ACADEMIC CURRICULA **Professional Core Courses** **ELECTRONICS AND COMMUNICATION ENGINEERING** Regulations - 2018 SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (Deemed to be University u/s 3 of UGC Act, 1956) Kattankulathur, Kancheepuram, Tamil Nadu, India | Cou | | 18ECC102J Course
Name | ELECTRONIC DEVICES | | Cours
Catego | | С | | | | | Profe. | ssion | al Cor | е | | | | 1 | _ T | P 2 | C 4 | |--|---------------------------------|---|--|-------------------------------------|------------------|--------------------------|-------------------------|------------------------|------------------|---------------|--------------------|------------|-----------|----------------|---------|--------------|---------------|---------------|---------------|-----------------------------|---|------------| | Co | requisite
ourses
Offering | 18EES101J Department Electronics and Com | Co-requisite Courses Mil Mulication Engineering Data Bo | ook / Codes/Standards | | rogre:
Cour | | 18ECC | 201J | | | | | | | | | | | | | | | Course | Learning | g Rationale (CLR): The purpose of learning | ng <mark>this course i</mark> s to: | CHEC | L | earniı | ng | | | | | Pr | ograr | n Lea | rning (| Outco | mes (| PLO) |) | | | | | CLR-1 | : Provi | de a basis for understanding semiconductor | <mark>material, ho</mark> w a pn junction is formed and | its principle of operation | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 | | in the importance of diode in electronic ci <mark>rcu</mark> | | | | | | | | | | | | | | | | | | | ± | _ | | CLR-3 | | iss the basic characteristics of several <mark>other t</mark> | | | | | | | ж. | | 5 | | | <u>i</u> | | | | | | | ner | Research | | CLR-4 | | ribe the basic structure, operation an <mark>d charac</mark> | | | Ē | (% | (% | a: | g Pr | | arc | | | labi | | بح | | | | | ıgeı | ese | | CLR-5 | : Desci | ribe the basic structure, operation a <mark>nd charac</mark>
fier. | cteristics of MOSFET, and discuss its use | e as a switch and an |) (Bloo | ency (| nent (º | wledg | S | pmen | , Rese | age | (I) | Sustainability | | Team Work | | Finance | و
ق | onal | t Mana | ∞ ठ | | CLR-6 | | modern engineering tools such as <mark>PSPICE t</mark> o
nethods used by technicians an <mark>d electroni</mark> c e | | experience with instruments | Thinking (Bloom) | d Profici | d Attainr | ring Kno | Analysi | & Development | , Design, Research | Tool Usage | & Culture | nent & S | | ıl & Tea | ication | <u>۲</u>
∞ | g Learning | –1: Professional
evement | Project Management
ques | 3: Analyze | | | | , , , | rse, learners will be able to: | | Level of | Expected Proficiency (%) | Expected Attainment (%) | Fnaineering Knowledge | Problem Analysis | Design & | Analysis, | Modern | Society 8 | Environment & | Ethics | Individual & | Communication | Project Mgt. | Life Long I | PSO-1: Profe
Achievement | PSO – 2: Pr
Techniques | PSO – 3 | | CLO-1 | | iin the operation, characteristi <mark>cs, param</mark> eters | | les and special diodes | 1 | 60 | 70 | Н | - | - | - | - | - | - | - | - | - | - | М | - | - | - | | CLO-2 | | ate important applications of s <mark>emicond</mark> uctor (| | CONTROL OF THE | 2 | 60 | 70 | - | - | - | - | - | - | - | - | - | - | - | М | - | - | - | | CLO-3 | | ew bipolar transistor constructi <mark>on, opera</mark> tion, o
witching. | characteristics and parameters, as well a | s its application in amplification | 1 | 60 | 70 | Н | - | - | - | - | - | - | - | - | - | - | М | - | - | - | | CLO-4 | | ew field-effect transistor constr <mark>uction, o</mark> peration fields and switching. | on, characteristics and parameters, as we | ell as its application in | 1 | 60 | 70 | Н | | 0.5 | 7 | - | - | - | 1 | - | - | - | М | - | L | • | | CLO-5 | | truct a circuit, then make funct <mark>ional mea</mark> sure | ments to understand the operating charac | cteristics of the device / circuit. | 3 | 70 | 75 | - | TIP. | | | Н | - | - | - | - | - | - | - | L | L | - | | CLO-6 | : Solve | e specific design problem, which <mark>after co</mark> mple | tion will be verified using modern enginee | ering tools such as PSPICE. | 2 | 70 | 75 | - | - | - | - | Н | - | - | L | Н | М | - | М | - | - | - | | , | | 0 | D: 1.0: " | 018: | 1 | | | | D: | | | | | | | | 100 5 | | | _ | | | | Duration | n (hour) | Semiconductor Diodes 15 | Diode Circuits | Special Dioc | ies | | | | Ribola | r Juno | 15 | ransı | stors | | | IV | 105 F | ieia-E | | ırans | sistors | | | S-1 | SLO-1 | Basic semiconductor theory: Intrinsic & extrinsic semiconductors | 15 HWR operation, Efficiency and ripple fac | 15
ctor Backward diode | | | | Physi <mark>c</mark> a | l struc | ture | 10 | Ť | Ť | | Phy | sical | struct | ure | 15 | | | | | 3-1 | SLO-2 | Current flow in semiconductors | Problem solving | Varactor diode | | | | Device | opera | tion of | BJT | | | | | rice o | | on of | f E-M | OSFE | T & D- | - | | SLO-1 PN junction theory: Equilibrium PN junction Center-Tapped Transformer FWR operation, Efficiency and ripple factor Step recovery diod | | | | | | | | Current configui | | ge cha | aracte | ristics | of C | E BJ1 | I-V | chara | acteris | tics c | s of E-MOSFET | | | | | 3-2 | 01.0.0 | B | | | | | | Current | -Volta | ae cha | aracte | ristics | of C | F BJ1 | - T_ | | | | | | | | Point-contact diode Energy band diagram Schottky Diode Lab 4: Diode clipping and clamping circuits Lab 7: Series and Shunt Regulators Metal-semiconductor junction: Structure, Forward & Reverse Characteristics of SLO-2 Forward biased PN junction Reverse biased PN junction SLO-2 Relation between Current and Voltage Lab 1: PN Junction Diode Characteristics SLO-1 SLO-1 SLO-2 S-3 Problem solving Problem solving ripple factor Bridge FWR operation, Efficiency and Current-Voltage characteristics of CE BJT Current-Voltage characteristics of CB BJT Current-Voltage characteristics of CB BJT Lab 10: BJT and MOSFET Switching configuration configuration configuration Circuits Problem solving Problem solving Derive drain current Lab 13: Repeat Experiments | S-6 | SLO-1 | Calculate depletion width | Filters: Inductor & Capacitor Filters | Tunnel Diode | Current-Voltage characteristics of CC BJT configuration | Derive transconductance | |------------|----------------|---|---|--------------------------------|---|--| | 5-0 | SLO-2 | Calculate barrier potential | Problem solving | Tunnel Diode | Current-Voltage characteristics of CC BJT configuration | Problem solving | | S-7 | SLO-1 | Derive diode current equation | Filters: LC & CLC Filters | Gunn Diode | BJT as an amplifier | CMOS FET | | 5-7 | SLO-2 | Derive diode current equation | Problem solving | Gunn Diode | BJT as a switch | MOSFET as an amplifier | | S-8 | SLO-1 | Effect of Capacitance in PN junction:
Transition Capacitance | Diode Clippers | IMPATT Diode | BJT circuit models - h-parameter | MOSFET as a switch | | | SLO-2 | Diffusion Capacitance | Problem solving | IMPATT Diode | BJT circuit models - hybrid-π parameter | Problem solving | | S
9-10 | SLO-1
SLO-2 | Lab 2: Zener diode characteristics | Lab 5: BJT Characteristics | Lab 8: MOSFET Characteristics | Lab 11: Photoconductive Cell, LED, and Solar Cell Characteristics | Lab-14: Model Examination | | S-11 | SLO-1 | Energy band structure of PN Junction Diode | Diode Clampers | PIN Diode | BJT biasing circuits and stability analysis: Base bias and emitter bias | Biasing Circuits for MOSFET: Gate Bias | | 5-11 | SLO-2 | Ideal diode and its current-voltage characteristics | Problem solving | PIN Photodiode | Problem solving | Problem Solving | | | SLO-1 | Terminal characteristics & parameters | Voltage Multipliers | Avalanche photodiode | Voltage-divider bias | Self-bias | | S-12 | SLO-2 | Diode modeling | Zener diode: Characteristics, breakdown mechanisms | Laser diode | Problem solving | Problem Solving | | S-13 | SLO-1 | DC load line and analysis | Zener resistances and temperature effects
Zener diode as voltage regulator | Problem solving | Collector-feedback bias | Voltage-divider bias | | | SLO-2 | Problem solving | | S
14-15 | SLO-1
SLO-2 | Lab 3: Diode rectifier circuits | Lab 6: BJT Biasing Circuits | Lab 9: MOSFET Biasing Circuits | Lab 12: Simulation experiments using PSPICE | Lab 15: End-Semester Practical Examination | | | 1. | David A. Bell, Electronic Devices and Circuits, 5th ed., Oxford University Press, 2015 | 5. | Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuit Theory, 11th ed., Pearson Education, 2013 | |-----------|----|---|----|--| | Learning | 2. | Donald Neamen, Electronic Circuits: Analysis and Design, 3rd ed., McGraw-Hill Education, 2011 | 6. | Muhammad Rashid, Microelectronic Circuits: Analysis & Design, 2nd ed., Cengage Learning, 2010 | | Resources | 3. | Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuits: Theory and Applications, OUP, 2014 | 7. | Muhammed H Rashid, Introduction to PSpice using OrCAD for circuits and electronics, 3rd ed., Pearson, 2004 | | | 4. | Thomas L. Floyd, Electronic Devices", 9th ed., Pearson Education, 2013 | 8. | Laboratory Manual, Department of ECE, SRM
University | | | | | | | | Learning Assess | sment | | 100 | | | | | | | | | |-----------------|------------------------|--------|----------|--------|---------------------|-------------------|----------|--------|----------|--------------------|-------------------| | | Bloom's | | | Conti | inuous Learning Ass | essment (50% weig | htage) | | | Final Evamination | n (50% weightage) | | | Level of Thinking | CLA – | 1 (10%) | CLA – | 2 (15%) | CLA – | 3 (15%) | CLA - | 4 (10%)# | Filiai Examination | n (50% weightage) | | | Level of Thirtking | Theory | Practice | | Level 1 | Remember
Understand | 20% | 20% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | Level 2 | Apply
Analyze | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | Level 3 | Evaluate
Create | 10% | 10% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | Total | 10 | 00 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | 10 | 00 % | [#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|--------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | 1. Mr. Manikandan AVM, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | 2. Dr. Diwakar R Marur, SRMIST | | Co.
Co | | 18ECC103J Course
Name | DIGITAL ELECTRONIC PRI | NCIPLES | Course
atego | | С | | | | | P | rofes | siona | l Core | Э | | | | 3 | 0 | P 2 | 4 | |--|---------------------|--|--|---------------------------------------|------------------|--------------------------|-------------------------|----------|-----------------------|------------------|-------------|----------------------|-------------------|-----------|------------------------------|--------|-----------------------|-----------------|----------------|-------------------|----------------------|----------------------------|-----------------------| | С | requisite
ourses | 18EES101J | Co-requisite Nil | | | rogres
Cours | | 18EC | C20 | 3J | | | | | | | | | | | | | | | Course | Offering | Department Electronics and Con | nmunication Engineering Dat | a Book / Codes/Standards | Nil | Course | Learning | g Rationale (CLR): The purpose of learn | ing this course is to: | | L | .earnii | ng | | | ı | | | Pro | ogram | Lea | rning | Outco | mes (| PLO) | | | | | | CLR-1 | : Unde | erstand binary codes, digital arithmetic oper <mark>a</mark> | tions and able to simplify Boolean log | ic expressions | 1 | 2 | 3 | 15 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | LR-2 | | ribe how basic TTL and CMOS gates ope <mark>ra</mark> t | | Day (at least | | 1 | | | | | | | | | | | | | | | | ı | ء | | LR-3 | | to design simple combinational logics <mark>using</mark> | basic gates and MSI circuits | and the latter of the later | | | | | 7 | | | 5 | | | i i | | | | | | | me | S C | | LR-4 | | liarize with basic sequential logic com <mark>ponen</mark>
analyze sequential logic circuits and <mark>Finite S</mark> | | neir usage, and able to design | loom) | (%) k: | ıt (%) | N. | edge | 9 | ent | Research | | | tainab | | Vork | | Finance | | | anage | 3. Analyze & Research | | LR-5 | | v how to implement logic circuits u <mark>sing PLDs</mark> | | The second |) (B | enc | ner | | wle | S | mdo | Α, | age | Ф | onst | | N V | | inar | В | Ö | Ĕ | 4 | | LR-6 | : Use r | modern engineering tools such as PSPICE /
Iments and methods used by te <mark>chnicians</mark> an | Logisim to carry out design experime
d electronic engineers | nts and gain experience with | Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | | Engineering Knowledge | Problem Analysis | Development | Design, | Modern Tool Usage | & Culture | Environment & Sustainability | | ndividual & Team Work | cation | gt. & F | ife Long Learning | Professional
nent | Project Management | Analyz | | | | | | | ofT | ted | ted | | erii | m / | ∞ | . <u>is</u> | n T | ∞ > | u H | | ual | iù | Ĕ | gu | 1: P
em | . 2:
igue | ۔ ذ | | ourse | Learning | g Outcomes (CLO): At the end of this cou | urse, learners will be able to: | | Level | Expeci | Expeci | 64 | Engine | Proble | Design & | Analysis, | Moder | Society | Enviro | Ethics | Individ | Communication | Project Mgt. & | Life Lo | PSO-1: F
Achieven | PSO – 2: Pro
Techniques | - 050 | | CLO-1 | | lify Boolean expressions; carry out arithmeticorrection. | c operations with binary numbers; app | ply parity method for error detection | 1 | 90 | 75 | | Н | - | | | • | - | - | - | - | - | - | - | - | - | - | | CLO-2 | | ain the operational characteris <mark>tics / pro</mark> pertie
I two major IC technologies, TT <mark>L and C</mark> MOS | | ell as other types of IC devices | 1 | 80 | 70 | 13 | Н | - | | - | • | - | - | - | - | - | - | - | - | - | - | | LO-3 | | ify eight basic types of fixed-fu <mark>nction co</mark> mbin
in building complete digital sys <mark>tems suc</mark> h as | | te how the devices / circuits can be | 2,3 | 90 | 75 | W | • | М | Н | 82 | Н | - | - | - | - | - | - | - | - | - | - | | LO-4 | : Analy | ze and design Mealy and Moore models of | sequential circuits using several types | of flip-flops. | 2,3 | 90 | 75 | | - | М | Н | - | Н | - | - | - | - | - | - | - | - | - | - | | LO-5 | : Imple | ement multiple output combinati <mark>onal logic</mark> cir | cuits using PLDs; Explain the operation | on of a CPLD and FPGA. | 2 | 80 | 75 | | - | М | Н | - | L | - | - | - | - | - | - | - | - | - | | | CLO-6 | : Solve
Logis | e specific design problem, which <mark>after com</mark> pl
sim | etion will be verified using modern eng | gineering tools such as PSPICE / | 2 | 90 | 75 | | F | М | Н | - | Н | - | - | - | Н | - | - | - | М | - | L | | | | | | | | | | | | ď | | | | | | | | • | | • | | , | | | Durati | on (hour) | Binary Codes, Digital Arithmetic and Simplification of Boolean Functions | Logic Families | Combinational S | ystem | S | - 100 | | | Sequ | uentia | al Sys | stems | | | | Men | nory a | nd Pro | ogran | nmabl | le Logi | С | | | | 15 | 15 | 15 | | | | | | 70 | 1 | 5 | | | | | | | | 15 | | | | | S-1 | SLO-1 | Binary Codes, Digital Arithmetic and Simplification of Boolean Functions | Introduction | Binary arithmetic units | ١, | | | Flip-flo | | | | | | | | RA. | М Ме | mory | decod | ling | | | | | | SLO-2 | Error detecting codes | TTL Logic Family | Adder | | | | JK flip- | -flop, | T flip | o-flop, | , D fli _l | p-flop |) | | RO | | | | | | | | | S-2 | SLO-1 | Error correcting code | Totem-pole TTL | Design of Half adder | | | | Maste | r-sla | ve RS | S flip-f | flop | | | | | | mable
ncepts | | Dev | rices (I | PLDs). | | | SLO-2 Hamming Code open-collector and tristate TTL Design of Full adder Master-slave JK flip-flop PROM | • | 0 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Course Course Course Arithmetic number representation LAB 1: Study of logic gates SLO-1 SLO-1 SLO-2 SLO-2 Binary arithmetic S-3 I T P C functions using standard ICs Design subtractor using logic gates LAB 7: Implement combinational logic Subtractor Registers & Counters Synchronous Counters Shift registers (SISO, SIPO, PISO, PIPO) LAB 10: Design and implement PROM as PLD using Logisim Programmable Array Logic (PAL) LAB 13: Construct combinational circuit Schottkey TTL, standard TTL decoder using logic gates Metal Oxide Semiconductor logic families LAB 4: Design and implement encoder and characteristics | S-6 | SLO-1 | Hexadecimal arithmetic | N-MOS | n-bit parallel adder & subtractor | Universal shift register | Programmable Array Logic (PAL) | |------------|-------|--|---|---|--|--| | 3-0 | SLO-2 | Hexadecimal arithmetic | P-MOS | look ahead carry generator | Counters: Asynchronous/Ripple counters | Programmable Logic Array (PLA) | | | SLO-1 | BCD arithmetic simplification | CMOS logic circuits | Decoder | Synchronous counters, Modulus-n Counter | Programmable Logic Array (PLA) | | S-7 | SLO-2 | Minimization of Boolean Functions:
Algebraic simplification | Characteristics of MOS logic | Encoder | Ring counter, Johnson counter | Design combinational circuits using PLD's | | S-8 | SLO-1 | Problems on Algebraic simplification | Compare MOS logic circuits(CMOS) with TTL digital circuit | Multiplexer | | Design combinational circuits using PLD's | | | SLO-2 | Karnaugh map simplification | Electrical characteristics | Demultiplexer | Mealy a <mark>nd Moore mo</mark> del | Design combinational circuits using PLD's | | S
9-10 | | LAB 2: Design and implement Adder and Subtractor using logic gates | LAB 5: Design and implement Multiplexer and Demultiplexer using logic gates | LAB 8: Verify characteristic table of flip-
flops | LAB 11: Construct and verify
shift registers | LAB 14: Model Practical Examination | | S-11 | | Problems on Karnaugh map simplification | Fan-out | Code converters | 1.Synchronous IC.Jockeni seguenuai circuiis | Design of combinational circuits using PLD's | | | SLO-2 | Problems on Karnaugh map simplification | Propagation Delay | Magnitude comparators | Synchronous (Clocked) sequential circuits | Design sequential circuits using PLD's | | | SLO-1 | Quine McCluskey | Power dissipation | Magnitude comparators | Synchronous (Clocked) sequential circuits | Design sequential circuits using PLD's | | S-12 | SLO-2 | Tabulation method | Noise margin | Parity generators (Odd parity) | Analyze and design synchronous sequential circuits | Design sequential circuits using PLD's | | C 12 | SLO-1 | Problems on Quine McCluskey or Tabulation method. | Supply voltage levels | Parity generators (Even parity) | State reduction | Design sequential circuits using PLD's | | S-13 | SLO-2 | Exercise problems using Tabulation method | Operational voltage levels | Implementation of combinational logic by standard IC's. | State assignment | Design sequential circuits using PLD's | | S
14-15 | | Lab 3: Design and Implemen <mark>t 2-bit</mark>
Magnitude Comparator usin <mark>g logic gat</mark> es | LAB-6: Design and implement code converters using logic gates | LAB 9: Construct and verify 4-bit ripple counter, Mod-10/Mod-12 ripple counters | Lab 12: Construct mini project work | LAB 15: University Practical Exam | | | 1. | Morris Mano M, Michael D. Ciletti, Digital Design with an Introduction to the Verilog HDL, 5th ed., Pearson Education, | 4. | Ronald J. Tocci, Digital System Principles and Applications, 10 th ed., Pearson Education, 2009 | |-----------|----|--|----|--| | Learning | | 2014 | 5. | Donald P Leach, Albert Paul Malvino, Goutam Saha, Digital Principles and Applications, 6th ed., | | Resources | 2. | Charles H Roth (Jr), Larry L. Kinney, Fundamentals of Logic Design, 5th ed., Cengage Learning India Edition, 2010 | | Tata-Mcgraw Hill, 2008 | | | 3. | Thomas L. Floyd, Digital Fundamentals, 10th ed., Pearson Education, 2013 | 6. | LAB MANUAL, Department of ECE, SR <mark>M Universi</mark> ty | | | | | | | | Learning Asse | essment | | | | | | | | | Т | | |---------------|------------------------|--------|----------|--------|--------------------|-------------------|----------|--------|------------------------|----------------------|---------------------| | | Bloom's | | 10 m/L | Conti | nuous Learning Ass | essment (50% weig | ıhtage) | | | Einal Evaminatio | n (50% weightage) | | | | CLA – | 1 (10%) | CLA - | 2 (15%) | CLA – | 3 (15%) | CLA - | 4 (<mark>10%)#</mark> | I IIIai Lxaiiiiiaiio | ii (50% weigiilage) | | | Level of Thinking | Theory | Practice | | r. Level 1 | Remember
Understand | 20% | 20% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | Level 2 | Apply
Analyze | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | Level 3 | Evaluate
Create | 10% | 10% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | [#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | 1. Mr. Viswanathan B, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | | | Course
Code | 18ECC104T | Course
Name | SIGNALS AND SYSTEMS | | Cours
Catego | | С | | | | | Profe | ssion | al Coi | re | | | | | L - | Г Р
I 0 | 2 | |-----------------------|--------------------------------|--|--|--|---------------------------|--------------------------|-------------------------|--------|-----------------------|----------------------|----------|-------------------|-------------------|------------------|--------|-----------------------|---------------|--------------------|--------------------|------------------------------------|--|----------------| | Pre-requisite Courses | e 18EES101J | Flectronics and Co. | Co-requisite Nil Courses Nil mmunication Engineering Data Bool | k / Codes/Standards | | rogre
Cour | essive | 18E0 | C204 | J | | | | | | | | | | | | | | Course Offerin | ід Бераніпені | Liectronics and con | Timunication Engineering Data Book | r / Codes/Otandards | 1 | | | | | | | | | | | | | | | | | | | Course Learnii | ng Rationale (CLR): | The purpose of learr | ning <mark>this course i</mark> s to: | The state of s | - L | .earni | ng | | | | | Pı | ograr | n Lea | rning | Outco | omes | (PLC |)) | | | | | CLR-1: Knc | ow about requirement | ts of signal and system a | a <mark>nalysis in co</mark> mmunication. | | 1 | 2 | 3 | 10 | 1 2 | 2 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | | <mark>lic Ćontinu</mark> ous time Signals using Fourier sen | ies and transforms | | | | - 7 | | | | | | > | | | | | | | | i. | | | | | Laplace transform and Convolution integral | and the ballion | = | _ | | | | | Research | | | Sustainability | | | | | | | S | Research | | | | | time signals and system through DTFT, Conv | olution sum | Jon I | 8 | %) | | ge | = | sea | | | ina | | 농 | | စ္ပ | | | l and | Š | | | | of Z-Transform for the | | | <u>ĕ</u> | ြင့် | ent | ъ. | Jed | l le | Re | e e | | ısta | | Š | | Finance | _ | nal | l Ĕ | ~ | | CLR-6 : sysi | tems and also the ab
blems | ility to apply m <mark>odern cor</mark> | domain approaches to the analysis of conting
Inputation software tool for the analysis of ele | | .evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | | Engineering Knowledge | Design & Development | (n) | Modern Tool Usage | Society & Culture | Environment & Su | ics | ndividual & Team Work | Communication | Project Mgt. & Fir | Life Long Learning | PSO-1: Professional
Achievement | SO – 2: Project
Management Techniques | O – 3: Analyze | | Course Learnii | ng Outcomes (CLO): | At the e <mark>nd of this</mark> co | urse <mark>, learners</mark> will be able to: | | Lev | Ä | EX | 37. | | Des l | Ans | Š | Soc | E | Ethics | <u>la</u> | Ö | P. | Life | PSO-:
Achie | PSO
Mana | OSG | | CLO-1: Und | derstand the various | classifications of Signal | s and Systems | Control of Maria | 1 | 65 | 60 | 1 | Н . | | - | - | - | - | - | - | - | - | - | - | - | - | | CLO-2: Ana | alyze Periodic and Ap | periodic Co <mark>ntinuous t</mark> ime | Signals using Fourier series and Fourier Tra | nsform | 2 | 65 | 60 | | - <i>F</i> | 1 - | - | - | - | - | - | - | - | - | - | - | - | - | | CLO-3: Ana | alyze and characteriz | e the Conti <mark>nuous tim</mark> e s | ystem through Laplace transform and Convol | lution integral. | 2 | 65 | 60 | | - <i>F</i> | 1 - | - | - | - | - | - | - | - | - | - | - | - | - | | CLO-4: Ana | alyze and characteriz | e the Discr <mark>ete time s</mark> igna | als and system through DTFT, Convolution so | um | 2 | 65 | 60 | | - F | 1 M | - | - | - | - | - | - | - | - | - | - | - | - | | | | e the Discr <mark>ete
time s</mark> yste | | Marin mark | 2 | 65 | 60 | | - <i>H</i> | 1 M | - | - | - | - | - | - | - | - | - | - | - | L | | .i U-n ' i ' ' | oly the mathematical
plysis | technique <mark>s u</mark> | sed for continuous-time signal and discrete-t | time signal and system | 2 | 65 | 60 | M | - F | - | М | М | - | - | - | - | - | - | - | L | - | - | | | • | | | | | | | | | | | | | | | | • | | • | | | | | | Classification o | of Signals and <mark>Systems</mark> | Analysis of Continuous Time Signals | Analysis of LTI (| CT Syst | em | | Ar | alysis | of DT | Signa | ls and | Syst | ems | | | | | | DT Sy
Insfor | | | | Duration (hou | r) | 12 | 12 | 12 | | | | | | | 12 | | | | | | | | 12 | | | | | SLO-1 | 1 Introduction to sig | nals and systems | Introduction to Fourier series | System modeling | | | | Repre | sentat | ion of | seque | nces | | | Z | transf | orm – | - intro | ductio | on | | | | S-1 | Requirements of s | | Representation of Continuous time | 5 | | | | Discre | te Tin | e Fou | rier Tı | ansfo | rm (D | TFT) | – Re | eaion | of cor | nvera | ence | of fini | e dura | tion | | | | Classification of Signals and Systems | Analysis of Continuous Time Signals | Analysis of LTI CT System | Analysis of DT Signals and Systems | Analysis of LTI DT System using Z-Transform | |--------|-----------|---|--|--|--|--| | Durati | on (hour) | 12 | 12 | 12 | 12 | 12 | | | SLO-1 | Introduction to signals and systems | Introduction to Fourier series | System modeling | Representation of sequences | Z transform – introduction | | S-1 | SLO-2 | Requirements of signal and system analysis in communication | Representation of Continuous time Periodic signals | Description of differential equations | | Region of convergence of finite duration sequences-properties. | | S-2 | SLO-1 | Continuous time signals (CT signals) | Fourier series: Trigonometric representation | Solution of Differential equation using classical method | DTFT of standard signals | Unilateral and bilateral z transforms | | 3-2 | | Discrete time signals (DT signals) | Fourier series: Trigonometric representation | Differential equation: Zero state response | Properties of DTFT | Properties of z transform | | S-3 | SLO-1 | Representation of signals: Step, Ramp,
Pulse, Impulse | Fourier series: Cosine representation | Differential equation: Zero Input response | Problems on Properties of DTFT | Practice problems | | 3-3 | SLO-2 | Representation of signals: Sinusoidal, Exponential | Fourier series: Cosine representation | Total Response using classical method | Inverse DTFT | Practice problems | | | SLO-1 | Basic operation on the signals | Symmetry conditions | Impulse response | Impulse response of a system with DTFT | Relation between DTFT and Z transform | | S-4 | SLO-2 | Problems on signal operations | Properties of Continuous time Fourier series | Step response | Frequency response of a system with DTFT | Practice problems | | S-5 | SLO-1 | Classification of CT and DT signals:
Periodic & Aperiodic signals. | Practice problems on Fourier series | Frequency response | Step response | condition for causality in Z domain-
Problems | |------|-------|---|---|--|---|--| | 5-5 | SLO-2 | Classification of CT and DT signals:
Deterministic & Random signals. | Practice problems on Fourier series | Practice problems on solution of differential equation | Practice problems | condition for stability in Z domain-Problems | | S-6 | SLO-1 | Energy signal | Gibb's Phenomenon | Convolution integral | Solution of linear constant coefficient difference equations | Inverse Z transform | | | SLO-2 | Power signal | Parseval's relation for power signals | Properties of convolution | Problems with and without Initial conditions | Power series expansion | | S-7 | | Even & Odd signals | Power density spectrum, | | Solution of difference equations using classical method | Inverse Z transform with Partial fraction | | 3-1 | SLO-2 | Even & Odd signals | Frequency spectrum. | Practice Problems | Zero input resp <mark>onse , Zero s</mark> tate response,
Total response | Inverse Z transform with Partial fraction | | | SLO-1 | CT systems and DT systems | Fourier transform: Introduction | Analysis using Laplace transform | Practice problems | Residue method | | S-8 | SLO-2 | Classification of systems: Static & Dynamic | Representation of Continuous time signals | ROC and Convergence of Laplace
Transform | Practice problems | Convolution method | | S-9 | SLO-1 | Superposition theorem | Properties of Continuous time Fourier transform | Properties of Laplace transform | DFT and IDFT | Analysis and characterization of DT system using Z-transform | | 5-9 | SLO-2 | Linear & Nonlinear system | Properties of Continuous time Fourier transform | Problems on properties of Laplace transform | Properties of DFT | Analysis and characterization of DT system using Z-transform | | 0.40 | SLO-1 | Time-variant & Time-invariant system | Parseval's relation for energy signals | Inverse Laplace transform | Practice problems | Practice problems | | S-10 | SLO-2 | Time-invariant system | Energy density spectrum | Problems | Convolution sum | Practice problems | | S-11 | SLO-1 | Causal system | Practice problems on Fourier Transform | Analysis of LTI system using Laplace transform | Convolution properties | Realization of Discrete time system- Direct form I, Direct Form II | | 3-11 | SLO-2 | Noncausal system | Practice problems on Fourier Transform | Analysis LTI system using Laplace transform-Problems | Linear Convolution,-Tabulation method,
Matrix method | Realization of Discrete time system-
Parallel and cascade form | | S-12 | SLO-1 | Stable & Unstable,LTI System | Practice problems on properties of Fourier Transform | transionii | | Practice problems | | 5-12 | SLO-2 | Unstable, LTI System | Practice problems on properties of Fourier
Transform | | Circular convolution-concentric circle method, matrix method | Practice problems | | Lograina | 1. | Alan V Oppenheim, Rona <mark>ld W. Sch</mark> afer Signals & Systems, 2 nd ed., Pearson Education, 2015 | |-----------------------|----|--| | Learning
Resources | 2. | P.Ramakrishna Rao, Shankar Prakriya, Signals & Systems, 2nd ed., McGraw Hill Education, 2015 | | | 3. | Simon Haykin, Barry Van Veen, Signals and Systems, 2 nd ed., John Wiley & Sons Inc., 2007 | - Lathi B.P, Linear Systems & Signals, 2nd ed., Oxford Press, 2009 John G. Proakis, Manolakis, Digital Signal Processing, Principles, Algorithms and Applications, 4th ed., Pearson Education, 2007 | | Dlaam'a | | | Conti | inuous Learning Ass | essment (50% weigl | | Final Evamination | (E00/ waightaga) | | | | | |---------|------------------------------|--------|----------|--------|---------------------|--------------------|----------|-------------------|------------------|-----------------------------------|----------|--|--| | | Bloom's
Level of Thinking | CLA – | 1 (10%) | CLA – | 2 (15%) | CLA – 3 | 3 (15%) | CLA – 4 | 4 (10%)# | Final Examination (50% weightage) | | | | | | Level of Thinking | Theory | Practice | | | | Level 1 | Remember
Understand | 40 % | | 30 % | - | 30 % | - | 30 % | - | 30% | - | | | | Level 2 | Apply
Analyze | 40 % | | 40 % | - | 40 % | - | 40 % | - | 40% | - | | | | Level 3 | Evaluate
Create | 20 % | - | 30 % | - | 30 % | | 30 % | - | 30% | - | | | | Total | | 10 | 0 % | 10 | 0 % | 100 |) % | 10 | 0 % | 10 | 0 % | | | [#]CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|----------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | 1. Dr. S. Dhanalakshmi , SRM IST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | | | Cou | | 18ECC105T Course Name | ELECTROMAGNETICS AND TRANSMISSION | ONLINES | Course
atego | | С | | | | Pro | fessio | nal Co | ore | | | | | T 0 | P 0 | C 3 | |--|--|---|--|----------------------------|---|---------|---------|----------------|-----------------------------------|--|--|---------|--------|--------|--------
---------|---------|--------|-------------------|----------|-----| | Co | equisite
urses | 18EES101J, 18PYB101J Department Electronics and C | Co-requisite Courses Mil Data Book | / Codes/Standards | | ogres | es | 18ECC20 | | | | | | | | | | | | | | | Course | Offering | Department Electronics and C | Data Book | / Codes/Standards | Clai | K S T A | ible, i | 3 . 450-20 | 00 | | | | | | | | | | | | | | Course | Learning | Rationale (CLR): The purpose of lea | rning this course is to: | THE REAL PROPERTY. | L | earnin | ng | | | | | Progr | am Le | arning | Outco | omes | (PLO) |) | | | | | CLR-1 | : Gain i | knowledge on the basic concepts and ins | ig <mark>hts of Electri</mark> c field | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 (| 6 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: Gain knowledge on the basic concepts and insights of Magnetic field and Emphasize the significance of Maxwell's equations. CLR-3: Interpret the wave propagation in guided waveguide. CLR-4: Acquire the fundamental knowledge on Transmission Line Theory. | | | | | | | | | PSO-1: Professional Achievement | PSO – 2: Project Management Techniques | R r r r PSO - 3: Analyze & Research | | | | | | | | | | | | CLO-6 | | | enerated using Maxwell's equations and how T
int to another with minimum losses over a wide | | 2 | 60 | 60 | М | Н | 24 | - | - | - - | - | - | - | - | L | - | - | Н | | Duratio | on (hour) | Electrostatics | Magnetostatics and Maxwells Equations 9 | Electromagnetic Waves a | ınd Wa | avegui | ides |) [†] | ransm | issior | n Line | Theory | 1 | | Tra | | | | Calcula
atchin | ator and | t t | | S-1 | | Introduction | Energy density in electrostatic field | Introduction | | | | Transmiss | | | | | | | roduc | | | | | | | | | SLO-2 | Rectangular co-ordinate | Problem discussion. | Waves in general | | | | Transmiss | sion lin | e par | amete | T | | | | nart In | | | ,, | | | | S-2 | | Cylindrical & Spherical Co-ordinate | Biot savart law-Magnetic field intensity due to Infinite line charge | Plane wave in lossiess die | I ransmission line equivalent circuit Input impedance calcu | | | | | | nt, Standing wave ratio
alculation in smith chart | | | | | | | | | | | | | SLO-2 | Review of vector calculus | H- due finite and semi finite line charge | Plane wave in free space | 1 | | | Explanation | on | | | | | Pr | actice | proble | ems. | | | | | | | SLO-1 | Coulomb's Law and field intensity | Ampere's circuital law& application: Infinite line current | Plane wave in good condu | ctor | Grd. | | Transmiss | sion <mark>lin</mark> | e equ | <mark>iation</mark> d | derivat | ion | Si | ngle s | tub ma | atching | g Intr | oducti | on | | | S-3 | SLO-2 Problem based on coulomb's law Infinite Sheet current Problems based on plane waves in lossless, free space and good conductor Problem discussion. | Rectangular waveguide Infinitely long coaxial Transmission line Problem based on ACL. Magnetic flux density Electric field due to continuous charge distribution-.Concept SLO-2 Derivation of E due Infinite Line charge Electric field due to sheet charge SLO-1 SLO-1 S-4 S-5 lossless, free space and good conductor Rectangular waveguide-Problems Transverse Electric (TE) mode Transmission line characteristics: lossless line Distortionless line. Input impedance derivation Problems solving in smith chart Problems solving in smith chart transformer Impedance matching using Quarter wave | | SLO-2 | Problem based on sheet charge | Problem based on magnetic field and flux. | Transverse Electric (TE) mode-problems | Problems for input impedance calculation. | Problems. | |-----|-------|--|---|--|---|---| | S-6 | SLO-1 | Electric field due to volume charge | Maxwell's equation for static field | Transverse Electric (TE) mode | Standing wave ratio | Single stub tuner | | 3-0 | SLO-2 | Electric flux density | Faraday's law | Transverse Electric (TE) mode-Problems | Calculation of standing wave ratio. | Problem discussion | | S-7 | SLO-1 | Gauss law application-point charge | Transformer EMF | Wave propagation in guide | Reflection coefficient | Slotted Line (Impedance Measurement) | | 3-1 | SLO-2 | Electric flux due infinite line charge | Motional EMF | Problem discussion | Problem discussion. | Problem discussion | | S-8 | SLO-1 | Electric flux due sheet charge | Displacement current. | Power Transmission | Shorted line, open circuited line | Transmission Lines as circuit Elements | | 3-0 | SLO-2 | Electric flux due coaxial cable | Maxwell's equation in time varying field | Calculation of Pavg and Ptotal | Matched line | Problem discussion | | S-9 | SLO-1 | Relation between E&V | Time varying potential concepts | Power attenuation | Power calculations | Additional smith chart problem solving. | | 3-9 | SLO-2 | Electric dipole and flux lines | Time varying potential derivation. | Calculation of αTE and αTE | Problem discussion. | Additional smith chart problem solving. | | Learning
Resources | 1. Matthew N. O. Sadiku., S. V. Kulkarni, Elements of Electromagnetics, 6 th ed., Oxford University Press, 2015
2. G. S. N. Raju, Electromagnetic Field Theory and Transmission Lines, Pearson Education, 2006
3. Nannapaneni Narayana Rao, Principles of Engineering Electromagnetics,6 th ed., Pearson Education, 2016 | 4. William H. Hayt,Jr., John A.Buck., Engineering Electromagnetics, 8th ed., Tata McGraw-Hill 2012 5. John D.Ryder, Networks, Lines and Fields, PHI, 2009 | |-----------------------|--|---| | | 3. Nannaparieni Narayana Rao, P <mark>rincipies o</mark> i Engineering Electromagnetics,o" ed., Pearson Education, 2016 | | | Learning Assess | sment | | | | | | | | | | | | | |-----------------|------------------------|--------|--|--------|---------------|--------|----------|---------|-------------------------|-----------------------------------|--------------------|--|--| | | Bloom's | | Continuous Learning Assessment (50% weightage) | | | | | | | | n /E00/ woightaga) | | | | | Level of Thinking | CLA – | CLA – 1 (10%) | | CLA – 2 (15%) | | 3 (15%) | CLA – 4 | 1 (1 <mark>0%</mark>)# | Final Examination (50% weightage) | | | | | | Level of Thirtking | Theory | Practice | | | | Level 1 | Remember
Understand | 40 % | 531 | 30 % | | 30 % | | 30 % | - | 30% | - | | | | Level 2 | Apply
Analyze | 40 % | | 40 % | | 40 % | | 40 % | - | 40% | - | | | | Level 3 | Evaluate
Create | 20 % | | 30 % | | 30 % | TER S | 30 % | - | 30% | - | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|---------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | 1. Dr. P. Eswaran, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | | | Cour
Cod | | 18ECC201J | Course
Name | | ANALOG E | LECTRONIC CIRCUITS | | Cours
Catego | | С | | | | ı | Profes | siona | al Cor | 9 | | | | L 1 | - P | C 4 | |---|--|---|-----------------|-------------------------------|---|--|--|---|--------------------------|-------------------------
--|-------------------------|-------------|-----------|-------------------|-------------------|------------------------------|-------------------------------|---------------|------------------------|--------------------|---------------------------------|--------------------------|--| | Co | equisite
urses | 18ECC102J | | | Co-requisite
Courses | 1 <mark>8ECC202J</mark> | | | rogres
Cours | | 18EC | Ξ201 J | 1 | | | | | | | | | | | | | Course | Offering | Department | Electro | nics and Con | nmunication Engineer | ng Data Book / C | odes/Standards | Nil | | | | | | | | | | | | | | | | | | Course | Learning | Rationale (CLR |): The pur | pose of learn | ing this course is to: | 1256 | TI-M | | .earnir | ng | | | | | Pr | ograr | n Lea | ning Ou | tcome | s (PL | 0) | | | | | CLR-1: | | | | | ol <mark>ifier circuits fo</mark> r a give | | | 1 | 2 | 3 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: | | | | | <mark>T amplifier c</mark> ircuits for | | | | | | 1 | | | 5 | | | ility | | | | | | | | | CLR-3: Understand the effects of negative feedback on amplifier circuits, and analyze the different RC at to determine the frequency of oscillation | | | | | | | d LC oscillator circuits | of Thinking (Bloom) | cy (%) | nt (%) | 2 | Dâns | nent | Research | 0 | | Environment & Sustainability | Work | 5 | nce | | - | hniques | - | | CLR-4: | | | | | | | | g (E | ienc | mel | 1 | S S | op ndo | ٦, | age | e | Sus | Ē | | ⊒a | lg. | io | t de | ze & | | CLR-5: | Understand how matched transister characteristics are used in the IC design and to be able to de | | | | | | | hinkin | Expected Proficiency (%) | Expected Attainment (%) | o de charles de la companya co | Problem Analysis | Development | Design, F | Modern Tool Usage | Society & Culture | ent & 9 | Ethics Individual & Team Work | Communication | Project Mgt. & Finance | Life Long Learning | PSO-1: Professional Achievement | 2: Project
ement Tech | Ang | | CLR-6: | Gain | hands-on experie | ence to put th | eor <mark>etical co</mark> nd | cepts learned in the co | ourse to practice. | | of T | ted | ted | | D W | Design & [| Analysis, | Į. | ⊗
>- | E L | <u> </u> | Z E | Σ | guc | PSO-1: Profe
Achievement | – 2: | PSO – 3: .
Research | | - | | | | | - Marie 1 | # MINESTON | | evel | bec | bec | 3. | ald d | Sign | alys | lage | ciet | virc | Ethics | |)ec | e Lc | Ģ ė | PSO- | 00-
3868 | | Course | | Outcomes (CLC | | | urse, learners will be a | | A second | Le | ŭ | ы | ú | ة ا | P | A | ĕ | လွ | ᇤ | 击 | ြို | 4 | === | PS S | S 8 | <u>. 요 &</u> | | CLO-1 : | ampli | ons, and to Analyze the free
mine the bandwidth of the | circuit. | 2,3 | 70 | 70 | I | . M | 1 H | 6 | - | - | - | | - | - | - | - | - | - | | | | | | CLO-2 | CLO-2: Analyze and design MOSFET amplifier circuits to meet certain specifications, and to Analyze the amplifier circuits, taking into account various circuit capacitors, to determine the bandwidth of the | | | | | | circuit. | 2,3 | 70 | 70 | I | | 1 H | 13 | - | - | - | | - | - | - | - | - | _ | | CLO-3 : | circui | ts to meet certair | n specification | S. | | uits and oscillator circuits t | Marie Land | 2,3 | 70 | 70 | I | . 1 | 1 H | ŀ | - | - | - | | - | - | - | - | - | - | | CLO-4 : | type o | of power amplifie | r | | | maximum possible convers | | 2,3 | 70 | 70 | ** I | . M | 1 H | 3 | - | - | - | - - | - | - | - | - | - | - | | CLO-5: | Desig | n the basic circu | it building blo | c <mark>ks that a</mark> re u | sed in the design of I | C amplifiers, namely curren | t mirrors and sources | 2,3 | 70 | 70 | I | . N | 1 H | - | - | - | - | | - | - | - | - | - | - | | CLO-6 | Analy | ze and design aı | nalog electron | i <mark>c circuits</mark> usi | ng discrete componer
boratory with theoretic | nts, and take measurement | of various analog | 3 | 90 | 80 | | | Н | - | М | - | - | - N | - | - | М | Н | L | - | | | | В | BJT Amplifiers | | L FE | Γ Amplifiers | Feedback amplifie | s & O | scillate | ors | | Oscil | ators | & Pow | er Am | nlifie | rs | IC | Riasin | n & A | mplifi | ers with | n Activ | e Load | | Duratio | n (hour) | | 15 | | | 15 | 15 | | oomat | 0.0 | | Coom | utoro . | 15 | 01711 | .p.iiio | | - 10 | Diaoiii | 9 4 7 1 | 1 | | 171001 | <u>5 </u> | | 0.4 | SLO-1 | Overview of DC | analysis of B | JT circ <mark>uits</mark> | Overview of FET Do | C circuit analysis | Basic feedback conce
feedback structure | pts, ge | eneral | | Crysta | al Osc | illators | | | | | | | | | Cascoo
t source | | ent | | S-1 | SLO-2 | Overview of BJ | T models | | Problem solving Properties of negative feedback Problem solving Multi-transistor currence | | | | | | urren | t sourc | e Prob | lem | | | | | | | | | | | | S-2 | | | | | | | | Feedback Topologies: Voltage-Series & Current-Series feedback connections | | | | | | | | rces: | 2-trans | istor N | 10SFE | | | | | | | | SLO-2 | Problem solving | | | Problem solving | | Problem solving | | | | Proble | em sol | ving | | | | | Prob | lem so | lving | | | | | | S-3 | SLO-1 AC analysis of Common-Emitter BJT amplifier config. using hybrid-π model AC analysis of Common-Source MOSFET amplifier configuration | | | | | Feedback Topologies.
Current-Shunt feedba | | | | Powe types | Amp. | l <mark>ifier</mark> s: | Defini | tions a | and a | mplifi | | | | | ent | | | | | | | Problem solving | 7 | | Problem solving | Problem solving | | | | Q poi | nt plac | emen | ! | | | | Problem solving | | | | | | | | | S
4-5 | SLO-1 Lab 1: Learning to design amplifier and Lab 4: Design & analyze differential amplifier | | | | Lab 7: Design and and oscillators | alyze l | RC | | Lab 1 | o: BJT | & FE | T Curi | ent S | ource | s | | 13: De
lifier w | | | nalyze
oad | differe | ntial | | | | S-6 | | | | | AC analysis of Com | mon-Gate MOSFET | Practical Feedback Ar | nplifie | r Circu | | | | | | circuit | with | | | | | | | | | | | | amplifier configuration using hybrid-π
model | amplifier configuration | | | active load | |-------|-------|---|--|--|--|--| | | SLO-2 | Problem solving | Problem solving | Problem solving | Heat sink | Problem solving | | S-7 | SLO-1 | AC analysis of Common-Collector BJT
amplifier config. using hybrid-π model | AC analysis of Common-Drain MOSFET amplifier configuration | Oscillators: Principles of Oscillation | Class A amplifier | Analysis of CS FET amplifier circuit with active load | | Ī | SLO-2 | Problem solving | Problem solving | Types of Oscillators | Problem solving | Problem solving | | S-8 | SLO-1 | Multi-stage amplifier configurations: CE - CE, CE - CC amplifiers | BiFET amplifier configuration | Audio Frequency Oscillators: RC Phase-
Shift Oscillator | Class B and Class AB push-pull amplifiers | DC and small-signal analysis of basic BJT differential pairs | | Ī | SLO-2 | Problem solving | | S | | Lab 2: Design and analyze BJT amplifier | Lab 5: Design and analyze negative feedback | Lab 8: Design and analyze LC | Lab 11: Desig <mark>n and analyze</mark> BJT CE | Lab 14: Model Practical Examination | | 9-10 | SLO-2 | configurations | amplifier configurations | oscillators | amplifier with active load | Lab 14. Modert ractical Examination | | S-11 | SLO-1 | Multi-stage amplifier configurations: CE - CB, and CC - CC amplifiers | Low Frequency response analysis of a basic FET CS amplifier | Audio Frequency Oscillators: Wein Bridge Oscillator | Class C amplifiers | DC and small-signal analysis of basic FET differential pairs | | | SLO-2 | Problem solving | | S-12 |
SLO-1 | Low Frequency response analysis of a basic BJT CE amplifier | High Frequency response analysis of a basic FET CS amplifier | Radio Frequency Oscillators: Hartley Oscillator | Class D and Class E amplifiers | Analysis of BJT differential amplifier with active load | | | SLO-2 | Problem Solving | Problem Solving | Problem solving | Amplifier distortions | Problem solving | | S-13 | SLO-1 | High Frequency response analysis of a basic BJT CE amplifier | Design problems in MOSFET amplifier configurations | Radio Frequency Oscillators: Colpitts & Clapp Oscillators | IC Biasing & Amplifiers with Active Load:
BJT current sources: 2- & 3-transistor
current sources | Analysis of FET differential amplifier with active load | | | SLO-2 | Problem Solving | Operational voltage levels | Problem solving | Problem solving | Problem solving | | S | SLO-1 | Lab 3: Design and analyze multistage | Lab 6: Design and analyze MOSFET amplifier | Lab 9: Classes of power amplifier | Lab 12: Design and analyze FET CS | Lab 15: End Semester Practical | | 14-15 | | amplifier configurations | configurations | (efficiency calculation) | amplifier with active load | Examination | | | 1. | David A. Bell, Electronic Devices and Circuits, 5 th ed., Oxford University Press, 2015 | |-----------|----|--| | Learning | 2. | Donald Neamen, Electr <mark>onic Circu</mark> its: Analysis and Design, 3 rd ed., McGraw-Hill Education, 2011 | | Resources | 3. | Muhammad Rashid, Microelectronic Circuits: Analysis & Design, 2 nd ed., Cengage Learning, 2010 | | | 4. | Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuits: Theory and Applications, OUP, 2014 | - 5. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuit Theory, 11th ed., Pearson Education, 2013 - 6. Albert P. Malvino, David J. Bates, Electronic Principles, 8th ed., Tata McGraw Hill, 2015 | Learning Assessr | ment | | | | | | | | | | | |------------------|------------------------|--------|----------|--------|----------------------|-------------------|----------|--------|-----------------------|--------------------|-------------------| | | Bloom's | | (Carl.) | Cont | inuous Learning Asse | essment (50% weig | htage) | | | Final Evamination | n (50% weightage) | | | | CLA – | 1 (10%) | CLA - | 2 (15%) | CLA – | 3 (15%) | CLA – | 4 <mark>(10%)#</mark> | Filiai Examination | i (50% weightage) | | | Level of Thinking | Theory | Practice | | r. Level 1 | Remember
Understand | 20% | 20% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | Level 2 | Apply
Analyze | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | Level 3 | Evaluate
Create | 10% | 10% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | Total | 10 | 0 % | 10 | 00 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|-------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | 1. Mr. Manikandan AVM, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | 2. Dr. M. Sangeetha, SRMIST | | Cour | | 18ECC202J Course Name | LINEAR IN | ITEGRATED CIRCUITS | 3 | Cou
Cate | | С | | | | | I | Profes | siona | al Cor | е | | | | | L T | P 2 | C 4 | |----------|-------------------|--|--|--|--|--------------------------|--------------------------|--|-----------------|-----------------------|------------------|----------------------|-----------------------------------|-------------------|-------------------|------------------------------|--------|------------------------|---------------|----------------|--------------------|----------------------------------|---|------------------------| | Co | equisite
urses | 18ECC102J | Co-requisite
Courses | 18ECC201J | | | Progre
Cour | | Nil | | | | | | | | | | | | | | | | | Course | Offering | Department Electronics and Comi | munication Engineer | ing Data Book | / Codes/Standards | N | il . | H | Course | Learning | Rationale (CLR): The purpose of learning | g t <mark>his course i</mark> s to: | 1000 | H. Commercial Commerci | | Learni | ng | | | | | | Pro | ogran | n Lea | rning | Outco | omes | (PLC |)) | | | | | CLR-1 | | the basic principles, configurations and prac | | o-amp | | 1 | 2 | 3 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 | | rstand the various linear and non-linear a <mark>ppli</mark> | | | | | Т. | | ٠ | f.,, | | | H2 | | | iit | | | | | | | | | | CLR-3 | | rstand the operation and analysis of op <mark>-amp</mark> | | | | l (E | (%) | (% | | e | ٠. | ± | ear | | | лар | | 논 | | a | | | nes | | | CLR-4 | | fy the active filter types, filter respons <mark>e chara</mark> | | | | | ें | int (| | edc | × | ner | Res | Φ | | stail | | Wo | | ance | | ज्ञ | ij | ∞ర | | CLR-5 | | knowledge on data converter termin <mark>ology, its</mark>
D/A conversions. | performance param | neters, and various circu | it arrangements for A/D | I
of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | | Engineering Knowledge | Problem Analysis | Design & Development | Design, Res <mark>earch</mark> | Modern Tool Usage | Society & Culture | Environment & Sustainability | | ndividual & Team Work | Ę | Finance | Life Long Learning | SO-1: Professional
chievement | PSO – 2: Project
Management Techniques | – 3: Analyze
arch | | CLR-6 | Gain I | hands-on experience to put theor <mark>etical con</mark> ce | epts learned in the co | ourse to practice. | A COLUMN THE | ig | Po | Atta | | y Br | ınal | Dev | Des | 00 | C | ent | | & T | Satic |)t. 8 | Lea | rofe
ent | Proj
ent | Ana | | | | | | -100 | Section of the second | Į. | 6 | ted | | eri | m | ∞ | is, l | Ľ | ∞ > | JIII | | ual | Ĭ. | Ĕ | пg | E F | 2:
 em | က် ဉ် | | Course | Learning | Outcomes (CLO): At the end of this cour | rea learners will be | able to: | 1.67 | evel | bec | pec | | gine | plde | sign | Analysis, | der | ciet | viro | Ethics | ivid | Communication | Project Mgt. & | 2 | PSO-1: Profe
Achievement | SO –
lanag | PSO – 3: /
Research | | | | , , | | | | | Ĭ X | | 100 | En | | De | Ani | ₩
W | So | En | Eth | pul | ပိ | Pro | Life | PS
Act | PS
Ma | S & | | CLO-1 | | the DC and AC characteristics <mark>of operat</mark> ional | | | | 3 | | 70 | | Н | М | - 1 | - | - | - | - | - | - | - | - | - | - | - | | | CLO-2 | | date and design the linear and <mark>non-linea</mark> r app | | | | 3 | 85 | 75 | | | М | Н | | - | - | - | - | - | - | - | - | - | - | - | | CLO-3 | | in and compare the working o <mark>f multivib</mark> rators | | | al purpose opamp | 3 | | | | | М | Н | | - | - | - | - | - | - | - | - | - | - | - | | CLO-4 | | ify and comprehend the worki <mark>ng princi</mark> ple of | | | | 3 | | 80 | | | M | Н | - | - | - | - | - | - | - | - | - | - | -
 - | | CLO-5 | A l | ate the function of application specific ICs su | | | | 3 | 85 | 75 | | | М | Н | - | - | - | - | - | - | - | - | - | М | - | Н | | CLO-6 | | rze and design electronic circu <mark>its and s</mark> ystem
are experimental results in the <mark>laborato</mark> ry wit | | | i various arialog circuits to | 3 | 85 | 75 | 146 | - | Μ | Н | - | М | - | - | - | М | - | - | - | Η | L | - | | | comp | are experimental results in the laboratory will | in theoretical analysis | | | - | | - | | | | | | | | | | | | | | | | | | Duratio | n (hour) | 15 | F . | 15 | 15 | | | | | | | | 15 | | | | | | | | 15 | | | | | S-1 | | Op-amp symbol, terminals, packages | Basic op-amp circuinverting voltage an | | Waveform Generators: Si
Generators - Design | ne-w | ave | | Filter
Activ | | | rison i | betwe | en P | assiv | <mark>e a</mark> no | | gital to
pecific | | | onve | rsion: ı | DAC | | | 3-1 | SI O-2 | Op-amp-Specifications | Voltage follower | ipiillers | Implementation & Solving | n nro | hlems | | | | | .s
Desi | an | | | | - 1- | olving | | | | | | | | | | Block diagram Representation of op-amp | | averaging amplifiers, | Square Wave generators- | | | | | | | ations | | | | | | eighte | | | DAC | | | - | | S-2 | SLO-2 | Ideal op-amp & practical op-amp - Open Ioop & closed loop configurations | AC amplifiers | a averaging ampliners, | Implementation & Solving | | | | | | | & Sol | | oroble | ms | | | olving | | | Dito | | | | | | SLO-1 | DC performance characteristics of op-amp | Linear Applications. Amplifiers | : Instrumentation | Triangle wave generators | S | 711 | W | Desi | gn of | HPF | & So | lving | proble | ems | | R- | 2R La | ndder | DAC | | | | | | S-3 | SLO-2 | Solving Problems | plifiers, Solving | Saw-tooth Wave generate | ors. | | | Desi | gn of | BPF | & Solv | v <mark>ing</mark> p | roble | ms | | Sc | olving | probl | ems | | | | | | | S
4-5 | | | | | Lab 7: Waveform generators: using op- | | | p- | Lab
Band | | | of LF | PF, H | PF, B | PF ai | nd | La | Lab 13: Flash Type ADC | | | | | | | | | | AC performance characteristics of op-amp | V-to-I Converters | | amp & 555 Timer IC 555 Timer: Circuit sch | omet | ic | | | | | iters
I Reje | ct Fil | tore | | | In | verted | R-2F | 2 l ad | der D | AC. | | | | S-6 | | Solving Problems | I-to-V converters | | Operation and its applicat | | 10 | | | | | | ot I II | .010 | | | | onolith | | | עטו ט | ,10 | | | | S-7 | | Frequency response | | | | | | s applications Solving problems Onostable operation State Variable Filters – All Pass Filters | | | | ers, | Analog to Digital conversion: ADC | | | | | | | | | | | | | 3-1 | SI O-2 | Frequency response | | Applications & Solving problems Solving problems Solving problems Solving problems | JLU-2 | i roquerioy response | Integrators | | Applications & Solving problems Solving problems Solving problems | S-8 | SLO-1 | Frequency compensation | Non-linear Applications: Precision
Rectifiers | IC 555 Timer: Astable operation | Switched Capacitor Filters. | Ramp Type ADC | |------------|----------------|--|--|---|---|--| | 3-0 | SLO-2 | Frequency compensation | Wave Shaping Circuits (Clipper and Clampers) | Applications & Solving problems | Solving problems | Solving problems | | S | SLO-1 | Lab 2: Integrators and Differentiators | Lab 5: Wave shaping circuits | Lab 8: Waveform generators: using op- | Lab 11: IC Voltage regulators | Lab 14: Simulation experiments using EDA | | 9-10 | SLO-2 | Lab 2. Integratore and Differentiatore | Lab o. Wave draping circuite | amp & 555 Timer | Lab 11: 10 Voltage Togalatore | tools | | S-11 | SLO-1 | Basic op-amp internal schematic | Log and Antilog Amplifiers, | PLL: Operation of the Basic PLL | Voltage Regulators: Basics of Voltage
Regulator | Successive Approximation ADC | | 3-11 | SLO-2 | operations of blocks | Analog voltage multiplier circuit and its applications, | Glosed loop analysis of PLI | Specifications and characteristic parameters | Solving problems | | C 12 | SLO-1 | Basic op-amp internal schematic | Operational Trans-Conductance Amplifier (OTA) | Voltage Controlled Oscillator | Linear Voltage Regulators using Op-amp, | Dual Slope ADC | | S-12 | SLO-2 | operations of blocks | Comparators : operation | | IC Regulators (78xx, 79 <mark>xx, LM 317</mark> , LM 337, 723), | Flash Type ADC, | | 0.40 | SLO-1 | Review of data sheet of an op-amp. | Comparators applications | PLL applications | Switching Regulators -operation | Solving problems on Flash Type ADC, | | S-13 | SLO-2 | Solving Problems | Sample and Hold circuit. | Solving problems | Types | Monolithic ADC | | S
14-15 | SLO-1
SLO-2 | Lab 3: Rectifiers | Lab 6: Waveform generators: using op-
amp & 555 Timer | Lab 9: Design of LPF, HPF, BPF and Band
Reject Filters | Lab 12: R-2R ladder DAC | Lab 15: Simulation experiments using EDA tools | | ۱ | | 1. Ramakant A. Gayakwad. Op-Amps and Linear Integrated Circuits, 4th ed., Prentice Hall, 2000 | LADONA | |---|-----------|---|----------| | | | | David A | | | | 1.2 David A. Bell, Operational Amplitiers and Linear ICs, 3 rd ed., OUP, 2013 | | | ۱ | | 8 | David La | | ۱ | Learning | 1.3 Roy Choudhury Shail Jain Linear Integrated Circuits, 4th ed. New Age International Publishers, 2014 | | | ۱ | | | Muhamn | | | Resources | 4. Robert F. Coughlin, Frederick F. Driscoll, Operational-Amplifiers and Linear Integrated Circuits, 6th ed., | 2004 | | ۱ | | Pronting Hall 2001 | 2004 | 5. Sergio Franco, Design with operational amplifier and analog integrated circuits, McGraw Hill, 1997 - 6. LABORATORY MANUAL, Department of ECE, SRM University - 7. David A Bell, Laboratory Manual for Operational Amplifiers & Linear ICs, 2nd ed., D.A. Bell, 2001 - 8. David La Lond, Experiments in Principles of Electronic Devices and Circuits, Delmar Publishers, 1993 - 9. Muhammed H Rashid, Introduction to PSpice using OrCAD for circuits and electronics, 3rd ed., Pearson, 2004 - 10. L. K. Maheshwari, M. M. S. Anand, Laboratory Experiments and PSPICE Simulations in Analog Electronics, PHI, 2006 | Learning Assessn | nent | | | | | | | | | | | |------------------|-------------------|--------|----------|--------|--------------------|-------------------|----------|---------|------------------------|-------------------|--------------------| | | Bloom's | | 100 | Conti | nuous Learning Ass | essment (50% weig | htage) | | | Final Evamination | n (50% weightage) | | | Level of Thinking | CLA – | 1 (10%) | CLA – | 2 (15%) | CLA – | 3 (15%) | CLA – 4 | 4 (<mark>10%)#</mark> | | ii (50% weightage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember | 20% | 20% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | Level I | Understand | 2070 | 2070 | 10/0 | 1378 | 1370 | 1370 | 1070 | 1370 | 1370 | 1370 | | Level 2 | Apply | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | Level 2 | Analyze | 2070 | 2070 | 2070 | 2070 | 2070 | 2070 | 2070 | 2070 | 2070 | 2070 | | Level 3 | Evaluate | 10% | 10% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | Level 3 | Create | 1070 | 1076 | 1370 | 1370 | 13/6 | 1370 | 13/0 | 1370 | 1570 | 1370 | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | [#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|-------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | 1. Mr. Manikandan AVM, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | 2. Dr. M. Sangeetha, SRMIST | ## **ACADEMIC CURRICULA** **Professional Core Courses** ## ELECTRONICS AND COMMUNICATION ENGINEERING Regulations - 2018 ## SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (Deemed to be University u/s 3 of UGC Act, 1956) Kattankulathur, Kancheepuram, Tamil Nadu, India | Course Code | 18EC C203J | Course | М | · · | CONTROLLER AND INTERFACING | _ | ourse | - (| 2 | | | | Pro | ofess | ional | Core | | | | | L - | ГР | С | |---|---|---
--|--|---|---------------------------|--------------------------|---------------------------|-----------------------|------------|----------------------|----------------------------|-------------------|-------------------|------------------------------|--------|------------------------|---------------|------------------------|--------------------|------------------------------------|---|-----------------------------| | Course Cous | 1020 02000 | Name | | TECH | HNIQUES | Ca | ategor | У | | | | | | | - Ionai | | | | | | 3 (| J 2 | 4 | | Dre-requis | ite Courses | 18ECC | 1031 | Co-requisite Courses | Nil | | Proc | roccive | e Cours | 00 | | | | | | 18EC | `E20/ | 1 1 | BECE2 | 205 1 | | | | | Course Offering Do | | | | Communication Engineering | Data Book / Codes/Standards | | FIU | I CSSIVE | Cours | C 3 | | | | | Nil | TOLC | ,LZU4 | 10, 10 | LULZ | 2000 | | | | | Course Cherning Di | эрагинон | Lioution | 100 4114 0 | on manioation Engineering | Bata Book / Codes/Citalidards | | | | | | | | | | | | | | | | | | - | | Course Learning R | ationale (CLR): | The purpose | of learnin | g this course is to: | 5 Printer | L | earnir | ng | | | | | Pi | rogra | m Lea | arning | Outo | comes | s (PLC | O) | | | | | CLR-1: Undersi | and basic architec | ture of Intel 80 | 36 microp | processor and Intel 8051 Micro | controller | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | and per CLR-3: Interfac CLR-4: Use the CLR-5: Undersi CLR-6: Provide Course Learning C | ipheral chips e a microprocessor computer to write land the hardware, strong foundation Outcomes (CLO): | r / microcontrol
and assemble
/ software inter
for designing re
At the end of | ler to externation of the second seco | ernal I/O devices and perform
d also run them by downloadin
I their applications, and as wel
applications using microproce
se, learners will be able to: | essors and microcontrollers. | Level of Thinking (Bloom) | Expected Proficiency (%) | S Expected Attainment (%) | Engineering Knowledge | Problen | Design & Development | Analysis, Design, Research | Modern Tool Usage | Society & Culture | Environment & Sustainability | Ethics | Individual & Team Work | Communication | Project Mgt. & Finance | Life Long Learning | PSO-1: Professional
Achievement | PSO – 2: Project Management
Techniques | PSO – 3: Analyze & Research | | | | | | icroprocessor based personal | computer system | 1 | 60 | | - | Н | - | - | L | - | - | - | - | - | - | | - | - | - | | | | | | oprocessor. / microcontroller | COTTA STRATEGIC VALLE | 2 | 60 | 70 | М | - | - | - | | - | - | - | - | - | | М | - | | <u> </u> | | | | | | | e target microprocessor / microcontroller | 3 | 60 | 70 | - | | Н | - | Н | - | - | - | - | - | - | | - | | L | | | | | | cessors & Microcontrollers. | | 1 | 60 | 70 | - | М | - | - | | - | - | - | - | - | - | Н | - | | <u> </u> | | | e their practical kno | | | | devices the second of the second | 3 | 60 | 70 | - | | М | - | Н | - | - | - | - | Н | - | | - | | Н | | CLO-6: Design. | interface and proc | rom momoni o | hine and | various paripharal chine with r | microprocessor / microcontroller | 3 | 60 | 70 | | | M | _ | Н | _ | | _ | _ | | | Н | . 1 | - | M | | Duratio | n (hour) | Intel 8086 – Architectu <mark>re, Signals</mark> and Features | Programming with Intel 8086 | 8086 Interfacing with Memory and
Programmable Devices | Intel 8051 – Architecture and Programming | Interfacing of 8051 | |---------|----------|--|---|--|---|---| | | | 15 | 15 | 15 | 15 | 15 | | S-1 | SLO-1 | Introduction: History of computers, Block diagram of a microcomputer | Addressing modes of 8086 | Semiconductor memory interfacing | Introduction: Differences between microprocessor and microcontroller | 8051 parallel ports, and | | 3-1 | SLO-2 | Intel 80x86 evolutions | | Dynamic RAM interfacing | Intel's family of 8-bit microcontrollers, and feature of 8051 microcontroller | its programming | | S-2 | SLO-1 | Features of 8086 microprocessor | Instruction Set of 8086: Data Transfer Instructions | Programmable Peripheral Interface 8255 | Architecture of 80 <mark>51</mark> | 8051 timers, and | | 3-2 | SLO-2 | Register organization of 8086 | Example programs | Interfacing 8255 with 8086 and programming | | its programming | | S-3 | SLO-1 | Architecture of 8086 | Data Conversion Instructions, Arithmetic Instructions | Interfacing ADC with 8086 and programming | Signal descriptions of 8051 | 8051 interrupts, and | | S-S | SLO-2 | | Example programs | Interfacing DAC with 8086 and programming | | its programming | | S-4,5 | | Lab-1: (a) Learning to Program with 8086 processor kit; Learning the hardware features of the 8086 processor kit | Lab-4: General Purpose Programming in
8086 | Lab-7: Interfacing DAC / ADC with 8086 / 8051 | Lab-10: Programming timer / counter in
8086 / 8051 | Lab-13: Simulation of 8051 using Keil
Software | | S-6 | SLO-1 | Instruction queue and pipelining | Logical instructions and Processor control instructions | Stepper Motor interfacing | Register set of 8051 | 8051 serial port, and | |---------|----------------|--|--|---|---|---| | | SLO-2 | Segmentation of memory used with 8086 | Example programs | | Operational features of 8051 | its programming | | 0.7 | SLO-1 | Methods of generating physical address in 8086 | | Programmable Interval Timer 8254 | Memory and I/O addressing by 8051 | Interfacing program memory with 8086 | | S-7 | SLO-2 | Pin signals of 8086: Common signals | Example programs | Interfacing 8254 with 8086 and programming | Interrupts and Stack of 8051 | Interfacing data memory with 8086 | | S-8 | SLO-1 | Minimum mode signals | Branch Instructions | Programmable Interrupt Controller 8259 | Addressing modes of 8051 | Interfacing input devices: push-button / matrix keypad | | S-0 | SLO-2 | Maximum mode signals | Example programs | Interfacing 8259 with 8086 and programming | 0 - 10 | Example programs | | S-9,10 | SLO-1
SLO-2 | Lab-2: General Purpose Programing in 8086 | Lab-5: Simulation of 8086 using MASM
Software / 8086 Emulator | Lab-8: Interfacing DC motor / stepper
motor / servo motor with 8086 / 8051 | Lab-11: Programming interrupts in 8086 / 8051 | Lab-14: Model Practical Exam | | 0.44 | SLO-1 | Minimum mode 8086 system <mark>, and</mark> | Assembly Language Programming of 8086 | Programmable Keyboard / Display
Controller 8279 | 8051 Instruction Set: Arithmetic and Logical Instructions | Interfacing display devices: LED / 7-
segment / LCD displays | | S-11 | SLO-2 | Timings | Assembly Language Programming of 8086 | Interfacing 8279 with 8086 and programming | Example Programs | Example programs | | C 10 | SLO-1 | Maximum mode 8086 sy <mark>stem, and</mark> | Stack structure, and | Programmable Communication Interface 8251 USART | Data Transfer Instructions | Interfacing DAC | | S-12 | SLO-2 | Timings | rela <mark>ted</mark> programming | Interfacing 8251 with 8086 and programming | Example Programs | Interfacing ADC | | S-13 | SLO-1 |
Intel 8088 Microprocessor: Pins signals and Architecture | Interrupt structure, and | DMA Controller 8257 | Boolean Variable Instructions and Branch Instructions | Interfacing DC motor / stepper motor / servo motor | | 5-13 | SLO-2 | Differences between 8086 & 8088 microprocessors | related programming | Interfacing 8257 with 8086 and programming | Example Programs | Example programs | | S-14,15 | SLO-1
SLO-2 | Lab-3: General Purpose Programing in 8086 | Lab-6: Interfacing 8255 with 8086 / 8051 | Lab-9: General Purpose Programming in 8051 | Lab-10: Programming serial communication in 8086 / 8051 | Lab-15: End-Semester Exam | | | 1. | K. M. Bhurchandi and A. K. Ray, "Advanced Microprocessors and Peripherals-with ARM and an | |-----------|----|---| | | | Introduction to Microcontrollers and Interfacing ", Tata McGraw Hill, 3rd edition 2015 | | Learning | 2. | Muhammad Ali Mazidi and Janice GillispieMazidi, "The 8051 - Microcontroller and Embedded | | Resources | | systems", 7th Edition, Pearson Education, 2011. | | | 3. | Doughlas.V.Hall, "Microprocessor and Interfacing: Programming and Hardware", 3rd edition, | | | | McGraw Hill, 2015 | - 4. Kenneth.J.Ayala, "8051 Microcontroller Architecture, Programming and Applications", 3rd edition, Thomson, 2007 - 5. Subrataghoshal "8051 Microcontroller Internals Instructions , Programming And Interfacing", 2nd edition Pearson 2010 - 6. Yu-cheng Liu, Glenn A.Gibson, "Microcomputer systems: The 8086/8088 family-Architecture, programming and design", 2nd edition, Prentice Hall of India, 2007 | Learning Assess | sment | | | Willy Mill | VIV. VOV. | 12 6120 | DISTRICT OF STREET | ESA. | | | | |-----------------|------------------------|--------|------------------|------------|--------------------|--------------------|--------------------|---------|-----------------|-------------------|-------------------| | | Bloom's | 11.11 | 170 | Cont | inuous Learning As | sessment (50% weig | ghtage) | | | Final Evamination | (E00/ weightegs) | | | Level of Thinking | CLA - | · 1 (10%) | CLA – | 2 (15%) | CLA – | 3 (15%) | CLA – 4 | (10%)# | Final Examination | n (50% weightage) | | | Level of Thirtking | Theory | Practice | | Level 1 | Remember
Understand | 20% | 20% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | Level 2 | Apply | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | Level 2 | Analyze | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 2076 | 2070 | | Level 3 | Evaluate | 10% | 10% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | Create
Total | 10 | <u> </u>
)0 % | 100 |) % | 100 |) % | 10 | <u> </u>
0 % | 10 | l
0 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|-------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | 1. Mr. Manikandan AVM, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | | | Course Code 18 | ECC204J | Course Name | | DIGITAL SIGN | AL PROCESSING | | Cours
Catego | - | С | | | | Pi | rofess | ional C | Core | | | | l | L T 3 0 | P
2 | C
4 | |---|---|--|---|--|-----------------------------------|--------------------------|--------------------------|-------------------------|-----------------------|------------------|----------------------|----------------------------|-------------------|-------------------|------------------------------|--------|------------------------|---------------|------------------------|------|---|--------------|-----------------------------| | Pre-requisite | Courses | 18ECC | C104T | Co-requisite Courses | Nil | | Pro | gressiv | e Cour | ses | | | | | 18ECE | 243J | . 18E0 | CE24 | !4J, 18 | 8ECE | 245T | | | | Course Offering Depart | artment | Electroi | nics and Co | mmunicati <mark>on Engineering</mark> | Data Book / Codes/Standards | | | | | | | | | | Nil | | , | | | | | | | | Course Learning Rati
(CLR): | 1116 | purpose of learn | | | SCH M | | earnir | g | | | | | F | rogra | m Lea | rning | Outco | mes | (PLO |) | | | | | | | | | rsion of analog signals. | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 14 | 15 | | CLR-3 : Design dig
CLR-4 : Design IIR
CLR-5 : Understan | ital FIR filter of filters using be a sampling ratechniques for | using windowing
both direct metho
te conversion an
r digital conversi | technique a
nd and meth
nd apply it fo
ons, filter d | and frequency sampling meth
nod involving conversion of ar
or applications like QMF, sub | nalog filter to digital filter | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Engineering Knowledge | Problem Analysis | Design & Development | Analysis, Design, Research | Modern Tool Usage | Society & Culture | Environment & Sustainability | Ethics | Individual & Team Work | Sommunication | Project Mgt. & Finance | Fong | OSO-1: Professional Achievement OSO - 2: Project Management | - 4.
niqu | ⊃SO – 3: Analyze & Research | | | the knowledg | ge of sampl <mark>ing ar</mark> | <mark>nd q</mark> uantiza | tion and understand the error | s that arise due to quantization. | 1 | 80 | 70 | H | - | - | | - | - | Ŧ | - | - | - | - | - | | - | - | | | | | | nputation by using FFT algori | | 1 | 75 | 70 | | М | - | - | - | - | - | - | - | - | - | - | - | - | | | | | several methods | | | WALL SHIP FOR THE | 3 | 75 | 70 | | М | Н | - | 4 | - | - | - | - | - | - | - | - | - | Н | | | | several me <mark>thods</mark> | | | Make the Wall | 3 | 75 | 70 | | | Н | - | - | - | - | - | - | - | - | - | - | - | Н | | | | nultirate DS <mark>P and</mark> | | | 2 10 2 10 2 10 2 | 1 | 70 | 70 | | М | - | | - | - | - | - | - | - | - | - | - | - | -] | | CLO-6: Apply the | concents of d | | | rate signal processing for rea | | 2 | 70 | 70 | | М | | - | _ | | | | | | | | М | | | | Duratio | on (hour) | Signals and Wa <mark>veforms</mark> | Frequency Transformations | FIR Filters | IIR Filters | Multirate signal Processing | |---------|----------------|---|---|--|---|---| | Durauc | on (nour) | 15 | 15 | 15 | 15 | 15 | | S-1 | SLO-1 | Basic Elements of DSP | Realization of digital filters Direct form of realization | | Design of digital IIR filters Comparison of FIR and IIR filters | Introduction to Multirate signal processing | | 3-1 | SLO-2 | Advantages and applications of DSP | Cascade form of realization | Causality, its implication Characteristics of practical frequency selective filters | Analog IIR filter design | Decimation | | | SLO-1 | Continuous Time vs Discrete time signals | Parallel form of realization | Frequency response of symmetric FIR filter | Properties of Butterworth filters | Interpolation | | S-2 | SLO-2 | Continuous valued vs discrete valued signals | Introduction to DFT | | Properties of chebyshev filters
Comparison of Butterworth and
chebyshev filters | Spectrum of interpolated signal | | S-3 | SLO-1 | Concepts of frequency in analog signals | Computation of DFT | Frequency response of symmetric FIR filter | Analog IIR filter design | Sampling rate conversion by a rational factor I/D | | 3-3 | SLO-2 | Continuous and discrete time sinusoidal signals | Prop <mark>erties of DFT Perio</mark> dicity, linearity and symmetry properties | N is even | Design of low pass Butterworth filter | Anti-aliasing and anti-imaging filters | | S-4 | SLO-1
SLO-2 | Lab 1 :Generation of basic signals | Lab 7: Linear convolution | Lab 13: Design of digital FIR Low Pass,
High Pass filter using rectangular window | Lab 19: Design of analog Butterworth filter | Lab 25: Interpolation | | S-5 | SLO-1
SLO-2 | Lab 2: Unit step, ramp and impulse | Lab 8: Circular convolution | Lab14: Design of digital FIR Band Pass,
Band Stop filter using rectangular window | Lab 20: Design of analog Chebyshev filter | Lab 26: Effect of interpolation in frequency domain | | Duratio | on (hour) | Signals and Waveforms | Frequency Transformations | FIR Filters | IIR Filters | Multirate signal Processing | |---------|----------------|---|---|---|---|---| | Duranc | on (nour) | 15 | 15 | 15 | 15 | 15 | | S-6 | SLO-1 | Sampling of analog signals Sampling theorem | Circular convolution | Frequency response of
anti-symmetric FIR filter | Analog IIR filter design | Polyphase structure of decimator Polyphase decimation using z transform | | 3-0 | SLO-2 | Aliasing Quantization of continuous amplitude signals | Matrix method and concentric circle method | N is odd and N is even | Design of low pass Chebyshev filter | Polyphase structure of interpolator Polyphase interpolation using z transform | | | SLO-1 | Analog to digital conversion Sample and hold, | Efficient Computation of the DFT | Design of FIR filters Fourier series method | Design of digital filters Impulse invariance method | Advantages of multirate DSP | | S-7 | SLO-2 | Quantization and coding | Divide and Conquer Approach to Computation of the DFT Using FFT | Need for filter design using window
Comparison of various windowing
techniques | Design of <mark>digital filters Bili</mark> near
transformation | Applications of multirate DSP | | S-8 | SLO-1 | Oversampling A/D converters | N Point DFT Decimation-in-Time FFT Radix-2 FFT Algorithm | Filter Design using windowing technique | Design of digital filters Impulse invariance method | Practical Applications of multirate DSP | | 5-0 | SLO-2 | Digital to analog conversion Sample and hold | N Point DFT Decimation-in-Frequency FFT | Rectangular window | Design of digital filters Bilinear transformation | interfacing of digital systems with different sampling rates | | S-9 | SLO-1
SLO-2 | Lab 3: Generation of waveforms | Lab9: Autocorrelation and cross correlation | Lab 15: Design of digital FIR Low Pass
and High Pass filter using Hanning and
Hamming window | Lab 21: Design of digital Butterworth filter using impulse invariance method | Lab 27: Decimation | | S-10 | SLO-1
SLO-2 | Lab 4: Continuous and discrete time | Lab10: Spectrum analysis using DFT | Lab 16: Design of digital FIR Band Pass
and Band Stop filter using Hanning and
Hamming window | Lab 22: Design of digital Butterworth filter using bilinear transformation | Lab 28: Effect of decimation in frequency domain | | S-11 | SLO-1 | Oversampling D/A conv <mark>erters</mark> | Radix-2 FFT Algorithm Implementation of FFT Using DIT | Filter Design using windowing technique
Hanning window | Design of digital Chebyshev filters | Practical Applications of multirate DSP
Sub band coding of speech signals | | 5-11 | SLO-2 | Quantization noise | Implementation of FFT Using DIF | Filter Design using windowing technique Hamming window | Impulse invariance method | Filter banks Analysis filter bank | | S-12 | SLO-1 | Errors due to truncation | IDFT | Filter Design using windowing technique | Design of digital Chebyshev filters | Synthesis filter bank | | 3-12 | SLO-2 | Probability of error | Using DIT FFT | Black mann window | Bilinear transformation | Subband coding filterbank | | 0.42 | SLO-1 | Errors due to rounding | IDFT | Design of FIR filters | Frequency transformation in analog domain | Quadrature Mirror Filter | | S-13 | SLO-2 | Probability of error | Using DIF FFT | Frequency sampling method | Frequency transformation in digital domain | Alias free filter bank | | S-14 | SLO-1
SLO-2 | Lab 5: Study of sampling theorem | Lab 11: Efficient computation of DFT using FFT | Lab 17: Design of digital FIR Low Pass,
High Pass, Band pass and band stop filter
using Black mann window | Lab 23: Design of digital Cheby shev filter using impulse invariance method | Lab 29: Design of anti-aliasing filter | | S-15 | SLO-1
SLO-2 | Lab 6: Aliasing effects | Lab12: Computation of IDFT | Lab 18: Design of digital FIR filter using frequency sampling method | Lab 24: Design of <mark>digital Cheb</mark> y shev filter using bilinear tra <mark>nsformation</mark> | Lab 30: Design of anti-imaging filter | | Learning Resources 1. John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing, Principles, Algorithms and Applications", Pearson Education, 4th edition, 2014 2. Alan V. Oppenheim, Ronald W. Schafer, "Discrete-Time Signal Processing", Pearson Education, 1st edition, 2015 | Sanjit Mitra, "Digital Signal Processing –A Computer Based Approach", McGraw Hill, India, 4th Edition, 2013. Fredric J. Harris, "Multirate Signal Processing for Communication Systems", 1st edition, Pearson Education, 2007 | |--|--| |--|--| | | Bloom's | | | Cont | tinuous Learning Asse | essment (50% weig | htage) | | | Final Evamination | (EOO/ woightogo) | | | |---------|------------------------|------------------|----------|--------|-----------------------|-------------------|----------|---------|----------|-----------------------------------|------------------|--|--| | | Level of Thinking | $(1 \Delta = 1)$ | | CLA - | CLA – 2 (15%) | | 3 (15%) | CLA – 4 | l (10%)# | Final Examination (50% weightage) | | | | | | Level of Thinking | Theory | Practice | | | | Level 1 | Remember
Understand | 20% | 20% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | | Level 2 | Apply
Analyze | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | | | Level 3 | Evaluate
Create | 10% | 10% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | | | Total | 10 | 0 % | 10 | 00 % | 100 | 0 % | 10 | 0 % | 10 | 0 % | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|----------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | Dr. M.S. Vasanthi,, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | | | Course Code | 18ECC205J | Course Name | ANALOG AND | DIGITAL COMMUNICATION | | Cours
atego | | C | | | Р | rofess | ional | Core | | | | 3 | T 0 | P 2 | C
4 | |---|--|---|--|--------------------------------------|-------------------------|--------------------------|-------------------------|-----------------------|------------------|----------------------|----------------------------|--------|-------------|------------------------------|--------|------------------------|----------------------|---------------|---------|------------------------------------|-----------------------------| | Pre-requ
Course Offering | uisite Courses
Department | 18MAB203T | Co-requisite Courses ECE | Nil
Data Book / Codes/Standards | | | Progre | ssive Co | urses | | | | CC30
Nil | 1T, 18 | BECC3 | 02J, 1 | 18ECE | :221T | & 18E | ECE223 | }T | | Course Learning | Rationale (CLR): | The purpose of learning | n <mark>g this course</mark> is to: | | 1 | _earni | ng | | H | | | Progr | ram L | earnir | ng Out | comes | (PLC |)) | | | | | | luce and Understa
emodulators | and the need for modulation | <mark>, various A</mark> mplitude modulator | s/demodulators, frequency modulators | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 1 | 0 1 | 1 12 | 13 | 14 | 15 | | CLR-3: Introd
CLR-4: Analy
CLR-5: Introd
CLR-6: Gain | mance
luce basics of Digi
ze the pass band
luce basics of spre
hands-on experier | ital modulation and detection
data transmission technique
ead spectrum techniques an
ince to put theoretical conce | n techniques
es in terms of probability of ern
nd information theory concepts
pts learned in the course to pr | THE REAL PROPERTY AND THE PERSON | rel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Engineering Knowledge | Problem Analysis | Design & Development | Analysis, Design, Research | - | 呈 | Environment & Sustainability | - | Individual & Team Work | Collinging & Finance | Long Learning | –1: Pro | Nevement O – 2: Project Management | PSO – 3: Analyze & Research | | Course Learning | | | se, learners will be able to: | | Level | | Exp | | Pro | Des | Ana | Mo | Soc | En | Ethics | | | Life | | PSO
Tech | PS(| | | | ts of analo <mark>g modulat</mark> ion and | | With the second second | 2 | 80 | 70 | М | - | - | | - | - | - | - | - <i>F</i> | 1 - | - | Н | - | - | | CLO-2: Learn | the function of ra- | dio transmi <mark>tters and</mark> receive | ers and familiarize with noise p | erformance of various
receivers | 2 | 85 | 75 | | М | Н | - | - | | - | - | - - | | | Н | - | - | | CLO-3: Under | rstand various dig | ital modula <mark>tion sche</mark> mes an | d matched filter receiver | | 2 | 75 | 70 | M | - | - | - | - | - | - | - | - . | . - | - | - | М | Н | | CLO-4: Under | rstand and analyz | e various d <mark>igital pas</mark> s band | data transmission schemes | | 2 | 85 | 80 | - | 11- | - | M | - | - | - | - | - - | . - | | - | М | - | | | | | ectrum and error coding technic | | 2 | 85 | 75 | - | Н | - | - | - | - | - | - | - - | | | М | | Н | | CLO-6 : Analy | ze the operation on the compare exp | of analog an <mark>d digital c</mark> ommu
perimental results in the lab | inication systems and take me
poratory with theoretical analys | asurement of various communication | 2 | 85 | 75 | - | - | Н | - | Н | - | - | - 1 | ┥ . | - - | М | - | М | Н | | Durat | on (hour) | Analog Modulation | Radio Transmitters and Receivers | Digital Modulation System and Baseband Detection | Passband Data Transmission | Spread Spectrum Techniques and
Information theory Concepts | |----------|----------------|--|---|--|---|---| | | | 15 | 15 | 15 | 15 | 15 | | S-1 | SLO-1 | Modulation, Need for Modulation, | AM transmitter : Low Level, | Pulse modulation systems, Overview of PAM,PWM,PPM | Overview of ASK, FSK, PSK | Spread spectrum Communications, Frequency
Hopping Spread Spectrum (FHSS) | | 3-1 | | Amplitude Modulation, Types of
Amplitude Modulation | AM transmitter : High Level Transmitter | Pulse modulation systems, Overview of PAM,PWM,PPM | Overview of ASK, FSK, PSK | Spread spectrum Communications, Frequency
Hopping Spread Spectrum (FHSS) | | S-2 | SLO-1 | Double sideband Full carrier | FM transmitter: Direct Method | Pulse modulation systems, Sampling and quantization | Generation, Signal Space Diagram and detection of FSK | Direct Sequence Spread Spectrum (DSSS) | | 3-2 | SLO-2 | Double sideband Full carrier | FM transmitter: Direct Method | Pulse modulation systems, Sampling and quantization | Generation, Signal Space Diagram and detection of FSK | Direct Sequence Spread Spectrum (DSSS) | | | SLO-1 | Double sideband Suppressed carrier | FM transmitter: Indirect Method | PCM systems | Probability of Error for FSK | Direct Sequence Spread Spectrum (DSSS) | | S-3 | | Single sideband Suppressed carrier,
VSB | FM transmitter: Indirect Method | Bandwidth of PCM, PCM TDM signal multiplexing, Limitations of PCM system | Probability of Error for FSK | Code Division Multiple Access of DSSS | | S
4-5 | SLO-1
SLO-2 | Lab-1: AM modulator and Demodulator | Lab-4: Pre emphasis and De-emphasis | Lab-7: DPCM and its Demodulation | Lab-10: QPSK Modulation and Demodulation | Lab-13: Mini Project | | Duration | on (hour) | Analog Modulation | Radio Transmitters and Receivers | Digital Modulation System and Baseband Detection | Passband Data Transmission | Spread Spectrum Techniques and
Information theory Concepts | |------------|----------------|--|---|--|--|---| | | | 15 | 15 | 15 | 15 | 15 | | S-6 | SLO-1 | Generation of AM waves: Linear method-Collector modulator | Classification of radio receiver, Functions and Characteristics of radio receiver | Data formatting | Generation, Detection, Signal Space
Diagram of PSK | Code Division Multiple Access of DSSS | | 3-0 | SLO-2 | Generation of AM waves: Linear method- Collector modulator | Tuned Radio Frequency receiver | Data formatting | Generation, Detection, Signal Space
Diagram of PSK | OFDM Communication | | S-7 | SLO-1 | Non-linear Modulation-Balanced
Modulator | Super-heterodyne receiver- AM | Differential PCM (DPCM) | Probability of Error for PSK | OFDM Communication | | 5-1 | SLO-2 | Non-linear Modulation-Balanced
Modulator | Super-heterodyne receiver- AM | Differential PCM (DPCM) | Probability of Error for PSK | OFDM Communication | | 0.0 | SLO-1 | Demodulation of AM waves : Linear diode detector | Super-heterodyne receiver- FM | Delta modulation (DM) | Generation, signal space diagram and detection of QPSK | Measures of Information | | S-8 | SLO-2 | Demodulation of AM waves : Linear diode detector | Super-heterodyne receiver- FM | Delta modulation (DM), Noise in DM | Generation, signal space diagram and detection of QPSK | Measures of Information | | S
9-10 | SLO-1
SLO-2 | Lab-2: DSB-SC modulator and demodulator | Lab-5: PAM,PPM,PWM modulation and demodulation | Lab-8: DM and its Demodulation | Lab-11: DPSK Modulation and Demodulation | Lab-14: Model Practical Exam | | 0.44 | SLO-1 | Frequency modulation, Types of FM | Sources of Noise | Demodulation and detection process | Probability of Error for QPSK | Source encoding, Shannon's Channel capacity theorem | | S-11 | SLO-2 | Narrow Band FM, Wide Band FM,
Phase modulation | Sources of Noise | Demodulation and detection process | Probability of Error for QPSK | Shannon's Channel capacity theorem | | 0.40 | SLO-1 | Generation of Narrowband FM | Noise in AM (Envelope Detection), | Maximum likelihood receiver structure,
Matched filter receiver | Generation, signal space diagram and detection of π/4 QPSK | Linear block codes | | S-12 | SLO-2 | Generation of Narrowband FM | Noise in AM (Envelope Detection), | Maximum likelihood receiver structure,
Matched filter receiver | Generation, signal space diagram and detection of π/4 QPSK | Linear block codes | | C 12 | SLO-1 | Demodulation of FM : Foster seely discriminator | Noise in FM | Probability error of the Matched filter, Intersymbol interference, Eye pattern | Generation, signal space diagram and detection of QAM | Cyclic codes | | S-13 | SLO-2 | Demodulation of FM : Foster seely discriminator | Threshold effect, Pre-emphasis and De-
emphasis | Probability error of the Matched filter, Intersymbol interference, Eye pattern | Generation, signal space diagram and detection of QAM | Cyclic codes | | S
14-15 | SLO-1
SLO-2 | Lab-3: FM Modulator and Demodulator | Lab-6: Pulse Code Modulation and Demodulation | | Lab-12: BER performance analysis of various Modulation Schemes | Lab-15: University Practical Exam | | | 1. | Simon Haykin and Michael Moher, "Communication Systems," 5th edition, John Wiley & Sons, | 5. | Taub & Schilling, "Principle of Communication Systems", McGraw Hill Inc, 2nd Edition, 2003. | |-----------|----|---|----|---| | | | 2013 | | 6. John G. Proakis, "Digital Communication", McGraw Hill Inc, 5th Edition, 2008. | | Loorning | 2. | Singh. R. P & Sapre. S. D, "Communication Systems: Analog & Digital," 3rd edition, McGrawHill | 10 | 7. B.P. Lathi, "Modern Digital and Analog Communication System", Oxford University Press, 3rd Edition, | | Learning | | Education, Seventh Reprint, 2016. | | 2005. | | Resources | 3. | Simon Haykin, "Communication Systems", John Wiley & Sons, 4th Edition, 20008. | 8. | Shu Lin, Daniel Costello, "Error control coding – Fundamentals and Applications", Prentice Hall, Upper Saddle | | | 4. | Bernard Sklar, "Digital Communication, Fundamentals and Application", Pearson Education Asia, | - | River, NJ, 2nd Edition, 2004. | | | | 2nd Edition, 2001 | 9. | Lab Manual | | | Bloom's | | | Cont | tinuous Learning Asse | essment (50% weig | htage) | | | Final Evamination | o (EOO) woightage) | |---------|------------------------|--------|----------|--------|-----------------------|-------------------|----------|---------|----------|-------------------|--------------------| | | | CLA – | 1 (10%) | CLA - | - 2 (15%) | CLA – | 3 (15%) | CLA – 4 | l (10%)# | Final Examinatio | n (50% weightage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember
Understand | 20% | 20% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | Level 2 | Apply
Analyze | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | _evel 3 | Evaluate
Create | 10% | 10% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | Total | 10 | 0 % | 10 | 00 % | 100 | 0 % | 10 | 0 % | | - | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|---------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | Mrs. S. Vasanthadev Suryakala, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | L III | | Course Coo | de 18ECC206J | Course Name | VLSI D | ESIGN | | Course
atego | | С | | | Pi | Professional Core | | | | l
(| _ T | P 2 | C 4 | | |
---|---|--------------------------------------|---|--|--------------------|--------------------------|---------------|-----------------------|------------|----------------------|-----------|-------------------|-----------|----------------|--------|------------|--------|--|----------------|-------------------------------|--------------| | Pre- | requisite Courses | 18EC | C103J Co-requisite Courses | Nil | | Р | rogres | sive Cou | rses | | | | | | | 18EC | E301 | J | | | | | Course Offer | ring Department | Electro | onics and Communication Engineering | Data Book / Codes/Standards | | | | | | | | | Nil | | | | | | | | | | (CLR): | | • | ng this course <mark>is to:</mark>
uage for FPGA in electronic design automa | ation of digital circuits | L
1 | earnin | g
3 | 1 | 2 | 3 | 4 | Prog | ram l | Learni
7 | ing Ou | utcom | es (Pl | LO)
11 12 | 13 | 14 | 15 | | CLR-2: D | esign, construct and | simulate VLSI add | | anon or arguar on ource | | | H | 9 | | | | | | | | | | | | | | | CLR-3: Understand MOSFET operation CLR-4: Implement a given logic function using appropriate logic styles for improved performance CLR-5: Understand the basic processes in IC fabrication, steps in the fabrication of MOS ICs, and as well the layout design rules. | | | | | | | t (%) | dge | Ó | ent | Research | | | Sustainability | | Work | | 9 | l Achievement | ınagement | Research | | | lse modern engineer
oith the design and ar | | HSPICE / Modelsim / Xillinx to carry out descuits and systems. | sign experiments and gain experience | f Thinking (Bloom) | Expected Proficiency (%) | ed Attainment | Engineering Knowledge | n Analysis | Design & Development | Design, | Tool Usage | & Culture | ∞ర | | ⊑ | .≘ | Project Mgt. & Finance
Life Long Learning | : Professional | 2: Project Management
ques | 3: Analyze & | | Course Lear
(CLO): | ning Outcomes At th | ne end of this <mark>cour</mark> | rse, learners will be able to: | | Level of | Expecte | Expected | Engine | Problem | Design | Analysis, | Modern | Society | Environment | Ethics | Individual | Commu | Project Mgt.
Life Long Le | PSO-1 | PSO – 2:
Technique | PS0 - | | | esign and implemen | t digital circu <mark>its usi</mark> | ing Verilog HDL to simulate and verify the | designs. | 3 | 85 | 75 | | Н | Н | - | Н | - | - | - | - | - | | - | | - | | | | | <mark>ts, a</mark> dder cells and multipliers to address th | | 3 | 85 | 75 | | Н | Н | - | Н | - | - | - | - | - | | - | - | - | | CLO-3: E | xamine the characte | ristics of MO <mark>S tran</mark> | nsistors | TOTAL TO A STATE OF THE | 2 | 80 | 70 | Н | М | - | - | - | - | - | - | - | - | | - | - | - | | | | | <mark>lex l</mark> ogic gates designed using different log | | 2 | 80 | 70 | 7 | L | L | - | - | - | - | - | - | - | | - | - | - | | | | | <mark>d un</mark> derstand the physical implementation o | | 2 | 80 | 70 | | L | L | - | - | - | - | - | - | - | | - | - | - | | CLO-6: <i>U</i> | lse HSPICE compute | er analysis pr <mark>ogran</mark> | <mark>n an</mark> d Verilog HDL for simulation and analy | ysis of MOS circuits and building blocks | 3 | 85 | 75 | - | M | M | - 1 | Н | - | - | - | Н | М | L M | - | - | Μ | | Dunatia | | Introduction to Verilog HDL & Coding | Subsystem Design | MOS Transistor | CMOS Inverter and Circuit Design Styles | Microelectronic Materials | |---------|----------|--|---|--|---|--| | Duratio | n (hour) | 15 | 15 | 15 | 15 | 15 | | | SLO-1 | Introduction to HDL & Verilog HDL | General VLSI System Components:
Multiplexers | | CMOS Inverter Characteristics: Operation and properties of static CMOS inverter | Properties of basic materials used in microelectronics: Silicon, Silicon dioxide | | S-1 | SLO-2 | Introduction to Verilog HDL, modules and ports | MOS structure: accumulation, depletion, inversion; nMOS transistor: cutoff, linear, saturation regions of operation | | VTC of static CMOS inverter | Polysilicon and Silicon Nitride | | S-2 | SLO-1 | Lexical Conventions: White Space and Comments, Operators | Comparators | MOS Transistor under Static Conditions:
The threshold voltage | DC Inverter Calculations | IC Fabrication: Wafer Formation,
Photolithography,Well,Channel Formation | | 5-2 | SLO-2 | Numbers, Strings, Identifiers, System Names, and Keywords | priority encoder | Resistive operation | Symmetrical Inverter | Silicon Dioxide (SiO ₂), Isolation, Gate Oxide | | | SLO-1 | Verilog Data Types: Nets, Register
Variables, Constants | shift and rotate operations | Saturation region | Inverter switching characteristics | Gate, Source/Drain Formations, Contacts and Metallization, Passivation, Metrology | | S-3 | SLO-2 | Referencing Arrays of Nets or Regs | Adders: Standard adder cells | Current-voltage characteristics | Output capacitance | Recurring Process: Diffusion, Ion
Implantation, Deposition, Etching,
Planarization | | S-4, 5 | SLO-1 | | Lab-3: Design using FSM and ASM charts | Lab-6: Realization of VLSI multipliers - I | | | | Duratio | n (hour) | Introduction to Verilog HDL & Coding | Subsystem Design | MOS Transistor | CMOS Inverter and Circuit Design Styles | | |----------|--|---|---|---|---|---| | Duratio | ii (iioui) | 15 | 15 | 15 | 15 | 15 | | | SLO-2 | Lab-0: Verilog Operators: Arithmetic,
Bitwise, Reduction, Logical, Relational,
Shift, Conditional, Concatenation,
Expressions and Operands, Operator
Precedence | -0 | IF VC I: | Lab-9: Design and Analysis of CMOS
Inverter using HSPICE | Lab-12: Design and Analysis of 4-input
Dynamic NAND gate using HSPICE | | S-6 | SLO-1 | Verilog modelling: Gate-level modelling | Ripple Carry Adder (RCA) | Dynamic behavior: MOSFET
Capacitances, MOS structure
capacitances | Secondary Parasitic Effects: Leakage
Currents, Parasitic Resistances | Simplified CMOS Process flow | | | SLO-2 | Realization of Combinational and sequential circuits | Carry Look-Ahead Adder (CLA) | Channel capacitance and Junction (or, depletion) capacitances | Inverter layout | | | 0.7 | SLO-1 Compilation and simulation of Verilog code | | Carry Select Adder (CSL) | Parasitic Resistances, viz., Drain and Source Resistance, Contact Resistance | Power-Delay Product: Static Power Consumption | Layout design rules: Well rules, transisto rules | | S-7 | SLO-2 | Test bench | Carry Save Adder (CSA) | Non-ideal I-V effects: Mobility Degradation, Velocity Saturation | Dynamic Power Consumption, Total Power Consumption, PDP | Contact rules, metal rules, via rules and other rules | | | SLO-1 | Dataflow modelling | Carry Skip Adder (CSK) | Channel Length Modulation, Threshold Voltage Effects | CMOS Circuit Design Styles: Static CMOS logic styles | Gate Layouts | | S-8 | SLO-2 | Realization of Combinational and sequential circuits | Carry Bypass Adder (CBA) | Leakage, Temperature Dependence,
Geometry Dependence, Subthreshold
Current | CMOS circuits, pseudo-nMOS, tristate circuits, clocked CMOS circuits | Stick diagrams | | S-9, 10 | SLO-1
SLO-2 | Lab-1: Realization of combinational and sequential circuits using gate-level and dataflow modeling | Lab-4: Realization of VLSI adders - I | Lab-7: Realization of VLSI multipliers - II | Lab-10: (a) Design, Analysis of complex CMOS gate using HSPICE (b) Design, Analysis of Pseudo-NMOS gates using HSPICE | Lab-13: Model Practical Examination | | S-11 | SLO-1 | Behavioral modelling | Multipliers: Multiplication (unsigned,
shift/add multiplication algorithms,
multiplication of signed numbers, types of
multiplier architectures) | Short-channel MOSFETS: Hot carriers,
Lightly-Doped Drain (LDD) | Differential Cascade Voltage Switch Logic (DCVSL), Pass Transistor Logic (PTL) | and Oxide Thicknesses, Silicon-on- | | | SLO-2 | Realization of Combinational and sequential circuits | Braun multiplier | MOSFET scaling | Dynamic CMOS logic styles: Basic dynamic logic | Insulator, High-k Gate Dielectrics, Higher
Mobility, Plastic Transistors,) | | | SLO-1 | Switch-level modelling | Baugh-Wooley multiplier | Short-channel effects: Negative Bias
Temperature Instability, oxide breakdown | Signal integrity issues in dynamic design | Interconnects | | S-12 | SLO-2 | Realization of MoS circuits | Wallace Tree multiplier | Drain-Induced Barrier Lowering (DIBL),
Gate-Induced Drain Leakage (GIDL),
Gate Tunnel Current | Signal integrity issues in dynamic design | Circuit elements | | S-13 | SLO-1 | Design using FSM | Booth multiplier |
Tutorials | Domino Logic Circuits: Differential
Domino logic, multiple-output domino | Beyond conventional CMOS | | | SLO-2 | Realization of sequential circuits | Booth multiplier | Tutorials | Compound domino, NORA, TSPC | Tutorials | | S-14, 15 | SLO-1
SLO-2 | Lab-2: (a) Realization of digital circuits using behavioral modeling (b) Realization of MOS circuits using switch-level mdeling | Lab-5: Realization of VLSI adders - II | Lab-8: Realization of RAM & ROM | Lab-11:(a)Design,Analysis of AND/NAND
gate in DCVSL using SPICE (b) Design,
Analysis of Pass-Transistor gates and
CPL gates using HSPICE | Lab-14: End-Semester Practical Examination | | | 1. Jan Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective". Second | |-----------|---| | Learning | Edition, Feb 2003, Prentice Hall of India. | | Resources | 2. Weste, Harris, "CMOS VLSI Design: A Circuits and Systems Perspective", 4th ed., Addision-Wesley, 2011. | | | 3. Wayne Wolf, "Modern VLSI Design: IP-based Design", 4th edition, PHI, 2009. | - 4. R. Jacob Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley, (3/e), 2010. 5. John P. Uyemura, "CMOS Logic Circuit Design", Kluwer, 2001. - 6. S. Palnitkar , Verilog HDL A Guide to Digital Design and Synthesis, Pearson , 2003 - 2011. 7. Paul. R.Gray, Robert G. Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley, (4/e), 2001. - 8. M.D.Ciletti , Modeling, Synthesis and Rapid Prototyping with the Verilog HDL, Prentice Hall, 1999 | Learning Asse | essment | | | | | | | | | | | | |---------------|-------------------|---------------|----------|---------------|--------------------|-------------------|----------|---------|----------|-----------------------------------|--------------------|--| | | Bloom's | | | Contir | nuous Learning Ass | essment (50% weig | htage) | | | Final Examinatio | n (EOO) waishtasa) | | | | Level of Thinking | CLA – 1 (10%) | | CLA – 2 (15%) | | CLA – | 3 (15%) | CLA – 4 | 4 (10%)# | Final Examination (50% weightage) | | | | | Level of Thinking | Theory | Practice | | | Level 1 | Remember | 20% | 20% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | Level I | Understand | 2070 | 2070 | 1070 | 1070 | 1070 | 1070 | 1070 | 1070 | 1070 | 1070 | | | Level 2 | Apply | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | | LCVCI Z | Analyze | 2070 | 2070 | 2070 | 2070 | 2070 | 2070 | 2070 | 2070 | 2070 | 2070 | | | Level 3 | Evaluate | 10% | 10% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | Level 3 | Create | 10% | 1076 | 1376 | 1376 | 1376 | 1076 | 1376 | 1376 | 10% | 1576 | | | | Total 100 % | | 100 | 100 % | | 100 % | | 0 % | 100 % | | | | # CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|-------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | 1. Mr. Manikandan AVM, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | 2. Dr. J. Manjula, SRMIST | | Course Code | 18ECC301T | Course Name | WIRELESS COMMUNICATION | | Cour
Categ | | С | | | | Professional Core | | | | | L
3 | T F | C C | | | |--|--------------------|---|---|-------------|----------------------|------------|-----------------------|---------|-----------------|-------------------------------------|-------------------|-------------|------------------------------|--------|------------------------|--------------------------------------|--------------|------------------------------------|-----------------------------------|-----------------| | Pre-requisite
Course Offering | | 18ECC205J, 18ECC105T Electronics and Commun | Co-requisite Courses
 ication Engineering Data Book / Codes/Stand | Nil
ards | | Prog | ıressive | Cours | ses | | | ^ | Vil | | | 18EC | E2207 | Γ | | | | Course Learning
(CLR): | g Rationale The | e purpose of learning this cours <mark>e is t</mark> | 0: | 100 | Lea | ning | | | | | Pr | ograr | m Lear | ning | Outc | omes | (PLO) |) | | | | CLR-1: Unde | rstand the eleme | nts of Wireless Communic <mark>ation and</mark> | mobile communications | • | 1 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ′ | 0 11 | 12 | 13 | 14 | 15 | | CLR-3 : Analy
CLR-4 : Study
CLR-5 : Acqu
CLR-6 : Unde | ze how to apply | e Radio Wave Propagation - Large S
Mobile Radio Wave Propagation - S
d Diversity concepts in wireless con
e of Wireless System and Standards
n various wireless systems | Small Scale Fading
Innunications | | of I ninking (Bloom) | Attainment | Engineering Knowledge | Ane | n & Development | sis, Design, Res <mark>earch</mark> | \vdash | y & Culture | Environment & Sustainability | H
G | Individual & Team Work | Communication Project Mgt. & Finance | ong Learning | PSO-1: Professional
Achievement | - 2: Project
gement Techniques | 3: Analyz
ch | | Course Learning (CLO): | AL | the end of this <mark>course, le</mark> arners will b | | 3 | Expected | | Fncip | Problem | Design | Analysis, | Modern | Society | Enviro
Sustai | Ethics | Indivic | Comm | Life Lo | PSO-
Achiev | PSO –
Manage | PSO-
Resea | | CLO-1: Acqu | ire the knowledge | e of Wireless <mark>communi</mark> cation and ba | sic cellular concepts | | 2 75 | 60 | H | - | - | - | - | - | - | - | - | | М | М | - | L | | | | ntial Radio w <mark>ave propa</mark> gation and mo | | 1839 2 | 2 75 | | H | | H | Н | - | - | - | - | - | | М | Μ | - | Н | | | | ous perform <mark>ance anal</mark> ysis of mobile | communication system. | | 2 75 | | H | | Н | - | - | - | - | - | - | | - | - | - | Н | | | | of Diversity a <mark>nd capac</mark> ity concepts | | | 2 75 | | H | | - 1 | | - | - | - | - | - | | - | - | - | Н | | | | arious stand <mark>ards of M</mark> obile Communi | | | 2 75 | | H | | - | - | - | - | - | - | - | | М | М | - | L | | CLO-6: Explo | ore the various co | ncepts of wireless communication, is | ts design with respect to fading and link performan | ce 2 | 2 75 | 60 | H | H | Н | Н | M | - | - | - | - , | И - | M | М | - | H | | | | | | the transfer of the same of the same of | | | |-----------|------------|---|---|--|---|---| | Durat | ion (hour) | Wireless communication: Mobile communications | Large Scale Fading | Small Scale Fading | Improvement on Link performance | Wireless systems and standards | | | | 12 | 12 | 12 | 12 | 12 | | S 1 | SI ()_1 | Introduction to wireless commu <mark>nication and mobile radio communication</mark> | Introduction to Radio wave Propagation | Introduction Small scale multipath propagation | Introduction to diversity, equalization and | AMPS Voice modulation Process | | S-1 SLO-2 | | Classification of wireless communications - simplex, half duplex, dull duplex | Large scale and small scale fading | Impulse response model of multipath channel | capacity | AINIFS VOICE Modulation Frocess | | | | Paging and Cordless systems | Friis transmission equation- Free space | Impulse response model of multipath channel | Space diversity | GSM system architecture and its interfaces | | S-2 | SLO-2 | Cellular telephone systems | propagation model - pathloss model | Small scale multipath measurements -
Direct Pulse measurement | Scanning diversity | GSIN System architecture and its interfaces | | S-3 | SLO-1 | Timing diagram - landline to mobile | Two Ray model | Small scale multipath measurements -
Sliding correlator measurement | Maximal ratio combiner | GSM frame structure | | 3-3 | SLO-2 | Timing diagram - mobile to mobile | Two Kay Model | Small scale multipath measurements -
Swept frequency measurement | Equal gain diversity | - GSM tranie structure | | J 3LO-1 | | Basic antenna parameters, Far field and near field | Simplified pathloss model | Parameters of mobile multipath channels - | Rake Receiver | GSM speech operations input - output | | S-4 | SLO-2 | Frequency reuse, sectored and omni-
directional antennas | Emperical model - Okumara | Time dispersion and Coherent bandwidth | Take Receiver | oom speech operations input - output | | S-5 | SLO-1 | Channel assignment strategies | Emperical model - Hata model | | Capacity in AWGN | Forward CDMA process | | Durati | on (hour) | Wireless communication: Mobile communications | Large Scale Fading | Small Scale Fading | Improvement on Link performance | Wireless systems and standards | |--------|----------------|---|---|---|--|--------------------------------| | | | 12 | 12 | 12 | 12 | 12 | | | SLO-2 | Handoff and its types | | Parameters of mobile multipath channels -
Doppler spread and
Coherent time | 100 | | | | SLO-1 | | | Types of fading: Flat and Frequency | | | | S-6 | SLO-2 | Interference and system capacity | Piecewise linear model - log normal model | selective fading | Capacity of flat fading channels | Reverse CDMA Process | | S-7 | SLO-1 | Trunking and Grade of Service | Shadowing | Types of fading: Flat and Frequency | Favolinar and its made | Multiparrier madulation | | 5-7 | SLO-2 | Trunking and Grade of Service | Combined pathloss and shadowing | selective fading | Equalizer and its mode | Multicarrier modulation | | S-8 | SLO-1 | Cell splitting | Cell splitting Outage Probabilty | | Adaptive equalizer block diagram | OFDM Transmitter Block diagram | | | SLU-2 | 5 | | Types of fading: Fast and Slow fading | | | | S-9 | SLO-1 | Sectoring | Cell Coverage Area | Types of fading: Fast and Slow fading | Types of Equalizers - elementary level only | OFDM Receiver Block diagram | | | SLU-2 | - Costorning | Con Coverage 7 ii cu | Types of family. Tast and Slow family | Types of Equalizate statistically force only | or Bir Nocoron Brook diagram | | S-10 | SLO-1 | Microcell zone concepts | Solving problems – Brewster angle | Ricean distribution | Introduction to MIMO antennas | Importance of Cyclic Prefix | | 0-10 | SLO-2 | Wildrocell Zone concepts | Colving problems – Brewster angle | Tricean distribution | introduction to winvio antennas | Importance of Oyene Frenz | | S-11 | SLO-1
SLO-2 | Umbrella cells | Solving problems –empirical model | Rayleigh distribution | Introduction to MIMO antennas | Case study - Modern antennas | | S-12 | SI O 1 | Solving Problems | Solving problems – friis transmission formula | | Case study :Recent trends in Diversity and MIMO antennas | Case study - Modern antennas | | | | 1. | Rappaport.T.S., "Wireless Communications: Principles and Practice", 2 nd Edition, Pearson, 2011. | |---|-----------|----|---| | | Loorning | 2. | John D Kraus , Ronald J Marhefka, Ahmed S Khan "Antenna and Wave Propagation", 4th Edition, Tata | | ш | Learning | | McGraw Hill, 2010 | | | Resources | 3. | Constantine Balanis. A, "Antenna Theory: Analysis and Design", 3rd Edition, John Wiley, 2012. | | | | 4. | Andreas.F.Molisch., "Wireless Communications", Wiley, 2nd Edition-2005, Reprint-2014 | - Andrea Goldsmith, "Wireless Communications", Cambridge University Press, Aug 2005 Schiller, "Mobile Communications", Pearson Education Asia Ltd., Reprint 2012 Lee W.C.Y., " Mobile Communications Engineering: Theory and Applications", McGraw Hill, New York, 2nd Edition, 1998 | Learning Ass | essment | | | | | A Shirt | | | | | | | |--------------|------------------------------|-------------------|----------|--------|---------------------|-------------------|----------|---------|------------------------|--------------------|---------------------|--| | | Dia ami'a | | 100 | Conti | nuous Learning Asse | essment (50% weig | htage) | | | Final Evansination | n (EOO) (waishtana) | | | | Bloom's
Level of Thinking | CLA – | 1 (10%) | CLA – | 2 (15%) | CLA – | 3 (15%) | CLA – 4 | 4 (1 <mark>0%)#</mark> | | n (50% weightage) | | | | Level of Thinking | Theory | Practice | | | Level 1 | Remember
Understand | 40 <mark>%</mark> | - 1 | 30 % | 53/4 | 30 % | - 10/ | 30 % | | 30% | - | | | Level 2 | Apply
Analyze | 40 % | | 40 % | | 40 % | | 40 % | <u> </u> | 40% | - | | | Level 3 | Evaluate
Create | 20 % | 1 | 30 % | AKC A. A. | 30 % | LINE | 30 % | - | 30% | - | | | | Total | 100 | 0 % | 100 % | | 10 | 0 % | 10 | 0 % | 100 % | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|--------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | 1. Dr. Sandeep Kumar P, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | 2. Dr. T. Ramarao, SRMIST | | Course C | Code 1 | BECC302J | Course Name | MICROWAV | /E & OPTIC | AL COMMUNICATIONS | | Cours | | С | | | | | Profe | ssion | al Co | re | | | | L
3 | | P 2 | C
4 | |---|---|--|--|--|---------------|--------------------------|---|--------------------------|-------------------------|---|-----------------------|------------------|----------------------|--|-------------------|-------------------|------------------------------|---------------------------------|---------------|------------------------|-------------------|------------------------------------|---|------------|---------------------------| | | Pre-requisite
Offering Dep | | 18ECC205J
Electronics and | Co-requisite Courses Communication Engineering | Data Book | Nil
/ Codes/Standards | | | | | | Pr | ogres | sive (| Cours | es | N | il | , | 18EC | E22 | 6T & 18 | ECE32 | <u>23T</u> | | | (CLR):
CLR-1 : | | I ne pur
licrowave active de | pose of learning this c | | 5 | MAY C | 1 | _earn | ing 3 | 1 | 1 | 2 | 3 | 4 | Prog | gram
6 | | ning Ou | tcome | | | 13 | 14 | | 15 | | CLR-2 : CLR-3 : CLR-5 : CLR-6 : | Explore N
Analyze (
Measurer
Explore (| nents Optical Communica Microwave and opt | ements
cal Sources, Amplifier
ntion System Design a
ical components | 5/ | ors , Receive | er and Performance | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | | Engineering Knowledge | Problem Analysis | Design & Development | Analysis, Design, Res <mark>earch</mark> | Modern Tool Usage | Society & Culture | Environment & Sustainability | Ethics
ndividual & Team Work | Communication | Project Mgt. & Finance | ife Long Learning | ⊃SO–1: Professional
Achievement | PSO – 2: Project Management
Fechniques | = |) – 3: Analyze & Kesearch | | (CLO):
CLO-1 :
CLO-2 :
CLO-3 : | Acquire k | nowledge on the to
nicrowave passive | device <mark>s and co</mark> mpon | ansmission, microwave generato
ents. | | ciated components. | 2
2
2 | 80
80
80 | 70
70
70 | | H Eng | - M | н
Н | M H I Ana | Moc | - Soc | - Env | r · · Ethics | - Cor | - Pro | - Life | PSO. | PSO
Tech | | OSA L
M
H | | CLO-4:
CLO-5: | CLO-4: Familiarize with the fundamentals of light transmission through fiber CLO-5: Design a basic optical communication system. Understand the working principle of microwaye components. Microwaye measurements, entired sources, detector and | | | | | | 2 2 2 | 80
80
80 | 70
70 | i | H
H | H | -
-
H | M
H | - | - | - | | - | - | - | L
M
M | - | j | L
M
H | | | fibers
on (hour) | <u> </u> | 15 | 15 | | 15 | | 00 | 10 | | | " | 15 | | | i | | - - | | | 1 | | | <u></u> | <u>-</u> | | S-1 | SLO-1
SLO-2 | Introduction to m | icrowaves <mark>and optic</mark> al | High frequency parameters: S
S matrix analysis for N-port mid
device | | Impedance matching. | Elements of Optical fiber communication Point-to-Point link –Analog syst considerations and design step | | | | | lesig | n | | | | | | | | | | | | | | S-2 | SLO-1
SLO-2 | History of Microw
Microwave transi
Applications; Max | rave Enginee <mark>ring,</mark>
mission and | Directional coupler | e vin | VSWR and Impedance meas | R and Impedance measurement Functional block diagram of a Transmitter and receiver module Point-to-Point link – Digital considerations and design | | | | | lesig | n | | | | | | | | | | | | | Insertion loss measurements Measurement of Power Lab- 7 Practice session Measurement of Frequency and Q factor Optical fiber structure, Light Propagation in Digital Link Design: Link power budget Overview of Analog links: Radio over Lab- 13 Design of basic Optical Communication system using computational tool Rise time budget Fiber; Optical fibers: Ray theory, Total Internal Aperture, propagation and bending losses Optical Sources: Light source materials, Lab- 10 Measurement of Numerical reflection, Skew rays of optical fiber LED Structures LED Characteristics SLO-1 SLO-2 SLO-1 SLO-2 SLO-1 SLO-2 SLO-1 SLO-2 S-3 S-4-5 S-6 S-7 Microwave Tubes Klystron amplifier Klystron Lab- 1 Characteristics of Reflex Reflex Klystron oscillators Magnetron oscillators E and H plane Tee antenna Magic Tee Lab- 4 Gain and radiation pattern of Horn Microwave Circulators, Isolators | Duratio | n (hour) | 15 | 15 | 15 | 15 | 15 | |---------|----------------|---|--|---|---
--| | S-8 | SLO-1
SLO-2 | Microwave Bipolar Transistors Field effect transistor | Attenuators and Phase Shifters | | Semiconductor Laser Diode, Laser
Characteristics | Key link parameters | | S-9-10 | SLO-1
SLO-2 | Lab- 2 Study of power distribution in
Directional coupler, E plane, H plane
and Magic Tee | Lab- 5 Characteristics of filters, Microstrip
patch antenna and parallel line coupler | Lab- 8 DC characteristics of LED and Laser diode | Lab- 11 Analysis of Analog optical link | Lab- 14 Practice Session | | S-11 | SLO-1
SLO-2 | IMPATT, TRAPATT and Tunnel diode | Rectangular Waveguides | IMeasurement of Scallering parameters | Optical Detectors: PIN and APD photo detector | Multichannel System: Need for
multiplexing Operational principles of
WDM, DWDM | | S-12 | SLO-1
SLO-2 | | | Measurement of Scattering parameters | Responsivity and efficiency of APD | WDM Components: Coupler/Splitter, Fabry
Perot Filter | | S-13 | SLO-1 | | Power Dividers | Functioning details of Vector Network
Analyzer; Signal Analyzer; Spectrum
analyzers | Fiber attenuation and dispersion | WDM Components: Optical MEMS switches | | S-14-15 | | Lab- 3 Impedance measurement by slotted line method | Lab- 6 Design of RF Filters and Amplifier using computational tool | Lab- 9 DC characteristics of PIN and APD photo-diode | Lab- 12 Analysis of Digital optical link | Lab- 15 Study experiment - Gunn Diode
(Microwave) and Optical WDMA (Optical) | | | 1 4 | D '114 D "41" | |-----------|-----|--| | | 1. | David M. Pozar, "Microwave Engineering", 4th Edition, John Wiley & Sons, 2012. | | | 2. | David M. Pozar, "Microwave & RF Design of Wireless Systems", John Wiley & Sons, 2001. | | | 3. | Samuel Y. Liao, "Microwave Devices and Circuits", 3rd Edition, Pearson Education, 2013. | | Learning | 4. | Robert. E. Collin, "Foundations for Microwave Engineering", 2nd edition, Wiley, Reprint 2014. | | Resources | 5. | Annapurna Das, Sisir K. Das, "Microwave Engineering", 3rd Ed., McGraw Hill, 2015. | | Resources | 6. | I. Hunter, "Theory and design of microwave filters", The Institution of Engineering &Technology, | | | | 2001. | | | 7. | Keiser G, "Optical Fiber Communication Systems", 5th Edition, 6th Reprint, McGraw Hill Education | | | | (India), 2015. | - 8. Vivekanand Mishra, Sunita P. Ugale, "Fiber Optic Communication: Systems and Components", Wiley-India, 1st edition, 2013 - 9. Djafar.K. Mynbaev and Lowell and Scheiner, "Fiber Optic Communication Technology", Pearson Education Asia, 9th impression, 2013 - 10. John M. Senior, "Optical fiber Communications: Principles and Practice", Pearson Education, 3rd Edition, - 11. R.P. Khare, "Fiber Optics and Optoelectronics", Oxford University Press, 2007. 12. Rajiv Ramaswami, Kumar N. Sivaranjan, Galen H.Sasaki "Optical Networks A practical perspective", 3nd edition, 2013 | Learning Asse | essment | | | Martin - | | | | | | | | | |---------------|------------------------|---------------|----------|---------------|----------------------|-------------------|----------|--------|------------------------|-----------------------------------|--------------------|--| | | Bloom's | | 1 - 2 V | Cont | tinuous Learning Ass | essment (50% weig | htage) | | | Final Examination | n (E00/ waightaga) | | | | | CLA – 1 (10%) | | CLA – 2 (15%) | | CLA – | 3 (15%) | CLA – | 4 (<mark>10%)#</mark> | Final Examination (50% weightage) | | | | | Level of Thinking | Theory | Practice | | | Level 1 | Remember
Understand | 20% | 20% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | Level 2 | Apply
Analyze | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | | Level 3 | Evaluate
Create | 10% | 10% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | | Total | 10 | 0 % | 10 | 00 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | | [#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|---------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | 1. Dr. P. Sandeep Kumar, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | 2. Dr. T. Ramarao, SRMIST | | Course Code | 18ECC303J | Course Name | COMPUTER COMMU | NICATION NETWORKS | | ourse
tegory | / | С | Professional Core | | | L T P
3 0 2 | | C 4 | | | | | | | |---|---|--|--|--|---------------------------|--------------------------|-------------------------|-----------------------|-------------------|----------------------------|-------------------|-------------------|---------------------------------|----------------------------------|--------|------------------------|--------------------|------------------------------------|---|--------------------| | Pre-requ
Course Offering | uisite Courses Department | 18CSS101J
Electronics and | Co-requisite Courses Communication Engineering | Nil Data Book / Codes/Standards | - | | | Prog | ressive | Course | es | | | Nil | 18 | ECE3 | 20T | | | | | Course Learning Rationale CLR): The purpose of learning this course is to: | | | | | | | ng | Ē | | h | F | Progra | m Lear | ning Ou | ıtcome | es (PL | .O) | | | | | | uce the basic cor | cepts in the field of comp | <mark>uter networ</mark> ks. | | 1 | 2 | 3 | 1 | 2 3 | 4 | 5 | 6 | 7 | 8 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-3 : Acquii
CLR-4 : Analy.
CLR-5 : Famili | re knowledge of
ze the various iss
arize the various
the networking of | nal aspects of OSI model, the Network Layer protoco ues and challenges of Tra Application Layer Protoco concepts to analyze the pe | ols
ansport Layer.
ols.
erformance of Routing protocols | | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Engineering Knowledge | Problem Analysis | Analysis, Design, Research | Modern Tool Usage | Society & Culture | Environment &
Sustainability | Ethics
Individual & Team Work | tion | Project Mgt. & Finance | Life Long Learning | PSO-1: Professional
Achievement | PSO – 2: Project
Management Techniques | PSO – 3: Analyze & | | | ss the basic serv | ices and con <mark>cepts rel</mark> ated | to internetworking. | | 1 | 60 | 65 | | - | | | - | Н | | - | - | M | - | - | - | | | | nodel archit <mark>ecture an</mark> d its | | | 1 | 60 | 65 | | - N | | | | L | | - | - | - | - | - | Н | | | | etwork Laye <mark>r concep</mark> ts, me | | WITH WITH SILVER | 2 | 65 | 65 | | - H | | - | L | М | | - | - | - | - | - | - | | CLO-4: Descr | ibe the services a | and techniq <mark>ues of Tra</mark> nspo | ort Layer. | | 1 | 60 | 65 | l la | | | - | - | М | | - | - | - | - | | Н | | | | vices and p <mark>rotocols i</mark> n Ap _l | | | 1 | 60 | 65 | - | - N | - | - | - | - | - - | - | - | - | - | - | Н | | CLO-6: Analy | ze the various Ne | tworking co <mark>ncepts a</mark> nd Ro | outing protocols. | Control of the second s | 2
| 60 | 65 | | | | L | _ | - | - - | - | - | M | - | - | H | | Duratio | on (hour) | Data Communicat <mark>ion & Networking Basics </mark> | Osi Lower Layers | Network Layer | Transport Layer | Application Layer | |----------|-----------|---|--|---|--|--| | | | 15 | 15 | 15 | 15 | 15 | | S-1 | SLO-1 | Introduction to Data Commu <mark>nication and Networking</mark> | Network models | Introduction to Network Layer | Introduction to Transport Layer | Introduction to Application Layer | | 3-1 | SLO-2 | Data transfer modes-Serial and Parallel transmission | OSI layer architecture | Need for Internetworking | TCP/IP Model | Application Layer Paradigms | | S-2 | SLO-1 | Protocols & Standards | Data Link Layer-Introduction | Addressing-Classful | User Datagram Protocol(UDP) | Client Server Interaction | | 3-2 | SLO-2 | Layered Architecture | Link Layer Addressing | Addressing-Classful | User Datagram Protocol(UDP) | Client Server Interaction | | | SLO-1 | Principles of Layering & Description | Error Detection | Addressing-Classless | Transmission Control Protocol(TCP) | SIP | | S-3 | | Brief description of concepts in OSI & TCP/IP model | Error Detection | Addressing-Classless | Transmission Control Protocol(TCP) | SIP | | S
4-5 | SI O-2 | Lab 1: To build and configure a simple
network of four nodes connected with
point-to-point links. | Lab 4: To simulate token ring protocol and to study its performance. | Lab 7:To simulate CSMA/CA protocol and to study its performance | Lab 10: Implementation and study of Selective Repeat protocol. | Lab 13: Create a Socket (TCP&UDP) between two computers and enable file transfer between them. | | S-6 | | Switching Types- Circuit- & Packet switching | Error Correction | Network Layer Protocol-IPV4 | TCP Services & Features | Compression Techniques | | 3-0 | | Switching Types- Message switching,
Comparison of switching types | Error Correction | Internet Protocol(IP)-IPV4 | TCP Services & Features | Compression Techniques | | Duratio | n (hour) | Data Communication &
Networking Basics | Osi Lower Layers | Network Layer | Transport Layer | Application Layer | |---------|----------|---|--|---|---|---| | | | 15 | 15 | 15 | 15 | 15 | | S-7 | SLO-1 | LAN, MAN & WAN | Data link control-LLC | Internet Protocol(IP)-IPV6 | Congestion Control | Introduction to Cryptography | | 5-1 | SLO-2 | LAN, MAN & WAN | Data link control-LLC | Internet Protocol(IP)-IPV6 | Congestion Control | Types, Attacks and Services | | 0.0 | SLO-1 | Network topologies-Types | Data link control-MAC | Routing Protocols- Distance Vector& Link
State | Congestion Control | DES | | S-8 | SLO-2 | Comparison of topologies | Data link control-MAC | Routing Issues-Delivery, Forwarding and Routing | Congestion Control | DES | | S | SLO-1 | Lab 2: To simulate star and bus network | Lab 5: Implementation of Error detection | Lab 8: Implementation and study of stop | Lab 11: To configure a network using Link | Lab 14: Implementation of Data Encryption | | 9-10 | SLO-2 | topologies. | and Correction scheme. | and wait protocols | State Routing protocol. | and Decryption. | | S-11 | SLO-1 | IEEE standards for LAN-Ethernet | Flow & Error Control Protocol | Routing Information Protocol-RIP | QOS-Quality of Service | RSA | | 5-11 | SLO-2 | Types of Ethernet | Flow & Error Control Protocol | Routing Information Protocol-RIP | QOS-Quality of Service | RSA | | S-12 | SLO-1 | Token Bus | ARQ Schemes | Open Shortest Path First-OSPF | Techniques to improve QOS | Email | | 5-12 | SLO-2 | Token Ring | ARQ Schemes | Open Shortest Path First-OSPF | Techniques to improve QOS | FTP | | 0 10 | | FDDI | HDLC | Border Gateway Protocol-BGP | Techniques to improve QOS | HTTP | | S-13 | SLO-2 | FDDI | HDLC | Border Gateway Protocol-BGP | Techniques to improve QOS | SNMP | | S | SLO-1 | Lab 3: To simulate token bus protocol | Lab 6:To simulate CSMA/CD protocol and | Lab 9: Implementation and study of Go | Lab 12: To configure a network using | Lab 15: Mini Project | | 14-15 | SLO-2 | and to study its performan <mark>ce.</mark> | to study its performance | back N protocol. | Distance Vector Routing protocol. | Lab 13. Willii FTOJEGI | | Learning | 1. Behrouz A.Fehrouzan, "Data communication & Networking", Mc-Graw Hill, 5th Edition Reprint, 2014. | |-----------|--| | Resources | 2. Andrew S.Tanenbaum <mark>, "Compu</mark> ter Networks", Pearson Education India, 5th Edition, 2013. | | Resources | 3. William Stallings, "Data & Computer Communication", Pearson Education India, 10th Edition, 2014 | - 4. James F. Kurose, Keith W. Ross, "Computer Networking: A Top–Down Approach Featuring the Internet", Pearson Education, 6th Edition, 2013. - 5. "Lab Manual", Department of ECE, SRM Institute of Science and Technology | Learning Ass | sessment | | | The second second | | Carlo Carlo | 200 | | | | | | | |--------------|-------------------|--------|----------|-------------------|---------------------|-------------------|----------|--------|----------|-------------------------------|-------------------|--|--| | _ | Dle em'e | | | Contir | nuous Learning Asse | essment (50% weig | htage) | | | Final Examination | n (FOO) weighteen | | | | | Bloom's | CLA - | 1 (10%) | CLA – 2 | CLA – 2 (15%) | | 3 (15%) | CLA – | 4 (10%)# | Final Examination (50% weight | | | | | | Level of Thinking | Theory | Practice | | | | Lovel 1 | Remember | 20% | 20% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | | Level 1 | Understand | 20% | 20% | 10% | 10% | 10% | 10% | 1376 | 13% | 10% | 10% | | | | Level 2 | Apply | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | 20% | | | | Level 2 | Analyze | 2070 | 2078 | 2070 | 2070 | 2070 | 2070 | 2070 | 2078 | 2070 | 2070 | | | | Level 3 | Evaluate | 10% | 10% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | 15% | | | | revel 2 | Create | 1070 | 1070 | 10/0 | 13/0 | 13/0 | 1370 | 1370 | 1376 | 1370 | 1370 | | | | | Total | 10 | 0 % | 100 |) % | 10 | 0 % | 10 | 0 % | 10 | 00 % | | | [#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|-------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | 1. Ms. T. Ramya, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | | | Course Code | 18ECC350T | Course Name | CC | OMPREHENSION | Course
Category | С | | Pro | ofessio | onal C | ore | | | L | T 1 | P
0 | C
1 | |---
--|---|----------------------------------|----------------------|---|-----------------|---|-------------------------|------------------|---|-----------------------------------|------------------------------|-------------------------|---------------|------------|---------|--------| | Pre-requisite Courses Nil Co-requisite Courses Nil Progressive Courses | | | | | | | | | Nil | | | | | | | | | | Course Offering Department Electronics and Communication Engineering Data Book / Codes/Standards Nil | | | | | | | | | | | | | | | | | | | Course Learning Ra(CLR): | ationale The purpos | e of learning this cour <mark>se</mark> | e is to: | SCH | Soling) | | Learning | | | Pro | gram L | earning | g Outco | mes (l | PLO) | | | | | kills to solve real world | d problems in Analog ar | nd Digital Electronics (Discrete | e & IC) | | | 1 2 3 | 1 | 2 | 3 4 | 5 | 6 7 | 8 9 | 10 | 11 1: | 2 13 | 14 15 | | | | | nd Digital Communication | A TOTAL STREET | | 7 7 | | | | ج. | | | | | | | | | | | | | | | | | | | t g | | | ج ا | ≤ | a> | | | | CLR-4: Acquire s | kills to solve real world | d problems i <mark>n Micropro</mark> d | essors & Microcontrollers, an | d VLSI Design | | | cy (| edc | | nen | a) | | Work | 2 | Finance | | | | CLR-5 : Acquire skills to solve real world problems in Electromagnetics and Transmission Lines | | | | | | | | | | ndo I | gag | ഉ | E | | i- i | 20 | | | CLR-3: Acquire skills to solve real world problems in Signals & Systems, and DSP CLR-4: Acquire skills to solve real world problems in Microprocessors & Microcontrollers, and VLSI Design CLR-5: Acquire skills to solve real world problems in Electromagnetics and Transmission Lines CLR-6: Acquire skills to solve real world problems in Microwave and Optical Communications | | | | | | | | | alys | Development | ' ຼັ∷ : | Culture
ent & | Team | tion | જ હૈ | 5 | | | - Thin Thin Att Paris | | | | | | | | | Ang | & De | | z E | ~ | ica i | Mgt. | ול | | | CLR-3: Acquire skills to solve real world problems in Signals & Systems, and DSP CLR-4: Acquire skills to solve real world problems in Microprocessors & Microcontrollers, and VLSI Design CLR-5: Acquire skills to solve real world problems in Electromagnetics and Transmission Lines CLR-6: Acquire skills to solve real world problems in Microwave and Optical Communications Course Learning Outcomes (CLO): At the end of this course, learners will be able to: | | | | | | | | Ⅱ Engineering Knowledge | Problem Analysis | Design & Development Analysis, Design, Research | Modern Tool Usage | Society & Cultuenvironment & | Ethics
Individual 8. | Communication | Project Mg | PSO - 1 | 1 1 1 | | CLO-1: Practice and gain confidence and competence to solve problems in Analog and Digital Electronics (Discrete & IC) | | | | | | | | Н | | H L | L | L L | LL | . L | LL | . M | L M | | CLO-1: Practice and gain confidence and competence to solve problems in Analog and Digital Electronics (Discrete & IC) 3 85 80 H H CLO-2: Practice and gain confidence and competence to solve problems in Analog and Digital Communication 3 85 80 H H H | | | | | | | | Н | M L | L | L L | L L | . L | L L | . M | M M | | | CLO-3: Practice and gain confidence and competence to solve problems in Signals & Systems, and DSP | | | | | | | | Н | Н | M L | L | L L | L L | . L | L L | . M | L M | | CLO-4: Practice and gain confidence and competence to solve problems in Microprocessors & Microcontrollers, and VLSI Design | | | | | | | | Н | Н | M L | L | L L | L L | . L | L L | . M | | | CLO-5 : Practice and gain confidence and competence to solve problems in Electromagnetics and Transmission Lines | | | | | | | | Н | | H L | L | L L | L L | . L | L L | . M | | | CLO-6: Practice and gain confidence and competence to solve problems in Microwave and Optical Communications | | | | | | | | | | | | | | | | | | | F | | | 4767 | | 447.0 | | | | | | | | | | | | | | Duration (hour) | | | 3- | | 3 | | 3 | | | | | | | 3 | | | | | | | | | | | | | | | | Tutorial on Optical Communication | | | | | | | | SLO-2 F | SLO-2 Problem Solving Prob | | | | | blem Solving | | | | Problem Solving | | | | | | | | | S-2 SLO-1 7 | | | | | Tutorial on VLSI Design | | | | _ | Model Test | | | | | | | | | | | | | | | Problem Solving | | | | | Model Test | | | | | | | | | | | Tutorial on Digital Signal Prod | | | | Tutorial on Microwave Communication Problem Solving | | | | Final Test
Final Test | | | | | | | | SLO-2 Problem Solving Problem Solving Problem Solving Problem | | | | | | em Solving | | | | rına | ı rest | | | | | | | | Learning Resource | 1. R.S.Khurm
S.Chand & | | al Engineering: Conventional a | and Objective Types, | 2. R.K.Jain, Conventi
Khanna Publishers, 201 | | bjective Type Qu | estion | & Ans | wers c | n Meci | nanical | Engine | eering | for Coi | mpetit | ions, | | Learning Ass | sessment | | | | | | | | | | | | |--------------|-------------------|--------------------|-------------------|---------------|----------|---------------|----------|----------------|----------|--------------------|----------|--| | | Bloom's | | Final Examination | | | | | | | | | | | | | CLA – 1 (20%) | | CLA – 2 (30%) | | CLA – 3 (30%) | | CLA – 4 (20%)# | | Filiai Examination | | | | | Level of Thinking | Theory | Practice | | | Level 1 | Remember | 40% | - | 30% | -016 | 30% | - | 30% | - | - | | | | | Understand | | | | | | | | | | - | | | Level 2 | Apply | 40% | | 40% | Drive. | 40% | 41 | 40% | - | - | _ | | | | Analyze | | | | | | | | | | _ | | | Level 3 | Evaluate | 20% | 13/- | 30% | | 30% | 10 | 30% | | - | | | | | Create | 20% | | | | | | | - | | - | | | | Total | <mark>100 %</mark> | | 100 % | | 100 % | | 10 | 0 % | | - | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|-------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com | 1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu | 1. Mr. Manikandan AVM, SRMIST | | 2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com | 2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in | 2. Dr. V. Nithya, SRMIST |