருத்து –<br>பரிமாற்றம் ஒற்று இடுதல் | | | ഖ | | | வாழ்விய<br>தத்துவம் | | | | ர் | | | )தா | т∟ | Ю | ரப | க்க | நவி | ത | த | | | | | | _ | S-2<br>SLO-2 பயன்பாட்டுத் வல்லினம் மிகு<br>தமிழ் இடங்கள் | | | | ف | | ПŒ | மெ | пЩ | ிக | <b>ां</b> | | ந்த<br>முத | ்<br>தெடி | ல் | | ഖ | J<br>செ | ரக | ഖി | മെ | Б | | | | | S-3 | SLO-1 | காலந்தோறும்<br>தமிழ் | வல்லினம் மிகா<br>இடங்கள் | பழமொழியும்<br>மனித<br>வாழ்வியலும் | ஒரு<br>பொருளை<br>மையமாகக்<br>கொண்டு<br>எழுதுதல் | புதுக்கவிதை/<br>புதிய வடிவக்<br>கவிதைகள் | |-----|-------|----------------------------------------------|------------------------------------------------|-----------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------| | | SLO-2 | எழுத்துகள் -<br>அறிமுகம் | எழுத்துப்பிழை<br>நீக்கம் | பழமொழியின்<br>வடிவம் | காலந்தோறு<br>ம் கடிதங்கள் | கவிதைக்<br>களங்கள் | | S-4 | SLO-1 | தமிழ் எழுத்து<br>வரலாறு | பிழை நீக்கி<br>எழுதுதலின்<br>அவசியம் | வட்டார மொழி | தமிழில் கடித<br>இலக்கியம் | கவிதை<br>உள்ளடக்கம் | | 3-4 | SLO-2 | எழு <mark>த்துகளின்</mark><br>வரிவடிவம் | பிழைகளும் மொழிச்<br>சிக்கல்களும் | வட்டார<br>மொழியில்<br>சொலவடை | <mark>கடித</mark><br>வகைகள் | கவிதை<br>எழுதும் முறை | | | SLO-1 | <mark>எழு</mark> த்துகளின்<br>பிறப்பு | எதிர்ச்சொல்<br>வரலாறு | பழமொழியும்<br>சொலவடையு<br>ம் | கடிதம்<br>எழுதும்முறை | தன்னுணர்ச்சி<br><mark>க்</mark> கவிதை | | S-5 | SLO-2 | உயிர்<br>எழுத்துப்<br>பிறப்பு | எதிர்ச்சொல்லின்<br>உருவாக்கம் | பேச்சுநடையும்<br>சொலவடையு<br>ம் | அலுவல்<br>கடிதம் | இயற்கை/<br>சமூகம் -<br>கவிதை | | S-6 | SLO-1 | மெய்யெழுத்<br>துப் பிறப்பு | இணைச்சொல்லும்<br>எதிர்ச்சொல்லும் | மரபுத்தொடர் | வாழ்த்து/<br>பாராட்டுக் /<br>நட்புக் கடிதம் | கா <mark>லந்தோ</mark> றும்<br>கதைகள் | | | SLO-2 | மொழி முதல்<br>எழுத்துகள் | தமிழில்<br>எதிர்ச்சொற்கள் | பழமொழி<br>மரபுத் தொடர்<br>வேறுபாடு | கட்டுரை<br>வகைகள் | கத <mark>ைகளி</mark> ல்<br>கற்பனையும்<br>உண் <mark>மைய</mark> ும் | | S-7 | SL0-1 | மொழி இறுதி<br>எழுத்துகள் | ஓரெழுத்து<br>ஒருமொழி –<br>அறிமுகம் | தமிழில்<br>மரபுத்தொடர் | கட்டுரை<br>எழுதும்<br>முறை | வாய் <mark>மொ</mark> ழிக்<br>கதை | | | SLO-2 | எழுத்து<br>வேறுபாடும்<br>பொருளும் | ஓரெழுத்து<br>ஒருமொழியும்<br>பொருளும் | விடுகதை | கட்டுரைக்<br>களங்கள் | ஒரு பக்கக்<br>க <mark>தை</mark> | | S-8 | SLO-1 | ணகர - னகர -<br>நகர<br>வேறுபாடு | சொற்களின்<br>தன்மைகள் | நுண்ணறிவு<br>வெளிப்படுதல் | போட்டிக்<br>கட்டுரை | சிறுகதை | | 3-0 | SLO-2 | லகர – ளகர -<br><mark>ழக</mark> ர<br>வேறுபாடு | ஒரு சொல் பல<br>பொருள் | கதை மரபில்<br>நாட்டுப்புறக்<br>கதைகள் | அனுபவக்<br>கட்டுரை | கதை எழுதும்<br>முறை | | | SLO-1 | ச <mark>ொல்லும்</mark><br>பொருளும் | ஒரு பொருள் பல<br>சொல் | தமிழில்<br>நாட்டுப்புறக்<br>கதைகள் | <mark>பயணக்</mark><br>கட்டுரை | சமூக<br>உணர்வின்<br>வெளிப்பாடு | | S-9 | SLO-2 | காலந்தோறும்<br>சொற்கள் | <mark>சொல்</mark><br>உருவாக்கத்தின்<br>பயன்கள் | நாட்டுப்புறக்<br>கதைகளும்<br>சமூக<br>வரலாறும் | இதழியல்<br>கட்டுரைகள் | நிகழ்வைக்<br>கதை வழியே<br>வெளியிடல் | | | 1. நல்ல தமிழ் எழுத வேண்டுமா?, அ. கி. பரந்தாமனார், பாரி நிலையம், | |-----------------------|-----------------------------------------------------------------------| | | 2010. | | Learning<br>Resources | 2. நாட்டுப்புற இயல் ஆய்வு, சு. சக்திவேல், மணிவாசகர் பதிப்பகம், | | resources | சென்னை, 2006. | | | 3. படைப்புக்கலை, மு. சுதந்திரமுத்து, அறிவுப் பதிப்பகம், சென்னை, 2008. | - **4.** கதையியல், க. பூரணச்சந்திரன், அடையாளம் பதிப்பகம், சென்னை, 2012. - 5. இணைய வழித் தரவுகள் : https://tamilheritage.org/ | | Bloom's | | Continu | ious Lea | rning Ass | sessmen | t (50% we | eightage | ) | Fire at Francisco 44 | (F00/il-4) | | | | | |---------|------------|--------|----------|----------|-----------|---------|-----------|----------|----------|----------------------|--------------------|-----|-----|-----|--| | | Level of | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA- | 3 (20%) | CLA – | 4 (10%)# | Finai Examinati | on (50% weightage) | | | | | | | Thinking | Theory | Practice | | | | | | | Remember | 200/ | 200/ | 200/ | 200/ | 20% | 20% | 200/ | 20% | 30% | | | | | | | Level 1 | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | - | | | | | | | Apply | 400/ | F00/ | E00/ | 400/ | F00/ | F00/ | 500/ | E00/ | F00/ | | | | | | | Level 2 | Analyze | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | - | | | | | | | Evaluate | 200/ | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | | | | | | | Level 3 | Create | 30% | 30% | 30% | 30% | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | ( ( ) | 00 % | | | | | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Experts from Industry | <b>Expert from Higher Technical Institutions</b> | Internal Experts | | 1. Dr. P.R.Subramanian,<br>Director, Mozhi Trust,<br>Thiruvanmiyur, Chennai - 600<br>041. | 1. Dr. V. Dhanalakshmi, Associate Professor, Subramania Bharathi School of Tamil Language & Literaturel, Pondicherry University, Pondicherry | 1. Dr. B.Jai <mark>ganesh,</mark><br>Associate Profe <mark>ssor &amp; H</mark> ead, Dept. of Tamil,<br>FSH, SRMIST,KTR | | | EARN · LEAD . I EAD | <ol> <li>Dr. R. Ravi, Assistant Professor and Head, Dept. of Tamil, FSH, SRMIST, VDP.</li> <li>Mr. G. Ganesh, Assistant Professor, Dept. of Tamil, FSH, SRMIST, RMP.</li> <li>Dr. T.R.Hebzibah beulah Suganthi, Assistant Professor, Dept. of Tamil, FSH, SRMIST, KTR.</li> <li>Dr. S.Saraswathy, Assistant Professor, Dept. of Tamil, FSH, SRMIST, KTR.</li> </ol> | | Course<br>Code | ULH | 23AE1J | Cours<br>Name | - | Applied Hindi-I | | li-l | | Cour | | ΑE | | Ability Enhancement Courses (AE) L T P O C | | | | | | | | | | | | | |---------------------------------------------------------------------------------------|-----------------------------------------------|------------------|---------------------------|--------------------------|--------------------------------------|-----------------------|--------------------------------|---------------------------------------------|----------------------|--------------------------|------------------------------|--------------------|------------------------------------------------------|----------------------|------------------------|----------------------|-------------------|---------|---------|--------|----------|--------|-----|----|----| | Pre-req<br>Cours | | Nil | | | Co-requisite<br>Courses | Nil | | | | | gress | | Nil | | | | | | | | | | | | | | Course<br>Departn | | ng | Н | INDI | | - | Data Book /<br>Codes/Standards | | | | | | | | | | Ni | il | | | | | | | | | Course<br>Rationa | | | TI | ne purpose | e of learning this | s course | e is to: | | | Lea | arnin | g | | | Pr | ogra | m L | earn | ing ( | Outc | ome | s (P | LO) | | | | CLR-1 | : Ex | plain and | appred | iate the C | onstant moral v | alues of | f India | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 | 0 01 | | | se | | | | | | | 1 | | | | | | | | | | | | | | | | CLR-3: To Display moral and social values in the field of religion and communal Unity | | | igion and | m) | (%) | (9) | Je Je | s, | olines | ٠, | | edge | | | | | | | | | | | | | | | CLR-4 | : To | make tra | nslation<br>ndi Lang | of good<br>guage to E | literature and a<br>English and vice | ny relev<br>–versa | ant document | (Bloo | ency (9 | ent (% | powled | oncept | Discip | ledge | zation | Knowle | _ | t Data | S S | Skills | Skills | | | | | | CLR-5 | | | | | e Administrative | | | ninking | Proficie | Attainn | ıtal Kn | n of C | Related | II Know | peciali <mark>z</mark> | Jtilize | odeling | nterpre | ve Skil | olving | cation ( | Skills | | | | | Course Learning Outcomes (CLO): At the end of this course, learners will be able to: | | course, learners | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disci <mark>plines</mark> | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PS0 -1 | PSO -2 | PSO-3 | | | | | | | CLO-1: Understand the various forms of Prose and different aspects of social issues | | 2 | 75 | 80 | Н | Н | Н | М | L | Н | L | М | L | L | Н | М | - | - | - | | | | | | | | CLO-2 | CLO-2: To create an awerness on Ramayanan | | _ 5-274 | 2 | 80 | 90 | Н | Н | Н | М | L | Н | Н | М | L | L | Н | М | - | - | - | | | | | | CLO-3 | CLO-3: To Examine the accuracy in Translation | | 200 | 2 | 75 | 95 | Н | Н | М | L | Н | Н | М | Н | М | Μ | Н | Н | - | - | - | | | | | | CLO-4 | CLO-4: To Provide technical writing skills | | 2 | 80 | 90 | Н | Н | L | Н | Μ | Н | L | Н | Н | Μ | Н | Н | - | - | - | | | | | | | CLO-5 | CLO-5: To evaluate the nuance in essays | | | 2 | 85 | 90 | М | Н | М | Н | L | Н | Н | L | Н | Μ | Н | Н | - | - | - | | | | | | | ration<br>nour) | 9 | 9 | 9 | 9 | 9 | |-----|-----------------|------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------|----------------------------------| | S-1 | SLO-1 | KAHANI | NIBANDH | BAL RAMAYAN | ANUVAD | PARIBHASHIK<br>SHABDAVALI | | 3-1 | SLO-2 | AVDHARNA | VDHARNA | KHATHA VASHTU | AVDHARNA | ARTH | | | SLO-1 | ARTH | ARTH | AVADHPURI MEN RAM | ARTH | PARIBHASHA | | S-2 | SLO-2 | SWARUP | SWARUP | RAM KE ADARSH KE<br>PRATI PRERIT KARNA | SWARUP | SWARUP | | | SLO-1 | PARIBHASHA | PARIBHASHA | RAMAYAN KE PRATI<br>RUCHI JAGANA | PARIBHASHA | PRAKAR | | S-3 | SLO-2 | KAHANI KE TATVA | IAHABHARAT KE<br>AMAY KA BHARAT-<br>BHALKRISHNA<br>BHATT | RAMAYAN KA SAMAJ<br>MEN MAHATVA | PRAKAR | AVADHARNA | | S-4 | SLO-1 | <u>UDD</u> ESHYA | EKHAK PARICHAYA | LOKJEEVAN KE PRATI<br>JAGRUP KARNA | MAHATVA | PRAYOJAN | | 3-4 | SLO-2 | | ATH KA VISLESHAN | JANGAL AUR JANKPUR | UDDESHYA | UDDESHYA | | | SLO-1 | ANTASH MAN KI<br>JAGRITI | UDDESHYA | GURU KE PRATI ADAR<br>BHAV | ANUBAD PRAKRIYA | MAHATVA | | S-5 | | EIDGAH – KAHANI<br>PREMCHAND | AMAJIK SAMRASTA | VIRTA KE BHAV KO<br>JAGANA | VIVIDH PRAYOG | PRAYOG | | | SLO-1 | KAHANI KA<br>PARICHAYA | PAURANIK<br>KAHANIYO SE<br>AVAGAT KARANA | VIDHARM KA PRATIFAL | HINDI SE ANGREZI<br>ANUVAD | UDDESHYA | | S-6 | SLO-2 | KAHANI VISLESHAN | MAHABHARAT<br>EVAM RAMAYAN<br>KE SAMAJ KI<br>TULNA | VAN JEVAN SE AVAGAT<br>KARANA | ANGREZI SE HINDI<br>ANUVAD | TAKANIKI SHABDAVALI<br>KA MHATVA | | S-7 | SLO-1 | BAL MANOVIGYAN | BABUL AUR<br>KAKTASH-<br>RAMDARASH<br>MISHRA | SITA KE ADARSH<br>CHARITRA SE AVAGAT<br>KARANA | ANUVAD KA<br>PRAYOJAN | HINDI SE ANGREZI<br>SHABD | | | SLO-2 | ASMANTA KA<br>CHITRAN | LEKHAK PARICHAY | RAM KE CHARITRA SE<br>AVAGAT KARANA | ANUVAD KA PRAYOG | ANGREZI SE HINDI<br>SHABD | | | SLO-1 | DIP SE DIP JALE-<br>USHA YADAV | PATH KA<br>VISLESHAN | VIRTA KE BHAV JAGANA | SHROT BHASHA KA<br>GYAN | EK DIN EK SHABD | | |-----|----------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------|---------------------------|-------------------------|------------| | S-8 | | SAPNE KE LIYE<br>SANGHARSH | MANVATA KO JIVIT<br>RAKHANE KI<br>PRERNA | PATH KA VISLESHAN | LAKSHYA BHASHA<br>KA GYAN | SHABDON KA<br>VISLESHAN | | | S-9 | SLO-1 | SAMASYA KA<br>SMADHAN JAD<br>MEN HOTA HAI | AAJ KE SANDARBH<br>ME MAHABHARAT<br>KI UPYOGITA | PATH PRICHARCHA | ANUVAD KA DAYITVA | PATH PRICHARCHA | | | | SLO-2 | PRASHNABHAYASH | PRASHNABHAYASH | PRASHNABHAYASH | ANUVAD KA<br>ABHYASH | PRASHNABHAYASH | | | | | | | TENA | | | | | | | <br>Edited Book: "PRAYOJ<br>2023, New Delhi. | <br>AN MULOK HINDI", S | RIJONLOK PUBLICATION | Gar. | | | | | ning<br>ources | 1. Srijanlok Lit<br>2. https://hind<br>3. https://nce | terary Magazine, Ara (<br>disamay.com/<br>rt.nic.in/textbook.php<br>ulak Hindi, Dr. Sontal | o?fhbr1=0-12 | 1 | | PUNRIKSHAN | | | | | hasha.gov.in/hi/ol_c | | | | | | Learning | g Assessment | | | | 5 Car. 5 | 777 | | | | | | |----------|------------------------------|--------|----------|-----------|------------|---------|-------------|---------|----------|-------------------|-----------------------------------| | | | | Cont | inuous Le | earning As | sessmen | t (50% weig | ghtage) | | Final Evanination | on (E00/ waimbtoms) | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | rınaı Examinatio | o <mark>n (50% wei</mark> ghtage) | | | Level of Tilliking | Theory | Practice | | 1 1 1 | Remember | 200/ | 200/ | 30% | 200/ | 20% | 200/ | 200/ | 20% | 200/ | | | Level 1 | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | | | Lovel | Apply | 40% | 50% | 50% | 400/ | 50% | 50% | 50% | 50% | 50% | | | Level 2 | Analyze | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 30% | - | | 1 2 | Evaluate | 200/ | 20% | 200/ | 200/ | 200/ | 30% | 200/ | 30% | 200/ | | | Level 3 | Create | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | | | | Total | 10 | 00 % | 10 | 00 % | 10 | 00 % | 10 | 00 % | 1 | 00 % | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------| | xperts from Industry hri. Santosh Kumar ditor: Srijanlok Magazine lace: Vashishth Nagar, Ara – Experts from Higher Technical Institutions 1. Prof.(Dr.) S.Narayan Raju, Head, Department of Hindi, CUTN, Tamilnadu | | Internal Experts | | Shri. Santosh Kumar<br>Editor : Srijanlok Magazine | 1. Prof.(Dr.) S.Narayan Raju, Head, Department of | 1. Dr.S Preeti. Associate Professor & Head, SRMIST | | Place: Vashishth Nagar, Ara – 802301 | | 1. Dr.S Freeti. Associate Professor & Read, SRMIST | | | | 2. Dr. Md.S. Islam Assistant Professor, SRMIST | | | | 3.Dr. S. Razia Begum, Assistant Professor, SRM IST | | | | 4, Dr.Nisha Murlidharan Assistant Professor,<br>VDP, SRM IST | | Cour<br>Cod | | Course Name | French for Speci | fic purpose-I | | | urse<br>egory | , AE | | Abili | ty Er | nhan | cem | ent | Cour | ses | (AE) | | L 1 | Γ P | 0 | C<br>2 | |--------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|--------------------|--------------------------|--------------------------------|------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|----------|--------|---------| | Cour | equisite<br>urses<br>se Offeri<br>rtment | Nil<br>ng French | Co-requisite<br>Courses | Data Book / | le | | Prog | gress | ive<br>s | Nil | | | | Ni | ïI | | | | | | | | | Cour | se Learn | | rpose of learning this cou | | | | Le | arnin | g | | | Pr | ogra | m L | earn | ing ( | Outc | ome | s (Pl | LO) | | | | CLR-<br>1:<br>CLR- | Strength | nen the language of the their sentiments, emo | e students both in oral a | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 2:<br>CLR-<br>3:<br>CLR-<br>4: | Make th | | es of French Grammar. | ent origin | oom) | (%) | (%) | edge | epts | sciplines | ge | no | wledge | | ata | | ls | S | | | | | | | | the students to overco | me the fear of speaking<br>er speaking French | a foreign language | evel of Thinking (Bloom) | d Proficiency (%) | d Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | | | | | Outc | se Learn<br>omes (Cl | | is course, learners will b | e able to: | 2 Level of | Expected 75 | % Expected | H Fundam | Applicat | H Link with | H Procedu | ✓ Skills in | ☐ Ability to a second control of the property pro | H Skills in | r Analyze | Investigation Inv | Problem | ⊥ Commu | r Analytic | , PSO -1 | PSO -2 | . PSO-3 | | 1:<br>CLO-<br>2:<br>CLO- | To stren<br>translati | ngthen the knowledge<br>on of French | on concept, culture, civil<br>features in French langu | Mary Har | 2 | 80 | 90 | М | Н | L | Н | Н | M<br>M | H | М | L | L | H | М | - ' | - | - | | 3:<br>CLO-<br>4:<br>CLO- | To inter | oret & Translate the F | French language into oth | ner language | 2 | 75 | 90 | Н | L | М | Н | М | Н | Н | М | L | Н | М | L | - | - | - | | 5: | | ove the communicatio | n, intercultural elements | ın French language | 2 | 80 | 75 | М | Н | Н | L | М | М | Н | Н | М | L | Н | М | - | - | - | | | ration<br>lour) | 9 | 9 | | ä | 9 | 7.4 | | | | | 9 | | | 1 | ď | | | 9 | | | | | S-1 | SLO-1 | TP de chimie | Le jour des exam | nens L'ir | npéra | atif n | égatif | : | | | pren<br>otiva | | une | let | | | pren<br>ort de | | la st<br>ige | ruct | ure | d'un | | | SLO-2 | Les exemples | Les activités | -Le<br>ave | pa<br>ec êtr | assé<br>e | СО | mpos | é<br>Le | es ex | cemp | les | 1 | 1 | 1 | rou | ver d | les r | nots | clés | - | | | | SLO-1 | - Un TP au laboratoir | e- Le sms à la frança | aise - Les | exe | mple | s | | R | epér | er le | prés | sent | | L | es a | activi | tés | | | | | | S-2 | SLO-2 | Les exemples | Les activités | | | ssé composé des<br>pronominaux | | | es Le | es a | ctivité | s | | | | | pren<br>nique | | 1 | un | t | exte | | S-3 | SLO-1 | Comprendre un TP | Les examens | -La | rech | nerc | ne de | stag | e, l | е ра | ssé ( | comp | oosé | et | L | es a | activi | tés | | | | | | 3-3 | SLO-2 | Les exemples | Les activités | Les | exe | mple | s | | Le | es a | ctivité | s | | | | | exem | • | | | | | | S-4 | SLO-1 | -Suivre un protocole<br>expérimental - | -Donner des cons | eils Les | activ | vités | | | le | futu | r dar | ns ur | text | te | | Relev<br>in te | | les a | rgur | nent | s da | ns | | S-5 | SLO-2<br>SLO-1 | Les activités Lire des équations chimiques - | Les exemples -Écrire et comprer | | stage<br>activ | | | ce | - I | Le ra | appo<br>nain | rt de<br>e de | | ge e | et | | exem | | <b>.</b> | | | | | 3-3 | SLO-2 | Les activités | Comprendre une i | interdiction Le | CV fr | ança | ais | | | | rant:<br>ctivité | | | | L | es a | activi | tés | | | | | | | SLO-1 | Identifier des formule | · | | s exe | mple | s | | - | e sta | | | | | | | activi | | | | | | | S-6 | | chimiques à l'oral<br>Les exemples | -Donnez des cons | | | • | | ation- | - | | kemp | les | | | | | | | COI | | | | | S-7 | SLO-1 | - L'infinitif pour exprir<br>un ordre ou | ner Les exemples | | mpre<br>stage | | une | offre | | a mé<br>étaill | thod<br>é- | e du | plar | 1 | L | .es e | exem | ples | 6 | | | | | 5-7 | SLO-2 | Les activités<br>un conseil (dans les | Comprendre | | exe | | s | | | | ctivité | ės | | | L | es e | exem | ples | 6 | | | | | 6 0 | SLO-1 | Les | Les activités | | | | Le | es ex | cemp | les | | | L | Les activités | | | | | | | | | | J-0 | SLO-1 consignes) - Les exemples SLO-2 Les exemples et parler d'actions passées- | | | | | | et ré | alisei | | e cor<br>age | ntenu | ı du | rapp | ort c | | | ques<br>ositic | | bes ( | et le | ur | | | | SLO-1 | La nominalisation | Les exemples | Les activités | Les exemples | Les activités | |-----|-------|-------------------|------------------------|---------------|---------------|---------------| | S-9 | SLO-2 | Les exemples | L'impératif des verbes | Les exemples | Les activités | Les exemples | | | 320 2 | Loc champios | pronominaux | Loc oxompios | 200 40471100 | 200 oxompioo | | | The | ory: | |-----------|-----|--------------------------------------------------------------------------------------------------------------------------------| | | 1. | "Tech French" French for Science and Technology, Ingrid Le Gargasson, Shariva Naik, Claire chaize, Les éditions Didier, India, | | | | 2011. | | Learning | 2. | https://www.fluentu.com/blog/french/french-grammar | | Resources | 3. | https://www.elearningfrench.com/learn-french-grammar-online-free.html | | | 4. | https://www.lawlessfrench.com/grammar | | | 5. | https://blog.gymglish.com/2022/12/15/basic-french-grammar | | | Learning A | Assessm | nent | | | | | | | | | | | |---------|------------------------------|-------------------|----------|---------------|------------|---------------|------------|---------------|----------|-----------------------------------|------------------|--|--| | | | | Continu | ious Lea | arning Ass | sessmer | nt (50% we | eightage | ) | Final Eventination | (E00/ weightens) | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - 4 (5%)# | | Final Examination (50% weightage) | | | | | | Level of Tilliking | Theory | Practice | | | | aval 1 | Remember | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | | | | | Level 1 | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | - | | | | Level 2 | Apply | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | | | | | LeverZ | Analyze | 40% | 30% | 30% | 40% | 30% | 30% | 50% | 30% | 30 % | | | | | Level 3 | Evaluate | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | | | | | Level 3 | Create | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | | | | | | Total | 100 % 100 % 100 % | | 0 % | 10 | 00 % | 100 | % | | | | | | #CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | ALTONO PARTIES IN MAD | | |----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------| | Experts from Industry | Expert from Higher Technical Institutions | Internal Experts | | Mr. Kavaskar Danasegarane Process Expert Maersk Global Service Center Pvt. Ltd | Dr. C.Thirumurugan Professor, Department of French, Pondicherry University | 1. Mr. Kumaravel K. Assistant Professor & Head, SRMIST, KTR | | 2.Mr. Sharath Raam Prasad Character Designer, Animaker Company Pvt. | 1/2 | 2. Mrs. Abigalai Assistant Professor, SRMIST, VDP | | Course | | Course | | Course | _ | | L | 7 | P | C | ) ( | C | |--------|-----------|--------|----------------------------------|----------|----|--------------------------|---|---|---|---|-----|---| | Code | UCY23S03L | Name | Instrumental Methods of Analysis | Category | (; | Discipline Specific Core | 0 | 0 | 3 | 2 | ? | 1 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|-----------------|------------------------|-----| | Course Offer | ing | Chemistry | | | Data Book / | | Nil | | Department | | Chemistry | | | Codes/Standards | | NII | | Course Learning<br>Rationale<br>(CLR): | The purpose of learning this course is to: | Learning | | | | Pro | gra | m Le | arni | ng C | Outc | ome | s (PI | LO) | | | | |-----------------------------------------------|------------------------------------------------------------|---------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|--------------------|----------------------|------------------------|---------------|--------------|--------|--------|-------| | CLR-1: Gain exposure to Instruments and t | the practical knowledge of<br>heir handling | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | Gain insight into t | he principle, instrumentation and<br>imple compounds in UV | VC. | 7 | 4 | | | | | | | | | | | | | | | CLR-3 : Learn about the a functional groups | | | | nes | K | | ge | | ١ | | | | | | | | | | | about the characterization of simple different techniques | loom) | ledge | cepts | iscipli | dge | tion | powled | 3 | Data | ١ | SIIIS | Skills | | | | | | CLR-5 : Know how to main conducted | Jking (B | tal Knov | of Con | elated D | Knowle | ecializat | ilize Kr | deling | terpret [ | e Skills | Iving St | | Skills | | | | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret | Investigative Skills | Problem Solving Skills | Communication | Analytical S | PSO -1 | PSO -2 | PSO-3 | | CLO-1: Understand difference simple molecules | ent characterization techniques in | 4 | Н | Ž. | - | 7 | Н | | М | - | | - | - | - | - | - | - | | CLO-2 : Get awareness of of chemicals | safety techniques and handling | 4 | . 7 | 7 | ŧ | F | - | L | - | - | Н | - | • | Н | - | - | - | | CLO-3: Understand how to its applications | 4 | Н | - | | 1 | i | - | Н | - | - | L | 1 | - | - | - | - | | | CLO-4: Understand the P | rinciples of UV spectroscopy, | 4 | Н | - | - | Н | - | - | М | - | - | 7- | - | - | - | - | - | | CLO-5 : Apply the techniques simple molecules | 4 | L | - | - | - | - | - | Н | f | Н | - | - | | - | - | - | | | Duratio | n (hour) | 15 | 15 | 15 | 15 | 15 | | |----------|--------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------|--| | S-1 to3 | SLO-1 | Introduction | Validating Beer –<br>Lambert's law by<br>finding the absorbance<br>of a dye in UV-visible<br>spectrophotometer | Separation and Identification of the monosaccharides present in the given mixture (glucose & fructose) by paper chromatography. Reporting the Rf values | Determination of a<br>The concentration of acid by<br>pH meter | Demonstration<br>Practical Session | | | S-4 to 6 | SLO-1 | IR absorption<br>spectra) (study of<br>aldehydes and<br>ketones | Determination of concentration of mixture of acids by conductometric method | Chromatographic separation of the active ingredients of plants, flowers and Juices by TLC | Determination of the isoelectric pH of a protein | Repeat Class -1 | | | | SLO-1 | Determination | | | | | | | S-8 to | SLO-2 cobalt and | | Estimation of Chloride by Potentiometric | Synthesis of zinc oxide | Cyclic Voltammetry of the | Repeat Class -2 | | | 9 | SLO-2 | Nickel using a<br>UV-visible<br>spectrophotom<br>eter | Titration (Precipitation reaction) | nanoparticle by sol-gel<br>method | | | | #### Theory: - 2. #### Learning Resources - 3. - 4. - B.R. Puri, L.R. Sharma, K.K. Kalia, Principles of Inorganic Chemistry, Shobulal Nagin Chand and Co, 2001. P. L. Soni, A Textbook of Inorganic Chemistry, Sultan Chand and Co., 1977. R. Gopalan, Text Book of Inorganic Chemistry, 2nd edition, Hyderabad, Universities Press, (India), 2012. R.T. Morrison and R.N. Boyd, S. K. Bhattacharjee, Organic Chemistry, 7th edition, Pearson India, 2011. B.R. Puri, L.R. Sharma and M.S. Pathania, Principles of Physical Chemistry, 35th edition, New Delhi ShobanLal Nagin Chand and Co, 2013. | Learning | Assessment | | | | | | | | | | | |----------|------------------------------|---------------|------------------|----------------------|----------|--------|----------|------------------|----------|-----------------|---------------------| | | <b>D.</b> . | | Final Evancinati | ion (E00/ weighters) | | | | | | | | | | Bloom's<br>Level of Thinking | CLA – 1 (10%) | | CLA - 2 (10%) | | CLA - | 3 (20%) | CLA - | 4 (10%)# | rınaı Examınatı | ion (50% weightage) | | | Level of Tilliking | Theory | Practice | | Level 1 | Remember | | 30% | | 30% | | 20% | | 20% | | 30% | | Level I | Understand | + - | 30% | _ | 30% | NTA | 20% | - | 20% | _ | 30% | | Level 2 | Apply | | 50% | | 40% | | 50% | | 50% | | 50% | | Level 2 | Analyze | _ | 30% | , | 40% | | 30% | $A \cap \lambda$ | 30% | | 30% | | Level 3 | Evaluate | | 20% | | 30% | | 30% | 44 | 30% | | 20% | | Level 3 | Create | 6.3 | 20 /0 | - | 30 /6 | | 30 /6 | - | 30 /6 | | 20 /0 | | | Total 100 % 100 % | | 10 | 0 % | 10 | 00 % | 100 % | | | | | # CLA - 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | | | | | | | | |---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|--|--|--| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: gsekar@jitm.ac.in | Dr. Srinivasarao Kancharla,<br>SRMIST | | | | | | | | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | 2.Prof. M. Arthanareeswar<br>SRMIST | | | | | | | | | Course | UCD23V02T Course | Industry Oriented Employability Skills for | Course | v | Value Addition course | L | T | P | 0 | С | |--------|------------------|--------------------------------------------|----------|---|-----------------------|---|---|---|---|---| | Code | Name | Science | Category | v | value Addition course | 2 | 0 | 0 | 2 | 2 | | Pre-requisite Courses | NII | | equisite<br>urses | Nil | Progressive Courses | Nil | |-------------------------------|--------------------|-----|-------------------|-----------------|---------------------|-----| | Course Offering<br>Department | Career Guidance Ce | ell | Data Book / | Codes/Standards | - | | | Course L<br>Rational | | The purpose of learning this course is to: | Le | earni | ing | | | | Pro | gra | n Le | arni | ng ( | Outc | ome | s (P | LO) | | | | |----------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|------------------|-----------------------|-------------|------------------------------|----------------------|--------------------------|------------------------------|--------------------|--------------------|--------------|-----------|---------------|------------|-----------|------------------------|------------------| | CLR-1: | | various principles involved in solving mathematical concepts rmutation and combination and probability and interpret data | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | | sic mechanics of grammar and develop resume-building practice tion skills in students | | | | | | | | | | | | | | | | | | | | CLR-3: | Understand | the object oriented features | h | | | | | | | | | | | | | | | | | | | CLR-4: | Prepare stud | lents for job interviews | | | | | | nes | | | ge | | | | | | | | | | | CLR-5: | Instill confide<br>interview | nce in students and develop the necessary skills to face | (Bloom) | cy (%) | ent (%) | wledge | Concepts | Discipli | edge | tion | owled | | Data | | Skills | Skills | | | viour | | | | 4 | | Thinking ( | Expected Proficiency (%) | d Attainment (%) | -undamental Knowledge | of | ink with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret | tive Skills | Solving S | | I Skills | | Professional Behaviour | ife Long Leaming | | Course I<br>Outcome | earning (CLO): | At the end of this course, learners will be able to: | evel of | Expected | Expected | -undame | Application | -ink with | Procedur | Skills in § | Ability to | Skills in I | Analyze, | nvestigative | Problem | Communication | Analytical | CT Skills | Professic | -ife Long | | CLO-1 : | | the concepts of permutation and combinations, probability and estions in a simpler and innovative method | 3 | 80 | 70 | M | M | - | M | - | Ĥ | - | M | H | M | - | H | - | - | - | | CLO-2 : | | the different parts of speech and use them in sentences and also the importance of resume preparation | 3 | 85 | 75 | М | - | | М | - | Н | | - | - | - | Н | Ī | - | L | Н | | CLO-3: | O-3: Understand the importance of object oriented features | | 3 | 85 | 80 | Н | М | М | М | М | Н | L | - | - | - | - | - | М | - | Н | | CLO-4: | 0-4: Face interviews confidently | | 3 | 85 | 80 | М | М | Н | М | М | Н | L | - | | - | - | - | М | - | Н | | CLO-5: | Develop their domain skills to face the interview | | | | 80 | М | М | Н | М | М | Н | L | - | - | - | - | - | М | - 1 | Н | | | iration<br>hour) | 6 | 6 | 6 | 6 | 6 | |-----------------|------------------|--------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------| | S-1 | SLO-1 | Permutation and<br>Combination –<br>Introduction | Change of voice | Object Oriented<br>Programming - Introduction | Overloading & Overriding –<br>Introduction | Time Complexity – Introduction | | | SLO-2 | Permutation and<br>Combination –<br>Problems | Change of voice | Introduction to Monolithic,<br>POP, Structures, OOP | Overloading & Overriding | Time Complexity | | S-2 | SLO-1 | Probability –<br>Introduction | Change of speech | Translators – Introduction | Virtual Functions & Abstract Class –<br>Introduction | Stacks & Queue - Applications | | - | SLO-2 | <mark>Probabilit</mark> y – Problems | Change of speech | Translators | Virtual Functions & Abstract Class | Stacks & Queue - Applications | | S-3 | SLO-1 | Data Sufficiency –<br>Introduction | Resume Writing -<br>Introduction | Class – Introduction | Dangling Pointer – Introduction | Linked List & Operations –<br>Introduction | | <b>5-</b> 3 | SLO-2 | Data Sufficiency –<br>Problems | Resume Writing -<br>Introduction | Class | Dangling Pointer | Linked List & Operations | | S-4 | SLO-1 | Puzzles - Selections | Resume Writing - Session 1 | Object Abstraction –<br>Introduction | Garbage Collector - Introduction | Types of Trees & BST –<br>Introduction | | U- <del>-</del> | SLO-2 | Puzzles - Selections | Resume Writing - Session 1 | Object Encapsulation | Garbage Collector | Types of Trees & BST | | S-5 | | Puzzles - Distribution | Types of Interviews - Group<br>/ Stress / HR | Polymorphism, Inheritance<br>and Dynamics Binding –<br>Introduction | Algorithm and Data Structures -<br>Introduction | AVL Tree Operations –<br>Introduction | | | SLO-2 | Puzzles - Distribution | Types of Interviews - Group / Stress / HR | Polymorphism, Inheritance and Dynamics Binding | Logical Thinking & Arrays | AVL Tree Operations | | S-6 | SLO-1 | Cubes & Cuboids | Presentations - Introduction | Function Execution Sequence - Introduction | Structures & Pointers – Introduction | Introduction to P, NP, NP-Hard & NP-Complete Problems | | <b>J</b> -U | SLO-2 | Cubes & Cuboids | Presentations - Activity | Stack & In Line Functions -<br>Introduction | Structures & Pointers | Introduction to P, NP, NP-Hard & NP-Complete Problems | | Learning<br>Resources | 1.<br>2. | Abhijit Guha, Quantitative Aptitude for Competitive Examinations, Tata McGraw Hill, 5th Edition 2020. Scott Bennett, The Elements of Resume Style: Essential Rules for Writing Resumes and Cover Letters That Work, AMACOM 2014. | 4.<br>5. | Greg Perry, Dean Miller, C Programming Absolute Beginne, Que Publishing, 3 <sup>rd</sup> Edition 2013. Cay S. Horstmann, Core Java Fundamentals, Volume 1, 11th Edition, Prentice Hall, 2018 | |-----------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | AMACOM, 2014 | 6. | Langsam, Augenstein, Tanenbaum, Data Structures Using C and | | 3. | Raymond Murphy, Intermediate English Grammar, | C++, 2nd Edition, Pearson Education, 2015. | |----|-----------------------------------------------|--------------------------------------------| | | Cambridge University Press, 2007 | | | | | Continuous Learning Assessment (100% weightage) | | | | | | | | | | |---------|------------------------------|-------------------------------------------------|-------------|-------------|---------------|--|--|--|--|--|--| | Level | Bloom's Level of<br>Thinking | CLA-1 (20%) | CLA-2 (20%) | CLA-3 (30%) | CLA-4 (30%) # | | | | | | | | | | Theory | Theory | Theory | Theory | | | | | | | | aval 1 | Remember | 100/ | 10% | 200/ | 30% | | | | | | | | _evel 1 | Understand | 10% | 10% | 30% | 30% | | | | | | | | 1.0 | Apply | F00/ | 500/ | 400/ | 400/ | | | | | | | | _evel 2 | Analyze | 50% | 50% | 40% | 40% | | | | | | | | aval 2 | Evaluate | 400/ | 400/ | 200/ | 200/ | | | | | | | | ∟evel 3 | Create | 40% | 40% | 30% | 30% | | | | | | | | | Total | 100 % | 100 % | 100 % | 100 % | | | | | | | CLA-1, CLA-2 and CLA-3 can be from any combination of these: Online Aptitude Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, Mini Talks, Group Discussions, Mock interviews, etc. #CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------| | Experts from Industry | <b>Experts from Higher Technical Institutions</b> | Internal Experts | | Mr. M. Ponmurugan, Executive PMOSS, | Dr. G. Saravana Prabu, Asst. Professor, | Dr. Sathish K, HOD, Department of Career Guidance, FSH, SRMIST | | Cognizant Technology Solutions India<br>Pvt.Limited, Chennai | Department of English, Amrita Vishwa Vidhyapeedam, Coimbatore | Dr. Muthu Deepa M, Assistant Professor, Department of Career Guidance, FSH, SRMIST | | | | Course | | Course | | Internship/Apprenticeship / Project/ | L | T | Р | 0 | С | |----------------|-----------|--------|--------------|----------|---|--------------------------------------|---|---|---|---|---| | Course<br>Code | UCY23P01L | Name | Internship-I | Category | Р | Community Outreach | 0 | 0 | 0 | 0 | 1 | | Pre-requisite<br>Courses | Nil | | Co-requisite Courses | Nil | | Progressive Courses | Nil | |-------------------------------|-----|------------|----------------------|-----|--------------------------------|---------------------|-----| | Course Offering<br>Department | | Department | of English | | Data Book /<br>Codes/Standards | Nil | | | | Learning<br>le (CLR): | The purpose of learning this course is to: | Le | arni | ng | | | | Pr | ogra | m Le | arniı | ng O | utco | mes | (PL | 0) | | | | |---------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------|--------------------------|-------------------------|-----------------------|--------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|-----------------|---------------|-------------------|------------|--------------|--------------------| | CLR-1: | Gain prac | tical experience within the business | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | Acquire ki<br>internship | nowledge of the industry in which the is done. | | | T | | | | - | | | | | | | | | | | | | CLR-3: | | wledge and skills learned in the in a work setting | | 11. | | 44 | 3 | 4 | 5 | | | | ٠. | | | | | | | | | CLR-4: | | greater understanding about career<br>hile more clearly defining personal career | (mool | (%) k: | ıt (%) | edge | septs | sciplines | ge | UO | owledge | Α. | ata | | Skills | Skills | | | ō | | | CLR-5: | Experience the activities and functions of business professionals. | | king (B | oficienc | ainmer | Know | f Conc | ated Di | nowlec | cializati | ze Kn | eling | rpret D | Skills | ving Sk | | ills | | Behavior | arning | | | Learning<br>es (CLO): | At the end of this course, learners will be able to: | _evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | TApplication of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | Communication | Analytical Skills | ICT Skills | Professional | Life Long Learning | | CLO-1 : | Identify ar | eas for future knowledge and skill<br>ent | 3 | 80 | 70 | Н | Ĥ | -1 | | Ť | | | -1 | L | | М | - | - | - | - | | CLO-2 : | | ding of what is expected in the job market their standard of performance should be | 3 | 85 | 75 | IJ. | Н | ŕ. | 71 | 325 | 7 E . | | - | М | Ē, | L | - | - | - | - | | CLO-3 : | | essional, as well as academic, contacts<br>the process of networking and support for<br>a careers. | 3 | 75 | 70 | į. | Н | | | | | - | - | | | М | - | | Н | - | | CLO-4 : | Acquire knowledge of the industry in which the | | | 85 | 80 | Н | Н | | Ċ | | | - | - | L | | - | - | - | - | М | | CLO-5: | practical e | experience within the business environment | 3 | 85 | 75 | _ | - | - | - | - | Н | - | - | - | - | М | - | - | - | Н | | PROCESS | | |-----------|----------------------------------------| | Stage I | Identifying area of interest | | Stage II | Review I | | Stage III | Review II | | Stage IV | Project report preparation | | Stage V | Final Submission of the Project Report | | | Continuous Learning Assess | ment (50% weightage) | Final Evaluation (5 | 0% weightage) | |----------------|----------------------------|----------------------|---------------------|---------------| | | Review – 1 | Review – 2 | Project Report | Viva-Voce | | Project Work / | 20% | 30 % | 30 % | 20 % | | Internship | | | | | | Course Designers | | | | | | | | | | |----------------------------------------------|--------------------------------------------|--------------------------------|--|--|--|--|--|--|--| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | | | Prof. G. Sekar, Department of Chemistry, | • | | | | | | | | | Dr. Ravikiran Allada, Director, | IIT Madras | 3. Dr. T, Pushpa Malini SRMIST | | | | | | | | | Analytical Sciences and Technology Transfer, | Email: gsekar@iitm.ac.in | , | | | | | | | | | Novugen Pharma, Malaysia | Prof. Sukhendu Mandal, Department of | 2 D | | | | | | | | | Email: ravianalytical@gmail.com | Chemistry, IIISER, Thiruvananthapuram | 2.Prof. M. Arthanareeswan | | | | | | | | | | Email: sukhendu@iisertvm.ac.in | SRMIST | | | | | | | | ------ ## Semester-IV | Course<br>Code | UCY2340 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ourse<br>lame | | Coordi | nati | ion Chemistry | _ | ours | - | С | | Disc | cipli | ne S | peci | fic C | ore | | <b>L</b> | +-+ | P O | Ť | |-----------------------------|---------------------|-----------------------------------------|---------------|----------|--------------------------------|------|----------------------------------------|---------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|---------------|-----------------|---------------|-------------------|--------|--------|-------| | Pre-<br>requis<br>Cours | site <i>Nil</i> | | | | Co-requisi<br>Courses | te | Nil | | Prog<br>Co | gres | | Nil | | | | | | | | | | | | | Course<br>Departn | Offering<br>nent | | Chen | nistry | | | Data Book /<br>Codes/Stand | ards | | | | | | | | Nil | | | | | | | | | Course<br>Rationa<br>(CLR): | Learning<br>le | 7 | Th | e purp | ose of learn | ng | this course is to: | In | | | | Pro | grar | n Le | arni | ng C | utc | ome | s (Pl | LO) | | | | | ` ′ | | | | | | | nistry to manifold<br>and quantitative | Learning | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | Distinguisl | | | | theories of o | | rdination<br>configurations. | | | | | 1 | | | k. | | | | h | | | | | | CLR-3: | | well | as to pr | edict tl | he feasibility | | | it. | | | Set | | | ge | Ŕ | 5 | | | | N. | | | | | CLR-4: | | | | | al properties<br>nd magnetic | | he complexes perties. | (moc | edge | septs | sciplir | ge | u | polyco | 7 | ata | | Skills | <u>s</u> | | | | | | CLR-5: | Study the | synth | etic stra | tegies | | e r | eactivity with | ıking (Blo | al Knowl | of Conc | elated Di | Knowlec | ecializati | lize Kno | deling | erpret D | e Skills | Iving Sk | ition Skills | kills | | | | | Course<br>Outcon<br>(CLO): | Learning<br>nes | | | t the e | nd of this co | ırse | e, learners will be | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative | Problem Solving | Communication | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | CLO-1: | Understan | | | | ind use stan | dare | d rules to name | 4 | Н | - | - 1 | -5 | | - | М | - | - | _ | - | - | Н | - | - | | CLO-2: | Discuss th complex. | e vari | ous typ | es of i | somerism po | ssi | ble in a metal | 4 | 1 | Н | ť | Н | - | L | - | -( | - | )- | - | - | - | - | - | | CLO-3: | | | | | elopment of<br>to splitting of | | | 4 | - | Н | - | - | - | - | М | É | - | - | - | ŀ | - | Н | - | | CLO-4: | Gaining th | | wledge | of ma | gnetic prope | rtie | s and color of | 4 | М | - | - | - | Н | - | - / | ٠, | - | - | _ | į. | Н | - | - | | CLO-5: | | | | | | | metals and use<br>rent types species | 4 | - | Н | - | - | 4 | L | 7 | - | - | ŀ | - | - | - | Н | - | | Duration | n (hour) | 12 | 12 | 12 | 12 | 12 | | |----------|----------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|--| | | SLO-1 | Introduction to coordination chemistry: Ligands- | Introduction of Stability | Introduction of Theory | AU. | Introduction of reaction | | | S-1 | SLO-2 | monodentate, bidentate, and polydentate ligands | | of Coordination<br>Complexes: Valence<br>bond theory (VBT): | mechanisms in | mechanisms in coordination compounds-II: | | | | | Coordination sphere, coordination number | отрюхо | Assumptions, | coordination compounds 1 | Electron transfer reactions | | | | SLO-1 | Ambidentate ligands, bridging ligands | Thermodynamic stability- | VBT as applied to | | One electron transfer | | | S-2 | SLO-2 | Bridged complexes,<br>flexidentate ligands<br>Chelation, chelate effect,<br>formation of metal-metal bond<br>in dimers | Stability- Stable and unstable complexes. Kinetic stability-labile and inert complexes | octahedral, tetrahedral<br>and square planer<br>complexes | Labile and inert complexes<br>on the basis of valence<br>bond theory | reaction, Inner sphere<br>mechanism and Outer<br>sphere mechanism | | | S-3 | SLO-1 | Nomenclature of coordination compounds | Stepwise and overall formation of coordination complexes | Magnetism and drawbacks of VBT | Dissociation, association | Marcus's theory and its applications. Two electron transfer reactions | | | | SLO-2 | Werner 's coordination theory-<br>Salient features and limitatiosn<br>Designation and formation of | Relation between stepwise and overall stability constant | Crystal field theory (CFT): salient features. Crystal field splitting of | Reaction profile of dissociative and association mechanisms. | complementary and non-<br>complementary electron<br>transfer reactions | | | Duratio | n (hour) | 12 | 12 | 12 | 12 | 12 | |---------|----------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------| | | | Co(III) ammines and experimental verifications | | d-orbitals in tetrahedral and Octahedral complexes | Factors affecting rates of substitution reactions. | | | S-4 | SLO-1<br>SLO-2 | Tutorial: Formula to Name | Tutorial: calculation related to stepwise stability constant | Tutorial: Problem solving related to VBT | Tutorial: equations related to substitution reactions | Tutorial: equations related to Inner sphere mechanism | | S-5 | SLO-1 | Sidgwick's electronic concepts of coordination bond in coordination compounds | Factors affecting stability of coordination compounds | tetragonal complexes | Mechanism of hydrolysis reactions | Non-complementary electron transfer reactions | | 3-3 | SLO-2 | Sidgwick's effective atomic number (EAN) rule | Properties of metal ions and ligands | square planar<br>complexes | Acid hydrolysis-octahedral complexes with π-donor inert ligand | Molecular rearrangements of four-coordinate and | | S-6 | SLO-1 | Application of EAN rule in coordination complexes | Stability of chelates | Factors influencing the magnitude of CFT | Acid hydrolysis-octahedral complexes with π-donor inert ligand | Molecular rearrangements of six-coordinate complexes | | 3-0 | SLO-2 | Limitations of Sidgwick's concept | Steric effects on chelates | Crystal field stabilization energy (CFSE) of dx ions | П-acceptor inert ligand | Synthesis of coordination compounds using electron transfer reactions | | S-7 | SLO-1 | Isomerism in coordination compounds: Structural isomerism | Electron delocalization | High-spin complexes | Without π-donor and π-<br>acceptor inert ligand | Synthesis of coordination compounds using electron transfer reactions | | | SLO-2 | Conformation linkage, ionization and hydrate | Electron delocalization | and low-spin complexes | Without π-donor and π-<br>acceptor inert ligand | Metal-assisted reactions | | S-8 | SLO-1 | Tutorial: Calculation related to | Tutorial: stability of complexes | Tutorial: Problem solving related to CFT | | Tutorial: equations related to rearrangements | | | SLO-2<br>SLO-1 | Ligand coordination, | Methods for the determination of stability constants | Applications of CFT-<br>colour in coordination<br>compounds | Experimental tests of mechanisms and stereochemistry | Aldol condensation | | S-9 | SLO-2 | coordination position<br>Polymerization isomerisms | Composition of a complex-spectrophotometric method | Magnetic moment values of complex | Base hydrolysis-<br>associative SN2 | Ester hydr <mark>olysis pho</mark> sphate ester, | | C 40 | SLO-1 | Stereoisomerism: geometrical isomerism | Continuous variation method (job's method), | Limitations of CFT | Dissociative SN1CB mechanisms | aminoesters and amide hydrolysis | | S-10 | SLO-2 | Stereoisomerism: geometrical isomerism | Bjerrum's method and<br>Irving method | Jahn-teller theorem-<br>crystal field splitting | Dissociative SN1CB mechanisms | Template effect | | S-11 | SLO-1 | Optical isomerisms-4 and 6 coordinate complexes. | Rossotti method and limitations | Jahn-teller splitting in tetragonally distorted octahedral geometry | Stereochemistry of dissociative mechanism | Synthesis of macrocyclic ligands | | | SLO-2 | Optical isomerisms-4 and 6 coordinate complexes. | Rossotti method and limitations | Jahn-teller splitting in square planar geometry | Racemization reaction | Reaction of coordinated ligands | | S-12 | SLO-1 | Practice: construct the structure based on geometrical | Practice: stability | Practice: Problem solving related to | Practice: equations related | | | J-12 | SLO-2 | isomerism | constants | Magnetic moment | to hydrolysis reactions | ligands | - B. W. Pfennig, Principles of Inorganic chemistry. John Wiley & Sons, 2015. - K. F. Purcell, J. C. Kotz, Inorganic Chemistry W.B. Saunders Co, 1977. - 1. 2. 3. 4. 5. - J. E. Huheey, Inorganic Chemistry, Prentice Hall, 1993. P. W. Atkins, T. Overton, Shriver and Atkins' inorganic chemistry 6th Ed. Oxford University Press, USA, 2010. - F. A. Cotton, G. Wilkinson, G., Advanced Inorganic Chemistry Wiley-VCH, 1999. - C. E. Barnes, Inorganic Chemistry 4th Ed. (Catherine E. Housecroft and Alan G. Sharpe). Journal of Chemical Education, 2003. - Learning F. Basolo, R. C. Pearson, R.C., Mechanisms of Inorganic Chemistry, John Wiley & Sons, NY, 1967. Resources - N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Butterworth-Heinemann, 1997. - G. L. Miessler, D. A. Tarr, Inorganic Chemistry 3rd Ed.(adapted), Pearson, 2009. | Learning A | Assessment | | | | | | | | | | | |------------|------------------------------|--------|----------|-----------|------------|----------|-------------|---------|----------|------------------|--------------------| | | B | | Cont | inuous Le | earning As | sessment | t (50% weig | ghtage) | | Einal Evaminati | on (50% weightage) | | | Bloom's<br>evel of Thinkina. | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Filiai Examinati | on (50% weightage) | | | ever or milliking | Theory | Practice | | Level 1 | Remember | 30% | | 30% | | 30% | | 20% | | 30% | | |---------|------------|-------|-----|------|-----|------|-----|-------|------|------|------| | Level I | Understand | 30% | , | 30% | • | 30% | - | 20% | - | 30 % | • | | Level 2 | Apply | 50% | | 50% | | 50% | _ | 50% | | 50% | | | Level 2 | Analyze | 30 /6 | | 30 % | , | 30 % | - | 30 /0 | - | 30 % | • | | Level 3 | Evaluate | 20% | | 20% | _ | 20% | | 30% | | 20% | | | Level 3 | Create | 20% | - | 20% | - | 20% | - | 30% | - | 2076 | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 1 | 00 % | 1 | 00 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Experts from Higher Technical Institutions | Internal Experts | |--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------| | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: gsekar@iitm.ac.in | Dr. Mihir Ghosh, SRMIST | | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | Prof. M. Arthanareeswari, SRMIS | | | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@iitm.ac.in Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram | | Course | | Course | Heterocyclic Compounds, Natural Products | Course | | 2 | L | T | P | 0 | ( | ; | |--------|-----------|--------|------------------------------------------|----------|---|--------------------------|---|---|---|---|---|---| | Code | UCY23402T | Name | and Biomolecules | Category | С | Discipline Specific Core | 4 | 0 | 0 | 2 | 4 | ļ | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|------------|------------------|-------------------------|-----------------|-------------|------------------------|-----| | Course Offer | ring | Chamiatra | | | Data Book / | | Nil | | Department | Department | Chemistry Codes/ | | Codes/Standards | | NII | | | Course Learning<br>Rationale<br>(CLR): | The purpose of learning this course is to: | e is to: Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | | |--------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|--------------------|----------------------|------------------------|---------------|------------|--------|--------|-------| | CLR-1: Understandand ar heterocyclic chem | nd gain knowledge on the importance of istry. | T | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 : Know the role of I | neterocyclic compound for the development | YC. | 7 | 4 | | | | | | | N. | | | | | | | | CLR-3 : Understand the me | ethods of isolation, purification and structural ral products. | | | q | Seu | 7 | | ge | | | | | | | | | | | | ledge on biomolecules and to build the blism for biological systems. | oom) | ledge | cepts | iscipli | dge | ion | owled | | Data | | cills | Skills | | | | | | CLR-5: Gain knowledge inhibition. | about enzymes, enzymatic reactions and | ing (Bl | Know | f Con | ated D | nowle | ializat | ze Kn | eling | rpret [ | Skills | ing St | | Skills | | | | | | | , id | enta | o uo | Re | ie<br>X | Spec | 3 | Mod | Inte | tive | Sol | icat | š | | | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret | Investigative Skills | Problem Solving Skills | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | | ir particular properties, chemical reactions,<br>maticity with reference to heterocyclic | 1.44 | Н | | Н | Ş | - | 1 | М | 1 | 7. | 4- | - | | - | - | - | | CLO-2: Know general met | hods of synthesis of heterocyclic compounds. | 4 | | Н | | - | Н | L | - | - | - | - | - | - | - | - | - | | | pproach to the structure elucidation of organic pecific examples of alkaloids and terpenes. | 4 | 3 | | Н | 4 | М | - | М | • | - | - | 1 | - | - | - | - | | CLO-4 : Demsonstrate and carbohydrates | I imply the synthetic chemistry knowledge of | 4 | Н | Н | | | | - | - | -( | L | - | - | - | - | - | - | | CLO-5: Understand the sy enzymes, nuclei a | nthetic importance of amino acids, peptides, cids and lipids | 4 | М | Н | - | - | - | - | Н | | - | - | - | - | - | - | - | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |--------|-----------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | S-1 | SLO-1 | Heterocyclic<br>compounds:<br>Introduction | General discussion on<br>Structure,<br>aromaticity 6-membered<br>rings containing one<br>heteroatom | Alkaloids: Introduction | Carbohydrates:<br>Occurrence, classification<br>and their<br>biological importance | α-Amino Acids –<br>Reactions | | 3-1 | SLO-2 | Heterocyclic compounds: Introduction | General discussion on<br>Structure,<br>aromaticity 6-membered<br>rings<br>containing one heteroatom | Alkaloids: Introduction | Carbohydrates:<br>Occurrence, classification<br>and their<br>biological importance | Zwitterions, pKa<br>values and Isoelectric<br>point, Electrophoresis | | | SLO-1 | Heterocyclic<br>compounds:<br>importance,<br>classification | Basicity and relative reactivity towards electrophilic substitution reactions (amongst six membered rings) | Natural occurrence | Monosaccharides:<br>Constitution and<br>absolute configuration of<br>glucose | Peptides and its classification | | S-2 | SLO-2 | Heterocyclic<br>compounds:<br>importance,<br>classification | Basicity and relative reactivity towards electrophilic substitution reactions (amongst six membered rings) | Natural occurrence | Monosaccharides:<br>Constitution and<br>absolute configuration of<br>fructose | determination of<br>their primary<br>structures-end group<br>analysis | | S-3 | SLO-1 | Nomenclature of heterocyclic compounds (containing only one hetero atom) | General methods of<br>synthesis for<br>pyridine (Hantzsch<br>synthesis) | Classification and uses | Monosaccharides -<br>stereoisomerism,<br>Mutarotation. | Synthesis of peptides using N-protecting, C-protecting and C-activating groups | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |--------|-----------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------| | | SLO-2 | Nomenclature of heterocyclic compounds (containing only one hetero atom) | General methods of<br>synthesis for Indole<br>(Fischer indole synthesis) | Classification and uses | Epimers and anomers Osazone formation | Synthesis of peptides using N-protecting, C-protecting and C-activating groups | | | SLO-1 | General discussion on Structure, aromaticity in 5- membered rings containing one heteroatom | Indole: Madelung<br>synthesis,<br>reduction of o-nitro<br>benzaldehyde) | General structural features | Determination of ring size of glucose and fructose | Solid-phase<br>synthesis | | S-4 | SLO-2 | General discussion on Structure, aromaticity in 5- membered rings containing one heteroatom | Indole: Madelung<br>synthesis,<br>reduction of o-nitro<br>benzaldehyde) | General structural features | Determination of ring size of glucose and fructose | Proteins and its classification | | S-5 | SLO-1 | Basicity and relative reactivity towards electrophilic substitution reactions (amongst five membered rings) | Quinoline Synthesis:<br>Skraup<br>synthesis, Friedlander"s<br>synthesis | General methods for<br>structure<br>elucidation:<br>Hoffmann"s<br>exhaustive<br>methylation and<br>Emde"s method | Haworth projections and conformational structures | primary, secondary<br>and tertiary<br>structures of proteins | | 5-3 | SLO-2 | Basicity and relative reactivity towards electrophilic substitution reactions (amongst five membered rings) | Knorr quinoline synthesis,<br>DoebnerMiller synthesis | General methods for<br>structure<br>elucidation:<br>Hoffmann"s<br>exhaustive<br>methylation and<br>Emde"s method | Haworth projections and conformational structures | primary, secondary<br>and tertiary<br>structures of proteins | | \ | SLO-1 | General methods<br>of synthesis for<br>Furan (Paal-Knorr<br>synthesis, Feist-<br>Benary synthesis<br>and its variation) | Bischler-Napieralski<br>reaction, PictetSpengler<br>reaction, Pomeranz-<br>Fritsch<br>reaction) | Structure elucidation of Nicotine | Interconversions of aldoses and Ketoses | Denaturation | | S-6 | SLO-2 | General methods of synthesis for Furan (Paal-Knorr synthesis, Feist- Benary synthesis and its variation) | Bischler-Napieralski<br>reaction, PictetSpengler<br>reaction, Pomeranz-<br>Fritsch<br>reaction) | Structure elucidation of Nicotine | Interconversions of aldoses and ketoses | Enzymes: Introduction | | 0.7 | SLO-1 | Pyrrole (Paal-<br>Knorr synthesis,<br>Knorr pyrrole<br>synthesis) | Discuss the reaction mechanism for Pyridine and Indole, Electrophilic substitution Sulphonation | Synthesis and physiological action of Nicotine | Killiani- Fischer synthesis | Classification and characteristics of enzymes | | \$-7 | SLO-2 | Pyrrole (Hantzsch synthesis) | Discuss the reaction mechanism for Pyridine and Indole, Electrophilic substitution Sulphonation Discuss the reaction | Synthesis and physiological action of Nicotine | Ruff degradation | Mechanism of enzyme action (taking chymotrypsin as an example) | | S-8 | SLO-1 | General methods<br>of synthesis for<br>Thiophene (Paal-<br>Knorr synthesis) | mechanism for Quinoline and Isoquinoline: Electrophilic substitution Sulphonation | Terpenes :<br>Introduction,<br>Occurrence and Uses | Disaccharides – reducing and non reducing sugars | Factors affecting enzyme action | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------| | | SLO-2 | General methods<br>of synthesis for<br>Thiophene<br>(Hinsberg<br>synthesis) | Discuss the reaction<br>mechanism for<br>Quinoline<br>and Isoquinoline:<br>Electrophilic substitution<br>Sulphonation | Terpenes :<br>Introduction,<br>Occurrence and Uses | Disaccharides – Structure elucidation of maltose | Coenzymes and cofactors (NAD, FAD) | | S-9 | SLO-1 | Properties:<br>Physical<br>properties | Discussion the reaction mechanism for Pyridine, Indole, Quinoline and Isoquinoline: Electrophilic substitution: Halogenation | Classification,<br>isoprene and special<br>isoprene rule | Disaccharides – Structure elucidation of lactose | Specificity of enzyme action (including stereospecificity) | | 5-9 | SLO-2 | Chemical reactions of Furan | Discussion the reaction<br>mechanism for<br>Pyridine, Indole, Quinoline<br>and Isoquinoline:<br>Electrophilic substitution:<br>Formylation | Classification,<br>isoprene and special<br>isoprene rule | Disaccharides – Structure elucidation of lactose | Enzyme inhibitors and their importance | | S-10 | SLO-1 | Chemical reactions of Furan | Discussion the reaction<br>mechanism for<br>Pyridine, Indole, Quinoline<br>and Isoquinoline:<br>Electrophilic substitution:<br>Mercuration | General methods of<br>structure<br>elucidation including<br>distinction<br>between<br>isopropylidene and<br>isopropenyl group | Disaccharides – Structure elucidation of sucrose | Nucleic Acids : Structure<br>of components<br>of nucleic acids: Bases<br>(Nucleosides and<br>nucleotides) and sugars | | 5-10 | SLO-2 | Chemical reactions of Furan | Discussion the reaction mechanism for Pyridine, Indole, Quinoline and Isoquinoline: Electrophilic substitution: Carboxylation | General methods of<br>structure<br>elucidation including<br>distinction<br>between<br>isopropylidene and<br>isopropenyl group | Disaccharides – Structure elucidation of sucrose | Nomenclature of nucleosides and nucleotides | | S-11 | SLO-1 | Chemical<br>reactions of<br>Pyrrole | Discussion the reaction mechanism for , Pyridine, Indole, Quinoline and Isoquinoline: Oxidation | Citral: Elucidation of structure | Amino acids and its classification | Structure of DNA and RNA | | | SLO-2 | Chemical reactions of Pyrrole | Discussion the reaction<br>mechanism for<br>Pyridine, Indole, Quinoline<br>and Isoquinoline:<br>Reduction | Citral: Elucidation of structure | α-Amino Acids: Synthesis | Biological roles of DNA and RNA | | S-12 | SLO-1 | Chemical reactions of thiophene | Reactions showing acidic /basic character | Synthesis of Citral, its industrial application. | α-Amino Acids: Synthesis and Ionic properties | Concept of heredity: Genetic Code, Transcription and Translation | | | SLO-2 | Chemical reactions of thiophene | Reactions showing acidic /basic character | Synthesis of Citral, its industrial application. | α-Amino Acids: Synthesis and Ionic properties | Lipids : Introduction to oils and fats | | Learnir<br>Resour | - | <ol> <li>G. L. Thomas F</li> <li>R. M. Acheson,</li> <li>A. J. John, K. M</li> <li>R. K. Bansal, H</li> <li>I. L. Finar, Orga<br/>Pvt. Ltd. (Pears</li> <li>J. M. Berg, J. L</li> <li>D. L. Nelson, M</li> </ol> | leterocyclic chemistry, Pearso<br>Introduction to the Chemistry<br>Itills, Heterocyclic chemistry, –<br>eterocyclic Chemistry, Synthe<br>anic Chemistry (Volume 2: Ste<br>ion Education) 2002.<br>Tymoczko, L. Stryer, Biochel<br>M. Cox, A. L. Lehninger, Prir<br>D. K. Granner, P. A. Mayes, V<br>Hill, 2009 | of Heterocyclic compound<br>5th ed 1995.<br>sis, Reactions and Mecha<br>reochemistry and the Che<br>mistry. VIth Edition. W.H. I<br>nciples of Biochemistry. IV | ds, John Welly&Sons´,1976. nisms, Wiley Eastern Ltd., 19 mistry of Natural Products), Freeman and Co., 2006. Edition. W.H. Freeman and | Dorling Kindersley (India) Co., 2009 | # **Learning Assessment** | | Di | | Conti | inuous Le | arning As | sessment | t (50% weig | jhtage) | | Einal Evaminati | on (50%) weightege | | |---------|------------------------------|--------|---------------|-----------|---------------|----------|---------------|---------|----------|-----------------------------------|--------------------|--| | | Bloom's<br>Level of Thinking | CLA - | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | 4 (10%)# | Final Examination (50% weightage) | | | | | Level of Tilliking | Theory | Practice | | | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | Level I | Understand | 30% | - | 30 /0 | | 20% | - | 20% | - | 30 % | - | | | Level 2 | Apply | 40% | _ | 50% | - | 50% | _ | 50% | 50% - | 50% | | | | Level 2 | Analyze | 40% | - | 30% | | | - | 30% | | 30 % | - | | | Level 3 | Evaluate | 30% | | 20% | | 30% | _ | 30% | | 20% | | | | Level 3 | Create | 30% | - | 20% | | 30% | _ | 30% | - | 20 76 | - | | | | Total | 10 | 0 % | 10 | 0 % | % 100 % | | | 00 % | 100 % | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ra <mark>vikiran All</mark> ada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: gsekar@iitm.ac.in | 1. Dr. Samarendra Maji, SRMIST | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | 2. Prof. M. Arthanareeswari,<br>SRMIST | LEARN · LEAP · LEAD | Course<br>Code | UCY234037 | Course<br>Name | Chemical kinetics | and Electrochemistry | Cours<br>Catego | 1 (: | Discipline Specific Core | <u>L</u> | T | ) 2 | 2 | 2<br>4 | |-------------------------|----------------|----------------|-------------------------|----------------------|-----------------|--------------------|--------------------------|----------|---|-----|---|--------| | Pre-<br>requis<br>Cours | ite <i>Nil</i> | | Co-requisite<br>Courses | Nil | Prog | gressive<br>ourses | Nil | | | | | | | Course Offering | Chemistry | Data Book / | Nil | |-----------------|---------------------------------------|-----------------|------| | Department | · · · · · · · · · · · · · · · · · · · | Codes/Standards | •••• | | Course<br>Rational<br>(CLR): | Learning<br>le | The purpose of learning this course is to: | Learning | Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | |------------------------------|-------------------------------------------------------------------|------------------------------------------------------|---------------------------|---------------------------------|-------------------------|-------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|------------------------|---------------|--------------|--------|--------|-------| | CLR-1: | gain knowledge or | the importance of | 1 2 3 4 5 | | | | | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | enable the student<br>parameters. | ts to acquire knowledge to determine kinetic | | | | | | | | | | | | | | | | | | CLR-3: | Understand about | the basic electrochemistry | | | | Sec | | | g | | | | | | | | | | | CLR-4: | Explain the various | s theories of Electrochemical energy storage | oom) | ledge | cepts | isciplir | dge | ion | Knowledge | | )ata | | cills | <u>s</u> | | | | | | CLR-5: | Gain knowledge a electrode kinetics | nking (Bl | al Know | of Con | elated D | Knowled | ecializat | ilize Kn | deling | terpret [ | e Skills | lving Sk | ation Skills | Skills | | | | | | Course<br>Outcon<br>(CLO): | Learning<br>nes | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical S | PSO -1 | PSO -2 | PSO-3 | | CLO-1: | Understand the ba | asic principles of chemical kinetics. | 4 | Н | - | - | - | - | - | М | - | - | - | - | Н | - | - | - | | CLO-2: | Gain knowledge a | bout the steady state approximation | 4 | Н | Н | - | - | Н | ٠. | - | 7 | - | - | - | - | - | - | - | | CLO-3: | Acquaint the stude electrochemistry | 4 | Н | - | - | - | Н | - | М | - | - | | | - | - | - | - | | | CLO-4: | Understand the pr | 4 | Н | | - | Н | - | - | -1 | - | М | - | 1 | - | - | - | - | | | CLO-5: | O-5: Understand the basic principles of liquid junction potential | | | | Н | - | - | ١. | L | Н | - | - | - | - | - | - | - | - | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|--------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------| | S-1 | SLO-1 | Introduction<br>and basics of<br>chemical<br>kinetics | collision theory and reaction kinetics | reactions between | Introduction to<br>Electrochemical cell | Types of electrolyte - concentration cells | | | SLO-2 | Rate law, Order<br>and<br>molecularity | Millions . | | Galvanic cell | Wit <mark>hout</mark><br>tra <mark>nsference</mark> , | | | SLO-1 | integrated rate laws for zero | kinetic energy of molecules – | 1// | Reversible electrodes- | | | S-2 | SLO-2 | first and<br>second order<br>reactions | Boltzmann and Maxwell interpretation, | ion-dipole and dipole dipole reactions | Metal –Metal ion electrodes,<br>gas electrode, Metal –<br>Insoluble metal salt electrode | Concentration cell-<br>With transference | | S-3 | SLO-1 | (example using acid catalyzed hydrolysis of methyl acetate) | Transition state theory: assumptions, expression for rate of reaction in presence of activated complex, | structure, significance of<br>volume and entropy of<br>activation, pressure<br>effect | Oxidation-reduction electrodes | Liquid junction | | | SLO-2 | nth order reactions | Eyring's equation for rate (elementary treatment) | Primary and secondary salt effects | Single electrode Potential | Determination of<br>activity coefficient<br>of electrolytes | | S-4 | SLO-1 | Tutorial:<br>pseudo first<br>order reaction | pseudo first assumptions, expression for rate of reaction in | | Tutorial: Oxidation-reduction electrodes | Tutorial:<br>Concentration cell-<br>With transference | | | SLO-1 | factors affecting rate of a reaction | complex, Lindemann theory of unimolecular reaction | effect Kinetics of photophysical and photochemical processes | Effect of concentration of electrolyte on cell potential | Determination of<br>Transport number | | S-5 | SLO-2 factors affecting rate of a reaction | | steady state<br>approximation | complex<br>photochemical<br>processes,<br>homogeneous<br>catalysis | Effect of concentration of electrolyte on cell potential | Determination of<br>the solubility<br>product constants | | S-6 | SLO-1 | | | | | | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------| | | SLO-2 | concentration,<br>pressure,<br>temperature | Absolute reaction rate theory (ARRT) | general catalytic mechanisms, | Effect of concentration of electrolyte on cell potential | Determination of<br>the solubility<br>product constants | | S-7 | SLO-1 | effect of<br>temperature on<br>reaction rate<br>and activation<br>energy<br>(concept only). | Application of ARRT to simple bimolecular process | acid-base catalysis | Standard electrode potential | Determination of<br>pH- using hydrogen<br>electrode | | | SLO-2 | radioactive decay as first order phenomenon | study of kinetics of chain<br>reaction like H2-Br2<br>reaction | catalysis by enzymes, | Electrochemical series | Energy storage devices | | | SLO-1 | Practice: explain the effect of | Practice: Absolute reaction | Practice: general | Practice: Effect of | Practice: Explain different kind of | | S-8 | SLO-2 | temperature on reaction rate | rate theory (ARRT) | catalytic mechanisms | concentration of electrolyte on cell potential | energy storage<br>devices | | S-9 | SLO-1 | Opposing reactions, consecutive reactions | H2 and O2 explosive reaction | influence of<br>concentration (single<br>substrate, double<br>substrate) | Electromotive force of a Galvanic cell | Fuel cell-(hydrogen-<br>oxygen) | | | SLO-2 | parallel reactions | Determination of order of chain reaction | Faraday's laws of electrolysis | Activity and | Primary and secondary batteries | | | SLO-1 | Chain reactions | Effect of ionic strength on rate constant of Persulphate lodine reaction | Specific conductance, equivalent conductance | Mean ionic activity of an electrolyte | Kinetics of electrode process. Electrical aspects of surface chemistry, | | S-10 | SLO-2 | Arrhenius concept of activation energy, | Determination of order of chain reaction | Cell constant - Arrhenius<br>theory Ostwald"s<br>dilution law and<br>Kohlrausch law | Concentration cell- Electrode concentration cell | electrical double<br>layer, Stern treatment<br>of the electrical<br>double layer, free<br>energy of a diffuse<br>double layer | | | SLO-1 | Temperature dependence of rate constant | Principle of microscopic reversibility | Nernst equation | Concentration cell- Electrode concentration cell | concentration<br>polarization and over<br>voltage | | S-11 | SLO-2 | Rate-<br>determining<br>step and<br>steady-state<br>approximation | And detailed balancing | Applications of EMF-<br>Measurements | Electrolyte - Concentration cell | decomposition<br>voltages | | S-12 | SLO-1 | Tutorial: What do you mean by | Tutorial: Determination of | Tutorial: explain the Faraday's laws of | Tutorial: explain electromotive force of a | Tutorial: reaction mechanism of Fuel | | | SLO-2 | parallel<br>reactions | order of chain reaction | electrolysis | Galvanic cell | cell | Theory: 1. P. W. Atkins, L. Jones, L. Laverman Chemical Principles: The Quest for Insight, 6th ed. W H Freeman and Company, New York, 2013. 2. H. E. Avery, Basic Reaction Kinetics and Mechanism, Mcmillan Publishers Ltd., 1974. 3. K. J. Laidler, Chemical Kinetics, Tata McGraw Hill 1987. 4. G. Raj, Chemical Kinetics, Goel Publishing House 2002. 5. P. W. Atkins, Physical Chemistry W.H. Freeman and Company 8th edition 2018. | Learning | Assessment | | | | | | | | | | | | | | |----------|------------------------------|--------|----------|-----------|----------|------------------------------------|----------|-------------|----------|-----------------------------------|----------|--|-----|--| | | Dlaam'a | | Cont | inuous Le | | Final Examination (FOO) wainbtone) | | | | | | | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | Level of Tilliking | Theory | Practice | | | | | Level 1 | Remember | 200/ | | 30% | 200/ | | | | 20% | 20% - 20% - | | | 30% | | | Lever | Understand | 30% | - | 30% | _ | 20% | - | 20% | - | 30 % | - | | | | | Level 2 | Apply | 40% | - | 50% | - | 50% | - | - 50% - 50% | | 50% | - | | | | | | Analyze | | | | | | | | | | | | |---------|----------|-------|---|-------|---|-------|---|-------|---|-------|---|--| | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | | Level 3 | Create | 30% | - | 20% | - | 30% | - | 30% | - | 2070 | - | | | | Total | 100 % | | 100 % | | 100 % | | 100 % | | 100 % | | | | Course Designers | | | |------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer,<br>Novugen Pharma, Malaysia<br>Email: ravianalytical@gmail.com | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@iitm.ac.in Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | 1.Dr. Srinivasa Rao, SRMIST 2. Prof. M. Arthanareeswari, SRMIST | | Course | Course | | Course | | | L | T | Р | 0 | C | |--------|--------|---------------------------------|----------|---|-------------------------|---|---|---|---|---| | | | Data, Statistics, and Inference | Category | G | Generic Elective Course | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-<br>requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|------------|-----------------------------|-----|-----------------|------------------------|-----| | Course Offering | | Physics an | | | Data Book / | Nil | | | Department Nanoted | | Nanotechn | ology | | Codes/Standards | | | | Course Learning Rationale (CLR): | The purpose of learning this course is to: | Le | arni | ng | | | | Pro | gran | n Le | arni | ng C | Outc | ome | s (P | LO) | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----|--------------------------|-------------------------|-----------------------|-------------------------|-------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|------------------------|----------------------|-------------------|--------|--------|-------| | CLR-1 · understar | CLR-1 : understand Random Variables, Probability, and Probability Functions | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: understand measures of Centrality, Variance, and Covariance CLR-3: understand ideas of Regression CLR-4: understand the idea of Statistical Confidence CLR-5: understand Hypothesis Testing Course Learning Outcomes (CLO): At the end of this course, learners will be able to: | | | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | CLO-1: represent | Data in different types of Graphical and Tabular | 2 | 75 | 60 | Ŀ | | Н | Н | - | | - | Ξ | | - | - | - | - | - | - | | (.1 ()-/ ' | ples of Data and construct estimators for mean,<br>and covariance | 2 | 80 | 70 | - | | Н | Н | | | - | Н | 7 | - | - | - | - | - | - | | CLO-3: fit function | ns to and estimate model parameters from data | 2 | 70 | 65 | - | | Н | Н | - | - | - | Н | - | - | - | - | - | - | - | | | theses given a data sample | 2 | 70 | 70 | | ż | Н | Н | Ψ, | · | • | Н | | ]- | - | - | - | - | - | | CLO-5: express s | tatements in terms of Statistical Confidence Intervals | 2 | 80 | 70 | | - | Н | Н | - | - | - | Н | - | - | - | - | - | - | - | | Duratio | n (hour) | 12 | 12 | 12 | 12 | 12 | |---------|----------|---------------------------------|------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------| | S-1 | SLO-1 | Types of Data | Normal Distribution | Parameter Estimation | χ <sup>2</sup> Cumulative | Goodness of Fit | | | SLO-2 | Representation of<br>Data | Moments of Normal<br>Distribution | Estimators for Mean, Variance,<br>and Cov | χ <sup>2</sup> Confidence Intervals | Examples | | S-2 | SLO-1 | Probability | Poisson Distribution as<br>Limiting case of Binomial | Linear Regression | Likelihood Functions | t-distribution and t-statistic | | | SLO-2 | Random Variables | Normal Approximation | Least Square Estimation of<br>Regression Parameters | Properties of ML<br>Estimators | Conditions for t-testing | | S-3 | SLO-1 | Probability Mass<br>Function | Operations on a Normal<br>Variable | Derivation of LLS estimators | ML with binned data | One sample test | | | SLO-2 | Probability Density<br>Function | Operations on two<br>Normal Variables | Derivation of LLS | Examples | Two sample test | | S-4 | - | Introduction to<br>Python | Random Numbers from different distributions in | Least Square Fit Using Scipy | CI with open data:<br>Chemistry | GoF: Epidemiology | | | SLO-2 | | <mark>Numpy</mark> | | | | | S-5 | | Mean and Variance<br>as Moments | Joint PDF | Bias and Consistency | * | Correlation between samples | | | SLO-2 | Skewness and<br>Kurtosis | Marginal Distributions | Convergence and Robustness | Case Studies | Paired Testing | | S-6 | SLO-1 | Cumulative<br>Distributions | Covariance | Least Square for Polynomials | Combining Measurements with ML | Proportion testing | | | SLO-2 | Examples:<br>Percentiles | Covariance Matrix | Examples | | Applications of Proportion testing | | S-7 | SLO-1 | Bernoulli Trial | Error Propagation | Least Squares with Binned Data | | Introduction to Bayesian<br>Statistics | | | SLO-2 | Binomial Distribution | Error Propagation with<br>Covariance | Normalisation | Binary Classification | Prior and Posterior | | S-8 | | Introduction to<br>Numpy Arrays | Marginal Distributions<br>and Joint PDFs | Binned Data Fit Using Scipy | ML to fit function with open data: Economics | Paired t-test: Nutrition | | | SLO-2 | , | 2.0 | | 200.000 | | | S-9 | | Moments of<br>Binomial Distribution | | Confidence Interval (CI) | p-value | Bayesian Estimation | |------|-------|-------------------------------------|-------------------------------------------------|------------------------------------------|-----------------------------------------------|-----------------------------------------| | | | Cumulative Binomial | Statistical Error as | CI for Normally Distributed<br>Estimator | Confidence Level | Connecting ML to<br>Bayesian Estimation | | S-10 | SLO-1 | | | | Likelihood Ratio | Bayesian Testing | | | SLO-2 | Poisson Distribution | Sample Mean and<br>Variance | Degrees of Freedom | Likelihood Ratio Test | Examples of Bayesian<br>Testing | | S-11 | | | Law of Large Numbers<br>(Statement) | χ² from a Normal Distribution | χ² test | Bayesian Credibility | | | SLO-2 | | Central Limit Theorem (Statement) | | Pearson's and Neyman's $\chi^2$ test | Credible intervals | | S-12 | SLO-1 | | Visualising the Law of<br>Large Numbers and the | | Likelihood Ratio Test:<br>Atmospheric Science | Bayesian A/B testing:<br>Retail | | | SLO-2 | | Central Limit Theorem | FNCD | tanosphono odieneo | rotun | | Learning | 1. | Introduction to the Theory of Statistics; A Mood, F | 1 | Statistical Methods in Experimental Physics; F | |-----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------| | Resources | | Graybill, D Boes; McGraw Hill Education; 3rd edition | 4. | James; World Scientific; 2nd edition (2006). | | | 2.<br>3. | (2017). A First Course in Probability, S Ross; Pearson; 10th ed (2022). A Students Guide to Data and Error Analysis; HJC Berendsen; Cambridge University Press. Statistics; RS Witte, JS Witte; Wiley; 11th ed (2017). | 5.<br>6. | Statistical Inference; G Casella, R Berger; Cengage India Private Limited (2007). Statistical Data Analysis; G Cowan; Oxford Science Publications (1998). | | Learnin | g Assessment | | | | | | | | | | | | | |---------|--------------|--------|---------------|--------|---------------|------------|---------------|--------|----------|--------------------------|----------|--|--| | | Bloom's | | Co | 300 | Final Examina | ation (50% | | | | | | | | | | Level of | CLA- | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | 4 (10%)# | weig <mark>htage)</mark> | | | | | | Thinking | Theory | Practice | | | | Level 1 | Remember | 200/ | 17. | 30% | | 30% | | 30% | | 200/ | | | | | Level I | Understand | 30% | | 30% | | 30 /6 | بالثالة | 30% | | 30% | | | | | Level 2 | Apply | 50% | - | 50% | | E00/ | | E00/ | | 50% | | | | | Level 2 | Analyze | 50% | | 30% | - // | 50% | - | 50% | | 50% | - | | | | Level 3 | Evaluate | 000/ | | 20% | 1/4 | 20% | | 20% | 11 | 20% | | | | | Level 3 | Create | 20% | | 20% | -21 | 20% | - | 20% | / | 20% | - | | | | Total | Total | 100 % | | 100 % | | 100 % | | 10 | 00 % | 100 % | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr Arvind Holur Vijay, ML Engineer, Tri3d, India | Dr Sandipan Dutta, Dpt of Mathematics and Statistics, Old Dominion University, USA. | Dr Triparno<br>Bandyopadhyay,<br>SRMIST. | | Dr Nabanita Ganguly, Data Scientist, Infosys, India. | | Dr Naga Rajesh A,<br>SRMIST. | | Course | | Course | | Course | | | L | T | P | 0 | C | ; | |--------|-----------|--------|--------------------|----------|---|-------------------------|---|---|---|---|---|---| | Code | UMA23G11T | Name | Allied Mathematics | Category | G | Generic Elective Course | 3 | 1 | 0 | 2 | 4 | ļ | | Pre-<br>requisite<br>Courses | Nil | Co-<br>requisite<br>Courses | Nil | Progressive<br>Courses | Nil | |------------------------------|-----|-----------------------------|--------------------------------|------------------------|-----| | Course Offering Department | N | MATHEMATICS | Data Book /<br>Codes/Standards | | Nil | | Course<br>Learning<br>Rationale<br>(CLR): | | The purpose of learning this course is to: | | | | | | | | | Program Learning Outcomes (PLO) | | | | | | | | | | | | |-------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|-------------------|-----|-------------------------|-----------------------|---|----------------------|----------------------------|-------------------|---------------------------------|------------------|--------|------------------------|---------------|------------------------|--------------------|---------|-------|-------|--|--| | CLR-1: | 1: Understand the concept of sets, relations and functions | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | CLR-2: | Gai | n knowledge on the basics of logic | | | | | | | - | | | | | | | | | | | | | | | CLR-3: | Obtain the knowledge on polynomial equations | | | | | H | | | | | | | l | | | | | | | | | | | CLR-4: | Gain knowledge on Matrices and its applications | | | _ | | | А | | <sup>2</sup> C | | | E S | | | | | | | | | | | | CLR-5 : | Comprehend the working principle of various calculus techniques | | (Bloom) | (%) | ent (%) | ledge | | ment | Reseal | Φ | | Sustainability | ١ | Work | | ance | | | | | | | | Course<br>Learning<br>Outcomes<br>(CLO): | | At the end of this course, learners will be able to: | Level of Thinking | | Expected Attainment (%) | Engineering Knowledge | | Design & Development | Analysis, Design, Research | Modern Tool Usage | Society & Culture | Environment & Su | Ethics | Individual & Team Work | Communication | Project Mgt. & Finance | Life Long Learning | PSO - 1 | PSO-2 | PSO-3 | | | | CLO-1: | | uire the knowledge on sets and functions | 3 | 80 | 85 | М | Н | - | - | 4 | - | - | - | - | - | - | Н | - | - | - | | | | CLO-2 : | Gain the ability to identify science and engineering problems logically | | 1 | 75 | 80 | М | Н | - | | | | - | - | 7 | - | - | - | - | - | - | | | | CLO-3: | Understand the basic ideas about polynomial equations | | 3 | 85 | 80 | М | 3 | ) | į. | 7. | | - | - | | 5 | - | - | - | - | - | | | | CLO-4: | Appreciate the concepts of Matrices in real life situations | | 3 | 80 | 75 | М | Н | | 4 | - 1 | - | - | - | - | - | - | - | - | - | - | | | | CLO-5: | Apply the knowledge of different calculus techniques | | 1 | 75 | 85 | М | - | r. | Н | - | - | - | - | - | - | - | - | - | - | - | | | | Dura | tion (Hour) | Module 1 (12) | Module 2 (12) | Module 3 (12) | Module 4 (12) | M <mark>odule 5 (</mark> 12) | |------|-------------|------------------------------------------------------|---------------------------------------|-------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------| | S-1 | SLO-1 | Sets - sets definition and representation of sets | Statements | Polynomial equations | Symmetric matrices, | Introduction to calculus | | | SLO-2 | Examples for sets and representations | Examples for statements | Examples for<br>Polynomial equations | Skew symmetric matrices | Differential calculus - Introduction | | | SLO-1 | Types of sets,<br>operation on sets, Venn<br>diagram | connectives, conjunction | Irrational roots | Hermitian, skew<br>Hermitian matrices | Maxima and minima-<br>Introduction | | S-2 | SLO-2 | Examples for types of sets and operations on sets | Examples for connectives, conjunction | Problems on irrational roots | Examples for different types of matrices | Simple problems on maxima and minima of functions of single variable | | C 3 | SLO-1 | Relation - Types of Relation | Disjunction, negation | complex roots(up to<br>third order equations<br>only) | Orthogonal, Unitary matrices | More problems on maxima and minima | | S-3 | SLO-2 | Examples for types of relation | Examples for Disjunction, negation | Problems on equations with complex roots | Examples for<br>Orthogonal, Unitary<br>matrices | More problems on maxima and minima | | | SLO-1 | Tutorial | Tutorial | Tutorial | Tutorial | Tutorial | | S-4 | SLO-2 | Tutorial | Tutorial | Tutorial | Tutorial | Tutorial | | S-5 | SLO-1 | Equivalence Relation | Tautology,<br>Contradiction | Reciprocal equations | Cayley Hamilton<br>Theorem | More problems on maxima and minima | | | SLO-2 | Examples and problems on equivalence relation | Problems on tautology, contradiction | Problems on reciprocal equation | Problems on Cayley<br>Hamilton Theorem | Radius of curvature –<br>Introduction | |------|-------|-----------------------------------------------|----------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------| | S-6 | SLO-1 | Function - Introduction | logical equivalence | Approximation of roots of a polynomial equation | Problems on Cayley<br>Hamilton Theorem | Problems on Radius of curvature- Cartesian co – ordinate | | | SLO-2 | Types of functions | Examples for logical equivalence | Newton's Method-<br>Introduction | Eigen values– Eigen vectors | Problems on Radius of curvature | | | SLO-1 | Problems for different functions | tautological implications | Newton's method-<br>Finding positive roots | Problems on Eigen values– Eigen vectors | More problèmes on radius of curvature | | S-7 | SLO-2 | Composite of two functions | Examples for tautological implications | More problems Newton's method- Finding positive roots | Problems on Eigen values– Eigen vectors | Partial differentiation | | | SLO-1 | Tutorial | Tutorial | Tutorial | Tutorial | Tutorial | | S-8 | SLO-2 | Tutorial | Tutorial | Tutorial | Tutorial | Tutorial | | S-9 | SLO-1 | Examples for composite functions | Arguments , Validity of arguments | Problems on Newton's method- Finding reciprocal of a given number | Problems on Eigen values– Eigen vectors | Problems on partial differentiation | | | SLO-2 | Composite of three functions | Normal forms | Problems on Newton's method- Finding Square root of a given number | Problems on Eigen values– Eigen vectors | Mo <mark>re problem</mark> s on partial diferentiation | | 0.40 | SLO-1 | Examples for composite of three functions | Principal disjunctive normal form | Horner's method-<br>Introduction | Cramer's rule-<br>Introduction | Euler's theorem-<br>Introduction | | S-10 | SLO-2 | Problems on functions | Problems for pdnf | Horner's method<br>Finding positive roots | Solving system of linear equations-<br>Crammer's rule | Problems on Euler's theorem | | 0.44 | SLO-1 | Problems on composite of two functions | Principle conjunctive normal form | Problems on Horner's method- finding roots between given values | Problems on<br>Crammer's rule | More Pr <mark>oblems o</mark> n<br>Euler's <mark>theorem</mark> | | S-11 | SLO-2 | Problems on composite of three functions | Problems for pcnf | More Problems on<br>Horner's method | More Problems on Crammer's rule | More Problems on<br>Euler's theorem | | | SLO-1 | Tutorial | Tutorial | Tutorial | Tutorial | Tutorial | | S-12 | SLO-2 | Tutorial | Tutorial | Tutorial | Tutorial | Tutorial | | | 1. | T. Veerarajan, Discrete Mathematics, 7th Edition, Tata- | 3. | |-----------|----|---------------------------------------------------------|----| | Learning | | Mcgraw hill, New Delhi, 2006. | Pι | | Resources | 2. | A. Singaravelu, ALLIED MATHEMATICS, 3rd Edition, | 4. | | | | Meenakshi Agency, Chennai, 2011. | Re | 3. P. R. Vittal, Allied Mathematics, 4th Edition Reprint, Margham Publications, Chennai, 2013. 4. S.G. Venkatachalapathy, Allied Mathematics, 1st Edition Reprint, Margham Publications, Chennai, 2007. | Learnin | Learning Assessment | | | | | | | | | | | | | | |---------|----------------------|---------------|----------|------------------------|----------|--------|----------|--------|----------|------------|----------|--|--|--| | | Bloom's | | Co | Final Examination (50% | | | | | | | | | | | | | Level of<br>Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - | 3 (20%) | CLA - | 4 (10%)# | weightage) | | | | | | | | Theory | Practice | | | | | Laval 1 | Remember | 30% | - | 30% | - | 30% | | 30% | | 30% | | | | | | Level 1 | Understand | 30% | | | | | - | 30% | - | 30% | - | | | | | Level 2 | Apply | 50% | - | 50% | | 50% | | 50% | | 50% | | | | | | Level 2 | Analyze | 30% | | | - | 50% | - | 30% | - | 50% | - | | | | | Level 3 | Evaluate | 20% | 200/ | | | 20% | | 20% | | 20% | | | | | | | Create | 20% | - | 20% | - | 20% | - | 20% | - | 20% | - | | | | | | Total | 1 | 00 % | 10 | 0 % | 100 | ) % | 10 | 00 % | 100 % | | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | T | | | | | |------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|--|--|--|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | Mr. Madhan Shanmugasundaram,<br>Infosys Technologies | 1. Dr. Y.V.S.S. Sanyasiraju, IIT Madras sryedida@iitm.ac.in | Dr. V. Subburayan, SRMIST hod.maths.ktr@srmist.edu.in | | | | | | madshan@gmail.com | 2. Dr. B. V. Rathish Kumar, IIT Kanpur<br>bvrk@iitk.ac.in | 2. Dr. N. Balaji, SRMIST<br>balajin@srmist.edu.in | | | | | | Cour<br>Cod | | Г23АЕ2Ј | Course<br>Name | Арр | Applied Tamil – II | | | | | | AE | Ability Enhancement Courses | | | | | | | | | | 0 C<br>2 2 | | |----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|------|--------------------------|-------------------------|-----------------------|-------------------------|---------------------------------|-----------------------------|--------------------------|------------------------------|--------------------|-------------------------|-------------------------|------------------------|----------------------|-------------------|-------|------------|----| | Pre-<br>requisite <i>Nil</i><br>Courses | | | Co-<br>requisite <i>Nil</i><br>Courses | | | | | Progressive Courses Nil | | | | | | | | | | | | | | | | | ;Course Offering Department Tamil Data Book Codes/Sta | | | | | | ards | | Nil | | | | | | | | | | | | | | | | | Course Learning Rationale (CLR): The purpose of learning this course is to | | | | | to: | | | Le | arni | ng | Program Learning Outcomes (PLO) | | | | | | | | | | | | | | CLR-<br>1:<br>CLR-<br>2:<br>CLR-<br>3: | நுட்<br>நேர்<br>வா<br>செடி<br>விம | பங்க <mark>ை</mark><br>காணவ<br>சிப்பு மு<br>ப்தல்<br>பர்சனத்<br>ப்தியறி | ள அறிய<br>ல் செய்யு<br>ஹைக்கை<br>தின் தன்<br>க்கை தட | ால் குறித்<br>பச் செய்தவ<br>ம் திறனும்<br>ளயும் தெட<br>மைகளும்<br>பாரிக்கும் | ல்<br>2 செய்தி<br>ரியச்<br>1 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-4: CLR-5: Cour | ் <mark>முறையையும் அறியச் செய்தல் CLR- பேச்சுக்கலையின் தனித்துவங்களைப் 4: புரியச் செய்தல் CLR- கணினித்தமிழின் பல்வேறு</mark> | | | | | | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | -1 | -2 | .3 | | Outcomes<br>(CLO):<br>CLO- அகராதித்துறை, கலைச்சொல்லாக்கத் | | | | Leve | Expe<br>75 | | Fund | T Appli | H | ≥ Proce | H Skills | H Abilit | - Skills | ⊼ Analy | H Inves | M Probl | Som | ∓ Analy | PS0 -1 | PSO -2 | PSO-3 | | | | | 1: துறையைத் தெரிந்துகொள்ளுதல்<br>CLO- ஊடகங்களில் மொழி ஆளுமையோடு | | | | | 2 | 80 | | Н | | Н | L | М | Н | L | Н | М | L | Н | Н | _ | - | - | | | கலை, இலக்கிய விமர்சன<br>LO- முறைகளையும், செய்தியறிக்கை | | | | | | 70 | 65 | Н | L | Н | М | Н | Н | М | Н | L | Н | М | Н | - | - | - | | CLO-<br>4: | பல் <mark>வேறு வ</mark> டிவங்களைக் கொண்ட<br>CLO- பேச்சு <mark>க்கலை</mark> யை அறிவதன்வழி, | | | | | | 70 | 70 | Н | М | Н | Г | Н | М | М | Н | Н | L | Н | Н | - | - | - | | CLO-<br>5: தமிழைக் கணி <mark>னி வழி, இணையம் வழி</mark><br>கொண்டுசேர்க்கும் உலகளாவிய<br>செயல்பாடுகளை அறிந்துகொள்ளுதல் | | | | | 2 | 80 | 70 | Н | М | Н | Н | М | Н | L | М | Н | L | Н | Н | - | - | - | | | | Duratio<br>n (hour) | | 9 | | 9 | | 9 | | | | | | 9 | | | | | | 9 | | | | | | | -1 | தமிழி <i>்</i><br>அகரா§ | திகள் | விம<br>அறி | <b>)</b> – | | ď | பேச்சுக்கலை | | | | | | | கணினித்தமி<br>ழ் | | | | | | | | | | S-1 | SLO<br>-2 | ஒரு பெ<br>இருமெ<br>அகரா§ | பழி | விமர்சனத்தின்<br>நோக்கம் | | | | | | பேச்சின்<br>அடிப்படைகள் | | | | | | | கணினி வழித்<br>தட்டச்சு | | | | | | | | S-2 | SLO<br>-1 | பன்மொழி<br>அகராதி | நோக்கம் –<br>கண்டறிதல் | விமர்சன<br>வகைகள் | தன்னம்பிக்கையு<br>ம் பேச்சும் | தட்டச்சு<br>செய்யும்<br>மென்பொருட்<br>கள் | |-----|-----------|---------------------------------------------------------------------|----------------------------------|-----------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------| | | SLO<br>-2 | உயிர்/ மெய்<br>எழுத்துகள் | நேர்காணல்<br>முறைகள் | இலக்கிய<br>விமர்சனம் | பேச்சின் வகைகள் | எழுத்துருக்கள் | | S-3 | -1 | உயிர்மெய்<br>எழுத்துகள் | இனிய<br>சொற்கள்<br>பயன்பாடு | திரை விமர்சனம் | மேடைப் பேச்சு | யூனிகோடு<br>எழுத்துருக்கள்<br>/ பிற<br>எழுத்துருக்கள் | | | SLO<br>-2 | அகராத <mark>ிக்கான</mark><br>அடி <mark>ப்படைக</mark> ள் | நேர்காணல்<br>வகைகள் | கலை விமர்சனம் | ப <mark>ட்டிம</mark> ன்றப்<br>பேச்சு | குரல் வழி<br>தட்டச்சு | | S-4 | SLO<br>-1 | அ <mark>கராதி</mark><br>உருவாக்கப்<br>பயிற்சி | நேரடியாக<br>வினா விடை | விமர்சகர்<br>தகுதிகள் | சொற்ப <mark>ொழிவு</mark><br>முறை | எழுத்து வழி<br><mark>த</mark> ட்டச்சு | | | SLO<br>-2 | <mark>அ</mark> கராதி<br>உருவாக்கப்<br>பயிற்சி | அச்சு ஊடக<br>நேர்காணல் | தேர்ந்த புலமை | பேச்சின்<br>நுட்பங்கள் | த <mark>ட்ட</mark> ச்சு<br>செய்யும்<br>பயிற் <del>ச</del> ி | | | -1 | கலைச்சொல்<br>அறிமுகம் | காட்சி ஊடக<br>நேர்காணல் | எழுத்துவடிவ<br>விமர்சனம் | பேச்சாளர்களும்<br>பேசும்<br>முறைகளும் | த <mark>ட்டச்சு</mark><br>செய்யும்<br>பயிற்சி | | S-5 | | பிறமொழிச்<br>சொற்களும்<br>தமிழில் கலைச்<br>சொற்களும் | கேட்பு ஊடக<br>நேர்காணல் | காட்சி வடிவ<br>விமர்சனம் | பேச்சு -<br>எடுத்துரைப்பும்<br>உடல்மொழியும் | பிழை<br>திருத்திகள் | | S-6 | SLO<br>-1 | கலைச்சொல்லாக்<br>க நெறிமுறைகள் | கள ஆய்வில்<br>நேர்காணல் | விமர்சனம்<br>செய்யும் பயிற்சி | நவீன<br>தொழில்நுட்பங்க<br>ளில் பேச்சு<br>முறைகள் | தமி <mark>ழில் பி</mark> ழை<br>திருத்தம்<br>செய்யும்<br>மெ <mark>ன்ப</mark> ொருட்<br>கள் | | | SLO<br>-2 | கலைச்சொல்<br>உருவாக்க<br>உத்திகள் | நேர்காணல்<br>செய்யும்<br>பயிற்சி | விமர்சனம்<br>செய்யும் பயிற்சி | பேச்சாளர்க்குரிய<br>தகுதிகள் | வ <mark>லைப்</mark> பூ<br><mark>உருவா</mark> க்கம் | | | SLO<br>-1 | <mark>து</mark> றைசார்<br>சொற்கள் | நேர்காணல்<br>செய்யும்<br>பயிற்சி | செய்தியறிக்கை | பேச்சுப் பயிற்சி | <mark>வலை</mark> ப்பூவில்<br><mark>எழு</mark> தும்<br>முறைகள் | | S-7 | SLO<br>-2 | பு <mark>திய</mark><br>கண்டுபிடிப்புகளு<br>ம்<br>கலைச்சொற்களு<br>ம் | செய்தி<br>வாசிப்பு<br>முறைகள் | சமூக நிகழ்வை<br>எழுதுதல் | பேச்சுப் பயிற்சி | வலைப்பூவின்<br>பயன்கள் | | S-8 | SLO<br>-1 | பயன்பாட்டுச்<br>சொற்கள் | செய்தி<br>வாசிப்பு<br>நுட்பங்கள் | செய்தி <mark>யாளர்க்கு</mark><br>ரிய தகுதிகள் | கலந்துரையாடலி<br>ன் நோக்கம் | தமிழ்<br>இணைய<br>நூலகங்கள் | | | SLO<br>-2 | கலைச்சொல்லாக்<br>கப் பயன்பாடுகள் | உச்சரித்தல் | உற்றுநோக்குதல் | கலந்துரையாடலி<br>ன்<br>தனித்தன்மைகள் | இணைய<br>நூலகப்<br>பயன்பாடுகள் | | S-9 | -1 | கலைச்சொல்<br>உருவாக்கப்<br>பயிற்சி | பிழையின்றி<br>வாசித்தல் | சமநிலையில்<br>எழுதுதல் | தம் கருத்தைத்<br>தெளிவாக<br>உரைத்தல் | தமிழ்த்<br>தொடரடைவுக<br>ள் | | J-9 | SLO<br>-2 | கலைச்சொல்<br>உருவாக்கப்<br>பயிற்சி | வாசித்தலும்<br>உணர்வும் | செய்தியறிக்கை<br>தயாரித்தல் | கலந்துரையாடல்<br>பயிற்சி | தொடரடைவி<br>ன்<br>பயன்பாடுகள் | | | $\sim$ $\sim$ $\cdot$ | | $\circ \cdot \cdot$ | • | | | |----|----------------------------------|-------------------|---------------------|-------|--------|-----------------------------| | 1 | வகாரகப்பியவ | പ്രവാനത്തെ ജവാത്ത | 年1月11日1 | പരാകത | いませいせい | , தஞ்சாவூர், 1997. | | 1. | 9000) 11 <u>9</u> 1 un un un vo, | | , 982 | | | , 0) (0) 0 11 24 17 , 1331. | 2. பேச்சுக்கலை, ம. திருமலை, மீனாட்சி புத்தக நிலையம், மயூராவளாகம், மதுரை, 2009. ## Learning Resources - 3. பேச்சாளராக, அ.கி.பரந்தாமனார், பாரி நிலையம், சென்னை, 1961 - **4.** இணையத் தமிழ், சந்திரிகா சுப்பிரமணியன், சந்திரோதயம் பதிப்பகம், மதுரை, 2020. - 5. நேர்கா<mark>ணல், மின்னூலகம், தமிழ் இணையக் க</mark>ல்விக் கழகம், https://www.tamilvu.org/ | Learnir | ng Asse <mark>ssment</mark> | - F | _ 16.0 | | | | | 4 /4 | 1 | | | |---------|-----------------------------|--------|-----------------|---------|-----------|---------|-----------------|----------|----------|-------------------|--------------------| | | Bloom's | | Continu | ous Lea | rning Ass | sessmer | nt (50% w | eightage | | Cinal Evenination | , (E00/ weightens) | | | Level of | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination | n (50% weightage) | | | <b>Thinking</b> | Theory | <b>Practice</b> | Theory | Practice | Theory | <b>Practice</b> | Theory | Practice | Theory | Practice | | Level 1 | Remember | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | | | Level | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 2070 | 30 % | | | Level 2 | <mark>App</mark> ly | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | | | Level 2 | Analyze | 40% | 30% | 30% | 40% | 30% | 30% | 30% | 30% | 30 % | | | Level 3 | Evaluate | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | | | Level 3 | Create | 30% | 2076 | 20% | 30% | 30% | 30% | 30% | 30% | 20 % | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 10 | 0 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | Can in a Change | | | |----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------| | Experts from Industry | Expert from Higher Technical Institutions | | Internal Experts | | 1. Dr. P.R.Subramanian, Director,<br>Mozhi Trust, Thiruvanmiyur,<br>Chennai – 600 041. | Dr. V. Dhanalakshmi, Associate Professor,<br>Subramania Bharathi School of Tamil Language<br>& Literaturel, Pondicherry University,<br>Pondicherry | 1. | Dr. B.Jaiganesh,<br>Associate Professor & Head, Dept. of<br>Tamil,<br>FSH, SRMIST, KTR | | TA ON | | 2. | Dr. R. Ravi, Assistant Professor and Head,<br>Dept. of Tamil, FSH, SRMIST, VDP. | | | | 3. | Mr. G. Ganesh, Ass <mark>istant Pro</mark> fessor,<br>Dept. of Tamil, FS <mark>H, SRMIST</mark> , RMP. | | | | 4. | Dr. T.R.Hebzibah beulah Suganthi,<br>Assistant Prof <mark>essor, De</mark> pt. of Tamil,<br>FSH, SRMIST, KTR. | | | | 5. | Dr. S.Saraswathy, Assistant Professor,<br>Dept. of Tamil, FSH, SRMIST, KTR. | | Cour | | 23AE2J | | urse<br>ime | | | Ард | olied | Hir | ndi – II | ' | | | | our | | ΑE | , | Abili | ty Er | han | cem | ent ( | Cour | ses ( | AE) | I | L T | | 0<br>2 | C<br>2 | |---------------|--------------------------------|--------------------------------------|-------|-------------|---------------|---------|-----------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------|------------------------------|----------|-----------------|-----------|----------------------------------|-------------------------|----------------------------------|-----------------|---------------|------------------------|-----------------|----------------------|----------|-------|--------|--------|--------|-----|--------|--------| | Pre-r<br>Co | equisite<br>urses | Nil | | | | | -requi | | Nil | | | | | | | Prog | ress | ive<br>s | Nil | | | | | | | | | | | | | | | se Offeri<br>rtment | ng | | HINI | DI | • | | | | Data E<br>Codes | | k /<br>andaro | ds | | | | | | | | | | Ni | ı | | | | | | | | | | se Learn<br>nale (CL | | | The | purpose | e of le | arnin | g this | cou | rse is to | ): | | | | | Lea | arnin | 9 | | | Pr | ogra | ım L | earni | ing C | Outco | ome | s (PL | .O) | | | | CLR- | 1 : To fi | nd and a | | | | | | | | | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | iscover t | | | | he pr | esent | Worl | d | | | | 1 | Ē | (% | (% | ge | ß | | | | | | <b>~</b> | | | | | | | | | | | ng report<br>ng Revie | | | , , | h Orie | ented | learn | ina | | | | <u>ر</u> | (Bloc | ncy ( | ent ( | wled | Concepts | | edge | ation | | | Data | S | Skills | Skills | | | | | | | | | | | | | Thinking ad Proflicie ad Attainm nental Knum (C. C. Relatec ural Known Specialize | | | | | | | <b>lodeling</b> | Interpret | ive Skills | Solving 8 | ication S | Skills | | | | | | | | | | | | | | | se Learn<br>omes (C | | the e | end o | f this co | urse, | learn | ers w | eaper in the state of | | | | | | | Skills in N | Analyze, Interpret Data | nvestigative | Problem | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | | | | | | | | | | nderstan<br>omprehe | | | | | ımenta | ary in | Hind | di Cinem | па | | | 2 | 75 | 80 | Н | Н | Н | М | L | H | L | М | L | L | Н | М | - | - | - | | | | omprene<br>valuate r | | | | | | | ď | - | H | • | _ | | 80<br>75 | 90<br>95 | H | H | H | M | L | Н | H | M<br>H | M | L<br>M | H<br>H | M<br>H | - | - | - | | | | nce thei | | | | Леdia | Studi | ies | Ţ. | | ŧ | - 38 | | 2 | 80 | 90 | Н | Н | L | Н | М | Н | L | Н | Н | | Н | Н | - | - | - | | CLO- | 5 : To U | nderstan | d and | d usa | ge of ted | chnica | al wor | ds in | Hind | il | ы | | þ | 2 | 85 | 90 | М | Н | М | Н | L | Н | Н | L | Н | М | Н | Н | - | - | - | | | r <mark>ati</mark> on<br>lour) | | 4 | 9 | | | 77 | | 9 | FI | | | | 4 | 9 | Ħ | 7. | | | 4. | 9 | | Ţ | L | | | , | 9 | | | | | | SLO-1 | HIND | I CI | NEN | 1A | Λ | MED | IA A | UR . | HINDI | | REPC | )RT | ГАБ | RJ L | EKI | IAN | | | l RE | | :W8 | Ž. | | RIB | | | | | | | | S-1 | SLO-2 | CINEN | ΛΑ KI | I AVE | HARNA | _ | | IASHA VIGYAPAN DHARNA AVDHARNA ARTH | | | | | | | | SHABDAVALI<br>RTH | | | | | | | | | | | | | | | | | 0.0 | SLO-1 | UDBH | AV | Ħ | | S | SWAR | UP | ď | | | SWAR | UP | ı | 7 | Ţ | | PA | PARIBHASHA | | | | | | ВНА | SHA | 1 | | | | | | S-2 | SLO-2 | VIKAS | Н | | 130 | ٨ | MAHA | ATVA | H | 4 | | DDESI | ΗYA | 1 | | | | И | /AR | UP | | | | WARUP | | | | | | | | | S-3 | SLO-1 | | | | MOVE I | | MEDI/<br>KA PR | | | HASHA | | 1АНАТ | VA | H | | ř | | Α | WA | DHA | RN/ | ١ | 7 | RAI | KAR | | | ï | | | | | 3-3 | SLO-2 | COME<br>AVDH | | | OVE KI | L | JTTAI | RDAY | 'ITV | 4 | | REPOI<br>PRATI | | | | | | | | REV<br>ATT\ | | KA | VADHARNA | | | | | | | | | | | SLO-1 | PRAYO | OJAN | ) | N | P | PRINT | MEL | DIA | | 1 | REPOI | RTA | IJ KI | ВН | UM | IKA | | IGYA<br>AZA | APAI<br>R | V AL | JR | 1 | RAY | YOJA | N | ř | | | | | | S-4 | SLO-2 | UDDE. | SHYA | 4 | 1 | Ε | LECT | RON | IC N | 1EDIA | | PRAY | ΟJΑ | Ν | 4 | | | | IGYA<br>OZG | APAI<br>AR | V A L | JR | | IDD | ESH | ΥA | | | | | | | 0.5 | SLO-1 | MAHA | ATVA | | | | E) | | Ľ. | MEDARI | 1 | PRAY | )G | | b | | | P | RIN | T VIC | SYAF | PAN | 1 | 1AH | IATV | /A | | | | | | | S-5 | SLO-2 | PRAKA | 4R | | | S | SMAC | HAR | LEK | HAN | | UTTAI | RDA | 4 <i>YIT</i> | VA | | | | IGYA<br>HAS | APAI<br>HA | V KI | | | RA) | /OG | | | | | | | | S-6 | SLO-1 | PRISH | | | 1 | | | | R KE | E GUN | | RIPOT | | | | IAN | | Α | WA | DHA | RNA | ١ | | | ESH | | | | | | | | 3-0 | SLO-2 | KARYA | ASHA | ILA | ٠., | S | SAHA | ITA | | | | PUNR | IKSI | HAI | V | | | ARTH AKANIKI SHABDAVAI<br>1HATVA | | | | | ALI I | KA | | | | | | | | | ÷ | SLO-1 | | | | KI VIDE | HI N | VISPA | KSH | TA | | | LEKHA | 4N I | VIDI | Н | | | PARIBHASHA HINDI SE ANGREZI SH. | | | | | | SHA | ABD | 1 | | | | | | | S-7 | SLO-2 | COME<br>ANTA | RCIA | | AUR<br>OVE ME | EN F | PEET | PATE | RAKA | ARITA | | SAMAJIK DAYRA | | | | SWARUP | | | | | ANGREZI SE HINDI SHABI | | | | ABE | ) | | | | | | | | SLO-1 | СОМЕ | RCIA | AL KI | VIDHI | L | JTTAI | RDAY | ′ITV/ | 4 | | SAHITYA ME RIPOTAI<br>LEKHAN | | | | \RJ | J VIGYAPAN KE<br>PRAKAR | | | | | EK DIN EK SHABD | | | | | | | | | | | S-8 | SLO-2 | MOVE | VISI | LESH | AN | E | BHASI | HA G | YAN | 1 | | PARIYOJNA K | | | A KARYA | | | VIGYAPAN KI<br>VISHESHTAYEN | | | | | SHABDON KA VISLESHAN | | | | | | | | | | S-9 | SLO-1 | | | | | | | PARIC | RICHARCHA | | | | | VIGYAPAN MANG | | | | ì | PATH PRICHARCHA | | | | | | | | | | | | | | J-9 | SLO-2 | D-2 PRASHNABHYASH PRASHNABHYASH PRAS | | | | | | PRASI | INA | ABH | YAS | Н | | | | APAN KA<br>PRASHNABHAYASH<br>HAV | | | | | | | | | | | | | | | | | Learr<br>Reso | • | <b>Edited L</b> 1. 2. | F | ilm l | Banti H | lai au | ır Ban | ati B | hi h | <b>SRIJON</b><br>ai, Lekh<br>nes.com | nika | – Son | al, N | Neo | lit İ | Publi | icatio | n | | | 232 | 5387 | 7.cm | s?cu | ırpg: | =3 | | | | | | - https://epustakalay.com/book/4858-hindi-patrakarita-by-dr-krishnbihari-mishra/ - https://hindisamay.com/ https://rajbhasha.gov.in/hi/hindi-vocabulary 5. | | B | | Cont | inuous Le | earning Ass | sessment | t (50% weig | ghtage) | | Final Evancinati | an (E00/ainhtana) | |----------|------------------------------|--------|----------|-----------|-------------|----------|-------------|---------|----------|------------------|--------------------| | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Finai Examinati | on (50% weightage) | | | Level of Tilliking | Theory | Practice | | 1 | Remember | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | 000/ | 200/ | | | Level 1 | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | - | | ا امیرها | Apply | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | F00/ | | | Level 2 | Analyze | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | - | | ا احساما | Evaluate | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | | | Level 3 | Create | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | - | | | Total | 10 | 00 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 1 | 00 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------| | Expe <mark>rts from In</mark> dustry | Experts from Higher Technical Institutions | Internal Experts | | Shri. Santosh Kumar<br>Editor : Srijanlok Magazine<br>Place: Vashishth Nagar, Ara – 802301 | 1. Prof.(Dr.) S.Narayan Raju, Head,<br>Department of Hindi,CUTN, Tamilnadu | 1. Dr.S Preeti. Associate Professor & Head,<br>SRMIST | | Alumni | Student | 2. Dr. Md.S. Islam Assistant Professor,<br>SRMIST | | Ananya Singh Trainee Associate (Finance Operations) Cargill Business Services India Building 9,2nd and 3rd Floor, Cessna Business Park, Kaverappa Layout, Kadubeesanahalli, India, Bengaluru, Karnataka | Maimunah sheik<br>Reg: RA2131001010006<br>Dept: of Biotechnology | 3.Dr. S. Razia Begum, Assist <mark>ant Profes</mark> sor,<br>SRM IST | | | | 4, Dr.Nisha Murlidharan Assis <mark>tant Profe</mark> ssor<br>VDP.SRM IST | | Cour<br>Cod | 1111 - 2 | / <b>5</b> Δ F <i>J</i> . I I | ourse<br>lame | French for S | pecific pu | rpose-II | | Cou<br>ateg | | AE | A | Abilit | y En | han | ceme | ent C | Cours | ses ( | (AE) | | L T | P 2 | 0 | 2<br>2 | |-------------|------------------------------------------------------------|----------------------------------|----------------|----------------------------------------|------------------------------------------------|---------------------------|-------------------------------|--------------------------|--------------------------------------------------------|---------------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------------------|----------------------|-------------------|--------|--------|--------| | Pre-r | equisite<br>urses | Nil | | Co-requisite<br>Courses | Nil | | | | Pro | gress | sive | Nil | | | | | | | | | | | | | | Cour | se Offeri<br>rtment | ng | French | Oourses | | a Book /<br>des/Standards | 3 | | J | ourse | | | | | | Ni | ï | | | | | | | | | | se Learn<br>nale (CL | | The purpo | ose of learning th | is course is | to: | | | Le | arnin | g | | | Pı | ogra | m L | earn | ing ( | Outc | ome | s (P | LO) | | | | CLR-<br>1: | Strength | nen the lang | juage of the | students both in o | ral and wri | tten | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 2: | Express situation | | ments, emotion | ons and opinions, | reacting to | information, | | | | | | - | | | | | | | | | | | | | | CLR-<br>3: | Make th | em learn th | e basic rules | of French Gramr | mar. | $\mathbf{F}\mathbf{N}$ | | | , | | | seu | | | lge | | | | | | | | | | | CLR-<br>4: | - | | | nsion of texts of c | | | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | wledge | ncepts | Discipl | edge | ation | nowlec | | Data | | skills | kills | | | | | | 5 : | | | | e the fear of spea<br>speaking French | ar of speaking a foreign language<br>ng French | | | | | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Skills | | | | | Cour | se Learn | ing At the | o and of this | course learners | , learners will be able to: | | | | | damen | ication | with R | edural | s in Sp | ty to U | s in Mo | yze, In | stigativ | olem So | munic | Analytical Skills | - | 7-5 | -3 | | | omes (CI | _0): | | me the fear of spe | 25.1 | 1 2 140 | | | | | | | | | | | ٠, | | | | | PSO -1 | PSO -2 | PSO-3 | | 1: | and take | e position as | s a foreigner | speaking French<br>concept, culture, | 17.79 | 2 | 75 | 80 | Н | М | Н . | Н | М | Н | Н | L | М | M | Н | L | - | - | - | | | 2 :<br>CLO- | translati | on of Frenc | h | | | 2 | 80 | 90 | М | Н | L . | Н | Н | М | Η | М | L | L | Н | М | - | - | - | | | 3 :<br>CLO- | | - | | atures in French<br>e into other langu | | 2 | 75<br>75 | 90 | Н | Н | L | М | Н | М | L | Н | М | Н | H<br>M | Н | - | - | - | | | 4:<br>CLO- | | _ | | intercultural elem | | nch language | 2 | 80 | 75 | М | L | Н | H | М | Н | Н | Н | L<br>M | L | Н | L<br>M | _ | - | - | | 5 :<br>Dui | ation | | 9 | | 9 | | | 9 | | H | | | | 9 | | | | | | | 9 | | | | | (h | our) | TOEIC | | Les quantifica | | Les | prép | | | de lie | 1 . | | | | | | | 7 | | | 9 | | | | | S-1 | SLO-1 | | | 17.0 | | 1/// | | | | | Le | | | irré | gulie | rs | Ľ | a ne | égati | on | | | | | | | | Qu'est-ce d<br>À qui est-il | | le génitif Les adjectifs | | Les | activ<br>prép | | ons | de | | futu<br>con | ır et<br>ditior | nnel | | 7 | Ħ | | rroga<br>activi | | | | | | | S-2 | SLO-2 | Les compé<br>évaluées | | et pronoms p | ossessifs | tem | os -<br>activ | rités | | | le | s mo | odau | X | 7 | | ľ | 'excl | ama | tion | ř | | | | | S-3 | SLO-1 | | 7 | les pronoms | RN | les t | emp | s et | | | La | a suç | gges | tion | J | 7 | L | es a | activi | tés | | | | | | 0-3 | SLO-2 | Le pluriel | des noms | Les pronoms | personnels | s Les | activ | ités | | Ш | le | con | seil | Ц | | 2 | | ľem | phas | se | | | | | | S-4 | | Les indéno<br>Les noms o | | les pronoms<br>Les activités | compléme | | aspe<br>activ | | | | | | emp | | | | _ | | exem | | 3 | | | | | | | L'adjectif | composes | pronoms réflé | échis | | rése | | mple | <b>.</b> | | | oche | | | | | | érati | | | | | | | S-5 | | Les compa | | | | | | ités | | | | | ation | | | | -+ | | activi | | | | | | | | | les superla | | les adverbes | | | rése | | +inc | n | _ | | nissi | | | | | | ix pa | | e | | | | | S-6 | | | définis (the) | | ٠.,, | | activ | | J - 1115 | 9 | | • | dictio | | | | - | | exem | | | | | | | | SLO-1 | 1 | indéfinis (a, | La place de l' | La place de l'adverbe dans la phrase | | | | | | | | pacit | | | | | | ubor | • | | rela | tives | 3 | | S-7 | SLO-2 | Les exemp | oles | Les activités | | | Le prétérit s<br>prétérit be+ | | | | l'i | ncap | acité | é | | | L | es a | activi | tés | | | | | | S-8 | SLO-1 | Les adjecti | fs | L'ordre des a | dverbes | Les | exer | nple | s | | le | s ve | rbes | à pa | rticu | le | | | subo<br>nsta | | | S | | | | 0-0 | SLO-2 | Les exemp | | Les activités | | - Le présent<br>be+ing | | | | les verbes suivis de V-ir | | | | | ng Les activités | | | | | | | | | | | S-9 | SLO-1 pronoms possessifs ( this et that) les prépositions- | | | | | | | Le past perfec | | | | · | | | | | A ne pas confondre | | | | | | | | | | SLO-2 | SLO-2 Les activités Les exemples | | | | | | | Le past perfect be + ving - Les exemples Les activités | | | | | | | | | | | | | | | | Learning Resources Theory: 1. "Réussir le noueau TOEIC" Détails des épreuves, méthodologie, grammaire, et vocabulaire, Studyrama. 2. <a href="https://www.fluentu.com/blog/french/french-grammar-online-free.html">https://www.fluentu.com/blog/french/french-grammar-online-free.html</a> 4. https://www.lawlessfrench.com/grammar https://blog.gymglish.com/2022/12/15/basic-french-grammar | | <b>D.</b> . | | Conti | inuous Le | earning Ass | sessment | t (50% weig | ghtage) | | Einal Evaminati | on (50% weightage) | |---------|------------------------------|--------|----------|-----------|-------------|----------|-------------|---------|----------|--------------------|--------------------| | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | FIIIdi Exallillati | on (50% weightage) | | | Lever or Trilliking | Theory | Practice | | 1 1 1 | Remember | 30% | 30% | 30% | 200/ | 20% | 20% | 20% | 20% | 200/ | | | Level 1 | Understand | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | - | | 1 1 0 | Apply | 400/ | E00/ | E00/ | 400/ | 50% | E00/ | E00/ | 50% | F00/ | | | Level 2 | Analyze | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | - | | 1 2 | Evaluate | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | 200/ | | | Level 3 | Create | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 1 | 00 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | 4 - 14 - 14 - 14 | | |----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------| | Experts from Industry | Expert from Higher Technical Institutions | Internal Experts | | Mr. Kavaskar Danasegarane Process Expert Maersk Global Service Center Pvt. Ltd | Dr. C.Thirumurugan Professor, Department of French, Pondicherry University | 1. Mr. Kumaravel K. Assistant Professor & Head, SRMIST, KTR | | 2.Mr. Sharath Raam Prasad<br>Character Designer, Animaker<br>Company Pvt. | | 2. Mrs. Abigalai Assistant Professor, SRMIST, VDP | | Course UCY23S04L | Course | | Course | • | | L T | P | 0 | С | |------------------|--------|--------------------------------|----------|---|--------------------------|-----|---|---|---| | Code UCY23S04L | Name | Inorganic Qualitative Analysis | Category | С | Skill Enhancement Course | 0 0 | 4 | 2 | 2 | | Pre-<br>requisite<br>Courses | ı | Nil | Co-requisite<br>Courses | Nil | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|--------------------------------|------------------------|-----| | Course Offeri<br>Department | ing | Chemistry | | Data Book /<br>Codes/Standards | | Nil | | Course Learni<br>(CLR): | ing Rationale | The purpose of learning this course is to: | l e e e | | | | Pro | gran | n Le | arni | ng O | utco | ome | s (Pl | LO) | | | | |------------------------------------|------------------------------------------------------------------|------------------------------------------------------|---------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------------------|---------------|--------------|--------|--------|-------| | UIR-II | exposure to the | e practical knowledge of | Learning | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | of simple compounds | | In | | | | | | | | | | | | | | | | | | cations and anions | | Ê | lge | ots | iplines | 0 | | edge | | æ | | 1 | | | | | | | | synthesized compounds | | (Bloor | owlec | once | d Disc | vledge | zation | Know | D | et Dat | S | Skills | Skills | | | | | | CLR-5 : Know | CLR-5 : Know how to maintain the record of experiments conducted | | inking | tal Kr | o Jo | elate | Kno | eciali | tilize | odelin | terpr | /e Ski | olving | | Skills | | | | | Course Learn<br>Outcomes<br>(CLO): | ning | At the end of this course, learners will be able to: | _evel of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical S | PSO -1 | PSO -2 | PSO-3 | | CLO-1 : Unde | erstand the sepa | aration of inorganic cations and anions | 4 | Н | | - | Н | - | М | - | | | - | - | Н | - | Н | - | | CLO-2: Get a | awareness of sa | fety techniques and handling of chemicals. | 4 | Н | Н | - | | Н | - | - | Ţ. | L | - | - | - | Н | - | - | | | Understand how to carry out different types of | | 4 | Н | ď. | | Η | М | 7 | - | - | | Н | - | - | - | - | - | | | Apply the techniques for preparation of inorganic compounds | | 4 | Н | 1 | Ę, | Н | 1 | | - | - 5 | Н | - | - | Н | Н | - | - | | CLO-5 : Acqui | LO-5 : Acquire insight about the setting up a reaction | | 4 | - | Н | 5 T | - | - | - | Н | - | - | L | - | Н | - | - | - | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |-------------|-----------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------| | S-1 | SLO-1 | Semi Micro Qualitative<br>Analysis | Semi Micro Qualitative<br>Analysis-3 | Semi Micro Qualitative<br>Analysis-6 | Preparation of Inorganic compounds: Preparation of Prussian Blue | Preparation of Potassium trioxalato ferrite (II). | | S- 4 | SLO-2 | 0-2 Introduction and mixture containing one mixture contain | | Qualitative analysis of a mixture containing one anion and one cation. | ICOMPOUNAS. | Preparation of Potassium trioxalato ferrite (II). | | <b>S-</b> 5 | SLO-1 | Semi Micro Qualitative<br>Analysis-1 | Semi Micro Qualitative<br>Analysis-4 | Semi Micro Qualitative<br>Analysis-7 | Preparation of Tetrammine<br>Copper(II) sulphate<br>tetrahydrate | Preparation of Copper(II) chloride. | | to<br>S-8 | SLO-2 | Qualitative analysis of a mixture containing one anion and one cation. | Qualitative analysis of a mixture containing one anion and one cation. | Qualitative analysis of a mixture containing one anion and one cation. | Preparation of Tetrammine<br>Copper(II) sulphate<br>tetrahydrate | Preparation of Copper(II) chloride. | | S-9 | SLO-1 | Semi Micro Qualitative<br>Analysis-2 | Semi Micro Qualitative<br>Analysis-5 | Semi Micro Qualitative<br>Analysis-8 | Preparation of Tristhiourea copper(II) sulphate dihydrate | Preparation of (N,N)-<br>bis(salicyldehyde)ethylen<br>edi amine Salen H <sub>2</sub> ; and<br>its cobalt complex<br>[Co(Salen)]. | | S-12 | SLO-2 | Qualitative analysis of a mixture containing one anion and one cation. | Qualitative analysis of a mixture containing one anion and one cation. | Qualitative analysis of a mixture containing one anion and one cation. | Preparation of Tristhiourea copper(II) sulphate dihydrate | Preparation of (N,N)-<br>bis(salicyldehyde)ethylen<br>edi amine Salen H <sub>2</sub> ; and<br>its cobalt complex<br>[Co(Salen)]. | Learning 2. Resources 3. A. I. Vogel, A text book of Quantitative Analysis, ELBS 1986. G. Marr, B. W. Rockett, Practical Inorganic Chemistry, Van Nostrand Reinhold Company, 1972. H. T. Clarke., A Handbook of Quantitative & Qualitative Analysis, Arnold Heinemann, 1975. | | | | Cont | inuous Le | earning Ass | sessment | t (50% weig | jhtage) | | Final Franciscoti | : (FOO/:-b-t) | | |---------|------------------------------|---------------|----------|---------------|-------------|---------------|-------------|----------------|----------|-----------------------------------|---------------|--| | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - 4 (10%)# | | Final Examination (50% weightage) | | | | | Level of Tilliking | Theory | Practice | | | 1 1 4 | Remember | | 200/ | | 200/ | | 20% | | 000/ | | 200/ | | | Level 1 | Understand | - | 30% | | 30% | - | 20% | | 20% | - | 30% | | | 1 1 0 | Apply | | F00/ | | 400/ | | F00/ | | E00/ | | E00/ | | | Level 2 | Analyze | | 50% | - | 40% | - | 50% | - | 50% | - | 50% | | | Level 3 | Evaluate | | 20% | | 30% | 10.7 | 30% | | 30% | | 20% | | | Level 3 | Create | - | 20% | | 30% | - 1 | 30% | 1 3 | 30% | | 20% | | | | Total | otal 100 % | | 100 % 100 % | | | 0 % | 10 | 00 % | 100 % | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | | | | | |---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|--| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: gsekar@iitm.ac.in | Dr. S. Shanmugan, SRMIST | | | | | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | Prof. M. Arthanareeswari, SRMIST | | | | | | Cours | e UCD23V05T | Course | Career Readiness and Professional Skills | Course | V | Value Addition Course | L | Т | Р | 0 | С | | |-------|-------------|--------|-------------------------------------------|----------|---|-----------------------|---|---|---|---|---|--| | Code | 000230037 | Name | Valeel Neavilless and Floressional Skills | Category | | value Addition Course | 2 | 0 | 0 | 2 | 2 | | | Pre-requisite<br>Courses | Nil | Co-requisite<br>Courses | Nil | Progressive<br>Courses | Nil | |-------------------------------|----------|-------------------------|--------------------------------|------------------------|-----| | Course Offering<br>Department | Career ( | Guidance Cell | Data Book /<br>Codes/Standards | - | | | Course Learning Rationale (CLR): The purpose of learning this course is to: | Le | arni | ng | | | | Pro | gran | n Le | arni | ng C | outc | ome | s (P | LO) | | | | |-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|----------------|-----------------------|-------------------------|------------------------------|----------------------|--------------------------|------------------------------|--------------------|--------------------|---------------|------------|---------------|------------|-----------|-----------------------|---------------| | CLR- Enable students to understand reasoning skills and mathematical 1: concepts | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR- Prepare students for job interviews 2: | | | | | | | | | | | | | | | | | | | | CLR- Learn <u>structured</u> query language (SQL) to an<br>B: intermediate/advanced level | | | | 4 | 1 | seu | /2 | ĸ. | je | | | | N | | | | | | | CLR-<br>4: | | | int (%) | vledge | cepts | Jiscipli | adge | tion | owledg | | Data | | Skills | Skills | | | vior | | | CLR-Develop life-long skills students can use to seek jobs, internships and make career changes | | Proficien | Attainment (%) | ntal Knov | n of Con | Related [ | al Knowle | pecializa | Jtilize Kn | lodeling | nterpret | ive Skills | Solving S | | Skills | | Professional Behavior | Long Learning | | Course Learning Outcomes (CLO): At the end of this course, learners will be able to: | Level of Thinking (Bloom | Expected Proficiency (% | Expected , | Fundamental Knowledge | Application of Concepts | Link with Related Discipline | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret | Investigative | Problem \$ | Communication | Analytical | CT Skills | Professio | Life Long | | CLO- Solve the problems on reasoning | 3 | 80 | -<br>75 | Н | М | | Ī | - | М | - | Н | Į | Н | - | Н | М | - | - | | CLO- Face interviews confidently 2: | 3 | 80 | 75 | + | - | М | 75 | М | Ť | 1 | 4 | L | | Н | , | , | Н | Н | | CLO- Understand the importance and major issues of database security and the maintenance of data integrity | | 75 | 70 | Н | М | 7 | М | Н | - | М | | - | - | - | М | | Н | М | | CLO- Utilise essential programming components including variables conditional logic, loops, and functions to create simple programs | | 75 | 70 | Н | | М | М | 1 | Н | - | | - | М | 1 | Н | , | Н | М | | CLO- Assist students in choosing a career path during their course 5: | 3 | 75 | 70 | - | М | М | - | Н | - | М | À | Ŧ | - | Н | - | | Н | Н | | Duratio | on (hour) | 6 | 6 | 6 | 6 | 6 | |---------|-----------|--------------------------------------|-----------------------------------------|----------------------------------|------------------------------------|---------------------------------------| | S-1 | SLO-1 | Partnership | Self-Image and Self-<br>Presentation | SQL - Introduction to<br>SQL | SQL – Joins | Class coding basics | | 5-1 | SLO-2 | Partnership related solving problems | Etiquettes | SQL Statement Classes | SQL – inner joins –Join<br>Syntax | Class coding basics –<br>quiz session | | S-2 | SLO-1 | Cryptarithmetic Cryptarithmetic | Interview Skills -<br>Introduction | Introduction to Databases | Introducing Python | Understanding Data<br>Structures | | 3-2 | SLO-2 | Cryptarithmetic – solving problems | Do's and Don'ts during<br>Interview | SQL - Databases &<br>RDBMS | Introducing Python Object Types | Python for Data | | S-3 | SLO-1 | Ordering, Ranking | Mock Interview –<br>Session 1 | SQL data types -<br>Introduction | Python - Data Types &<br>Operators | Python Data Types | | 3-3 | SLO-2 | Grouping | Mock Interview –<br>Session 2 | SQL data types | Python's Core Data Types | Overview of Python<br>Data Types | | S-4 | SLO-1 | Venn Diagrams concepts | Mock Interview –<br>Session 3 | SQL - Syntax | Introduction to Functions | Python Structures | | 3-4 | SLO-2 | Venn Diagrams solved<br>questions | Mock Interview –<br>Session 4 | SQL – Data Type Syntax | Why use Functions | Overview of Python Data Structures | | 0.5 | SLO-1 | Types of Paragraph | HR Round – Practice<br>Session | SQL – Commands<br>Introduction | Python – Functions basic | Python – Collections | | S-5 | SLO-2 | Paragraph Forming<br>Questions | HR personal Interview –<br>Mock-Session | SQL - DDL, DML<br>Commands | Coding functions | Improving Code readability | | S-6 | SLO-1 | Types of Sentences | Email Etiquettes | SQL - Subqueries | Introduction to Classes | Collection Module | | 3-0 | SLO-2 | Ordering of Sentences | Email Drafting – Do's<br>and Don'ts | Non-correlated<br>Subqueries | Why Use Classes? | Collection Module in<br>Python | | | 1. | Abhijit Guha, Quantitative Aptitude for Competitive | 4. | Bhatnagar R P, English for Competitive Examinations, | |-----------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Learning | 2. | Examinations, Tata McGraw Hill, 5th Edition 2018. Dr. Agarwal.R.S, Quantitative Aptitude for Competitive Examinations, S. Chand and Company Limited, 2018 | | Trinity Press, 2016 C. J. Date, A. Kannan, S. Swamynathan, "An Introduction to Database Systems", Eighth Edition, | | Resources | 3. | Edition 2020. Edgar Thrope, Test of Reasoning for Competitive Examinations, Tata McGraw Hill, 6th Edition 2020. | 6. | Pearson Education, 2006. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and Programming", 1st Edition, BCS Learning & Development Limited, 2017. | | Learning Assessme | nt | | | | | | | | | | |-------------------|------------------------------|-------------|-------------------------------------------------|-------------|--------------|--|--|--|--|--| | | | Co | Continuous Learning Assessment (100% weightage) | | | | | | | | | Level | Bloom's Level of<br>Thinking | CLA-1 (20%) | CLA-2 (20%) | CLA-3 (30%) | CLA-4 (30%)# | | | | | | | | Thinking | Theory | Theory | Theory | Theory | | | | | | | Lovel 1 | Remember | 20% | 100/ | 050/ | 25% | | | | | | | evel 1 | Understand | 20% | 10% | 25% | 23 /0 | | | | | | | Level 2 | Apply | 50% | 50% | 50% | 50% | | | | | | | Level 2 | Analyze | 50% | 50% | 50% | 50% | | | | | | | Level 2 | Evaluate | 200/ | 400/ | 050/ | 050/ | | | | | | | evel 3 | Create | 30% | 40% | 25% | 25% | | | | | | | | Total | 100 % | 100 % | 100 % | 100 % | | | | | | CLA-1, CLA-2 and CLA-3 can be from any combination of these: Online Aptitude Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, Mini Talks, Group Discussions, Mock interviews, etc. # CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | Printer State Stat | | |-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | Dr. G. Saravana Prabu, Asst. Professor,<br>Department of English, Amrita Vishwa<br>Vidhyapeedam, Coimbatore | Dr. Sathish K, HOD, Department of Career Guidance,<br>FSH, SRMIST<br>Ms. Deepalakshmi S, Assistant Professor, Department<br>of Career Guidance, FSH, SRMIST | | Code UMI23M01L | Course<br>Name | My India Project | Course Category P Internship/ Project/ Community D 0 0 0 0 | |----------------------------------|-------------------------|--------------------------------|------------------------------------------------------------| | Pre-<br>requisite Nil<br>Courses | Co-requisite<br>Courses | NIRN-IA | Progressive Courses | | Course Offering<br>Department | Chemistry | Data Book /<br>Codes/Standards | Nil | ### (Assessment Method - Fully Internal) | Learning Assessment | | | |---------------------|--------------|---------------------------------------------| | | | ous Learning Assessment<br>(100% weightage) | | | Review – 1 | Review – 2 | | | (Activities) | (Project report and Presentation) | | Project Work | 50% | 50% | | Total | | 100% | # Semester - V | Course<br>Code | UCY23 | 3501T | Course<br>Name | C | hemistry of d | and f-block elements | _ | ourse<br>tegory | С | Discipline Specific Core | L T P O C<br>3 1 0 2 4 | |----------------------------|----------|-------|----------------|---|-------------------------|----------------------|---|------------------|--------------|--------------------------|------------------------| | Pre-<br>requisit<br>Course | | il | | | Co-requisite<br>Courses | Nil | | Progres<br>Cours | ssive<br>ses | Nil | | | Course C | Offering | n | | | | Data Book / | | | | | | | Course (<br>Departm | Offering | Chemistry | ta Book /<br>des/Stand | ards | | | | | | | | Nil | | | | | | | | | |-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------|---------------------------|-----------------------|----------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------|---------------|--------------|--------|--------|-------| | Course (CLR): | Learning | Rationale The purpo | ose of learning this cou | ırse is to: | Lograina | | | | Pro | grar | n Le | arni | ng O | utco | ome | s (PL | _O) | | | | | CLR-1: | Gain kno<br>elements | wledge of characteris | k | Learning | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | CLR-2 : | Utilize the elements | e of some important o | block | | | ń | 1 | 7 | | | | | | | | | | | | | | CLR-3: | Address i | <mark>the m</mark> agnetic properti | es and color of comple | exes | | | | nes | w | | ge | | | | | <b>L</b> | | | | | | CLR-4: | Get know<br>elements | lock | (mool | ledge | Concepts | iscipli | dge | ion | owlec | ١, | Sata | ١ | Skills | Skills | | | | | | | | CLR-5: | CLR-5: Employ the importance of these elements and their compounds in our day to day life | | | | | al Know | | lated D | <b>Showle</b> | cializat | lize Kr | deling | erpret [ | Skills | Solving SI | | Skills | | | | | Course<br>Outcom<br>(CLO): | Learning<br>nes | At the enable to: | d of this course, learn | ers will be | Level of Thinking (Bloom) | Fundamental Knowledge | Application of | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem So | Communication | Analytical S | PSO -1 | PSO -2 | PSO-3 | | CLO-1 : | | | cteristic of the d- and f<br>zontal and group trend | | 4 | Н | F. | - | 7 | 77 | | М | - | E | - | - | Н | - | - | - | | CLO-2 : | | the preparation, proportant compounds | perty, structures and us | ses of | 4 | 13 | | | - | Н | - | - | L | - | - | - | - | Н | - | - | | CLO-3: | | | and color of complexe | es | 4 | Н | - | - | | М | - | - | - | - | - | - | 1 | - | Н | _ | | CLO-4: Realize the important properties of d- and f-block elements and their extraction | | | | | 4 | Н | - | | Н | Ä. | - | L | 7 | - | ) | - | - | - | - | - | | CLO-5: | Apprecia:<br>compoun | te the importance of t<br>ds in our day to day i | hese elements and the<br>ife | eir | 4 | - | Н | - | - | - | - | Н | Ī | М | - | - | 7 | - | - | - | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------| | S-1 | SLO-1 | Transition Metals (d – block elements) | Charge-transfer spectra:<br>ligand-to-metal charge<br>transfer | Radii of Ln(III) cations | Oxidation states | Iron: Passivity-degree<br>and theories<br>Theories and conditions<br>of rusting | | 3-1 | SLO-2 | Position of d-block elements in the periodic table | metal-to-ligand charge<br>transfer | Lanthanide contractions | Radii of tri and tetrapositive actinides | Protection of iron from rusting Commercial forms of Iron: Cast iron | | S-2 | SLO-1 | general<br>characteristics of d-<br>block elements | Luminescence and circular dichroism | Cause and Consequences of Lanthanide contractions | actinides contractions Cause of actinides contraction | Manufacture of cast Iron from Heamatite | | | SLO-2 | metallic character<br>atomic<br>and ionic radii | optical rotatory dispersion<br>stereochemical<br>information from CD | Colour and magnetic properties of Lanthanide | Colour and Formation of complexes | Blast furnace:<br>construction, functioning<br>chemical reaction takes<br>place and by-products | | SLO-1 | | Atomic volumes and densities, melting and boiling points | cooperative magnetism, | electronic spectra and Formation of complexes | Properties of actinides | Wrought Iron: Manufacture from cast iron. Properties and use of cast and wrought iron | | S-3 | SLO-2 | Ionisation potentials<br>oxidation states-<br>colour and<br>electronic spectra | magnetic properties<br>Introduction | Properties dependent on standard reduction potential: reduction property | The later actinide elements. | Steel: Varieties of Steel<br>Manufacture of steel:<br>Bessemer's process | | Duratio | n (hour) | 12 | 12 | 12 | 12 | 12 | |---------|----------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------| | S-4 | SLO-1<br>SLO-2 | Practice: calculation in Ionisation potentials | Practice: calculation in magnetism | Practice: Problem solved in electronic spectra | Practice: identification of the complexes based on colour | Practice: Rusting Iron | | S-5 | SLO-1 | complex formation, catalytic and magnetic properties | magnetic properties of<br>tetrahedral and octahedral<br>complexes: para and<br>diamagnetism, | Electropositive character and liberation of hydrogen | Comparison between<br>Lanthanide and actinides | Siemens-Martin's, Duplex<br>and Electrical process.<br>Properties and uses of<br>steel. Comparison of cast<br>iron, wrought iron and<br>steel | | | SLO-2 | Comparison of transition elements and non- transition elements | ferromagnetism and antiferromagnetism | Extraction of lanthanides from Monazite sand | uranium-occurrence<br>metallurgy | Silver: Extraction of silver from argentite and horn silver | | | SLO-1 | synthesis and reactivity of vanadates | determination of magnetic<br>properties<br>Gouy's method | Separation of lanthanide elements: Fractional crystallization method | chemical properties of hydrides, oxides, and halides | To get silver from<br>argentiferous lead and<br>silver ornaments | | S-6 | SLO-2 | synthesis and reactivity of chromates | anomalous magnetic<br>moment | Fractional precipitation method Change in oxidation method | Complexes of lanthanides and actinides. | Gold: Extraction of gold from alluvial sands and auriferous quartz | | S-7 | SLO-1 | synthesis and reactivity of dichromate | magnetic susceptibility and the spin-only formula | Ion exchange method | Extraction, Properties and Uses of some d and f-block elements | Refining of gold<br>Properties and use of<br>gold | | 3-1 | SLO-2 | synthesis and reactivity of molybdates | the effects of temperature on µeff | Solvent extraction method | Titanium: Extraction of Ti from rutile | Colloidal Gold and Purple of cassius | | | SLO-1 | Practice: | Practice: µeff and µs | Practice: separation | Practice: | Practice: Different steels | | S-8 | SLO-2 | Reactivities | calculation | methods | Extraction and metallurgy | extraction | | | SLO-1 | synthesis of tungstates | single molecular magnets | Production of lanthanide metals | Extraction of Ti from Ilmenite | Mercury: Extraction of mercury from cinnabar | | S-9 | SLO-2 | reactivity of tungstates | spin and orbital<br>contribution to the<br>magnetic moment<br>spin cross over rule | Uses of lanthanides and their compounds | Purification and properties of<br>Titanium | Purification and uses of mercury Amalgams: Iron and copper amalgam | | | SLO-1 | synthesis and reactivity of of Manganite | Inner Transition Metals (f – block elements) | Comparison between dand f-block elements | Uses of Titanium | Thorium: Extraction of Thorium from monazite sand | | S-10 | SLO-2 | synthesis and reactivity of of permanganate | Classification of f – block<br>elements<br>Position of lanthanides<br>elements in the periodic<br>table | Actinides: Introduction<br>Position of actinides<br>elements in the periodic<br>table | Vanadium: Extraction of V from carnotite | Extraction of Thorium by electrolysis Properties and uses of Thorium | | | SLO-1 | synthesis of polycations | general characteristics of lanthanides | general characteristics of actinides | Extraction of V from varnodinite | Uranium: Extraction of<br>Uranium from<br>pitchblende | | S-11 | SLO-2 | reactivity of polycations | Occurrence and Electronic | | Purification, Properties and uses of V metal | Properties and uses of<br>Uranium | | S-12 | SLO-1<br>SLO-2 | Practice:<br>Reactivities | Practice: magnetic moment problems | Practice:<br>Lanthanides and<br>Actinides | Practice:<br>Extractions | Practice:<br>Purifications | | Learning<br>Resources | 2.<br>3.<br>4. | S. Prakash, G.D. Tuli, S. K. Basu, R.D. Madan, Advanced Inorganic Chemistry – I Sultan Chand & Sons Publishers 2006. P. L. Soni, A Textbook of Inorganic Chemistry, Sultan Chand and Co., 1977. R. Gopalan, Text Book of Inorganic Chemistry, 2 <sup>nd</sup> edition, Hyderabad, Universities Press, (India), 2012. K. F. Purcell, J. C. Kotz, Inorganic Chemistry W.B. Saunders Co, 1977. | |-----------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | 5. | J. E. Huheey, Inorganic Chemistry, Prentice Hall, 1993. | - 6. P. Atkins, T. Overton, Shriver and Atkins' inorganic chemistry 6th Ed. Oxford University Press, USA, 2010. - C. E. Barnes, Inorganic Chemistry 4th Ed. (Catherine E. Housecroft and Alan G. Sharpe). Journal of Chemical Education, 2003 | | B | | Cont | inuous Le | earning Ass | sessment | (50% weig | ghtage) | | Final Evancinati | an (E00/aimhtana) | | | |---------|------------------------------|---------------|----------|---------------|-------------|----------|-----------|---------|----------|-----------------------------------|-------------------|--|--| | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA – 2 (10%) | | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | Level of Tilliking | Theory | Practice | | | | 1 1 1 | Remember | 200/ | | 200/ | _ = = = | 20% | | 20% | | 200/ | | | | | Level 1 | Understand | 30% | | 30% | - | 20% | | 20% | - | 30% | - | | | | 1 1 0 | Apply | 400/ | | F00/ | | E00/ | - | 50% | | F00/ | | | | | Level 2 | Analyze | 40% | - | 50% | - | 50% | | 50% | | 50% | - | | | | 1 2 | Evaluate | 200/ | | 200/ | | 200/ | | 200/ | | 200/ | | | | | Level 3 | Create | 30% | 1 | 20% | شدال | 30% | 184 | 30% | | 20% | - | | | | | Total 100 % | | | 10 | 00 % | 100 % | | 10 | 00 % | 100 % | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: gsekar@iitm.ac.in | Dr. S. Shanmugan, SRMIST | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of<br>Chemistry, IIISER, Thiruvananthapuram<br>Email: sukhendu@iisertvm.ac.in | Prof. Dr. M. Arthan <mark>areeswar</mark> i,<br>SRM IST | | Course | COL | urse | | Course | _ | | L | T | P | 0 | ( | 2 | |--------|-----------|------|----------------------|----------|---|--------------------------|---|---|---|---|---|---| | Code | UCY23502J | ame | Analytical chemistry | Category | D | Discipline Specific Core | 3 | 0 | 3 | 2 | 4 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|-----------------|------------------------|-----| | Course Offer | ing | Chemistry | | | Data Book / | | Nil | | Department | | Chemisuy | | | Codes/Standards | | MII | | Course Learning (CLR): | Rationale | The purpose of learning this course is to: | | | | | Pro | graı | n Le | arni | ng C | )utc | ome | s (Pl | LO) | | | | |------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------|--------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|------------------------|---------------|--------------|--------|--------|-------| | | l chemistr | nts aware about the basic concepts in y (SI unit, mole concept, concentration | Learning | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | nts aware about the general steps in and common laboratory apparatus. | | 7 | 7 | | | | | | | | | | | | | | | To make<br>CLR-3 : analysis,<br>curve. | | 0 | | ines | V. | h | dge | | | | | | | | | | | | | CLR-4: To make analysis. | Sloom) | vledge | cepts | Discipl | adge | tion | Knowledge | ١, | Data | ħ, | kills | Skills | | | | | | | | | | nts aware about various separation<br>copy, microscopy and mass spectrometry. | ninking (F | ntal Knov | n of Cor | Related [ | I Knowle | pecializa | Jtilize K | odeling | nterpret | ve Skills | Solving S | | Skills | | | | | Course Learning Outcomes (CLO): | | At the end of this course, learners will be able to: | evel of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical 3 | PSO -1 | PSO -2 | PSO-3 | | CLO-1 : Explain t | he concep | t of SI unit, mole concept and concentration | 4 | Н | ď, | - | 7 | 7 | ì | M | - | Ē | - | - | Н | - | - | - | | CLO-2: Acquire | nowledge | about common laboratory apparatus. | 4 | Н | Н | | - | Н | - | - | - 1 | - | ]- | - | - | - | - | - | | CLO-3 . Understa | nd the ba | sic terms in chemical analysis that includes ecision, uncertainty, and calibration curve. | 4 | Н | | Ŧ | 1 | М | - | L | - | - | | - | - | - | - | _ | | CLO-4 : Acquire | nowledge | about quantitative methods of analysis. | 4 | Н | - | | Н | 7 | М | - | 7 | - | - | - | - | - | - | - | | CLO-5: Acquire knowledge about spectroscopy, microscopy and mass | | | | - | Н | - | - | - | - | Н | | L | - | - | - | - | - | - | | Duration | on (hour) | 18 | 18 | 18 | 18 | 18 | |-------------|-----------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------| | S-1 | SLO-1 | Introduction to analytical chemistry. | Laws of chemical combinations. | Stoichiometry and stoichiometric calculations | Preparation of solutions, standard solutions. | Calibration and use of volumetric glassware, pH meter | | 3-1 | SLO-2 | Chemical reactions and equations. | Atomic mass, average atomic mass, gram atomic mass | Introduction to solutions and their concentrations. | Introduction to analytical methods | Thermogravimetry (TGA) and applications | | | SLO-1 | Seven basic units, derived units. | Unified mass(amu) | Mass percentage,<br>molarity, calculations | General steps in chemical analysis. | Introduction to<br>quantitative methods of<br>analysis | | S-2 | SLO-2 | Dimensional analysis. | Mole concept and molar masses, formula mass. | Molality and calculations | Introduction to common<br>laboratory apparatus - burettes,<br>pipettes, meniscus readers,<br>weighing bottles | Gravimetric analysis | | | SLO-2 | Significant figures. | Percentage composition | Normality and calculations. | Weighing balance, construction details, errors in weighing. | Volumetric analysis. | | S-3 | SLO-1 | Error, accuracy, precision, uncertainty, and calibration | Empirical formula and | Parts per million, parts | Funnels, chromatographic columns, desiccators, drying | Centrifugation | | <b>3-</b> 3 | SLO-2 | uncertainty, and calibration curve. | molecular formula | per billion, parts per trillion and calculations. | | methods. | | | SLO-1 | Visiting a chemical laboratory to get a clear idea of different laboratory apparatus | Laboratory practice of weighing different samples in a weighing | Determination of pH of different solutions using pH meter | Determination of concentration of acids by volumetric analysis | | | S-4,5,6 | SLO-2 | | balance. Laboratory practice of using desiccators, chromatographic columns, burettes, pipettes etc. | | The second secon | | | Duratio | n (hour) | 18 | 18 | 18 | 18 | 18 | | |----------|----------|--------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|--------------------------------------------|--| | | | | | | | | | | S-7 | SLO-1 | Delargarenby and applications | Contribugation matheda | A brief introduction to UV-visible | Analysis of an Infra-red | Basics of light | | | 3-1 | SLO-2 | Polarography and applications. | Centrifugation methods | spectroscopy | spectrum. | microscopy | | | S-8 | SLO-1 | Introduction to separation methods. | duction to separation Introduction to UV-visible A brief introduction to nuclear | | | Bright field microscopy and applications | | | - | SLO-2 | Solvent extraction | Electromagnetic waves | Analysis of a UV-visible spectrum. | nmr spectrometer and its parts. | Dark field microscopy and applications | | | | SLO-1 | Chromatography | Width of spectral lines - reasons | A brief introduction to<br>Infra-red spectroscopy | Analysis of a nmr spectrum. | Phase contrast microscopy and applications | | | S-9 | SLO-2 | Electrophoresis | A brief description about different spectroscopic techniques. | Infra-red spectrometer and its parts. | A brief introduction to microscopy | Fluorescence<br>microscopy | | | S-10,11, | SLO-1 | Laboratory practice of separation of mixtures by | Sample measurements in a UV-visible | Sample measurements in an Infra-red | Sample measurements in a nmr spectrometer. | Sample measurements in Bright. Dark and | | | 12 | SLO-2 | solvent extraction. | spectrometer. | spectrometer. | | Phase contras<br>microscope. | | | S-13 | SLO-1 | Confocal microscopy | Tunnelling electron | Classical ionization sources in mass | MALDI | Detectors in mass | | | 0.10 | SLO-2 | Comoca microscopy | microscopy | spectrometry | history and the | spectrometry | | | S-14 | SLO-1 | An introduction to electron | Introduction to mass | Ambient ionization sources in mass | Paper spray ionization | Analys <mark>is of a ma</mark> ss | | | 0 14 | SLO-2 | microscopy | spectrometry | spectrometry | Tupor opiny ionization | spectrum | | | S-15 | SLO-1 | Scanning electron microscopy | Mass spectrometer and | Electrospray ionization | Analyzers in mass | Applications of mass | | | 0-13 | SLO-2 | (SEM) | its parts | Liconospiay ionization | spectrometry | spectrometry | | | S-16,17, | SLO-1 | 5A " " | Sample imaging in | Sample measurements | Sample measurements using | Elemental analysis by | | | 18 | SLO-2 | Sample imaging by SEM. | TEM. | using electrospray ionization source. | mass spectrometry | mass spectrometry | | | | Theory: | | |-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------| | Learning | 1.<br>2. | A. S. Douglas, M. W. Donald, Fundamentals of Analytical Chemistry, 2022. C. H. Daniel, Quantitative chemical analysis, 7th edition 2006. | | Resources | 3. | R. V. Dilts, Analytical Chemistry – Methods of Separation, Van Nostrand 1974. | | | 4. | D. L. Pavia, G. M. Lampman, G. S. Kriz, Introduction to spectroscopy, 5th edition Cengage Learning 2015. | | Learning | Assessment | | | | | | | | | | | | | |----------|------------------------------|---------------|----------|---------------|------------|----------|-------------|----------------|----------|-----------------------------------|----------|--|--| | | B | | Cont | inuous Le | earning As | sessment | t (50% weig | ghtage) | | Final Examination (50%) waish | | | | | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - | 3 (20%) | CLA - 4 (10%)# | | Final Examination (50% weightage) | | | | | | Level of Tilliking | Theory | Practice | | | | Laval 1 | Remember | 30% | 30% | 30% | 30% | 20% | 20% | 20% | 20% | 30% | 30% | | | | _evel 1 | Understand | 30% | 30% | 30% | 30 /6 | 20 /0 | 20% | 20% | 2070 | 30% | 30 /0 | | | | Level 2 | Apply | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 50% | 50% | 50% | | | | Level 2 | Analyze | 40% | 50% | 50% | 40% | 50% | 50% | 50% | 30% | 50% | 50% | | | | Level 3 | Evaluate | 30% | 20% | 20% | 200/ | 30% | 30% | 30% | 30% | 20% | 20% | | | | Level 3 | Create | 30% | 20% | 20% | 30% | 30% | 30% | 30% | 30% | 20% | 20% | | | | | Total | 10 | 0 % | 100 % | | 100 % | | 10 | 00 % | 100 % | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |---------------------------------|--------------------------------------------|-------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director, | Prof. G. Sekar, Department of Chemistry, | 1.Dr. Rahul Narayanan, SRMIST | | Analytical Sciences and Technology Transfer, | IIT Madras | | |----------------------------------------------|---------------------------------------|----------------------------------| | Novugen Pharma, Malaysia | Email: gsekar@iitm.ac.in | | | Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of | 2. Prof. Dr. M. Arthanareeswari, | | | Chemistry, IIISER, Thiruvananthapuram | SRM IST | | | Email: sukhendu@iisertvm.ac.in | ONW 101 | | Course | Cours | e Statistical Thermodynamics and Group | Course | | | L | T | P | 0 | С | |--------|---------------|----------------------------------------|----------|---|--------------------------|---|---|---|---|---| | Code | UCY23503T Nam | | Category | С | Discipline Specific Core | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | | | | |------------------------------|-------|-----------|-------------------------|-----|----------------|------------------------|------|--|--|--| | Course Offer | ing | Chamiatru | | Da | ata Book / | | NI:I | | | | | Department | • (:) | | Chemistry | | odes/Standards | Nil | | | | | | Course Learning<br>Rationale<br>(CLR): | Learning | Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | | |-----------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------|-----------------------|-------------------------|-------------------------------|----------------------|----------------|--------------------|--------------------|--------------------|----------------------|------------------------|---------------|------------|--------|--------|-------| | | derstand the basic principles & concepts of istical thermodynamics 1 2 3 4 5 6 7 8 9 1 | | | | | | | | 10 | 11 | 12 | 13 | 14 | 15 | | | | | CLR-2 : Strengthen the know thermodynamics. | owledge in numerical problems in statistical | I C | 7 | | nes | | | ge | | | | | | | | | | | | sic concepts of Born-<br>roximation & Partition function | oom) | ledge | cepts | iscipli | dge | Specialization | Knowledg | | Data | | dills | <u>s</u> | | | | | | CLR-4: Understand the co | ncept of group theory and applications. | (B) | Š | ou | 9 | vle | zat | 조 | Б | e [ | <u>s</u> | Š | Skills | | | | | | CLR-5: Understand the cry | vstal systems and symmetry operations. | ing | 조 | 0 | ate | O | <u>a</u> | Ze | <u>=</u> | rpr | S | ing | e C | Skills | | | | | | | Ē | Ig | 0 | Ş | $\preceq$ | ĕ | = | ğ | nte | ě | 6 | äti | 炎 | | | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Sp | Ability to Utilize | Skills in Modeling | Analyze, Interpret | Investigative Skills | Problem Solving Skills | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | CLO-1: Learn the basic pri | nciples of statistical thermodynamics. | 4 | Н | - | - | - | - | - | М | - | - | - | - | H | - | - | - | | CLO-2: Acquaint students thermodynamics. | with the numerical problems in statistical | 4 | Н | Н | Ē | | Н | - | - | Ŧ | | - | - | | - | - | - | | CLO-3 : Gain the knowledg statistical thermod | e about concepts & approach of<br>ynamics | 4 | Н | ř. | - | 7 | М | 7 | - | - | L | - | - | - | - | - | - | | CLO-4: Learn the concept | of group theory and applications | 4 | Н | 1 | | Н | - | - | М | - 5 | - | - | - | - | - | - | - | | CLO-5 : Explain the crystal | systems and symmetry operations | 4 | | Н | | | - | 1 | Н | _ | _ | _ | - | - | _ | - | - | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |--------|------------------------------------|--------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------| | S-1 | SLO-1 | Introduction to<br>Statistical<br>Thermodynamics | Thermodynamic properties in terms of the partition function | Bose-Einstein condensation | Group theory-Basic concepts | Use of G.O.T. to construct character tables for molecular point groups | | 3-1 | SLO-2 | Introduction to<br>Statistical<br>thermodynamics | Thermodynamic properties In terms of the partition function | Bose-Einstein condensation | Group theory-Basic concepts | molecular point groups | | | SLO-1 | Types of statistics | Thermodynamic<br>properties of an ideal<br>monatomic<br>gas | Thermodynamic properties of an ideal BE gas | Symmetry elements and symmetry operations | Character tables for point groups | | S-2 | SLO-2 Maxwell-Boltzmann statistics | | Thermodynamic properties of an ideal monatomic gas | Thermodynamic<br>properties of an ideal<br>BE gas | Symmetry elements and symmetry operations | Crystallographic<br>symmetry | | S-3 | SLO-1 | Bose-Einstein<br>statistics | Thermodynamic properties of an ideal diatomic gas | Quantum statistics: ideal<br>Fermi-Dirac gas | Group postulates | Crystal Systems | | 3-3 | SLO-2 | Maxwell-<br>Boltzmann<br>statistics -Practice | Types of Statistics-<br>Practice | Calculation of rotational constant | Calculate the fractions of fluorine atoms | Matrix-practice | | S-4 | SLO-1 | Bose-Einstein statistics-Practice | Statistics-Practice | rotational partition<br>function -<br>Measurement | Relative population of the two quanrum states – Measurements | Crystal Systems -<br>Practice | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|----------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------| | | SLO-2 | Bose-Einstein statistics-Practice | Statistics - Practice | Calculation of rotational constant | Relative population of the two quanrum states - Examples | Symmetry of crystals-<br>Practice | | 0.5 | SLO-1 | Fermi-Dirac<br>statistics | Vibrational partition function | Fermi-Dirac distribution | Types of groups | Molecular symmetry and<br>crystallographic<br>symmetry | | S-5 | SLO-2 | Fermi-Dirac<br>statistics | Vibrational partition function | Thermodynamic properties of an ideal FD gas- | Types of groups | Quasicrystals | | S-6 | SLO-1 | Evaluation of<br>Lagrange's<br>undertermined<br>multipliers | Statistical thermodynamics of ortho- and para hydrogen Application of BE statistics to black body radiation | Molar partition function of a system | Point groups | Applications of group theory | | | SLO-2 | Evaluation of<br>Lagrange's<br>undertermined<br>multipliers | Vibrational partition function | Partition function for a real gas | Other postulates | Decomposing a reducible representation into its irreducible representations | | S-7 | SLO-1 | Molecular partition function of an ideal gas | Application of BE statistics to black body radiation | Equilibrium constant<br>of an ideal gas<br>reaction in<br>terms of partition<br>functions | Point groups | Group theory and normal modes of vibrations of polyatomic molecules | | | SLO-2 | Fermi-Dirac<br>statistics -<br>Practice | mi-Dirac atistics - fractice Molecular Partition functions - Practice Zero-point energy - practice Group representation - Practice | | Vilbration modes of NH₃ ·Molecule - Practice | | | | SLO-1 | Evaluation of<br>Lagrange's<br>Undetermined<br>Multipliers -<br>Practice | Molecular Partition<br>functions for Ideal Gas -<br>Practice | Electronic Partition<br>Function -<br>Measurement | Group representation –<br>Practice with examples | Vilbration modes of BF <sub>3</sub> ·Molecule - Practice | | S-8 | SLO-2 | Maxwell-<br>Boltzmann<br>distribution<br>equation -<br>Practice | Translational Partition<br>Function - Practice | Electronic Partition<br>Function -<br>Measurement | Reducible representation -<br>Calculation | Vilbration modes of BF₃<br>·Molecule - Practice | | | SLO-1 | | | 174 | Representations of molecular point groups | Procedure for determining the | | S-9 | SLO-2 | Translational partition function | Quantum statistics-<br>Introduction | The Einstein theory of heat capacities | molecular point groups | irreducible representations of the vibrational modes in nonlinear molecules | | 0.40 | SLO-1 | Rotational partition function | Ideal Bose·Einstein gas | Heat capacities of monatomic crystals | Great orthogonality theorem | Nonnal modes of vibration of H20 molecule | | S-10 | SLO-2 | Vibrational partition function | Bose-Einstein<br>distribution | The Debye theory of heal capacities | Important properties of irreps | Selection rules for atomic spectra - applications | | S-11 | SLO-1 | Calculation<br>Avogadro's<br>number | Einstein gas calculation | Russell-Saunders coupling - Practice | Modes of vibration-<br>representation - Practice | normal modes of vibration of a tetrahedral molecule | | J-11 | SLO-2 | Stirling approximation | Standard Integral-<br>Practice | The Debye theory -<br>Practice | H <sub>2</sub> O-Modes of vibration-<br>representation - Practice | Irreducible·<br>Representations-<br>Practice | | S-12 | SLO-1<br>SLO-2 | Stirling approximation | Boltzmann distribution -<br>Measurement | Calculate the electronic partition function | Coordinate axis system for H <sub>2</sub> O-Practice | vibrations of an AB <sub>2</sub><br>molecule | | | Theory: | | |-----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Learning<br>Resources | 1.<br>2.<br><b>3.</b> | B.R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical Chemistry, 35th edition, New Delhi ShobanLal Nagin Chand and Co, 2013. P. W. Atkins, Physical Chemistry, W. H. Freeman and Company 8th edition 2006. D. W. Ball, Physical Chemistry Textbook, Cengage India Private Limited, 2021 F. A. Cotton, Chemical Applications of Group Theory", John Wiley & Sons 2015 | | | 4. | 1. A. Cotton, Chemical Applications of Group Theory, John Wiley & John 2015 | | Learning | Assessment | | | | | | | | | | | | | |----------|------------------------------|---------------|----------|-----------------|--------------------|--------|----------|----------------|----------|-----------------------------------|----------|--|--| | | <b>5</b> | | | Final Evaminati | an (EOO) wainhtana | | | | | | | | | | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - | 3 (20%) | CLA - 4 (10%)# | | Final Examination (50% weightage) | | | | | | Level of Tilliking | Theory | Practice | | | | 1 1 4 | Remember | 30% | | 30% | | 20% | | 200/ | | 200/ | | | | | Level 1 | Understand | 30% | _ | 30% | - | 20% | - | 20% | - | 30% | - | | | | Level 2 | Apply | 40% | | 50% | | 50% | | E00/ | | 50% | | | | | Level 2 | Analyze | 40% | | 50% | - | 50% | | 50% | | 50% | - | | | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | | | Level 3 | Create | 30% | - | 20% | | 30% | | 30% | | 20 % | - | | | | | Total | 10 | 0 % | 10 | 100 % 100 % | | | 10 | 00 % | 100 % | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director, Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: gsekar@iitm.ac.in | 1. Dr. G. Madhuraiveeran, SRMIST | | Novugen Pharma, Malaysia<br>Email: <u>ravianalytical@gmail.com</u> | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@jisertvm.ac.in">sukhendu@jisertvm.ac.in</a> | 2. Prof. Dr. M. Arthanareeswari,<br>SRM IST | | Course | UCY23D01T | Course | | Course | | | L | T | P | 0 | C | |--------|-----------|--------|---------------------------------|----------|---|------------------------------|---|---|---|---|---| | Code | UCY23D011 | Name | Nanomaterials and Nanochemistry | Category | D | Discipline Specific Elective | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|-----------------|------------------------|-----| | Course Offer | ing | Chemistry | | | Data Book / | | Nil | | Department | | Chemistry | | | Codes/Standards | | NII | | Course Lo | earning Rationale | The purpose of learning this course is to: | Learning | ٠. | | | Pro | grai | n Le | arni | ng C | utco | ome | s (PL | <b>-</b> O) | | | | |-----------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------|-----------------------|-------------------------|-------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|-----------------|---------------|-------------|--------|--------|-------| | CLR-1: | Acquire sound know | vledge about nanochemistry | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: ( | Understand the fund | damentals of nanochemistry | | | | | | | ge | | | | | | | | | | | CLR-3: L | earn the synth <mark>esis</mark> | of nanomaterials | Ê | ge | ş | | 4 | | ed | | ~ | | | | | | | | | CLR-4 : | Gain doon knowledge about the analytical techniques to | | | owled | oncep | - | vledge | zation | Knowledge | D | et Date | <u> </u> | Skills | Skills | | | | | | CLR-5 : L | LR-5 : Learn carbon nanostructures and their synthesis | | | 조 | O | ate | õ | <u></u> | <u>5</u> | := | pre | S | ing | | <u>s</u> | | | | | | | | | 喜 | Jo C | Sel | 조 | Sec | 量 | bo | Je I | e V | 8 | ä | Skills | | | | | | <u> </u> | | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | | <mark>Jnd</mark> erstand the phe<br>pased products in u | nomenon underlying the nanomaterials se | 4 | Н | - | - | - | - | М | | | - | - | - | Н | - | - | - | | | dentify the suitable<br>specific nanomateri | methods for the synthesis of any<br>al | 4 | Н | Н | - | - | Н | - | - | | | - | - | Ī | - | - | - | | | Cuido for the quitable technique to characterize | | | Н | | | | М | - | L | Ī | 7 | - | - | | - | - | - | | | CLO-4: Synthesize and carbon nanomaterials and modify them and design based on the requirement | | 4 | Н | | 27 | Н | | 5 | - | - 1 | L | - | - | - | - | - | - | | CLO-5 : 6 | Understand the parameters responsible for the catalytic efficiency of nanomaterials and tune them for better performance | | | | Н | 4 | ξ.<br>- <u>2</u> | 1 | - | Н | - | М | - | - | - | - | - | - | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|--------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------| | S-1 | SLO-1 | Introduction to<br>nanoscience and<br>nanotechnology | Basics of nanofabrication methods | Discussion on various<br>techniques available for<br>characterizing the<br>nanomaterials for their<br>size,<br>shape, morphology | Bonding in carbon, new carbon structures | Nanocatalysis:<br>fundamentals | | | SLO-2 | Introduction to nanoscience and nanotechnology | top-down, bottom-up approaches | Scanning electron microscope (SEM) and examples | Bonding in carbon, new carbon structures | homogeneous vs<br>heterogeneous<br>catalysis | | S-2 | SLO-1 | discussion on<br>various<br>phenomenon at<br>nanoscale | gas phase, liquid phase,<br>solid phase synthesis | Discussion on various<br>techniques available for<br>characterizing the<br>nanomaterials for their<br>size,<br>shape, morphology | carbon clusters | effect of surface area,<br>effect of particle size | | | SLO-2 | discussion on nano size | self-assembly, templated synthesis, | Transmission electron microscope(TEM), examples and a comparison with SEM | discovery of C60 | shape and<br>morphology | | S-3 | SLO-1 | discussion on<br>nano shape | Sol-gel synthesis | Discussion on various<br>techniques available for<br>characterizing the<br>nanomaterials for<br>crystalline phase | alkali doped<br>C60, superconductivity<br>in C60 | effect of composition | | | SLO-2 | discussion on nano surface | Synthesis through electrodeposition | X-ray powder diffraction (XRD) | larger and smaller fullerenes | bimetallic system etc | | S-4 | SLO-1 | Tutorial: discuss nano size | Tutorial: discuss the advantages of sol-gel synthesis | Tutorial: explain the experimental part of XRD | Tutorial: discuss the superconductivity in C60 | Tutorial: effect of composition | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|---------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------| | | SLO-2 | Tutorial:<br>discuss about<br>nano surface | Tutorial: how to synthesis<br>nanostructured materials by<br>electrodeposition | Tutorial: discuss the various techniques available for characterizing the nanomaterials for crystalline phase | Tutorial: explain bonding in carbon, new carbon structures | Tutorial: explain<br>about effect of<br>surface area,<br>effect of particle<br>size | | S-5 | SLO-1 | Discussion on surface energy | fundamentals of nanoparticle formation | Discussion on various<br>techniques available for<br>characterizing the<br>nanomaterials for<br>oxidation<br>states | carbon nanotubes: synthesis | nanomaterials for<br>photo-catalysis:<br>Introduction and<br>overview | | | SLO-2 | Discussion on surface stabilization | Thermodynamic approach, supersaturation | X-ray photoelectron spectroscope (XPS) | single<br>walled carbon nanotubes | dye degradation | | | SLO-1 | characteristic<br>length | Nucleation and growth of nanoparticles | textural properties<br>(surface area, pore<br>volume, pore size) | structure and characterization of carbon nanotubes | organic<br>transformations | | S-6 | SLO-2 | self-assembly | homo vs hetero nucleation | N2 sorption techniques<br>for textural properties of<br>the<br>materials | structure and characterization of carbon nanotubes | plasmon assisted photo-catalysis | | | SLO-1 | defects | Synthesis of nanoparticles,<br>Metallic, semiconducting | Thermal analysis | mechanism of formation | band gap tuning in nanomaterials | | S-7 | SLO-2 | size quantization | Synthesis of nanoparticles,<br>Metallic,<br>semiconducting | TGA | chemically modified carbon nanotubes | band gap tuning and photocatalytic performance | | | SLO-1 | Tutorial: Discuss on surface stabilization | Tutorial: explain about the nucleation and growth of nanoparticles | Tutorial: N2 sorption<br>techniques for textural<br>properties of the<br>materials | Tutorial: explain about the chemically modified carbon nanotubes | Tutorial: explain band gap tuning in nanomaterials | | S-8 | SLO-2 | Tutorial: discuss<br>about different<br>kind of defects | Tutorial: what arethe different synthesis techniques of nanoparticles | Tutorial: explain TGA | Tutorial: discuss about structure and characterization of carbon nanotubes | Tutorial: discuss<br>about plasmon<br>assisted photo-<br>catalysis | | S-9 | SLO-1 | surface plasmon | Synthesis of nanoparticles: quantum dots, oxides, hybrids | Solid state NMR for characterizing functionalized materials. | Doping, functionalizing nanotubes | Nanomaterials for water splitting | | 3-9 | SLO-2 | conductivity | Synthesis of nanoparticles: quantum dots, oxides, hybrids | Peculiar Examples of materials characterized using NMR | application of carbon nanotubes | Nanomaterials for water splitting | | S 10 | SLO-1 | tunneling, | micelles and microemulsion as templates for synthesis | Scanning tunnelling microscope (STM) | Carbon nanowires | nanomaterials for CO2 capture | | S-10 | SLO-2 | magnetism | 0D, 1D and 2D nanoparticles, | Examples of materials characterized using STM | synthetic strategies:<br>gas phase and solution phase<br>growth | nanomaterials for CO2 capture | | S-11 | SLO-1 | defects | core-shell<br>nanoparticles | Atomic force microscope (AFM) | growth control | nanomaterials for CO2 conversion | | J-11 | SLO-2 | | | , | | | | S-12 | SLO-1 | Tutorial: explain conductivity | Tutorial: discuss about 0D,<br>1D and 2D nanoparticles | Tutorial: what are the uses of STM and NMR? | Tutorial: What are the application of carbon nanotubes | CO2 conversion | | U-12 | SLO-2 | Tutorial: explain magnetism | Tutorial: explain about coreshell nanoparticles | Tutorial: discuss about atomic force microscope (AFM) | Tutorial: discuss about gas phase and solution phase growth | Tutorial: discuss the nanomaterials for CO2 capture | | | Theory: | |----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Learning<br>Resource | 1. C. N. R. Rao, A. Muller, A. K. Cheetam, (Eds), The Chemistry of Nanomaterials, John Wiley & Sons 2004. 2. C. P. Poole, Jr. F. J. Owens, Introduction to Nanotechnology, Wiley Interscience, New Jersey. 2003. 3. K. J. Klabunde, Nanoscale materials in Chemistry, Wiley- Interscience, New York, 2001 4. T. Pradeep, Nano: The Essentials in Understanding Nanoscience and Nanotechnology, Tata McGraw Hill, New Delhi, 2007. 5. T. Tang and P. Sheng, Nano Science and Technology – Novel Structures and Phenomena, Taylor & Francis, New York, 2004 | 6. U. Heiz, and U. Landman, Nanocatalysis, Springer, New York, 2006 | Learning | Assessment | | | | | | | | | | | | | | |----------|------------------------------|--------|----------|---------------|------------|---------------|-------------|---------|----------|-----------------------------------|----------|--|--|--| | | <b>5</b> | | Cont | inuous Le | earning As | sessment | t (50% weig | ghtage) | | Final Evanination | (E00/ | | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | Level of Tilliking | Theory | Practice | | | | | Laural 4 | Remember | 30% | | 30% | | 200/ | | 200/ | | 200/ | | | | | | Level 1 | Understand | 30% | - | 30% | - | 20% | - | 20% | - | 30% | - | | | | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | | | Levei 2 | Analyze | 40% | _ ; • • | 50% | - | 30% | - | 50% | | 30% | - | | | | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | | | | Levers | Create | 30% | - | 20% | - | 30% | - | 30% | | 20% | - | | | | | | Total | 10 | 0 % | 10 | 00 % | 100 % 100 | | | 00 % | 1 | 00 % | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | |---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------| | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: gsekar@iitm.ac.in | 1. Dr. Srinivasa Rao, SRMIST | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | 2. Prof. Dr. M. Ar <mark>thanarees</mark> wari,<br>SRM IST | | Course | UCY23D02T | Course | | Course | | | L | T | P | 0 | C | |--------|-----------|--------|------------------|----------|---|------------------------------|---|---|---|---|---| | Code | UCY23D02T | Name | Energy and Fuels | Category | D | Discipline Specific Elective | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | ٨ | Nil | Co-requisite<br>Courses | Nil | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----------------------------|------------------------|-----| | Course Offeri<br>Department | ing | Chemistry | | Data Book / Codes/Standards | | Nil | | Course Learning<br>Rationale<br>(CLR): | The purpose of learning this course is to: | Learning | | | | Pro | graı | n Le | arni | ng C | Outc | ome | s (Pl | LO) | | | | |----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------|---------------|--------------|--------|--------|-------| | | oad knowledge of chemistry of Energy and | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 Impart the basic | cnaracteristics of energy and fuels | | | | | | | | | | | | | | | | | | fuels-based che | LR-3: Develop skills in the analysis of various energy sources and fuels-based chemicals Develop competence in the analysis of various physico- | | | | iplines | 0 | ) | ledge | | æ | | | | | | | | | CLR-4 : Develop compe | Level of Thinking (Bloom) | owlec | once | d Disc | wledge | zation | Know | D | et Dat | SIII | Skills | Skills | | | | | | | CLR-5: Impart knowled | CLR-5: Impart knowledge about green energy and fuel systems | | | | elate | Kno | ecial | tilize | odelin | terpr | e Sk | Solving | ation | Skills | | | | | Course Learning Outcomes (CLO): | Outcomes At the end of this course, realities will be | | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem So | Communication | Analytical S | PSO -1 | PSO -2 | PSO-3 | | CLO-1: Gain insight about | out energy and fuel resources | 4 | Н | | - | - | Ħ. | М | - | - | - | - | Ī | H | - | - | - | | CLO-2 : Understand var storage system | 4 | Н | Н | - | ij | Н | | - | + | 7 | - | - | - | - | - | - | | | CLO-3 : Attain knowledg | 4 | Н | | ċ | i | М | М | - | - | - | 7 | - | - | - | - | - | | | CLO-4: Understand the | 4 | Н | | - | Н | | - | L | - | - | - | - | - | - | - | - | | | CLO-5 : Perceive the im | 4 | - | Н | " | - | М | - | Н | - | - | - | - | - | - | - | - | | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | | | |--------|------------------------|------------------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|--|--| | S-1 | SLO-1 | Definition and units of energy and power | Introduction to Solar energy | Introduction to alternative fuels | Natural Fuels | Carbonization of Coal,<br>Fractionation of Coal<br>Tar | | | | | SLO-2 | Conservation of<br>energy | Photovoltaic cells-<br>components and uses | Need for alternative fuels | Synthetic Fuels | Uses of Coal Tar<br>based Chemicals | | | | | SLO-1 Energy resources | | Electrochemical double layer capacitor (EDLC) | Types of alternative fuels | Manufactured Solid<br>Fuels and their<br>Characteristics | Requisites of a Good<br>Metallurgical Coke | | | | S-2 | SLO-2 | Introduction to energy conversion | | Introduction to non- | Manufactured Solid<br>Fuels and their | Coal Gasification-<br>Hydrogasification | | | | | | and storage<br>systems | layer capacitor (EDLC) | renewable and Types | Characteristics | Catalytic Gasification | | | | S-3 | SLO-1 | Need of energy<br>Storage and | Structure, Performance | 5 10 1 5 | Charcoal, Briquettes, | Petroleum and Petrochemical Industry: Composition of crude petroleum | | | | 5-3 | SLO-2 | conversion<br>systems | and Applications of EDLC | Fuel Production | and Bagasses | Paraffinic, Asphalitc<br>and Mixed Base Type<br>Crude Petroleum;<br>Petroleum Products | | | | S-4 | SLO-1 | Energy<br>Conversion | Calculation of | Practice-Renewable | Practice: Solid Fuels | Practice: Coal<br>Gasification-<br>Hydrogasification, | | | | U-4 | SLO-2 | Parameter-<br>Practice | capacitance | energy sources | r ractice. Solid r dels | Petrochemical Industry | | | | S-5 | SLO-1 Types of en | | Introduction to electric vehicle and hybrid | Introduction and Types | Manufactured Liquid<br>Fuels and their | Introduction to Green | | | | 3-3 | SLO-2 | systems | vehicles | initioduction and Types | Characteristics | Hydrogen Fuel | | | | Duration (hour) | | 12 | 12 | 12 | 12 | 12 | |-----------------|-------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|-------------------------------------------|---------------------------------------------------------| | S-6 | SLO-1 | Methods of energy production and storage | Advantages and drawbacks of electric and hybrid vehicles | Methods of Production | Gasoline or Petrol | Hydrogen Production<br>Methods | | 3-0 | SLO-2 | Electrochemical energy production-Basics | System components—<br>Different configurations<br>of Hybrid vehicles | Characteristics of Fuels | Diesel Fuel | Electrochemical/Photo chemical Production of Hydrogen | | | SLO-1 | Electrochemical energy conversion and storage | Power split devices-<br>Basics | Solid Fuel | Kerosene Oil and Blast<br>Furnace Gas | Combustive properties of hydrogen | | S-7 | SLO-2 | Electrochemical<br>energy conversion<br>and storage-<br>Applications | High energy and power density batteries | Solid Fuel | Coal liquefaction | Problems associated with Hydrogen as Fuel and Solutions | | S-8 | SLO-1 | Energy Density<br>Calculation | Devices-Practice | Practice-solid fuel | Practice-Methods to fuel sources | Practice: Hydrogen production systems ,Hydrogen Fuels | | | SLO-1 | Magnetic and, | W. C. | | 1/2 | ,rrydrogerr deis | | S-9 | 3LU-1 | chemical energy | Introduction to Bio | Liquid Fuel | Water Gas, Producer | Hydrogen Gas Storage | | | SLO-2 | systems-<br>Introduction | Energy Technologies | Mar | Gas, and Oil Gas | injungen car carage | | | SLO-1 | Primary Batteries | lates destina to Mind | 116 | 0 | Performance, Emission | | S-10 | SLO-2 | and Secondary Batteries- Fundamentals | Introduction to Wind<br>Energy systems | Gaseous Fuel | Composition and Uses of Gaseous Fuels | and<br>CombustionAanalysis in<br>Engines | | | SLO-1 | Introduction to Li- | Introduction to Eucl cell | A. 12.12 | Uses of coal in various | Cafaty Agnests of | | S-11 | SLO-2 | ion battery and solid-state batteries | Introduction to Fuel cell vehicles | Natural and Coal Gas | industries – Fuel and<br>Non-fuel | Safety Aspects of<br>Hydrogen Fuel | | | SLO-1 | Practice- | Fuel Cell Components - | A The same | Practice: Coal in | Practice: Hydrogen | | S-12 | SLO-1 | Differences<br>between batteries | Practice | Practice-Different fuels | various industries –<br>Fuel and Non-fuel | storage system | Theory: Learning Resources - P. Mason, Energy and Fuel Hardcover 2020. - F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, Energy storage in power systems, 1st Ed., Wiley, 2016. 2. - A. Demirbas, 'Biodiesel A Realistic Fuel Alternative for Diesel Engines', Springer-Verlag London Limited 2008. R. A. Dave, IP, Modern Petroleum Technology, Vol 1, Upstream, Ed. 6th ed., John Wiley & Sons. Ltd, 2000. Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK, 1990. | Learning | g Assessment | 1 | | | | | | | | / | | |----------|------------------------------|--------|----------|---------------|----------|-------------------|------------------|--------|----------|-----------------|--------------------| | | | | Cont | inuous Le | | First Franciscoti | an (500/inbtana) | | | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA – 2 (10%) | | CLA - | 3 (20%) | CLA - | 4 (10%)# | rinai Examinati | on (50% weightage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | Level i | Understand | 30% | - | 30% | - | 20 /0 | - | 20% | | 30% | - | | Level 2 | Apply | 40% | | 50% | - | 50% | | E00/ | | 50% | | | Level 2 | Analyze | 40% | | 30% | | | - | 50% | | 30% | - | | Level 3 | Evaluate | 30% | • | 20% | | 30% | | 30% | | 20% | | | Level 3 | Create | 30% | | 20% | _ | 30% | | 30% | | 20% | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 00 % | 10 | 00 % | 1 | 00 % | # CLA - 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |----------------------------------------------|--------------------------------------------|----------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | • | Prof. G. Sekar, Department of Chemistry, | | | Dr. Ravikiran Allada, Director, | IIT Madras | 1. Dr. G. Madhuraiveeran, SRMIST | | Analytical Sciences and Technology Transfer, | Email: gsekar@iitm.ac.in | | | Novugen Pharma, Malaysia | Prof. Sukhendu Mandal, Department of | 0.0.10.11.11 | | Email: ravianalytical@gmail.com | Chemistry, IIISER, Thiruvananthapuram | 2. Prof. Dr. M. Arthanareeswari, | | | Email: sukhendu@iisertvm.ac.in | SRM IST | | Course<br>Code | UCY | ′23G02 | Coul<br>Nan | | Polyme | s uses | | Course<br>atego | | G Generic Elective Course L T P O 0 3 1 0 2 4 | | | | | | | | | | _ | | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|----------------------------------|---------------------------|-------------------------|--------------------------------------|---------------------------|-------------------------|-------------------------------------------------------------------|----------------|----------------------|---------------------------------------------|-------------------|------------------------|-------------------------|----------------------|------------------------|----------------------|--------------------------------------------|---------------|--------|--------|----| | Pre<br>requis | site | Nil | | | Co-requ | | Nil | | | Progr<br>Cor | ess | | Nil | | | | | | | | | | • | | | Course<br>Departr | Offer | ing | C | hemist | ry | | Data Bo<br>Codes/S | | ds | | | | | | | | Nil | | | | | | | | | Course<br>Rationa | | ning | | The pu | rpose of lea | arning | this course is | to: | Learni | | | | Pro | grar | n Le | arni | ng C | outc | ome | s (Pl | LO) | | | | | (CLR):<br>CLR-1:<br>CLR-2: | LR-1: Exposure to polymers and their chemistry LR-2: Get knowledge on synthesis, properties and applications of different kinds of polymers Learn this course will develop skills on synthesis of | | | | | | | M | ng | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-3: conducting polymers and understand the significance and applications of conducting polymers CLR-4: Enrich the knowledge on biopolymers and biodegradable polymers and the basic aspects of polymer nanocomposites Knowledge on materials developed with polymers and their | | | | | | 9s<br>ir | ing (Bloom) | Knowledge | Concepts | Link with Related Disciplines | nowledge | ialization | Ability to Utilize Knowledge | gling | pret Data | Skills | ing Skills | on Skills | S | | | | | | | Outcoi<br>(CLO): | Course Learning Outcomes At the end of this course, learners will to | | | | | | ll be | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Rela | Procedural Knowledge | Skills in Specialization | Ability to Utiliz | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | | CLO-2: | Synt | hesis o | f differe | nt types | mer science<br>of polymer | s and | | 10 | 4 | <i>M</i> | -<br>H | | | H | - | -<br>L | | Ī | -<br>-<br>- | - | Ĥ<br>- | 1 | -<br>- | - | | CLO-3 : | Get | knowled | dge on i | ionic, co | nducting an | nd biop | oolymers | | 4 | М | - 1 | ė | - | Н | ď | H | -<br>Н | - | - | - | - | - | - | - | | CLO-4 :<br>CLO-5 : | | | | | 1.00 | -dema | and application | าร | 4 | H<br>- | L | | H<br>- | Н | | Н | - | - | | _ | - | - | - | _ | | Duratio | n (ho | ur) | | 12 | F | | 12 | | 12 | 1.90 | | | | | 12 | | - ( | | | | 1 | 2 | | | | S-1 | SLO | 0-1 | | luction to | o Intr | oducti | ion to LCPs | | hesis of l<br>ners (exa | | | | polyaromatic conducting polymers: synthesis | | | | | | | Use of polymer for designing drug carriers | | | | r | | | SLC | )-2 | (D) | Use | | ι | Jse | | hesis of I<br>ners (exa | | | | | Ex | kamp | oles | | | controlled drug | | | | rug | | | S-2 | SLO | <b>)-1</b> | polym | -growth<br>erizatio<br>hanism | n | cl | n of LC main-<br>hain<br>(example 1) | Applic | ations of<br>ners (exa | f bioior | ic | рс | olypy | | lyani<br>& po | | ioph | ene | | | l-res<br>poly | | | | | 0-2 | SLO | )-2 | exa | ample | 1 | Application of LC main- | | | ations of<br>ners (exa | | | E. | A | D | Us | se | 4 | | | ŀ | Appli | catio | n | | | S-3 | SLO | D-1 | polym | cal chair<br>erization<br>hanism | CIND. | | LC polymers mple 1) | | crosslink<br>on excha | | d | | ethyl | enec | oly(3<br>lioxy<br>PED( | thiop | hen | e) | | | tore:<br>poly | | | | | | SLC | )-2 | Ex | ample | Side | | LC polymers mple 2) | | Use | | | + p | | | | | ulfid<br>zole) | e), | | A | Appli | catio | n | | | S-4 | SL( | | | rial sess | | | al session | | utorial se | ession Tutorial session | | | | | | Tı | utoria | al se | ssior | 1 | | | | | | S-5 | SLO | <b>)</b> -1 | polym | c chain<br>erization<br>hanism | | I | of side- chain<br>LC<br>ymers | IONC | mers ba | nolymers, polymer | | | | • | re | | lagn<br>nsive | | | rs | | | | | | | SLC | )-2 | Exa | amples | | Арр | olications | | Polystyre | yrene Examples | | | | ( | | me r<br>poly | | | е | | | | | | | S-6 | SLO | D-1 | Copolyi | Chain<br>merization<br>Chanism | on: | | chromic<br>LCPs | | olyelectro | | | | | | Shape memory polymers | | | | | | | | | | | | SLC | )-2 | Exa | amples | pl | | chiral-<br>nromic LCPs | , | Application | ons | | | | E | kamp | oles | | | | Α | Applications | | | | | Duration (hour) | | 12 | 12 | 12 | 12 | 12 | | | |-----------------|-------|--------------------------------------------------------------|--------------------------------------------|-------------------------------------------------|--------------------------------------------------------|-------------------------------------------|--|--| | S-7 | SLO-1 | Ring opening polymerization: mechanism | LC block copolymers | Inorganic ionic polymers (synthesis) | Electrochemical actuators | Smart hydrogels | | | | | SLO-2 | Examples | Use | Applications | Examples | Applications | | | | S-8 | SLO-1 | Tutorial session | | | | 3-0 | SLO-2 | | | | | | | | | S-9 | SLO-1 | Polymer stereo chemistry | LC composites | Synthesis of conducting polymers | Electroluminescent | Polymers in tissue engineering | | | | | SLO-2 | Examples | Applications | Examples | Applications | Examples | | | | S-10 | SLO-1 | Coordination polymerization | Synthesis of ionic polymers (example 1) | Polyacetylene | Introduction to biopolymers and biodegradable polymers | Polymers for medical devices (synthesis) | | | | | SLO-2 | Examples | Synthesis of ionic polymers (example 2) | poly(p-phenylene<br>vinylene) (PPV) | Examples | Examples | | | | S-11 | SLO-1 | Characterization of polymers (chemical) | Applications of ionic polymers (example 1) | Polyheterocyclic conducting polymers: synthesis | Characterization of biopolymers: NMR | Polymers<br>nanocomposites<br>(synthesis) | | | | | SLO-2 | Characterization of polymers (physical) polymers (example 2) | | Examples | Mass spectroscopy | Examples | | | | 0.40 | SLO-1 | Tutorial session | Tutorial session | Tutorial session Tutorial session | | Tutorial session | | | | S-12 | SLO-2 | 2 | THE PARTY | What it | | | | | - 1. A. R. West, Basic Solid State Chemistry, 2nd Ed., John Wiley &Sons Ltd., 1999. 2. K. J. Klabunde, Nanoscale materials in Chemistry, Wiley Interscience, New York, 2001. 3. C. Giacovazzo, Fundamentals of Crystallography, Oxford University Press, 2002. 4. W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction,9th Ed., Wiley, 2013. - D. J. Ward, Materials Science, Lerner Classroom, 2008. W Wagner, S Sakiyama-Elbert, G Zhang, M Yaszemski. Biomaterials Science: An Introduction to Materials in Medicine, 4th Ed., Academic Press, 2020. | Learning | Assessment | | | | | | | | | 1 | | | |----------|------------------------------|--------|----------|---------------|----------|-----------------|---------------------|--------|----------|-----------------|--------------------|--| | | <b>1</b> U · | | Cont | inuous Le | | Final Evaninati | on (500/ weighters) | | | | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - | 3 (20%) | CLA - | 4 (10%)# | rınaı Examinati | on (50% weightage) | | | | Level of Tilliking | Theory | Practice | | | Laval 1 | Remember | 30% | 1 1977 | 30% | N - 1 | 20% | D. | 20% | 4.77 | 200/ | | | | Level 1 | Understand | 30% | 7.2 | 30% | | 20% | ш. | 20% | | 30% | - | | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | Level 2 | Analyze | 40% | - | 30% | - | 30% | - | 30% | - | 30% | - | | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | | Level 3 | Create | 30% | - | 20% | - | 30% | - | 30% | | 20% | - | | | | Total | 10 | 00 % | 10 | 0 % | 10 | 00 % | 10 | 00 % | 100 % | | | # CLA - 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | | | | | | |------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------|--|--|--|--| | Expert from Industry | Experts from Higher Technical | Institutions Inte | ernal Experts | | | | | | Dr. Ravikiran Allada, Director, Analytical Sciences and Technology Transfer. | Prof. G. Sekar, Department of Ch<br>IIT Madras<br>Email: gsekar@iitm.ac.in | hemistry, 1. | 1. <b>Dr. Avijit Baidya</b> , SRMIST | | | | | | Novugen Pharma, Malaysia<br>Email: <u>ravianalytical@gmail.com</u> | Prof. Sukhendu Mandal, Departn<br>Chemistry, IIISER, Thiruvanantha<br>Email: sukhendu@iisertvm.ac.in | apuram 2. F | Prof. Dr. M. Arthanareeswari,<br>SRM IST | | | | | | Course Code UPY23G04T Course Name Solar Techn | Course | Generic Elec | tive Course L T P O C 3 1 0 2 4 | | | | | | Pre-requisite Nil Courses | Co-<br>requisite N.<br>Courses | iil | Progressive Courses Nil | |----------------------------|--------------------------------|--------------------------------|-------------------------| | Course Offering Department | Physics and<br>Nanotechnology | Data Book /<br>Codes/Standards | Nil | | | e Learning<br>ale (CLR): | The purpose of learning this course is to: | Le | earni | ing | program Learning Outcomes (PLO) | | | | | | | | | | | | | | | |------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------|--------------------------|-----------|---------------------------------|-------------|-----------------------------|----------------------|-------------|------------------------------|--------------------|--------------------|----------------------|------------------------|---------------|------------|---------|---------|---------| | CLR-<br>1: | Acquire basic<br>the earth's sur | knowledge on estimation of solar radiation at face | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | CLR- Familiarize with the principles of thermal energy collection and storage | | | | | | | S | | | | | | | | | | | | | | 3:<br>CLR-<br>4: | | ne physics of pn junction solar cell various PV materials and their importance in nology | (Bloom) | ıcy (%) | ent (%) | wledge | ncepts | ink with Related Discipline | edge | ion | Ability to Utilize Knowledge | | Data | | kills | Skills | | | | | | | Familiarize wi<br>design and ins | Thinking (Bloom) | Proficier | Attainment (%) | ntal Knov | on of Concepts | Related ] | al Knowle | Specialization | Utilize K | fodeling | Interpret | ive Skills | Solving S. | | Skills | | | | | | | e Learning<br>mes (CLO): | At the end of this course, learners will be able to: | Level of | Expected Proficiency (%) | Expected | Fundamental Knowledge | Application | Link with | Procedural Knowledge | Skills in S | Ability to | Skills in Modeling | Analyze, Interpret | Investigative Skills | Problem Solving Skills | Communication | Analytical | PSO - 1 | PSO - 2 | PSO - 3 | | | | e present energy scenario and the potential of solar for future energy | 2 | 80 | 75 | Н | - | - | - | ÷ | - | | | - | Н | - | Н | - | - | - | | CLO-<br>2: | Have a knowle thermal energy | 2 | 80 | 70 | Н | - | Н | - | - | | 5 | á | - | Н | - | - | - | - | - | | | CLO-<br>3: | Gain a fundamental understanding of solar photovoltaics | | | | | Н | | Н | | , | Н | - | - | | - | | - 11 | 1 | - | - | | CLO-<br>4: | utilized with commercially available solar panels | | | | | ÷ | Н | | r i | Н | ř | - | - | | Н | - | - | - | - | - | | | O- Differentiate between solar thermal and solar photovoltaic technologies and their applications | | | | 75 | | Н | | - | | - | _ | Н | - | Н | - | | • | - | - | | | ration<br>lour) | 12 | 12 | 12 | 12 | 12 | | |---------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--| | | SLO-<br>1 | Introduction to energy<br>scenario and need for solar<br>option | Introduction to concentrating collectors | Solar thermal applications<br>Types of solar heating and<br>cooling<br>Systems | Semiconductors as solar cell<br>material<br>Monocrystalline and<br>polycrystalline<br>materials | Solar module and array concepts | | | S-1 | SLO- | Solar radiation at and outside the earth's atmosphere | Definition of terms and types of concentrating collectors, | Natural circulation water<br>heating<br>System, Forced circulation<br>water heating system | Formation of energy bands<br>and<br>band gap<br>Concept of direct and indirect<br>band<br>gap | Series and parallel connection of cells | | | S- | SLO-<br>1 | Solar spectrum, solar constant and concept of air mass | Compound parabolic collector,<br>Geometry | Concept of solar space<br>heating<br>Space heating systems using<br>active methods | Charge carriers in semiconductors | Mismatch in series connection, Mismatch in parallel connection | | | 2 | SLO-<br>2 | The Sun-Earth movement, declination angle, and apparent motion of the Sun | Tracking requirements,<br>Calculation of solar swing | Passive heating concepts | Carrier concentration and distribution | Design and structure of solar<br>modules<br>Basic concepts and fabrication<br>process | | | S- | SLO- | Solar radiation geometry | Performance analysis of compound parabolic collector | Thermal storage wall,<br>attached<br>green house and sunspace | Concept of electric field and energy band bending | Power ratings of PV modules | | | 3 | SLO-<br>2 | Definition of various angles and mathematical expression relating them | Symmetric and asymmetric cases | Solar thermal heating market:<br>Present and future | Qualitative understanding of carrier generation and recombination | Effect of temperature | | | | SLO-<br>1 | Calculation of declination | Duckle week Decrees 4 | Case study | Problems/Demos/<br>Simulations/Seminars: Energy | Problems/Demos/<br>Simulations/Seminars: Series | | | S4 | | angle, local apparent time,<br>hour angle, and angle of<br>incidence on a solar collector | Problems/Demos/<br>Simulations/Seminars | Solar thermal heating market:<br>Present and future | to wavelength conversion<br>Electrons and hole<br>concentrations in doped<br>semiconductors | and parallel connecting of cells of different parameters | | | S-<br>5 | SLO-<br>1 | LO-<br>1 Empirical estimation of solar radiation on horizontal surface Performance analysis of compound parabolic collector Solar space heating technology: | | Introduction to pn junction<br>Qualitative analysis of<br>formation of | Introduction to balance of system (BoS) | | | | | | | | Practical applications and present market | pn junction under equilibration conditions | Need for batteries and converters | |----------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------| | | SLO- | Monthly average hourly global and diffuse radiation | State-of-the art in CPC | Introduction to space cooling and refrigeration | pn junction in non-equilibrium condition | Concept of maximum power point tracking | | S-<br>6 | SLO- | Solar radiation on tilted surfaces | Cylindrical parabolic collector,<br>Orientation and tracking<br>modes | Solar absorption refrigeration system | Biasing of a pn junction and<br>the<br>current-voltage equation of a<br>pn<br>junction diode | Concepts in PV system design | | | SLO- | Empirical equation for direct, diffuse, reflected, and total radiation | Performance analysis | Passive cooling concepts | pn junction under illumination | Stand-alone PV system configurations | | S- | SLO- | Measurement of solar radiation, principle of pyranometer and pyrheliometer | Derivation of instantaneous collection efficiency, Paraboloid dish collector | Ventilation and ground cooling concept | Generation of photovoltage<br>Light generated current | Concept of Hybrid PV systems | | 7 | SLO- | Calculation of monthly<br>average daily global radiation<br>on horizontal surfaces at<br>different locations. Calculation<br>of solar flux on tilted surfaces | Central receiver collector<br>Heliostats and the receiver | Evaporative cooling, Radiative cooling Basic principles and design concepts | I-V equation of solar cells | Qualitative idea of Types and issues with hybrid systems | | S-<br>8 | | Calculation of monthly | Estimation of instantaneous collection efficiency for given conditions | Case study:<br>Solar space cooling<br>technology:<br>Practical applications and<br>present<br>market | Mapping solar cell<br>parameters in an I-V curve<br>Efficiency measurements | Case Study: Performance analysis of standalone and hybrid PV systems | | 0 | SLO- | Solar thermal collection,Liquid flat-plate collector | Present technology and future of concentrating collectors | Solar thermal power plants<br>Low temperature power<br>generation<br>systems | Basic silicon solar cell | Grid-connected PV systems | | S-<br>9 | SLO- | Performance analysis of liquid flat -plate collector | Introduction to thermal energy<br>Storage, Basic methods for<br>storing thermal<br>energy | Medium temperature systems<br>Power generation cycle using<br>cylindrical parabolic<br>concentrating<br>collectors | Structure and efficiency limits | System installation | | S- | SLO- | Transmissivity-absorptivity product and instantaneous collection efficiency | Sensible heat storage types<br>and properties of sensible<br>heat storage materials | High temperature systems | Introduction to thin films solar cell technologies | Operation and maintenance of PV systems | | 10 | SLO- | Overview of the effect of various parameters on performance | Phase change materials and latent heat storage arrangements | High temperature systems using paraboloid dish and central receiver concepts | Key material properties and efficiency limits | Practical issues | | | SLO- | Selective surfaces, spacing,<br>number of cover, fluid<br>temperature, and dust on the<br>top cover | Thermochemical storage<br>Thermochemical storage<br>reactions | Solar distillation and desalination technology | Effect of band gap on efficiency | Concept of simple payback period | | S-<br>11 | SLO- | Alternatives to the conventional Collector, Evacuated tube collector designs | Case study: Analysis of a liquid storage tank | Solar drying and solar cooking | Beyond single junction e<br>fficiency<br>limit, Approaches to overcome<br>single junction efficiency limit | Lifecycle costing Annualized LCC Unit cost of generated electricity | | S-<br>12 | | Calculation of instantaneous efficiency Calculation of transmissivity-absorptivity product | Case study: Analysis of a<br>liquid<br>storage tank<br>Well-mixed and thermal<br>stratification conditions | Tutorial: Solar thermal power plants: National and International status Solar distillation and desalination: Industrial plants | Case study: GaAs solar cell | Tutorial:<br>Safety handling of PV systems | | | rning<br>ources | S. P. Sukhai<br>Edition, 200<br>2. Solar Photo<br>Applications<br>Limited, 201<br>3. Principles of | ,<br>voltaics: Fundamentals, Tec<br>, Chetan Singh Solanki (PHI | ge and Collection,<br>Graw Hill, 3rd<br>hnologies and<br>Learning Private | P. Garg and J. Prakas.<br>Publishing, 7th Reprint<br>5. Physics of Solar Cells: | t, 2000). | | Learning Ass | sessment | | | |--------------|----------|------------------------------------------------|--| | | Bloom's | Continuous Learning Assessment (50% weightage) | | | | Level of<br>Thinking | CLA – | 1 (10%) | CLA – 2 | 2 (15%) | CLA – | 3 (15%) | CLA – 4 | (10%)# | | nation (50%<br>ntage) | |---------|----------------------|------------|----------|---------|----------|--------|----------|---------|----------|--------|-----------------------| | | | Theory | Practice | | Level 1 | Remember Understand | 30 % | - | 30 % | - | 30 % | - | 30 % | - | 30% | - | | Level 2 | Apply<br>Analyze | 40 % | - | 40 % | - | 40 % | - | 40 % | - | 40% | - | | Level 3 | Evaluate<br>Create | ate 30 % - | | 30 % - | | 30 % | - | 30 % | - | 30% | - | | | Total | 100 | ) % | 100 | ) % | 100 | ) % | 100 | ) % | 100 | ) % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |----------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Mandakini Biswal, KPIT technology Ltd., mandakini.biswal@kpit.com | Dr. Onkar Game, IIT Indore, ogame@iiti.ac.in | Dr. Radhamani, SRMIST | | Dr. M Krishna Surendra, Saint Gobain Research, krishana.muvvala@saint-gobain.com | Prof. S Balakumar, University of Madras,<br>balakumar@unom.ac.in | Dr. Archana J, SRMIST | | | e Code | UCY23 | S05L Cou<br>Nai | ne | Organic Chemist | ry Pract | ical-II | Со | urse | | | | 6 | Skill | Enh | nanc | eme | nt C | ours | se | L T | 9 (<br>3 2 | | | |----------------------------------------------------------------------|----------------------|-------------------------------------------|----------------------------------|-------|------------------------------------------------------|----------------------------|-----------------------------------|-----------------------------|-----------------------|-------------------------|-------------------|-----------------------|----------------|----------------------|--------------------|-------------------------|----------------------|--------------------------------------------------|----------------------------|-------------------|--------|------------|-------|--| | re-requ | | il | | | Co-requisite<br>Courses Nil | | | | Prog<br>Co | gres<br>ours | | Nil | | | | | | | | | | | | | | | Offering | ) | Chemist | ry | Da | ata Book<br>odes/Sta | | | | | | | | | | Nil | | | | | | | | | | | Learnin<br>ale (CLR) | | The purp | ose | of learning this cours | se is to: | | Learning Program Learning C | | | | | | g Ou | Outcomes (PLO) | | | | | | | | | | | CLR-1 | : Practic | e separa | tion technic | ques | s used in organic synt | thesis | Learni | ng | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | CLR-3<br>CLR-4 | : Learn o | orthogona<br>ractical e | | n of | lucts<br>functional groups<br>ut oxidation and reduc | ction | Level of Thinking (Bloom) | 1 | Fundamental Knowledge | Application of Concepts | ated | chowledge | Specialization | ize | leling | erpret Data | Skills | ving Skills | ion Skills | cills | | | | | | Course<br>Learnir<br>Outcon<br>(CLO): | nes / | 1 | | | e, learners will be able | 4.875 | | | Fundamenta | Application | Link with Related | Procedural Knowledge | Skills in Spe | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | | CLO-1: Acquire knowledge about advanced methods of organic synthesis | | | | | anic | 4 | | Н | - | - | Μ | - | Н | | - | - | - | - 4 | - | - | - | - | | | | CLO-2 | . Learn s | synthetic | | | queous workup, distill<br>ad crystallization | ation, | 4 | T, | Н | Н | - | - | - | | - 1 | | - | Н | - | = | - | - | - | | | | : Experie | ence the | procedure | for i | natural product isolati | | 4 | | Н | - 4 | L | Н | - 1. | - | - | - | - | - | - | - | - | - | - | | | CLO-4 | | | | | ion and green chemis | | | | Н | Н | - | 1 | Η | - | - | - 1 | - | - | - | - | - | - | - | | | CLO-5 | : techniq | | e compoun | as t | by using modern analy | yticai | 4 | V | Н | ď. | | 2 | | Н | - | - 1 | - | L | - | - | - | - | - | | | Duratio | n (hour) | | 9 | ۳ | 9 | - 1 | + | 9 | 47 | | ٠ | ١. | - | 9 | | | | | | | 9 | | | | | S-1 to<br>3 | SLO-2 | Distil<br>norm<br>press<br>Singl<br>mixtu | | Is | olation of natural proc<br>caffeine from tea lea | | Orthogor<br>of amine<br>functiona | acid | tion | C | yclol | nexa<br>exar | none<br>none | esis:<br>e →<br>oxin | | <b>→</b> | | Multicomponent<br>synthesis: Mannich<br>reaction | | | | | | | | S-4 to | SLO-1 | reduc | lation at<br>ced<br>sure: Single | 9 | piperene from black | Oxidation<br>Benzyl a | | | ol: | С | halc | one - | → c | halco | one | Y | | Green chemistry: Direct Oxidative | | | | | | | | 6 | SLO-2 | | mixture of counds | ľ | pepper | Dell | | | | | | dibromide → Isozazole | | | | | | esterification of Aldehyde | | | | of | | | | S-7 to | SLO-1 | using<br>chror | ration<br>g column<br>natography | , | Extraction of Eugeno Cloves | extraction of Eugenol from | | | | onyl<br>→ | b | enzo | pina | col - | $\rightarrow$ | | | | Organic synthesis in water | | | | | | Learning 2. Resources -melting point measurement SLO-2 A. Vogel, Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall 1989. M. Fieser, Fieser and Fieser's Reagents in Organic Synthesis, Wiley 2016. F. G. Mann, B. C. Saunders, Practical Organic Chemistry, 4th Ed., Longmans 1989. | Learning | Assessment | | | | | | | | | | | | | | |----------|------------------------------|---------------|----------|---------------|-----------|----------|-------------|---------|----------|----------------------------------|--------------------|-----|---|----| | | B | | Cont | inuous Le | arning As | sessment | t (50% weig | ghtage) | | Final Examination (50% weightage | | | | | | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - | 3 (20%) | CLA - | 4 (10%)# | rınaı Examınatı | on (50% weightage) | | | | | | Level of Tilliking | Theory | Practice | | | | | Laval 1 | Remember | | 200/ | | 30% | | 200/ | | 200/ | | 20 | | | | | Level 1 | Understand | Ī - | 30% | - | 30% | - | 20% | - | 20% | - | 30 | | | | | Level 2 | Apply | | 50% | | 40% | | 50% | | 50% | | E0 | | | | | Level 2 | Analyze | - | 50% | - | 40% | - | 50% | - | 50% | - | 50 | | | | | ا امیرها | Evaluate | | 200/ | | 200/ | | 200/ | | 200/ | | 20 | | | | | Level 3 | Create | - | 20% | - | 30% | - | 30% | 30% | 30% | 30% | - | 30% | - | 20 | 4-nitrobenzyl alcohol benzopinacolone | ſ | Total | 100 % | 100 % | 100 % | 100 % | 100 % | |---|-------|--------|--------|--------|--------|--------| | | . • | .00 /0 | .00 /0 | .00 /0 | .00 /0 | .00 /0 | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc. | Course Designers | | | |---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@iitm.ac.in | Dr. Susnata Pramanik, SRMIST | | Novugen Pharma, Malaysia<br>Email: <u>ravianalytical@gmail.com</u> | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | 2. Prof. M. Arthanareeswari,<br>SRM IST | | Course<br>Code | UCY23P02L | Course<br>Name | | Internshi | p-II | | | | Cou<br>Categ | | | Р | Int | erns | hip/A<br>Com | ppre<br>mun | entic<br>ity C | eshi <sub>l</sub><br>Outre | o / Pi<br>ach | rojed | <i>t</i> / 0 | T<br>0 | P C | | |--------------------------------------------|------------------------------|------------------------|----------|------------------------------------------|-------------|---------------------------|--------------------------|-------------------------|-----------------------|-----|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------------|------------------------|---------------|--------------|------------|-----------------------|--------------------| | Pre-requ<br>Courses | | Nil | | Co-requisite Nil | | | | | | | | ress<br>rses | sive | Nil | | | | | | | | | | | | Course (<br>Departm | | Depa | rtment | of English | Data<br>Cod | a Bo<br>les/S | | lards | 6 | ٨ | lil | | · | | | | | | | | | | | | | Course I<br>Rational | e (CLR): | to: | | arning this course | is | Le | arni | ng | | | | | Pr | ogra | m Le | arnii | ng O | utco | mes | (PL | 0) | | | | | CLR-1: | environmen | t. | | hin the business | | 1 | 2 | 3 | 1 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | internship is | done. | | ustry in which the | | | | T | - | | | | | | | | | | | | | | | | | CLR-3: | classroom ii | n a work s | etting | earned in the | Щ | | | | 4 | | | | a | | | | * | | | | | | | | | CLR-4 : | | | | ding about career<br>fining personal car | eer | (mools | (%) k: | ıt (%) | edae | | septs | sciplines | dge | ы | owledge | ٠, | ata | | SIII | Skills | | | ior | | | CLR-5: | Experience professiona | | es and | functions of busine | ess | inking (E | roficienc | tainmer | al Know | | of Conc | elated D | Knowlec | ecializati | ilize Kn | deling | terpret D | e Skills | olving Sk | ation Sk | Skills | | al Behav | earning | | | | At the end<br>able to: | of this | course, learners w | ill be | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical S | ICT Skills | Professional Behavior | Life Long Learning | | CLO-1: | Identify area | | e know | ledge and skill | 1,14 | 3 | 80 | 70 | Н | | H | | - | | - | | - 1 | L | - | М | - | - | - | - | | CLO-2 : | and what th | eir standa | d of pe | ected in the job ma<br>rformance should | be | 3 | 85 | 75 | ı, i | | Н | Ź, | | 75 | 7 E . | | - | М | | L | - | - | - | - | | CLO-3: | and begin the your future of | he process<br>careers. | of netv | academic, contact<br>working and suppo | | 3 | 75 | 70 | - | | Н | | | 1 | | - | - | | | М | - | | Н | - | | CLO-4: | Acquire kno<br>internship is | | the ind | ustry in which the | | 3 | 85 | 80 | Н | | Н | | Ċ | 7 | - | - | - | L | - | - | - | - | - | М | | CLO-5: | practical exp | perience w | ithin th | e business environ | ment | 3 | 85 | 75 | | | - | | - | - | Н | - | - | - | - | М | - | - | - | Н | | PROCES<br>Stage I<br>Stage II<br>Stage III | SS | | | | | | | R | dentify<br>deview | Ī | are | ea of | inter | est | | | 7 | V | | I | | | | | | Stage IV<br>Stage V | | _ < | 7 | EAD | N | | | P | roject<br>inal S | rep | | | | | ect F | lepor | t | | | | | | | | | Review – 2 | Project Report | Viva-Voce | |------------|----------------|-----------| | 30 % | 30 % | 20 % | | | 112000 | | | Course Designers | | | | | | | | | | | |--------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|--|--|--|--|--|--|--|--| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | | | Dr. Ravikiran Allada, Director, | Prof. G. Sekar, Department of Chemistry, IIT Madras | 1, Dr. T. Pushpa Malini SRMIST | | | | | | | | | | Analytical Sciences and Technology Transfer,<br>Novugen Pharma, Malaysia | Email: gsekar@iitm.ac.in Prof. Sukhendu Mandal, Department of | , | | | | | | | | | | Email: ravianalytical@gmail.com | Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | <b>2.</b> Prof. M. Arthanareeswar SRMIST | | | | | | | | | ## Semester - VI | Course | UCY23601T | Course | Pericyclic Reaction, Photochemistry and | Course | | | L | T | P | 0 | C | |--------|-----------|--------|-----------------------------------------|----------|---|--------------------------|---|---|---|---|---| | Code | UCY236011 | Name | , | Category | С | Discipline Specific Core | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|-----------------|------------------------|-----| | Course Offer | ing | Chemistry | | | Data Book / | | Nil | | Department | | Chemisuy | | | Codes/Standards | | MII | | Course Learning<br>Rationale<br>(CLR): | The purpose of learning this course is to: | Learning | | | | Pro | grar | n Le | arni | ng C | Outco | ome | s (PI | LO) | | | - | |------------------------------------------------------|------------------------------------------------------------------------------|---------------------------|-----------------------|-------------------------|-------------------------------|----------------------|----------------|--------------------|--------------------|-------------------------|----------------------|------------------------|---------------|--------------|--------|--------|-------| | CLR-1: Acquire knowledge | in the fundamentals of pericyclic reaction. | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: Provide knowledge | T Annual | | | | | | | | | | | | | | | | | | CLR-3: Understand the or | bital analysis of sigmatropic rearrangements | | | | " | | | | | | | | | | | | | | Replace either the CLR-4: substances with molecules. | oom) | ledge | cepts | iscipline | dge | ion | Knowledge | | )ata | | cills | Skills | | | | | | | CLR-5 : Enable students to of polyaromatic hy | understand the preparation and reactions drocarbons | nking (Bl | al Know | of Con | elated D | Knowle | Specialization | | deling | terpret [ | e Skills | Iving St | | Skills | | | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Sp | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical S | PSO -1 | PSO -2 | PSO-3 | | CLO-1 : Develop an in-depi | th knowledge with mechanistic understanding<br>on | 4 | 14 | Н | - | | - | М | Н | - | - | - | - | | - | - | - | | | themistry of the product obtained from the diene with a given dienophile. | 4 | Н | Н | - | | | 1 | L | 1 | 4 | - | - | - | - | - | - | | CLO-3: Identify sigmatrop. | ic rearrangements including hyrdride shifts, | 4 | 1 | | Н | | М | 2 | - | Н | - | - | - | - | - | - | - | | CLO-4 : Acquire an in-dept | h understanding of photochemical processes<br>synthesis of organic molecules | 4 | М | - | Н | Н | | - | - | - | - | _ | - | - | - | - | - | | CLO-5 : Apply the concepts polyaromatic react | s of aromaticity in understanding reactions in ions | 4 | Н | | | | 4 | L | Н | -( | - | - | - | - | - | - | - | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|-------------------------------------------------|-----------------------------------------------------------|----------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------| | S-1 | SLO-1 | Molecular orbitals of conjugated alkenes; | cycloaddition reaction | sigmatropic reaction | Organic photochemistry – introduction, definitions, importance | Polynuclear<br>Hydrocarbons:<br>Introduction,<br>Classification,<br>Structure | | | SLO-2 | Molecular orbitals of conjugated alkenes; | cycloaddition reaction | sigmatropic reaction | Organic photochemistry – introduction, definitions, importance | Nomenclature and uses | | S-2 | SLO-1 | Stereochemistry of electrocyclic reaction | antarafacial and suprafacial modes of cycloaddition | sigmatropic reaction | Electronic excitation and spin configurations | Aromaticity of<br>polynuclear<br>hydrocarbons | | 3-2 | SLO-2 | stereochemistry of<br>electrocyclic<br>reaction | antarafacial and<br>suprafacial modes of<br>cycloaddition | sigmatropic reaction | Jabolanski diagram | Structure elucidation of Naphthalene | | S-3 | SLO-1 | Disrotatory and conrotatory pathways | antarafacial and<br>suprafacial modes of<br>cycloaddition | sigmatropic reaction | Energy transfer and electron transfer processes | General methods of<br>preparation of<br>naphthalene,<br>phenanthrene and<br>anthracene: Howarth<br>method | | J*3 | SLO-2 | Disrotatory and conrotatory pathways | antarafacial and<br>suprafacial modes of<br>cycloaddition | sigmatropic reaction | Quenching of excited states | Friedel Craft acylation | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|---------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------| | | SLO-1 | Discussion with | Discussion with various | Discussion with | Detailed discussion with | Discuss synthesis of | | S-4 | SLO-2 | various examples | examples | various examples | examples | substituted PAH | | S-5 | SLO-1 | FMO approach of electrocyclic reaction | symmetry allowed and forbidden reaction | selection rules | Photochemistry of carbonyl compounds | Diels Alder reaction | | 0-0 | SLO-2 | FMO approach of electrocyclic reaction | symmetry allowed and forbidden reaction | selection rules | Photochemistry of carbonyl compounds | Elbs reaction | | | SLO-1 | 4 Woodward- FMO approach selection rules Photocher | | Photochemistry of carbonyl compounds | Pschorr Synthesis | | | S-6 | SLO-2 | Woodward-<br>Hoffman rules; | FMO approach | selection rules | Photochemistry of olefins | Relative reactivity of naphthalene, phenanthrene and anthracene in comparison to benzene. | | S-7 | SLO-1 | Selection rules for electrocyclic reaction; | selection rules | [1,3] and [1,5] H shifts<br>and<br>[3,3] shifts with<br>reference to Claisen<br>and Cope<br>rearrangements | Photochemistry of olefins | Properties: Physical properties | | | SLO-2 | Selection rules for electrocyclic reaction | selection rules | [1,3] and [1,5] H shifts<br>and<br>[3,3] shifts with<br>reference to Claisen<br>and Cope<br>rearrangements | Enones and Dienones | Discussion on Addition and oxidation reactions with mechanism | | | SLO-1 | Understand in | Understand in detail the | The state of s | Discuss in detail | | | S-8 | SLO-2 | detail the selection<br>rule with example<br>on electrocyclic<br>reaction | selection rule with<br>example on cycloaddition<br>reaction | Discuss with more examples sigmatropic reaction | photochemistry of<br>carbonyl compounds with<br>more examples | Discuss synthesis of substituted PAH | | | SLO-1 | Correlation<br>diagram | Diels-Alder reaction | [1,3] and [1,5] H shifts<br>and<br>[3,3] shifts with<br>reference to Claisen<br>and Cope<br>rearrangements | Photochemistry of aromatic molecules | Discussion on<br>Electrophilic<br>substitution- Friedel Craft<br>reaction<br>with mechanism | | S-9 | | / / / | TUINIA. I | [1,3] and [1,5] H shifts | ATT | | | | SLO-2 | Correlation diagram | Diels-Alder reaction | and [3,3] shifts with reference to Claisen and Cope rearrangements | Di-π-methane<br>rearrangement, | Discussion on<br>Chloromethylation with<br>Mechanism | | • | SLO-1 | Aromatic transition state | exo and endo selectivity | [1,3] and [1,5] H shifts<br>and<br>[3,3] shifts with<br>reference to Claisen<br>and Cope<br>rearrangements | Barton-McCombie reaction, | Discussion on<br>Halogenation,<br>Formylation with<br>mechanism | | S-10 | SLO-2 | Aromatic transition state | exo and endo selectivity | [1,3] and [1,5] H shifts<br>and<br>[3,3] shifts with<br>reference to Claisen<br>and Cope<br>rearrangements | Norrish type-I and II cleavage reaction. | Discussion on Nitration,<br>Sulphonation<br>with mechanism | | S-11 | SLO-1 | Huckel-Mobius<br>approach | reactivity and regioselectivity of D-A reaction | ene reaction | Norrish type-I and II cleavage reaction. | Discussion on Reduction reaction, Diels Alder reaction with mechanism | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|-----------------------------------------------|-------------------------------------------------|-------------------------------|-----------------------------------------|--------------------------------------------------------------------------| | | SLO-2 | Huckel-Mobius<br>approach | reactivity and regioselectivity of D-A reaction | ene reaction | Supramolecular organic photochemistry | Discussion on Reduction reaction,<br>Diels Alder reaction with mechanism | | | SLO-1 | Correlation diagram: | | Discuss with more | More examples on | | | S-12 | SLO-2 | Electrocyclic reactions, Detailed explanation | Stereochemistry of cycloaddition reaction | examples sigmatropic reaction | Norrish type-I and II cleavage reaction | Chemical properties of PAH | Theory: - M. B. Smith, J. March, March's Advance Organic Chemistry, 6th Ed., John Wiley and Sons, Inc 2007. - J. Clayden, N. Greeves, S. Warren, Organic Chemistry 2nd Ed., Oxford 2012. - I. Fleming, Pericyclic Reactions, Oxford chemistry primers, ISSN 1367-109X 2015. - F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry Part B: Reactions and Synthesis, 5th Edition. Springer 2007. - J. Singh, J. Singh, Photochemistry and Pericyclic Reactions, 3rd Edition. New Age 2012. Learning Resources - J. McMurry, Organic Chemistry 5th Ed., Thomson Business information 2007. T. W. G. Solomons and C. B. Fryhle, Organic Chemistry 10th Ed., John Wiley and Sons, Inc 2010. - I. L. Finar and A. L. Finar, Organic Chemistry Vol. 2, Addison-Wesley 5th edition 2002. Preparatory Course Material N. D. P. Singh, Organic Chemistry and Pericyclic Reactions, NPTEL Course material, Department of Chemistry, Indian Institute of Technology Kharagpur (Link: https://archive.nptel.ac.in/courses/104/105/104105038/) | Learning | g Assessment | | | 176.79 | 1347 | 100 | 2455 | | | | | | | | |----------|------------------------------|--------|------------------------------------------------|---------------|----------|---------------|----------|--------|----------|-----------------------------------|----------|--|--|--| | | | | Continuous Learning Assessment (50% weightage) | | | | | | | Fig. 1 F | | | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | Level of Thinking | Theory | Practice | | | | | aval 1 | Remember | 200/ | 70.30 | 30% | W. 16. | 20% | W | 20% | 100 | 30% | | | | | | Level 1 | Understand | 30% | 5 - YV | 30% | | 2070 | D-F-3 | 20% | | 30 % | | | | | | | Apply | 400/ | | 500/ | | 500/ | | 500/ | 11 20 | E00/ | | | | | | Level 2 | Analyze | 40% | | 50% | <u> </u> | 50% | | 50% | - 1 | 50% | - | | | | | aval 2 | Evaluate | 30% | 4 F W | 200/ | | 200/ | A TAX | 200/ | | 200/ | | | | | | _evel 3 | Create | 30% | | 20% | | 30% | - | 30% | - | 20% | | | | | | | Total | 10 | 00 % | 10 | 100 % | | 0 % | 10 | 00 % | 100 % | | | | | #CLA - 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | | | | | | | | | |------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|--|--| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | | | Dr. Raviki <mark>ran Allada, D</mark> irector,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: <u>gsekar@iitm.ac.in</u> | 1. Dr. Samarendra Maji, SRMIST | | | | | | | | | | Novugen Pharma, <mark>Malaysia</mark><br>Email: <u>ravianalytical@gmail.com</u> | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | 2. Prof. Dr. M. Arthanareeswari,<br>SRM IST | | | | | | | | | | Course | | Course | Quantum chemistry and molecular | Course | _ | | L | Τ | P | 0 | ( | ; | |--------|-----------|--------|---------------------------------|----------|---|--------------------------|---|---|---|---|---|---| | Code | UCY23602T | Name | | Category | С | Discipline Specific Core | 3 | 1 | 0 | 2 | 4 | ( | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|------|-----------|-------------------------|-----|--------------------------------|------------------------|-----| | Course Offer<br>Department | ring | Chemistry | | | Data Book /<br>Codes/Standards | | Nil | | Course (CLR): | Learning Rationale | The purpose of learning this course is to: | Laamaina | | | | Pro | grar | n Le | arni | ng C | Outco | ome | s (Pl | LO) | | | | |----------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------------------|---------------|------------|--------|--------|-------| | CLR-1: | Acquire knowledge | about the basics of Quantum mechanics | Learning | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | Understand the apparent and SHO systems | olication of quantum mechanics to 1D,3D | | | | | | | | | | | | | | | | | | CLR-3: | | olication of quantum mechanics to Rigid<br>and many electrons system | Ic | b | | | | | | | h | | | | | | | | | CLR-4 : | | the basic principles of light-matter<br>arn quantum mechanical methods to<br>tions | (L | ge | ts | plines | 1 | Ò | edge | | | | | | | | | | | CLR-5: | Acquire knowledge spectroscopy | in the fundamentals of electronic | .evel of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | odeling | Analyze, Interpret Data | e Skills | Problem Solving Skills | ation Skills | Skills | | | | | Course<br>Outcon<br>(CLO): | Learning<br>nes | At the end of this course, learners will be able to: | evel of Th | Fundamen | Application | Link with F | Procedura | Skills in Sp | Ability to U | Skills in Modeling | Analyze, Ir | Investigative Skills | Problem S | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | CLO-1 : | State laws of distrib<br>partition coefficient | ution and determine the distribution and | 4 | Н | | - | | 7 | | М | 3 | | 1 | - | Н | - | - | - | | CLO-2: | Solve Schrodinger | wave equation for 1D,3D and SHO system | 4 | Н | Н | ŧ | Ť. | Н | - | - | - | - | - | - | - | - | - | - | | CLO-3: | | wave equation for Rigid rotator, Hydrogen | 4 | Н | Ē | | | М | - | L | - ( | - | , | - | - | - | - | - | | CLO-4 : | Understand the ba | sic principles of light-matter interactions and | 4 | Н | - | - | Н | - | М | - | f | - | - | - | | - | - | - | | CLO-5 : | Apply quantum me<br>and spectra of di- a | chanical methods to obtain selection rules<br>ind poly-atomic molecules in microwave,<br>V-Vis spectroscopy | 4 | - | Н | - | - | - | 7 | Н | | 7 | - | L | | - | - | - | | Duration | on (hour) | 12 | 12 | 12 | 12 | 12 | |----------|-----------|-----------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------| | S-1 | SLO-1 | de-Broglie 's concept, | orthogonality of the particle<br>in a one-dimensional box<br>wave functions | separation of variable in<br>polar spherical<br>coordinates and its<br>solution | diatomic rigid rotor molecules | nuclear spin effects | | | SLO-1 | Experimental | average position and | separation of variable in | effect of isotope substitution | polarization of<br>Raman lines | | S-2 | SLO-2 | verification-<br>Compton effect | average momentum of a particle in a one-dimensional box | polar spherical coordinates and its solution | vibrational and vibration<br>transition probability and<br>selection rules | Basics of Raman<br>spectroscopy and<br>Raman Effect | | | SLO-1 | Heisenberg 's<br>uncertainty<br>principle | illustration of the uncertainty principle | principal, azimuthal and<br>magnetic quantum<br>numbers and the<br>magnitude of their<br>values | transition probability and selection rules | Basics of Raman<br>spectroscopy and<br>Raman Effect | | S-3 | SLO-2 | derivation of<br>Schrodinger wave<br>equation | and correspondence<br>principle with reference to<br>the particle in a one-<br>dimensional box. | principal, azimuthal and<br>magnetic quantum<br>numbers and the<br>magnitude of their<br>values | pure rotational spectra | Selection rules | | Duratio | n (hour) | 12 | 12 | 12 | 12 | 12 | |---------|----------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------| | | SLO-1 | Tutorial: derive<br>Schrodinger wave | Tutorial: explain the uncertainty principle | Tutorial: discuss principal, azimuthal and magnetic quantum | Tutorial: explain transition | Tutorial: discuss | | S-4 | SLO-2 | equation<br>Practice: discuss<br>diatomic rigid<br>rotor molecules | explain separation of<br>variable in polar spherical<br>coordinates and its<br>solution | numbers and the<br>magnitude of their<br>values,<br>explain effect of isotope<br>substitution | probability and selection rules,<br>discuss transition probability<br>and selection rules | the selection rules,<br>: write a short not<br>on polarization of<br>Raman lines | | | SLO-1 | requirements of<br>the acceptable<br>wave function. | Schrodinger wave equation<br>for a particle in a three-<br>dimensional box and the<br>concept of degeneracy of<br>energy levels | probability distribution function | rotational spectra of diatomic molecules | vibrational Raman<br>transitions | | S-5 | SLO-2 | Operators, linear<br>operators,<br>method of getting<br>the following<br>quantum<br>mechanical<br>operators | Schrodinger wave equation<br>for a particle in a three-<br>dimensional box and the<br>concept of degeneracy of<br>energy levels | probability distribution function | rotational spectra of diatomic molecules | Stokes lines | | | SLO-1 | Position, | 15.250 | radial distribution | | Andination | | S-6 | SLO-2 | Momentum,<br>kinetic energy,<br>potential energy,<br>total energy,<br>angular<br>momentum | Schrodinger wave equation for linear harmonic oscillator | | harmonic oscillator-rigid rotor approximation | Application and advantages of Raman spectroscopy | | | | Position, | 7. W. S. | 10 - 10 NO | | \rac{1}{2} | | | SLO-1 | Momentum,<br>kinetic energy,<br>potential energy,<br>total energy,<br>angular<br>momentum | solution by polynomial method | Region of<br>electromagnetic<br>spectrum | harmonic oscillator-rigid rotor approximation | Vibronic spectroscopy<br>of diatomic molecules | | S-7 | SLO-2 | Hermicity and proving the quantum mechanical operators are Hermitian | zero-point energy and its<br>consequence<br>commutator algebra-<br>evaluation of commutators | Interaction of electromagnetic radiation with matter | anharmonicity effect normal modes of vibration | Vibronic spectroscopy<br>of diatomic molecules<br>Franck-Condon factor | | | | operation Practice: | Practice: zero-point energy | LEAD.T | CATA | D C VCI : | | | SLO-1 | Momentum,<br>kinetic energy,<br>potential energy,<br>total energy | and its consequence<br>commutator algebra-<br>evaluation of commutators | Practice: Region of electromagnetic spectrum | Practice: harmonic oscillator-<br>rigid rotor approximation | Practice: Vibronic spectroscopy of diatomic molecules | | S-8 | SLO-2 | Practice: Hermicity and proving the quantum mechanical operators are Hermitian operation | Practice: Schrodinger wave equation for linear harmonic oscillator | Practice: radial distribution function and shape of atomic orbitals (s, p & d). | Practice: harmonic oscillator-<br>rigid rotor approximation | Practice: Application and advantages of Raman spectroscopy | | S-9 | SLO-1 | eigen functions<br>and eigen values | zero-point energy and its consequence | emission and absorption spectra | normal modes of vibration | Franck-Condon factor | | | SLO-2 | postulates of quantum mechanics | zero-point energy and its consequence | signal to noise ratio and resolving power | infrared spectra of linear and<br>bent AB2 molecules | dissociation and pre-<br>dissociation | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|----------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------------|---------------------------------------------| | | SLO-1 | eigen functions<br>and eigen values | Schrodinger wave equation | emission and absorption spectra | normal modes of vibration | Franck-Condon factor | | S-10 | SLO-2 | Practice:<br>postulates of<br>quantum<br>mechanics | Practice: zero-point energy and its consequence | Practice: signal to noise ratio and resolving power | | Practice: Franck-<br>Condon factor | | S-11 | SLO-1 | Practice: eigen functions and eigen values | Practice: Practice: zero-point energy and its consequence | | | Practice: dissociation and pre-dissociation | | • | SLO-2 | Particle in a one-<br>dimensional box | Solving of Schrodinger wave equation for Rigid rotator | width and intensity of spectral transitions | | dissociation and pre-<br>dissociation | | | | quantisation of energy | energy of rigid rotator | width and intensity of spectral transitions | skeletal vibration and group frequency | rotational fine<br>structure | | S-12 | SLO-2 | normalisation of wave function | Schrodinger wave equation for hydrogen atom | Fourier Transforms in spectroscopy | skeletal vibration and group frequency | solvent effects | Theory: 1. R.K. Prasad, Quantum chemistry, 4th edition, New Age International., 2010. 2. A.K. Chandra, Introductory Quantum Chemistry, 4th ed., Tata McGraw Hill, 1994 Learning Resources 3. J. M. Hollas, Modern Spectroscopy, 4th edition, John Wiley & Sons, Ltd., Chichester, 2004. 4. G. M. Barrow, Introduction to Molecular Spectroscopy, McGraw-Hill, 1962. 5. C. N. Banwell and E.M. Mc Cash, Fundamentals of Molecular Spectroscopy, 4th edition, Tata McGraw Hill, New Delhi, 1994. | Learning | g Assessment | | 7-77 | | | 7 | 11,23 | 79.77 | | | | | | | |----------|------------------------------|---------------|------------------------------------------------|---------------|----------|---------------|----------|--------|----------|----------------------------------|---------------|--|--|--| | | | F 11 5 | Continuous Learning Assessment (50% weightage) | | | | | | | | First F (500/ | | | | | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA- | 4 (10%)# | Final Examination (50% weightage | | | | | | | Level of Tilliking | Theory | Practice | | | | | Laval 1 | Remember | 30% | | 30% | | 20% | | 20% | | 200/ | | | | | | Level 1 | Understand | 30% | - 811 | 30% | - 1 | 20% | - | 20% | - | 30% | | | | | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | | | Level 2 | Analyze | 40% | - | 50% | - 1 | 50% | - | 30% | - | 30 % | | | | | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | . / | | | | | Level 3 | Create | 30% | - | 20% | | 30% | | 30% | - | 20% | - | | | | | | Total | 10 | 00 % | 10 | 0 % | 10 | 00 % | 10 | 00 % | 1 | 00 % | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer,<br>Novugen Pharma, Malaysia | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@iitm.ac.in Prof. Sukhendu Mandal, Department of | 1. Dr. Srinivasa Rao, SRMIST | | Email: ravianalytical@gmail.com | Chemistry, IIISER, Thiruvananthapuram<br>Email: <u>sukhendu@iisertvm.ac.in</u> | <b>2.</b> Prof. M. Arthanareeswari<br>SRMIST | | | Course<br>Code | UCY23603T | Course<br>Name | Research Methodology | Course<br>Category | G | Generic Core | <b>L</b> | 0 | ) ( | ) | 0<br>2 | <b>C</b> | | |--|----------------|-----------|----------------|----------------------|--------------------|---|--------------|----------|---|-----|---|--------|----------|--| |--|----------------|-----------|----------------|----------------------|--------------------|---|--------------|----------|---|-----|---|--------|----------|--| | Course Offering | Chemistry | Data Book / | Nil | |-----------------|---------------------------------------|-----------------|------| | Department | · · · · · · · · · · · · · · · · · · · | Codes/Standards | •••• | | Course<br>Rationa<br>(CLR): | Learning<br>le | The purpose of learning this course is to: | Learning | Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | |-----------------------------|--------------------------------------|------------------------------------------------------|---------------------------|---------------------------------|-------------------------|-------------------------------|----------------------|----------------|--------------------|--------------------|-------------------------|----------------------|------------------------|---------------|------------|--------|--------|-------| | CLR-1: | Practice the basic thesis writing | skills of research paper, review paper and | | | | | | | 14 | 15 | | | | | | | | | | CLR-2:<br>CLR-3: | Evaluate different | methods of scientific writing and reporting | (u | ge | ts | plines | | | edge | | <b>~</b> | | | | | | | | | CLR-4: | research proposals | | (Bloor | owled | oncep | d Disc | wledge | Specialization | Knowledge | g | et Data | SII. | Skills | Skills | | | | | | CLR-5: | Inculcate the know | rledge of intellectual property and rights | hinking | ntal Kr | n of C | Relate | al Kno | peciali | Jtilize | lodelin | Interpr | ive Sk | Solving | cation | Skills | | | | | Course<br>Outcor<br>(CLO): | | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in S | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | CLO-1: | Differentiate between | een various kinds of academic writings | 4 | M | - | T | T. | Н | - | Н | - | - | - | - | - | - | - | - | | CLO-2: | Practice the basic review. | skills of performing a quality literature | 4 | - | - | - | - | Н | | K | Н | L | - | - | - | 1 | 1 | - | | CLO-3: | Target the researc communicate for p | h work to a suitable journal and ublication | 4 | - | - | - | | - | Н | | > | Н | | - | Н | 1 | 1 | - | | CLO-4: | Develop competer scientific document | nce in data collection and process of tation | 4 | - | - | - | Н | - | 1 | | Н | Н | - | - | 1 | 1 | 1 | - | | CLO-5: | Identify and avoid | the plagiarism | 4 | М | | - | - | - | - | Н | - | Н | - | - | - | - | - | - | | | ration<br>our) | 12 | 12 | 12 | 12 | 12 | |--------------|----------------|------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------| | | SLO-1 | Objectives of research | Academic & research writing: | Basic statistical distribution-applications | Modelling skills | Ethics in research – authors | | S-1<br>SLO-2 | | Introduction about research | Introduction | Basic statistical distribution applications continued | Static Model | Acknowledgement | | S-2 | SLO-1 | types of research-<br>Descriptive vs<br>analytical | Basic Rules of academic writing | Sampling: Concepts of<br>Statistical Population | Dynamic Model | Group discussion on ethics in research | | | SLO-2 | types of research - applied vs fundamental | Usage of language in academic writing | Sample, Sampling<br>Frame | Limitations | The outcome of group discussion | | S-3 | SLO-1 | types of research-<br>quantitative vs<br>qualitative | Types of academic writing | Sampling Error | Optimization studies | Ethical issues | | 0-0 | SLO-2 | · · | Descriptive | Sample Size | Maxima & Minima,<br>Conditions of Optimality | Ethical committee<br>(Human and<br>animal) | | S-4 | SLO-1 | Research methods and methodologies-<br>Description | Analytical | Probability Sample | Linear Programming<br>Problem (LPP) -<br>explantion | Plagiarism | | 5-4 | SLO-2 | Research methods and methodologies – Explanation | Persuasive and critical | Simple Random<br>Sample | Linear Programming<br>Problem (LPP) –<br>graphical application | Tools to avoid plagiarism | | S-5 | SLO-1 | Activity on research methods | Activity - academic writing | Activity – Sampling | Activity – Modelling skills | Activity – Report writing and plagiarism check | | <b>3-</b> 3 | SLO-2 | Activity on research methods | Activity - academic writing | Activity- Sampling | Activity – Modelling skills | Activity – Report<br>writing and<br>plagiarism check | | S-6 | SLO-1 | Literature review:<br>Introduction | Academic quality measurement tools - significance | Systematic Sample | Data Preparation | Introducing about<br>Project Proposal<br>funding agencies | | | ration<br>our) | 12 | 12 | 12 | 12 | 12 | |------|----------------|-------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------| | | SLO-2 | Source of literature | Citation indices | Stratified Random<br>Sample | Data Preparation-methods | Introducing about<br>Project Proposal<br>funding agencies<br>(Group<br>Discussion) | | 0.7 | SLO-1 | Process of literature review | Principles underlying -<br>impact factor:<br>SNIP, SJR | Multi-stage sampling | Data collection –<br>Maintaining a laboratory<br>record | Intellectual property | | S-7 | SLO-2 | Online literature databases | h-Index, i10 Index and<br>Journal Citation Reports<br>(JCR) | Multi-stage sampling-<br>continued | Tabulation and generation of graphs | Intellectual property rights | | | SLO-1 | Literature management tools – Introduction | Basic statistical distribution | Determining size of the sample - methods | Data Analysis: | Copy rights | | S-8 | SLO-2 | Literature management tools - Explanation | Binomial distribution | Determining size of the sample - application | Data Analysis: methods | Patent rights | | 0.0 | SLO-1 | Consolidation of<br>Literature-review | Poisson distribution | Practical considerations in sampling and sample size | Univariate analysis: frequency tables | COPE guidelines | | S-9 | SLO-2 | Sample - Consolidated<br>Literature-review | Normal distribution | Practical considerations in sampling and sample size | Univariate analysis: bar charts | Patent law | | C 40 | SLO-1 | Review Paper Writing. | Exponential distribution | Sample test | Univariate analysis: pie charts, | Commercialization | | S-10 | SLO-2 | Review Paper Writing - Need | Geometric distribution | Student -t -test, | Univariate analysis: percentages | Royalty | | S-11 | SLO-1 | Review Paper Writing – method of writing | Weibull distribution | Student-F- test | Bivariate analysis- Cross tabulations | trade related aspects of intellectual property rights (TRIPS) | | | SLO-2 | Review Paper Writing –<br>Outcome of review<br>papers | Problem - solving with statistical tools | $\chi^2$ -test | Bivariate analysis- Chi-<br>square test including<br>testing hypothesis of<br>association | Group discussion: | | | SLO-1 | Practicing - Review Paper Writing | Practicing – Statistical distribution | Practicing – Sample test | Practicing – Data preparation and analysis | Group Discussion on Copy rights | | S-12 | SLO-2 | Practicing - Review Paper Writing | Practicing – Statistical distribution | Practicing – Sample test | Practicing – Data preparation and analysis | Group Discussion on Al tools dedicated for research | | | Theory: | | |-----------------------|---------|------------------------------------------------------------------------------------------------------------------------| | | 1. | C. Dawson, Practical research methods. UBS Publishers, New Delhi, 2002 | | | 2. | R. A. Walpole, R. H. Myers, S. L. Myers, K. Ye, Probablity and statstics for engineers and scientist, Pearson Prentice | | | | Hall, Pearson Education, Inc. 2007 | | Learning<br>Resources | 3. | C. K. Kothari, Research Methodology-Methods and Techniques (New Age International, New Delhi), 2004 | | Resources | 4. | S. P. Mukherjee, A guide to research methodology: An overview of research problems, tasks and methods. CRC Press, | | | | New Delhi, 2019. | | | 5. | P. D. Leedy, J. E. Ormrod, L. R. Johnson, Practical research: Planning and design (p. 360). Pearson Education, 2004. | | | 6. | V. Chandra, A. Hareendran, Research Methodology by Pearson 1st Edition. Pearson Education India, 2017. | | Learning | Learning Assessment | | | | | | | | | | | | | | |----------|------------------------------|------------------------------------------------|----------|---------------|----------|---------------|----------|----------------|----------|------------------------------------|----------|--|--|--| | | | Continuous Learning Assessment (50% weightage) | | | | | | | | Final Examination (500/ weighters) | | | | | | | Bloom's<br>Level of Thinking | Bloom's CLA – 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - 4 (10%)# | | Final Examination (50% weightage) | | | | | | | Level of Thinking | Theory | Practice | | | | | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | | | Level I | Understand | 30% | - | 30% | - | 20% | - | 20% | - | 30 % | - | | | | | Level 2 | Apply<br>Analyze | 40% | - | 50% | | 50% | - | 50% | - | 50% | - | |---------|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------| | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | Level 3 | Create | 30% | - | 20% | - | 30% | - | 30% | - | 2070 | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 1 | 00 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director, Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@iitm.ac.in | 1. Dr. T. Pushpa Malini | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | 2.Prof. Dr. M. Arthanareeswari,<br>SRM IST | | Course | UCY23D03T | Course | | Course | | | L | T | Р | 0 | C | |--------|-----------|--------|----------------------------------|----------|---|------------------------------|---|---|---|---|---| | Code | UCY23D03T | Name | Polymer and Industrial Chemistry | Category | D | Discipline Specific Elective | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite <i>Nil</i><br>Courses | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |-----------------------------------------|-----------|-------------------------|-----|--------------------------------|------------------------|-----| | Course Offering<br>Department | Chemistry | | | Data Book /<br>Codes/Standards | | Nil | | Course I<br>Rational<br>(CLR): | Learning<br>le | The purpose of learning this course is to: | Learning | | | | Pro | grar | n Le | arni | ng C | utco | ome | s (PL | LO) | | | | |--------------------------------|--------------------------------------------|------------------------------------------------------------------------------|---------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|-----------------|---------------|---------------|--------|--------|-------| | CLR-1: | | on synthesis of polymers and determination tand thermomechanical properties. | - | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 : | Understand the pro | perties and applications of Commercial | | 7 | | | | | | | | | | | | | | | | CLR-3: | | specialty polymers, polymer blend and astic waste management | | | | nes | 7 | > | ge | | | | | | | | | | | CLR-4: | | various industrial fuels, basic concepts in d about pollution control | loom) | /ledge | cepts | iscipli | dge | lion | Knowledge | h. | Jata | | Skills | Skills | | | | | | CLR-5: | Study in depth about manufacture of center | ut the use of various fertilizers in agriculture,<br>nent and glass | king (B | Know | f Con | ated D | nowle | sializat | | eling | rpret [ | Skills | ing SI | | Skills | | | | | Course<br>Outcom<br>(CLO): | Learning<br>nes | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | Communication | Analytical SI | PSO -1 | PS0 -2 | PSO-3 | | CLO-1 : | | ecular weight, Tg and Tm, and establish elationships of polymers. | 4 | Н | Н | - | ş | М | 1 | - | 7 | 7 | - | - | - | - | - | - | | CLO-2 : | Learn properties ar<br>our daily life | nd applications of various useful polymers in | 4 | Н | Н | į. | - | | | Н | - | - | >- | - | - | - | - | - | | CLO-3: | | n specialty polymers, polymer blend and<br>astic waste management | 4 | Н | Н | T | - | Н | - | - | - | - | - | - | - | - | - | - | | CLO-4 : | Give an overview a | bout the industrial fuels and demonstrate<br>s involved in the waste water | 4 | Н | - | | Н | 4 | - | L | -( | - | - | - | - | - | - | - | | CLO-5: | Demonstrate the m ceramics | anufacturing process of cement, glass and | 4 | Н | Н | - | - | - | - | - | | - | - | - | Н | - | - | - | | 4 . | | | | | | | |-----|-------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------| | | <mark>on (</mark> hour) | 12 | 12 | 12 | 12 | 12 | | S-1 | SLO-1 | Polymers:<br>monomer,<br>oligomer and<br>polymer,<br>Nomenclature<br>of polymers. | Commercial Polymers: Plastics –Thermoplastics and themosets: Manufacture, properties and applications of the following plastics - LDPE, HDPE | Specialty polymers –<br>Biopolymers,<br>Conducting polymers, | Energy sources-<br>Classification of fuels –solid-<br>liquid and gaseous | Fertilizers- NPK-<br>superphosphate-<br>triple<br>superphosphate-<br>uses of mixed<br>fertilizers | | | SLO-2 | Average Molecular Weight, Molecular weight, Distribution & Poly dispersity Index, | Manufacture, properties<br>and applications of the<br>following plastics - LDPE,<br>HDPE | Specialty polymers –<br>Biopolymers,<br>Conducting polymers, | Energy sources-<br>Classification of fuels –solid-<br>liquid and gaseous | Fertilizers- NPK-<br>superphosphate-<br>triple<br>superphosphate-<br>uses of mixed<br>fertilizers | | S-2 | SLO-1 | Determination<br>of molecular<br>weight | Polypropylene,<br>Polystyrene | Engineering polymers— applications. Pollution, hazards in rubber industry and their control. | Calorific value of fuels and its determination | Micronutrients and their role, | | | SLO-2 | Determination<br>of molecular<br>weight | PVC, PMMA, | Engineering polymers– applications. | Solid fuels – coal- lignite-<br>sub-bituminous coal-<br>bituminous coal and<br>anthracite. Coking and non- | biofertilizers- plant<br>growth harmones | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|----------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------| | | | | | Pollution, hazards in rubber industry and their control. | coking coal. Liquid fuels –<br>petroleum refining and<br>Uses | | | S-3 | SLO-1 | Classification of polymers, structure of polymer. | PAN, Polyacrylic acid<br>(PAA), | Engineering polymers— applications. Pollution, hazards in rubber industry and their control. | Octane number. Production and uses of tetraethyl lead-<br>ETBE and MTBE. | Pesticides-<br>classification of<br>pesticides with<br>examples | | | SLO-2 | Classification of polymers, structure of polymer. | Polymethacrylic acid<br>(PMAA). | Engineering polymers— applications. Pollution, hazards in rubber industry and their control. | Gaseous fuels - natural gas<br>and gobar gas –production-<br>composition and<br>uses-gobar electric cell. | Insecticides -<br>stomach poisons<br>contact<br>insecticides-<br>fumigants | | S-4 | SLO-1<br>SLO-2 | Determination<br>of molecular<br>weights (Mn<br>and Mw) based<br>on the given<br>data. | Highlight the advanced<br>polymer synthesis method<br>(CRP) for the preparation<br>of PS, PMMA, PAN, PAA<br>and PMAA | Discuss the specialty<br>and engineering<br>polymers | Discuss the green energy<br>and compare with the other<br>fuel-based energy | Discuss the real life applications of the Fertilizers | | S-5 | SLO-1 | Classification of polymers, structure of polymer. | Polyamides –Nylon 6.6<br>and Nylon 6. | Plastic Waste<br>management –<br>Chemical recycling – | Introduction- Hardness of<br>water- temporary and<br>permanent<br>Hardness | Manufacture and uses of insecticides | | | SLO-2 | Types of polymerization | Aromatic polyamides –<br>Nomex, Kevlar. | Plastic Waste<br>management –<br>Chemical recycling – | Estimation of hardness –<br>EDTA method and alkali<br>titration<br>method. | Herbicides -<br>manufacture of 2,4-<br>D and 2,4,5-T | | S-6 | SLO-1 | Types of polymerization | Polyesters –PET.<br>Unsaturated polyesters. | incineration –Pyrolysis<br>–mixed waste<br>recycling – | Estimation of hardness –<br>EDTA method and alkali<br>titration<br>method. | Fungicides -<br>preparation of<br>Bordeaux<br>mixture-lime-<br>sulphur creosote oil<br>(formula only). | | | SLO-2 | Polymerization<br>Techniques:<br>Bulk, Solution,<br>Emulsion and<br>Suspension,<br>Mechanisms | Polycarbonates –Acetal resins –Polysulphones-<br>PPO | incineration –Pyrolysis<br>–mixed waste<br>recycling – | Water softening methods -<br>Zeolite process- ion-<br>exchange demineralisation<br>mixed – bed deionisation. | Sugar industry -<br>double sulphitation<br>process | | S-7 | SLO-1 | Polymerization<br>Techniques:<br>Bulk, Solution,<br>Emulsion and<br>Suspension,<br>Mechanisms | Polycarbonates –Acetal<br>resins –Polysulphones-<br>PPO | value addition and application development for recycled materials. | Domestic waste water treatment. Purification methods – chlorination- break point chlorination. Reverse osmosis - Desalination. | Refining and grading of sugar | | | SLO-2 | Relative<br>advantages<br>and<br>disadvantages. | Phenolic resins –Novalac<br>formation –<br>Resole formation. | value addition and application development for recycled materials. | Domestic waste water treatment. Purification methods – chlorination- break point chlorination. Reverse osmosis - Desalination. | Cement:<br>Manufacturing –<br>wet process and<br>dry process- | | S-8 | SLO-1 | Discuss which monomers can | Recent research progress on the design and | Discuss in detail the plastic waste | Other methods of waste water treatment | Discuss in detail the advantages | | | SLO-2 | be polymerized via Bulk, Solution, Emulsion and Suspension | synthesis of aromatic<br>polyamides and<br>polycarbonates | management | water treatment | and disadvantages<br>of Fungicides and<br>Herbicides | | S-9 | SLO-1 | Structure of<br>polymers,<br>amorphous,<br>semicrystalline<br>and crystalline | Urea – formaldehyde,<br>Melamine – formaldehyde<br>resins. | Blends/Alloys –<br>Composites – | Pollution: Air pollution – causes and effects. Acid rain-<br>Greenhouse effect (global warming)-ozone layer depletion-photochemical oxidants. Control measures | Cement:<br>Manufacturing –<br>wet process and<br>dry process- | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|----------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| | | , | states in polymers | | | of air pollution. Water pollution | | | | SLO-2 | Structure of polymers, amorphous, semicrystalline and crystalline states in polymers | Synthetic Rubbers:<br>Manufacture, general<br>properties and<br>applications of SBR,<br>Polyisoprene, | Blends/Alloys –<br>Composites – | Pollution: Air pollution –<br>causes and effects. Acid rain-<br>Greenhouse effect (global<br>warming) | Cement: types-<br>analysis of major<br>constituents-<br>setting of cement-<br>reinforced<br>concrete | | S-10 | SLO-1 | Glass<br>transition,<br>melting and<br>crystallization<br>temperature. | Polybutadiene,<br>Butyl rubber, | Blends/Alloys –<br>Composites – | Pollution: ozone layer depletion-photochemical oxidants. Control measures of air pollution. Water pollution | Cement: types-<br>analysis of major<br>constituents-<br>setting of cement-<br>reinforced<br>concrete | | | SLO-2 | Glass<br>transition,<br>melting and<br>crystallization<br>temperature. | Ethylene –propylene<br>rubber, Neoprene rubber, | Examples and application in engineering, biochemical, agriculture, defense and aerospace | Water pollution – organic<br>pollutants- chemical oxygen<br>demand (COD)- | Glass: Composition and manufacture of glass. Types of glasses- optical glasscoloured glasses and lead glass. | | S-11 | SLO-1 | Effect of<br>structure on the<br>chemical,<br>mechanical,<br>electrical and<br>optical<br>properties of<br>polymers. | Speciality rubbers: Silicon rubbers, Nitrile rubbers, | Examples and application in engineering, biochemical, agriculture, defense and aerospace | biological oxygen demand (BOD) - total organic carbon and carbondioxide capture and sequestration. | Glass: Composition and manufacture of glass. Types of glasses- optical glass, coloured glasses and lead glass. | | | SLO-2 | Effect of<br>structure on the<br>chemical,<br>mechanical,<br>electrical and<br>optical<br>properties of<br>polymers. | Polyacrylic rubbers –<br>Hypalon –Fluorocarbon<br>elastomers –<br>Thermoplastic elastomer | Examples and application in engineering, biochemical, agriculture, defense and aerospace | biological oxygen demand (BOD) - total organic carbon and carbondioxide capture and sequestration. | Ceramics: Types-<br>raw materials-<br>white wares<br>manufacture and<br>uses | | S-12 | SLO-1<br>SLO-2 | Discuss the structure and properties of polymers | Detail discussion on<br>application of rubbers in<br>different areas | Discuss the role of<br>different kind of<br>nanofillers on the<br>properties of<br>composite | Discuss more on air and water pollution | Understand the<br>differences<br>between ceramic<br>and glassy<br>materials | | | Theory: | | |-----------------------|---------|-------------------------------------------------------------------------------------------------------------| | | 1. | F. W. BillmeyerJr., Text Book of Polymer Science, Ed. Wiley-Interscience, 1984. | | | 2. | V. T. Gowariker, N. V. Viswanathan, and J. Sreedar, Polymer Science, 1988. | | Lagraina | 3. | M. Morton, Rubber Technology, Chapman Hall, 1995. | | Learning<br>Resources | 4. | J. Brydson, Rubber Chemistry, Butterworths, 1978. | | Resources | 5. | P. Ghosh, Polymer Science and Technology of Plastics and Rubbers, Tata McGraw-Hill Publishing Company 1990. | | | 6. | P. J. Flory, Principles of Polymer Chemistry Springer, 2006. | | | 7. | Encyclopedia of Polymer Science and Technology, Johan Wiley and Sons, Inc 1965. | | | 8. | M. P. Stevens, Polymer Chemistry, Oxford University Press, Inc, 1990. | | Learning | Assessment | | | | | | | | | | | | |----------|------------------------------|---------------|----------|---------------|-----------------------------------|---------------|----------|----------------|----------|-----------------------------------|----------|--| | | <b>.</b> . | | Conti | inuous Le | Final Franciscotion (FOO)inhtona) | | | | | | | | | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - 4 (10%)# | | Final Examination (50% weightage) | | | | | Level of Tilliking | Theory | Practice | | | Level 1 | Remember | 30% | | 30% | _ | 20% | | 20% | | 30% | | | | Level I | Understand | 30% | _ | 30 /6 | - | 20 /0 | - | 2070 | - | 30% | - | | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | Level 2 | Analyze | 40% | - | 50% | - | 30% | - | 50% | - | 30% | - | | | Level 3 | Evaluate | 30% | - | 20% | - | 30% | - | 30% | - | 20% | - | | | Create | | | | | | |--------|-------|-------|-------|-------|-------| | Total | 100 % | 100 % | 100 % | 100 % | 100 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | | | | | | | |---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|--| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@jitm.ac.in | 1. Dr. Samarendra Maji, SRMIST | | | | | | | | Novugen Pharma, Malaysia<br>Email: <u>ravianalytical@gmail.com</u> | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | 2. Prof. Dr. M. Arthanareeswari,<br>SRM IST | | | | | | | LEARN · LEAP · LEAD | Course<br>Code | UCY2 | 3D04T | Course<br>Name | | Supram | olecul | ar Chem | nistry | | urse<br>egoi | - 10 | С | Dis | cipl | ine S | Spec | ific | Elec | ctive | | L T<br>3 1 | | O C<br>2 4 | |-----------------------------------------|----------------------------------------------------------------------------------------|----------|-----------------------------------------|-----------|--------------------------------|-----------------|----------------------|---------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|-----------------|---------------|-------------------|------------|--------|------------| | Pre-<br>requisi<br>Course | ite Nil | 1 | | | requisite<br>ourses | Nil | | | | gres | | Nil | | | | | | | | | | | | | Course (<br>Departm | • | | Chemisti | ry | | | Data Boo<br>Codes/St | | | | | | | | | Nil | | | | | | | | | Course L<br>Rational | | | The purp | oose of I | learning | this co | ourse is t | o: | Le | earni | ng | | | Prog | gram | Lea | rnin | g Oı | utcor | nes | (PL | 0) | | | CLR-1: | learn<br>chemi | | ınderlying | princip | les of | supra | molecula | Learning | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | Streng | gthen th | e <mark>knowl</mark> edg<br>ar chemistr | | e studeni | ts in | | 170 | 3 | A | | | | | | | | | | | | | | | CLR-3: | assen | nbly | ovalent inte | | | | | | | | М | V. | | | | ١. | | | N. | | | | | | CLR-4: | engine | ering | cant expos | | | - 24 | | | ge | ots | siplines | O) | _ | /ledge | 9 | g | | " | | | | | | | CLR-5: | | | ons in mol<br>molecular | | | includ | ing smar | ola) gni | Knowled | Conce | ted Disc | owledg | alizatior | e Know | ing | oret Dat | kills | ng Skills | n Skills | S | | | | | Course<br>Learning<br>Outcome<br>(CLO): | | ne end d | of this cours | se, learr | ners will | be abl | e to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | Communication | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | CLO-1: | chemi | stry | the basic | 77 L | | - 50 | | ar 4 | Н | | Ē | Ī | - | | M | - | - | 7 | - | Н | - | - | - | | CLO-2 : | Molec | ular rec | dents with<br>ognitions ir | n suprar | nolecula | r chen | nistry | 4 | Н | Н | | -4 | Н | - | - | - | - | - | - | - | - | - | 1 | | CLO-3: | to form | n supra | lge about v<br>molecular a | assembl | lies | - | nteraction | 4 | Н | Ĭ | | - | М | - | - | Н | - | 7 | - | - | - | - | - | | | | | ne concept<br>ge about th | | | | m. | 4 | Н | -<br>Н | - | Н | - | - | H | | - | - | - | - | - | - | - | | Duratio<br>S-1 | | ·) Su | 12<br>pramolecu<br>emistry | | Basic u of Host chemis | 12<br>Inderst | tanding | 12<br>Crystal eng | ineer | | 3 | Self- | asse | 1;<br>mbly | 2 | mole | cule | es: | | lecu<br>ctror | | evic | es | | | SLO-2 | 2 Im | portance | L | Synthe structu crown | re of | 1 | Basis conce | epts | L | | | gn, s<br>ertie: | | | | | s | Exa | ampl | les | | | | S-2 | SLO-1 | l Hi | story | | Synthes<br>structur<br>crown 6 | sis and<br>e of | | Role of H-b<br>halogen bo | | | | Self-<br>oond | asse<br>ing, | mbli | ing b | y H- | | | Мо | lecu | lar v | vires | | | | SLO-2 | | olecular<br>cognition | | lariat e | thers, | | Other weak interactions | | | i | ntera | I-liga<br>actio | ns a | nd o | ther | wea | ık | Exa | ampl | les | | | | S-3 | SLO-1 | su | amples of pramolecul | | Crypta | nds | | Homosynth | ons | | | | hiphi | | noled | cules | 3 | | | lecu<br>tifier | | | | | | assemblies SLO-2 Chemical Spherands, calixarenes leading to supramolecular assemblies | | | | | Heterosyntl | nons | | T | heir | agg | rega | tion | | | | Exa | ampl | les | | | | | Tutorial Tutorial Tutorial S-4 SLO-1 SLO-2 Tutorial Tutorial | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |--------|-----------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------| | S-5 | SLO-1 | Supramolecular<br>assemblies for<br>various<br>applications | Cyclodextrins, cyclophanes | Polymorphs,<br>amorphous, phase<br>transformation | Metallomacrocycles | Molecular<br>switches | | | SLO-2 | Continued | Cryptophanes | Cocrystals, salts, coamorphous | examples | Logic gates | | S-6 | SLO-1 | lon pairing | Carcerands | Solid solution, eutectics | Catenane, synthesis | Relevance of<br>Supramolecular<br>chemistry to mimic<br>biological systems | | | SLO-2 | Ion-Dipole<br>Interactions | Hemicarcerands | their physico-chemical properties | Examples, applications | Continued | | S-7 | SLO-1 | Dipole-Dipole interactions | Cucurbiturils | Design of molecular<br>crystals towards<br>achieving targeted<br>applications | Rotaxanes, synthesis | Relevance of<br>Supramolecular<br>chemistry to<br>mimic biological<br>systems | | | SLO-2 | Dipole-Induced<br>Dipole | Cyclophanes | Continued | Examples, applications | Continued | | S-8 | SLO-1 | van der Waals or<br>Dispersion<br>Interactions | Zeolites,<br>Intercalates | Solubility/permeabilit<br>y/tabletablity<br>applications | Helicates, synthesis | Supramolecular catalysis | | | SLO-2 | Hydrogen bonding | Carcerands,<br>Hemicarcerands | Mechanical properties of molecular crystals | Examples, applications | Examples | | S-9 | SLO-1 | Halogen bonding | Host-guest interactions, pre-organization | Elastic, plastic crystals. | Knots, synthesis examples | Supramolecular catalysis | | | SLO-2 | Chalcogen bonding | Complementarity | Binary cocrystal | Examples, applications | Examples | | S-10 | SLO-1 | Pnycotogen bonds | Lock and key analogy | Ternary cocrystals | Surfactants and Interfacial Self-Assemblies | cy <mark>clodextri</mark> ns as<br>enzyme mimics | | | SLO-2 | Cation-pi<br>interactions | Binding of cationic,<br>anionic, ion pair and<br>neutral guest<br>molecules. | Topochemical reactions | Liquid Crystals | lon channel mimics | | S-11 | SLO-1 | Anion-pi<br>interactions | Examples | Cinnamic acids under light | Applications | Continued | | | SLO-2 | Edge-to-face vs.<br>pi-pi Stacking<br>Interactions<br>N-H—pi<br>interactions | Various examples to illustrate noncovalent interactions | Coordination<br>polymers,<br>Metal organic<br>frameworks | Examples of recent developments in supramolecular chemistry | Crystal symmetry,<br>Point groups | | S-12 | SLO-1 | Sulfur-aromatic interactions, Pi-pi stacking | Important applications in catalysis, Making smart material | Covalent organic frameworks Examples/applications | Examples of recent developments in supramolecular chemistry | Space groups,<br>Miller indices | | | SLO-2 | Tutorial | Tutorial | Tutorial | Tutorial | Tutorial | | | Theory: | | |-----------|---------|------------------------------------------------------------------------------------------------| | Lagraina | 1. | JM. Lehn, Supramolecular Chemistry-Concepts and Perspectives (Wiley-VCH, 1995). | | Learning | 2. | P. D. Beer, P. A. Gale, D. K. Smith, Supramolecular Chemistry (Oxford University Press, 1999). | | Resources | 3. | J. W. Steed, J. L. Atwood, Supramolecular Chemistry (Wiley,2000). | | | 4. | J. W. Steed, J. L. Atwood, 'Supramolecular Chemistry', 2nd Edition; ISBN: 978-1-118-68150-3. | ## **Learning Assessment** | | Dia ami'a | | Continu | ious Lea | rning Ass | sessmer | nt (50% w | eightage | ) | Final Exar | mination (50% | | |---------|-------------------|--------|----------|----------|-----------|---------|-----------------|----------|----------|------------|---------------|--| | | Bloom's | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | wei | ghtage) | | | | Level of Thinking | Theory | Practice | Theory | Practice | Theory | <b>Practice</b> | Theory | Practice | Theory | Practice | | | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | Level I | Understand | 30% | - | 30% | - | 20% | - | 20% | - | 30 % | - | | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | Level 2 | Analyze | 40% | - | 30 % | - | 30% | - | 30% | - | 30 % | - | | | Level 3 | Evaluate | 30% | | 20% | | 30% | _ | 30% | | 20% | | | | Level 3 | Create | 30% | - | 2070 | | 30% | | 30% | - | 20 76 | - | | | | Total | | 0 % | 100 % | | 100 % | | 100 % | | 100 % | | | | Course Designers | | | | | | | | | | | | |------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|--|--|--|--|--|--| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | | | | Dr. Sudarshan Mahapatra, Encube Ethicals Pvt. Ltd, sudarshan.m@encubeethicals.com | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: <u>Pgsekar@iitm.ac.in</u> | 1. Dr. Palash Sanphui, SRMIST | | | | | | | | | | | Dr. Ravikiran Allada, Head R&D, Analytical, Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | 2. Prof. M. Arthanareeswari,<br>SRMIST | | | | | | | | | | | Course | | Course | | Course | | | L | T | P | 0 | С | |--------|-----------|--------|----------------|----------|---|------------------|---|---|---|---|---| | Code | UCY23G03T | Name | Food Chemistry | Category | С | Generic Elective | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|--------------------------------|------------------------|-----| | Course Offer<br>Department | ing | Chemistry | | | Data Book /<br>Codes/Standards | | Nil | | Course Learning Rationale (CLR): | The purpose of learning this course is to: | | | | | Pro | grar | n Le | arni | ng C | utc | ome | s (Pl | <b>-</b> O) | | | | |-------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|-----------------|---------------|---------------|--------|--------|-------| | | g o <mark>f food and nutrition, its importance, and unhealthy foods and food poisoning.</mark> | Learning | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: Role of water in foo | od, energy from food | | | | | 1 | | | | | | | | | | | | | | p <mark>ohydrat</mark> es, proteins and fats, their<br>role as food ingredient | VC. | 7 | 4 | seu | | | ge | | | | | | | | | | | CLR-4 : Understanding min | erals, vitamins and enzymes and their role | (moo | ledge | cepts | iscipli | dge | ion | Knowledge | | )ata | | Skills | <u>s</u> | | | | | | CLR-5 : Understanding foo | d safety, food hazards and food | ing (Bloon Knowlec F Concer ated Disc nowledge sialization Ze Know Bling pret Dat Skills ing Skills on Skills | | | | | | Skills | | | | | | | | | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Discipline | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | Communication | Analytical Sk | PSO -1 | PSO -2 | PSO-3 | | CLO-1: Know food and nut | rition, its importance in health. | 4 | H | Ĥ | - | - | - | | М | | | - | - | H | - | • | - | | CLO-2: Know the role of w | ater in food, energy values. | 4 | Н | М | - | - | Π, | - | Н | - | - | - | - | Н | - | - | - | | CLO-3 : Learn different con structures and fund | ponents of foods, their sources, properties, tions | 4 | Н | | | | 5 | | L | 7 | 7 | - | - | Н | - | • | - | | CLO-4: Learn the important | ce of minerals, vitamins and enzymes. | 4 | Н | | | | ۲., | 7 | Н | - | - | 5 | - | L | - | - | - | | CLO-5: Learn about food s | afety, food hazards and food preservations | 4 | М | Н | φ. | Ī- | | - | Н | - | - | - | - | Н | - | - | - | | | ration<br>our) | 12 | 12 | 12 | 12 | 12 | | |-----|----------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--| | S-1 | SLO- | Introduction | Water: Introduction | Carbohydrates-<br>composition, sources | Mineral functions, sources, | Food safety:<br>Introduction | | | J-1 | SLO- | Why food science | Chemistry of water | Classification | Bio-availability | Foodb <mark>orne illnes</mark> s | | | S-2 | SLO-<br>1 | Introduction to nutrition – | Water as a nutrient, function, sources, requirement | Structure, Functions. | deficiency of following<br>minerals<br>and effects: calcium, | Biological hazard to the food | | | 3-2 | SLO-<br>2 | Functions of foods | water balance – effect<br>of<br>deficiency. | physical & chemical properties. | Iron | Chemical hazard to the food | | | | SLO-<br>1 | definition of nutrition, nutrients. | -Moisture in food: | Other sweetening agents, functions of sugar in food | lodine, Fluorine | Food protection systems | | | S-3 | SLO-<br>2 | Adequate, optimum and good nutrition, malnutrition. | Hydrogen bonding | changes during cooking and processing. | sodium, potassium | Labelling as a means of assuring food safety | | | | SLO- | Tutorial session | | | S-4 | SLO- | | | | | | | | | SLO-<br>1 | Food as a source of nutrients | Free, bound and | Proteins – composition | Vitamins – Classification,<br>units of measurement,<br>sources, | Food preservations:<br>Introduction | | | S-5 | SLO-<br>2 | Different sources: vegetables, fruits, meats etc | entrapped water | Classification, sources, | functions | Heat preservation,<br>Refrigeration,<br>dehydration,<br>concentration | | | S-6 | SLO-<br>1 | Inter relationship between nutrition and health, | Water activity and Food stability. | Functions, determination of protein quality | deficiency diseases<br>caused by following<br>vitamins: Fats soluble<br>vitamins – Vitamin A, D | Added preservatives | | | | ration<br>our) | 12 | 12 | 12 | 12 | 12 | |----------|------------------------|-------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------| | | SLO-<br>2 | visible symptoms of good health. | | denaturation, and protein deficiency | Vitamin E and K | Other preservation techniques | | | | Food guide-basic five food groups | Energy – Unit of | Amino acids –<br>classification, Physio-<br>chemical properties | Water soluble vitamins –<br>Vitamin C | Nutritive value of the preserved food | | S-7 | SLO-<br>2 | usage of food guide | energy, food as a<br>source of energy | modification of food<br>protein<br>through processing and<br>storage | Vitamin B-complex | Safety of the preserved food | | | SLO- | Tutorial session | | S-8 | SLO- | | COL | NCE. | | | | S-9 | SLO-<br>1 | Use of food in body-digestion, absorption, transport, utilization | Energy value of food,<br>the body's need<br>for energy, | Lipids – composition, nomenclature | Enzymes. Nomenclature, specificity, catalytic regulations | Food additives:<br>Introduction | | | SLO- | of nutrients in the body | B.M.R. activities | saturated, unsaturated fatty acids | enzyme activity, controlling enzyme action | Functions | | S- | SLO-<br>1 | Food choice: Healthy | Utilization of food for | classification, food sources, | Enzyme added to food during processing, | Major additives used: coloring agents, flavoring agents | | 10 | SLO- | Food choice: Unhealthy | energy requirements | functions of fats | modification of food by endogenous enzyme | Antioxidants, enzymes | | | SLO- | Food poisoning | E = 1 10 | Physical and chemical properties of fat | | Food packaging: types, materials, functions | | S-<br>11 | SLO- | Expiration dates | Acid – base balance | Role of food lipids in flavor | Enzyme inhibitors in food | Food packaging:<br>controlling atmosphere,<br>protection | | S-<br>12 | SLO-<br>1<br>SLO-<br>2 | Tutorial session | | 1 | _ | | | | _ | |---|---|---|---|---|-----| | ı | т | h | Δ | n | r\/ | | | | | | | | Learning Resources - V. A. Vaclavik, E. W. Christian, E. W., Essentials of Food Science, 3rd Ed., Springer 2008 - 3. - V. A. Vaciavik, E. W. Christian, E. W., Essentials of Food Science, 3<sup>th</sup> Ed., Springer 2008 R. L. Shewfelt, Introducing Food Science, CRC Press 2015. E. R. Vieira, Elementary Food Science, 4<sup>th</sup> Ed., International Thomson Publishing 1999 S. R. Mudambi, S. M. Rao, M. V. Rajagopal, M. V. Food science. 2nd Edition. New Age International publishers, 2006. M. Swaminathan, Handbook of Food & Nutrition. 5th Edition. Bangalore printing, 2012. B. Srilakshmi, Food science. 3rd Edition. New Age International 2015. | Learning | Assessment | 1 4 | 1.35.00 | 27.57 | | النك | | 1 141 | авг | | | | |----------|------------------------------|--------|----------|-----------|------------|----------|-----------|--------|----------|--------------------|--------------------|--| | | Di | | Conti | inuous Le | arning Ass | sessment | (50% weig | htage) | m | Final Examinati | on (50% weightage) | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Filidi Exalililati | on (50% weightage) | | | | Level of Thinking | Theory | Practice | | | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | Level I | Understand | | | 30% | - | 20% | | 20% | | 30% | - | | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | Level 2 | Analyze | 40 /0 | | 30 /6 | | 30 % | | 30 % | | 50 % | - | | | Level 3 | Evaluate | 30% | | 20% | _ | 30% | | 30% | | 20% | | | | Levers | Create | 30% | - | 20% | - | 30% | - | 30% | - | 2070 | - | | | | Total | 10 | 100 % | | 100 % | | 100 % | | 00 % | 100 % | | | # CLA - 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |----------------------------------------------|--------------------------------------------|---------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director, | Prof. G. Sekar, Department of Chemistry, | 1. Dr. Jayanta Samanta | | Analytical Sciences and Technology Transfer. | IIT Madras | Research Assistant Professor | | Novugen Pharma, Malaysia | Email: gsekar@iitm.ac.in | Email: jayantas@srmist.edu.in | | • • | Prof. Sukhendu Mandal, Department of | 2.Prof. Dr. M. Arthanareeswari, | | Email: ravianalytical@gmail.com | Chemistry, IIISER, Thiruvananthapuram | SRM IST | | Course<br>Code | | Course<br>Name | Structure and Prop | erties of Materials | Course<br>Category | G | Generic Elective Course | L T P O C<br>3 1 0 2 4 | |----------------------------|---|----------------|---------------------------------|--------------------------------|----------------------|----------|-------------------------|------------------------| | Pre-<br>requisit<br>Course | | | Co-<br>requisite Nil<br>Courses | | Progressi<br>Courses | ive<br>s | Nil | | | Course Departm | • | Physics | and Nanotechnology | Data Book /<br>Codes/Standards | Nil | | | | | | Learning<br>le (CLR): | The purpose of learning this course is to: | Le | arni | ng | | | | Pro | gran | ı Le | arni | ng C | Outc | ome | es (P | LO) | | | | |----------------------------|--------------------------|-------------------------------------------------------------------------|-------------------|----------------------|-------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------|---------------|------------|---------------|--------------|--------|--------|-------| | CLR-1: | have basi | c knowledge on bonding in solid and their properties | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | realize an<br>materials. | importance of types of imperfections in the | ( | _ | ( | o) | | lines | | | dge | | | | | | | | | | | <b>CLR-3</b> : | explore th | e diffusion and its mechanisms in solids | (Bloom) | %) | %) | ğ | pts | ci. | Эе | _ | Knowledg | | ıta | | S | 'n | | | | | | CLR-4: | understar | nd the phase transition through phase diagram | ĕ | ار<br>ک | ent | ₩<br>We | 5 | Ö | edc | atio | no | | Data | S | Skills | Skills | | | | | | CLR-5: | explore th | e advanced high-strength composite materials | <sub>D</sub> | cje. | Ē | ŝ | ප | 9 | owl | alizi | | ing | oret | Skills | g | | S | | | | | | | | ī | rofi | ttai | <u>e</u> | ₽ | elat | Ϋ́ | eci | illize | del | Interpret | e S | Solving | atio | Skills | | | | | Course<br>Outcom<br>(CLO): | Learning<br>nes | At the end of this course, learners will be able to: | Level of Thinking | Expected Proficiency | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, In | Investigative | Problem So | Communication | Analytical S | PSO -1 | PSO -2 | PSO-3 | | CLO-1<br>: | realize the | e rol <mark>e of bonding in</mark> solids and its functional properties | 2 | 75 | 60 | Н | Н | - | - | | | - | - | - | М | - | - | - | - | - | | CLO-2 | explore th | e type of imperfections in materials | 2 | 80 | 70 | Н | 4 | 7 | Н | | | | М | | - | - | - | - | - | - | | CLO-3<br>: | understar | od the types of diffusion processes | 2 | 70 | 65 | Н | - | - | Н | | | - | | | М | - | - | - | - | - | | CLO-4<br>: | distinguis | h the phase transitions via phase diagram | 2 | 70 | 70 | Н | - | - | Н | | 7 | Y. | M | | - | - | | - | - | - | | CLO-5 | understar<br>properties | nd the significance of composite materials and their | 2 | 80 | 70 | Н | Н | - | - | М | * | | L. | - | - | - | - | - | - | - | | | ration<br>our) | 15 | 15 | 15 | 15 | 15 | |------|----------------|---------------------------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------| | S-1 | | science and engineering | | W. W | phase diagram -<br>introduction | composit <mark>e material</mark> s-<br>introductio <mark>n</mark> | | 5 | | types of materials | space lattice and unit cell | | diagram | composite <mark>material</mark> s-<br>introduction | | S-2 | | metallic and polymeric<br>materials | crystal systems | growth of crystals in liquid metal | Gibbs phase rule | different ty <mark>pes of composites</mark> | | 5-2 | | Ceramic, composite and electronic materials | Bravais Lattices | formation of grain structure | Leaver rule | load data t <mark>ransfer in</mark><br>composite <mark>material</mark> | | S-3 | | atomic structure and bonding | metallic crystal structures | industrial casting | Phase equilibria | matrix m <mark>aterials</mark> | | 3-3 | SLO-2 | | BCC, FCC and HCP crystal structure | green structure in industrial casting | single and multi<br>component system | role of <mark>matrix ma</mark> terials | | S-4 | SLO-1<br>SLO-2 | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | | C E | SLO-1 | Atomic number and atomic mass | Crystal structure analysis | growth of single crystals | concept of solid solution | reinforcement materials | | S-5 | | electronic structure of atoms | X ray diffraction | solidification of single crystals | different alloys | <mark>role</mark> of reinforcement<br>material | | | SLO-1 | hydrogen atom | Poly crystalline Materials | solid solutions in metals | Phase diagram | polymer materials | | S-6 | | structure of multi<br>electron atoms | amorphous materials | substitutional and interstitial solid solutions | single and multi<br>component system | classification of polymers | | S-7 | SLO-1 | importance of electronic<br>structure | crystalline imperfections | Diffusion<br>n in solid | binary isomorphous<br>system | ceramic materials | | | SLO-2 | chemical reactivity | types of defects in crystals | diffusion mechanisms | Eutectic system | metallic materials | | S-8 | SLO-1<br>SLO-2 | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | | S-9 | SLO-1 | Atomic and molecular bonding | Schottky defect | steady state diffusion | Ooling curve for pure<br>element | polymer matrix composites | | | | types of atomic and<br>molecular bonds | Frenkel defect | non steady state diffusion | cooling car for Alloys | polymer matrix composites | | S-10 | SLO-1 | primary bonding | Defect Interaction | industrial applications of diffusion | Pb-Sn Phase diagram | ceramic matrix composites | | | SLO-2 | types of primary bonding | Dislocations | | Determination of<br>transition points | ceramic matrix composites | |------|-------|----------------------------|-----------------------------------------|---------------|---------------------------------------|-----------------------------------------| | | | , , | Burgers Vector, Types of<br>Dislocation | metallography | | metal matrix composites | | 3-11 | SLO-2 | types of secondary bonding | | o o | Applications of phase diagram | metal matrix composites | | | | | | | | Problems/Demos/<br>Simulations/Seminars | | Learning | 1. | W. Smith, J. Hashemi, Foundation of materials science<br>and engineering, 5th McGraw - Hill Education, 2009 | 3. | B.S Mitchell, An introduction to materials<br>Engineering and science for Chemical and | |-----------|----|-------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------| | Resources | 2. | W.D. Callister, Jr. Materials Science & Engineering, 7th Ed., John Wiley & Sons 2007. | 4 | Materials Engineers, 1Ed, Wiley, 2003,<br>V. Raghavan, Materials Science & | | | | Ed., John Wiley & John 2007. | 1 5 | Engineering, Hall of India New Delhi 2001 | | Learning | Assessment | | | | | | - T | | | | | |----------|------------------------|--------|----------|------------|---------------|-------------|--------------|---------|----------|------------|----------| | | Bloom's | 62. | | Continuous | Learning Asse | essment (50 | % weightage) | 7 ~ | | Final Exar | mination | | | Level of | CLA - | 1 (10%) | CLA – | 2 (10%) | CLA – | 3 (20%) | CLA – 4 | 4 (10%)# | (50% wei | ghtage) | | | Thinking | Theory | Practice | | Level 1 | Remember<br>Understand | 30 % | of her | 30 % | | 30 % | ļ | 30 % | 2. | 30% | - | | Level 2 | Apply<br>Analyze | 40 % | | 40 % | S. 365 | 40 % | ie J | 40 % | 19 | 40% | - | | Level 3 | Evaluate<br>Create | 30 % | P. 136 | 30 % | <b>医</b> | 30 % | 100 | 30 % | 6 | 30% | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 100 | % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |-------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Mr. R Seshadri, Titan Company Limited, seshadri@titan.co.in | Prof. S Balakumar, University of Madras, balakumar@unom.ac.in | Dr. Ravikirana,<br>SRMIST | | Dr. N Vijayan, NPL, nvijayan @nplindia.org | Prof. C Venkateshwaran, University of Madras, venkateshwaran@unom.ac.in | Dr. Rajaboopathi M,<br>SRMIST | | Course | UCY23P04L | Course | Mini Project | Course | Р | Internship/ Project/ | L | Τ | Р | 0 | С | |--------|-----------|--------|--------------|----------|---|----------------------|---|---|---|---|---| | Code | | Name | - | Category | | Community | 0 | 0 | 5 | 0 | 2 | | | | | | | | Outreach | | | | | 1 | | Pre-<br>requisite<br>Courses | Nil | | Co-<br>requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-----------------------------|-----|--------------------------------|------------------------|-----| | Course Offe<br>Department | • | Chemistry | | | Data Book /<br>Codes/Standards | Nil | | | Course<br>Rationa<br>(CLR): | Learning<br>le | The purpose of learning this course is to: | Learning | | | | Pr | ogra | m Le | arni | ng C | utco | omes | (PL | O) | | | | |-----------------------------|-----------------------------------------|-------------------------------------------------------------------------|---------------------------|-----------------------|----------------|-------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|------------------------|---------------|--------------|--------|--------|-------| | CI D_1. | Produce compet<br>with a strong sci | e <mark>nt, creative and</mark> imaginative graduates<br>entific acumen | NT/ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | Apply of the acquire to the field of Ch | uired knowledge, skills, and tools pertinent<br>emistry | | | | 1 | a | | | | | | | | | | | | | CI R-3 | Promote indeper<br>domain of chemi | ndent and collaborative research work in th<br>stry | 9 | 4 | | ines | | 9 | dge | | | | | L | | | | | | | Inculcate the eth scientific society | ical responsibility of the graduate in the | Sloom) | wledge | Concepts | Discipl | edge | ation | Knowledge | h | Data | | kills | Skills | l. | | | | | CI R-D | Identify the chall<br>Chemistry | enges and solutions pertinent to the field of | Hking (E | al Kno | | elated [ | Knowle | ecializa | | deling | erpret | e Skills | lving S | ation St | Skills | | | | | | Learning<br>nes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical S | PSO -1 | PSO -2 | PSO-3 | | CLO-1 | demonstrate the | key areas of research | 4 | Н | - | - | - | Н | - | Н | - | - | - | - | - | - | - | - | | CLO-2 | develop laborato | ry and experiment related skills | 4 | - | Н | | | Н | Н | - | - | - | - | - | - | - | - | - | | | posses' compete<br>scientific docume | nce on data collection and process of entation | 4 | - | М | Ŕ | | М | | - | - | - | - | М | - | - | - | - | | CLO-4 | gain the knowled | lge of research ethics | 4 | | - | - | 14 | М | М | - | Н | - | - | - | - | - | - | - | | CLO-5 | solve problems i | n their area of research | 4 | | - | Н | | | - | Н | - | - | - | - | М | - | - | - | | | | ng Assessment (50%<br>htage) | Final Evaluation | ion (50% w <mark>eightage</mark> ) | | | |--------------|------------|------------------------------|------------------|------------------------------------|--|--| | Mini Project | Review – 1 | Review – 2 | Project Report | Viva-Voce | | | | | 20% | 30 % | 30 % | 20 % | | | ## Semester - VII | | | | | | | mester - vii | | | | | | | | | | | | | | | | | |---------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------|------------------------------------|------------------|-----------------------------------------------|-----------------------|-------------------------|------------------|-------------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|------------| | Course<br>Code | UCY237 | 01T Course<br>Name | | Reagents i | n Organic | React | tions | Cou<br>Cate | ırse<br>gory | , | | | | Core | Co | urse | | | 3 | | P 0 | O C<br>2 4 | | Pre-requ<br>Course | es | Nil | | Co-requisite<br>Courses | | Ni | | | gres<br>ours | | | | | | | ٨ | lil | | | | | | | Course C<br>Departme | | Chemi | stry | | | a Book<br>es/Sta | | | | | | | | | Nil | | | | | | | | | Course L<br>Rationale | | The pu | rpose | e of learning th | is course i | is to: | | Le | arnir | ng | | | Pro | gram | Lea | rnin | g Ou | tcom | ) | | | | | CLR-1: | reactions | | | mportance of | | | Learning | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-3:<br>CLR-4:<br>CLR-5: | Promote to Understand Acquire ba | he importance<br>od the uses of a<br>asic understan | of re-<br>reage<br>ding ( | dation/reductio<br>arrangement r<br>ents and their r<br>of asymmetric<br>arners will be | eactions<br>nechanisn<br>synthesis | | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | ink with Related | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | -1 | -2 | က | | Outcome<br>(CLO):<br>CLO-1: | es . | | | ts of organic n | 7.28 | ions | PA97 | H Funda | Applic | Link | Proce | Skills | Ability | N Skills | Analy | Inves | Proble | Comn | ∓ Analy | PSO -1 | - PSO | PSO-3 | | CLO-2: | | | | ganic reactions | | | 4 | Н | Н | ÷ | | Н | - | - | | | - | Ŧ | | - | - | - | | | Apply the | name reaction | s to s | ance of rearran<br>synthesize in th<br>synthesis of ch | he laborato | | 4 4 4 | H | -<br>-<br>Н | - | H | <i>M</i> | - | -<br>М<br>Н | - | H<br>- | 1-<br>- | -<br>-<br>- | 1 1 1 | - | - | - | | Duratio<br>S-1 | SLO-2 | Grignard<br>reagent<br>Jones<br>Reagent | 3 | Arndt-Eistert Mannich Rea | Synthesis | | Aldol Conde<br>Acetoacetic<br>Condensatio | Ester | n | | eckm | | | rranç | 1 | | t | syn<br>Bas<br>and<br>ster | oduce<br>mme<br>thes<br>sic produced<br>l example | etric<br>is<br>rincip<br>imple<br>pecif | oles<br>es of | f | | S-2 | SLO-1 | Lithium<br>aluminium<br>hydride | 1 | Dakin Reacti<br>Reaction | on and En | | Acyloin and Condensation | | oin | | aker-<br>earra | | | | n | 1 | | and | reos<br>I<br>antio | | | , | | | SLO-2 | Diisobutyl<br>aluminium<br>hydride | | Darzens Rea<br>Diels-Alder R | | | Darzens and<br>Dieckmann<br>Condensatio | | L | В | rook | Rea | rang | geme | ent | | | | stere | | lecti | ve | | S-3 | SLO-1 | Pyridinium I<br>Chromate | Di | Favorskii Rea<br>Grubbs Read | | | Knoevenage<br>Condensatio | | | | laise<br>learr | | | | Oxy-( | Соре | Э | Cra | ım's | rule | | | | | SLO-2 | Selenium<br>dioxide | | Hell-Volhard-<br>Reaction and<br>Reaction | | | Robinson A<br>Olefin Metat | | on | | laise<br>tearr | | | | Oxy-( | Соре | Э | | kin-C<br>n Ru | | est- | | | S-4 | SLO-1 | Discuss the<br>scope of<br>these<br>oxidizing ar<br>reducing<br>agents | | Discuss in de application w examples | | е | Discuss in d<br>application v<br>suitable exa | vith | | a | iscus<br>oplica<br>camp | ation | | | | | | of st | Discuss the scope<br>of stereochemistry<br>organic<br>transformation | | | | | S-5 SLO-1 Collins Gabriel Synthesis Reagent Haloform Reaction | | | | Swern Oxida<br>Baeyer-Villig<br>Oxidation ar<br>Oppenauer | ger<br>nd | on | Р | inacc | ol Re | arraı | ngem | nent | | | | ti-Cr<br>duct | | | | | | | | Durati | ion (hour) | 12 | 12 | 12 | 12 | 12 | |--------|------------|------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------| | | SLO-2 | Collins<br>Reagent | Kolbe-Schmitt Reaction and Mannich Reaction | Sharpless Epoxidation and Prevost Reaction | Wolff Rearrangement<br>Fries Rearrangement | Industrial<br>asymmetric<br>synthesis | | S-6 | SLO-1 | Baeyer's<br>reagent | McMurry Reaction and<br>Michael Addition | Woodward Reaction<br>Carroll rearrangement | Newman-Kwart<br>Rearrangement | Chiral Drugs | | | SLO-2 | Corey reagent | Mitsunobu Reaction and<br>Prévost Reaction | Dihydroxylation with osmium tetroxide | Adamantane Rearrangement<br>Wittig Rearrangement | Chiral Non-<br>steroidal Anti-<br>inflammatory<br>Profen Drugs | | S-7 | SLO-1 | Corey reagent | Reformatsky Reaction | Dihydroxylation with alkaline KMnO <sub>4</sub> | Dimroth rearrangement<br>Smiles rearrangement | Continued | | | SLO-2 | Corey-Suggs<br>Reagent | Sandmeyer Reaction | Dihydroxylation of allylic alcohols | Lossen rearrangement<br>Meisenheimer rearrangement | Synthesis of<br>Enantiomerically<br>Pure Nucleosides | | S-8 | SLO-1 | Discuss the scope of | Discuss in detail the application with suitable | Discuss in detail the application with | Discuss in detail the application with suitable | Discuss recent discoveries on | | | SLO-2 | these reagents | examples | suitable examples | examples | chiral drugs | | S-9 | SLO-1 | Fehling's reagent | Schmidt Reaction and<br>Seebach Umpolung | Asymmetric dihydroxylation | Sommelet–Hauser rearrangement | (-)Carbovir | | 4 | SLO-2 | Tollen's reagent | Simmons-Smith Reaction | Dihydroxylation of a chiral substrate | Carroll rearrangement | Lamivudine and Zidovudine | | S-10 | SLO-1 | Sarett<br>Reagent | Ullmann Reaction | Use of N-<br>methylmorpholine N-<br>oxide (NMO) | Sonogashira Coupling | Emtricitabine and Captopril | | | SLO-2 | Benedict's reagent | Vilsmeier Reaction and<br>Wohl-Ziegler Reaction | Birch and<br>Rosenmund<br>Reduction | Suzuki and Stille Coupling | Duloxetine and<br>Naproxen | | S-11 | SLO-1 | Bestmann's reagent | Corey-Seebach Reaction | Meerwein-Ponndorf-<br>Verley Reduction | Glaser and Hiyama Coupling | Thalidomide | | | SLO-2 | Burgess reagent. | Corey-Chaykovsky<br>Reaction | Clemenensen reduction | Kumada and Negishi<br>Coupling | Remedisvir | | S-12 | SLO-1 | Discuss the scope of | Discuss in detail the application with suitable | Discuss in detail the application with | Discuss in detail the application with suitable | Discuss the scope of these drugs for | | | SLO-2 | these reagents | examples | suitable examples | examples | therapeutic application | ## Theory: Learning Resources - W. Zerong Comprehensive Organic Name Reactions and Reagents ISBN: 9780471704508| Online ISBN: 9780470638859| DOI: 10.1002/9780470638859 - Hassner and I. Namboothiri, Organic Syntheses Based on Name Reactions A practical guide to 750 transformations, ISBN 978-0-08-096630-4, 2012, 3rd edition. - Bradford P. Mundy, Michael G. Ellerd, Frank G. Favaloro Jr., Name Reactions and Reagents in Organic Synthesis, Wiley-Interscience, 2nd ed., 2005. - 4. Mathias Christmann and Stefan Bräse, Asymmetric Synthesis: The Essentials, Wiley publication, 2007, ISBN 9783527320936. - 5. L. Finar, Organic Chemistry, Volume I, 6th Ed., 2015, ISBN: 9788177585421, 9788177585421. - 6. I. L. Finar, Organic Chemistry, Volume II, 5th Ed., ISBN: 9788177585414, 9788177585414. | Learning | Learning Assessment | | | | | | | | | | | | | |----------|------------------------------|--------|----------|-----------|-----------|----------|-----------|---------|----------|-----------------------------------|---------------------|--|--| | | D | | Cont | inuous Le | arning As | sessment | (50% weig | jhtage) | | Final Evaminati | on (EOO) weightens) | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | Level of Tilliking | Theory | Practice | | | | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | | Level I | Understand | 30% | - | 30% | - | 20% | - | 20% | - | 30% | - | | | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | | Level 2 | Analyze | 40% | - | 50% | - | 50% | - | 50% | - | 50% | - | | | | Lovel 2 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | | | Level 3 | Create | 30% | - | 20% | - | 30% | - | 30% | - | 20% | - | | | | Total | 100 % | 100 % | 100 % | 100 % | 100 % | |--------|-------|--------|--------|--------|--------| | i otal | 100 % | 100 70 | 100 /0 | 100 /0 | 100 76 | | Course Designers | | | |------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------| | Expert from Industry | <b>Experts from Higher Technical Institutions</b> | Internal Experts | | Dr. Sudarshan Mahapatra, Encube Ethicals Pvt. Ltd, sudarshan.m@encubeethicals.com | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: <u>Pgsekar@iitm.ac.in</u> | 1. Dr. Palash Sanphui, SRMIST | | Dr. Ravikiran Allada, Head R&D, Analytical, Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | Prof. M. Arthanareeswari SRMIST | \_\_\_\_\_\_ | Course | UCY23D05T | Course | | Course | | | L | T | P | 0 | C | |--------|-----------|--------|--------------------------------------------|----------|---|-------------------------------------|---|---|---|---|---| | Code | UCY23D05T | Name | Solid State Chemistry and its applications | Category | С | Discipline Specific Elective Course | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|-----------------|------------------------|-----| | Course Offer | ing | Chemistry | | | Data Book / | | Nil | | Department | | Chemisuy | | | Codes/Standards | | MII | | Course<br>Rationa<br>(CLR): | Learning<br>lle | The purpose of learning this course is to: | Learning | | | | Pro | grai | n Le | arni | ng C | Outco | ome | s (PI | _O) | | | | |-----------------------------|------------------------------------------|------------------------------------------------------|---------------------------|-----------------------|-------------------------|------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|------------------------|---------------|------------|--------|--------|-------| | CLR-1: | Gain knowledge of | the basic concepts of solid state chemistry | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | Address concepts Stoichiometry. | related to crystal defects and non- | In | b | | | | | | | | | | | | | | | | CLR-3: | Get knowledge on mechanisms | different types of synthesis with | <del>-</del> | ge | S | plines | 1 | | edge | | | | | | | | | | | CLR-4: | Employ various fal materials. | prication methods towards designing of | (Bloon | owled | oncept | d Disci | vledge | zation | Knowledge | | et Data | <u>s</u> | Skills | Skills | | | | | | CLR-5: | Learn the different | properties of crystalline materials | iinking | ıtal Kn | J of C | Related | Knov | oeciali; | | odelin | nterpre | ve Ski | olving | | Skills | | | | | Course<br>Outcor<br>(CLO): | | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Discipline | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | CLO-1 : | Understand basic applications | concepts of solid-state chemistry and its | 4 | Н | | Η | L | ١-: | | - | | | - | - | | I | - | - | | CLO-2: | Gain knowledge al | oout crystal defects and non-Stoichiometry | 4 | Н | - | М | Н | - | - | - | - | - | - | - | - | - | - | - | | CLO-3: | Understand the me | echanism of different types of synthesis | 4 | | Н | Н | | - | -1 | - | - | - | - | - | - | - | М | - | | CLO-4 : | Familiar with differ relevance | ent properties and their technological | 4 | | Н | ķ, | Н | Н | - | - | - | - | 2 | - | - | - | М | - | | CLO-5 : | Gain deep knowled technological relevant | dge about fabrication methods towards rance | 4 | - | Н | ď | 7 | Н | - | М | - | - | - | - | - | - | L | - | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |--------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------|-------------------------------------------------| | | SLO-1 | Crystal Structures<br>and Crystal<br>Chemistry;<br>Introduction | Crystal Defects: Types of Defect | Synthesis, Processing and Fabrication Methods | Thermal Properties: Introduction | Magnetic Properties:<br>Introduction | | S-1 | SLO-2 | Classification of solids, differences between crystalline and amorphous solids, point group | Point, line and plane defects | Solid State Reaction | Lattice vibrations | Classification of magnetic materials | | S-2 | SLO-1 | Crystallography-Law<br>of constancy of<br>interfacial angles,<br>Law of rational<br>indices and Miller<br>indices, d-Spacing<br>Formulae | intrinsic and extrinsic defects-vacancies | Shake 'n Bake Methods | phonon spectrum | Langevin<br>diamagnetism | | | SLO-2 | Law of Symmetry<br>and types of crystal<br>symmetry, space<br>lattice and unit cell-<br>primitive and non-<br>primitive unit cells | Schottky and Frenkel defects | Nucleation and Growth,<br>Epitaxy and Topotaxy | lattice heat capacity | quantum theory of paramagnetism | | S-3 | SLO-1 | Seven crystal<br>systems, Bravais<br>and non-Bravais<br>lattices. | The Kroger–Vink notation for crystal defects | Examples of Solid-State Reactions | thermal expansion | cooperative<br>phenomena ferro<br>magnetism | | | SLO-2 | Close Packed<br>Structures of Solids<br>in ID, 2D and 3D. | The Kroger–Vink notation for crystal defects | Combustion Synthesis<br>Mechanosynthesis | thermal conductivity | cooperative<br>phenomena antiferro<br>magnetism | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------| | | | cubic closed<br>packing, hexagonal<br>closed packing, | | | | | | S-4 | SLO-1 | Practice: Miller<br>indices related<br>problem,Seven<br>crystal systems,<br>CCP, HCP and FCC | Practice: crystal defects<br>Point, line and plane<br>defects, : notations for<br>crystal defects | Practice: Solid State<br>Reaction , Synthesis<br>methods | Practice: heat capacity related problem | Practice: magnetism | | S-5 | SLO-1 | face-centred cubic and body-centred cubic structure. Total number of atoms per unit cell | Thermodynamics of<br>Schottky and Frenkel<br>defect formation.<br>Colour centres | Low Temperature<br>Methods<br>Chimie Douce Methods-<br>Alkoxide | Electrical Properties:<br>introduction. Electrical<br>conductivity and Ohm's law | cooperative<br>phenomena ferri<br>magnetism | | | SLO-2 | relationship between<br>the edge length of a<br>cubic unit cell and<br>the radius of atom | Vacancies and interstitials in non-stoichiometric crystals | Sol–Gel Method Using<br>Oxyhydroxides and<br>Colloid Chemistry | Hall effect and band theory | magnetic domains and hysteresis | | | SLO-1 | the relative density<br>of packing -simple<br>cubic | extrinsic and intrinsic defects | Citrate Gel and Pechini<br>Processes | intrinsic and extrinsic semiconductors | super paramagnetism | | S-6 | SLO-2 | face-centred cubic and body-centred cubic system | extrinsic and intrinsic defects | Use of Homogeneous,<br>Single-Source<br>Precursors | hopping semiconductors.<br>semiconductor/metal transition | Optical properties:<br>Introduction. Optical<br>reflectance | | | SLO-1 | Types of crystals-<br>lonic crystals | Defect clusters or aggregates, | Hydrothermal and Solvothermal Synthesis | p-n junctions, superconductors | plasmon frequency | | S-7 | SLO-2 | Structures of NaCl,<br>CsCl and Zinc<br>blende | Interchanged atoms.<br>order–disorder<br>phenomena | Microwave Synthesis | Meissner effect | Raman scattering in crystals | | S-8 | SLO-1 | Practice: Total<br>number of atoms<br>per unit cell related<br>problem, :<br>Structures of NaCl<br>and Zinc blende<br>Structure of CsCl | Practice: extrinsic defects intrinsic defects, disorder phenomena | Practice: Hydrothermal<br>Synthesis methods<br>Solvothermal Synthesis<br>methods, Microwave<br>Synthesis methods | Practice: band theory, intrinsic semiconductors , extrinsic semiconductors | Practice: plasmon<br>frequency, Raman<br>scattering, Optical<br>reflectance | | S-9 | SLO-1 | Ctrustures of | X-Ray Diffraction | Intercalation and Deintercalation | type I superconductors | photoconduction | | 0-3 | SLO-2 | Structures of Rutile | Bragg's law | Graphite Intercalation Compounds | basic concepts of BCS theory | photoluminescence, | | S-10 | SLO-1 | Structures of Perovskit | diffraction methods-Laue method | Pillared Clays and<br>Layered Double<br>Hydroxides | manifestations of the energy gap | electroluminescence, | | | SLO-2 | Covalent crystals: structure of diamond | diffraction methods-Laue method | Synthesis of Graphene | manifestations of the energy gap | photovoltaic | | | SLO-1 | structure of graphite | diffraction methods- the rotating crystal method. | Gas-Phase Methods-<br>CVD, PVD and ALD | Josephson devices. | photoelectrochemical effects. | | S-11 | SLO-2 | Metallic Crystals<br>and Molecular<br>Crystals | diffraction methods- the powder method. | Sputtering, Evaporation and Aerosol Synthesis and Spray Pyrolysis | Josephson devices. | photoelectrochemical effects. | | S-12 | SLO-1<br>SLO-2 | Practice: Structures<br>of Wurtzite , Rutile<br>Perovskit | Practice: problem solving related to Bragg's law diffraction methods | Practice: Synthesis of<br>Graphene Pyrolysis<br>method , Gas-Phase<br>Methods | Practice: BCS theory type I superconductors , Josephson devices | Practice:<br>photoluminescence,<br>electroluminescence,<br>photoelectrochemical | | | 1. | R. West, Solid State Chemistry and Its Application, 2ed, Wiley, 2014. | |-----------|----|----------------------------------------------------------------------------------------------------------------------------------------| | | 2. | P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Shriver & Atkins' Inorganic Chemistry, 5th Edition, Oxford University Press | | | | 2011-2012 | | Learning | 4. | C. N. R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry, 2ed, Cambridge University Press, 2010. | | Resources | 5. | P. A. Cox, The Electronic Structure and Chemistry of Solids, Oxford Science Publications, 1987. | | | 6. | G. Gottstein, Physical Foundation of Material Science, Springer, 2004. | | | 7. | D. M. Adam, Inorganic Solids: An introduction to concepts in solid-state structural chemistry, John Wiley and Sons, London, New York, | | | | Sydney, Toronto, 1974 | | Learning | Assessment | | | | | | | | | | | | | |----------|------------------------------|-------------------------|----------|-----------|-----------|----------|-------------|---------|----------|-----------------------------------|--------------------|--|--| | | | | Conti | inuous Le | arning As | sessment | t (50% weig | ghtage) | | Final Examination (50% weightage) | | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | rınaı Examınatı | on (50% weightage) | | | | | Level of Thinking | Theory | Practice | | | | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | | Level i | Understand | 30% | - | 30% | - | 20% | - | 20% | - | 30% | - | | | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | | Level 2 | Analyze | 40% | - | 30% | - | 30% | - | 30% | - | 50% | - | | | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | | | Level 3 | Create 30% - | | | 20% | - | 30% | - | 30% | | 20% | - | | | | | Total | 100 % 100 % 100 % 100 % | | | | | | 00 % | 1 | 00 % | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ra <mark>vikiran All</mark> ada, Director,<br>Anal <mark>ytical Sci</mark> ences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: <u>Pgsekar@iitm.ac.in</u> | Dr. S. Shanmugan, SRMIST | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | Prof. M. Arthanar <mark>eeswari, SR</mark> MIST | | Course | UCY23D06T | Course | | Course | | | L | T | P | 0 | С | |--------|-----------|--------|---------------------------------|----------|---|------------------------------|---|---|---|---|---| | Code | UCY23D06T | Name | Chemical Technology and Society | Category | D | Discipline Specific Elective | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|-----------------|------------------------|-----| | Course Offer | ing | Chemistry | | | Data Book / | | Nil | | Department | | Chemisuy | | | Codes/Standards | | MII | | Course Lea<br>Rationale<br>(CLR): | arning | The purpose of learning this course is to: | Learning | | | | Pro | grar | n Le | arni | ng C | utco | ome | s (PI | _O) | | | | | | |-----------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|-------------------------|------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|------------------------|----------------------|-------------------|--------|--------|----|--|--| | I ( :I R-1' I | ain knowledge of t | the basic concepts of chemical | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | CLR-3 : En<br>CLR-4 : Ga | mploy various che<br>ain knowledge on<br>earn natural source<br>earning | s of equipment in chemical technology mical technology to industries chemical technology for societal benefits es used in various chemical technology At the end of this course, learners will be able to: | evel of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | ink with Related | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PSO -1 | PSO -2 | | | | | CLO-1: Us | se of basic chemis | stry to chemical engineering | 4 | H | - | L | - | - | - | - | | - | - | - | - | Н | - | - | | | | (:1 ()-2 · | amiliar with differe<br>chnology | nt types of equipment in chemical | 4 | Н | ÷ | - | М | - | - | ď | | | - | - | 1 | 1 | Н | - | | | | | rovide required kno<br>sed in industries | owledge on various chemical technology | 4 | - H H - M | | | | | | - | | | | | | | | | | | | CLO-4 : Co | onnect chemical te | echnology for societal benefits | 4 | H L - H | | | | | | - | | | | | | | | | | | | CLO-5: Uti | tilize the natural so | ources for various chemical technology | 4 | - н н н | | | | | | Н | _ | | | | | | | | | | | Duration | on (hour) | 12 | 12 | 12 | 12 | 12 | |----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------| | S-1 | SLO-1 | Basic Principles of<br>Chemical<br>Technology | Manufacture of Formaldehyde | Manufacture of Phenol from cumene and toluene | storage and transportation. | Man <mark>ufacture o</mark> f<br>glyc <mark>erin</mark> | | | SLO-2 Basic principles of distillation Formaldehyde Manufacture of | | | Manufacture of Phenol from benzene | Techniques for pressureless processing-Casting and dipping. | Manufacture of glycerin | | | SLO-1 | solvent extraction | Manufacture of Chloromethanes | Manufacture of Phenol<br>from chlorobenzene | coating and foaming | Manufacture of<br>Detergents | | S-2 | SLO-2 | solid-liquid leaching | Manufacture of Chloromethanes | Manufacture of Styrene and pthalic anhydride | Polymer processing under pressure-Compression molding, rolling. | Manufacture of Detergents | | S-3 | SLO-1 | liquid-liquid<br>extraction | Manufacture of<br>Hydrocarbon steam<br>cracking for<br>petrochemicals | Manufacture of Maleic anhydride | calendering, extrusion | Edible and essential oils | | | SLO-2 | separation by<br>absorption and<br>adsorption | Manufacture of Ethylene dichloride from ethylene | Manufacture of Dichloro diphenyl trichloroethane | blow molding and injection molding | vegetable oil<br>extraction,<br>hydrogenation of oil | | | SLO-1 | Practice: distillation | Practice: flow sheet of Formaldehyde synthesis | Practice: flow sheet of | | Practice: flow sheet of glycerin synthesis | | S-4 | SLO-2 | extraction<br>absorption and<br>adsorption | flow sheet of<br>Chloromethanes<br>synthesis<br>: flow sheet of Ethylene<br>dichloride synthesis | Phenol synthesis: flow<br>sheet of Styrene<br>synthesis<br>: flow sheet of Maleic<br>anhydride synthesis | Practice: pressureless processing, pressure processing | flow sheet of | | S-5 | SLO-1 | An introduction into<br>the scope of<br>different types of<br>equipment needed<br>in chemical<br>technology | Manufacture of Vinyl chloride from ethylene | ufacture of Vinyl ride from ethylene Polymer Process Technology Polymer manufacturing processes with flow sheet for polythene, polyvinyl chloride | | | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------| | | SLO-2 | including reactors | Manufacture of Vinyl chloride from ethylene | Classification according to physical and chemical structures | styrene butadiene rubber, phenol formaldehyde | Chemical and scientific literacy | | S-5 | SLO-1 | distillation columns, | Manufacture of Ethylene oxide | Preparation Methods:<br>Condensation and<br>addition polymerization | viscose rayon and nylon | understand topics like<br>air and water and the<br>trace materials found<br>in them that are<br>referred to as<br>pollutants | | | SLO-2 Extruders, pumps Manufacture of oxide | | Manufacture of Ethylene oxide | methods-bulk, solution,<br>Suspension, Emulsion | Natural Product Process<br>Technology: Introduction | energy from natural sources | | S-6 | SLO-1 Mills, emulgators Manufacture of Ethanolamines Scaling up Manufacture of | | | homogeneous and heterogeneous polymerization | Preparation of wood pulp by sulfate (kraft) process with flow sheet | solar and renewable forms | | 3-0 | SLO-2 | Scaling up operations in chemical industry. | Manufacture of<br>Isopropanol from<br>propylene | Physical properties and applications | Chemical recovery from black liquor and production of paper | energy from fossil<br>fuels | | | SLO-1 | Practice: different | Practice: flow sheet of<br>Vinyl chloride synthesis | | Practice: manufacturing | Practice: | | S-7 | SLO-2 | types of equipment<br>Scaling up<br>operations | flow sheet of Ethylene<br>oxide synthesis<br>flow sheet of Isopropanol<br>synthesis | Practice: Polymer<br>Process: \polymerization<br>Methods, applications | processes, flow sheet of polymers synthesis : flow sheet of polymers synthesis | technological issues<br>pollution<br>issuesnatural sources<br>energy | | | SLO-1 | Introduction to clean technology | Manufacture of Acetone from isopropanol | Thermoplastic and thermosetting | Manufacture of sugar | energy from nuclear fission | | S-8 | SLO-2 | Petrochemical<br>Process<br>Technology:<br>Introduction | Manufacture of Cumene and acrylonitrile from propylene | elastomers and fibres | Manufacture of starch | materials like plastics<br>and polymers and<br>their natural<br>analogues | | | SLO-1 | Petrochemicals: overview | Manufacture of Isoprene and oxoprocessing of olefins | Adhesives and coatings films and fibres | Manufacture of Ethanol from Molasses | proteins and nucleic acids | | S-9 | SLO-2 | Classification of petrochemicals and process topology. | Manufacture of Isoprene and oxoprocessing of olefins | Processing technologies-mixing, rolling | Manufacture of Soaps | interconversions from simple to complex molecules | | S-10 | SLO-1 | Process technology with flow sheet | Manufacture of Butadiene<br>and benzene production<br>using hydrodealkylation<br>route | Kneading, pelletizing | Manufacture of fatty acids | molecular reactivity | | 3-10 | SLO-2 | Manufacture of<br>Methanol from<br>Synthesis gas | Manufacture of Butadiene<br>and benzene production<br>using hydrodealkylation<br>route | shredding and grinding | Manufacture of fatty acids | manufacture of drugs | | | SLO-1 | Process technology flow sheet of | flow sheet of Acetone | | EAD | nuclear fission | | S-11 | SLO-2 from Syn gas flow sheet of Cumene and technologies flow sheet acrylonitrile synthesis | | flow sheet of sugar synthesis flow sheet of starch synthesis | process, molecular reactivity | | | | S-12 | SLO-1 | Practice: flow sheet of Methanol | Practice: flow sheet of Butadiene and benzene synthesis | Practice: elastomers and fibres | Practice: flow sheet of fatty acids synthesis | Practice: flow sheet of drugs synthesis | | | SLO-2 | synthesis from<br>Syn gas | Syndresis | and hines | | urugs synulesis | | | 1. | J. W. Hill, T. W. McCreary, D. K. Kolb, Chemistry for changing times 13th Ed Pearson, 2011. | |-----------------------|----|-----------------------------------------------------------------------------------------------| | Lograina | 2. | C. E. Dryden, Outlines of Chemical Technology, East-West Press, 2008 | | Learning<br>Resources | 3. | R. N. Shreve, G. T. Austin, Shreve's Chemical process industries, McGraw – Hill, 1984 | | Resources | 4. | R. E. Kirk, D. F. Othmer, Encyclopedia of Chemical Technology, John Wiley and Sons, 1999-2012 | | | 5. | F. Ullmann, Encyclopedia of Industrial Chemistry, Wiley – VCH, 1999-2012. | | Learning | Assessment | | | | | | |----------|-------------------|---------------|--------------------|--------------------|----------------|------------------------------------| | | Bloom's | Conti | nuous Learning Ass | sessment (50% weig | jhtage) | Final Evamination (500/ weighters) | | | Level of Thinking | CLA - 1 (10%) | CLA - 2 (10%) | CLA - 3 (20%) | CLA - 4 (10%)# | Final Examination (50% weightage) | | | | Theory | Practice | |---------|------------|--------|----------|--------|----------|--------|----------|--------|----------|--------|----------| | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | Level I | Understand | 30% | - | 30% | - | 20% | - | 20% | - | 30 % | - | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | Level 2 | Analyze | 40% - | | 30% | - | 30% | - | 30% | - | 30 % | - | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 200/ | | | Level 3 | Create | 30% | - | 20% | - | 30% | - | 30% | - | 20% | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 1 | 00 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | CITAL | | |---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@iitm.ac.in | 1. Dr. S. Shanmugan, SRMIST | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | 2. Prof. M. Arthanareeswar<br>SRMIST | | Course | Course | | Course | _ | | L | T | Р | 0 | C | |--------|--------|--------------------------|----------|---|------------------|---|---|---|---|---| | Code | Name | Pharmaceutical Chemistry | Category | G | Generic Elective | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|--------------------------------|------------------------|-----| | Course Offer<br>Department | ing | Chemistry | | | Data Book /<br>Codes/Standards | | Nil | | Course L<br>Rational<br>(CLR): | | The purpose of learning this course is to: | Learning | | ٠, | | Pro | grar | n Le | arni | ng C | Outco | ome | s (Pl | <b>_O</b> ) | | | | |--------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------------------|---------------|---------------|--------|--------|-------| | | | erstanding of drug, their nomenclature and elopment and their side effects. | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | Comprehend the mantibacterial, antifu | I C | 7 | | | | | | | | ١. | | | | | | | | | | including-analgesic<br>antibacterial and ar | e of synthesis of major drug classes<br>s, antipyretics, antiinflammatory agents,<br>ntifungal agents antiviral agents, Central<br>gents and drugs for HIV-AIDS | | - | | | Ź | Ò | | | | | | N | | | | | | CLR-4: | Gain knowledge ab | out enzyme reactions and influence of actions | <del>ا</del> (س | ge | ots | iplines | 0 | | ledge | H | co. | | | | | | | | | CLR-5: | Gain an overview of fermentation process and production of | | | | of Concep | ated Disc | nowledge | cialization | ize Know | eling | erpret Data | Skills | ving Skills | ion Skills | Skills | | | | | Course<br>Outcom<br>(CLO): | Learning<br>nes | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical Sk | PSO -1 | PSO -2 | PSO-3 | | CLO-1: | Understand the imp | portance of drugs, mode of action and son | 4 | Н | | ¥. | Ī | | -2 | M | - | - | - | - | Н | - | - | - | | | | atures of the drug to its biological action | 4 | | Н | - | | - | - | Н | - | - | L | - | - | - | - | - | | CLO-3: | | | | | Н | ۲., | | H | - | | | - | - | - | Н | - | - | - | | CLO-4: | CLO-4: Utilize the knowledge gained in the course to synthesize of molecules. | | | | Н | * | Н | | - | Н | 1 | | )- | - | | - | - | - | | CLO-5: | 4 | - | Н | - | - | - | - | Н | 4 | 3 | - | L | | - | - | - | | | | Duration | on (hour) | 12 | 12 | 12 | 12 | 12 | | |----------|-----------|--------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|--------| | | SLO-1 | Introduction of drugs | BADA | Definition and actions of representative antibacterial agent | 54/ | Fermentation | | | S-1 | SLO-2 | Nature and sources of drugs | Medicinally important inorganic compounds | Synthesis of the representative drugs ( Sulphonamides; Sulphanethoxazol, Sulphacetamide, Trimethoprim ) | Storage of drugs: Importance, and different conditions | Aerobic<br>anaerobic<br>fermentation | and | | | SLO-1 | Classifications of drugs: Biological | | Synthesis of the representative drugs of the | | | | | S-2 | SLO-2 | Classifications of drugs: Chemical | Role of inorganic<br>compounds | following classes:<br>antibacterial agent<br>(Sulphonamides;<br>Sulphanethoxazol,<br>Sulphacetamide,<br>Trimethoprim | Encapsulation of drugs | Production of E<br>alcohol | Ethyl | | • | SLO-1 | Nomenclature of | Therapeutic uses of | Synthesis of the representative drugs of the following classes: antibacterial agent | Brief introduction to drug | | citric | | S-3 | SLO-2 | drugs inorganic compo | | (Sulphonamides;<br>Sulphanethoxazol,<br>Sulphacetamide,<br>Trimethoprim | delivery | acid | | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|--------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------| | | SLO-1 | Tutorial session | | S-4 | SLO-2 | - | | | | | | S-5 | SLO-1 | Drug receptor interaction | Drugs and Pharmaceuticals — I: Study of pharmaceutical aids - talc, diatomite and | Definition and actions of representative antifungal agent | Introduction - Enzymes | Production of Antibiotics - Penicillin | | | SLO-2 | Interaction | kaolin | Synthesis of the representative drugs | | | | 2.6 | SLO-1 Mechanism of | | Study of pharmaceutical aids - bentomite, gelatin and | Drugs and Pharmaceuticals — II Definition and actions of Antiviral agents | Classification of enzymes | Production of<br>Antibiotics -<br>Cephalosporin | | 3-0 | SLO-2 | drug interaction | natural colours | Synthesis of the representative drugs Antiviral agents (Acyclovir) | Enzyme specificity | Production of<br>Antibiotics -<br>Chloromycetin | | | SLO-1 | Metabolism of | Definition and actions of antipyretic drug | Definition and actions of<br>Central Nervous System<br>agents | Mechanism of enzyme action | Production of Antibiotics - | | S-7 | SLO-2 | drugs | Examles | Synthesis of the representative drugs Central Nervous System agents (Phenobarbital, Diazepam) | incording in or one ying addorr | Streptomycin | | | SLO-1 | Tutorial session | | S-8 | SLO-2 | 7 | | 2.2 | * 1 | | | | SLO-1 | Definition of the following terms: | | Definition and actions of<br>Cardiovascular drug | Enzyme cofactor | | | S-9 | SLO-2 | pharmacophore-<br>pharmacology,<br>pharmacopeia,<br>bacteria, virus,<br>chemotherapy<br>and vaccine | Basic Retro-synthetic approach for development of drug. | Synthesis of the representative Cardiovascular drug (Glyceryl trinitrate) | Role of enzyme cofactor in reactions | Production of - Lysine,<br>Glutamic acid | | | SLO-1 | Causes and symptoms for | Definition and actions of antipyretic drug | Definition and actions of antilaprosy drug | coenzyme - – its role in enzyme | Production of - | | S-10 | SLO-2 | common disease<br>and their<br>treatment | Synthesis of the representative drugs | Synthesis of the representative antilaprosy drugs (Dapsone) | reactions | Vitamin B2 | | | SLO-1 | Difference | Definition and actions of anti-<br>inflammatory drug | Definition and actions of HIV-<br>AIDS related drugs | | Production of - | | S-11 | SLO-2 | between drug and poison. | Synthesis of the representative drugs (Aspirin) | Synthesis of the representative HIV-AIDS related drugs (AZTZ idovudine) | Immobilization of enzymes | Production of -<br>Vitamin C | | 0.40 | SLO-1 | Tutorial session | | S-12 | SLO-2 | | | | | | | | Theory: | | |-----------|---------|------------------------------------------------------------------------------------------------------------------------------| | | 1. | G. L. Patrick, Introduction to Medicinal Chemistry, Oxford University Press, UK 2013. | | | 2. | H. V. K. Kapoor, Medicinal and Pharmaceutical Chemistry, Vallabh Prakashan, Pitampura, New Delhi 2008. | | Learning | 3. | W. O. Foye, L. Thomas, D. A. William, Principles of Medicinal Chemistry, B.I. Waverly Pvt. Ltd. New Delhi 2012. | | Resources | 4. | R. A. Kjonaas, P. E. Williams, D. A. Counce, L. R. Crawley, Synthesis of Ibuprofen. in the Introductory Organic Laboratory, | | | | J. Chem. Educ., 88 (6), pp 825– 828, 2011. | | | 5. | D. G. Marsh, D. L. Jacobs, H. Veening, Analysis of commercial vitamin C tablets by iodometric and coulometric titrimetry, J. | | | | Chem. Educ., 50 (9), p 62,1973. | | Learning | Assessment | | | | | | | | | | | | | |----------|------------------------------|---------------|----------|---------------|-----------|---------------|-------------|----------------|----------|-----------------------------------|---------------------|--|--| | | | | Conti | inuous Le | arning As | sessment | t (50% weig | jhtage) | | Final Evaminati | on (E00/ weightens) | | | | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - 4 (10%)# | | Final Examination (50% weightage) | | | | | | Level of Thinking | Theory | Practice | | | | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | | Level I | Understand | 30% | - | 30% | - | 20% | - | 20% | - | 30% | - | | | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | | Level 2 | Analyze | 40% | - | 30% | - | 30% | - | 30% | - | 50 % | - | | | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | | | Level 3 | Create | 30% | | 20% | | 30% | | 30% | - | 2070 | - | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | | | | | | | | |---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|--| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | | Dr. Ra <mark>vikiran All</mark> ada, Director,<br>Analy <mark>tical Scie</mark> nces and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: gsekar@iitm.ac.in | 1. Dr. Jayanta Samanta, SRMIST | | | | | | | | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | 2.Prof. Dr. M. Arthanareeswari,<br>SRM IST | | | | | | | | | Course | Co | ourse | | Course | | | L | T | P | 0 | С | |--------|----|-------|------------|----------|---|-------------------------|---|---|---|---|---| | | | lame | Thin Films | Category | G | Generic Elective Course | 4 | 0 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|---------------|-------------------------|-----|-----------------|------------------------|-----| | Course Offer | ing | Physics and | Nanotechnolo | nav | Data Book / | | Nil | | Department | | i ilysics and | Ivanotecimot | Jy | Codes/Standards | | MII | | Departi | ment | Codes/Standards | | | | | | | | | | | | | | | | | | | |------------------|---------------------------------------------------|----------------------------------------------------------------------------|---------------------|--------------------------|----------------|-----------------------|-------------|---------------------|----------------------|----------------|--------------------|--------------------|-----------|---------------|---------|---------------|-----------|----------|----|------| | Course<br>(CLR): | | | | | | | | Pro | gra | ım l | Lea | rnir | ng C | Outo | com | nes | (PL | .0) | | | | CLR-1: | impart a sound basis fo | or an understanding of vacuum technology. | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 1 | 12 | 1 | 1 | 15 | | CLR-2: | provide a fundamental in the synthesis of mate | knowledge on various principles and methods used erials in thin film form. | | 2 | | | | es | F F | | е | 1 | | | | | | | | | | CLR-3: | introduce nucleation an thermodynamics and m | d growth mechanisms of thin films based on | loom) | (%) ^: | ıt (%) | acco | Concepts | Related Disciplines | ge | on | Knowledge | ٠, | ata | | Skills | S | | | | | | CLR-4: | provide understanding | ) (B | elc | ner | 30 | ou o | Дp | Mec | zati | Ϋ́ | 0. | et C | <u>s</u> | š | Skill | | | | | | | CLR-5: | familiarize with physics characterization of thin | and techniques involved in the measurement and films | of Thinking (Bloom) | Expected Proficiency (%) | Attainment (%) | Eundamental Knowledge | o Jo u | Relate | Procedural Knowledge | Specialization | Ability to Utilize | Skills in Modeling | Interpret | ive Skills | Solving | Communication | Skills | | | | | | | 2011 2 112 112 | of T | te d | ted | 9 | atio | Æ | dur | S LI | to | i. | ze, | igat | E | Jun | ï | <b>-</b> | -2 | ~ | | Course<br>(CLO): | Learning Outcomes | At the end of this course, learners will be able to: | eve | Expec | Expected, | Find | Application | Link with | Proce | Skills in | Ability | Skills | Analyze, | Investigative | Problem | Comn | Analytica | PSO. | | PSO- | | CLO-<br>1: | understand the concept | t of vacuum technique | 2 | 75 | 6 | Н | Н | - | - | | | - | Η | - | - | - | - | - | - | - | | CLO-<br>2: | explore evaporation an | d sputtering systems for fabrication of films | 2 | 80 | 7 | Н | Н | - | - | - | Ŧ | - | Η | - | - | - | - | - | - | - | | CLO-<br>3: | know about the concep | t of various CVD techniques and their applications | 2 | 70 | 6 5 | Н | Н | 1 | - | - | - | - | Η | - | - | - | - | - | - | - | | CLO-<br>4: | understand the possible of films | e growth modes and techniques to measure thickness | 2 | 70 | 7 | Н | Н | F | | - | - | - | Η | - | - | - | - | - | - | - | | CLO-<br>5: | explore various advance structures, morphology | 2 | 80 | 7 | Н | Н | - | - | - | -( | - | Η | - | - | - | - | - | - | - | | | | ation<br>our) | 12 | 12 | 12 | 12 | 12 | |-----|---------------|-------------------------------------------------|---------------------------------|----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------| | S-1 | SLO-<br>1 | Fundamentals of vacuum | Substrate deposition technology | Chemical bath deposition : ionic and solubility products | Introduction to elasticity | X-ray diffraction (XRD) | | | SLO-<br>2 | Basic definition and pressure regions of vacuum | Substrate materials, | Preparation of binary semiconductors | Plasticity and mechanical behavior | Experimental<br>investigation of X-ray<br>diffraction (XRD | | S-2 | SLO-<br>1 | Kinetic theory of gases, mean free path | Substrate cleaning | Deposition mechanism | Electrical and magnetic properties of thin films | Scanning electron microscopy | | | SLO-<br>2 | Kinetic theory of gases, mean free path | Masks and connections | Preparation of compound thin films | Introduction to electrical properties of thin films, | Morphology analysis using scanning electron microscopy | | S-3 | SLO-<br>1 | Understanding concepts and types of gas flow | Thermal evaporation | Electrodeposition | Optical properties of thin films | Transmission electron microscopy | | | SLO-<br>2 | Types of flow | Thermal evaporation | Electrolytic deposition | Optical constant in thin films | Transmission electron microscopy | | S-4 | SLO-<br>1 | Conductance | Resistive heating | Electro less deposition | Theory of nucleation and growth process | Investigation of nanostructures using transmission electron microscopy | | | SLO-<br>2 | Vacuum pumps | Flash evaporation | Anodic oxidation | Early stages of film growth | Investigation of nanostructures using transmission electron microscopy | | S-5 | SLO- | Vacuum pumps and systems | Rf-heating | Spray pyrolysis | Thermodynamic aspects of nucleation | Energy dispersive analysis | |----------|-----------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------| | | SLO-<br>2 | Rotary mechanical pump | Co-evaporation | Spin coating | Capillary theory | Elemental analysis<br>using energy<br>dispersive analysis | | S-6 | SLO-<br>1 | Rotary mechanical pump | Co-evaporation | Dip coating | Thin film growth modes | Auger electron<br>spectroscopy | | | SLO-<br>2 | Roots pump | Electron bombardment heating | Chemical vapor deposition (cvd) | Volmert, weber (vw) growth | Auger electron spectroscopy | | S-7 | SLO-<br>1 | Diffusion pump | Sputtering plasma | Homogenous process | Frank-van der merwe<br>(fm) growth | Study of surface using<br>auger electron<br>spectroscopy | | | SLO-<br>2 | Diffusion pump | Discharges and arc | Heterogeneous process, | Stranski-krastanov<br>growth | Study of surface using<br>auger electron<br>spectroscopy | | S-8 | SLO-<br>1 | Turbo molecular<br>pump | Sputtering yield low pressure sputtering | Cvd reactions | Thickness<br>measurement | Basic principle of x-ray photoelectron spectroscopy | | | SLO-<br>2 | Turbo molecular<br>pump | Rf-sputtering | Pyrolysis | Electrical methods | Experimental details of<br>x-ray photoelectron<br>spectroscopy | | S-9 | SLO-<br>1 | Measurement of vacuum | Reactive sputtering | Hydrogen reduction,<br>halide<br>disproportionation, | Microbalance monitors | Identify elements within materials from x-ray photoelectron spectroscopy study | | | SLO-<br>2 | Concept of different gauges | Basic principle of magnetron sputtering | Transfer reactions | Quartz crystal monitor | Uv-vis spectroscopy,<br>theory and applications | | S-<br>10 | SLO-<br>1 | Capacitance gauges | Details study of magnetron sputtering | Cvd processes and systems | Basic of mechanical method (stylus) | Uv-vis <mark>spectrosc</mark> opy,<br>theory and applications | | | SLO-<br>2 | Pirani gauge | Magnetron<br>configurations | Low pressure CVD | Mechanical method<br>(stylus) | Introduction of secondary ion mass spectrometry | | S-<br>11 | SLO-<br>1 | lonization gauge and penning gauge | Evaporation versus sputtering | Laser enhanced cvd | Ellipsometry | Experimental study of secondary ion mass spectrometry | | | SLO-<br>2 | Vacuum system components | Evaporation versus sputtering | Metal organic cvd<br>(mocvd) | Interference fringes | Use of secondary ion mass spectrometry | | S-<br>12 | SLO-<br>1 | Problems/Demos/<br>Simulations/Seminars<br>on mean free path<br>from kinetic theory of<br>gases, and different<br>gauges | Problems/Demos/<br>Simulations/Seminars<br>on rf and resistive<br>heating | Problems/Demos/<br>Simulations/Seminars<br>on electrodeposition<br>and MOCVD | Problems/Demos/<br>Simulations/Seminars<br>on nucleation | Problems/Demos/<br>Simulations/Seminars<br>on crystallite size,<br>strain analysis using<br>XRD | | | SLO-<br>2 | Problems/Demos/<br>Simulations/Seminars<br>on vacuum operation | Problems/Demos/<br>Simulations/Seminars<br>on evaporation versus<br>sputtering | Problems/Demos/<br>Simulations/Seminars<br>on low pressure CVD<br>and CVD reactions | Problems/Demos/<br>Simulations/Seminars<br>on thickness analysis<br>and crystal monitor | Problems/Demos/<br>Simulations/Seminars<br>on morphology study<br>from SEM and TEM<br>data | | | 1. | D.M. Hoffman, B. Singh and J.H. Thomas, Handbook | 8. | N. Yoshimura, Vacuum Technology: Practice | |-----------|------------|--------------------------------------------------------|-----|------------------------------------------------| | | | of Vacuum Science & Technology, Academic Press, | | for Scientific Instruments, Springer | | | | 1998. | | Publications, 2007. | | | 2. | M. Ohring, Materials Science of Thin Films: Deposition | 9. | The Vacuum Technology Book Volume II, | | | | and Structure, 2nd Ed., Academic Press (An Imprint of | | Pfeiffer Vacuum [Online Book] | | | | Elsevier), 2002. | 10. | E. Ahmed, et al. "Significance of substrate | | | 3. | Properties of Thin Films by Joy George, Marcel and | | temperature on the properties of flash | | Learning | | Decker, (1992). | | evaporated CuIn 0.75 Ga 0.25 Se 2 thin films." | | Resources | 4. | Kaufmann, Characterization of Materials, 2nd Ed., | | Thin Solid Films 335.1 (1998): 54-58. | | | | Wiley, 2003. | 11. | Physics of Thin Films by Ludmila Eckertová, | | | 5. | K.L. Chopra, Thin Film Phenomena, Robert E. Krieger | | Springer (1986). | | | | Publishing Company, 1979. | 12. | J.B. Mooney, and S.B. Radding. "Spray | | | 6. | Z.L. Wang, Characterization of Nanophase Materials, | | pyrolysis processing." Annual Review of | | | | Wiley, 2000. | | Materials Science 12.1 (1982): 81-101. | | | <i>7</i> . | Thin Film Technology by O S Heavens, Methuen | 13. | R.F. Bunshah, Handbook of Deposition | | | | young books (1970). | | Technologies for Films and Coatings, Science, | | | Technology and Applications, Noyes<br>Publications, 1994. | |--|-----------------------------------------------------------| |--|-----------------------------------------------------------| | | Bloom's | | Continue | ous Lea | rning Ass | essmer | nt (50% we | Final Examination (500/ weighters) | | | | | |--------|------------|--------|----------|---------|-----------|--------|------------|------------------------------------|----------|-----------------------------------|----------|--| | | Level of | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | Thinking | Theory | Practice | | | evel 1 | Remember | 30% | _ | 30% | | 30% | | 30% | | 30% | _ | | | | Understand | 30 /6 | - | 30 /0 | | 30 /6 | | 30 /6 | - | JU /0 | - | | | ovol 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | evel 2 | Analyze | 40 /0 | | 30 /6 | | 30 /6 | - | 30 /6 | - | 30 /0 | - | | | evel 3 | Evaluate | 30% | | 20% | | 20% | | _20% | | 20% | | | | evel 3 | Create | 30% | - | 20% | AT | 20% | | 20% | - | 20% | - | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 100 % | | | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. S <mark>. Saravan</mark> an, RenewSys India Pvt. Ltd, Telangana, India,<br>shr <mark>isharavan</mark> an@yahoo.co.uk | Prof. S. Balakumar, University of Madras,<br>balakumar@unom.ac.in | Dr. M. Kovendhan,<br>SRMIST | | Dr. N. VIJAYAN, CSIR-NPL, nvijayan@nplindia.org Experts from Higher Technical Institutions | Prof. V. Subramanian, IIT Madras,<br>manianvs@iitm.ac.in | Dr. Bh <mark>askar Beh</mark> era,<br>SRMIST | | Course | UCY23G05T Course | | Course | | LTPOC | |--------|------------------|----------------------------|----------|--------------------------|-----------| | Code | UCY23G05T Name | Chemistry in Everyday life | Category | Discipline Specific Core | 3 1 0 2 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|--------------------------------|------------------------|-----| | Course Offer<br>Department | ing | Chemistry | | | Data Book /<br>Codes/Standards | | Nil | | | 00.00701 | | | | | | | | | | | | | | | | | |-----------------------------------------------|-------------------------------------------------------------------|---------------------------|-----------------------|-------------------------|------------------------------|----------------------|---------------|--------------------|--------------------|--------------------|----------------------|------------------------|---------------|--------------|--------|--------|-------| | Course Learning<br>Rationale<br>(CLR): | Rationale (CLR): | | | | | | grai | m Le | arni | ing ( | Outo | ome | s (P | LO) | | | | | , , | CLR-1: To familiarize the students on chemistry in everyday life | | | | | | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 : To gain necessary preparation of cos | <mark>/ details and i</mark> nformation related to<br>metic items | In | | | | | | | | | | | | | | | | | CLR-3 : To know about the food colors | To know about the health hazards of the cosmetic items and | | | | | | | ge | | ٠, | | | | | | | | | CLR-4 : To understand the adulterants in food | oom) | ledge | septs | iscipli | dge | ion | Knowledge | | Data | | sills | <u>s</u> | | | | | | | CLR-5 : To understand the polymers | king (Bl | al Know | of Con | lated D | Knowle | Specialization | | deling | | Skills | Iving Sk | tion Skills | Skills | | | | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Discipline | Procedural Knowledge | Skills in Spe | Ability to Utilize | Skills in Modeling | Analyze, Interpret | Investigative Skills | Problem Solving Skills | Communication | Analytical S | PSO -1 | PSO -2 | PSO-3 | | CLO-1: Apply the knowled like soap and cam | lge gained to generate home made products phor tablets | 4 | Н | | | Ī | 1 | | Ĺ | Ī | Ē | - | - | Н | - | - | - | | | he adulterants present in regular food items | 4 | Н | Н | 121 | | Н | - | • | - | - | - | - | - | - | - | - | | CLO-3 : Understand the ha | 4 | Н | | į, | | М | Н | - | - | - | 7 | - | - | 1 - | - | - | | | CLO-4: Application of vari | 4 | Н | - 27 | 7-1 | Н | - 1 | - | Н | - | - | i i | - | - | - | - | - | | | CLO-5 : The students will benefits of antioxi | 4 | E | Н | | Ġ | Н | - | Н | - | - | Ī | - | - | - | - | - | | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |----------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------| | | SLO-1 | Cosmetics:<br>Introduction | Definitions and sources –<br>Carbohydrates | Food preservatives-<br>Definition examples | Significance of Radical chemistry in living system | Fibers: natural fibers | | S-1 SLO-2 Preparation of Talcum Powder | | Talcum | Definitions and sources -<br>proteins -fats | Methods of preservation-Low and high temperature methods | Radical production in environment | Fibers: Artificial fibers | | | SLO-1 | Preparation of shampoo | Definitions and sources - minerals | Methods of preservation-dehydration osmotic pressure | Superoxide and peroxide radicals | Artificial fibers - polyamides | | S-2 | SLO-2 Preparation of tooth paste Definitions and sou vitamins | | Definitions and sources – vitamins | Methods of preservation- food irradiation | Quantification of radicals by EPR | Acrylic and polyesters | | | SLO-2 | Preparation of<br>Nail Polish | Definition and source of sports supplements | Food colour chemicals used in food -soft drinks and its health hazards | Health impacts Action of radicals | PET | | • | SLO-1 | Preparation of | Physiological importance- | Chemicals in food | Diseases caused by free | PET recycling | | S-3 | SLO-2 | skin creams | balanced diet | production | radicals | process | | 0.4 | SLO-1 | Practice: Quiz about cosmetic materials | Practice: Quiz about sources of carbohydrates | Practice: Quiz about food preservative chemicals | Practice: Quiz about radicals' detection | Practice: Quiz about natural fibers | | S-4 | SLO-2 | Practice: Quiz about protein and nail polish Practice: Quiz about protein and minerals and minerals | | Practice: Quiz about food preservatives methods | Practice: Quiz about EPR analysis | Practice: Quiz about synthetic fibers | | S-5 | SLO-1 | Preparation of | Adulterants in milk - ghee - | Food poisoning- | Cancer Radical guencher | Biodegradable | | | SLO-2 | Perfumes | oil- identification. | Reasons | 1,111 | Polymers-examples | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------| | S-6 | SLO-1 | Cottage industries: agarbatti | Adulterants in coffee and tea powders and its identification | Introduction to Fertilizers | Anti-oxidants- Introductions | Non-biodegradable polymers examples | | | SLO-2 | Preparation of bath salts | Adulterants in asafoetida - identification | Fertilizers used in natural sources | Advantages and role of antioxidants in human health | Use of polymeric materials in daily life | | S-7 | SLO-1 SLO-1 Superation Score S | | Adulterants in chilli powder-<br>identification | Fertilizers-Urea- NPK need -Uses and hazards | Natural anti-oxidants like<br>vegetables, beverages like tea<br>and coffee, fruits | Polystyrene materials<br>for food storage and<br>serving | | | SLO-2 | Cosmetics for nail care | Adulterants in pulses and turmeric powder – identification | phosphates- Uses and Water s | | PTFE in cookware | | S-8 | -8 SLO-1 Practice: Oral Presentations | | Practice: Oral Presentations | Practice: Oral | Practice: Oral Presentations | Practice: Oral | | 3-0 | SLO-2 | Presentations | | Presentations | | Presentations | | S-9 | SLO-1 | Sun screens Role of voluntary agencies | | Pesticides –definition | Antioxidants/Polyphenols and | Dalumara in anarta | | 5-9 | SLO-2 | working<br>mechanism | such as, Agmark, I.S.I. | and examples | skin aging | Polymers in sports | | 0.40 | SLO-1 | Cosmetics used | Highlights of Food Safety | Pesticides for public | Radical destroying enzymes: | Uses of Vinyl | | S-10 | SLO-2 | for eye care | and Standards Act 2006 | health pest control-<br>mosquitoes, houseflies | superoxide dismutase | polymers and<br>Bakelite | | 0.44 | SLO-1 | Possible Hazards | Food Safety and Standards | Pesticides for domestic | Radical destroying enzymes: | h | | S-11 | SLO-2 | of cosmetic use | Authority of India (FSSAI)-<br>Rules and Procedures | pests - Bed bugs, cockroaches etc. | catalase, peroxidase | hazards of polymers | | S-12 | SLO-1 | Practice:<br>Participative<br>debates | Practice: Participative debates | Practice: Participative debates | Practice: Participative debates | Practice: Participative debates | | 5-12 | SLO-1 | Practice:<br>Summarizing all<br>concepts | Practice: Summarizing all concepts | Practice: Summarizing all concepts | Practice: Summarizing all concepts | Practice:<br>Summarizing all<br>concepts | ## Theory: Learning Resources - W. A. Poucher, Perfumes, Cosmetic and Soaps (Vol 3),10th edition Kluwer academic publishers 2000. O. P. Vermani, A. K. Narula Industrial Chemistry Galgotia Publications Pvt. Ltd., New Delhi 2006. J. M. Berg, J. L. Tymoczeko, I. Stryer, Biochemistry, W. H. Freeman Publishers, 2008. B. K. Sundari. Applied chemistry MJP Publishers, New Delhi. 2006. L. H. Meyer., Food Chemistry, CBS publishers & distributors. 2004. 1. - V. R. Gowariker, N. V.Viswanathan, J. Sreedhar, Polymer science, New Age, International 2005 | Learning | Assessment == | | | | | _ | | | | L | | | | |----------|------------------------------|-------------------|----------|---------------|----------|-------------------------------------------|----------|--------|----------|-----------------------------------|----------|--|--| | | | 7 | Cont | inuous Le | | Final Franciscotion (FOO) analysis has no | | | | | | | | | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | Level of Tilliking | Theory | Practice | | | | Lovel 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | | Level 1 | Understand | 30% | - | 30% | - | 20% | - | 20% | | 30% | - | | | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | | | Level 2 | Analyze | 40 % | | 30% | - | 30% | - | 30% | | 50% | - | | | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | | | Level 3 | Create | 30% | | 20% | | 30% | | 30% | - | 20% | - | | | | | Total | 100 % 100 % 100 % | | 00 % | 100 % | | | | | | | | | #CLA - 4 can be from any combinatin of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@iitm.ac.in | 1. Dr.S. Vadivel, SRMIST | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | 2. Prof. Dr. M. Arthanareeswari,<br>SRM IST | | Course | ( | Course | | Course | | | L | T | Р | 0 | С | |--------|---|--------|--------------|----------|---|-------------------------|---|---|---|---|---| | | | Name | Group Theory | Category | G | General Elective Course | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-------------|-------------------------|-----|--------------------------------|------------------------|-----| | Course Offer<br>Department | ing | Physics and | l Nanotechnolo | אמע | Data Book /<br>Codes/Standards | | Nil | | | | | 0000/0100 | | | | | | | | | | | | | | | | | | | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|----------------------------------------------|-------------------------------------------|-----------------|-----------------|---|-----------------------|----------------|---------------------|----------------------|------------------|--------------------|--------------------|--------------------|--------|-----------------|---------------|-------------------|---|--------|-------| | Course Learning Rationale (CLR): The purpose of learning this course is to: | | | L | Learnin g Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | | | | | | CLR-1: | Learn and evaluate the | symmetry | / | 1 | 2 | 3 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 1 | 12 | 1 | 1 4 | 15 | | CLR-2: Understand role of symmetry in physics CLR-3: Able to evaluate the groups of a system CLR-4: Able to understand the group theory in quantum mechanics CLR-5: Apply group theory in solid state physics | | | | (Bloom) | Proficiency (%) | Attainment (%) | | nowledge | Concepts | Related Disciplines | | Specialization | Knowledge | ng | ret Data | Skills | Skills | . Skills | | | | | | Course<br>(CLO): | Learning Outcomes | At to: | the end of this course, learners will be abl | evel of Thinking (Bloom) | Expected Profic | Expected Attair | | Fundamental Knowledge | Application of | Link with Relate | Procedural Knowledge | Skills in Specia | Ability to Utilize | Skills in Modeling | Analyze, Interpret | tive | Problem Solving | Communication | Analytical Skills | | PSO -2 | PSO-3 | | CLO-<br>1: | To able to define symm | netry in ma | thematical formalism | 2 | | 6 | | Η | | 1 | - | Ę | | 4 | - | - | Н | - | Η | - | - | - | | CLO-<br>2: | Able to represent the sy | ymmetry a | nd symmetric operations | 2 | 80 | 7 0 | | Η | - | 1 | - | - | | - | - | - | Н | | Н | - | - | - | | CLO-<br>3: | Acquire the knowledge | of space | groups in real space | 2 | 70 | 6 5 | F | Η | - | | - | - | | - | - | - | Н | - | Н | - | - | - | | CLO-<br>4: | Acquire the knowledge | of space | groups in reciprocal space | 2 | 70 | 7 0 | ď | Η | - | | - | - | - | - | | - | Н | - | Н | - | - | - | | CLO-<br>5: | Application of character | er table in s | imple molecule | 2 | 80 | 7 0 | | Η | 1 | - | - | - | - | - | - | - | Н | - | Н | - | - | - | | Duration<br>(hour) | | 12 | 12 | 12 | 12 | 12 | | | |--------------------|-----------|-----------------------------------------|--------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|-----------------------------------------|--|--| | Ì | SLÓ-<br>1 | Definition of a Group | Reducible and Irreducible representation | Symmetry Relations and<br>Point Group Classifications | Reciprocal Space | Character Table | | | | S-1 | SLO-<br>2 | Definition of a Group | Reducible and Irreducible representation | Symmetry Relations and<br>Point Group (PG)<br>Classifications | Reciprocal Space | Character Table | | | | S-2 | SLO-<br>1 | Example of a Group Basic Definitions | Schur's Lemma and Great<br>Orthogonality Theorem | Symmetry Relations and<br>Point Group Classifications | Translational Group and Bloch's Theorem | Character Table | | | | | 2 | Example of a Group<br>Basic Definitions | Schur's Lemma and Great<br>Orthogonality Theorem | Symmetry Relations and<br>Point Group Classifications | Translational Group and Bloch's Theorem | Character Table | | | | 6.3 | SLO-<br>1 | Rearrangement Theorem | Character Table | Mathematical Background for Space Groups | PG in r and k space | Space group analysis of CH <sub>4</sub> | | | | 3-3 | SLO-<br>2 | Rearrangement Theorem | Character Table | Mathematical Background for Space Groups | PG in r and k space | Space group analysis of CH <sub>4</sub> | | | | S-4 | 1 | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | | | | | SLO-<br>2 | | | | | | | | | S-5 | SLO-<br>1 | Cosets , Conjugation and Class | Character Table | Mathematical Background for Space Groups | SG-representation | Space group analysis of CH <sub>4</sub> | | | | | SLO-<br>2 | Cosets , Conjugation and Class | Character Table | Mathematical Background for Space Groups (SG) | SG-representation | Space group analysis of CH <sub>4</sub> | | | | | SLO-<br>1 | Symmetry Planes | Character Table | Symmetry operations | SG-representation | Space group analysis of CH <sub>4</sub> | | | | <b>3-</b> 0 | SLO-<br>2 | Symmetry Planes | Character Table | Symmetry operations | SG-representation | Space group analysis of CH <sub>4</sub> | | | | | SLO-<br>1 | Inversion centre | Definition of Character | Symmorphic and Nonsymmorphic | Common Cubic-Lattices | Space group analysis of NH <sub>3</sub> | | | | S-7 | SLO-<br>2 | Inversion centre | Definition of Character | Symmorphic and<br>Nonsymmorphic | Γ-point | Space group analysis of NH <sub>3</sub> | | | | S-8 | SLO- | Problems/Demos/ | Problems/Demos/ | Problems/Demos/ | Problems/Demos/ | Problems/Demos/ | | | | | 1<br>SLO- | Simulations/Seminars | Simulations/Seminars | Simulations/Seminars | Simulations/Seminars | Simulations/Seminars | |----------|------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------------| | S-9 | SLO- | Proper and Improper axis & rotations | Characters and Class,<br>Matrices | Bravis Lattice and SG | points with $k \neq 0$ | Space group analysis of NH <sub>3</sub> | | J-9 | SLO-<br>2 | Proper and Improper axis & rotations | Characters and Class,<br>Matrices | Bravis Lattice and SG | points with $k \neq 0$ | Space group analysis of NH <sub>3</sub> | | S- | SLO-<br>1 | Products of Symmetry operations | Schoenflies Symmetry<br>Notation | Examples of Symmorphic SG | Nonsymmorphic Space<br>Group | Space group analysis of NH <sub>3</sub> | | 10 | SLO-<br>2 | Products of Symmetry operations | Schoenflies Symmetry<br>Notation | Cubic SG and the<br>Equivalence<br>Transformation | Factor Group and $\Gamma$ -point | Space group analysis of NH <sub>3</sub> | | S- | SLO-<br>1 | Optical Isomerism | The Hermann–Mauguin Symmetry Notation | 2D Space Group | Factor Group and Γ-point | Space group analysis of NH <sub>3</sub> | | 11 | SLO-<br>2 | Optical Isomerism | The Hermann–Mauguin<br>Symmetry Notation | Oblique, Square,<br>Rectangular and<br>Hexagonal SG | Factor Group and Γ-point | Space group analysis of NH <sub>3</sub> | | S-<br>12 | SLO-<br>1<br>SLO-<br>2 | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | | | 1. | M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group Theory: | 3. | A. W. Joshi, Elements Of Group Theory Fe | |-----------|----|-------------------------------------------------------------|-------|------------------------------------------------| | Loorning | | Application to the Physics of Condensed Matter, Springer, | | Physicists, New Age International, 2018 | | Learning | | 2008 | 4. | Rakshit Ameta, Suresh C. Ameta, Chemic | | Resources | 2. | F.A. Cotton, Chemical Applications of Group Theory, 3rd ed, | | Applications of Symmetry and Group Theory, AAI | | | | Wiley, 2008 | | 2016 | | | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | - 5.3 | | | Learning | Assessment | | | | | | | | | | | | |----------|------------------------|---------------|------------------------------------------------|---------------|----------|---------------|----------|---------|----------|-------------------|--------------|--| | | Bloom's | | Continuous Learning Assessment (50% weightage) | | | | | | | | ination (50% | | | | Level of | CLA – 1 (10%) | | CLA – 2 (15%) | | CLA – 3 (15%) | | CLA – 4 | 4 (10%)# | weightage) | | | | | Thinking | Theory | Practice | | | Level 1 | Remember<br>Understand | 30 % | 73 | 30 % | 11/5 | 30 % | 2. | 30 % | 1-5 | 30% | - | | | Level 2 | Apply<br>Analyze | 40 % | 12 | 40 % | | 40 % | 100 | 40 % | - | 40 <mark>%</mark> | - | | | Level 3 | Evaluate<br>Create | 30 % | - | 30 % | 1977 | 30 % | - | 30 % | 7. | 3 <mark>0%</mark> | 7 - | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | DADNI ID. | | |-----------------------|-------------------------------------------------------------------|-----------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | Dr. Amrita Bhattacharjee, IIT Bombay, Mumbai, b_amrita@iitb.ac.in | Dr Rudra Banerjee | | | Prof. Subhradip Ghosh, IIT Guwahati, subhra@iitg.ac.in | Dr. Triparno Banerjee | \_\_\_\_\_\_ | | | Course | | Course | | Internship/Apprenticeship / Project/ | L | Т | Р | 0 | С | |--------|-----------|--------|----------------|----------|---|--------------------------------------|---|---|---|---|---| | Course | UCY23P03L | Name | Internship-III | Category | Р | Community Outreach | 0 | 0 | 0 | 0 | 2 | | Pre-requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive Courses | Nil | |---------------------------------|-----|------------|-------------------------|-----|--------------------------------|---------------------|-----| | 10Course Offering<br>Department | | Department | of English | | Data Book /<br>Codes/Standards | Nil | | | | Learning<br>e (CLR): | The purpose of learning this course is to: | Le | arni | ng | | | | Pr | ogra | m Le | arniı | ng O | utco | mes | (PL | 0) | | | | |-------------------|-----------------------|----------------------------------------------------------------------------------------------------|--------------------------|---------------------------|-------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|-----------------|---------------|-------------------|------------|--------------|--------------------| | CLR-1: | | ical experience within the business | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | Acquire kn | owledge of the industry in which the is done. | | | | | | | | | | | | | | | | | | | | CLR-3: | | wledge and skills learned in the in a work setting | | | | | | | | | | | | | | | | | | | | CLR-4: | | greater understanding about career<br>ille more clearly defining personal career | (moolg | (%) kc | nt (%) | edge | spots | Link with Related Disciplines | ge | ion | Ability to Utilize Knowledge | | )ata | | Skills | Skills | | | ior | | | CLR-5: | Experience profession | e the activities and functions of business als. | ıking (E | oficienc | ainmer | Know | f Conc | ated D | nowle | cializat | ze Kn | eling | rpret [ | Skills | ving Sk | | SIIIS | | Behavior | arning | | | | | lhi | P | Att | nta | o uc | Rel | a | bec | 3 | рoи | Inte | tive | Sol | icat | š | | nal | Fe | | | Learning<br>es (CLO): | At the end of this course, learners will be able to: | evel of Thinking (Bloom) | SExpected Proficiency (%) | Expected Attainment (%) | Fundamental Knowledge | Application of Concepts | ink with | Procedural Knowledge | Skills in Specialization | Ability to | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | Communication | Analytical Skills | ICT Skills | Professional | Life Long Learning | | CLO-1 : | Identify are | eas for future knowledge and skill<br>ent | 3 | 80 | 70 | H | Ĥ | - | - | - | Ĺ | - | <i>(</i> | ī | - | М | - | - | - | - | | CLO-2 : | | ding of what is expected in the job market heir standard of performance should be | 3 | 85 | 75 | | Н | | - | - | - | Ī | ī | М | - | L | - | - | - | - | | CLO-3 : | | essional, as well as academic, contacts<br>the process of networking and support for<br>e careers. | 3 | 75 | 70 | | Н | | | | | | -7 | | | М | - | - | Н | - | | CLO-4: | Acquire kn | owledge of the industry in which the is done. | 3 | 85 | 80 | Н | Н | | e P | - ' | | - | - | L | - | - | - | - | - | М | | <b>CLO-5</b> : | practical e | xperience within the business environment | 3 | 85 | 75 | - | | 12 | ١. | - | Н | - | - | - | - | М | - | - | - | Н | | | | MED 727 100 | | | 4 | 100 | | | | | | | | | | | | | | | | PROCES<br>Stage I | SS | The street of | | | | | | - | 20 | - 4 | | | | 7 | | | | | | | | Stage I | Identifying area of interest | |----------------------------------|----------------------------------------| | Stage I | Review I | | Stage III | Review II | | Stage IV | Project report preparation | | Stage III<br>Stage IV<br>Stage V | Final Submission of the Project Report | | | | | | Continuous Learning Assess | ment (50% weightage) | Final Evaluation (5 | 0% weightage) | |------------------------------|----------------------------|----------------------|---------------------|---------------| | | Review – 1 | Review – 2 | Project Report | Viva-Voce | | Project Work /<br>Internship | 20% | 30 % | 30 % | 20 % | | | L | TOTALL . I | LAD | 7 | | Course Designers | | | |-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer,<br>Novugen Pharma, Malaysia | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@iitm.ac.in | 1. Dr. T, Pushpa Malini<br>SRMIST | | Email: <u>ravianalytical@.gmail.com</u> | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | 2. Prof. M. Arthanareeswar<br>SRMIST | | Course | UCY23P05L | Course | Project Phase-I | Course | P | Internship/ Project/ | L | Τ | P | 0 | С | |--------|-----------|--------|-----------------|----------|---|----------------------|---|-----|---|---|---| | Code | | Name | - | Category | | Community | 0 | 0 | 9 | 2 | 4 | | | | | | | | Outreach | | l ! | | | | | Pre-<br>requisite<br>Courses | Nil | | Co-<br>requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-----------------------------|-----|--------------------------------|------------------------|-----| | Course Offe | • | Chemistry | | | Data Book /<br>Codes/Standards | Nil | | | Course<br>Rationa<br>(CLR): | Learning<br>le | The purpose of learning this course is to: | Learning | | | | Pr | ogra | m Le | earni | ng C | Outco | omes | s (PL | .O) | | | | |-----------------------------|------------------------------------------------|---------------------------------------------------------|---------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------------------|---------------|--------------|--------|--------|-------| | | Produce compet with a strong scient | ent, creative and imaginative graduates entific acumen | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | Apply of the acquito the field of Ch | uired knowledge, skills, and tools pertinent<br>emistry | | | | | • | | | | | | | | | | | | | CI R-3 | Promote indeper domain of chemi | dent and collaborative research work in the<br>stry | 9 | 0 | , | ines | | | age | | | L | | | | | | | | | Inculcate the eth scientific society | Sloom) | wledge | cepts | Discipl | adge | Iţion | nowlec | | Data | | kills | Skills | | | | | | | | Identify the challe<br>Chemistry | enges and solutions pertinent to the field of | nking (E | al Kno | of Cor | elated [ | Knowle | ecializa | ilize K | deling | terpret | e Skills | S guivio | ation St | Skills | | | | | | Learning<br>mes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical S | PSO -1 | PSO -2 | PSO-3 | | CLO-1 | demonstrate the | key areas of research | 4 | Н | - | - | - | Н | - | - 1 | - | L | - | - | - | - | - | - | | CLO-2 | develop laborato | ry and experiment related skills | 4 | - | Н | | | Н | Н | - | - | - | - | - | - | - | - | - | | | posses' compete<br>scientific docume | nce on data collection and process of entation | 4 | W. | М | | - | М | | - | 1 | - | - | М | - | - | - | - | | CLO-4 | gain the knowled | ge of research ethics | 4 | - | - | - | | М | М | - | Н | 4 | - | - | - | - | - | - | | CLO-5 | CLO-5 solve problems in their area of research | | | | 2 | H | - | - | - | Н | - | | - | - | М | - | - | - | | <mark>earnin</mark> g Assessm | ent | | | | | | | | | | |-------------------------------|------------------------------|------------|----------------------------------|-----------|--|--|--|--|--|--| | | Continuous Learn<br>(50% wei | | Final Evaluation (50% weightage) | | | | | | | | | <mark>Project</mark> Phase-I | Review – 1 | Review – 2 | Project Report | Viva-Voce | | | | | | | | | 20% | 30 % | 30 % | 20 % | | | | | | | # Semester - VIII | Course<br>Code | UC | Y23801 | Course<br>Name | Organon | netallic & Bioin | orga | nic C | hemi | istry | | ours<br>atego | - | С | D | iscip | line : | Specif | ific Core L T P O 3 1 0 2 | | | | | | |---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|-----------------------------|-------------------------------------------------------|-----------------|---------------------------|-----------------------|----------------|-------------------------------|----------------------|--------------------------|-----------------------------------------------|--------------------|-------------------------|----------------------|------------------------|-------------------------------|------------------------------|--------|----------------|-------|--| | Pre-<br>requisi<br>Course | es | | Nil | requ<br>Coul | isite | | Nil | | | | rogres<br>Cours | | 9 | | | | ı | Nil | | | | | | | Course<br>Departn | | ing | Chemistr | у | | ata Bo<br>odes/ | ook /<br>Stand | lards | | P | eriodi | с Та | ble: | | | | Nil | | | | | | | | Course<br>Rationa | | | The purp | oose of lear | ning this course | is to | : | | | | Lear | ning | | | Prog | ram | Learn | ing Ou | utcon | nes ( | PLO) | | | | CLR-1: | OI | rganome | wledge of the<br>etallic chemis | stry | | | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | CLR-2: | cl | | concepts rela<br>using stabili | | nometallic<br>n 18-electron | | | | | | | 4. | 4 | 2 | | | Ċ | | | | | | | | CLR-3: | | | ledge on org | | compounds as | | | | | | | | | | j | 7 | | | | | | | | | CLR-4: | E<br>de<br>in | <mark>m</mark> ploy v<br>esign of<br>dustries | arious organ<br>fine chemica | ic reactions<br>al and drug | towards the molecules for | | | əf | S | olines | ٠, | | edge | ١ | | 4 | | | | | | | | | CLR-5: | pi | | in various<br>ntify appropriate | ( ) ( ) ( ) ( ) ( ) ( ) | noola) bur | Knowledg | f Concepts | ated Discip | nowledge | ialization | ze Knowle | eling | rpret Data | Skills | ing Skills | on Skills | SIII | | | | | | | | Course<br>Learnin<br>Outcon<br>(CLO): | ng | to: | | | | Jaid Te love | Level of Thirking (Bloom) | Fundamental Knowledge | Application of | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication Skills | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | | CLO-1: | | Employ 18-electron rule to rationalize the stability of organometallic compounds | | | | , | 4 | Н | | - | Н | | | М | - | - | | - | - | - | - | - | | | CLO-2: | A | pply cor | | | chemistry in fin | e | 4 | Н | 4 | - | Ť | Н | - | - | - | М | - | - | - | | - | - | | | CLO-3: | D<br>th | evelop a<br>e mech | a general ide<br>anism in deta | ail | is and describe | 4 | 4 | 7-1 | Н | - | | - | - | М | - | - / | | - | - | Н | - | - | | | CLO-4: | oi<br>pi | rganome<br>r <mark>obl</mark> ems | | unds into o | rganic synthesis | | 4 | L | | - | Н | - | - | 2 | | 7 | - | 7 | - | - | М | - | | | CLO-5: | aı | nd defic | | e metals an | ences of excess<br>d learn about th | | 4 | E | Ā | Н | - | - | 7 7 | L | 1 | 7 | 7 | | - | - | Н | - | | | Duration | (hou | r) 12 | | | 12 | | | 12 | 2 | | | | 12 | | 7 | 7 | | 12 | | | | | | | S-1 | SLO-<br>SLO- | In | troduction to<br>ganometallic | chemistry | Introduction of<br>Organometallic<br>containing π sys | tems | , | re | | ns an | d thei | | Introdu<br>Chemi<br>systen | istry: I | Porph | yrin | | Introd<br>Porpl<br>their | hyrin | syster | lon-<br>ns and | i | | | | SLO-1 Type of ligands and coordination-hapticity SLO-2 SLO-2 Synthesis and p Organometallic Synthesis, struct | | | | | compound Homog | | | | geneous<br>iis | | | Essen<br>metals<br>Toxicit<br>and Conspecific | ty of n | netals | - Co | l, Hg | Non-heme proteins- | | | | | | | S-3 | SLO-1 SLO-2 Eighteen electron rule- Electron counting and limitations Reactivity of transcription metal complex alkenes | | | | | | ch<br>M | etath | al ind | lustry<br>and | | lon (Ni<br>ion cha | annel | | | | Their | coord | dinatio | on | | | | | | SLO-1 Transition metal carbonyl Reactivity of trai | | | | | | /drog<br>vdrof | | | and | Porph | yrins, | | | | Elect | ronic | struct | ure an | d | | | | | S-4 | SLO-2 complexes-synthesis and reactivity metal complexes alkynes | | | IHV/droto | | | | | -:- | photos<br>Photos | | | nd II | | oxyge | en bin | dings | ucture and<br>ngs, | | | | | | | S-5 | SLO-1 Nitrosyl containing complexes. Ligand substitution reactions | | | clobut | tadien | ca | eterogatalys | is: Fi | scher- | | Chloro<br>coordi | | | | | Active | e site<br>ions d | struc<br>f ferre | r prote<br>ture ar<br>edoxin | nd | | | | | S-6 | SLO-1 substitution reactions complexes | | | | | | | | | | | | | | | | Rubli | euUXII | ı | | | | | | Duratio | n (hour) | 12 | 12 | 12 | 12 | 12 | |---------|----------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------| | | SLO-2 | and Ligand insertion<br>reactions Structure of<br>mononuclear and<br>polynuclear metal<br>carbonyl | Metallocenes complexes and<br>Benzenoid complexes | Ziegler-natta<br>polymerization and<br>Polymer-bound<br>catalysts | Hemoglobin and their coordination geometry. Electronic structure and co-operativity effect | Nitrogen fixation.<br>Metalloenzymes containing<br>molybdenum and iron | | | SLO-1 | Practice: Structure of | Practice: Reactivity of metal | Practice: | Practice: structure of | Practice: structure of Fe-S | | S-7 | SLO-2 | metal carbonyl | alkene complexes | Heterogeneous Catalytic reactions | Chlorophylls | proteins | | S-8 | SLO-1 | Practice: Structure of | Practice: Reactivity of metal | Practice: | Practice: structure of | Practice: structure of Fe-S | | 0-0 | SLO-2 | metal Nitrosyl | arene complexes | Mechanisms | Hemoglobin | proteins | | | SLO-1 | Metal dinitrogen and | Migratory insertion reaction | Olefinic oxidation and | Oxygen binding, transport | Cobalt: cobalamine based | | S-9 | SLO-2 | dioxygen complexes | with alkenes, alkynes | Addition of hx to olefins | and utilization of hemoglobin | enzymes and nickel: urease | | | SLO-1 | Metal hydride complexes. | Substitution reactions- | Carbonyl insertion, | Cytochromes-types- | Hydrogenases and | | S-10 | SLO-2 | Transition metal organometallics: | electrophilic and nucleophilic attack on coordinated ligands | , | structure and electron transfer reactions | dehydrogenases Copper: electron transport | | | SLO-1 | Square planar complexes. | Oxidative addition and | Vollhardt reaction | Cytochrome p-450, | Zinc: carboxypeptidase A | | S-11 | SLO-2 | Vaska's complex-<br>synthesis and reactivity | Reductive elimination | and oligomerization reaction | monooxygenase, Catalase and peroxidase | and Carbonic anhydrase | | | SLO-1 | Practice: Structure of | Practice: Migratory insertion | Practice: various | Practice: structure of | Practice: structure of zinc | | S-12 | SLO-2 | metal dinitrogen Structure of Vaska's complex | reaction Oxidative addition and Reductive elimination | types of reactions | Cytochromes | enzymes, structure of Cobalt enzymes | | / : / | 1. | J. E. Huheey, E. A. Keiter, R. L. Keiter, R.L. Inorganic Chemistry, Principles of Structure and Reactivity 4th Ed., Harper Collins 1993, Pearson 2006. | |-----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------| | | 2. | F. A. Cotton, G. Wilkinson, P. L. Gaus, Basic Inorganic Chemistry 3rd Ed. Wiley India 1998 | | | 3. | N. N. Greenwood, A. Earnshaw, Chemistry of the Elements 2nd Ed, Elsevier, (Ziegler Natta Catalyst and Equilibria in Grignard Solution), 1997. | | Learning | 4. | G. O. Spessard, G. L. Miessler, Organometallic Chemistry, Prentice Hall, 1997. | | Resources | 5. | B. E. Douglas, D. H. McDaniel, J. J. Alexander, Concepts and Models in Inorganic Chemistry 3 <sup>rd</sup> Ed., John Wiley and Sons, NY, 1994. | | | 6. | K. F. Purcell, J. C. Kotz, Inorganic Chemistry, W.B. Saunders Co. 1977 | | | 7. | P. Powell, Principles of Organometallic Chemistry, Chapman and Hall, 1988. | | | 8. | I. Bertini, H. B. Gray, S. J. Lippard, J. S. Valentine, Bioinorganic chemistry, University Science Books, 1994. | | | 9. | J. A. Cowan, Inorganic Biochemistry: An Introduction, VCH Publishing, 1993. | | | 10. | W. Kaim, B. Schwederski, B. Bioinorganic chemistry: Inorganic Elements in the Chemistry of Life, Wiley, 2006. | | Learning | Assessment | | | | | . 17 | | | | | | |----------|------------------------------|--------|--------------|---------------|------------|----------|-------------|---------|----------|------------------|---------------------| | | | | Cont | inuous Le | earning As | sessment | t (50% weig | ghtage) | 1 | First Francis of | (F00/ | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examinati | ion (50% weightage) | | | Level of Thinking | Theory | Practice | | Laural 1 | Remember | 200/ | | 200/ | | 200/ | | 200/ | | 200/ | | | Level 1 | Understand | 30% | | 30% | V = 1 | 20% | l n | 20% | | 30% | - | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | ADT | 50% | | | Level 2 | Analyze | 40% | <del>-</del> | 30% | - | 30% | - | 30% | 1.1- | 50% | - | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | Level 3 | Create | 30% | - | 20% | - | 30% | - | 30% | | 20% | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 00 % | 10 | 00 % | 1 | 100 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | | | | | | | | | |---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|--|--|--|--|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: <u>gsekar@iitm.ac.in</u> | Dr. Mihir. Ghosh, SRMIST | | | | | | | | | | Novugen Pharma, Malaysia<br>Email: <u>ravianalytical@gmail.com</u> | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | Prof. M. Arthanareeswari, SRMIST | | | | | | | | | | Course | Course | | Course | _ | Discipline Specific Elective | L | T | P | 0 | С | |----------------|--------|----------------------|----------|---|------------------------------|---|---|---|---|---| | Code UCY23D07T | Name | Organic Spectroscopy | Category | D | Courses | 4 | 0 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | Pro<br>C | rogressive<br>Courses | Nil | |------------------------------|------|-----------|-------------------------|----------------------------|----------|-----------------------|-----| | Course Offe<br>Department | ring | Chemistry | | Data Book /<br>Codes/Stand | dards | | Nil | | Course (CLR): | Learning Rationale | The purpose of learning this course is to: | Learning | Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | |----------------------------|-----------------------------------------|-------------------------------------------------------------------------------|---------------------------|---------------------------------|----------------|-------------------------------|----------------------|----------------|--------------------|--------------------|-------------------------|---------------|------------|---------------|---------------|--------|--------|----| | CLR-1: | Gain information re | garding NMR spectroscopy and analysis | J | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | Enable the stude spectroscopy | nts to acquire knowledge on infrared | | | | Set | | | ge | | | | | | | | | | | CLR-3: | Gain knowledge on | the basic principle of UV spectroscopy | Ê | ge | ts | 를 | | | Knowledg | | ~ | | | | | | 1 | | | CLR-4: | Acquire knowledge | in the fundamentals of mass spectroscopy | 90 | led | eb | 30 | ge | ou | 8 | | ati | | Skills | S | | | | | | CLR-5: | | ance of ESR, XPS and CD to characterize | king (BI | II Know | of Concepts | lated D | Showled | Specialization | | leling | erpret [ | Skills | Solving Sk | ion Skills | Skills | | | | | Course<br>Outcon<br>(CLO): | | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of | Link with Related Disciplines | Procedural Knowledge | Skills in Sp | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative | Problem So | Communication | Analytical \$ | PSO -1 | PSO -2 | | | CLO-1: | Apply the concepts organic compounds | of NMR spectroscopy to apply on unknown s. | 4 | Н | - | - | | - | ان | М | | - | - | 1 | Н | - | _ | _ | | CLO-2 : | | d practical skill in the quantitative analysis of<br>ounds by IR spectroscopy | 4 | Н | Н | - | - | Н | -4 | | >- | - | Ţ | | - | - | - | - | | CLO-3: | Understand the bas | ic concepts of Ultraviolet spectroscopy | 4 | Н | - | - | - | М | - | - 7 | Н | - | - | - | - | - | - | - | | CLO-4: | Acquaint the fundar analyze organic cor | mental concepts of mass spectroscopy to mpounds | 4 | Н | | - | Н | - | - | | | L | - | | | 1 | - | - | | CLO-5 : | | ry knowledge of ESR/CD to get in depth e prepared compounds. | 4 | ī | Н | - | G | | - | Н | + | М | - | - | - | - | - | - | | Duration | on (hour) | 12 | 12 | 12 | 12 | 12 | |----------|-----------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|-----------------------------------| | S-1 | SLO-1 | Introduction to NMR | Introduce DEPT | Ultraviolet spectroscopy | Mass spectrometry: Basic principles | ESR spectroscopy | | | SLO-2 | Origin of NMR spectrum | Use in characterizing molecules | Basic principles | Mass spectrometer | Basic principles and applications | | S-2 | SLO-1 | NMR active nuclei and sensitivity | Introduce IR | Absorption laws:<br>The Lambert-Beer's<br>Law | The molecular ions and Metastable ions | Free radicals | | | SLO-2 | Basic principle of<br>NMR spectroscopy,<br>spin states and<br>population of nuclei | Use of IR spectra | Oxochromes | Reactions of ions in gas phase | Organic compounds | | S-3 | SLO-1 | Effect of external magnetic field on the population and correlation with field strength | Absorption of light<br>and spectral<br>properties | Chromophores, standard works of reference | Effect of isotope | X-ray photoelectron spectroscopy | | | SLO-2 | Introduce polyatomic<br>molecules and<br>relaxation of nuclei | IR active/inactive bonds, selection rules | Selection rules | Isotope abundances | elemental<br>composition | | S-4 | SLO-1 | continuous-wave<br>method | Modes of stretching and bending | Electronic transitions in organic compounds | Nitrogen rule, Determination of molecular formula | empirical formula | | | SLO-2 | Fixed B <sub>0</sub> | Modes of stretching<br>and bending | Mixtures of absorbing species | Fragmentations | chemical state of elements | | S-5 | SLO-1 | <sup>1</sup> H NMR: Chemical<br>shifts, dependency<br>on external field | Stretching/bending<br>frequency of: alkanes,<br>alkenes, alkynes | calibration curve for calculation of unknown | McLafferty rearrangements | electronic state of the elements | | | SLO-2 | | aromatic rings | Extinction coefficient | Fragmentation of organic compounds | Examples | | S-6 | SLO-1 | Shielding,<br>deshielding | alcohols and ethers (cyclic and acyclic) | Applications: conjugated dines | Instrumentation: Various methods of ionization | Optical rotatory dispersion (ORD) | | | SLO-2 | Magnetic anisotropy | aldehyde and ketone | trienes | Field ionization | Circular dichroism<br>(CD) | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|----------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------| | S-7 | SLO-1 | Chemical shifts of<br>protons attached to<br>functional groups | Carboxylic acids | unsaturated carbonyl compounds | Field<br>desorption | Phenomena of ORD and CD | | | SLO-2 | Chemical shifts of<br>protons attached to<br>functional groups | ester and amine<br>(cyclic and acyclic) | aromatic compounds | Fast atom bombardment (FAB) | Classification of ORD,<br>and CD Curves | | S-8 | SLO-1 | Multiplicity of signals | anhydride | Woodward -Fieser rules | Matrix-assisted laser desorption/ ionization (MALDI) | Cotton effect curves | | | SLO-2 | Calculation of coupling constants | acid chloride acid<br>alkyl/aryl halides | calculation of absorption maxima (λmax) | Different detectors | Application to stereochemical problems | | S-9 | SLO-1 | NMR spectrum of compounds with symmetry | Amine, nitro | dienes and carbonyl compounds | Magnetic analyser | The Octant rule | | | SLO-2 | NMR spectrum of compounds with symmetry | cyano, isocyanate | Fieser and Kuhn rules | lon cyclotron<br>analyzer | application to alicyclic ketones | | S-10 | SLO-1 | Introduce COSY | Introduction to Raman<br>spectroscopy | Effects of auxochromes<br>and conjugation on the<br>absorption maxima | Quadrupoule mass filter | axial haloketone rule | | | SLO-2 | Basic principle and spectrum analysis | Selection rules | Different shifts of absorption peaks | Time of flight (TOF), | assignment of configuration of chiral molecules | | S-11 | SLO-1 | Introduce nOe | Compare IR and<br>Raman | Bathochromic,<br>hypsochromic,<br>hypochromic shifts | Rules of fragmentation of different functional | Structural elucidation of organic molecules using spectroscopic techniques | | | SLO-2 | Basic principle and spectrum analysis | Optical Transitions:<br>Absorption,<br>Scattering, and<br>Fluorescence | Absorption spectra of organic compounds | factors controlling<br>fragmentation | Structural elucidation of organic molecules using spectroscopic techniques | | S-12 | SLO-1 | Introduce <sup>13</sup> C NMR | Elastic<br>Scattering<br>(Raleigh | Applications in organic molecule analysis | HRMS | Structural elucidation of organic molecules using spectroscopic techniques | | | SLO-2 | Multiplicity of signals,<br>chemical shifts | Stokes and anti-Stokes shifts | Applications in organic molecule analysis | Applications | Structural elucidation of organic molecules using spectroscopic techniques | ## Theory: R. M. Silverstein, G. C. Bassler and T. C. Morril, Spectroscopic Identification of Organic Compounds,3rd Ed., John Wiley & Sons Inc., 1974. Learning Resources - 2. - W. Kemp, Organic Spectroscopy, Palgrave Macmillan, 1991. C. N. Banwell and E. M. McCash, Fundamentals of Molecular spectroscopy, 4th Ed., McGraw-Hill, 1972. - M-M. Cid, J. Bravo, Structure Elucidation in Organic Chemistry: The search for the right tools, Wiley-VCH, 2015. - N. E. Jacobsen, NMR Data Interpretation Explained: Understanding 1D and 2D NMR Spectra of Organic Compounds and Natural Products, Wiley, 2016. | Learning | Assessment | | | | | | | | | | | | |----------|------------------------------|---------------|----------|---------------|-----------|---------------|-------------|---------|----------|-----------------------------------|--------------------|--| | | <b>5</b> | | Conti | inuous Le | arning As | sessment | t (50% weig | jhtage) | | Final Evaminati | on (EOO) weightens | | | | Bloom's<br>Level of Thinking | CLA - 1 (10%) | | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | Level of Tilliking | Theory | Practice | | | Lovel 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | Level 1 | Understand | 30% | - | 30% | - | 20% | - | 20% | - | 30% | - | | | Level 2 | Apply | 40% | | 50% | | 50% | | E00/ | | E00/ | | | | Levei 2 | Analyze | 40% | - | 50% | - | 50% | - | 50% | - | 50% | - | | | Level 3 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | | Level 3 | Create | 30% | - | 20% | - | 30% | - | 30% | - | 2070 | - | | | Total | 100 % | 100 % | 100 % | 100 % | 100 % | |--------|--------|-------|--------|-------|--------| | i otai | 100 /0 | 100 % | 100 /0 | 100 % | 100 /0 | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |----------------------------------------------|--------------------------------------------|---------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director, | Prof. G. Sekar, Department of Chemistry, | · | | Analytical Sciences and Technology Transfer, | IIT Madras | 1. Dr. Susnata Pramanik, SRMIST | | Novugen Pharma, Malaysia | Email: gsekar@iitm.ac.in | | | Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of | 2 Prof. 14 Arthur and and | | Email. <u>ravianalytical@gmail.com</u> | Chemistry, IIISER, Thiruvananthapuram | 2. Prof. M. Arthanareeswari, | | | Email: sukhendu@iisertvm.ac.in | SRM IST | | Course | UCY23D08T | Course | Materials chemistry and their use in | Course | | | L | T | P | 0 | С | |--------|-----------|--------|--------------------------------------|----------|---|------------------------------|---|---|---|---|---| | Code | UCY23D081 | Name | everyday life | Category | D | Discipline Specific Elective | 4 | 0 | 0 | 2 | 4 | | Pre-<br>requisite <i>Nil</i><br>Courses | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |-----------------------------------------|-----------|-------------------------|-----|--------------------------------|------------------------|-----| | Course Offering<br>Department | Chemistry | | | Data Book /<br>Codes/Standards | | Nil | | Department | O G G G G G G G G G G G G G G G G G G G | auruo | | | | | | | | | | | | | | | | |---------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|-----------------------|-------------------------|-------------------------------|----------------------|----------------|--------------------|--------------------|-------------------------|----------------------|------------------------|---------------|--------------|--------|--------|-------| | Course Learning<br>Rationale<br>(CLR): | The purpose of learning this course is to: | Learning | | | | Pro | grai | m Le | arni | ng ( | Outc | ome | s (Pl | LO) | | | | | • • • | nce of materials chemistry | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 : Deepen the know on their synthesis | ledge on crystalline materials with a focus methods | In | Ь | | | | | | | | | | | | | | | | CLR-3 : Improve the under materials and the | rstanding of amorphous, electronic<br>ir applications | 3loom) | Ρ. | 4 | 1 | ١, | | | | + | | | | | | | 1 | | | about mechanical, magnetic and electrical erials along with their technological | evel of Thinking (Bloom) | ledge | cepts | isciplines | dge | ion | Knowledge | | )ata | | sills | lls | | | | | | CLR-5: Enlighten with bartechniques for ch | sic principles of various analytical<br>aracterization of materials | evel of T | tal Know | of Con | Related D | Knowled | Specialization | | odeling | terpret [ | ve Skills | olving Sk | ation Skills | Skills | | | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Sp | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical 8 | PSO -1 | PSO -2 | PSO-3 | | CLO-1: Understand differ characterization a | ent types of materials, their properties,<br>and applications | 4 | Н | 7 | | Ģ | М | | - | Ŧ | | - | - | Н | - | - | - | | CLO-2 : Well aware of var synthesis | ious chemical, physical methods of materials | 4 | L | Н | ċ | | Н | | - | - | - | 7 | - | - | - | - | - | | CLO-3: Gain knowledge a | about polymer materials and their use | 4 | Н | 12 | F | - | Н | - | Н | - | - | - | - | - | - | - | - | | CLO-4 : Familiar with the properties | mechanical, magnetic and electrical | 4 | Н | | d | М | Ť | - | - | Н | | - | - | - | - | - | - | | CLO-5 : Identify the suitable characterization of | le analytical techniques and perform the<br>of materials | 4 | × | Н | | - 2 | Н | - | Н | - 1 | - | - | - | - 1 | - | - | - | | Duration | on (hour) | 12 | 12 | 12 | 12 | 12 | |-----------|-----------|----------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------| | T | SLO-1 | Crystalline materials: introduction | Amorphous solids:<br>Introduction | Introduction to nanomaterials | Introduction to magnetic materials | Characterization of biomaterials (physical) | | S-1 SLO-2 | | Crystalline materials:<br>introduction | A comparison of crystalline and amorphous materials in terms of properties and applications | Examples of a variety of nanomaterials | Examples of magnetic materials | Characterization of biomaterials (chemical) | | | SLO-1 | Fundamentals of lattice | Oxides (examples) | Fabrication methods of nanomaterials | magnetic properties of materials: Applications | Spectroscopic methods: Introduction | | S-2 | SLO-2 | Unit cell | Oxides (applications) | Fabrication methods of nanomaterials | magnetic properties of<br>materials: biological<br>applications | Classification and their use | | S-3 | SLO-1 | Bravias lattices | Carbons (examples) | Classification of nanomaterials: 0D,1D nanomaterials | Classification of magnetic<br>materials:<br>Ferro magnetic | UV-Vis<br>Instrumentation (set<br>up) | | | SLO-2 | Atomic coordinates | Carbons<br>(applications) | Classification of<br>nanomaterials: 2D<br>nanomaterials | anti-ferro magnetic,<br>Ferri magnetic | basic working principles | | • | SLO-1 | Assignment-1 | Assignment-1 | Assignment-1 | Assignment-1 | Assignment-1 | | S-4 | SLO-2 | Assignment-2 | Assignment-2 | Assignment-2 | Assignment-2 | Assignment-2 | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |-------------|-----------|-----------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|---------------------------------------| | S-5 | SLO-1 | Point defects | Introduction to polymer | Examples of 0D nanomaterials | Piezoelectric property and its use | IR:<br>Instrumentation (set<br>up) | | | SLO-2 | Line defects | Examples | Applications of 0D nanomaterials | Dielectric property and its use | basic working<br>Principles | | S-6 | SLO-1 | Surface defects | Synthesis of polymer (chemical) | Examples of 1D nanomaterials | Pyroelectric property and its use | X-ray diffraction:<br>Instrumentation | | | SLO-2 | Bulk defects | Synthesis of polymer (radical) | Applications of 1D nanomaterials | Ferroelectric property and its use | basic working principles | | <b>S-</b> 7 | SLO-1 | synthetic approaches for<br>crystalline functional<br>materials: Chemical<br>methods (example 1) | Use of polymer in daily life | Examples of 2D nanomaterials | Introduction to biomaterials | SEM, Instrumentation | | | SLO-2 | synthetic approaches for<br>crystalline functional<br>materials: Chemical<br>methods (example 2) | Use of polymer in health/medical science | Applications of 2D nanomaterials | Classifications | basic working principles | | | SLO-1 | Assignment-1 | Assignment-1 | Assignment-1 | Assignment-1 | Assignment-1 | | S-8 | SLO-2 | Assignment-2 | Assignment-2 | Assignment-2 | Assignment-2 | Assignment-2 | | S-9 | SLO-1 | synthetic approaches for<br>crystalline functional<br>materials:<br>chemical methods<br>(example 3) | Band theory of solids:<br>Introduction | Porous materials<br>(Definition and<br>examples) | Examples of a variety of biomaterials (hydrogel) | TEM, Instrumentation | | 3-3 | SLO-2 | synthetic approaches for<br>crystalline functional<br>materials:<br>chemical methods<br>(example 4) | Importance and use | Porous materials (uses) | Examples of a variety of biomaterials (composite) | basic working principles | | 0.40 | SLO-1 | synthetic approaches for<br>crystalline functional<br>materials: Physical<br>methods (Example 1) | Insulators | Soft materials<br>(Definition and<br>examples) | Synthesis of different kinds of biomaterials (hydrogel) | XPS:<br>Instrumentation | | S-10 | SLO-2 | synthetic approaches for<br>crystalline functional<br>materials: Physical<br>methods (Example 2) | semiconductors | Soft materials (uses) | Synthesis of different kinds of biomaterials (composite) | basic working principles | | | SLO-1 | synthetic approaches for<br>crystalline functional<br>materials: Physical<br>methods (Example 3) | Concept of doping | luminescent materials<br>(Definition and<br>examples) | Use of biomaterials (hydrogel) | AFM:<br>Instrumentation | | S-11 | SLO-2 | synthetic approaches for<br>crystalline functional<br>materials: Physical<br>methods (Example 4) | different types of dopant materials | luminescent materials<br>(uses) | Use of biomaterials (composite) | basic working<br>principles | | • • • | SLO-1 | Assignment-1 | Assignment-1 | Assignment-1 | Assignment-1 | Assignment-1 | | S-12 | SLO-2 | Assignment-2 | Assignment-2 | Assignment-2 | Assignment-2 | Assignment-2 | | Theor | y: | |-------|----| |-------|----| Ineory: 1. A. R. West, Basic Solid State Chemistry, 2nd Ed., John Wiley &Sons Ltd., 1999 2. K. J. Klabunde, Nanoscale materials in Chemistry, Wiley Interscience, New York, 2001 3. C. Giacovazzo, Fundamentals of Crystallography, Oxford University Press, 2002. 4. W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction,9th Ed., Wiley, 2013. 5. D. J. Ward, Materials Science, Lerner Classroom, 2008 6. W. Wagner, S. Sakiyama-Elbert, G Zhang, M Yaszemski. Biomaterials Science: An Introduction to Materials in Medicine, 4th Ed., Academic Press, 2020. | Learning | Assessment | | | | | | | | | | | |----------|------------------------------|--------|----------|-----------|-----------|----------|-------------|---------|----------|-------------------|--------------------| | | | | Conti | inuous Le | arning As | sessment | t (50% weig | ghtage) | | Final Franciscati | (FOO/!:::bt) | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Finai Examinati | on (50% weightage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | Level I | Understand | 30% | | 30% | - | 20% | | 20% | | 30% | - | | Level 2 | Apply | 40% | | 50% | | 50% | | 50% | | 50% | | | Level 2 | Analyze | 40% | - | 30% | _ | 30% | | 30% | | 30 % | - | | Level 3 | Evaluate | 30% | - 7 | 20% | H | 30% | 3 | 30% | | 20% | | | Level 3 | Create | 30% | 40.5 | 20% | | 30% | 4.7 | 30% | | 20 % | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 00 % | 10 | 00 % | 1 | 00 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | | | | | | | |------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | | Dr. Ravikiran Allada, Director, Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: gsekar@jitm.ac.in | 1. <b>Dr. Avijit Baidya,</b><br>SRM IST | | | | | | | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: <a href="mailto:sukhendu@iisertvm.ac.in">sukhendu@iisertvm.ac.in</a> | 2. Prof. Dr. M. Arthanareeswari<br>SRM IST | | | | | | | \_\_\_\_\_\_ | Course | UCY23D09T | Course | | Course | _ | Discipline Specific Elective | L | T | P | 0 | C | |--------|-----------|--------|-------------------------------------|----------|---|------------------------------|---|---|---|---|---| | Code | UCY23D091 | Name | Medicinal Chemistry and Drug Design | Category | D | Courses | 4 | 0 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|-----------------|------------------------|-----| | Course Offer | ing | Chemistry | | | Data Book / | | Nil | | Department | | Chemistry | | | Codes/Standards | | NII | | Course Learning Rationale The purpose of learning this course is to: (CLR): | Looming | | | | Pro | grar | n Le | arni | ng C | utco | ome | s (PL | <b>-</b> 0) | | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------|-------------------------|-------------------------------|----------------------|--------------------------|--------------------|--------------------|-------------------------|----------------------|-----------------|---------------|--------------|--------|--------|-------| | CLR-1: Learn and understand the structure and function of biomolecules | Learning | 1 2 3 4 5 6 7 8 9 10 11 12 13 | | | | | | 14 | 15 | | | | | | | | | CLR-2: Know the important factors to be considered for a drug design CLR-3: Know about the general methods of drug synthesis CLR-4: Gain knowledge about the late stages of drug discovery and drug resistance | oom) | ledge | cepts | isciplines | dge | ion | Knowledge | | Jata | | Skills | SII | | | | | | CLR-5 : Know about the modern advancement in computer-based drug design | nking (Bl | tal Know | of Con | elated D | Knowle | ecializat | | deling | terpret [ | e Skills | olving Sk | ation Skills | Skills | | | | | Course Learning Outcomes (CLO): At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | Communication | Analytical & | PSO -1 | PSO -2 | PSO-3 | | CLO-1: Gain exposure to the field of medicinal chemistry | 4 | Н | Ŧ. | - | - | - | - | М | - | - | - | - | Ĥ | - | - | - | | CLO-2: Gain insight about the drug molecules, their action, how to design a drug molecule | 4 | Н | Н | - | • | 1 | 1 | - | - | - | - | - | Н | - | - | - | | CLO-3: Gain knowledge about the structural importance in activity and how to improve their water solubility | 4 | Н | Н | Н | | | | - | 7 | 4 | - | - | - | - | - | - | | CLO-4: Know how drug molecules passes through the membrane, their metabolism, production and formulation | 4 | Н | | | | - | 7 | Н | - ( | L | > | - | - | - | - | - | | CLO-5: Learn about the use of computational simulation for drug design | 4 | | Н | - | - | - 1 | - | Н | - | - | - | Н | - | - | - | - | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |--------|-----------|----------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------------------------------| | S-1 | SLO-1 | introduction and definition of medicinal chemistry | drug discovery:<br>history | Theories for Drug–<br>Receptor Interactions | pharmacological testing | Mac <mark>romolecu</mark> lar Drug<br>Carrier Systems | | | SLO-2 | general terminologies | general stages in drug discovery | Occupancy, rate, induced-fit Theory | toxicological testing (IC <sub>50</sub> ) | Continued | | S-2 | SLO-1 | structure and functions of proteins | Identification and<br>Validation of<br>Targets for Drug<br>Discovery | Potency | formulation development | Bioprecursor<br>Prodrugs | | | SLO-2 | continued | Alternatives to Target-<br>Based Drug<br>Discovery | Selectivity | Continued | Proton Activation | | | SLO-1 | structure and functions of nucleic acid | desirable properties of a drug | structure–activity relationship of drugs | Production | Hydrolytic Activation, Elimination Activation, | | S-3 | SLO-2 | continued | stereochemistry and drug design | Drug Synthesis: the design of combinatorial syntheses | quality control | Oxidative Activation | | S-4 | SLO-1 | enzyme structure<br>Binding pocket | importance of water<br>solubility, and<br>structure of the solute | Techniques of it | Continued | continued | | | SLO-2 | Catalytic active site | methods of improving<br>water solubility | solid support method | Continued | Reductive Activation | | S-5 | SLO-1 | Amino acid residues involve in catalysis | salt formation,<br>formulation,<br>effect of pH | encoding methods | encoding methods Drug Resistance | | | 3-3 | SLO-2 | Examples of biologically important reactions | Surfactants,<br>amphiphiles | combinatorial synthesis<br>in solution | Mechanisms of Drug<br>Resistance | Nucleotide Activation,<br>Phosphorylation<br>Activation | | S-6 | SLO-1 | inhibition in drug<br>discovery | methods and routes of administration | library generation and analysis | Altered Target Enzyme or Receptor | Sulfation Activation | | 3-0 | SLO-2 | reversible inhibitors | Drug metabolism | high-throughput screening | Increased Drug-<br>Destroying | Decarboxylation<br>Activation | | Duration | on (hour) | 12 | 12 | 12 | 12 | 12 | |------------|-----------|-----------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------| | | | | | | Mechanisms | | | <b>S-7</b> | SLO-1 | irreversible inhibitors | secondary<br>pharmacological<br>implications of<br>metabolism | Random Screening,<br>Targeted (or Focused)<br>Screening | Activation of New<br>Pathways<br>Circumventing the Drug<br>Effect | Computer-based drug<br>design | | | SLO-2 | continued | phase I metabolic reactions, and examples | introduction and bioassay | Reversal of Drug Action | Benefits over the traditional method | | SLO-1 | | transition-state inhibitors | phase II metabolic reactions, and examples | continued | Drug Synergism (Drug<br>Combination) | molecular modeling methods | | 5-8 | SLO-2 | case studies | drug action | Screening of<br>Compounds, sources<br>of leads and drugs | Mechanisms of Drug<br>Synergism | molecular mechanics | | | SLO-1 | Structure of DNA | pharmacodynamics and pharmacokinetics | lead discovery, Lead<br>Modification (Lead<br>Optimization) | Inhibition of a Drug-<br>Destroying Enzyme,<br>Sequential Blocking | molecular dynamics | | S-9 | SLO-2 | Binding sites (major and minor groves) | drug targets: action sites | Identification of the<br>Active Part, Functional<br>Group Modification | Inhibition of Targets in<br>Different Pathways, Use<br>of Multiple Drugs for the<br>Same Target | Docking: de novo<br>design | | / ; | SLO-1 | DNA Interactive agents and chemotherapy | receptors proteins | Structure Modifications,<br>Homologation, Chain<br>Branching | Enzyme Activation of<br>Drugs | comparing 3D structures and use | | S-10 | SLO-2 | DNA binding agents | continued | Conformational Constraints and Ring-Chain Transformations | Utility of Prodrugs | pharmacophores | | | SLO-1 | intercalation and alkylation | carrier proteins | Lipophilicity Effects,<br>Balancing Potency | Mechanisms of Drug<br>Inactivation | use of pharmacophore | | S-11 | SLO-2 | DNA strand breakers | Drug-Receptor<br>Interactions | quantitative structure–<br>activity relationship<br>(QSAR) | Carrier-Linked Prodrugs | modeling protein structures | | S-12 | SLO-1 | working principle | noncovalent interactions | Scaffold Hopping | Examples of Carrier-<br>Linked Bipartite<br>Prodrugs | th <mark>ree-dime</mark> nsional<br>QSAR | | 3-12 | SLO-2 | case studies | continued | Molecular Graphics-<br>Based Lead<br>Modification | Prodrugs for Stability | other uses of computers in drug discovery | | The | |------| | 1110 | Learning Resources C. Thomas, Medicinal Chemistry: An Introduction, 2nd Ed., John Wiley and Sons, Ltd 2007. R. B. Silverman and Mark W. Holladay, The Organic Chemistry of Drug Design and Drug Action, 3rd Ed., Elsevier 2014. T. Nogrady, D. F. Weaver, Medicinal Chemistry: A Molecular and Biochemical Approach, 3rd Ed., Oxford University Press, Inc 2005. | Learning | Assessment | | | | | | | | | | | | | | |----------|------------------------------|--------|----------|---------------|------------|---------------|-------------|---------|----------|-----------------------------------|--------------------|--|--|--| | | <b>.</b> | | Conti | inuous Le | arning Ass | sessment | t (50% weig | ghtage) | | Final Evaminati | an (EOO) wainhtana | | | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - | 4 (10%)# | Final Examination (50% weightage) | | | | | | | Level of Tilliking | Theory | Practice | | | | | Lovel 1 | Remember | 30% | | 30% | | 20% | | 20% | | 30% | | | | | | Level 1 | Understand | 30% | - | 30% | - | 20% | - | 20% | - | 30% | - | | | | | Level 2 | Apply | 40% | | E00/ | | 50% | _ | 50% | | 50% | | | | | | Level 2 | Analyze | 40% | - | 50% | - | 50% | - | 50% | - | 50% | - | | | | | Lovel 2 | Evaluate | 30% | | 20% | | 30% | | 30% | | 20% | | | | | | Level 3 | Create | 30% | - | 20% | - | 30% | - | 30% | - | 20% | - | | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 100 % | | | | | <sup>#</sup>CLA - 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |----------------------------------------------|--------------------------------------------|----------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | Prof. G. Sekar, Department of Chemistry, | | | Dr. Ravikiran Allada, Director, | IIT Madras | 1. Dr. Susnata Pramanik, SRMIST | | Analytical Sciences and Technology Transfer, | Email: gsekar@iitm.ac.in | | | Novugen Pharma, Malaysia | Prof. Sukhendu Mandal, Department of | 2 Draf Dr. M. Arthonorooni | | Email: ravianalytical@gmail.com | Chemistry, IIISER, Thiruvananthapuram | 2. Prof. Dr. M. Arthanareeswari, | | | Email: sukhendu@iisertvm.ac.in | SRMIST | | Course | UCY23D10T | Course | | Course | | Discipline Specific Elective | L | T | P | 0 | C | |--------|-----------|--------|-----------------|----------|---|------------------------------|---|---|---|---|---| | Code | UCY23D101 | Name | Green Chemistry | Category | C | Courses | 4 | 0 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|-----------------|------------------------|-----| | Course Offer | ing | Chemistry | | | Data Book / | | Nil | | Department | | Chemisuy | | | Codes/Standards | | MII | | Course Learning Rationale | The purpose of learning this course is to: | Learnin Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | | |----------------------------------------------|--------------------------------------------------------|-----------------------------------------|-----------------------|-------------------------|-------------------|----------------------|----------------|--------------------|--------------------|-------------------------|----------------------|-----------------|---------------|------------|--------|--------|-------| | (CLR): | 10 01 11 11 1 | g | _ | _ | _ | | - | _ | - | _ | _ | 40 | 4.4 | 40 | 40 | 4.4 | 4.5 | | | of Green Chemistry and its developments. | | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | nicrowave mediated organic synthesis | Toron . | | | | | | ge | | | | | | | | | | | CLR-3 : Acquire knowledge | ge on green solvents and green catalysts | Ē | ge | ş | | | | <u>6</u> | | m | | | | | | | | | CLR-4 : Employ nonconverse of molecules | entional reaction techniques for the synthesis | (Bloor | owled | oncep | 70 | vledge | Specialization | Knowledge | D | et Data | S | Skills | Skills | | | | | | CLR-5: Learn about futur | e advancement in Green chemistry | ng | 조 | O | ate ( | é | <u></u> | æ | 듩 | þ | S | ing. | | <u>~</u> | | | | | | | <u>¥</u> | ta | of | 8 | 호 | 9 | ₩ | ğ | ie i | æ | 승 | ä | Skills | | | | | Course Learning Outcomes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related | Procedural Knowledge | Skills in Sp | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | CLO-1: Gain knowledge | about the principles of green chemistry | 4 | Н | - | - | - | Н | - | М | - | - | - | - | - | - | - | - | | CLO-2 : Employ a green of reactions | chemistry approach to the existing synthetic | 4 | Н | Н | - | - | Н | - | - | | - | - | - | - | - | - | - | | CLO-3: Employ noncor conventional syn | oventional reaction methods to existing thetic methods | 4 | Н | L | ŀ | ŀ | Н | - | - | F | 7 | - | - | | - | - | - | | CLO-4: Utilize the knowled with solvent less | edge gained in the course for experimenting reactions | 4 | Н | É, | - | Н | 77 | 3 | - | -1 | - | - | - | Н | - | - | - | | CLO-5 : Identify reactions employed | wherein sustainable synthetic methods can be | 4 | М | Н | - | - | | - | Н | - | - | - | - | - | - | - | - | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |------------|-----------|-----------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------| | S-1 | SLO-1 | Introduction:<br>Green<br>Chemistry | Acetylation of primary amine, | lonic liquids:<br>Introduction | Supported metal catalysts:<br>Introduction | Photo reduction of benzophenone to benzopinacol using sunlight. | | 3-1 | SLO-2 | Introduction:<br>Green<br>Chemistry | Acetylation of primary amine, | lonic liquids:<br>Introduction | Supported metal catalysts:<br>Introduction | Photo reduction of benzophenone to benzopinacol using sunlight. | | | SLO-1 | Need for Green<br>Chemistry | base catalyzed aldol<br>condensation (synthesis of<br>dibenzalpropanone), | classification of ionic liquids- | Supported metal catalysts – mesoporous silica. | Photochemical<br>alternative to<br>Friedel-Crafts<br>reaction and use of<br>dimethyl carbonate<br>as<br>a methylating<br>agent. | | S-2 | SLO-2 | Need for Green<br>Chemistry | base catalyzed aldol<br>condensation (synthesis of<br>dibenzalpropanone), | Classification of ionic liquids- | Supported metal catalysts – mesoporous silica. | Photochemical<br>alternative to<br>Friedel-Crafts<br>reaction and use of<br>dimethyl carbonate<br>as<br>a methylating<br>agent. | | S-3 | SLO-1 | Anastas' twelve principles of green chemistry | halogen addition to C=C<br>bond (bromination of<br>trans-stilbene) | Synthesis of ionic liquids – Ionic liquids | Supported metal catalysts – mesoporous silica. | Reaction in water - furan | | <b>3-3</b> | SLO-2 | Anastas' twelve principles of green chemistry | halogen addition to C=C<br>bond (bromination of<br>trans-stilbene) | Synthesis of ionic<br>liquids – Ionic liquids | Phase transfer catalyst -<br>Synthesis | Reaction in water - furan | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |-------------|-----------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------| | S-4 | SLO-1 | Anastas' twelve principles of green chemistry | [4+2] cycloaddition<br>reaction (Diels Alder<br>reaction between furan<br>and maleic acid). | lonic liquids: simple<br>preparation – types –<br>properties and<br>application | Phase transfer catalyst -<br>Synthesis | Reaction in water - maleic acid. | | 0-4 | SLO-2 | Anastas' twelve principles of green chemistry | [4+2] cycloaddition<br>reaction (Diels Alder<br>reaction between furan<br>and maleic acid). | lonic liquids: simple<br>preparation – types –<br>properties and<br>application | Phase transfer catalyst -<br>Synthesis | Reaction in water - maleic acid. | | S-5 | SLO-1 | Atom economy-<br>Principle | Rearrangement reaction (benzyl-benzilic acid rearrangement), | Ionic liquids<br>in organic reactions<br>(Heck reaction) | Phase transfer catalyst - Synthesis | Extraction of D-<br>limonene from<br>orange peel. | | 3-0 | SLO-2 | Atom economy-<br>Principle | Rearrangement reaction (benzyl-benzilic acid rearrangement), | lonic liquids<br>in organic reactions<br>(Heck reaction) | Phase transfer catalyst -<br>Synthesis | Extraction of D-<br>limonene from<br>orange peel. | | | SLO-1 | Definition with example (ibuprofen synthesis | Rearrangement reaction (benzyl-benzilic acid rearrangement), | lonic liquids<br>in organic reactions<br>(Suzuki reactions) | Phase transfer catalyst - applications | Mechanochemistry principles in green chemistry | | S-6 | SLO-2 | Definition with example (ibuprofen synthesis | coenzyme catalyzed<br>benzoin<br>condensation (thiamine<br>hydrochloride catalyzed<br>synthesis of benzoin) | lonic liquids<br>in organic reactions<br>(Suzuki reactions) | Phase transfer catalyst - applications | Mechanochemistry principles in green chemistry | | S-7 | SLO-1 | Microwave<br>assisted<br>organic<br>synthesis<br>(MAOS) | coenzyme catalyzed<br>benzoin<br>condensation (thiamine<br>hydrochloride catalyzed<br>synthesis of benzoin) | lonic liquids<br>in organic reactions<br>(epoxidation) | Phase transfer catalyst - applications | Mechanochemistry principles in green chemistry | | 3-7 | SLO-2 | Microwave<br>assisted<br>organic<br>synthesis<br>(MAOS) | coenzyme catalyzed<br>benzoin<br>condensation (thiamine<br>hydrochloride catalyzed<br>synthesis of benzoin) | lonic liquids<br>in organic reactions<br>(epoxidation) | Phase transfer catalyst - applications | Photochemical principles in green chemistry | | | SLO-1 | Microwave<br>assisted organic<br>synthesis<br>(MAOS) | Electrophilic aromatic<br>substitution reactions<br>(nitration of phenol) | lonic liquids<br>in analytical chemistry<br>(gas chromatography<br>stationary phases) | Phase transfer catalyst - applications | Ph <mark>otochemi</mark> cal<br>principles in green<br>chemistry | | S-8 | SLO-2 | Examples of MAOS (synthesis of fused anthroquinones | Electrophilic aromatic<br>substitution reactions<br>(nitration of phenol) | lonic liquids<br>in analytical chemistry<br>(gas chromatography<br>stationary phases) | Phase transfer catalyst - applications | Photochemical principles in green chemistry | | | SLO-1 | Examples of MAOS (synthesis of fused anthroquinones | Electrophilic aromatic substitution reactions (bromination of acetanilide) | lonic liquids<br>in analytical chemistry<br>(matrices for MALDI-<br>TOF MS) | Magnetically recoverable catalysts. | Green chemistry in sustainable development. | | S-9 | SLO-2 | Examples of MAOS (synthesis of fused anthroquinones | Electrophilic aromatic<br>substitution reactions<br>(bromination of<br>acetanilide) | lonic liquids<br>in analytical chemistry<br>(matrices for MALDI-<br>TOF MS) | Magnetically recoverable catalysts. | Green chemistry in sustainable development. | | S-10 | SLO-1 | Advantages<br>and<br>disadvantages<br>of MAOS. | green oxidation reactions<br>(synthesis of adipic acid) | Advantages and<br>Disadvantages | Magnetically recoverable catalysts. | Green chemistry in sustainable development. | | <b>U</b> 10 | SLO-2 | Advantages<br>and<br>disadvantages<br>of MAOS. | green oxidation reactions (synthesis of adipic acid) | Advantages and Disadvantages | Magnetically recoverable catalysts. | Green chemistry in sustainable development. | | S-11 | SLO-1 | Organic reactions by sonication method | zeolite catalyzed Friedel-<br>Crafts acylation | Super critical CO2 – preparation, properties and applications | Magnetically recoverable catalysts. | Green chemistry in sustainable development. | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|---------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|-------------------------------------|---------------------------------------------------| | | SLO-2 | Organic<br>reactions by<br>sonication<br>method | zeolite catalyzed Friedel-<br>Crafts acylation | Super critical CO2 – preparation, properties and applications | Magnetically recoverable catalysts. | Green chemistry in<br>sustainable<br>development. | | S-12 | SLO-1 | Examples of<br>sonochemical<br>Reactions<br>(Wittig reaction) | zeolite catalyzed Friedel-<br>Crafts acylation | Super critical CO2 – preparation, properties and applications | Magnetically recoverable catalysts. | Green chemistry in sustainable development. | | 5-12 | SLO-2 | Examples of sonochemical Reactions (Wittig reaction) | zeolite catalyzed Friedel-<br>Crafts acylation | Super critical CO2 – preparation, properties and applications | Magnetically recoverable catalysts. | Green chemistry in sustainable development. | | | Theory: | | | |-----------|---------|----------------------------------------------------------------------------------------------------|--| | | 1. | V. K. Ahluwalia, M. R. Kidwai, New Trends in Green Chemistry, Anamalaya Publishers, 2005. | | | | 2. | V. K. Ahluwalia, Green Chemistry Narosa, New Delhi, 2011. | | | Learning | 3. | P. T. Anastas, J. K. Warner, Green Chemistry- Theory and Practical, Oxford University Press, 1998. | | | Resources | 4. | A. S. Matlack, Introduction to Green Chemistry, Marcel Dekker, 2001. | | | | 5. | M. C. Cann, M. E. Connely, Real-World cases in Green Chemistry, ACS 2000. | | | | 6. | M. A. Ryan, M. Tinnesand, M. Introduction to Green Chemistry, American Chemical Society, 2002. | | | | 7. | M. Lancaster, Green Chemistry: An Introductory Text RSC Publishing, Second Edition, 2010. | | | Learning | g Assessment | | - T. L. | 75.5 | 77.55 | | 41. | | | | | | |----------|------------------------------|--------|----------|-----------|------------|---------|-------------|----------------|--------------------------------|----------------------------------|----------|--| | | _ | | Cont | inuous Le | earning As | sessmen | t (50% weig | ghtage) | | Final Farmination | (FOO) | | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - 4 (10%)# | | Final Examination (50% weightage | | | | | Level of Thinking | Theory | Practice | | | 1 | Remember | 200/ | | 200/ | 2,427 | 20% | 17 | 200/ | | 200/ | | | | Level 1 | Understand | 30% | | 30% | | 2070 | March 26 | 20% | | 30% | | | | 1 | Apply | 400/ | 5 | F00/ | | 50% | 11.24 | F00/ | Je 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | F00/ | | | | Level 2 | Analyze | 40% | 124 | 50% | 6.7 | 50% | ملوق را | 50% | | 50% | | | | 1 | Evaluate | 200/ | | 200/ | | 200/ | 1.00 | 200/ | 7 | 200/ | | | | Level 3 | Create | 30% | 7 ( 196) | 20% | | 30% | 100 | 30% | - | 20% | | | | | Total | 10 | 00 % | 10 | 00 % | 10 | 00 % | 10 | 00 % | 1 | 00 % | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | | | | | | |---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | | | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry, IIT Madras Email: gsekar@jitm.ac.in | 1. Dr. Samarendra Maji, SRMIST | | | | | | | Novugen Pharma, Malaysia<br>Email: <u>ravianalytical@gmail.com</u> | Prof. Sukhendu Mandal, Department of Chemistry, IIISER, Thiruvananthapuram Email: sukhendu@iisertvm.ac.in | 2. Prof. Dr. M. Arthanareeswari,<br>SRM IST | | | | | | | Course | LION COO COL | urse | | Course | _ | | L | T | Р | 0 | C | |--------|--------------|------|--------------------------------------|----------|---|------------------|---|---|---|---|---| | Code | 110:423041 | ame | Computational Modelling in Chemistry | Category | C | Generic Elective | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|-----------|-------------------------|-----|--------------------------------|------------------------|-----| | Course Offer<br>Department | ing | Chemistry | | | Data Book /<br>Codes/Standards | | Nil | | Course<br>Rationa<br>(CLR): | Learning<br>le | The purpose of learning this course is to: | Program Learning Outcomes (PLO) | | | | | | | | | | | | | | | | |---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------|---------------------------------|-----------------------|-------------------------|-------------------------------|----------------------|--------------------------|------------------------------|--------------------|--------------------|----------------------|------------------------|---------------|--------------|--------|--------|-------| | CLR-1: | To make the stude computational che | Tan | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | CLR-2: | | nts aware about the HF method and its edifferent problems | NG. | P | 1 | | | | | ٠. | | 1 | | | | | | | | CLR-3: | electronic structure | nts aware about the different types of methods in computational chemistry | | 0 | | ines | 7 | > | dge | | | | | | | | | | | CLR-4: | To make the stude that can be compu | nts aware about the different properties ted using computational chemistry. | 3loom) | wledge | ncepts | Discip | edge | ation | nowle | | Data | | skills | Skills | | | | | | CLR-5: To introduce the students to some of the advanced methods and their applications in computational chemistry. | | | inking ( | tal Kno | of Cor | elated | Knowle | ecializa | tilize K | odeling | terpret | ive Skill | Solving | ation SI | Skills | | | | | Course<br>Outcon<br>(CLO): | Learning<br>nes | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related Disciplines | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret | Investigative Skills | Problem Solving Skills | Communication | Analytical 8 | PSO -1 | PSO -2 | PSO-3 | | CLO-1 : | Explain the concepapplications and lin | t of methods like MM, MD and their<br>nitations. | 4 | Н | | - | - | | - | L | | | - | - | Н | - | - | - | | CLO-2: | Explain the concep | t of HF method and its applications. | 4 | M | Н | - | - | Н | - | - | - | - | - | - | - | - | - | - | | CLO-3: Explain the concept of semi-empirical methods and calculations of different properties. | | | | Н | Ė | ¥. | | М | - | - | - | L | - | - | - | - | - | - | | CLO-4: Elaborate of comparative study of different properties using different methods Develop concepts and application of advanced computational | | | | Н | | | Н | Ä | - | М | - | - | _ | - | - | - | - | - | | CLO-5 : | 4 | 20 | Н | - | - | - | - | Н | - | М | - | - | - | - | - | - | | | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |--------|-----------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------| | S-1 | SLO-1 | Introduction to the subject of computational chemistry | Review of the variational method: definition and theorems | Electronic spin: S2 operator, degeneracy, | Introduction to analytic gradient: theory | Introduction to excited state theories used in computational chemistry: concept | | 0-1 | SLO-2 | Scope of computational chemistry | Review of the variational method: derivation | evaluating the spin of Slater<br>determinants | Applications of analytic gradient | Introduction to excited state theories used in computational chemistry: theory | | | SLO-1 | The tools of computational chemistry: GUI | Hartree-Fock molecular orbital theory | Group theory: Molecular point groups | Electrostatics | Excited states: methods | | S-2 | SLO-2 | The tools of computational chemistry: Simulation packages | Slater determinants,<br>anti-symmetry<br>principle | Group theory: term symbols | Applications of electrostatics | Excited states: applications | | S-3 | SLO-1 | Introduction to<br>molecular mechan-<br>ics (MM) | Basis sets | Group theory: computational simplifications | Introduction to charge analysis | Introduction to solvation in computational chemistry: definitions | | 3-3 | SLO-2 | comparison of<br>popular force fields<br>(MM) | EMSL basis set exchange | Group theory: application | different types of charges | Introduction to solvation in computational chemistry: theory | | S-4 | SLO-1 | Practical session on GUI | Practical session on<br>applying HF theory to<br>evaluate single point<br>energy of water | Practical session on applying group theory to small molecules | Practical session<br>on charge analysis<br>of molecules:<br>Mullikan charge | Practical session on energy evaluation in gas phase | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------| | | SLO-2 | Practical session on simulation packages | Practical session on<br>applying HF theory to<br>evaluate single point<br>energy of ammonia | Practical session on applying group theory to cyclic structures | Practical session<br>on charge analysis<br>of molecules:<br>Löwdin charge | Practical session on energy evaluation in solvent phase | | S-5 | SLO-1 | Performance of molecular mechanics on biomolecules | Derivation of HF equations | Semiempirical methods | Transition state theory | Models of Solvation:<br>PCM | | 3-0 | SLO-2 | Performance of molecular mechanics on materials | Hartree-Fock energy expressions for arbitrary spin-orbital configurations | Applications of Semiempirical methods | statistical<br>mechanics, and<br>thermodynamic<br>properties | Models of Solvation:<br>SMD | | S-6 | SLO-1 | Moleculat Dynamics-concept and defination | Application of HF to IP and EA calculation | Geometry optimization:Methods | Introduction to electron correlation: static correlation | Introduction to<br>Coupled-cluster (CC)<br>theory | | | SLO-2 | Molecular Dynamics: theory | spin integration | Geometry optimization: analysis | Dynamic correlation | Application of Coupled-<br>cluster theory | | S-7 | SLO-1 | Applications of MD on biomolecules | restricted and unrestricted references | Vibrational frequency<br>analysis: symmetry<br>analysis | Configuration interaction (CI): theory | Introduction to Density-<br>functional theory:<br>theorems and<br>functionals | | | SLO-2 | Application of MD on materials | Self-consistent-field (SCF) procedure | harmonic vs. fundamental frequencies | Configuration interaction (CI): application | Time-dependent DFT (TD-DFT) | | S-8 | SLO-1 | Practical Session<br>on MM of transition<br>metal complex | Practical session on<br>applying HF theory:<br>Building the molecules in<br>GUI for evaluation of<br>reaction energy | , Practical session on<br>applying semi-empirical<br>methods to small system | Practical session<br>on study of<br>molecule structure<br>evaluation using<br>HF | Practical session on<br>applying couple cluster<br>theory to small<br>molecules to evaluate<br>energy | | | SLO-2 | Practical Session on MM of materials | Practical session on<br>applying HF theory:<br>calculating the reaction<br>energy | Practical session on applying semi-empirical methods to large system | Practical session on of molecule structure evaluation using Cl | Practical session on<br>applying couple cluster<br>theory to medium sized<br>molecules to evaluate<br>energy | | S-9 | SLO-1 | Postulates of quantum mechanics | Molecular integrals | Zero-point vibrational<br>energies (ZPVE's), Hessian<br>index | Comparative study of HF and CI to small systems | Applications of DFT | | 3-9 | SLO-2 | Variables and functions | types of integrals | distinguishing minima from transition states | Comparative study of HF and CI to big systems | Applications of TD-DFT | | S-10 | SLO-1 | The Born-<br>Oppenheimer<br>approximation | Gaussian product theorem | Intrinsic reaction coordinate (IRC) analysis: background | Many-body<br>perturbation theory | Multiconfigurational self-<br>consistent field (MCSCF):<br>theory | | 3-10 | SLO-2 | Introduction to potential energy surfaces | Permutational symmetry of integrals | Intrinsic reaction coordinate (IRC) analysis: definition | Applications of Many-<br>body perturbation<br>theory | Multiconfigurational self-<br>consistent field (MCSCF):<br>application | | S-11 | SLO-1 | PES: local and global minima | The HF algorithm for closed shell system | Intrinsic reaction coordinate (IRC) analysis: theory | Useful<br>approximations:<br>resolution of the<br>identity (density<br>fitting) | Comparing the performance of DFT and HF | | | SLO-2 | PES: transition states | The HF algorithm for open shell system | Intrinsic reaction coordinate (IRC) analysis: analysis | local correlation | Comparing the performance of CI and CC | | S-12 | SLO-1 | Practical session<br>on MD of transition<br>metal complex | Practical session on<br>applying HF method to<br>evaluate the potential<br>energy surface of n-<br>Butane: Building the<br>system | Practical session on evaluating optimized energies | Practical session<br>on study of HF to<br>find the stable<br>geometric isomer<br>of a molecule | Practical session on<br>evaluating excited state<br>energies of a molecule<br>using TD-DFT | | | SLO-2 | Practical session<br>on MD of slab of<br>material | Practical session on applying HF method to evaluate the potential energy surface of n- | Practical session on evaluating ZPEs | Practical session on study of CI to find the stable | Practical session on<br>evaluating excited state<br>energies of a molecule<br>using CI and CC | | Duration (hour) | 12 | 12 | 12 | 12 | 12 | |-----------------|----|-------------------------|----|------------------|----| | | | Butane: calculating the | | geometric isomer | | | | | energy | | of a molecule | | | | Theory: | | |-----------|---------|----------------------------------------------------------------------------------------------------------------------------| | | 1. | F. Jensen, Introduction to Computational Chemistry, (Wiley, New York, 1999). Good introductory textbook covering a variety | | Learning | | of topics. | | Resources | 2. | A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory, 1st ed., revised. | | | | More mathematical detail for many of the ab initio electronic structure methods. 1998. | | | 3. | M. A. Ratner, G. C. Schatz, Introduction to Quantum Mechanics in Chemistry, Prentice Hall, Upper Saddle River, NJ 2001. | | Learning | Assessment | | | | | | | | | | | |------------|------------------------------|--------|----------|-----------|------------|---------|-------------|---------|----------|-----------------|--------------------| | | | | Cont | inuous Le | earning As | sessmen | t (50% weig | ghtage) | | Final Evaminati | an (EOO) wainbtana | | | Bloom's<br>Level of Thinking | CLA - | 1 (10%) | CLA - | 2 (10%) | CLA - | 3 (20%) | CLA - | 4 (10%)# | Final Examinati | on (50% weightage) | | | Level of Thinking | Theory | Practice | | 1 <b>1</b> | Remember | 200/ | | 200/ | | 20% | | 200/ | | 200/ | | | _evel 1 | Understand | 30% | 11 | 30% | - | 20% | - | 20% | 75 | 30% | - | | Level 2 | Apply | 40% | 7 | 50% | | 50% | | 50% | | 50% | | | Level 2 | Analyze | 40% | | 50% | | 50% | - | 50% | | 50% | - | | _evel 3 | Evaluate | 30% | | 20% | 717 | 30% | | 30% | V 4 | 20% | | | Level 3 | Create | 30% | - | 20% | 1.53 | 30% | | 30% | | 20% | | | | Total | 10 | 00 % | 10 | 0 % | 10 | 00 % | 10 | 00 % | 1 | 00 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | AND THE RESIDENCE OF THE PARTY | | |---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. Ravikiran Allada, Director,<br>Analytical Sciences and Technology Transfer, | Prof. G. Sekar, Department of Chemistry,<br>IIT Madras<br>Email: gsekar@iitm.ac.in | 1.Dr. Tumpa Sadhukh <mark>an, SRMI</mark> ST | | Novugen Pharma, Malaysia Email: ravianalytical@gmail.com | IChemistry IIISER Inirilyananthaniiram | 2.Prof. Dr. M. Arthanareeswari, | | | Email: sukhendu@iisertvm.ac.in | SRM IST | | Course | Course | | Course | | | L | T | Р | 0 | C | |--------|--------|--------------------------------|----------|---|-------------------------|---|---|---|---|---| | | | Applications of Nanotechnology | Category | G | Generic Elective Course | 3 | 1 | 0 | 2 | 4 | | Pre-<br>requisite<br>Courses | Nil | | Co-requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-----|------------|-------------------------|-----|-----------------|------------------------|-----| | Course Offer | ing | Physics an | d | | Data Book / | | Nil | | Department | | Nanotechno | ology | | Codes/Standards | | NII | | Departine | iii ivaii | otechnology Codes/Standards | | | | | | | | | | | | | | | | | | | |-----------|----------------------------------------------|------------------------------------------------------|------------------|------------------|-------------------------|-----------------------|------------------|---------|----------------------|--------------------------|--------------------|--------------------|--------------------|----------------------|-----------------|---------------|-------------------|--------|---|-------| | Course Le | earning Rationale | The purpose of learning this course is to: | L | earı | nin | | | Pro | gra | ım l | _ea | rnir | ng ( | Outo | con | nes | (Pl | _0) | | | | CLR-1 : | comprehend the prin | nciples of nanotechnology. | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 1 | 12 | 1 | 1 | 15 | | CLR-2: | make the students u | nderstand the basic concepts in nanoscience. | | | | | | | | | | | | | | | | | | | | CLR-3: | develop understandi<br>materials. | ing on the exotic properties of nanostructured | ¥. | 4 | | 1 | | | | | 1 | | 1 | | | | | | | | | CLR-4: | introduce various tec<br>nanostructured mate | chniques available for the processing of erials. | (E | (% | (9) | e | S | plines | | | edge | | | | | | | | | | | CLR-5: | emphasize the impo<br>various fields | rtance and development of nanotechnology in | (Bloom) | ency ( | ment (9 | owledge | Concepts | d Disci | vledge | zation | Knowledg | 6 | et Data | SIIIS | Skills | Skills | | | | | | Course Le | earning Outcomes | At the end of this course, learners will be able to: | evel of Thinking | Expected Profici | Expected Attainment (%) | Fundamental Knowledge | Application of C | əlat | Procedural Knowledge | Skills in Specialization | Ability to Utilize | Skills in Modeling | Analyze, Interpret | Investigative Skills | Problem Solving | Communication | Analytical Skills | PSO -1 | | PSO-3 | | CLO-1: | determine the nanot | echnology and actual working areas and applications | . 2 | 75 | 60 | Н | | | | | | | | | Н | | | | | | | CLO-2: | | hniques for synthesis of nanomaterials | 2 | 80 | 70 | Н | Н | -14 | | | - 1 | | | | Н | П | | | | | | CLO-3: | classify different tech | hniques depending on the application areas | 2 | 70 | 65 | Н | Н | | | | | | | | Н | | | | | | | CLO-4: | determine the chara | cterization techniques for nanomaterials | 2 | 70 | 70 | Н | Н | | | | | | | | Н | | | | | | | CLO-5: | discuss and evaluate nanomaterials | 2 | 80 | 70 | Н | Н | | | | | | | | Н | | | | | | | | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | |--------|-----------|-----------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------| | S-1 | SLO-1 | Nanotechnology | Classification of nanostructures | Top-down approach | Characterization techniques | Application od nanotechnology | | | SLO-2 | History and importance | zero, one, two and<br>three dimensional<br>nanostructures, | overview | General Introduction | Nanotechnology in food,<br>FDA regulation | | S-2 | SLO-1 | opportunity at the nanoscale, | What is density of<br>states (DOS)? How<br>DOS changes with<br>dimensional<br>nanostructures | bottom-up approach | Scanning electron<br>microscope (SEM),<br>transmission electron<br>microscope (TEM),<br>comparing SEM, TEM<br>and SPM for different<br>classes of<br>nanomaterials. | Nanoemulsions,<br>Methods of producing<br>nanoemulsions | | | SLO-2 | Examples | Quantum confinement effect | Overview with examples | scanning electron<br>microscope (SEM)<br>Qualitative Overview | Nanotechnology to enhance food safety and quality | | S-3 | SLO-1 | length and time<br>scale in structures, | Confinement effect<br>with different<br>nanostrcture | method of nanomaterials preparation, | transmission electron<br>microscope (TEM), | Intelligent materials for packaging | | | SLO-2 | Definitions and concepts | size dependency in<br>nanostructures,<br>Examples | Qualitative discussion | Qualitative Overview | Examples | | S-4 | SLO-1 | Problems/Demos/ | Problems/Demos/ | Problems/Demos/ | Problems/Demos/ | Problems/Demos/ | | | SLO-2 | Simulations/Semin ars | Simulations/Seminars | Simulations/Seminars | Simulations/Seminars | Simulations/Seminars | | S-5 | SLO-1 | length and time<br>scale in structures, | Confinement effect<br>with different<br>nanostrcture | method of nanomaterials preparation. | transmission electron<br>microscope (TEM), | Intelligent materials for packaging | | | SLO-2 | Definitions and concepts | size dependency in<br>nanostructures,<br>Examples | Qualitative discussion | Qualitative Overview | Examples | |------|----------------|----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------| | S-6 | SLO-1 | difference<br>between bulk and<br>nanoscale<br>materials | quantum size | wet chemical routes of<br>synthesis | scanning probe<br>microscope (SPM), | Nanomedicine | | | SLO-2 | Examples | Concept | physical routes | Qualitative Overview | Interaction of<br>nanoparticles with<br>Biological barriers | | S-7 | SLO-1 | Significance of<br>Nano size | Quantum size effects in nanostructures, | physical vapor<br>deposition (PVD) | comparing SEM, TEM<br>and SPM | Respiratory path,<br>Gastrointestinal<br>absorption and Skin<br>absorption of<br>nanoparticles | | | SLO-2 | Examples | Examples | What is Plasma? Plasma Components and ionization, DC Plasma | Basic differences | Nanoparticle concentration determination: dose matters | | S-8 | SLO-1<br>SLO-2 | Problems/Demos/<br>Simulations/Semin<br>ars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | Problems/Demos/<br>Simulations/Seminars | | S-9 | SLO-1 | properties at nanoscale | chemistry of tailored nano shapes | Mean free path of<br>atom/molecule in a<br>chamber | Application of<br>Discussed techniques | Nanostructures for water and wastewater treatment | | | SLO-2 | optical, | Qualitative discussion | Sputtering, atoms sputter from target | Overview | Construction of membranes and characteristics | | S-10 | SLO-1 | Electronic properties | quantum dots | DC and RF sputtering<br>difference, why need<br>AC plasma? | different classes of<br>nanomaterials | Types of Adsorption, Surface area and pore size | | | SLO-2 | Magnetic<br>Properties | nanowells | chemical vapor<br>deposition (CVD) and<br>Mass flow controlled<br>regime | Choice of<br>Characterization<br>Technique | Membrane Filtration and reverse osmosis, Membrane configurations | | S-11 | SLO-1 | Chemical<br>Properties | nanoribbons | CVD reaction<br>mechanism,<br>homogenous process<br>and<br>heterogeneous<br>process | SEM, TEM and SPM | Nanotechnology in storage devices | | | SLO-2 | Overview | nanowires | Growth rate<br>dependence with gas<br>flow rate and<br>temperature | Using for different materials | Batteries and application | | S-12 | SLO-1 | Assignment on Properties | Problems/Demos/<br>Simulations/Seminars | Seminar on Synthesis | Assignment on Characterization | Assignment on applications | | | SLO-2 | - Froportios | on above-given topics | | Shardotonzation | арричинопо | ## Learning Resources - T. Pradeep, A Textbook of Nanoscience and Nanotechnology, Tata McGraw Hill Education, 2012. - 2. G. Cao, Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, 2nd Ed., Imperial College Press, 2004. - T.K. Sau, A.L. Rogach, Complex-shaped Metal Nanoparticles: Bottom-Up Syntheses and Applications, 1st Ed., Wiley-VCH, 2012. Chattopadhyay, Banerjee, Introduction to Nanoscience and Nanotechnology, PHI, 2009. | Learnin | g Assessment | | | | | | | | | | | | | |---------|--------------|--------|----------|---------------|-----------|---------------|-----------|----------------|----------------|-----------------------------------|---------------|--|--| | | Bloom's | | Continue | ous Lea | rning Ass | essmer | it (50% w | eightage | <del>)</del> ) | Final Framination ( | EOO/aimbtoma\ | | | | | Level of | CLA - | 1 (10%) | CLA - 2 (10%) | | CLA - 3 (20%) | | CLA - 4 (10%)# | | Final Examination (50% weightage) | | | | | | Thinking | Theory | Practice | | | | Level 1 | Remember | 30% | | 30% | | 30% | | 30% | | 30% | | | | | Level I | Understand | 30 /6 | - | 30 /0 | - | 30 /6 | - | 30 /6 | - | 30 /0 | - | | | | Level 2 | Apply | 40% | - | 50% | - | 50% | - | 50% | - | 50% | - | | | | | Analyze | | | | | | | | | | | |---------|----------|-----|-----|-----|-----|-----|-----|-----|-----|-------|---| | Lovol 3 | Evaluate | 30% | | 20% | | 20% | | 20% | | 20% | | | Level 3 | Create | 30% | - | 20% | - | 20% | - | 20% | - | 20% | - | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 100 % | 6 | #CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course<br>Designers | | | |--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | Dr. N. VIJAYAN, CSIR-NPL, nvijayan@nplindia.org | Prof. S. Balakumar, University of Madras, balakumar@unom.ac.in | Dr. Mathimalar, SRMIST | | Dr. Krishna SurendraMuvvala, Saint Gobain<br>Research India, India,<br>Krishna.muvvala@saintgobain.com | Prof. V. Subramaniyam, IIT Madras, vsubbu@iitm.ac.in | Dr. Debabrata Sarkar,<br>SRMIST | LEARN · LEAP · LEAD | Course | UCY23P06L | Course | Project Phase-II | Course | Р | Internship/ Apprenticeship/ | L | Τ | Р | 0 | С | |--------|-----------|--------|------------------|----------|---|-----------------------------|---|---|----|---|---| | Code | | Name | | Category | | Project/ Community Outreach | 0 | 0 | 12 | 2 | 6 | | Pre-<br>requisite<br>Courses | Nil | | Co-<br>requisite<br>Courses | Nil | | Progressive<br>Courses | Nil | |------------------------------|-------|-----------|-----------------------------|-----|-----------------|------------------------|-----| | Course Offe | ering | Chemistry | | | Data Book / | Nil | | | Department | t | | | | Codes/Standards | | | | Course I<br>Rational<br>(CLR): | Learning<br>le | The purpose of learning this course is to: | Learning | | | | Pr | ogra | m Le | arni | ng C | Outco | omes | s (PL | O) | | | | |--------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|---------------------------|-----------------------|----------------|-------------------------------|----------------------|----------------|--------------------|--------------------|-------------------------|---------------|------------------------|---------------|------------|--------|--------|-------| | CL P-1. | Produce compet<br>with a strong sci | ent, creative and imaginative graduates<br>entific acumen | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | Apply of the acquion to the field of Ch | uired knowledge, skills, and tools pertinent<br>emistry | NC | I | | 4 | a | | | | | | | | | | | | | CLR-3 | domain of chemi | , , , , , , , , , , , , , , , , , , , , | 9 | 0 | | ines | | þ | dge | | | | | l. | | | | | | (.I R-4 | I <mark>nculcate th</mark> e eth<br><mark>scientific</mark> society | ical responsibility of the graduate in the | Sloom) | wledge | Concepts | Discipl | edge | ution | Knowledge | 7 | Data | | kills | Skills | | | | | | | Identify the chall<br>Chemistry | enges and solutions pertinent to the field of | ninking (E | ouy late | | Related I | I Knowle | Specialization | | odeling | nterpret | ve Skills | Solving S | | Skills | | | | | | Learning<br>nes (CLO): | At the end of this course, learners will be able to: | Level of Thinking (Bloom) | Fundamental Knowledge | Application of | Link with Related Disciplines | Procedural Knowledge | Skills in S | Ability to Utilize | Skills in Modeling | Analyze, Interpret Data | Investigative | Problem Solving Skills | Communication | Analytical | PSO -1 | PSO -2 | PSO-3 | | CLO-1 | demonstrate the | key areas of research | 4 | Н | - | - | - | H | - | Н | - | L | - | - | - | - | - | - | | CLO-2 | develop laborato | ry and experiment related skills | 4 | - | Н | | | Н | Н | - | - | | - | - | - | - | - | - | | CLO-3 | posses' compete<br>scientific docume | nce on data collection and process of entation | 4 | 1.3 | М | Ŕ | ď | М | 7 | - | - | - | 7 | М | - | - | - | - | | CLO-4 | gain the knowled | ge of research ethics | 4 | - | - | - | | М | М | - | Н | - | - | - | - | - | - | - | | CLO-5 | solve problems i | 4 | L | -, | Н | - | - | - | Н | - | - | - | - | М | - | - | - | | | earning Assessment | | 1 | | | |--------------------|----------------------------|------------|------------------|--------------------------------| | 2 | Continuous Learning weight | | Final Evaluation | (50% w <mark>eightage</mark> ) | | Project Phase-II | Review – 1 | Review – 2 | Project Report | Viva-Voce | | | 20% | 30 % | 30 % | 20 % | # **Generic Elective course for other department** | Course<br>Code | UCY23 | G01J | Course<br>Name | | Bas | ic Chemistry | | Cours<br>Catego | - | G | | Ge | neri | c Ele | ectiv | e Co | ourse | 9 | <u>L</u> | . T | P ( | 0 C<br>2 4 | |-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------|--------------------|-----------------------------------------|-----------------------------|---------------------------------------|-------------------------|-------------------|----------------------|--------------------------|------------------------------|--------------------|-------------------------|----------------------|------------------------|---------------|----------------------|----------|----------------|-------------|------------| | Pre<br>requis<br>Cours | site <i>Ni</i> | 1 | | | -requisite<br>Courses | Nil | | Prog | gres | | Nil | | | | | | | | | | | | | Course<br>Departn | Offering<br>nent | | Chemi | istry | | Data Book /<br>Codes/Stand | lards | | | | | | | | Nil | | | | | | | | | Course<br>Rationa<br>(CLR): | | 9 | The µ | purpose ( | of learning | g this course is to: | Learning | | | | Pro | grar | n Le | arni | ng C | Outco | ome | s (PL | _O) | | | | | CLR-1: | compou | nds | | | | nemical Bonding in | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | silicon a | ind othe | er metals | | | nistry of hydrogen, | (E | dge | pts | 4 | Φ | | vledge | | ta | | S | | | | | | | CLR-4: | Study th | e cond | e basic prine<br>epts in ele<br>the fuels, | ectrochen | nistry | er detergents | ing (Bloo | Knowle | Conce | ated | nowledg | ialization | ze Knov | eling | rpret Da | Skills | ing Skill | on Skills | SIIIS | | | | | Course<br>Outcor<br>(CLO): | e Learning mes : At the end of this contained able to: : Gain knowledge on the basics in organi : Promote the importance of silicon and more than the facts in chemical kinetic | | | this cour | se, leamers will be | Level of Thinking (Bloom) | Fundamental Knowledge | Application of Concepts | Link with Related | Procedural Knowledge | Skills in Specialization | Ability to Utilize Knowledge | Skills in Modeling | Analyze, Interpret Data | Investigative Skills | Problem Solving Skills | Communication | Analytical Skills | PSO -1 | PSO -2 | PSO-3 | | | CLO-1: | | nowled | ge on the b | basics in | organic c | hemistry. | 4 | Н | - | F | - | ,-" | - | | - | - | - | - | Н | - | - | - | | | Promote the importance of silicon and metals. Understand the facts in chemical kinetics Acquire knowledge in the principles of electrons. | | ıls. | 4 | - | | | | M | | Н | | | - | - | - | - | - | - | | | | | CL O-4 | 4 : Acquire knowledge in the principles of electrochem | | | rochemistry | 4 | | | | Н | - | F | Н | - | - | - | - | - | - | - | - | | | | CLO-5: | | | | 4 | | H | Н | - | - | Н | | _ | - | | _ | _ | - | - | _ | | | | | Duratio | n (hour | 4 | 18<br>ntroducti | ion of | | 18 | ŗ. | 18 | | * | | | | 18 | Ç | | | | | 18 | | | | S-1 | SLO-1 | | Hybridisa<br>somerisn<br>Hybridisa<br>sp <sup>2</sup> | ition and<br>m: | Addit | ion reactions: | Coordi<br>Chemi<br>Nomei | stry: | | | | | oche | emis<br>on | try: | | | | clea | - stru<br>ansi | uctui<br>ng | ė | | | SLO-2 | sp <sup>3</sup> F | lybridisati | ion | | leophilic Addition tions: | isomeris<br>coordina<br>compour | tion | ī | H | | | ays<br>olysi | laws<br>s | of | 4 | | Soa | ар-ез | xam | ples | | | S-2 | SLO-1 | | l length- b<br>e- dipole n | | Elec | etrophilic Addition<br>ons: | EAN r | | | | | | | | ıctar | | е | stru | ctur | | | ١ | | | SLO-2 inductive effect-<br>mesomeric effect and<br>hyperconjucation Free radical Additional reactions | | | | | VB The | ory | | | C | ell c | onst | ant | | | | | | gen | | | | | S-3 | SLO-1 | | erism- ge<br>optical iso | | | ation rections | Crysta<br>theorie<br>octahe<br>comple | es of<br>edral | | | | | | | ory o<br>socia | | า | C<br>Ir | | nistr | y:<br>on-F | uel | | | SLO-2 | | ctural ison<br>eoisomers | | E1, | E2, E1cb<br>hanism | tetrahedi<br>square p<br>complex | al an<br>Ianar | | | el | ectr | | c dis | ory o<br>soci | | 1- | | | r ga: | S | | | S-4-6 | SLO-1 | La | b Introduc | mation of ascorbic | Estimation KMnO <sub>4</sub> u standard | on of<br>sing | ssiu | m | Dete<br>an a | ermi | natio | on of | stre | | | N | licke | atio<br>I usi<br>orm | | | | | | | SLO-2 Lab Introduction Estimation of ascid | | | | | | dichroma | | | | titra | uon | | | | | | | | | | ATC | | Duratio | on (hour) | 18 | 18 | 18 | 18 | 18 | |-------------|----------------|----------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------| | S-7 | SLO-1 | Configurations, chirality | Chemistry of Hydrogen | Chemical Kinetics:<br>Rate of reaction | Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. | producer gas | | | SLO-2 | Elements of symmetry | Isotopes of hydrogen | order- molecularity | Molar conductivity at infinite dilution | LPG gas | | S-8 | SLO-1 | Enantiomers | Occurrence- extraction of iron | first order rate law and simple problems | Ostwald"s dilution law | Gobar gas and | | 3-0 | SLO-2 | diastereomers | Occurrence- extraction of cobalt | Half-life period of first order reaction | Activity- Ostwald"s dilution law | natural gas | | S-9 | SLO-1 | Conformational analysis - ethane | Occurrence- extraction of nickel | pseudo first order reaction | Kohlrausch law of independent migration of ions | Fertilizers –<br>Mixed fertilizer | | 2-9 | SLO-2 | Conformational analysis – n-butane | Occurrence- extraction of copper | zero and second<br>order reactions | Problems - Kohlrausch<br>law of independent<br>migration of ions | NPK fertilizer | | S-10-<br>12 | SLO-2 | Estimation of HCl<br>using standard oxalic<br>acid | Estimation of Copper using decinormal solution of Potassium dichromate solution | Determination of rate of the reaction – Ester hydrolysis | Determination of strength of mixture of acids – Conductometric titration | Estimation of K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> using decinormal solution of Sodium thiosulphate solution | | S-13 | SLO-1 | Nucleophilic substitution reactions | structure of borazole | Arrhenius theory-<br>Postulates | Nernst equation -Derivation | Hardness of water – Temporary and permanent hardness | | | SLO-2 | SN1 mechanism | Preparation of borazole | Explanation and limitation | Problems – Nernst equation | disadvantages of hard water | | | SLO-1 | SN2 mechanism | Chemistry of Silicon compounds | Collision theories-<br>Postulates | Nernst equation applications | Boiler scales and sludges | | S-14 | SLO-2 | Free radical mechanism | Structure and<br>Preparation<br>of SiO <sub>2</sub> | Explanation and limitation | Nernst equation application to different kinds of half-cells | Softening of hard<br>water – Zeolite<br>process | | S-15 | SLO-1 | Electrophilic substitution reactions | Structure and<br>Preparation of SiC | Problems/activities related to kinetics | Kohlrausch law of independent migration of ions | demineralization<br>process -<br>Principle | | J-1J | SLO-2 | Mechanism | Structure and<br>Preparation of SiCl <sub>4</sub> | Problems/activities related to kinetics | Ostwald"s dilution law | demineralization<br>process -<br>Procedure | | S-16-<br>18 | SLO-1<br>SLO-2 | Estimation of phenol / aniline | Estimation of NaOH using standard sodium carbonate | Estimation of FAS using standard oxalic acid | Redox titration by Potentiometric method | Estimation of hardness by EDTA method | ## Theory: Learning Resources - M. J. Sienko, R. A. Plane, Chemistry: Principles and Applications, 3rd ed., McGraw-Hill publishers, 1980. - 2. P. W. Atkins, J. Paula, J. Keeler, Physical Chemistry, 11th ed., Oxford publishers, 2018. K. P. C. Vollhardt, N. E. Schore, Organic Chemistry: Structure and Function 7thed., Freeman, 2014. - 4. - J. C. Kuriacose, J. Rajaram, Chemistry in Engineering and Technology, Tata McGraw-Hill Education, 1984. A. Wieckowzki, J. Norskov, and Gottesfel, Fuel Cell Science: Theory, Fundamentals, and Biocatalysis, 2010 5. - B. H. Mahan, R. J. Meyers, University Chemistry, 4th ed., Pearson publishers, 2009. | Learning Assessment | | | | | | | |---------------------|-----------------|------------------|-----------------|-----------------|----------------------|----------------| | Bloom's | Continu | ous Learning Ass | sessment (50% w | eightage) | Final Examination ( | 50% woightaga) | | Level of | CLA - 1 (10%) | CLA - 2 (10%) | CLA - 3 (20%) | CLA - 4 (10%)# | Filiai Examination ( | 50% weightage) | | Thinking | Theory Practice | Theory Practice | Theory Practice | Theory Practice | Theory | Practice | | Level 1 | Remember | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | |---------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Level I | Understand | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | 30% | | Level 2 | Apply | 40% | 40% | 50% | 40% | 50% | 40% | 50% | 40% | 50% | 40% | | Level 2 | Analyze | 40% | 40% | 30% | 40% | 30% | 40% | 30% | 40% | 30% | 40% | | Lovel 2 | Evaluate | 30% | 30% | 20% | 30% | 20% | 30% | 20% | 30% | 20% | 30% | | Level 3 | Create | 30 /0 | 30 /0 | 20 /0 | 30 /6 | 20 /0 | 30 /0 | 20 /0 | 30 /0 | 20 /0 | 30 /0 | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 100 % | 6 | # CLA – 4 can be from any combination of these: Assignments, Seminars, Scientific Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications etc., | Course Designers | | | |----------------------------------------------|--------------------------------------------|---------------------------------| | Expert from Industry | Experts from Higher Technical Institutions | Internal Experts | | | Prof. G. Sekar, Department of Chemistry, | | | Dr. Ravikiran Allada, Director, | IIT Madras | 1. Dr. T. Pushpa Malini, SRMIST | | Analytical Sciences and Technology Transfer, | Email: gsekar@iitm.ac.in | | | Novugen Pharma, Malaysia | Prof. Sukhendu Mandal, Department of | 2 Deef De M. Arthur and a | | Email: ravianalytical@gmail.com | Chemistry, IIISER, Thiruvananthapuram | 2.Prof. Dr. M. Arthanareeswari, | | | Email: sukhendu@iisertvm.ac.in | SRM IST | ## **Courses for earning Additional Credits** ### SEMESTER - II | Course<br>Code | UCD23 | P01L | Course<br>Name | Internship Report– I | | | | | ourse | | IAPC | Pro | ject/ | • | | entic<br>reac | esh<br>h | ip / | | L<br>0 | . T | + | O C<br>2 4 | |-----------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------|-----------------|---------------------------|-----------------|-------------------------|------------------------|-------------------|-----------------|----------------------|-----------------|-----------|----------------------|---------------------|------------------------|--------------------------|-------------------|----------------------|------------|-------------------|--------------------| | Pre-requi<br>Courses | site | Nil | | Co-requisite Courses | Nil | | | | | | rogr | | /e | | Nil | | | | | | | | | | Course Course Course | • | | Chemistry | | Data E<br>Codes | | | rds | | N | lil | | | | | | | | | | | | | | Course L<br>Rationale | | | The purpos | e of learning this cours | se is to, | | | | Le | arn | ing | P | rogr | am I | _ear | ning | Out | com | nes ( | PLO | ) | | | | CLR-1: | | | | n the real time environme | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | Explore t related a | | ferent indus | tries based on chemistry | y and | æ | (9 | (9) | | | | K | | | | 1 | | e | 1 | ¥ | | | | | CLR-3: | Enhance | nhance the skills in the system aspects Understanding the professional connections with knowledge learnt | | | | (Bloor | Proficiency (%) | ent (% | edge | | | ing | | | gu | 0 | ning | peten | | Jemer | | | | | CLR-4: | knowledg | nowledge learnt | | | | | oficie | ainm | Know | ina | ying . | ason | sills | 1 | asoni | inkin | Lear | Comp | oning | Engaç | | Skills | arninę | | CLR-5 : | knowledge learnt Applying the skills in problem solving | | | | | Level of Thinking (Bloom) | Expected Pro | Expected Attainment (%) | Disciplinary Knowledge | Critical Thinking | Problem Solving | Analytical Reasoning | Research Skills | Team Work | Scientific Reasoning | Reflective Thinking | Self-Directed Learning | Multicultural Competence | Ethical Reasoning | Community Engagement | ICT Skills | Leadership Skills | Life Long Learning | | Course L | | | the end of t<br>e to: | his course, learners wi | ill be | Ğ. | ķ, | | | ě | | | Ť | | | | Z | | | | | | | | CLO-1: | | | | n industry and | | 3 | 80 | 70 | E | Н | М | Н | L | М | L | L | L | L | L | Н | М | L | L | | CLO-2 : | To gain v | organization/company To gain valuable skills and knowledge | | | | 3 | 85 | 75 | М | н | Н | М | L | М | L | L | М | L | L | Н | М | L | L | | CLO-3: | networki | To make professional connections and enhance networking | | | | 3 | 75 | 70 | M | Н | М | Н | L | М | М | L | М | L | М | Н | М | L | L | | CLO-4: | To got experience in a field to allow the student to male | | | make | 3 | 85 | 80 | М | Н | М | Н | L | М | М | L | М | L | М | Н | М | L | L | | | CLO-5: | To get an inside view of an industry and | | | | 4 | 3 | 85 | 75 | Н | Н | M | Н | L | М | M | М | М | L | M | М | M | L | L | Students can choose a company of their own interest for internship for a period of minimum TEN weeks (Part-time) to learn about the application of their related field in real time environment. All students have to give a presentation about their observations made by them in internship as per the schedule given. At the end of the internship period, every student shall submit a structured internship report within 15 days from the date of the completion of the internship period. | Learning Assessment | | | | | |---------------------|------------------------|-----------------------------------------|-------------------------|-----------| | | Continuous Learning As | ssessment (50% weighta <mark>ge)</mark> | Final Evaluation (50% w | eightage) | | Internship | Review – 1 | Review – 2 | Project Report | Viva-Voce | | · | 20% | 30 % | 30 % | 20 % | | Course | | Cour | se | | | | | Cou | rse | | | | | Appr | enti | cesh | ip/ | | L | Т | P | C | | |------------------------|--------------------------|-----------------------------------------------------------------------------|---------|-------------------------|-------------------|--------------------------|--------------------------|-------------------------|------------------------|--------------------------|-----------------|----------------------|-----------------|-----------|----------------------|---------------------|------------------------|--------------------------|-------------------|-------------|-----------|------------------|----| | Code | UCD23P0 | Name | | Project Work – I | | | | | gory | IAP | C Pr | | | Out | reac | h | | | 0 | 0 | 8 2 | 2 4 | | | Pre-requi | site N | il | | Co-requisite<br>Courses | Nil | | | | | Prog<br>Coui | ress | ive | | Nil | | | | | | | | | 1 | | Course O<br>Departme | | Chem | istry | | Data Bo<br>Codes/ | | dard | s | | Nil | | | | | | | | | | | | | | | Course Le<br>Rationale | | The pu | rpose | of learning this cou | urse is to, | | | | Lear | ning | | Prog | ram | Lea | ning | g Out | com | ies (l | PLO) | ) | | | | | CLR-1: | Demonstra | te skills le | arnt in | the real time environ | ment. | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | Ţ. | | CLR-2: | related area | as | | ries based on chemis | stry and | π) | (%) | (9) | | đ | a | | | | | | | 9 | | <b>-</b> | | | | | CLR-3: | Enhance th | <mark>e s</mark> kills in | the sy | stem aspects | | 300 | 6) | ر) بر | dge | Н., | M | g | | | D | | ing | ten | | me | | | | | CLR-4 : | | Inderstanding the professional connections with the nowledge learnt | | | | | ficienc | ainmer | nowle | Б | ing | asonin | <u>s</u> | ٠. | soning | nking | Learn | Sompe | ning | Engagement | | kills | | | CLR-5: | Applying th | | | | | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Disciplinary Knowledge | <b>Critical Thinking</b> | Problem Solving | Analytical Reasoning | Research Skills | Feam Work | Scientific Reasoning | Reflective Thinking | Self-Directed Learning | Multicultural Competence | Ethical Reasoning | Community E | CT Skills | eadership Skills | - | | | | 7 | | F 50 50 50 | 73.56 | | Ħ | T., | | | | | | | 0, | Ä | 0) | _ | | | | | T | | Course Lo Outcomes | | At the er<br>able to: | d of th | nis course, learners | will be | | ıβ | 142 | | | | ۳ | | | Ţ | | | | | | | | | | CLO-1 : | To get an ir organizatio | | | industry and | The same | 3 | 80 | 70 | L | Н | М | Н | Ŀ. | М | L | L | L | L | L | Н | М | L | L | | CLO-2 : | To gain val | uable skil | ls and | knowledge | | 3 | 85 | 75 | М | Н | Н | М | L | М | L | L | М | L | L | Н | М | L | L | | CLO-3: | networking | | 7.36 | ections and enhance | | 3 | 75 | 70 | М | Н | М | Н | L | М | М | L | М | L | М | Н | М | L | | | CLO-4 : | | To get experience in a field to allow the student to mak career transition | | | to make a | 3 | 85 | 80 | М | Н | М | Н | L | М | М | L | М | L | M | Н | М | L | | | CLO-5 : | | areer transition o get an inside view of an industry and ganization/company | | | | 3 | 85 | 75 | Н | Н | М | Н | L | М | М | М | М | L | М | M | М | L | ļ | Students can choose problems of their own interest for research and analysis in the field of Chemistry. There will be two reviews conducted during the project period for all the students. At the end of the project, every student shall submit a structured project report and will take a Viva Voce examination. | Learning Assessment | | THE PARTY OF P | | | |---------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------| | | Continuous Learn | ning Assessment (50% weighta | age) Fin <mark>al Evaluatio</mark> n (50 | % weightage) | | internship | Review – 1 | Review – 2 | Project Report | Viva-Voce | | | 20% | 30 % | 30 % | 20 % | | Course<br>Code | UCD23 | P03L | Course<br>Name | Apprenticeship – I | | | | ours | | IAPC | Pro | ject/ | ' | Appro<br>Out | | | ip/ | | L<br>0 | T<br>0 | + + | 0 C<br>2 4 | |-------------------------|---------------------------------------------------------------|---------|------------------|----------------------------------------|--------------------------|--------------------------|-------------------------|------------------------|-------------------|-----------------|----------------------|-----------------|-----------|----------------------|---------------------|------------------------|--------------------------|-------------------|----------------------|------------|-------------------|--------------------| | Pre-requis<br>Courses | ite | Nil | | Co-requisite Courses | Nil | | | | | Progre | | е | | Nil | | | | | | | | | | Course Of<br>Department | - | | Chemistry | | Data Boo<br>Codes/St | | rds | | Ν | Nil | | | | | | | | | | | | | | Course Le<br>Rationale | | | The purpose | of learning this course is t | to, | | | Le | earn | ing | F | rogra | am L | .earn | ing ( | Outco | ome | s (PL | -O) | | | | | CLR-1: | Demons | trate s | skills learnt ir | the real time environmen | ıt. 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | Explore related a | | ferent indus | <mark>ries based on chemistry a</mark> | | | | | | | | | | | | | Ф | | t | | | | | CLR-3: | | | | stem aspects | 2 | % | t (% | ge | | 4 | ာ | | ١. | _ | | ng | teno | | men | | | | | CLR-4: | | | | 9 | cienc | nmen | owle | , | , <u>p</u> | sonin | " | | oning | king | earni | ompe | ing | gage | | <u>s</u> | jing | | | CLR-5: | Applying the skills in problem solving | | | | love of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Disciplinary Knowledge | Critical Thinking | Problem Solving | Analytical Reasoning | Research Skills | Team Work | Scientific Reasoning | Reflective Thinking | Self-Directed Learning | Multicultural Competence | Ethical Reasoning | Community Engagement | ICT Skills | Leadership Skills | Life Long Learning | | Course Le | | At to: | he end of thi | s course, learners will be | able | | K | | | | | | h | Ĭ | | L | | | | | | | | CLO-1: | | n insid | | industry and | 3 | 80 | 70 | L | Н | М | Н | L | М | L | L | L | L | L | Н | М | L | L | | CLO-2: | To gain | /alual | ole skills and | knowledge | 3 | 85 | 75 | М | Н | Н | М | Ľ, | М | L | L | М | Ĺ | L | Н | М | L | L | | CLO-3: | networki | ng | | nections and enhance | 3 | 75 | 70 | М | н | М | Н | L | М | М | L | М | L | М | Н | М | L | L | | CLO-4: | To get ea | | | to allow the student to m | ake 3 | 85 | 80 | М | Н | М | Н | L | М | М | L | М | L | М | Н | М | L | L | | CLO-5: | To get an inside view of an industry and organization/company | | | 3 | 85 | 75 | Н | Н | М | Н | L | M | М | М | М | L | М | M | M | L | L | | Students can choose a company of their own interest for Apprenticeship for a period of minimum TEN weeks (Part-time) to learn about the application of their related field in real time environment. All students have to give a presentation about their observations made by them in internship as per the schedule given. At the end of the internship period, every student shall submit a structured internship report within 15 days from the date of the completion of the internship period. | Learning Assessment | ELINA. TH | AP. IDAD | | | | | | | | |---------------------|-------------------------|-------------------------|----------------------------------|-----------|--|--|--|--|--| | | Continuous Learning Ass | essment (50% weightage) | Final Evaluation (50% weightage) | | | | | | | | Internship | Review – 1 | Review – 2 | Project Report | Viva-Voce | | | | | | | | 20% | 30 % | 30 % | 20 % | | | | | | ### **SEMESTER - IV** | Course<br>Code | UCD23 | P04L | Course<br>Name | Internship F | Internship Report– II Course Category IAPC Internship/Apprenticeship / Project/ Community Outreach | | | | | | I | ŀ | L T<br>0 0 | P<br>8 | O C<br>2 4 | | | | | | | | | |-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------|------------------|----------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|------------------------|---------------------------------------|-----------------|----------------------|-----------------|------------|----------------------|---------------------|------------------------|--------------------------|-------------------|----------------------|------------|-------------------|--------------------|----| | Pre-requis<br>Courses | ite | Nil | | Co-requisite Courses | Nil | | | | | | Prog<br>Cou | ress<br>rses | ive | | Nil | | | | | | | | | | Course Of<br>Departmen | U | | Chemistry | | | Oata Book / Codes/Standards Nil | | | | | | | | | | | | | | | | | | | Course Le<br>Rationale | | 1 | The purpose | of learning this course is | s to, | | | | | Lear | ning | | Prog | ıram | Lear | ning | Outo | come | s (Pl | _O) | | | | | CLR-1: | Demons | | skills learnt ir | the real time | 1 | 2 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | Explore and rela | | | tries based on chemistry | / | | | | | 1 | | / | ħ | | | | 4 | | | | | | | | CLR-3: | Enhance | Enhance the skills in the system aspects | | | | | | | | | | | | | | | | | | | | | | | CLR-4: | Understanding the professional connections with the | | | | | (1100) | y (%) | ıt (%) | age | | | D | - | ۲. | | | пg | tence | | ment | | | | | CLR-5: | | | | em solving | - 9 | | enc | ner | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | ij | | 1 | nin | ng | arij | npe | g | age | | " | Б | | Course Learning Outcomes (CLO): Applying the skills in problem solving At the end of this course, learners will be able to: | | | | le G | Level of Hillinking (Blooming | Expected Proficiency (%) | Expected Attainment (%) | Disciplinary Knowledge | Critical Thinking | Problem Solving | Analytical Reasoning | Research Skills | Team Work | Scientific Reasoning | Reflective Thinking | Self-Directed Learning | Multicultural Competence | Ethical Reasoning | Community Engagement | ICT Skills | Leadership Skills | Life Long Learning | | | CLO-1: | To get a<br>organiza | | | industry and | 3 | 8 | 30 | 70 | L | Н | М | Н | L. | М | L | L | L | L | L | Н | М | L | L | | CLO-2: | To gain valuable skills and knowledge | | | | 3 | 8 | 35 | 75 | M | н | Н | М | L | М | L | L | М | L | L | Н | М | L | L | | CLO-3: | To make professional connections and enhance networking | | 3 | 7 | 75 | 70 | М | Н | М | Н | L | М | М | L | М | L | М | Н | М | L | L | | | | CLO-4: | 70-4: To get experience in a field to allow the student to make a career transition | | | | 3 | 8 | 35 | 80 | М | Н | М | Н | L | М | М | L | М | L | М | Н | М | L | L | | CLO-5 : | To get a | | | industry and | 3 | 8 | 35 | 75 | Н | Н | M | Н | L | М | М | М | М | L | М | M | M | L | L | Students can choose a company of their own interest for internship for a period of minimum TEN weeks (Part-time) to learn about the application of their related field in real time environment. All students have to give a presentation about their observations made by them in internship as per the schedule given. At the end of the internship period, every student shall submit a structured internship report within 15 days from the date of the completion of the internship period. | Learning Assessment | Frank III | CIE · LEAD | | | | | | | |---------------------|-----------------------------|---------------------|----------------------------------|-----------|--|--|--|--| | | Continuous Learning Assessm | ent (50% weightage) | Final Evaluation (50% weightage) | | | | | | | internship | Review – 1 | Review – 2 | Project Report | Viva-Voce | | | | | | | 20% | 30 % | 30 % | 20 % | | | | | | Course<br>Code | UCD23 | P05L | Course<br>Name | Project Work – II | | | | | Cour<br>Cate | | IAP | C Pr | ojec | t/ | App<br>y Ou | | | nip / | | L<br>0 | T<br>0 | | O C<br>2 4 | |----------------------------------|-------------------------------------------------------------------------------|------------------------------------|------------------|--------------------------------|-----|---------------------------|--------------------------|-------------------------|-------------------------|-------------------|-----------------|----------------------|-----------------|-----------|----------------------|---------------------|------------------------|------------------|-----------------------------------------------|----------------------|------------|-------------------|--------------------| | Pre-requisi<br>Courses | te | Nil | | Co-requisite Courses | Nil | | | | | | Prog<br>Cour | | ive | | Nil | | | | | | | | | | Course Off<br>Departmen | | | Chemistry | Data Book / Codes/Standards | | | | | Nil | | | | | | | | | | | | | | | | Course Lea<br>Rationale ( | | | The purpose | of learning this course is to, | | | | | Learning Outcomes (PLO) | | | | | | | | | | | | | | | | CLR-1: | Demons | | skills learnt ir | the real time | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | | the di | | tries based on chemistry | / | | N | | | | | | | | 7. | | l. | | | | | | | | CLR-3: | Enhance | e the skills in the system aspects | | | | | | - | | | | | | | 1 | | | | | | | | | | CLR-4: | Understanding the professional connections with the | | | | ne | 3loom) | (%) k: | ıt (%) | dge | | | б | 7 | 5 | 5 | | Bu | tence | l. | ment | | | | | CLR-5: | | | | em solving | | ) (B | enc | ner | × | | 1 | in | | | nin | ing | arni | upe | g. | age | | S | Б | | Course Lea<br>Outcomes<br>(CLO): | Course Learning Outcomes At the end of this course, learners will be able | | | | e | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Disciplinary Knowledge | Critical Thinking | Problem Solving | Analytical Reasoning | Research Skills | Team Work | Scientific Reasoning | Reflective Thinking | Self-Directed Learning | Multicultural Co | Multicultural Competence<br>Ethical Reasoning | Community Engagement | ICT Skills | Leadership Skills | Life Long Learning | | CLO-1: | To get a<br>organiza | | | industry and | | 3 | 80 | 70 | L | Н | М | Н | L | М | L | L | L | L | L | Н | M | L | L | | CLO-2 : | To gain valuable skills and knowledge | | | | 3 | 85 | 75 | М | Н | Н | М | Ľ | М | L | L | М | L | L | Н | М | L | L | | | CLO-3: | networki | | | | | 3 | 75 | 70 | М | Н | М | Н | L | М | М | L | М | L | М | Н | М | L | L | | CLO-4: | To get experience in a field to allow the student to make a career transition | | | | 3 | 85 | 80 | М | Н | М | Н | L | М | М | L | М | L | М | Н | М | L | L | | | CLO-5: | To get a | | | industry and | ; | 3 | 85 | 75 | Н | Н | М | Н | L | М | М | М | М | L | М | M | М | L | L | Students can choose problems of their own interest for research and analysis in the field of Chemistry. There will be two reviews conducted during the project period for all the students. At the end of the project, every student shall submit a structured project report and will take a Viva Voce examination. | Learning Assessment | - 1 TO 3.7 - | | | | | | | | |---------------------|---------------------|----------------------------|----------------------------------|-----------|--|--|--|--| | | Continuous Learning | Assessment (50% weightage) | Final Evaluation (50% weightage) | | | | | | | Internship | Review – 1 | Review – 2 | Project Report | Viva-Voce | | | | | | | 20% | 30 % | 30 % | 20 % | | | | | | Course<br>Code | UCD2 | 3P06L | Course<br>Name | Apprenticeship – II | | | | | Cour<br>Cate | | IAP | C Pr | terns<br>ojec<br>omm | t/ | • • | | | nip / | | L<br>0 | T<br>0 | P ( | O C<br>2 4 | |----------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------|----------------------------|-------|---------------------------|--------------------------|-------------------------|-------------------------|-------------------|-----------------|----------------------|----------------------|-----------|----------------------|---------------------|------------------------|--------------------------|-------------------|----------------------|------------|-------------------|--------------------| | Pre-requisi<br>Courses | te | Nil | | Co-requisite Courses | Nil | | | | | | Prog<br>Cour | | ive | | Ni | | | | | | | | | | Course Off<br>Departmen | | Chemistry Data Book / Codes/Stand | | | | | | ards | | | Nil | | | | ' | | | | | | | | | | Course Lea<br>Rationale ( | - | - | The purpose | of learning this course is | s to, | | | | Learning Dutcomes (PLO) | | | | | | | | | | | | | | | | CLR-1: | Demonstrate skills learnt in the real time | | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | | ore the different industries based on chemistry related areas | | | | | | | 7 | | | | | | | | 1 | | | | | | | | CLR-3: | Enhand | nce the skills in the system aspects | | | | | | | | ١., | 4 | A | | | 1 | | | | | | | | | | CLR-4: | Unders<br>knowle | | | sional connections with t | he | (mool) | (%) k: | ıt (%) | dge | | - | б | D | h | | ١ | ing | tence | L. | ment | | | | | CLR-5 : | Applyir | g the s | skills in probl | em solving | | g (B | ienc | mer | Me | | | nin | | | ning | ing | arn | mpe | g | age | | S | <u>ng</u> | | Course Lea<br>Outcomes<br>(CLO): | Course Learning Outcomes At the end of this course, learners will be able | | | | le | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Disciplinary Knowledge | Critical Thinking | Problem Solving | Analytical Reasoning | Research Skills | Team Work | Scientific Reasoning | Reflective Thinking | Self-Directed Learning | Multicultural Competence | Ethical Reasoning | Community Engagement | ICT Skills | Leadership Skills | Life Long Learning | | CLO-1: | | | de view of ar<br>company | n industry and | | 3 | 80 | 70 | L | Н | М | Н | L | M | L | L | L | L | L | Н | M | L | L | | CLO-2 : | To gain valuable skills and knowledge | | | | II) | 3 | 85 | 75 | М | Н | Н | М | ď, | М | L | L | М | L | L | Н | М | L | L | | CLO-3: | To make professional connections and enhance networking | | | | 3 | 75 | 70 | M | Н | М | Н | L | М | М | L | М | L | М | Н | М | L | L | | | CLO-4 : | To get experience in a field to allow the student to make a career transition | | | | Ž. | 3 | 85 | 80 | М | Н | М | Н | L | M | М | L | М | L | М | Н | М | L | L | | CLO-5: | | | de view of an<br>company | n industry and | | 3 | 85 | 75 | Н | Н | М | Н | L | М | М | М | М | L | М | М | М | L | L | Students can choose a company of their own interest for Apprenticeship for a period of minimum TEN weeks (Part-time) to learn about the application of their related field in real time environment. All students have to give a presentation about their observations made by them in internship as per the schedule given. At the end of the internship period, every student shall submit a structured internship report within 15 days from the date of the completion of the internship period. | Learning Assessment | TTEARN | · FAD 7 | DID | | |---------------------|--------------|---------------------------|-------------------------------------|------------------------| | | Continuous L | earning Assessment (50% v | weightage) Fin <mark>al Eval</mark> | uation (50% weightage) | | ilternship | Review - | - 1 Revie | ew – 2 Project | Report Viva-Voce | | | 20% | 30 % | 30 % | 20 % |