ACADEMIC CURRICULA **Professional Core Courses** **MECHANICAL ENGINEERING** Regulations - 2018 SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (Deemed to be University u/s 3 of UGC Act, 1956) Kattankulathur, Kancheepuram, Tamil Nadu, India | Co.
Co | irse
de | 18MEC101T Course Name | THERMODYNAMICS | | Cours
Catego | _ | С | | | Profes | sional Cor | 9 | | | L | 1 | P
0 | C 4 | |-----------|------------------|--|---|--|-----------------|--------------------------|---------------------------|---|--------------------------------|--|------------------------------------|--------------------------|------------------------|---------------|--------------|----------|----------|---------| | С | requisite ourses | Nil | Co-requisite Nil Courses | | | Cours | | Nil | | | | | | | | | | | | Cours | e Offering | Department Mechanical Engineer | ing Data Book | / Codes/Standards | Ste | am ta | ables a | <mark>and Mollier chan</mark> | t | | | | | | | | | | | Cours | e Learning | Rationale (CLR): The purpose of learning | g this course is to: | AL HALL | | .earni | ing | | | Pro | ogram Lea | rning O | utcome | es (PL | D) | | | | | CLR-1 | : Identi | ify the fundamental concepts of thermodynan | nic systems and energy transfer | | 1 | 2 | 3 | 1 2 | 3 | 4 5 | 6 7 | 8 | 9 | 10 | 11 1 | 2 13 | 14 | 15 | | CLR-2 | | e thermodynamic laws and their applications | | | (Bloom) | (% | (% | Φ | | | | | × | | | | | | | CLR-3 | | e the concept of entropy and availability | | 1771111 | 300 | 5 | t (| - Spe | Jeu | (1) | | | Nor | | & Finance | | | | | CLR-4 | | e the evaluation of properties of pure s <mark>ubstan</mark> | | ette bere |) G | ien | me | owle sis | l do | n, | <mark>)</mark> စ | | E | | gt. & Final | 20 | | | | CLR-5 | | e the evaluation of properties of gas and gas | | The state of s | Thinking | ofic | tai | A syle |) se | igisi
U.S | <u>=</u> ∞ | > | Teg | tion | ∞ 2 | 5 | | | | CLR-6 | : Utilize | e the thermodynamic relations and <mark>its signific</mark> | ance | | į | L P | ₹ | An | ۵ | اع کے ا | S C L | Ħ | ∞ | ig. | /gt 3 | _ | | | | | | | | | o | Expected Proficiency (%) | S Expected Attainment (%) | エ Engineering Knowledge
エ Problem Analysis | Design & Development | Analysis, Design,
Research
Modern Tool Usage | Society & Culture
Environment & | Sustainability
Ethics | Individual & Team Work | Communication | Project Mgt. | PSO - 1 | -2 | | | Cours | e Learning | Outcomes (CLO): At the end of this cour | rse, learners will be able to: | 18 TO | evel | xpe | × | ngir ldor | esić | nal)
ese | nyir oci | Sustair
Ethics | di | E O | roje | 80 | PSO | PSO | | CLO-1 | · Annly | the concept of thermodynamic properties to | quantify energy transfer | | 3 | <u>Ш</u> | 80 | Н Н | | M M | | <u>и</u>
. L | <u></u> | | M A | | | М | | CLO-2 | | thermodynamic laws to analyze various ther | | On the State of th | 3 | 90 | 80 | HH | | M M | | 1 | M | | M | | | M | | CLO-3 | | the concept of entropy and a <mark>vailability</mark> to the | | lvsis | 3 | 90 | 80 | | | M M | | . L | M | | M | | | M | | CLO-4 | | late the properties of pure sub <mark>stances a</mark> nd an | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 3 | 90 | | H H | М | M M | | . <u>L</u> | М | | M N | | | М | | CLO-5 | | late the properties of gas and gas mixtures | | The second | 3 | 90 | | | | M M | | . L | М | | M A | | | М | | CLO-6 | | the knowledge of thermodyn <mark>amic relat</mark> ions to | o evaluate non measurable properties | 3 | 90 | 80 | H M | М | M M | L | . L | М | М | M N | 1 M | М | М | | | Durat | on (hour) | T 12 | 12 | 12 | | | | | | 12 | | | | | 12 | | | | | Durat | , | Thermodynamic system and Control | | | - | - | - | Pure substance | | | 0 | | | | | | | | | S-1 | SLO-1 | volume | Limitations of first law | Clausius theorem | | | l | phenomenon o | of a pu | re substan | ce | Prop | erties d | of idea | gases | | | | | | SLO-2 | larid Cycle | Cyclic heat engine, Energy reservoirs, | Concept of entropy, T-s o | liagram | | | Property diagra
process | | | | Prop | erties d | of real | gases | | | | | S-2 | SLO-1 | Thermodynamic equilibrium, Quasi-static process | Refrigerator and heat pump | Clausius inequality, Entro | py prin | ciple | | T-v, P-v,P-T di
Critical point ai | | | face, | Equa | ition of | state | | | | | | 5-2 | SLO-2 | Pure substance , State postulate | Thermal efficiency and COP | Application of the conceptheorem | t of Cla | usius | 3 | T-s and h-s dia | agram, | Dry <mark>nes</mark> s fr | raction, | Vano | ler Wa | al's eq | uation | of state |) | | | | SLO-1 | , , , | Kelvin-Planck statement and Clausius statement of second law | Clausius inequality on so heat engines, heat pump | | | | Use of Steam | tables, | M <mark>ollier ch</mark> a | art | Com | pressib | oility fa | ctor, co | mpres | sibility | y chart | | S-3 | SLO-2 | | Equivalence of the two statements | Evaluation of change in e | | | | Identification o | f state: | s & Determ | nination of | | lem sol | | | | of prop | perties | | _ | SLO-1 | Path function and point function. | Tutorials on Second law of thermodynamics | Tutorials on change in en | tropy fo | or soli | ids | Tutorials on ca | lculatio | on of stean | n propertie | Tuto | rials on | | | | gas ar | าd | | S-4 | SLO-2 | pdVwork for various quasi-static processes | Tutorials on Second law of thermodynamics | Tutorials on change in en | tropy fo | or so <mark>li</mark> | ids | Tutorials on ca | lculatio | on of stean | n propertie | Tuto | rials on | prope | rties o | ideal | gas ar | nd | | 0.5 | SLO-1 | Tutorials on Work and Heat Transfer. | Reversible and irreversible process Evaluation of changing ages undergoing versions and irreversible process | | | | eal | Rankine cycle | Properties of mixture of gases | | | | | | | | | | | S-5 | SLO-2 | other types of work transfer including flow work | Causes of irreversibility | Evaluation of change in e | ntropy | for id | eal | Operation of R | ankine | cycle | | Dalto | n's law | v of pa | rtial pre | ssures | } | | | S-6 | SLO-1 | First law of thermodynamics for a closed system | Carnot cycle | Available and unavailable energy | Analysis of Rankine cycle | Amagat's law of additive volumes | |------|-------|---|---|---|--|---| | | SLO-2 | Concept of total energy E | Working of a Carnot engine | Dead state | Analysis of Rankine cycle | Internal energy, enthalpy | | | SLO-1 | Various modes of energy | Thermal efficiency of a Carnot heat engine | Availability | Problems solving on Rankine cycle | specific heats and entropy of gas mixtures | | S-7 | SLO-2 | Tutorials on first law for a closed system | Tutorials on Carnot engines | Irreversibility | Problems solving on Rankine cycle | Problem solving on evaluation of properties of gas mixtures | | S-8 | SLO-1 | Tutorials on first law: Constant volume, constant pressure, process in which PV=C | Reversed Carnot cycle | Tutorials on change in entropy for ideal gases | Tutorials on Rankine cycle with different turbine inlet conditions | Tutorials on properties of gas mixtures | | 3-0 | SLO-2 | Tutorials on first law: Polytropic, adiabatic process, Combination of different process | Carnot's theorem | Tutorials on change in entropy for ideal gases | Tutorials on Rankine cycle with different turbine inlet conditions | Tutorials – Mixing of gases | | S-9 |
SLO-1 | Internal energyand Enthalpy, specific heats | Thermodynamic temperature scale. | Availability of energy entering a system | Reheat Rankine cycle | Maxwell's relations | | 3-9 | SLO-2 | Process and cycle | Efficiency of Carnot heat engine | Availability of energy entering a system | Operation of reheat Rankine cycle | T-ds relations | | S-10 | | | COP of Carnot refrigerator | Problems solving on Availability of a closed system | Analysis of refleat Karikine cycle | Equations for dH and dU. | | 3-10 | SLO-2 | Derivation of general energy equation for a control volume | Carnot heat pump, COP | Problems solving on Availability of a closed system | Concept of regeneration in Rankine cycle | Clausius-Clapeyron Equation | | S-11 | SLO-1 | Application of SFEE to various steady flow devices | Tutorials on combined heat engine & refrigerator/heat pump system | Availability in a steady flow process | Problem solving on reheat Rankine cycle | Joule-Thomson experiment | | 3-11 | SLO-2 | Problem solving on first law applied to flow processes | Tutorials on combined heat engine & refrigerator/heat pump system | Problem solving on availability | Problem solving on reheat Rankine cycle | Joule -Thomson coefficient. | | S-12 | SLO-1 | | Tutorials on combined heat engine & refrigerator/heat pump system | Tutorials on availability | Tutorials on reheat Rankine cycle | Tutorials on Thermodynamic relations | | 0-12 | SLO-2 | Tutorial on first law applied to various steady flow devices | Tutorials on combined heat engine & refrigerator/heat pump system | Tutorials on availability | Tutorials on reheat Rankine cycle | Tutorials on Thermodynamic relations | | | 1. | Mahesh M. Rathore, Therma <mark>l Enginee</mark> ring, Tata McGraw Hill Education, 2012 | H | |-----------|----|--|---| | Learning | 2. | Yunus. ACengel., Michael A Boles, Thermodynamics – An Engineering Approach, 8th ed., Tata McGraw Hill- Education, 2015 | | | Resources | 3. | Nag. P.K, Engineering Thermo <mark>dynamic</mark> s, 5 th ed., Tata McGraw Hill Education, 2013 | | | | 4. | R. K. Rajput, Thermal Engineering, 10th ed., Laxmi Publications (P) Ltd, New Delhi, 2017 | Ì | - 5. Michael J Moran, and Howard N Shapiro, Fundamentals of Engineering Thermodynamics, 8th ed., John Wiley & Sons, New York, 2015 - 6. Claus Borgnakke, Richard E. Sonntag, Fundamentals of Thermodynamics, 7th ed., Wiley, 2009 - 7. Ramalingam. K. K, Steam tables, Sci.Tech Publishers, 2009 | Learning Assess | SILICIT | | | | | | | #50/ | | | | |-----------------|------------------------|--------|-----------------------|--------|---------------------|-------------------|----------|--------|----------|-------------------|-------------------| | | Bloom's | | | Conti | inuous Learning Ass | essment (50% weig | ıhtage) | 71 | | Final Evamination | n (50% weightage) | | | Level of Thinking | CLA – | <mark>1 (10</mark> %) | CLA - | 2 (15%) | CLA - | 3 (15%) | CLA - | 4 (10%)# | Final Examination | i (50% weightage) | | | Level of Thirtking | Theory | Practice | | Level 1 | Remember
Understand | 40 % | 17 - 7 | 30 % | ALC DOLL | 30 % | | 30 % | - | 30% | - | | Level 2 | Apply
Analyze | 40 % | | 40 % | - | 40 % | | 40 % | - | 40% | - | | Level 3 | Evaluate
Create | 20 % | | 30 % | - | 30 % | | 30 % | - | 30% | - | | | Total | 100 | Ö % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | [#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|-----------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. R Velraj, IES,CEG, Anna University, Chennai, velrajr@annauniv.edu | 1. Mr. V Thirunavukkarasu, SRMIST | | 2. Dr.A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in | 2. Dr. M. Cheralathan, SRMIST | | | irse
de | 18MEC102T | Course
Name | FLUID MECHANICS | | ourse
tegory | / | С | | | F | Profess | sional | Core | | | | | L
3 | T
1 | P C 0 4 | |--------|------------------|--|---|--|--|-----------------|------------------------------|-------------------------|-------------------------|-----------------------|---|----------------------|-------------------|------------------------------|------------------|------------------------|---------------|----------------|-------------|---------|------------| | С | requisite ourses | Nil | | Co-requisite Nil | | С | gressi
ourses | 1/\ | lil | | | | | | | | | | | | | | Course | e Offering | Department | Mechanical Enginee | ering Data Book | c / Codes/Standards | Nil | | | | | | | | | | | | | | | | | Course | e Learning | g Rationale (CLR): | The purpose of learr | ina this course is to: | | Le | arning | | | | | Pro | aram | Learni | ina Ou | tcome | es (PL | O) | | | | | | - | , , , | | 176.76 | | 4 | | | | 1 | 3 4 | | <u> </u> | 7 | | | · · | | 40 | 40 (| 11 15 | | CLR-1 | | | | urement techniques using manometer solve fluid flow problems | | - | | 3 | 1 | 2 | 3 4 | 5 | 6 | 1 | 8 | 9 | 10 | 11 | 12 | 13 | 14 15 | | CLR-2 | | | dimensional and mode | | | (Bloom) | See Expected Proficiency (%) | Expected Attainment (%) | ge | | Ę | | | | | 夫 | | e | | | | | CLR-4 | | | | nulic turbines and pumps | |)
B | ncy | ent | vlec | 1 | l me | ge | | | | × . | | Finance | Б | | | | CLR-5 | | | ndary layer, lift <mark>and dra</mark> | | | Thinking (| icie | <u>=</u> | Nov | /sis | elop
gn, | Jsa | ınre | ~× | | ear | 5 | 直 | Learning | | | | CLR-6 | | | ids at rest as <mark>well as in</mark> | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 美 | | ∤tta | g
A | nal |)ev | 0 | JII. | t ≧ | | ڪ
ح | aţi | ÷. | ea | | | | | | , | | | THE THE PARTY | Ė. | ed F | be | erin | n A | 8 S. C. | 3 5 | ∞ ∞ | me | 3 | <u>a</u> | ig | Μg | _ | _ | 3 2 | | 0 | . 1 | . O. t (OLO): | At the end of this en | | AND THE RESERVE OF | Level of | ect | ect | T Engineering Knowledge | Problem Analysis | Design & Development
Analysis, Design, | Modern Tool Usage | Society & Culture | Environment & Sustainability | S | Individual & Team Work | Communication | Project Mgt. & | Life Long I | | | | Course | e Learning | g Outcomes (CLO): | At the end of this co | urse, learners will be able to: | 100 | Lev | X | X | ПЭ | Pro | Ana | | Soc | Sus | Ethics | <u>n</u> | Š | Pro | E | PS(| PSO
PSO | | CLO-1 | | ify the properties of fl | | | A STATE OF THE STA | | | 80 | | Н | HH | М | L | L | L | Μ | L | - | Н | | H L | | CLO-2 | | the fluid flow proble | | * A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | No. of the last | | | 80 | Н | Н | H H | М | L | L | L | М | L | - | Н | | H L | | CLO-3 | | | chniques <mark> for practi</mark> cal i | | | | | 80 | Н | Н | $H \mid H$ | М | L | L | L | Μ | L | - | Н | | H L | | CLO-4 | : Ident | ify the energy exchar | ige proce <mark>ss in fluid</mark> ma | chinery | | | | 80 | Н | Н | H H | М | L | L | L | Μ | L | - | Η | | H L | | CLO-5 | | | r theory a <mark>nd flow o</mark> ver | | CHILDREN THE | | | 80 | Н | Н | H H | М | L | L | L | М | L | - | Н | | H L | | CLO-6 | : Analy | ze the dynamics of f | luid flows <mark>and their</mark> gov | rerning parameters | | 3 | 85 | 80 | Н | Н | НН | М | L | L | L | М | L | - | Н | L | H L | | Durati | on (hour) | | 12 | 12 | 12 | 7 | | т | - | 7 | 12 | | | | | | | 12 | 2 | | | | S-1 | SLO-1 | Types of Fluids, Pro | perties of
<mark>fluid</mark> | Types of fluid flow | Dimensional analysis | | | Ну | /draulic | mach | ines | | | | Bound | lary la | ayer | | | | | | 3-1 | | | eight, Spec <mark>ific volum</mark> e, | Lagrangian and Eulerian approach of stud | | omoge | eneity | | ırbines | | | | | | Lamin | | | | | | | | S-2 | | Specific gravity, Val | | Velocity of Fluid particles | Buckingham's pi theorem | | | Cla | assifica | tion o | turbines a | nd <mark>pu</mark> i | mps | | Turbu | lent b | ounda | ry la | yer | | | | 3-2 | | | and Kinema <mark>tic viscosit</mark> | | Model analysis | | | | | | Vorking pri | nciple | | | Bound | | | | | | | | | SLO-1 | Newton's law of visc | cosity | Continuity equation | Advantages and applications | S | | Ve | elocity to | iangle | | | | | Displa | | | | | | | | S-3 | SLO-2 | Surface tension and | l Capillarity | Continuity equation in three dimensions | Similitude, Dimensionless nu | umber | S | De | esign pa | rame | ters, P <mark>erfo</mark> | mance | e | | Proble
thickn | | lving c | n bo | undar | / layer | | | 0.4 | SLO-1 | Tutorials on fluid pro | pperties | Tutorials on Velocity, Acceleration and Continuity equation | Tutorials on Buckingham's p | i theo | rem | Tu | itorials (| on Pei | ton tu <mark>rbin</mark> e | | | | Tutoria | als on | Boun | dary | layer | hickne | ∋ss | | S-4 | SLO-2 | Tutorials on fluid pro | pperties | Tutorials on Velocity, Acceleration and Continuity equation | Tutorials on Buckingham's p | i theo | rem | Tu | itorials (| on P <mark>e</mark> l | ton turbine | | | | Tutoria | als on | Boun | dary | layer | hickne | ∍ss | | S-5 | SLO-1 | Bulk modulus of ela
Compressibility | sticity and | Fluid Dynamics | Model laws- Reynold's, Frou | ıde | | Fre | ancis tu | rbine- | <mark>Working</mark> p | rinciple | Э | | Mome | ntum | thickne | ess | | | | | | SLO-2 | Fluid statics: Pascal | l'slaw | Euler equation of motion | Model laws- Euler | | | | locity to | iangle | • | | | | Energ | | | | | | | | S-6 | SLO-1 | Hydrostatic law | | Bernoulli's equation | Tutorials on Reynold's and F
laws | roude | e mode | el Ka | aplan tu | rbine- | Working pi | inciple |) | | Drag f
layer | orce | on a fla | at pla | ate due | to bo | oundary | | | SLO-2 | Manometers: Types | | Applications of bernoulli's equation | Weber and Mach model law | S | | Ve | locity to | iangle |) | | | | | armar | n mom | entu | m inte | gral ed | quation | | S-7 | | Piezometer | | Venturimeter | Laminar flow-Reynold's expe | <u>erimer</u> | nt | | avitation | | | | | | Separ | | | | | | | | 3-1 | SLO-2 | Applications and Lin | nitation | Orificemeter | Hagen poiseuille law | | | Pr | oblem s | olving | on Turbin | e perf | ormai | nces | Proble | m Sc | lving o | on m | oment | um int | egral | | | | | | | | equation | |------|-------|---|--|--------------------------------------|--|--| | | SLO-1 | Tutorials on laws of fluid statics | Tutorials on Venturimeter and Orificemeter | Tutorials on major and minor losses | Tutorials on Francis and Kaplan turbine | Tutorial problems on momentum integral | | S-8 | JLO-1 | Tatoriais of laws of fluid statics | | | Tatoriais of Francis and Napian turbine | equation | | 3-0 | SLO-2 | Tutorials on laws of fluid statics | Tutorials on Venturimeter and Orificemeter | Tutorials on major and minor losses | Tutorials on Francis and Kaplan turbine | Tutorial problems on momentum integral | | | 3LO-2 | Tutoriais off laws of fluid statics | | | Tutorials of Francis and Kapian turbine | equation | | | SLO-1 | U-Tube manometer | Pitot tube | Turbulent flow-Darcy equation | Reciprocating pump | Forces exerted by a flowing fluid on a | | S-9 | 3LO-1 | 0-Tube manometer | Filot tabe | Turbulent now-barcy equation | | stationary body | | 3-9 | SLO-2 | Problem Solving on U-tube manometer | Nozzle flow meter | Minor loss due to sudden enlargement | Single and double acting pumps-working | Separation of flow over bodies | | | 020 2 | Troblem Gerving on G tabe manemeter | | | principle | , | | S-10 | SLO-1 | Single column manometer | Bernoulli's equation for real fluid | Minor loss due to sudden contraction | Centrifugal pump - Working principle | Streamlined and bluff bodies | | 3-10 | SLO-2 | Differential U-tube manometer | Types of flow lines, Stream line | entrance and exit of pipe | Velocity triangle, Design parameters | Development of lift on a circular cylinder | | | SLO-1 | Inverted differential U-tube manometer | Streak line and Path line | Flow through pipes in series | Cavitation in pumps | Development of lift on an aerofoil | | S-11 | SLO-2 | Problem solving in differential manometer | Impulse Momentum equation | Flow through pipes in parallel | Performance curves on turbines and pumps | Problem Solving on lift and drag forces | | S-12 | SLO-1 | Tutorials on differential manometer | Tutorials on finding force exerted by fluid on pipe bend | Tutorials on major and minor losses | Tutorials on centrifugal pump | Tutorials on lift and drag forces | | 3-12 | SLO-2 | Tutorials on differential manometer | Tutorials on finding force exerted by fluid on pipe bend | Tutorials on major and minor losses | Tutorials on centrifugal pump | Tutorials on lift and drag forces | | Learning | 1. | Rajput. R. K, A text book of Fluid Mechanics and Hydraulic Machines, S.Chand & Company Ltd., 6 th ed., 2015 | 4. | White. F. M, Fluid Mechanics, Tata McGraw-Hill, 7th ed., 2011 | |-----------|----|--|----|---| | Ü | 2. | Bansal. R. K, A text book of Fluid Mechanics and Hydraulics Machines, Laxmi publications (P) Ltd., 9thed., 2015 | 5. | Streeter. V. L, Wylie. E. B, Fluid Mec <mark>hanics , M</mark> cGraw Hill,5 th ed., 1984 | | Resources | 3. | Modi P.N, Seth S.M, Hydraulics and Fluid Mechanics, Standard Book House,15thed., 2002 | 6. | Modi P.N, Seth S.M, Hydraulics and Fluid Mechanics, Standard Book House,15 th ed., 2002 | | Learning Ass | sessment | | | | | | | | | | | | |--------------|---------------------------|-------------------|----------|---------------|--------------------|--------|---------------|----------|---------|----------|-------------------|-------------------| | | Dia am'a | | | Contir | nuous Learning Ass | sessme | ent (50% weig | htage) | | | Final Evamination | (EOO/ weightege) | | | Bloom's Level of Thinking | CLA - | 1 (10%) | CLA – 2 (15%) | | | CLA - | 3 (15%) | CLA – 4 | (10%) | Final Examination | n (50% weightage) | | | Level of Thinking | Theory | Practice | Theory | Practice | | Theory | Practice | Theory | Practice | Theory | Practice | | Level 1 | Remember
Understand | 40 % | 551 | 30 % | | | 30 % | - | 30 % | - | 30% | - | | Level 2 | Apply
Analyze | 40 <mark>%</mark> | 1200 | 40 % | - 1// | | 40 % | - 17 | 40 % | | 40% | - | | Level 3 | Evaluate
Create | 20 % | 1 | 30 % | | | 30 % | - 1 | 30 % | 7 1- | 30% | - | | | Total | 10 | 0 % | 100 |) % | | 10 | 0 % | 100 | % | 10 | 0 % | [#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|---|--------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. R Velraj, IES, CEG, Anna University, Chennai, velrajr@annauniv.edu | 1. Mr. V. Rajasekar, SRMIST | | 2. Dr.A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in | 2. Dr. K. Suresh Kumar, SRMIST | | Course Code 18MEC103T Course Name MANUFACTURING TECHNOLOGY Course Category C Professional C | | | | | | | | | | | Core | | | | | L
3 | T
1 | P
0 | C 4 | | | | |---|---------------------|--|--
--|----------|--------------------------|-------------------------|-------------------------|------------------|----------------------|-------------------------------|-------------------|-------------------|------------------------------|--------------------|------------------------|---------------|------------------------|--------------------|--------------|-------|------| | Co | requisite
ourses | Nil | Co-requisite Courses | | | rogre:
Cours | ssive
ses | Nil | | | | | | | | | | | | | | | | Course | Offering | Department Mechanical Engin | peering Data Book | / Codes/Standards | Nil | -1 | | | | | | | | | | | | | | | | | | | - | | arnin <mark>g this course is</mark> to: | The state of s | | .earni | Ŭ. | | | | | Prog | | _earnii | ng Out | | | | | | | | | CLR-1 | | the Concepts of casting Technology | - 10 | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2
CLR-3 | | fy the Mechanical working of metals fy the Theory of metal cutting | - | 171711 | (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | 9 | | Ħ | | | | | | 똕 | | e e | | | | | | CLR-3 | | e machine tools principles and its applicate | tion in manufacturing industry | | 画 | ncy | ent | Engineering Knowledge | | Design & Development | | ge | | | | Individual & Team Work | | Project Mgt. & Finance | б | | | | | CLR-5 | | fy the various metal joining process for th | | | Thinking | ficie | inm | No No | ysis | elop | ign, | Usa | ture | <u>ం</u> ర | | eau | 5 | iΞ | rii. | | | | | CLR-6 | | | ming, joining and finishing operations and deter | mine their suitability | hin | Pro | Atte | 5 | Inal | Dev | Des | 00 | Cn | ent | | ~ ৺ | cati | gt. & | Lea | | | | | | | | | STATE OF THE | of T | ted | ted | eeri | E E | ∞ ⊏ | sis, | T | ار م | inat | | Inal | ī l | ∑
∵ | buc | - | . 7 | က | | Course | Learning | Outcomes (CLO): At the end of this | course, learners will be able to: | TECHNOLOGY. | Level of | çpec | Çpec | i je | Problem Analysis | esig | Analysis, Design,
Research | Modern Tool Usage | Society & Culture | Environment & Sustainability | Ethics | divic | Communication | oje(| Life Long Learning | PSO - 1 | PSO. | PSO- | | CLO-1 | · Identi | fy metal casting processes and to recogn | nize the various casting techniques to apply for r | making the product | 2 | 90 | 85 | H | L | M | ₹ œ | <u> </u> | ري
- | <u>ш</u> | <u>iii</u> | <u>⊆</u>
M | | <u>-</u> | | H | L | H | | CLO-2 | | | etal techniques to apply the techniques for any f | | 2 | 90 | 85 | H | M | M | M | - | - | | - | M | - | - | | Н | L | Н | | CLO-3 | | | ion and acquire the knowledge about cutting too | | 2 | 90 | 85 | Н | М | М | М | - | - | - | - | М | - | - | | Н | L | Н | | CLO-4 | | | g, shaping, slotting, planning and broaching mad | chines | 2 | 90 | | Н | L | М | L | - | - | - | - | М | - | - | - | Н | L | Н | | CLO-5 | | fy various metal joining proce <mark>ss and its</mark> a | | 6-6-4 | 2 | 90 | | Н | | Н | H
M | - | - | - | - | М | - | - | | Н | L | H | | CLO-6 | : laentii | ny manufacturing processes, tools, enviro | onment and suitable manufacturing processes fo | or labrication work | 2 | 90 | 80 | Н | М | М | IVI | - | - | - | - | М | - | - | - | Н | L | П | | Duration | on (hour) | 12 | 12 | 12 | P-17 | | • | | 7 | | 12 | | | | | | | 12 | | | | | | S-1 | SLO-1 | Introduction to Casting | Introduction to Hot Working | Orthogonal cutting | | | | Introduct | ion to | Gear I | Manut | acturii | ng | | Types
Joints, | Types | s of W | /elds, | | | | | | 3-1 | SLO-2 | Patterns and its types and Materials | Cold Working | Oblique cutting | | | | Machinin | _ | | · | | | | Power
Weldin | | ity, Ηε | eat Ba | alance | in F | usion | | | S-2 | SLO-1 | Pattern Allowances | Hot and Cold Rolling | Classification of cutting to | ols | | | Classifica
basic cor | | | ng Ma | chines | and i | ts | Genera | al Tec | hnolo | gy of | Arc И | /eldin | ng | | | 3-2 | SLO-2 | Moulding and its types, | Types of rolling; Two, three, four, multi and
Universal rolling | Single point cutting tools | | | | Types of | cutter | s in M | illing r | nachir | nes | | consur
electro | | | | | | | | | S-3 | SLO-1 | Moulding sand | Open die and Closed die forging | Multipoint cutting tools | Ν, | | 113 | Types of periphera | al, face | millin | ng 💮 | | | , | Fundaı
Weldin | g | | | | | | | | 3-3 | SLO-2 | Design of Gating system | Wire drawing | Tool signature for single p | | | tool | Simple a and its ca | | | al Inde | exing r | nethod | | Gas M
Arc We | | rc We | lding | , and | Subr | nerg | ∍d | | S-4 | SLO-1 | Tutorial for design of gating system | Tutorial Session | Tutorial on Numerical in c
calculation | _ | | | Tutorial 1 | 0 Nur | nerica | l in ind | dexing | meth | ods | Tutoria | l Sess | sion | | | | | | | 3-4 | SLO-2 | Tutorial for design of gating system | Tutorial Session | Tutorial on Numerical in calculation | utting | force | | Tutorial 1 | 0 Nun | nerica | l in ind | dexing | meth | ods | Tutoria | l Sess | sion | | | | | | | | SLO-1 | Numerical problems on pouring time | Hot, Cold wire drawing | Mechanics of orthogonal | cutting | | | <u>Sha</u> ping | and sl | otting | Mach | ine | | ı | Fundaı | nenta | ls of (| Gas t | ungste | en arc | c wel | ding | | S-5 | SLO-2 | Numerical problems on Caine's rule | Forward, backward and tube extrusion | Force relationship | | | | Descripti | on and | l Opei | rations | 5 | | | Resista
welding | | veldin | g, an | d Plas | sma a | arc | | | S-6 | SLO-1 | Numerical Problems on Riser design | Shearing, Piercing | Merchant Circle | Planing; Double house and open side | Parametric considerations in solid-state welding | |------|-------|--|--|--|--|---| | 3-0 | SLO-2 | Numerical Problems on Riser design | Trimming and Stretch forming | Merchant Circle | Quick return mechanism, Work and tool holding Devices | Difference between fusion welding and solid-state process | | S-7 | SLO-1 | Cores | Theory of Bending, Bending length | Determination of shear angle | Boring machine and its Specification, operations | Forge Welding, Roll Welding, Explosion
Welding, Ultrasonic welding | | 3-1 | SLO-2 | Core making | Bending force calculations | Determination of shear angle | Jig boring machine | Friction welding and Friction stir welding, Friction surfacing and processing | | S-8 | SLO-1 | Tutorial on Numerical in riser design and pouring time | Tutorial on Numerical in bending force calculation | Tutorial on Numerical in Merchant circle | Tutorial on Discussion about mechanism of special purpose machine | Tutorial Session | | 3-0 | SLO-2 | Tutorial on Numerical in riser design and pouring time | Tutorial on Numerical in bending force calculation | Tutorial on Numerical in Merchant circle | Tutorial on Discussion about mechanism of special purpose machine | Tutorial Session | | S-9 | SLO-1 | Shell casting | Drawing | Chip formation | Specification of Broaching machine, its types and operations; internal, surface | Basic Solidification Concepts, Grain structure | | 5-9 | SLO-2 | Investment Casting | Blank size and and drawing force calculations | Cutting tool materials | Tool nomenclature of broaching tool | Post-Solidification Phase Transformations, CCT diagram | | S-10 | SLO-1 | Die casting | Tube forming, Embossing and coining | Tool wear calculation | Grinding process, Types of Grinding machines | Residual Stresses and Distortion, weld defects, Inspection and Testing Methods, | | 3-10 | SLO-2 | Centrifugal Casting | Progressive dies | Taylor tool life calculation |
Surface, Cylindrical and Centerless
Grinding | factors of weldability, Types of weldability test techniques, | | C 44 | SLO-1 | Casting defects | Compound and Combination dies | Machinability | Grinding Wheel and its types, Grinding specifications and type of abrasive bonds | Introduction on brazing and soldering methods | | S-11 | SLO-2 | Remedies for defects | Defects in forming | Cutting Fluids | Lanning Buffing Honing and Super | filler materials | | S-12 | SLO-1 | Tutorial Session | | 3-12 | SLO-2 | Tutorial Session | | Learning | |-----------| | Resources | | | - SeropeKalpakjian, Steven R Schmid Manufacturing Engineering and Technology, 7th ed., Pearson, 2018 Mikell P. Groover, Fundamentals of Modern Manufacturing Materials, Processes, and Systems, 4th ed., John Wiley & Sons, 2010 - Roy A. Lindberg, Processes and materials of manufacture, Boston: Allyn and Bacon, Pearson education, 2006 A.C. Davies, The science and practice of welding, Vol. 1 and 2, 10th ed., Cambridge University Press, 2002 - John A. Schey, Introduction to manufacturing processes, 3rd ed., McGraw-Hill, 2000 - 6. Sindo Kou, Welding Metallurgy, 2nd ed., John Wiley & Sons, 2003. - John C. Lippold, Welding Metallurgy and Weldability, John Wiley & Sons, 2015 - 8. Welding Handbook Volume 1 to 5, 9th ed., American Welding Society. 2013 | Learning Assess | ment | | 2 | | | | | 15- | | | | |-----------------|------------------------|--------|----------|--------|---------------------|-------------------|----------|--------|----------|--------------------|--------------------| | _ | Diagrafa | | - | Conti | inuous Learning Ass | essment (50% weig | htage) | 11839 | | Final Evansination | n (EOO) weightens) | | | Bloom's | CLA – | 1 (10%) | CLA – | 2 (15%) | CLA – | 3 (15%) | CLA – | 4 (10%)# | Finai Examinatio | n (50% weightage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember
Understand | 40 % | - | 30 % | - | 30 % | | 30 % | - | 30% | - | | Level 2 | Apply
Analyze | 40 % | - | 40 % | - | 40 % | | 40 % | - | 40% | - | | Level 3 | Evaluate
Create | 20 % | - | 30 % | - | 30 % | | 30 % | - | 30% | - | | | Total | 100 |) % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | [#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com | 1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com | 1. Dr. M. Prakash, SRMIST | | 2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr. N. Arunachalam, IIT Madras, chalam@jitm.ac.in | 2. Dr. Manidipto Mukherjee, SRMIST | | Course
Code | 18MEC104L | Course
Name | FLUID | DYNAMICS LABORATOR' | 1 | Cours
Catego | _ | С | | | | | Pro | fessi | onal (| Core | | | | <u>l</u> | L - | P 2 | C
1 | |--------------------------|---|--|---------------------------------|--|--|------------------------|--------------------------|-------------------------|---------|-----------------------|------------------|----------------------|-------------------------------|-------------------|-------------------|------------------------------|--------------------|------------------------|---------------|------------------------|--------------------|---------|--------| | Pre-requisite
Courses | INII | | Co-requisit | 18MEC1021 | | | rogres
Cours | | Nil | | | | | | | | | | | | | | | | Course Offering | Department | Mechanical Engineer | ring | Data Book | / Codes/Standards | Nil | | | | | | | | | | | | | | | | | | | Course Learning | g Rationale (CLR) | : The purpose of learning | ng t <mark>his course is</mark> | to: | The state of | | _earniı | ng | | | | | | Prog | ıram L | _earnir | ng Out | come | s (PLC | D) | | | | | | | w measuring devices | | | | 1 | 2 | 3 | / | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 1 | 12 1 | 3 14 | 4 15 | | | | nd dynamics of fluid flow in | pipes | | | (mo | (%) | (%) | | Эе | | = | | | | | | 돈 | | d) | | | | | | | ergy losses in pipes | - | | Contract of the last la | 8 | cy | ent | | edc | | mer | | <u>e</u> | | | | 8 | | auc | _ | | | | | ify the performand
yze the performan | | | * | | ng (| cier | nme | | NOC | Sis | dol | 'n, | sag | <u>e</u> | | | am | ا ے | Ë. | ie | | | | | yze fluid flow cond | | flow meters, ene | rgy heads and losses, perfo | ormance of pumps, | el of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | | Engineering Knowledge | Problem Analysis | Design & Development | Analysis, Design,
Research | Modern Tool Usage | Society & Culture | Environment & Sustainability | SS | Individual & Team Work | Communication | Project Mgt. & Finance | Life Long Learning | 0-2 | 0-3 | | Course Learning | g Outcomes (CLO |): At the e <mark>nd of this c</mark> ou | ırse, learners will | be able to: | 1.4 | Level | Exp | EXP | * | Eng | Pro | Des | Res | Moc | Soc | <mark>Env</mark>
Sus | Ethics | ng. | Sol | Joj : | <u> </u> | PSO SO | PSO | | | | f flow measur <mark>ement de</mark> vice | S | PM 277 | A TOTAL STATE OF THE T | 3 | 95 | 85 | | Н | Н | Н | Н | М | Ĺ | L | L | М | | М | М | L L | | | | | pe of energy <mark>heads</mark> | Table 1 | | | 3 | 95 | 85 | _ | Н | Н | Н | Н | М | L | L | L | | | | М | L L | L | | | | nergy losses <mark> in pipe</mark> | | | | 3 | 95 | 85 | | Н | | Н | Н | М | L | L | L | | | | M | L L | L. | | | ze the performan | | / 4 | | | 3 | 95 | 85 | | Н | | Н | Н | M | L | L | L | | | | M | LL | . L | | CLO-5 : Arialy | ze the performan | ce of turbines
conte workin <mark>g principl</mark> es of | flow motors, one | rgy heads and losses, perfo | ormance of number turbines | 3 | 95
95 | 85
85 | | H | H | H | H | M
M | L | L | L | | M
M | | M
M | | _ L | | OLO-0 . Analy | yze naid now conc | epts, working principles or | now meters, ene | rgy riedus and iosses, perio | irmance of pumps, turbines | 1 3 | 30 | 1 00 | | 11 | | '' | '' | IVI | | | L | IVI | IVI | IVI I | IVI | - - | | | Duration (hour) | | 6 | | 6 | 6 | | | | | | | 6 | | | | | | | | 6 | | | | | S-1 SLO-1
SLO-2 | | ent using Orif <mark>icemeter</mark> | Flow visualizati apparatus | on using Reynolds | Study of major Energy los | ss in a | oipe | | Study | of Ka | plan | turbin | e Tesi | t Rig | | 5 | Study o | of Sub | omersi | ble Ρι | итр 1 | est Rig | g | | S-2 SLO-1
SLO-2 | Determine the co | o-efficient of dis <mark>charge o</mark> f | | l vortex flow visualization | Determine friction factor a | nt a giv | en pip | e | Perfori | nanc | e tes | t on K | aplan | turbii | ne | F | Perforn | nance | e test o | on Sul | bmers | ible pu | ımp | | S-3 SLO-1
SLO-2 | | ent using Venturi <mark>meter</mark> | | profile of forced vortex and f the forced vortex curve | Study of Pelton turbine | | | | Study | of Fra | ancis | turbin | e Tes | t Rig | | 9 | Study c | of Red | ciproca | ating F | ⊃ump | Test R | ≀ig | | S-4 SLO-1
SLO-2 | Venturimeter | o-efficient of dischar <mark>ge of</mark> | Verify Bernoulli | | Performance test on Pelt | on turb | ine | | Perfori | manc | e tes | t on F | rancis | turbi | ine | | Perforn | | | | • | • . | • | | S-5 SLO-1
SLO-2 | | ent using Pitot tube/
cavitation in pipe flow | points in the pip | | Study on impact of jet of | vater c | n van | es | Study | of Ce | ntrifu | gal Pu | лтр Т | est R | Rig | | Study o
Gear P | | | | ormar | ce tes | t on | |
S-6 SLO-1
SLO-2 | Determine veloc
Prandtl type Pito | ity at a point by using
It tube | Study of Minor losses due to p | losses &Determine minor
ipe fittings | Determine co-efficient of water on different vanes | impact | of jet | of | Perfori | manc | e tes | t on C | <mark>entrif</mark> u | ıgal p | oump | | Perforn
Perforn | | | | | | | | Learning
Resources | | | | , Introduction to Fluid Mech
ncluding Hydraulics Machin | | (Hous | e,2018 | 8 4 5 | . K | L Kui | nar, E | | ering | | | | McGra
, 10th | | | | Co., 20 |)15 | | | | Bloom's | | | Conti | nuous Learning Asse | essment (50% weig | htage) | | | Final Examinatio | n /E00/ woightago | |---------|------------------------|--------|--------------------|--------|---------------------|-------------------|----------|--------|----------|-------------------|-------------------| | | | CLA – | 1 (10%) | CLA – | 2 (15%) | CLA – : | 3 (15%) | CLA – | 4 (10%) | Filiai Examinatio | ii (50% weightage | | | Level of Thinking | Theory | Practice | | Level 1 | Remember
Understand | - | 40 % | | 30 % | 100 | 30 % | | 30 % | - | 30% | | Level 2 | Apply
Analyze | - | 4 <mark>0 %</mark> | 405 | 40 % | NI. | 40 % | 10.70 | 40 % | - | 40% | | Level 3 | Evaluate
Create | - | 20 % | 131 | 30 % | | 30 % | | 30 % | - | 30% | | | Total | 100 | 0 % | 10 | 0 % | 100 |) % | 10 | 0 % | 10 | 0 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|---|--------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. R Velraj, IES, CEG, Anna University, Chennai, velrajr@annauniv.edu | 1. Dr. R Senthil, SRMIST | | 2. Dr.A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in | 2. Mr. S Bharath Subramaniam, SRMIST | | Course
Code | 181/11-(*11)51 | ourse
ame | MANUFACTURI | ING PROCESS LABO | RATORY | | ourse
tegory | y | С | | | | F | Profess | ional | Core | | | | 0
0 | T
0 | P 2 | 1
1 | |--------------------------|--|--------------------------------|--|------------------------|----------------------------------|-----------|-----------------|------------------|-------------------------|----------------------------------|-------------------------|----------|-------------------------------|-----------------------|-----------------------|------------------------------|-------------------|--------------------------|---------------------------------|--------------|----------|---------------|---------| | Pre-requisite
Courses | NII | | Co-requisite
Courses | 18MEC103T | | | С | ogress
Course | | Nil | | | | | | | | | | | | | | | Course Offering | Department | Mechanical Engi | neering | Data Bo | ok / Codes/Standards | | Nil | Course Learning | g Rationale (CLR): | The purpose of le | arning <mark>this course i</mark> s to: | 120 | | | Le | arnin | ıg | | | | | Pro | gram | Learni | ng Out | comes | s (PLO |) | | | | | CLR-1 : Prac | tice Various types of lat | he operations | | 133 | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 1 | 1 12 | 2 13 | 14 | 15 | | | | | t <mark>our shape</mark> s on the give | en component | | | | | _ | | | | | | | | | | | | | | | | CLR-3: Prac | tice basic Gear making | processes | | | CONTRACTOR | , | Bloom) | enc | Expected Attainment (%) | | | , | | Usage | a) | | | E | | 2 | 20 | | | | | tice Surface finishing pr | | | | A PAINTER | 2 | Ininking | <u> </u> | ain | | Knowledge | 2 | nent
Design, | Us | Culture | જ ્ | | ndividual & Leam
Vork | ار
م | a
Parning | | | | | | tice and Preparation of | | | (A | | 2 | | 5 | ¥ | D D | 9 | 2 | Development
Analysis, Desi | Modern Tool | S | Environment & Sustainability | | _
න | Communication
Project Mgt. & | ä | 3 | | | | CLR-6: <i>Utiliz</i> | e machines like lathe, C | CNC Lathe, <mark>Shape</mark> | er, Slotter, Milling, CNC | Mllling, Gear hobbing, | grinding and sand mould | ling | 5 6 | ge [| te d | Engineering | Knowledge
Problem An | _ ∾ু | is, | | ంర | na
pag | | ng
n | Sommunicat
Project Mgt. | | <u> </u> | 2 | က | | | | | - 1 | Carrier of | A SERVE BY | 9 | Bloom) | Sec _ | Sec | gine | lwo
old | Design & | alys al | der | Society | viro
stai | Ethics | 돌 | m Sec | -inance | (6 | 0- | Ö | | | | | <mark>c</mark> ourse, learners will be | | | Č | | i S | <u> </u> | ш | Σ <u>μ</u> | o i | A Pie | 2 8 | So | Su En | 計 | Work | SE | Fi | PSO | PSO | PSO | | | | | ts according to specified | | | | | 85 | 80 | H | | H | | Н | L | Н | L | | H i | _ H | | L | L | | | | | n the given component | 1700.0 | To the William In the | | | 90 | 85 | F | | | L | Н | L | L | L | | H i | _ H | | L | L | | | tice basic Gear Making | | 1000 | | THE RELEASE | | | 95 | 90 | N | | . H | | L | L | L | L | Н | H i | _ <i>F</i> | | L | L | | | tice Surface Finish Prod | | | 1000 | | | 3 | 85 | 80 | ŀ | | . H | | L | L | Н | Н | L | L | _ <i>F</i> | 1 L | L | L | | | tice casting and molding | | | | W | | | 95 | 90 | Λ | | | | L | L | Н | L | | L | _ L | . L | L | L | | CLO-6: Prac | tice machines like lathe | , CNC <mark>Lathe, Sh</mark> a | per, Slotter, Milling, CN | C MIlling, Gear hobbin | g, grinding and sand mo | ulding | 3 | 90 | 85 | ŀ | / \ \ | 1 H | М | М | L | М | М | М | M | _ <i>F</i> | l L | L | L | | Duration (hour) | 6 | 3 | | 6 | Laste | 6 | ٠, | | | | | | 6 | | | | | | | 6 | | | | | S-1 SLO-1
SLO-2 | Perform plain turning | in lathe | Perform eccentric | turning in lathe | Perform V block shap
machine | oing in s | shape | r | | Helical (| Gear | cutting | in Ho | bbing <mark>i</mark> | machii | | Grindir
and Cเ | | | | | tool in | Tool | | S-2 SLO-1
SLO-2 | Perform step turning i | n lathe | Perform Taper bor | ing in lathe | Perform V block shap
machine. | oing in s | shape | r | ı | Helical (| Gear | cutting | in Ho | bbin <mark>g i</mark> | nac <mark>hi</mark> i | | Grindir
and Cเ | | | | | tool in | Tool | | S-3 SLO-1
SLO-2 | Perform chamfering in | lathe | Perform Knurling in | n lathe | Perform Polygon mill | ing in m | nilling | mach | | Perform
machine | | ce gri | nding i | n <mark>Grin</mark> | ding | | Prepar
patterr | | | | | ng solid
1 | :/split | | S-4 SLO-1
SLO-2 | Perform taper turning rest/offset method in la | | Perform plain turni | ing in CNC Lathe | Perform Polygon mill | ing in m | nilling | mach | | Perfo <mark>rm</mark>
machine | | ce gri | nding i | n Grin | ding | | Prepar
patterr | | | | | ng solid
I | :/split | | S-5 SLO-1
SLO-2 | Perform drilling in lath | е | Perform step turnir | ng in CNC Lathe | Spur Gear cutting in | milling n | nachi | ine | 1 | Perform
machine | 133 | | | | | | Prepar
pattern | | | | | g solid/s | split | | S-6 SLO-1
SLO-2 | Perform external and cutting in lathe | internal thread | Performing chamfe | ering in CNC Lathe | Spur Gear cutting in | milling n | nachi | ine | | Perform
machine | | drical | grindin | <mark>g in</mark> G | rinding | 9 | | ation o | of San | d mole | l using | g solid/s | split | | Lograina | 1 Chanman W/A / | Workshop Teahn | plagy Vol. Land II. Arna | old Bublishor 2001 | | | | 2 | lom | oo Mod | ioon | CNC | Machir | ina H | and Pr | ok In | duotrio | l Droo | o Ino | Mour \ | lork 1 | 006 | | | Learning | | | ology, Vol <mark>. I and II, Arno</mark>
dhary.A.K, Elements of i | nu rublisher, 2001 | | | | 3. | Jam | es Mad | SOH, | UNU | viacriir | iiiig Ha | iiiu BC | iok, ini | นนรเกล | ress | s IIIC., | vew) | OIK, T | 990 | | | | Bloom's | | | Conti | i <mark>nuous Learning Ass</mark> | sessment (50% weigh | <mark>ntage)</mark> | | | Final Evamination | a (E00/ waightaga) | |---------|------------------------|--------|--------------------|--------|-----------------------------------|---------------------|---------------------|---------|----------|-------------------|--------------------| | | Level of Thinking | CLA – | 1 (10%) | CLA – | 2 (15%) | CLA – 3 | 3 (15%) | CLA – 4 | 1 (10%)# | Final Examinatio | n (50% weightage) | | | Level of Thirtking | Theory | Practice | | Level 1 | Remember
Understand | - | 40 % | | 30 % | | 30 % | | 30 % | - | 30% | | Level 2 | Apply
Analyze | - | 4 <mark>0 %</mark> | 405 | 40 % | NA | 40 % | 15.70 | 40 % | - | 40% | | Level 3 | Evaluate
Create | - | 20 % | 131 | 30 % | | 30 % | 14 | 30 % | - | 30% | | | Total | 10 | 0 % | 10 | 0 % | 100 | 1% | 10 | 0 % | 10 | 0 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|---------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com | 1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com | 1. Mr. S. Sakthivel, SRMIST | | 2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr. N. Arunachalam, IIT Madras, chalam@iitm.ac.in | 2. Mr. Sundar Singh Sivam S.P, SRMIST | | Cou | | 18MEC106T | | Cours | | С | | | | Pi | rofessi | ional C | Core | | | | | L
3 | T
1 | P
0 | C
4 | | | |---------|---------------------
---|--|--|--|------------|--------------------------|-------------------------|----------------------------------|------------------|----------------------|---|-------------------------|-------------------|------------------------------|-------------------|------------------------|---------------|----------------|-----------|----------|---------|------| | Co | requisite
ourses | 18MES201T | | | rogres
Cours | | 18ME | C208T | , 18ME | E305 | Τ | | | | | | | | | | | | | | Course | Offering | Department | Mechanical Engineer | ing Data Book | / Codes/Standards | Nil | | | | | | | | | | | | | | | | | | | Course | Learning | Rationale (CLR): | The purpose of learning | ng <mark>this course is</mark> to: | The state of s | | Learni | ng | | Ŧ | | | Prog | gram L | _earnii | ng Ou | tcom | es (PL | .O) | | | | | | CLR-1 | : Utilize | e concepts of stress a | nd strain | - (7) | | 1 | 2 | 3 | 100 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2 | | ze bending and shea | | 4.1 | 5.7.30.01.3 | | | | | | | r _C | | | | | | | | | | | | | CLR-3 | | e concepts to design s | | | Contract to the last | (Bloom) | %) | (%) | 0 | מ | Ę | sea | | | | | ork | | e | | | | | | CLR-4 | | ze of slope and defle | | -: ` ` | | ĕ | l Co | ent | | 200 | ome | Re | ge | | | | ۸L | | Finance | б | | | | | CLR-5 | | e concepts to design of | column and cylinders | | ad audio da va | ing | ficie | inm | Č | Sis Sis | elop | ign, | Jsa | ture | οX | | ean | L C | Ξ | Ë | | | | | CLR-6 | : Utilize | e concepts of stress, s | strain, siope and deflect | ion in beams and design of shaft, column a | na cylinaers | Thinking (| Pro | Atta | 2 | 5 6 | Dev | Des | 100 | Cul | iit c | ` | δT | satic | jt. 8 | Learning | | | | | | | | | 二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十 | | of T | ted | ted | | E E | ∞ ∞ | Sis. |)
L | ∞
> | nab
nab | | ual | iuni | t Mç | gu | <u>-</u> | 2 | က | | Course | Learning | Outcomes (CLO): | At the e <mark>nd of this c</mark> oul | rse, learners will be able to: | | Level | Expected Proficiency (%) | Expected Attainment (%) | 3 | Problem Analysis | Design & Development | Analysis, Design, R <mark>esearc</mark> h | Modern Tool Usage | Society & Culture | Environment & Sustainability | Ethics | Individual & Team Work | Communication | Project Mgt. & | Life Long | PSO- | PSO- | PSO- | | CLO-1 | | fy concepts of stress | | Sec. 10 | 10000 | 3 | 85 | 80 | I | 1 H | L | L | L | Ĺ | L | L | L | Ĺ | L | L | L | M | L | | CLO-2 | | | r stresse <mark>s develop</mark> ed in | beams | 11-125 11/25 11/ | 3 | 85 | 80 | H | | | L | L | L | L | L | L | L | L | L | L | М | L | | CLO-3 | | | ary to d <mark>esign of s</mark> hafts | | REPORT OF THE | 3 | | 80 | ŀ | | | L | L | L | L | L | L | L | L | L | L | М | L | | CLO-4 | | ze the slope and defl | | THE PROPERTY OF THE PARTY TH | Man Con T all | 3 | 85 | 80 | | l H | | L | L | L | L | L | L | L | L | L | L | М | L | | CLO-5 | : Apply | the concepts necess | ary to d <mark>esign of c</mark> olumn | and cylinders | | 3 | 85 | 80 | 1 | | | L | L | L | L | L | L | L | L | L | L | М | L | | CLO-6 | : Analy | ze the stresses, slope | e and de <mark>flection in</mark> bean | ns and apply the concepts to design of shaft | , column and cylinders | 3 | 85 | 80 | H | Н | H | L L | L | L | L | L | L | L | L | L | L | М | L | | Duratio | on (hour) | | 12 | 12 | 12 | | - 1 | | | -# | - | 12 | | | | | | | 12 | 2 | | | | | Duran | | | | Introduction to types of beams and loads | Theory of pure torsion | | | | Introduc | tion, E | | | on | | , | Colum | nns ai | nd stru | | | | | | | S-1 | SLO-2 | | e and shea <mark>r stresse</mark> s, | Shear force, bending moment diagram for cantilever beam: (a) due to pure point load | shear stress in terms of to | que i | n a cir | | Relation of curva | | | | | | | Memb
and ax | | | ed to | com | bined | bendi | ing | | | SLO-1 | Stress-strain diagran | n Elastic con <mark>stants</mark> | (b) due to pure Uniformly Distributed Load
(c) pure Uniformly Varying Load | Strength, Stiffness of shaft rigidity & power transmitted | | sional | | Problen | | | | orrani | gillon | | Expresend co | ssion | for cr | | | | | | | S-2 | SLO-2 | Volumetric strain | | Problems on Shear force and bending moment diagrams for cantilever beam | Problems on solid shaft, fill dimensions | | | | Problen | ns on i | Relatio | ns | Ŧ | | | Proble
end co | ems o | n crip | oling | load | vith d | ifferer | nt | | S-3 | SLO-1 | Bars of uniform and subjected to single lo | varying sections | Shear force, bending moment diagram for
simply supported beam: (a) due to pure
point load | Torque expression for (a) shaft subjected to torsion | solid | circula | | Slope a
with (a) | | | of car | n <mark>tilev</mark> ei | r bean | n l | Expre:
theory | ssion
, | for cr | ipplin | ıg loa | d by F | Rankin | ne's | | | SLO-2 | Bars of uniform and
subjected to multiple | | (b) due to pure Uniformly Distributed Load
(c) pure Uniformly Varying Load | (b) hollow circular shaft su torsion. | | | | (b) Unif | | | | | | i | Proble
theory | , | | | | • | | | | C 4 | SLO-1 | Tutorial on stress, st
elastic constants and | rain, Hooke's law, | Tutorial on Shear force, bending moment diagrams for simply supported beam | Tutorial on hollow shaft (a) dimensions, | findi | ng | | Tutoria <mark>l</mark>
beam w | | | | n of ca | antilev | | Tutoria
theory | | crippli | ng lo | ad by | Rank | ine's | | | S-4 | SLO-2 | Tutorial on bars of u | niform and varying | Tutorial on Shear force, bending moment diagrams for simply supported beam | (b) percentage of material | savin | gs | | (b) Unif | ormly | Distrib | uted Lo | oad | | | Tutoria
theory | | crippli | ng lo | ad by | Rank | ine's | | | S-5
| SLO-1 | Analysis of bars of c | omnosita sactions | Shear force, bending moment diagram for overhanging beam due to(a)pure point load | Circular shafts in series | | | | Slope a
beam w | | | | iply su | ipporte | | Thin c | • | rical sl | hells . | subje | cted t | o inter | rnal | | S-12 | SLO-1
SLO-2 | Tutorial on direct stress in two mutually perpendicular directions | Tutorial on shear stress distribution in
beams of different sections such as I and T | Tutorial on composite circular shafts | Tutorial on Castigliano's and Maxwel's reciprocal theorem | Tutorial on stresses in compound thick cylinder and Shrink fit | |------|----------------|---|---|--|--|---| | | SLO-2 | <i>'</i> | Derivation of shear stress distribution in beams having I and T sections | Composite hollow circular shaft | Maxwel's reciprocal theorem | Problems on stresses in compound thick cylinder | | S-11 | SLO-1 | Mohr's circle: direct stress in tow mutually perpendicular directions without shear stress | Derivation of shear stress distribution in beams of different sections | Composite solid circular shaft | Castigliano's theorem | Stresses in compound thick cylinder and
Shrink fit | | 3-10 | SLO-2 | Problems on Direct stress in two mutually perpendicular directions | Problems on bending stress in beams having I and T sections | Problems on circular shaft subjected to combined bending and torsion | (b) Uniformly Distributed Load (Moment area method) | Problems on Lame's theory on stresses in thick cylinders | | S-10 | SLO-1 | perpendicular directions | Problems on bending stress in beams having I and T sections | Problems on circular shaft subjected to combined bending and torsion | | Problems on Lame's theory on stresses in thick cylinders | | 3-8 | SLO-2 | Direct stress in two mutually perpendicular directions accompanied by a simple shear stress | Bending stress in beams having T- section | Hollow circular shaft subjected to combined bending and torsion | (b) Uniformly Distributed Load (Moment area method) | Lame's theory on stresses in thick cylinders | | S-9 | SLO-1 | directions | Bending stress in beams having I- section | Solid circular shaft subjected to combined bending and torsion | Slope and deflection of cantilever beam with (a) a point load | Lame's theory on stresses in thick cylinders | | S-8 | SLO-1
SLO-2 | Tutorial. on Thermal stresses in simple and composite bars | Tutorial on Bending stress in beams of regular sections | Tutorial on Strain energy due to torsion | Tutorial on Slope, deflection of simply supported beam with point load, Uniformly Distributed Load | Tutorial on thin spherical shells subjected
to internal pressure, change in dimensions
of thin spherical shells due to internal
pressure | | 0-7 | SLO-2 | · | Bending stress in beams of regular sections | Concepts on Strain energy due to torsion | (b) Uniformly Distributed Load (Macaulay's method) | shells | | S-7 | SLO-1 | Concept of Thermal stresses in simple bars | Theory of ure bending derivation, | Concepts on Strain energy due to torsion | Slope and deflection of simply supported beam with (a) a point load | Thin spherical shells subjected to internal pressure | | 0 0 | SLO-2 | Problems on Analysis of bars of composite sections | Problems on Shear force and bending moment diagrams for overhanging beam | Problems on Circular shafts in series and parallel | | change in dimensions of thin cylindrical shells due to internal pressure | | S-6 | SLO-1 | sections | Problems on Shear force and bending moment diagrams for overhanging beam | Problems on Circular shafts in series and parallel | supported beam with (a) a point load | Problems on thin cylindrical shells subjected to internal pressure | | | SLO-2 | Analysis of bars of composite sections | (b)pure Uniformly Distributed Load (c) pure
Uniformly Varying Load | Circular Stratts III parallel | | Change in dimensions of thin cylindrical shells due to internal pressure | | | 1. | Ferdinand P. Beer, E. Russell <mark>Johnston J</mark> r., John | |-----------|----|--| | Learning | | ed., McGraw Hill, 2014 | | Resources | 2. | William A. Nash, Theory and Pro <mark>blems of Str</mark> eng | hn T. DeWolf, David F. Mazurek, Mechanics of Materials, 7th - ngth of Materials, Schaum's Outline Series, 3rd ed., McGraw Hill, 2007 - Egor P. Popov, Engineering Mechanics of Solid, 2nd ed., Prentice Hall of India Pvt. Ltd., 2009 James M. Gere, Mechanics of Materials, 8th ed., Brooks/Cole, USA, 2013 Shigley. J. E., Applied Mechanics of Materials, International Student edition, McGraw Hill, 2000 | | Bloom's | | | Conti | nuous Learning Asse | essment (50% weigh | htage) | | | Final Evamination | n (50% weightage) | |---------|------------------------|--------|----------------|---------------|---------------------|--------------------|----------|---------|----------|--------------------|---------------------| | | Level of Thinking | CLA – | 1 (10%) | CLA – 2 (15%) | | CLA – 3 | 3 (15%) | CLA – 4 | 1 (10%)# | Filiai Examination | ii (50% weigiilage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember
Understand | 40 % | | 30 % | La King Y | 30 <mark>%</mark> | - | 30 % | - | 30% | - | | Level 2 | Apply
Analyze | 40 % | - | 40 % | T. III. | 40 % | of lit | 40 % | - | 40% | - | | Level 3 | Evaluate
Create | 20 % | - | 30 % | - | 30 % | 311/20 | 30 % | - | 30% | - | | | Total | 10 |) % | 10 | 0 % | 100 |) % | 10 | 0 % | 10 | 0 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|---------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com | 1.Dr. Shankar Krishnapillai, IIT Madras, skris@iitm.ac.in | 1. Dr. M. Kamaraj, SRMIST | | 2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2.Dr. K. Jayabal, IIITDM, Kancheepuram, jayabal@iiitdm.ac.in | 2.Mr. D. Raja, SRMIST | | Cou | | 18MEC107T | Course
Name | 1 | APPLIE | D THERMAL ENGINEERING | 3 | Cour
Categ | | | С | | | | Profe | ession | nal Co | ore | | | | 3 | T
1 | P
0 | C
4 | |----------------|-------------------|---------------------------------------|----------------|------------------------------|-----------------------------------|----------------------------------|--|---------------|---------------------------|--------------------------|-------------------------|-----------------------|------------------|----------------------|---|-------------------|-------------------|------------------------------|--------------------|------------------------|---------------|----------------|--------------------|--------|---------| | Co | equisite
urses | 18MEC101T | | | Co-requisite
Courses | IVII | | | Cou | ressiv
urses | IVII | | | | | | | | | | | | | | | | Course | Offering | Department | Mech | hanical Engir | neering | Data Book | / Codes/Standards | Re | efrige | ration | n Table | s &Psy | chrom | etric c | hart | | | | | | | | | | | | Course | Learning | g Rationale
(CLR) |): The p | ourpose of le | arning this course is | to: | 111111 | | Lea | arning | g | | | | | Prog | gram | Learni | ng Out | come | s (PL0 | O) | | | | | CLR-1 | : Analy | ze the sequence | e of operatio | on of energy o | cycles | - 13, | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 1 | | CLR-2 | | | | | t <mark>ion of enth</mark> alpies | | | | (mc | (%) | (% | Ф | | + | | | | | | 논 | | 4) | | | | | CLR-3
CLR-4 | | ze the performar | | | s
d analysis of compre | 2000ro | THE RESERVE | |)
(B) |)cy (| ent (| ledc | | men | | ae | | | | W ₀ | | Finance | | | | | CLR-4 | | ze the working p | | | | essors | | | ing (| icier | inme | Non | /sis | dole | gn, | Jsac | nre | -* | | eam | = | Ë | ini | | | | CLR-6 | | e the fundamenta | | | | 1/ 1/5 | V = 3500 | | j
E | Prof | Atta | A
X | nal | Dev | Desi |) loc | Cult | ent & | | × ⊥ | gatic | £ 8 | Leal | | | | | | | | | | A PIRAL | SECTION 18 | | of T | ted | ted | eerii | m A | ∞ ⊏ | sis, l
arch | 'n T | ⊗
> | nme | | lnal | Ē | Ĭ | guc | _ | -2 | | Course | | Outcomes (CLC | <i>'</i> | | course, learners will | | 16 (11) | 34 | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Engineering Knowledge | Problem Analysis | Design & Development | Analysis, Design <mark>,</mark>
Research | Modern Tool Usage | Society & Culture | Environment & Sustainability | Ethics | Individual & Team Work | Communication | Project Mgt. & | Life Long Learning | PSO - | PSO- | | CLO-1 | | | | | | od to calculate the efficiency | A PART OF THE | | | | 80 | Н | Н | М | М | M | L | L | L | М | М | М | М | Μ | M N | | CLO-2
CLO-3 | | orehend the Fuel
/ze the performar | | | cations | | | | | | 80 | H | H | M | M
M | M
M | L | L | L | M
M | M
M | | | | M M | | CLO-3 | | | | | ssors, their performar | nce evaluation | | | | | 80 | Н | Н | M | M | M | L | I | I | М | M | | М | М | M M | | CLO-5 | | | | | s and evaluate its pe | | | | 2 | 85 | 80 | H | Н | M | М | М | L | L | L | М | M | | | | M N | | CLO-6 | : Analy | ze the fundamer | ntal process | e <mark>s of air c</mark> on | ditioning systems and | d do fundamental calculation | าร | | 2 | 85 | 80 | Н | М | М | М | М | L | L | L | М | М | М | М | М | M N | | Duratio | n (hour) | | 12 | | | 12 | 12 | | Ť | | 1 | | | 12 | | | | | | | | 12 | | | | | 0.4 | SLO-1 | Introduction to a | air standard | cy <mark>cles</mark> | Introduction to fu | uels, Solid fuels | Classification of IC eng | gines | | | Cla | ssificati | on of A | Air Co | mpres | sors | | | por co
d its w | | | | eratio | n syst | em | | S-1 - | SLO-2 | Air standard effi | iciency, Ass | sumpt <mark>ions</mark> | Liquid fuels | | Basic operations | | | | | struction | | worki | ng of r | ecipro | ocatin | ~ | frigera | | • | | es | | | | • | SLO-1 | Otto cycle: Air s | tandard effic | iciency | Gaseous fuels, I | Fuel properties | Actual p-v diagram of t engines | our strol | ke SI | | Con | npressi | on wit | h clea | rance i | volum | e | Ed | o-frien | ndly re | efrigera | ants | | | | | S-2 | SLO-2 | Mean effective p | pressure | | Stoichiometric a | nir fuel ratio | Actual p-v diagram of engines | four stro | keCl | | Con | npressi | on wit | hout c | learan | ce | | Ar. | | of va | por co | mpre | ssion | refrig | eration | | 2.0 | SLO-1 | Power develope | ed | | Theoretical air a | and excess air. | Comparison of four str | oke and | two I | С | | ation fo
procati | | | | ng | | | h Chai | rt | | | | | | | S-3 | SLO-2 | Tutorials on Otto | o cycle | | Air fuel ratio from | m analysis of products | Comparison of CI and | SI Engin | nes | Н | | umetric | | | | resso | r | | b-cool
VCR c | | nd sup | perhea | ating _l | ohend | mena | | 0.4 | SLO-1 | Tutorials on Otto | o cycle | | Conversion between | ween volumetric analysis to | Engine Performance p | aramete | rs | | | orial pro | | | | age | | Tu | torial:
rigera | Nume | | | ems o | n VC | - | | S-4 | SLO-2 | Diesel cycle: Air | r standard e | efficiency | • | aust and flue gas | Measurements of fuel | consum | otion | | | orial pro | | | | | | Tu | torial:
rigerat | Nume | erical p | oroble | ems o | n VC | | | S-5 | SLO-1 | Mean effective p | pressure | | Internal energy a | and enthalpy of formation | Measurements of air c | onsumpt | tion | | Free | e air de | livered | 1 | | | | Sii | nple v
stem | | | | refrige | ration | 1 | | | SLO-2 | Power develope | ed | | Determination of | of calorific values of the fuel- | Measurement of brake | power | | | Fre | e air de | livered | 1 | | | | Sii | nple v | apor a | absorp | otion i | refrige | ration |) | | | | | Solid fuel and liquid fuel. | | | system | |------|-------|--|--|---|---|---| | S-6 | SLO-1 | Dual cycle: Air standard efficiency | Determination of calorific values of the fuel-
Gaseous fuel | Measurement of in-cylinder pressure | Multistage compression | Properties of atmospheric air and Psychrometric chart | | 3-0 | SLO-2 | Mean Effective pressure | Tutorials on determination of calorific value | Tutorials on IC Engine performance | | Properties of atmospheric air and Psychrometric chart | | S-7 | SLO-1 | Power developed | Tutorials on determination of calorific value | Tutorials on IC Engine Performance | | Psychrometric processes. sensible heating and cooling | | 3-1 | SLO-2 | Tutorials on Diesel cycle | Tutorials on determination of calorific value | Tutorials on IC Engine Performance | Problems on volumetric efficiency | Psychrometric processes. sensible heating and cooling | | S-8 | SLO-1 | Tutorials on Diesel cycle | Tutorial: Numerical problems on First law analysis | Tutorial: Numerical problems on engine performance parameters | Tutorials on multi stage compression, FAD | Cooling and dehumidification | | 3-0 | SLO-2 | Tutorials on Dual cycle | Tutorial: Numerical problems on First law analysis | Tutorial: Numerical problems on engine performance parameters | Tutorials on multi stage compression, FAD | Heating and humidification | | S-9 | SLO-1 | Problems on Mean effective pressure | Heat calculations using enthalpy tables | Heat balance sheet | Rotary compressors | Tutorial: Numerical problems on psychrometric processes | | 3-9 | SLO-2 | Comparison of Otto, Diesel and Dual cycles | Problem Solving in Heat calculations | Heat balance sheet | Vane compressor | Summer air conditioning system | | S-10 | SLO-1 | Brayton cycle | Adiabatic flame temperature | Problems on Heat balance sheet | Roots blower | Winter air conditioning system | | 3-10 | SLO-2 | Brayton cycle efficiency | Adiabatic flame temperature | Problems on Heat balance sheet | Different compressors and features | Year-round air conditioning systems | | S-11 | SLO-1 | Concept of Reheat in Brayton cycle | Chemical Equilibrium | Problems on Heat balance sheet | Reciprocating compressors and rotary compressors - comparison | Heat load and simple calculations | | 3-11 | SLO-2 | Concept of Regeneration in Brayton cycle | Chemical equilibrium calculations | Problems on Heat balance sheet | Reciprocating compressors and rotary compressors - comparison | Heat load and simple calculations | | C 10 | SLO-1 | Tutorials on power developed | Tutorial Problems on Adiabatic flame temperature for various fuels | Engine performance curves: Constant speed engines | Tutorial: Numerical problems on multi stage compression | Tutorial: Numerical problems on psychrometric processes | | S-12 | SLO-2 | Tutorials on power developed | Tutorial Problems on Adiabatic flame temperature for various fuels | Engine performance curves: Variable speed engines | Tutorial: Numerical problems on multi | Tutorial: Numerical problems on psychrometric processes | | Lograina | 1. | Mahesh Rathore , Therma <mark>l Engineer</mark> ing, Tata McGraw Hill, 2012 | 4. | Rajput.R. K, Thermal Engineering, 10 th ed., Laxmi Publications, 2015 | |-----------------------|----|---|----|--| | Learning
Resources | 2. | Eastop T. D., Mcconkey. A, Applied Thermodynamics for Engineering Technologists, 5th ed., Pearson Edition, 2009 | 5. | Yunus A Cengel, Michael A Boles, Thermodynamics: An Engineering Approach,8th ed., Tata | | recourses | 3. | Kenneth A Kroos, Merle C. Potter, Thermodynamics for Engineers, Cengage learning, 2016 | | McGraw Hill, 2015 | | Learning Assess | sment | | | | | | | | | | | |-----------------|------------------------|--------|----------|--------|--------------------|---------------------|-----------|---------|----------------------|-------------------|--------------------| | | Bloom's | | - | Cont | inuous Learning As | sessment (50% weigh | ntage) | Towns . | | Final Evamination | n (FOO) weightege) | | | | CLA – | 1 (10%) | CLA - | 2 (15%) | CLA – 3 | 3 (15%) | CLA – 4 | 1 (10 %)# | Final Examinatio | n (50% weightage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember
Understand | 40 % | | 30 % | - | 30 % | Calminate | 30 % | - | 30% | - | | Level 2 | Apply
Analyze | 40 % | - | 40 % | - | 40 % | - | 40 % | - | 40% | - | | Level 3 | Evaluate
Create | 20 % | - | 30 % | - | 30 % | | 30 % | - | 30% | - | | | Total | 100 | 0 % | 10 | 00 % | 100 | 1% | 10 | 0 % | 10 | 0 % | [#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., Course Designers | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts |
--|---|---------------------------------| | 1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. R Velraj, IES, CEG, Anna University, Chennai, velrajr@annauniv.edu | 1. Mr. G. Manikandaraja, SRMIST | | 2. Dr.A.Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in | 2. Dr. G. Kasiraman, SRMIST | | Cou | | 18MEC108T | Course
Name | MATER | RIALS TECHNOLOGY | | | ourse | ′ | С | | | | Pr | ofessi | onal (| Core | | | | L
3 | T
0 | P
0 | C
3 | |--------|-----------|---|--|------------------------------------|------------------------------|------------------------------------|---------|------------|--------------------------|-------------------------|---|------------------|----------------------|-------------------------------|-------------------|-------------------|------------------------------|-------------------|------------------|---------------|-----------------|---------------------------------------|----------|------------| | C | requisite | Nil | Markatata | Co-requisite
Courses | 18MEC111L | /0.1./0 | | С | gress
ourse | | Nil | | | | | | | | | | | | | | | Course | Offering | Department | Mechanical Engineer | ring | Data Book | / Codes/Standards | 7 | Nil | | | | | | | | | | | | | | | | | | Course | Learning | Rationale (CLR): | The purpose of learning | ng <mark>this course</mark> is to: | 11.31 | | | Le | arning | g | | Ħ | | | Prog | ıram l | _earni | ng Out | comes | s (PLO |) | | | | | CLR-1 | | | | | d salient features of iron-c | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 1 | 1 12 | 2 13 | 3 14 | 1 15 | | CLR-2 | | | | | heat treatment and surfa | ce hardening processes | | (Bloom) | Expected Proficiency (%) | (%) | e e | | Ιţ | | | | | | 돈 | | , | | | | | CLR-3 | | | navior of materials <mark>and le</mark>
roperties and app <mark>lication</mark> | | | THE REAL PROPERTY. | | 8 | ي | Expected Attainment (%) | 工 Engineering Knowledge | | Design & Development | | e Je | | | | Work | ion | 3 - | | | | | CLR-5 | | | properties and application | | | | | ng | icie | ш | Mod | Sis | ole | gn, | Modern Tool Usage | ure | | | ndividual & Team | ئا ے | gr. & . indi | <u> </u> | | | | CLR-6 | | | | | ture, properties of materia | als and their applications | | Thinking | Jud
Jud | ∖ttai | g
X | naly |)eve | esi) | ol L | Sult | nt 8 | , | ×
E | atio | מ ב | 3 | | | | 020 | . 0 t2 | , intermedige diseaction | ioonamoar zonavior, prio | iee aragrame, erraet | lare, properties or materia | | | of Tr | be F | pe / | eri | пA | ∞
□ | s, C | 5 | 8
(| ime
labil | | al & | Jil Z | ا الرابع
الم | 2 - | . ~ | <u>၊</u> က | | 0 | 1 | 0.4(0.0) | A | | -61-4- | 16 7117 | | <u>e</u> 0 | ecte | ect | iji. | Problem Analysis | ign | Analysis, Design,
Research | derr | Society & Culture | Environment & Sustainability | S | vid | Communication | ife Lond | ֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | | | | Course | Learning | Outcomes (CLO): | At the e <mark>nd of this c</mark> oul | rse, learners will be | able to: | 4 | | Level | Exp | Exp | Eng | Pro | Des | Ana
Res | Moc | Soc | Env
Sus | Ethics | lndi | S S | | | PSO | PSO | | CLO-1 | : Interp | ret phase diagrams | and correl <mark>ate struct</mark> ure p | property relationship | os | The second second | | 2 | | 85 | | 1 | | - | М | - | - | - | - | | - | - | - | | | CLO-2 | | | | reatment and surfac | ce hardening on the prope | erties of materials | | 3 | 90 | 85 | Н | - | - | - | М | - | - | - | - | | - | - | - | | | CLO-3 | | ze failure of enginee | | | ALTONOMA. | #500 P. CO | | 2 | | 85 | Н | Н | - | М | М | - | - | - | - | | - | - | М | | | CLO-4 | | | rous allo <mark>ys for var</mark> ious e | | | | | 3 | 90 | 85 | Н | - | - | W. | | - | L | - | - | | | . - | - | - | | CLO-5 | | | for speci <mark>fic applic</mark> ations | | | | | 2 | | 85 | H | - | - | | - | - | M | М | - | | - | | - | L | | CLO-6 | : Interp | ret pnase diagrams, | anaiyze mechanicai bei | navior of materials, | select materials for variou | is engineering application | ons | 3 | 90 | 85 | H | Н | - | М | М | | M | М | - | - - | · L | . - | M | L | | Durati | on (hour) | | 9 | | 9 | 9 | + | - | - | | | - | | 9 | | | | | | | 9 | | | | | Darati | | Crystal structures | | Deformation by slip | | Introduction to fracture | | • | • | | Properties | of pla | | • | teel | | | Introdu | ction i | to Sma | rt mat | erials | | | | S-1 | | Imperfection in solic | ds: Point, lin <mark>e</mark> | | cally resolved shear | Types of fracture in me | tals | | | | Properties 2 | | | | | ess st | | Types | | | | | | | | S-2 | SLO-1 | interfacial and volun
Solidification | ne defects | Shear strength of p | perfect and real crystals, | Stress-strain behavior of | of me | etals | | | Dual phas | e stee | els: pr | operti | es | | | Shape | | • | | | | | | 3-2 | SLO-2 | Nucleation and Gro | wth | Concept of work hardening | ardening, Stages of work | strain | | | | | Dual <mark>ph</mark> as
compositio | n and | l appl | lica <mark>tio</mark> i | าร | | | Proper
supera | | Nicke | base | d and | other | | | S-3 | SLO-1 | Dendritic growth | | Solid solution strer | Z 1117 UL 1990 | Hardness: Rockwell, Bi
hardness | rinell, | , Vicke | rs | | Brief introd
Alloy (HSL | | | High S | trengt | h Lov | | Classe | • | • | | | | | | 3-3 | SLO-2 | Segregation and Ho | omogenization | Grain boundary str
relation | rengthening, Hall-Petch | Impact test: Charpy and | d Izo | d | 1 | | effects of I | nicroa | alloyir | ng elei | nents | | | Proper
PVC, 1 | | | icatio | ns of | PE, P | P, PS, | | S-4 | SLO-1 | Introduction to Solid | | Disp <mark>ersion stren</mark> gt | hening: Precipitation | Griffith's theory of brittle | e frac | cture | | | Transform
steel <mark>, its p</mark> | ropert | ies ai | nd app | olicatio | ns | | Classe | | | | | | | | J-4 | SLO-2 | | overning substitutional
Hume Rothery's rules | Particulates and F | ibers | Griffith equation | | | | | Twi <mark>nning i</mark>
its propert | | | | | P) stee | | Proper
ZrO2, 3 | SiC, S | i3N4, A | \/N | | | | | S-5 | SLO-1 | Introduction to Phas | se diagrams | Non-equilibrium ph | nases | Stress intensity factor | | | | | <mark>Properties</mark> | | | | • | | ļ | Types
materia | als | | | | | | | J-0 | SLO-2 | Phase rules and its | application | Martensite, Bainite | | Fracture toughness, Dutransition | ıctile | to brit | tle | | Properties
spheroidal | | | ns: ma | lleable | e and | | Reinfo
Mixture | | nt and | matrix | k mat | erial, I | Rule of | | S-6 | SLO-1 | Interpretation of phase diagrams | Introduction to TTT | Introduction to Fatigue, S-N curve | Copper and copper alloys with their applications | Properties of MMC, CMC and PMC | |-----|-------|---|--|---|--|---| | 3-0 | SLO-2 | Interpretation of phase diagrams | CCT diagrams, and their importance | Low and high cycle fatigue test | wuntz metal, Gun metal | Applications of MMC, CMC and PMC | | S-7 | SLO-1 | Classification of phase diagram | Heat treatment processes: Annealing, Normalizing, | Stages of fatigue | Classification and properties of Aluminium alloys | Nanocrystalline materials, Classification based on dimension with examples, | | | SLO-2 | Classification of phase diagram | Tempering, Quenching | High temperature fracture, Creep curve | Age hardening, Different alloy series | CNT, graphene and their applications | | S-8 | SLO-1 | Iron Iron-carbide phase diagram | Case hardening: carburizing, | Failure analysis: sources of failure | Magnesium alloys – advantages and problems | Biomaterials - applications, Types - metals, ceramics | | 3-0 | SLO-2 | Iron Iron-carbide phase diagram | nitriding, cyaniding, carbo-nitriding | Procedure of failure analysis | Magnesium allo <mark>ys – Types</mark> and designations | polymers and composites, Biocompatibility | | S-9 | | Microstructural aspects and invariant reactions in Fe-C diagram | Flame and induction hardening | Introduction to Non-Destructive Testing (NDT) | Titanium alloys - α , β and α + β alloys | Introduction to structure and characterization of materials | | 3-9 | | Microstructural aspects and invariant reactions in Fe-C diagram | Effect of hardening processes on hardness and microstructure | Liquid penetrant testing, Magnetic particle testing | Types of alloying additions, Properties and applications | XRD, SEM and TEM | | Learning
Resources | 6.
7. | Flake.C Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, 2008 Dieter.G.E, Mechanical Metallurgy, McGraw Hill, Singapore, 2001 Thomas H. Courtney, Mechanical Behaviour of Engineering materials, McGraw Hill, Singapore, 2000 Flinn.R.A, Trojan.P.K, Engineering Materials and their applications, Jaico, Bombay, 1995 Budinski.K.G, Budinski.M.K, Engineering Materials Properties and selection, Prentice Hall of India, 2004 ASM Metals Hand book, Failure analysis and prevention, Vol: 10, 14th ed., New York, 2002 Reza Abbaschian, Lara Abbaschian& Robert E. Reed-Hill, Principles of Physical Metallurgy, Cengage Learning, 2010 Michaelle Addinates and Daniel Schedole "Smort Metalial and New Technologics" Elegation 2005 | |-----------------------|----------
---| | | 8. | Michelle Addington and Daniel Schodek, "Smart Materials and New Technologies", Elsevier print, 2005 | - 9. George S. Brady, Henry R. Clauser, JhonA. Vaccari, Materials Science Hand Book, McGraw-Hill, 2002 - Sidney H Avnar, Introduction to physical metallurgy, 2nd ed., Tata McGraw-Hill, 1997 William D. Callister, David G. Rethwisch, Materials Science and Engineering: An Introduction,8th ed., Wiley publication, 2009 - 12. Donald R. Askeland, Wendelin J. Wright, Science and Engineering of Materials, 7th ed., Cengage Learning, 2011 - 13. Donald R. Askeland, Wendelin J. Wright, Essentials of Materials Science & Engineering, 3rd ed., Cengage, 2013 - 14. Raghavan V. Physical Metallurgy: Principles and Practice, Prentice Hall of India, 2012 - 15. Polmear I. Light Alloys: From Traditional Alloys to Nanocrystals, Butterworth-Heinemann, UK, 2005 | Learning Assess | ment | | 1 | To the second | | | | | | | | |-----------------|------------------------------|--------|----------|---------------|---------------------|--------------------|----------|--------|------------------------|-------------------|-------------------| | | Dia ami'a | | V | Cont | inuous Learning Ass | essment (50% weigh | itage) | | | Final Examination | n (50% weightage) | | | Bloom's
Level of Thinking | CLA – | 1 (10%) | CLA – | 2 (15%) | CLA – 3 | (15%) | CLA – | 4 (<mark>10%)#</mark> | | n (50% weightage) | | | Level of Thirtking | Theory | Practice | | Level 1 | Remember
Understand | 30 % | -) ' | 30 % | | 30 % | - 1/2 | 30 % | 97 | 30% | - | | Level 2 | Apply
Analyze | 40 % | <u> </u> | 40 % | DAY. | 40 % | | 40 % | 1111- | 40% | - | | Level 3 | Evaluate
Create | 30 % | 1 1 | 30 % | Mr. Ast. | 30 % | 100 | 30 % | - | 30% | - | | | Total | 100 | 0 % | 10 | 0 % | 100 | % | 10 | 0 % | 10 | 00 % | [#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|---------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com | 1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com | Dr. ShubhabrataDatta, SRMIST | | 2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr. N. Arunachalam, IIT Madras, chalam@iitm.ac.in | Mr. D. Selwyn Jebadurai, SRMIST | | Course 1
Code | 18MEC109L | Course
Name | STRENGTH OF MATERIALS LABORA | IUBA | Course
Categor | | С | | | | Pr | ofessi | ional (| Core | | | | | L T | P 2 | <u>C</u> | | | | |--------------------------|--|---|--|--|---------------------|--------------------------|-------------------------|---|------------------|----------------------|-------------------------|-------------------|-------------------|------------------------------|---------------------------|--------------|---------------|---------------------------|-----------|--------|--------------------------------------|--|----|--| | Pre-requisite
Courses | Nil | | Co-requisite Courses 18MEC206T | | (| ogres
Cours | | Nil | | | | | | | | | | | | | | | | | | Course Offering D | epartment epartment | Mechanical Enginee | ring Data Book | / Codes/Standards | Nil | Course Learning F | Rationale (CLR): | The purpose of learning | ng this course is to: | The state of | Le | earnir | ng | | ī | | | Prog | gram | Learnin | g Outo | comes | s (PLC | O) | | | | | | | | | | or conducting various de | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ' | 10 ′ | 11 | 12 1 | 3 14 | 15 | | | | | | | rdness and influence <mark>of</mark>
ties of various mate <mark>rials</mark> | | | | Expected Proficiency (%) | Expected Attainment (%) | 9 | 5 | int | | | | | | 놓 | | g | | | | | | | | | | als under cyclic lo <mark>ading</mark> | under different loading | | | ency | Jent | Engineering Knowledge | | Design & Development | | ge | 43 | | | Team Work | | Finance | g | | | | | | | CLR-5: Identify | the aspects of tes | sting the strength of vario | ous materials under different loading conditio | ns | Thinking | ficie | ainr | Voo. | Problem Analysis | lelo | Design, | Modern Tool Usage | Society & Culture | ∞ŏ . | | ea | ا
ا | i <u>E</u> | Learning | | | | | | | CLR-6: Utilize o | destructive tests to | o determine str <mark>ength of r</mark> | naterials under externally applied loads | | i. | Pro | Att | 2 | Ana | De | Des | 8 | 2 | ent | | ~ ব | cati | g: | Feg | | | | | | | | | | A PIRI | A STATE OF THE STA | | ted | ted | Peri | E L | ∞ ⊏ | sis, | E | ty
& | nat
inat | | lad | | ∑
ಕ | ong + | - 2 | ၊ ကု | | | | | Course Learning C | Outcomes (CLO): | At the e <mark>nd of this c</mark> ou | ırse, learners will be able to: | | Level of
(Bloom) | xpec | xpec | igi | , do | esig | Analysis, E
Research | ode | ocie | Environment & Sustainability | Ethics | Individual & | Communication | Project Mgt. & | Life Long | SO | PSO. | | | | | - | . , | | structive testing methods like impact, compre | secion toet | 3 | 80
80 | 85 | i
H | H | | M A | E ≥ | ŭ | ய் ல | | <u>드</u> (| ن
آ | ٠ | ة ت | Š | | | | | | | | | interpret the same after heat treatment | 331011 1631 | 3 | 80 | 85 | H | | | M | M | H | | | Н | - | - | | - | +- | | | | | | | | test on beams and tensile test on rods & spri | ngs | 3 | 80 | 85 | H | | | M | Н | - | - | H | | | | | - | - | | | | | CLO-4: Compar | are the fatigue beh | avior of a <mark>notched a</mark> nd u | n-notched specimen | A COLUMN TO STATE OF THE | 3 | 80 | 85 | Н | Н | Μ | М | М | - | H | | | | | | - | - | | | | | | | | ous materials under different loading conditio | ns | _ 3 | 80 | 85 | Н | | | М | М | - | - | | Н | - | - | | - | - | | | | | CLO-6: Conduc | ct destructive tests | s to determ <mark>ine stren</mark> gth o | f materials under externally applied loads | | 3 | 80 | 85 | H | Н | М | М | М | - | - | - | Н | - | - | | - | | | | | | Ouration (hour) | | 6 | 6 | 6 | 200 | | | | Ť | ď | 6 | | | | | | | 6 | | | | | | | | S-1 SLO-1 7 | Tensile test on Mild | d steel rod | Test on open coil springs | Torsion te <mark>st</mark> on Graded ste | eels | | | Double s | hear t | est or | n metal | lic ma | terials | В | end te | st of r | netali | lic rod | ds | | | | | | | S-2 SLO-1 7 | Tensile test on Mild | d steel rod | Test on closed coil Helical springs | Torsion te <mark>st on G</mark> raded ste | eels | | | Double s | hear t | est or | metal | lic ma | terials | В | end te | st of r | netali | lic rod | ds | | | | | | | S-3 SLO-1 SLO-2 | Compression test of | of Concrete cub <mark>es</mark> | Izod impact test | Deflection test on beams of materials | of differ | ent | |
Rockwel
mate <mark>ri</mark> als | | nell h | ardnes | s test | of me | | atigue
onditio | | ng of i | mater | ials un | der no | tched | | | | | S-4 SLO-1 SLO-2 | Compression test o | of Cylinders | charpy impact test | Deflection test on beams of materials | of differ | ent | | Rockwel
materials | | nell h | ard <mark>ne</mark> s: | s test | of me | | | | | | | | Fatigue testing of materials under u | | 1- | | | 5-5 | Comparison of med
Unhardened specil | chanical properties of men | Strain measurement on rods using rosette strain gauge | Measurement of pressure cylinders using strain gaug | | walle | ed | Buckling | analy | sis of | struts | | | S | Study on photo elasticity | | | Study on photo elasticity | | | Study on photo elasticity | | | | | - 6 | Comparison of med
Quenched and tem | chanical properties of
pered specimen | Strain measurement on beams using rosette strain gauge | Measurement of pressure cylinders using strain gaug | | walle | ed | Buckli <mark>ng</mark> | analy | sis of | struts | | | Study on photo elasticity | | | | - | | | | | | | | | Bloom's | | | Cont | i <mark>nuous Learning Ass</mark> | sessment (50% weigh | <mark>ntage)</mark> | | | Final Evamination | n (E00/ woightage) | |---------|------------------------|--------|--------------------|--------|-----------------------------------|---------------------|---------------------|---------|----------|-------------------|--------------------| | | Level of Thinking | CLA – | 1 (10%) | CLA – | 2 (15%) | CLA – 3 | 3 (15%) | CLA – 4 | 1 (10%)# | Final Examinatio | n (50% weightage) | | | Level of Thirtking | Theory | Practice | | Level 1 | Remember
Understand | - | 30 % | | 30 % | 6721 | 30 % | | 30 % | - | 30% | | Level 2 | Apply
Analyze | - | 4 <mark>0 %</mark> | 100 | 40 % | N. A | 40 % | 15.70 | 40 % | - | 40% | | Level 3 | Evaluate
Create | - | 30 % | 131 | 30 % | | 30 % | 100 | 30 % | - | 30% | | | Total | 10 | 0 % | 10 | 0 % | 100 | % | 10 | 0 % | 10 | 00 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com | 1.Dr. Shankar Krishnapillai, IIT Madras, skris@iitm.ac.in | 1. Dr. P. Nandakumar, SRMIST | | 2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2.Dr. K. Jayabal, IIITDM, Kancheepuram, jayabal@jiitdm.ac.in | 2. Mr. A. Vinoth, SRMIST | | Course
Code | 18MEC110L | Course
Name | HEA | T POWER LABORATORY | | | ourse | у | С | | | | | Pro | fessio | onal C | Core | | | | | L
0 | T F | P C | |--------------------------|--------------------|---|------------------------------|---|--|---------------------|---------------------|--------------------------|----------------|-------------------|-----------------------------|------------------|----------------------|----------------------------|-------------------|-----------------------|----------------|-----------------------------------|------------|---------------|------------------------|-----------|-----------------------|-------| | Pre-requisite
Courses | Nil | | Co-requisit Courses | 18MEC1071 | 10.1-10.1-1 | | C | gress
Course | | | | | | | | | | | | | | | | | | Course Offering | Department | Mechanical Enginee | ering | Data Book | c / Codes/Standards | | Nil | | | | | | | | | | | | | | | | | | | Course Learning | Rationale (CLR) |): The purpose of learn | ing this course is | s to: | The same | T. | ı | .earnir | ng | | | | | | Prog | gram | Learn | ing Oı | utcom | es (P | LO) | | | | | CLR-1: Analy | ze components a | and functions of IC Engine | 3 | - 177 | | | 1 | 2 | 3 | 10 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 ′ | 4 15 | | CLR-2: Utilize | e the properties o | of lubricants and fuels | | | | | | | - | 17 | | | | 등 | | | III. | | | | | | | | | | | and heat balance test <mark>on l</mark> | <mark>C engin</mark> es | | CALL STATE | | (m) | (%) | (% | | e | | += | Analysis, Design, Research | | | Sustainability | | 논 | | a) | | | | | | | ion and emissions te <mark>st</mark> | | | The state of the state of | | 8 | ें | Attainment (%) | | edç | М. | nen | Ses | a) | | stair | | Work | | au Ce | | | | | | | test on steam pow <mark>er plant</mark> | | | | |) g | ien | l me | | MO | .s | lopr | n, F | sag | <u>e</u> | Sus | | Team | _ | ii l | Learning | | | | CLR-6: Utilize | e operations and | performance of Internal co | mbustion engine | s, air compressors and stea | m power plant | | 돌 | rofic | ttair | 1.0 | 조 | aly | eve | esig |) IC | ultu | ± & | | Te | atio | ∞ . | earr | | | | | | | | A FIRST | | | of Thinking (Bloom) | d P | Αþ | | ring | An | S D | Ď, | Toc | S
C | ner | | <u>∞</u> | iSi | Mgt | g Le | | | | | | | | | Transfer of | - | _ | cte | ce | | nee | len | gu | ysis | ern | ety | in oi | တ္လ | idu | m | 덩 | <u>Б</u> | | 3 2 | | Course Learning | Outcomes (CLC | O): At the <mark>end of this</mark> co | urse, learners wi | ll be able to: | The long of | | Level | Expected Proficiency (%) | Expected | | Engineering Knowledge ■ | Problem Analysis | Design & Development | ınal | Modern Tool Usage | Society & Culture | Environment & | Ethics | Individual | Communication | Project Mgt. & Finance | Life Long | PSO | 80 8 | | CLO-1: Identi | fy the componen | its and functions of IC Engi | nes | | | | 2 | 95 | 85 | | Н | М | | M | | - | H F | | | | | | H | | | | | s of lubricants and fuels | | | THE WAY | 77 | 2 | 95 | 85 | | Н | Н | | L | - | - | - | - | Н | - | - | - | - | L - | | | | and heat bal <mark>ance test</mark> on I | C engines | - 15 1 1 Miles | WHITE I | | 2 | 95 | 85 | | Н | Н | М | L | М | - | - | - | Н | - | - | - | - , | И - | | | | dation and em <mark>issions t</mark> est | | 11 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100000 | 100 | 3 | 95 | 85 | | Н | Н | | <u> </u> | - | - | - | - | Н | - | - | - | - | - M | | | | test on steam power plant | | | | | 3 | 95 | 85 | | Н | Н | | - | - | - | - | - | Н | - | - | - | | Н Н | | CLO-6: Analy | ze operations an | nd performan <mark>ce of Inte</mark> rnal | combustion engir | nes, air compressors and ste | eam power plant | - | 3 | 95 | 85 | | Н | Н | М | L | - | - | - | - | Н | - | - | - | Н | - - | | | 1 | | | | | | 100 | | | | | | | | | | | | | | | | | | | Duration (hour) | | 6 | 5 | 6 | | 6 | | | | | | | 6 | | | | | | | | 6 | | | | | S SLO-1
1-2 SLO-2 | Components of | Internal combu <mark>stion eng</mark> ine | Determine visc
viscometer | osity using Redwood | Performance test on electrical dynamome | | engine | with | | Heat be
engine | | | | | oke d | liesel | | Heat t | paland | e tes | t on b | oiler | | | | S SLO-1 | Valve timina dia | gram of IC Engines | Determine visc | osity using Saybolt | Performance test on
speed diesel engine | _ | • | er high | h | Heat b | alanc | e test | on fo | our str | oke d | l <mark>ies</mark> el | | Performance test on steam turbine | | | | | | | | 3-4 SLO-2 | vaive uning dia | gram or to Engines | viscometer | | brakedynamometer/l | | | | | engine | with | out ca | lorime | eter | | | ľ | r c noi | mano | e iesi | UII SI | cam u | ii Dii i C | | | S SLO-1 | | | Determine flas | h and fire point/cloud and | Performance test on | _ | | er high | h | Retard | lation | test o | n slo | w sne | ed di | معوا | | Perfor | manc | e test | on tu | o stac | IP. | | | 5-6 SLO-2 | Port timing diag | ram of IC Engines | pour point | rana ine pomboloda ana | speed diesel engine
current/hydraulic dyr | | | | | engine | A | | | | | | | | | | | essor | | | | Learning
Resources | 1. Ganesan. V | /, Internal Combustion Eng | ines, Tata McGra | aw-Hill, New Delhi, 2015 | | ur.M. L
ratory l | | | 2. P, A | A cour | se in I | nterna | al Cor | nbust | ion E | ngine | s, Dh | anpati | Rai & | Sons | , 2010 |) | | | | | Bloom's | | | Cont | inuous Learning Ass | sessment (50% weigh | ntage) | | | Final Evamination | n (50% weightage) | |---------|------------------------|--------|----------|--------|---------------------|---------------------|----------|---------|----------|-------------------|-------------------| | | Level of Thinking | CLA – | 1 (10%) | CLA – | 2 (15%) | CLA – 3 | 3 (15%) | CLA – 4 | 1 (10%)# | Filiai Examinatio | i (50% weightage) | | | Level of Thirtking | Theory | Practice | | Level 1 | Remember
Understand | - | 40 % | | 30 % | 27.21 | 30 % | | 30 % | - | 30% | | Level 2 | Apply
Analyze | - | 40 % | 100 | 40 % | N. A. | 40 % | 15.70 | 40 % | - | 40% | | Level 3 | Evaluate
Create | - | 20 % | - 637 | 30 % | | 30 % | 14 | 30 % | - | 30% | | | Total | 10 | 0 % | 10 | 0 % | 100 | 1% | 10 | 0 % | 10 | 00 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|---|------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. R Velraj, IES, CEG, Anna University, Chennai, velrajr@annauniv.edu | 1.Dr. G. Balaji, SRMIST | | 2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr. Raju Abraham, NIOT, Chennai, abraham@niot.res.in | 2.Dr. D. Sivakrishna Reddy, SRMIST | | Course Code 18MEC111L Course Name
| MATERIALS TECHNOLOGY LABORA | ATORY | ourse
egory | / | С | | | | Proi | fessio | nal C | ore | | | | | L
0 | T
0 | P C 2 1 | |--|--|--|---------------------------|--------------------------|-------------------------|-----------------------|------------------|----------------------|--------------------------------|-------------------|---|------------------------------|--------|-------------------|---------------|------------------------|-----------|---------|---------| | Pre-requisite Courses Nil | Co-requisite Courses 18MEC108T | 1. (0. 1. (0. 1. 1. | С | gress
ourse | | Nil | | | | | | | | | | | | | | | Course Offering Department Mechanical E | ngineering Data Boo | ok / Codes/Standards | Nil | | | | | | | | | | | | | | | | | | Course Learning Rationale (CLR): The purpose of | of learning this course is to: | | L | .earni | ng | | | | | Prog | ıram L | _earn | ing O | utcom | ies (P | LO) | | | | | CLR-1: Utilize the concepts and need of specimer | n prep <mark>aration and pr</mark> ocedures to be followed for mid | croscopic observation | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 1 | | CLR-2: Identify and utilize the microstructure of va | riou <mark>s metals, a</mark> lloys and its metallurgical propertie: | S | | | | 7 | | | | | | | | | | | | | | | CLR-3: Utilize heat treatment process for various | ap <mark>plications</mark> | and the Willes | | | | | | | C | | | ility | | | | | | | | | CLR-4: Evaluate heat treatment impact on hardne | ss and micro structural changes | | (mo | (%) | (%) | e de | Ю | ¥ | ear | | | nab | | ¥ | | ω | | | | | CLR-5: Analyze the wear behavior and understan | | 27.7.5 E9.77 | 8 | 5 | ent | led | | mel | Res | Эе | | ıstai | | Work | | auc | _ | | | | CLR-6: Utilize the knowledge for identifying metals | <mark>s, alloy</mark> s based on microstructure and analyze the | effect of heat treatment | ng | iciel | in in | Mou | /Sis | dole | gn, | Jsac | ure | s Su | | eam | Ξ | Ξ | in. | | | | | | THE RESERVE TO RE | i X | Prof | Atta | A S | nal | Deve | Design, Res <mark>earch</mark> | | Culture | ant 8 | | & T(| atic | Jt. & | Learning | | | | Course Learning Outcomes (CLO): At the end of | this course, learners will be able to: | N. S. | Level of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Engineering Knowledge | Problem Analysis | Design & Development | Analysis, I | Modern Tool Usage | Society & | Environment & Sustainability | Ethics | Individual & Team | Communication | Project Mgt. & Finance | Life Long | PS0 - 1 | PSO - 2 | | CLO-1: Identify concepts of specimen preparation | | SECTION STATE | 1 | 95 | 90 | Н | - | | - | Н | - | | - | Н | - | - | - | L | - - | | - | alloys and micro structural changes for various hea | nt treatment processes | 1 | 95 | 90 | Н | - | - | Μ | Н | - | - | - | Μ | - | - | - | L | - - | | CLO-3: Evaluate hardness and analyze the effect | | The Name of Street, and the St | 2 | 95 | 90 | Н | - | - | Н | Н | - | - | - | М | - | - | - | Н | - l | | CLO-4: Analyze the effects of heat treatments and | | 100 100 | 3 | 95 | 90 | Н | - | - | Η | М | - | - | - | Н | - | - | - | Н | - F | | CLO-5: Analyze wear behavior and understand st | | | 2 | 95 | 85 | Н | Н | - 1 | Н | Н | - | - | - | Н | - | - | - | Н | - F | | CLO-6: Identify metals, alloys based on microstruc | <mark>ctur</mark> e, analyze effect of heat treatment on hardness | s and microstructural changes | 3 | 95 | 90 | Н | - | - | Н | Н | - | - | - | М | - | - | - | Н | - F | Duration (hour) 6 | 6 | 6 | | | | | - | 6 | | | | | | | | 6 | | | | | S SLO-1 Study the Mounting Process Prepar
1-2 SLO-2 sample for identification under micro | | Identify various heat treatme | | | | Jomny End | l quen | ched S | iteel | | | (| Coatir | ng thic | knes | s Eva | luatioi | 1 | | | S SLO-1 Identify Metal - Plain Carbon steel | Identify Alloy - Copper based alloys | Various heat treated steels li
Normalised, annealed, Temp | | | ed, | Micro Vick | ers Te | ster | | | Analyze various stress using tensometer | | | | ometer | | | | | | S SLO-1
5-6 SLO-2 Identify Metal - Cast iron | Identify Alloy -Light Metal alloys | Case hardened steel- Induction and Laser Hardened | ion H | arden | ed | properties | of GC | Iron ar | nd SC | 3 Iron | | ı | Wear | analy | sis us | ing P | in-on- | disc | | | | ction to phy <mark>sical metallurgy</mark> , 2 nd ed., Tata McGraw-
endelin J. Wright, <mark>Science and En</mark> gineering of Mate | | g, 201 | 1 | | 3.
4. | | M stan
oratory | | | | | | | | | | | | | | Bloom's | | | Contir | nuous Learning Ass | essment (50% weigh | tage) | | | Final Evamination | n (50% weightage) | |---------|------------------------|--------|--------------------|---------|--------------------|--------------------|----------|---------|------------------|--------------------|-------------------| | | Level of Thinking | CLA – | 1 (10%) | CLA – 2 | 2 (15%) | CLA - 3 | (15%) | CLA – 4 | (10%)# | Filiai Examination | i (50% weightage) | | | Level of Thirtking | Theory | Practice | | Level 1 | Remember
Understand | - | 40 % | | 30 % | 277712 | 30 % | | 30 % | - | 30% | | Level 2 | Apply
Analyze | - | 4 <mark>0 %</mark> | 206 | 40 % | 31.75 | 40 % | | 40 % | - | 40% | | Level 3 | Evaluate
Create | - | 20 % | 131 | 30 % | - | 30 % | | 30 % | - | 30% | | | Total | 10 |) % | 100 |) % | 100 | % | 100 |) <mark>%</mark> | 10 | 0 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|----------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in, rkpearls@yahoo.com | 1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com | 1. Mrs. R. Ambigai, SRMIST | | 2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr. N. Arunachalam, IIT Madras, chalam@jitm.ac.in | 2. Dr. U. Mohammed Igbal, SRMIST | ## ACADEMIC CURRICULA Professional Core Courses **MECHANICAL ENGINEERING** Regulations - 2018 ## SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (Deemed to be University u/s 3 of UGC Act, 1956) Kattankulathur, Kancheepuram, Tamil Nadu, India | | | | | | | 1 | | | | | | | | | | | | | |--------------------------|--|---
--|----------------------------|--|---|-----------------------|-------------------|---|---|-------------------|------------------------------|---------|---|------------------------|--------------------|--------|-----------| | Course Cod | e 18MEC201T Course | lame MACHINES AND M | ECHANISMS | Course
Category | | , | | | F | rofess | ional | Core | | | | 3 | | C C | | Pre-red | quisite Courses Nil | Co-requisite Courses | Nil | Pro | aressiv | e Cour | ses | | | | | | Nil | | | | | | | Course Offering | | | / Codes/Standards | 110 | 910001 | o ocur | | | | | Ni | ľ | | | | | | | | | · | | The second of the | | | | | | | | | | | | | | | | | Course Learnin
(CLR): | g Rationale The purpose of learning this co | u <mark>rse is to:</mark> | The Art of the | Le | arning | | П | | | Pro | gram | _earnin | g Outo | omes (F | PLO) | | | | | CLR-1: unde | | s of displacement, velocity and acceleration | at any point in a rigid link | 1 | | 3 | 1 | 2 | 3 | 1 ! | 5 6 | 7 | 8 | 9 10 | 11 | 12 | 13 | 14 15 | | | ble to synthesis cam profile and to under <mark>star</mark> | | | (mc | (%) | (% | <u>e</u> | | ٠ | | | | . | 논 | 40 | | | | | | erstand the Balancing of rotating masse <mark>s and</mark> | | COLUMN TOWN | Level of Thinking (Bloom) | 5 | Expected Attainment (%) | Engineering Knowledge | | Design & Development
Analysis, Design, | | 10 | | | Individual & Team Work
Communication | Project Mgt. & Finance | | | | | | w the concepts of free vibration of single deg | | |) gr | Expected Proficiency | ame | MO | Si. | g _ | Research Madein Tool Hoos | Usage | | | am (| E E | Life Long Learning | | | | | w the concepts of forced vibration of single d | | | iş
İ | offic | ttair | 조 | alys | eve | | | ± ≥ | . | | ∞ . | earr | | | | CLR-6: una | erstand the concepts of kinematics <mark>and mach</mark> | ine dynamics | | Ē | дΡ | d A | in | A . | × | ج ا | 2 8
2 8 | ner
abili | : | <u>=</u> ع | Mgt | g Le | | | | Course Learnin | ia l | | | <u></u> <u></u> | cte | cte | nee | Problem Analysis | gn & | arc | Society & Culture | Environment & Sustainability | တ္က : | Individual & Tea
Communication | g | o o | - | -2 | | Outcomes (CLO | | ers will be able to: | A PARTY OF THE PAR | eve | xpe | ed | ngi | go . | esi | Sex | | invii | Ethics | ĕ
Pe
Pe | rōjē | ife l | PSO | PSO PSO | | | ain the basics of mechanism an <mark>d perform</mark> kin | ematic analysis | The state of s | 1&2 | 90 | 85 | Н | | _ A | ır - | 2 0 | - | ш. | | - | _ | - | | | | | motion and performkinematic analysis and E | picyclic Gear train | | | | | | | | - | - | | | | | | | | | orm balancing of rotating mas <mark>ses and d</mark> escri | | 1&2 | | 85 | Н | | | 1 . | | - | - | | - | - | - | | | | | yze free vibration single degre <mark>e of freed</mark> om s | Maria Maria Maria | 1&2 | | 85 | Н | Н | | | | - | - | | - | - | - | | | | | ne the concepts of forced vibra <mark>tion and</mark> critica | | | 1&2 | 90 | 90 | Н | - | Н | - | | - | - | | - | - | - | | | CLO-6: appl | y the concepts of kinematics a <mark>nd machi</mark> ne dy | rnamics in real time applications | Mary Santa B | 1&2 | 80 | 80 | | - 1 | - | - - | - - | - | - | - - | - | - | - | | | Duration (hour | 12 | 12 | 12 | 50.5 | | 1 | Ŧ. | 1 | 2 | | | | | | 12 | | | | | S-1 SLO- | Introduction to mechanism and its elements, Degrees of Freedom, its application in different mechanism | circular Cam terminology, types of cams
and followers | Friction- Introduction, Types
Laws of solid and dry friction
angle of friction | of friction,
, Limiting | tyį | troduction | ibrati | on | | | | | | of motio
gree of I | | | | excited / | | S-2 SLO- | Four Bar Chain, Grashof's law, Kutzback's and Grubler's criterion | Types of follower motion and its derivatives, under cutting | Types of follower motion and its Friction Clutches- single plate and single derivatives, under cutting multiplate Clutches Newt | | | quation
ngle Deg
ewton's
bration | gree (
and (| of Free
energy | edom s
metho | ystem
d- Lor | by
ngitudi | nal ^{For} | ced vii | bration - | -Beat | ing Ph | enom | enon | | S-3 SLO- | Kinematic Inversions of kinematic chain: 1 Four bar chain, Single and double slider crank chain | Displacement, velocity and acceleration for different follower motion | Cone and Centrifugal Clutche | es | Equation of motion for free un-damped single Degree of Freedom system by Newton's and energy method- torsional vibration Forced vibration due to unbalanced rotating and reciprocating masses | | | | | | | | | | | | | | | S-4 SLO- | 1 Tutorial-simple problems | Tutorial-simple problems | Tutorial on Clutches | | | itorials of the second | | | | | dom ι | | | on harm
f Freedo | | | ited s | ingle | | S-5 SLO- | velocity (RV) method | constructio <mark>n of circular cam</mark> profile for
radial follower with different motion | | | quation
egree of | | | | | mped single Forced vibration due to Base e
Relative amplitude Method | | | excit | ation by | | | | | | S-6 SLO- | Acceleration analysis of Four bar
1 mechanism and single slider crank
linkages by relative | construction of circular cam profile for offset follower with different motion | Friction in Brakes-Band brake | e principle | Fr | ee vibra | ition i | with vis | scous (| lampir | ng | | | bration o
Method | due to | Base | excit | ation by | | Duratio | on (hour) | 12 | 12 | 12 | 12 | 12 | |---------|-----------|--
---|---|--|--| | S-7 | SLO-1 | Velocity and Acceleration of double slider crank mechanism. | basic principles of tangent cam profile | Friction in Brakes-Band brake principle | Logarithmic decrement | Force Transmissibility and vibration isolation | | S-8 | SLO-1 | Tutorial on Velocity and Acceleration by relative method | Tutorial on cam profile construction | Tutorial for Friction Brakes | Tutorials on free damped single Degree of | Tutorials on Forced vibration due to Base excitation by Absolute and Relative amplitude Method | | S-9 | SLO-1 | Velocity and Acceleration of six bar
mechanism by relative method | Gear terminology, types, law of gearing
Tutorial on path of contact, arc of contact,
sliding velocity | Balancing of rotating masses- Need for
balancing, Static and dynamic balancing of
rotating masses | Torsional system with viscous damping | Critical speed or whirling of shaft | | S-10 | SLO-1 | Instantaneous center (IC) method,
Kennedy's theorem | Gear train, types and applications | | Torsional Vibration of Two Rotor and three rotor Systems | Critical speed or whirling of shaft-with air damping | | S-11 | SLO-1 | Velocity analysis of Four bar and single
slider crank mechanism by Instantaneous
center method | velocity ratio, torque calculations in epicyclic gear train | | Torsional Vibration of Geared Systems with Two and Three rotor System | Critical speed or whirling of shaft-without air damping | | S-12 | SLO-1 | Tutorial on Instantaneous center method | Tutorials on epicyclic gear train | rotating in came plane and different | Tutorials on Torsional Vibration of Two
Rotor and three rotor Systems | Tutorials on Critical speed or whirling of shaft-with air damping | | Lograina | 1. | Rattan, S. S, "Theo <mark>ry of Mac</mark> hines",McGrawHill Education, 4th edition, 2015 | 3. | L Norte | |-----------|----|---|------|---------| | Learning | 2. | Thomas Bevan, "The Theory of Machines", Pearson India Education Services Pvt. Ltd., 3rd | 1200 | machii | | Resources | | Edition, 2010. | 4. | Willian | - L Norton, "Design of machinery An introduction to the synthesis and analysis of mechanisms and machines", McGrawHill Education, 5th edition, 2011. - William Cleghorn, Nikolai Dechev, "Mechanics of Machines", Oxford University Press, 2nd Edition, 2014. | Learning Ass | essment | | | | 1000 | | - The Contract of | | | | | |--------------|------------------------|--------------------|----------|---------|---------------------|-------------------|--|---------|----------|-------------------|---------------------| | | Bloom's | | | Contir | nuous Learning Asse | essment (50% weig | htage) | | | Final Evamination | o (EOO) (woightogo) | | | | CLA - | 1 (10%) | CLA – 2 | 2 (15%) | CLA - | 3 (15%) | CLA – 4 | (10%)# | | n (50% weightage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember
Understand | 4 <mark>0 %</mark> | 55 V | 30 % | - 1 | 30 % | - | 30 % | 1 | 30% | - | | Level 2 | Apply
Analyze | 40 <mark>%</mark> | 1 | 40 % | - 4/ | 40 % | - 9 | 40 % | | 40% | - | | Level 3 | Evaluate
Create | 20 % | .) | 30 % | | 30 % | - 112 | 30 % | 107 | 30% | - | | | Total | 10 | 0 % | 100 |) % | 10 | 0 % | 100 |) % | 10 | 0 % | [#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|-----------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. Sudheesh Kumar, sudheeshkumar3@gmail.com, GCE, Kannur | 1. Dr.P.Nandakumar, SRMIST | | 2. Dr.A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr.R.Prabhusekar, rprabhusekar@mnnit.ac.in, MNNIT Allahabad | 2. Dr.P V Jeyakarthikeyan, SRMIST | | Course Code 18MEC20 | 02T Course Name | HEAT AND MAS | S TRANSFER | | | Cour | se Cate | egory | C | | | Profe | essional | core | | L | T | P | С | |---|--|--|--|--------------------------|--------------------------|-------------------------|-----------------------|------------------|----------------------|---|-------------------|--------|------------------------------|----------------------------------|---------|------------------------|-------------------|----|---------| | | | | | | | | | 0 , | | | | | | | | 3 | 1 | 0 | 4 | | Pre-requisite Courses | 18MEC101T & 18MEC | 102T Co-requisite Courses | Nil | | | | Р | rogres | sive | Course | s | | | | ٨ | Vil | | | | | Course Offering Department | Ме | chanical Engineering | Data Book / Codes/Standards | 3 | | | | | Н | eat and | Mas | s trai | nsfer da | ta boo | k and | steam | tables | ; | | | Course Learning Rationale (CLR): | he purpose of learning this cour | se is to: | The Market | Le | earnir | ng | | | | F | rogr | am L | earning | Outco | mes (F | PLO) | | | | | | cept
of conduction heat tran <mark>sfer</mark> | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 9 | 10 | 11 | 12 | 13 | 14 1 | | CLR-3: Understand the con CLR-4: Understand the con CLR-5: Understand the pha CLR-6: Understand the con | cepts of fins and unsteady state cept of convection heat transfer cept of radiation heat transfer se change heat transfer and macepts of heat and mass transfer the end of this course, learners | iss transfer | | evel of Thinking (Bloom) | Expected Proficiency (%) | Expected Attainment (%) | Engineering Knowledge | Problem Analysis | Design & Development | Analysis, Desi <mark>gn,</mark>
Resea <mark>rch</mark> | Modern Tool Usage | & Cult | Environment & Sustainability | Ethics
Individual & Team Work | cation | Project Mgt. & Finance | ife Long Learning | | PSO - 2 | | | te steady state heat conduction | in simple and composite systems | A STATE OF THE STA | | 90 | 80 | H | H | T | Н | L | Ĺ | L | L L | L | L | L | | H L | | | | in finned systems and unsteady state hea | | 3 | 90 | 80 | Н | Н | L | Н | L | L | L | L L | L | L | L | L | H L | | CLO-3: Evaluate the heat tr | ansfer coefficie <mark>nt under</mark> free and | d forced convection in various geometries | and simple design of heat | 3 | 90 | 80 | Н | Н | L | Н | L | L | L | L L | L | L | L | L | H L | | | d gas radiation <mark> for black</mark> and gr | ey bodies | The state of the state of | 3 | 90 | 80 | Н | Н | L | Н | L | L | L | L L | L | L | L | L | H L | | CLO-5: Analyse and evalua | te heat and ma <mark>ss trans</mark> fer coeffi | cient for phase change process and mass | s transfer | 3 | 90 | 80 | Н | Н | L | Н | L | L | L | L L | L | L | L | L | H L | | CLO-6: Apply the concepts | of heat transfe <mark>r in real ti</mark> me appl | ications | LA STORY | 3 | 90 | 80 | Н | Н | L | Н | L | L | L | L L | L | L | L | L | H L | | Duration (hour) | 12 | 12 | 12 | ð | | | | | 12 | 2 | Ħ | | | | | 12 | l | | | | S-1 SLO-1 Modes and | mechanism of heat transfer in | Fins – types, Differential equation, Types | | | | | ic conc | epts o | f radi | iation ,L | .aws | of | | | neory o | | | | | | Duration | on (hour) | 12 | 12 | 12 | 12 | 12 | |----------|-------------|---|---|---|--|---| | S-1 | 1 51 ()-1 1 | | Fins – types, Differential equation, Types of fin boundary conditions | Hydrodynamic and thermal boundary
layer,Principles and governing equations | radiation | Nusselt theory of condensation,Film condensation on a vertical plate and its flow regimes | | S-2 | SLO-1 | General conduction equation, boundary and initial conditions | Circumferential and longitudinal fins | Dimensional analysis for free convection | Atmospheric and solar radiation | Heat transfer correlations for film condensation, Film condensation inside horizontal tubes | | S-3 | SLO-1 | One dimensional steady state heat conduction in plane wall, cylinder and sphere, electrical analogy | Fin efficiency,Fin effectiveness | Dimensional analysis for forced convection | Black body radiation Grey body radiation | Dropwise condensation | | S-4 | SLO-1 | Tutorial on plane wall, cylinders and spheres | Tutorial on fins | Tutorial on hydrodynamic and thermal boundary layer | Tutorial on laws of radiation | Tutorial on Filmwise condensation | | S-5 | | , | Unsteady state heat conduction in
Lumped heat model | Forced convection: Flow over flat plate, cylinders and spheres | Shape factor algebra | Modes of Boiling | | S-6 | SLO-1 | , | Unstea <mark>dy state heat conduction in semi-</mark>
infinite solid | Forced convection : Internal flow | | Pool boiling regimes, Correlations for pool boiling heat transfer | | S-7 | SLO-1 | , | | Free convection : Flow over plates, cylinders and spheres | Radiation shield | Flow boiling regimes | | Duratio | n (hour) | 12 | 12 | 12 | 12 | 12 | |---------|---|---|--|--|---|--| | S-8 | SLO-1 | Tutorial on composite systems | Tutorial on unsteady state heat conduction | Tutorial on free and forced convection | Tutorial on shape factor, radiation shield and electrical analogy | Tutorial on pool boiling | | S-9 | SLO-1 Critical thickness of insulation for cyli | | Numerical sol <mark>ution for one dimens</mark> ional steady state heat conduction | Heat Exchangers – Types, overall heat transfer coefficient, fouling factor | Introduction to Solar radiation | Diffusion mass transfer – Fick's law of diffusion, Steady state diffusion through plane membrane | | S-10 | SLO-1 | II ritical thicknose of inclilation for enharge | Numerical solution for one dimensional steady state heat conduction | LMTD and Effectiveness – NTU method method of analysis | I Radiation properties of dases | Equimolar counter diffusion, Isothermal evaporation of water vapour into air | | S-11 | SLO-1 | , | Numerical solution for two dimensional steady state heat conduction | Heat transfer enhancement methods,
Selection of heat exchangers | Vapour and carbon dioxide | Convective mass transfer, Convective
mass transfer correlations, Simultaneous
heat and mass transfer | | S-12 | | Tutorial on critical thickness of insulation and internal heat generation | Tutorial on one and two dimensional steady state heat conduction | Tutorial on heat exchangers | Tutorial on gas radiation | Tutorial on diffusion and convective mass transfer | | | 1. | Sachdeva, R.C., Fundamentals of Heat and Mass Transfer, 2nd Edition, New Age International | 6. | Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, "Fundamentals of | |-----------|----|--|------|--| | | | (P) Ltd., New Delhi, <mark>2017.</mark> | | Heat and Mass Transfer", John Wiley and Sons, 2016. | | Learning | 2. | Nag, P.K., Heat Transfer and Mass Transfer, Tata McGraw Hill, 3rd Edition, New Delhi, 2011. | DATA | 4 BOOKS | | Resources | 3. | Ozisik. M. N, "He <mark>at Transfe</mark> r", McGraw-Hill Book Co., 2003. | 7. | Kothandaraman. C. P, Subramanyan, <mark>S, "Heat</mark> and Mass Transfer Data Book", New Age | | | 4. | Holman. J. P "He <mark>at and M</mark> ass Transfer" Tata McGraw-Hill, 2008. | | International, 7th edition, 2012. | | | 5. | Yunus A. Çenge <mark>l, Afshin J</mark> . Ghajar "Heat and Mass Transfer", Tata McGraw Hill Education, 2017. | 8. | K.K.Ramalingam "Steam Tables", SciTech Publications, 2015. | | Learning Ass | essment | | | Control of the second | A PERSONAL | | 10.00 | 500 | | | | |--------------|------------------------------|-------------------|----------|-----------------------|-------------------|-------------------|----------|---------|----------|-------------------|--------------------| | | Diagraia | | | Continu | uous Learning Ass | essment (50% weig | htage) | | | Final Evamination | n (EOO) waishtasa) | | | Bloom's
Level of Thinking | CLA – | 1 (10%) | CLA – 2 | (15%) | CLA – | 3 (15%) | CLA – 4 | · (10%)# | | on (50% weightage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember
Understand | 40 % | | 30 % | | 30 % | 7.77 | 30 % | - | 30% | - | | Level 2 | Apply
Analyze | 40 % | 3 | 40 % | | 40 % | | 40 % | <u>-</u> | 40% | - | | Level 3 | Evaluate
Create | 20 <mark>%</mark> | 1200 | 30 % | - 4/ | 30 % | - 11/9/ | 30 % | | 30% | - | | | Total | 10 | 0 % | 100 | % | 100 |) % | 100 |) % | 10 | 00 % | [#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | The state of s | | |--
--|---------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. M. R. Kamesh, Dayanada Sagar College of Engineering | 1. Mr. D. Premnath, SRMIST | | 2. Dr.A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr.N. Saravanan, Smart Implements and Machinery and Sustainability | 2. Dr.P. Chandrasekaran, SRMIST | | Course Code | 18MEC203L | Course Name | MACHINE DYNA | MICS LABORATORY | | | | Course
ategor | | С | | | Prof | essional c | ore | | L
0 | T
0 | P 2 | <u>C</u> 1 | |-----------------------|-----------------------------|---------------------------------------|--|--|----------|--------------------------|-------------------------|-----------------------|------------------|------------------------------------|-------------------------|------------------------|-----------|-------------------------------------|--------------|---------------|----------------|-----------|---------|------------| | Pre-req | uisite Courses | Nil | Co-requisite Courses | 18ME | C201T | | | | | Prog | ressiv | re Co | urses | 3 | | | ٨ | il . | | | | Course Offering De | partment | | Mechanical Engineering | Data Book / Codes/Standa | ards | | | | | | | | | | lil | | | | | | | Course Learning Ra | ationale The purpose of | of learning this course | e is to: | HACE | L | earni | ng | | | | | Progr | am L | earning O | utcon | nes (P | LO) | | | | | | and the static and kinem | atics behavior of <mark>mad</mark> | chines Chines | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 8 | 9 | 10 | 11 | 12 | 13 | 14 1 | | CLR-2: understa | and the dynamic behavio | or of machines | | | Œ | | | a) | | | | | | | ~ | | | | | | | CLR-3: understa | and the balancing of mas | sses in machin <mark>es</mark> | 41 | | (Bloom) | 6) | t (% | gg | | ent | | | | | Vorl | | ce | | | | | CLR-4: understa | and the effect of centrifug | gal forces in <mark>machine</mark> | | - No. of the Contract C | 9 | enc | ner | We | S | md | _ | age | d) | | > | | Finance | пg | | | | CLR-5: understa | and the free and forced v | ribration a <mark>nalysis</mark> | | | Thinking | fici | ain | ŝ | Jysi | Je/ | Design, | Usi | Culture | ∞ . | Team Work | e
U | Ϋ́Ε | Learning | | | | CLR-6: acquire | the ability to analyze the | dynami <mark>cs behavi</mark> or d | of machines | 13. (0) 4-3 | 를 | P | Att | D D | √na | De | Des | 00 | ਟੋ | iity | ~ | cati | gt. 8 | Les | | | | | | | | | ofT | pe | pe | e <u>T</u> | m | ∞ | S, C | Ľ | ∞ | ab
der | la | Ë | Ĭ Mć | ng | _ | 2 0 | | Course Learning O | utcomes 44 the and of t | hio course le orrecte | will be able to | | | Expected Proficiency (%) | Expected Attainment (%) | Engineering Knowledge | Problem Analysis | Design & Developm <mark>ent</mark> | Analysis, I
Research | Modern Tool Usage | Society & | Environment & Sustainability Ethics | Individual & | Communication | Project Mgt. & | Life Long | | | | (CLO): | At the end of t | his co <mark>urse, lear</mark> ners i | will be able to: | Service of the servic | Level | Ä | Ä | E E | Pro | Des | Ang | § S | Soc | E Si E | lp | Ö | Pro | Life | PSO | PSO | | CLO-1: Draw ca | m profiles based on follo | owe <mark>r motion</mark> | | The second | 3 | 80 | 85 | H | Н | М | M | Н | - | | Н | - | - | - | - | - | | CLO-2: Analyze | Epicyclic Gear train and | l G <mark>yroscopic</mark> effect | 100 | 1700 | 3 | 80 | 85 | Н | Н | М | М | М | - | | Н | - | - | - | - | - | | CLO-3: Do balar | ncing of rotating masses | in <mark>machine</mark> s | | SANTE TO SECOND | 3 | 80 | 85 | Н | Н | M | М | Н | - | | Н | - | | - | - | - | | CLO-4: Determin | ne the frequency of sing | le <mark>degree of</mark> freedom | systems. | THE PARTY OF | 3 | 80 | 85 | Н | Н | M | М | М | - | - - | Н | - | | - | - | - | | CLO-5: Find the | Critical speed or whirling | g <mark>of shaft</mark> | | CONTRACTOR OF THE PARTY | 3 | 80 | 85 | Н | Н | М | М | М | - | | Н | - | | - | - | | | CLO-6: Do dyna | mic analysis of machine | S | 事業の対しがあった。 | White the state of | 3 | 80 | 85 | Н | Н | М | М | M | - | | Н | - | | - | - | | | Duration (hour) | 6 | | 6 | 6 | | | 1.3 | | | 6 | | | | | | | 6 | | | | | S-1 | Cam and Follower An | olugio | Dynamic analysis of Proelland porter | Measurement of cutting forc | es using | g Dril | Free | damp | ed an | d un-c | dampe | ed tor | siona | Trans | smissi | bility I | Ratio i | n Vibi | ating | | | S-2 | Cam and Follower An | alysis | Governor | tool Dynamometers | 7.5 | | | ition of | | | | | | Syste | | | | | | | | S-3 | Dynamic analysis of (| Curacana | Dynamic Balancing of massesin machine | Measurement of cutting force | es using | 7 | Free | & force | ed vik | ratior | of eq | jui <mark>val</mark> e | ent | Free | and fo | orced | transv | erse | vibrati | ion | | S-4 | Dynamic analysis of C | 3yroscope | Dynamic balancing of massesin machine | Milling Dynamometers | | | sprir | ig mas | s syst | em | | | | analy | sis fo | r bear | ns | | | | | S-5
S-6 | Dynamic analysis of E | Ēpi c <mark>yclic gear</mark> trains | Measurement of cutting forces using,
Lathe tool Dynamometer | Free Vibration of helical spri | ngs | | Whir | ling of | shaft | | | | | Vibra
gaug | | neasui | remen | t usin | g stra | in | | Learning
Resources | | "The The <mark>ory of Mac</mark> h | nines", Pearson India Education Services Pory - An introduction to the synthesis and ana | | chines" | McG | GrawHil | Educ | etion | 5th ed | dition | 2011 | | | | | | | | | | Learning A | ssessment | | | | | | | | | | | | | |------------|------------------------|---------|-------------------|-------------------|----------|---------|----------|---------|----------|-------------------|----------------------|--|--| | | Bloom's
| | Final Evamination | n (50% weightage) | | | | | | | | | | | | Level of Thinking | CLA – 1 | 1 (10%) | CLA - | 2 (15%) | CLA - 3 | (15%) | CLA – 4 | 1 (10%)# | Filiai Examinatio | ii (50 % weigiilage) | | | | | Level of Thirtking | Theory | Practice | | | | Level 1 | Remember
Understand | - | 40 <mark>%</mark> | | 30 % | NOE | 30 % | | 30 % | - | 30% | | | | Level 2 | Apply
Analyze | - | 40 % | 1 | 40 % | 200 | 40 % | 77. | 40 % | - | 40% | | | | Level 3 | Evaluate
Create | - | 20 % | | 30 % | | 30 % | - | 30 % | - | 30% | | | | | Total | 100 % | | | 00 % | 100 | % | 10 | 0 % | 100 % | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | MARKE SHIPLES | | |--|--|---| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. Sudheesh Kumar, sudheeshkumar3@gmail.com, GCE, Kannur | 1. Dr.P.Nand <mark>akumar, S</mark> RMIST | | 2. Dr.A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr.R.Prabhusekar, rprabhusekar@mnnit.ac.in, MNNIT Allahabad | 2. Dr.P V Jeyakarthikeyan, SRMIST | | Course Code | 18MEC204L | Course Name | | SIMULATION | LABORATORY | | | | | Course
ategor | | С | | | Profe | ession | al cor | е | | L
0 | T
0 | P 2 | (| <u>)</u>
1 | |------------------------|---------------------------------------|---|-------------------------------------|--|---|-------------------------|---------------------|--------------------------|-------------------------|-----------------------|------------------|----------------------|------------------|-----------------------|-------------|------------------------------|----------------|--------------|---------------|-----------------|--------------------|--------|----------|---------------| | Pre-requisite Cou | ırses | Ni | 1 | Co-requisite Courses | 18MEE30 | 5T Finite Elemen | nt Me | ethod | Pro | gressi | ve Cou | ırses | | | | | | | | Nil | | | | | | Course Offering D | Department | | Mech <mark>anical L</mark> | E <mark>ngineeri</mark> ng | Data Book / 0 | Codes/Standards | ; | | | | | | | | | Nil | | | | | | | | | | Course Learning (CLR): | 1 | The purpose of learning th | | 15 | The same | 4/2 | L | .earn | ing | | | | | Progr | am L | earnin | ıg Ou | tcome | es (Pl | , | | | | | | | | | | ools to analyze the Engine | ering problems. | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | structural analysis of con | | | 517-11-517 | | = | | | | | | Design, Research | | | | | | | | | | | | | | | modaland vibration <mark>al an</mark> a | | nts. | 1000 | | mod | % | (%) | ge | | Ħ | sea | | | | | 美 | | g | | | | | | | | Thermal analysis of com | | 1 100 | | | 画 | اک | ent | led | P., | me | Re | e Je | | | | Team Work | | Finance | _ | | | | | | | Dynamic analysis of com | ponents. | | | | g | e. | Ē | δ | Sis | dol | 'n, | sac | <u>e</u> | | | l a | _ | 뜶 | nin, | | | | | CLR-6: Simula | ate any engineering | g problem num <mark>erically.</mark> | 74 | A 345 | A.R. 10740 | 100 | inki | Jo. | ıttai | 조 | laly | eve | esi | | Culture | ± ₹ | | | atio | ∞ర | ear | | | | | | | | | | | | of Thinking (Bloom) | P P | ρ | i.i. | Ā | ∞
□ | ο, ο | P | ∞
∞ | me
abil | | <u>8</u> | ni. | Mgt | g L | | | က | | Course Learning | Outcomes | | | | Total Control | | - Jo | Expected Proficiency (%) | Expected Attainment (%) | Engineering Knowledge | Problem Analysis | Design & Development | Analysis, | Modern Tool Usage | Society & (| Environment & Sustainability | ιχ | Individual & | Communication | Project Mgt. | Life Long Learning | - | 7.7 | - 1 | | (CLO): | A | At the end o <mark>f this cour</mark> se, i | learners will be ab | ole to: | | | Level | xp | xbe | ngi | rob | esi | na | bol | OCi | nvi | ij | ا
ا | E | ĬŌ. | <u>i</u> | PSO | PSO | PSO | | | data exchange sta | ndard and integration of I | FFA with software | tools | | | 3 | 85 | 80 | H | Н | | H | H | S | ш o | ш | | 0 | <u>п</u> | H | Δ. | <u>п</u> | <u>n</u> | | | | ral analys <mark>isof comp</mark> onent | | | THE RESERVE | 37 F G | 3 | 75 | 80 | Н | Н | | Н | Н | | - ' ' | | | | | Н | | - | _ | | | | l and vibr <mark>ational an</mark> alysis | | | 4.5 | 7 | 3 | 75 | 80 | Н | Н | | Н | Н | | | | | | | Н | | | _ | | | | nal analys <mark>is of com</mark> poner | | | The Party | HALL STO | 3 | 75 | 80 | Н | Н | | Н | Н | | | | | | | Н | | | _ | | | | mic analy <mark>sis of com</mark> poner | | | 1777 | | 3 | 75 | 80 | Н | Н | - | Н | Н | | | | | | | Н | | | | | | | ation of a <mark>ny engine</mark> ering p | | | | and the later of | 3 | 75 | 80 | Н | Н | | Н | Н | | | | | | | Н | | | | | | | , , , | | 10 may | | 1000 | | | | | | | | | - | | 1 | | II. | | | I | | | | Duration (hour) | | 6 | | 6 | | 6 | | - | | | | 6 | | | | | | | | 6 | | | | | | S-1
S-2 SLO-1 | Displacement bar support conditions | structures <mark>with diffe</mark> rent
s. | Stress and defle with different sup | ction analysis in beams
oport condition. | Modal analysis of frequency –Canti supported beam | lever beam, Sim | | ural | Dynar
shell. | nic ana | alysis (| of thin | circu | la <mark>r c</mark> y | lindri | | | | | – Stea
oblem | | ate ar | id | | | S-3
S-4 SLO-1 | Force and stress elements in Truss | analysis using <mark>link</mark>
ses. | Simple example | d Plane strain problems –
s – flat plate with hole,
n hole Tapper plate etc. | Modal analysis or frequency –Canti supported beam | lever beam, Sim | | ural | Therm
Transi | | | | | ate an | d | | nema
echar | | alysis | s of Fo | our ba | ar | | | | S-5
S-6 | Stress and deflec with different load | tion analysis in be <mark>ams</mark>
ling condition. | Stress analysis of component. | of axi -symmetric | Vibrational analyst condition. | sis - plate with dy | /nam | nic | Therm
Transi | | | | | ate an | d | | /nami
echar | | lysis | of slic | ler cra | ank | | | | Learning
Resources | Laboratory Reddy .J.N. | | Element Method, | 3 rd .,Tata McGraw Hill.2 | | nndrupatla, T.R.,
7. | Bele | egund | du, A.D. | , "Intro | ductio | n to I | -inite | Eleme | ents i | n Eng | ineeri | ing", F | Prenti | ice Ha | II, 199 | 0. 19 | 90ndi | a, | | Learning Ass | sessment | | | | | | | | | | | |--------------|-------------------|--|-------------------|---------------|----------|---------------|----------|----------------|----------|-----------------------------------|----------| | | Bloom's | Continuous Learning Assessment (50% weightage) | | | | | | | | Final Examination (F0% weightage) | | | | | CLA – 1 (10%) | | CLA – 2 (15%) | | CLA – 3 (15%) | | CLA – 4 (10%)# | | Final Examination (50% weightage) | | | | Level of Thinking | Theory | Practice | | Level 1 | Remember | - | 40 <mark>%</mark> | | 30 % | VOL | 30 % | | 30 % | - | 30% | | | Understand | | | | | | | | | | | | Level 2 | Apply | - | 40 % | 13 | 40 % | | 40 % | | 40 % | - | 40% | | | Analyze | | | | | | | | | | | | Level 3 | Evaluate | | 20 % | | 30 % | - | 30 % | - 1 | 30 % | - | 30% | | | Create | | | | | | | | | | | | | Total | <mark>100 %</mark> | | 100 % | | 100 % | | 100 % | | 100 % | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Laboratory Course Designers | | | |--|--
-----------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr.R.Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. Davidson Jebaseelan, davidson.jd@vit.ac.in,VIT, Chennai | 1. Mr. S. Balamurugan, SRMIST | | 2. Dr.A. Velayutham, DRDO, Ayadi, yelayudham,a@cyrde.drdo.in | 2. Mr. Vignesh Shanmugam.s. Hyundai Motors Limited. Chennai. 273357@hmil.net | 2. Dr.P V Jevakarthikevan, SRMIST | | Course Code | 18MEC205L | Course Na | me HEAT AND | HEAT AND MASS TRANSFER LABORATORY | | | Course
ategor | | С | C Professional core | | | | | е | | L
0 | T
0 | P 2 | | |--|---|--|---|--|---------------------|----------------------|-------------------------|-----------------------|------------------|----------------------|-----------------------|-------------------|---------------|------------------------------|----------|-----------------------|---------------|------------------------|--------------------|-----| | Pre-requisite Courses
Course Offering Departi | ment | Nil
Mecha | Co-requisite Courses | 18MEC202T Heat and Mass Tran Data Book / Codes/Standards | sfer | | | Progre
Heat a | | | | r Dat | a Boo | k and | l Refriç | geran | Ni
t Table | | l Chart | S | | Course Learning Ration | ale The purpose | of learning this co | | SCH NC | Le | earnir | | | | | | | ram Le | | | | | | | | | CLR-1: Conduction, | Convection and Ra | adiation modes o <mark>f l</mark> | Heat Transfer. | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 1 | 2 13 | 14 | | | | on and Air Co <mark>nditi</mark> o | oning systems. | | of Thinking (Bloom) | cted Proficiency (%) | Expected Attainment (%) | Engineering Knowledge | Problem Analysis | Design & Development | sis, Design, Research | Modern Tool Usage | ety & Culture | Environment & Sustainability | S | ndividual & Team Work | .음 | Project Mgt. & Finance | Life Long Learning | | | Course Learning Outcor
CLO): | Mes At the end of | [:] this <mark>course, le</mark> arne | ers will be able to: | To the second | Level | Expected | Expe | Engir | Probl | Desig | Analysis, | Mode | Society | Envir | Ethics | Indivi | Com | Proje | | PSO | | | duction, Convection and radiation const | | odes of <mark>he</mark> at transfer and evaluate th | e thermal conductivity, heat transfer | 3 | 95 | 90 | Н | Н | L | L | L | | М | | Н | | | | | | CLO-2: Evaluate the | effectiveness of h | eat <mark>exchang</mark> ers, he | eat transfer rate in condensation and i | boiling. | 3 | 95 | 90 | Н | Н | Н | L | L | | М | | Н | | | | | | | | | ration and air conditioning systems. | | | 95 | 90 | Н | Н | | | | | М | | Н | | | | | | Dura | ation (hour) | Conduction Heat Transfer | Convection Heat Transfer | Radiation Heat Transfer | Heat Exchangers, Boiling and Condensation | Refrigeration and Air Conditioning
Systems | |------|--------------|---|--|--|---|---| | | | 6 | 8 | 4 | 8 | 4 | | | SLO-1 | Heat Transfer through Composite wall. | Heat transfer by Natural Convection. | Study of the Emissivity apparatus. | Study of parallel flow and counter flow Heat Exchanger. | Study of Refrigeration Test Rig. | | S-1 | SLO-2 | Determination of heat transfer rate. | Determination of convective heat transfer coefficient | Determination of the emissivity of grey surface. | Determination of overall heat transfer coefficient, heat transfer rate and effectiveness of heat exchanger. | Determination of CoP of the
Refrigeration Test Rig. | | | SLO-1 | Heat Transfer through Composite lagged pipe. | Heat transfer by Forced Convection. | Study of Stefan – Boltzmann's
Apparatus. | Study of Shell and tube Heat Exchanger. | Study of Air Conditioning Test Rig. | | S-2 | SLO-2 | Determination of Thermal Conductivity of the materials. | Determination of convective heat transfer coefficient | Determination of Stefan Boltzmann
Constant. | Determination of overall heat transfer coefficient, heat transfer rate and effectiveness of heat exchanger. | Determination of CoP of the Air
Conditioning Test Rig. | | S-3 | SLO-1 | Thermal conductivity of an insulating Material. | Heat transfer through Pin Fin by Natural Convection. | | Study of Film wise and drop wise condensation apparatus. | | | 3-3 | SLO-2 | Determination of Thermal Conductivity of insulating material. | Determination of Efficiency and Effectiveness of the pin fin | | Determination of Condensate rate. | | | S-4 | SLO-1 | - | Heat transfer through Pin Fin by Forced Convection. | | Study on Critical heat Flux Apparatus. | | | 3-4 | SLO-2 | - | Determination of Efficiency and Effectiveness of the pin fin | | Determination of Critical heat Flux. | | | Learning
Resources | Laboratory Manual Kothandaraman.C.P, Subramanyan.S, "Heat and Mass Transfer Data Book", New age International, 8th edition, 2014. Mehta.F.S, Mathur.M.L, "Refrigeration & Psychrometric Properties Tables & Charts", 3rd Edition, Jain Publishers, 2014. | | |-----------------------|--|--| |-----------------------|--|--| | Learning Ass | sessment | | | | B. B. | N. Car | | | | | | |--------------|-------------------|--------|----------|--------|-------------------|--------------------|----------|--|----------|------------------|--------------------| | _ | Bloom's | | | Conti | nuous Learning As | sessment (50% weig | htage) | | | Final Evaminatio | n (E00/ woightage) | | | Level of Thinking | CLA – | 1 (10%) | CLA – | 2 (15%) | CLA – | 3 (15%) | CLA – 4 | 1 (10%)# | | n (50% weightage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember | | 40 % | | 30 % | | 30 % | | 30 % | | 30% | | Level I | Understand | - 1 | 40 % | | 30 % | | 30 % | | 30 % | - | 30% | | Level 2 | Apply | | 40 % | | 40 % | | 40 % | / | 40 % | | 40% | | Level 2 | Analyze | | 40 % | 700 | 40 % | 5000 | 40 % | 100 | 40 % | - | 40% | | Level 3 | Evaluate | | 20.0/ | | 20.0/ | 1000 | 30 % | ************************************** | 30 % | | 30% | | Level 3 | Create | | 20 % | / | 30 % | | 30 % | 1 | 30 % | - | 30% | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | THE REPORT OF THE PARTY | | |---|---|----------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr.R.Kalimuthu,ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. M.R.Kamesh, Dayananda Sagar College of Engineering, Bangalore | 1. Mr.M.D.Kathir Kaman , SRM IST | | 2. Dr.A. Velayutham, DRDO, Avadi,
velayudham.a@cvrde.drdo.in | 2. Dr.N.Saravanan, Smart Implements & Machinery and Sustainability, Mahindra Research Valley, Chennai | 2. Dr.C.Selvam, SRM IST | | Course Code | 18MEC206T | Course Name | METROLOGY AND QUALITY CONTROL | | | | Course
ategor | / | С | С | | Prof | essio | nal co | ore | | L
3 | T
0 | P
0 | 3 | |---|---|--|--|------------------|-----------------|----------------|-----------------------|------------------|---------------|-----------|-------------------|-----------|----------------|--------|--------------|---------------|--------------|----------|--------|------| | Pre-requisite Cour | ses Nil | Co-requisite Courses | Nil Progr | essive Cour | ses | | | | | | | | | Nil | | | | | | | | Course Offering Dep | e Offering Department Mechanical Engineering Data Book / Codes /Standards | | | | | | ved Me | trolog | gy & C | Quality | / Con | itrol T | ables | and | Charts | S | | | | | | Course Learning Rat (CLR): | onale The purpo | ı | _earni | ing | П | ī | | | Prog | ıram l | _earn | ing O | utcom | nes (P | LO) | | | | | | | | with standards of me | easurements and <mark>types of me</mark> as | urement errors | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | CLR-2: Know the | basics of measureme | nt for thread, g <mark>ear and su</mark> rface | inish | | | | | | | Ę, | | | lity | | | | | | | | | CLR-3: Be familia | with optical and other | er non-conta <mark>ct measure</mark> ments | The section of se | Ē | 100 | <u>@</u> | Φ | | | Research | | | Sustainability | | * | | | | | | | CLR-4: Be familia | with working of coor | dinate mea <mark>suring mac</mark> hines and | alignments of machine tool | |)
> |) t | gpe | | len | ese | - | | tain | | Vor | | Finance | | | | | | | hart and <mark>sampling p</mark> lan | |) E | euc | ner | - We | S | pud | Α, | age | ω | sne | | Ē | | ina | ng | | | | CLR-6 : Be familia control ted | | d form <mark>measurem</mark> ents using cor | ventional and coordinate metrology, together with quality | Thinking (Bloom) | Proficiency (%) | Attainment (%) | ng Kno | Problem Analysis | & Development | Design, | Modern Tool Usage | Culture | ∞ర | | & Team Work | Communication | ∞ಶ | Learning | | | | | | | | of T | ted | ted | eri. | m/ | ∞ ∞ | | n T | ∞ > | Ĕ | | nal | iun | Ϋ́ | Long | _ | 2 | | Course Learning Outcomes (CLO): At the end of this course, learners will be able to: | | | | | Expected | Expected / | Engineering Knowledge | Proble | Design 8 | Analysis, | Moder | Society & | Environment | Ethics | Individual & | Comm | Project Mgt. | Life Lc | PSO - | PSO- | | CLO-1: Understar | d the types of measu | rem <mark>ent error</mark> s, design of limit ga | uges and various comparative measurement methods | 3 | | 85
85 | Н | Н | М | L | L | | | | | | | | Μ | L | | CLO-2: Acquire th | | | | | | | Н | Н | М | | L | | | | | | | | L | L | | CLO-3: Perceive t | 0 1 07 | | | | | 85 | Н | М | | | Н | | | | | | | | L | L | | CLO-4: Learn the | fundamentals of CMN | As | | 3 | 90 | 85 | Н | М | | | Н | | | | | | | | Н | L | | CLO-5: Choose th | O-5: Choose the appropriate control charts | | | 3 | 90 | 85 | Н | Н | L | | М | | | | | Н | | L | Н | L | | CLO-6: Choose th | .O-6: Choose the types of sampling and methods in acceptance sampling for SQC | | | - 3 | 90 | 85 | Н | Н | М | | М | | | | | | | L | Н | L | | Durati | ion (hour) | Introduction To Me <mark>trology</mark> | Measurements Of Screw Thread - Gear Elements - Surface Finish | Optical And Other Non-Contact Measurement Techniques | Coordinate Metrology And Form
Measurement; Machine Tool Metrology | Theory Of Control Charts & Acceptance Sampling | |--------|------------|---|--|---|--|---| | | | 9 | 9 | 9 | 9 | 9 | | S-1 | SLO-1 | Introduction to metrology; Need for inspection; Physical measurements | | | | Definition of quality; Assignable causes
and Chance causes; SQC: Benefits and
limitations | | S-2 | SLO-1 | Methods of measurement;
Classification and characteristics of
measuring instruments | Measurement of effective diameter: two and three Michelson, Twyman Groon | | | Theory of Control Charts; Control Charts
for Variables: X bar and R charts | | S-3 | SLO-1 | Role of NPL; Sources and types of errors | | NPL flatness interferometer, The
Pitter NPL gauge interferometer | "Components: Transducers: Propes | Control Charts for attributes: P chart, np chart | | S-4 | SLO-1 | Statistical treatment of errors; tutorial | Constant chord method: derivation and tutorial | | 3 | Control charts for Non Conformities - C
and U chart | | S-5 | SLO-1 | Standards of measurements;
Classification of standards; Calibration | Thase fanoeur memoo denvalion and mional | | Performance of CMM and its applications | Basic Concepts of acceptance sampling and OC curve, AQL, LTPD ,AOQL | | S-6 | SLO-1 | Limits, fits, and tolerances: tutorial | II irciliar nitch and composite error measurement | Measurement of straightness using Autocollimator, Tutorial | Overview of alignment tests in machine tools using dial gauge, sprit level, straight edges | Tutorial | | S-7 | SLO-1 | Interchangeability and Selective
Assembly | 1.SURTACE TINISH: SURTACE TODOGRAPHY DETINITIONS | Measurement of flatness using
Autocollimator | Measurement of squareness and parallelism | Sampling Plans: Simple | | Duration | on (hour) | Introduction To Metrology | Measurements Of Screw Thread - Gear Elements - Surface Finish | Optical And Other Non-Contact
Measurement Techniques | Coordinate Metrology And Form
Measurement; Machine Tool Metrology | Theory Of Control Charts & Acceptance Sampling | |----------|-----------|--|---|---|--|---| | | | 9 | 9 | 9 | 9 | 9 | | S-8 | SLO-1 | Inspection Galides Types of Galides | Measurement of surface finish: measuring instruments | Machine vision, Image processing techniques | Circularity: tutorial | Sampling Plans: Double and Multiple -
tutorial | | S-9 | SLO-1 | Introduction to Comparators;
Mechanical (Sigma), Electrical, and
Pneumatic comparators | Methods of evaluation of surface tinish | | Measurement of cylindrical and conical features, and runout | Sequential sampling plans | | ſ | | 1. | Jain, R. K., "Engineering Metrology", Khanna Publishers, New Delhi, 2012. | |---|-----------|----|--| | | | 2. | Gupta, R. C, "Statistical Quality Control", Khanna Publishers, New Delhi, 1994. | | | | 3. | Kevin Harding, "Handbook of Optical Dimensional Metrology", CRC Press, A Taylor & Francis group, | | | | | 2013. | | | Learning | 4. | Robert J. Hocken, Paulo H. Pereira, "Coordinate Measuring Machines and Systems", CRC Press, | | | Resources | | Taylor & Francis Group, 201 <mark>1.</mark> | | | Resources | 5. | Connie Dotson, Roger Harlow and Richard L. Thompson, "Fundamentals of Dimensional Metrology", | | | | | Thomson Delmar Learning" <mark>, 4th editi</mark> on, 2005. | | | | 6. | Galyer, J. F. W.,
and Sho <mark>tbolt, C. R</mark> ., Metrology for Engineering, Cassell London, 5th Edition | | | | 7. | Toru Yoshizawa, "Handbook of Optical Metrology: Principles and Applications", CRC Press, 2009. | - 8. Grant E. L., "Statistical Quality Control", McGraw Hill, New York, 1972 - 9. M. Mahajan, Statistical Quality Control, Dhanpat Rai & co. Gagankapur, 2010. - 10. Heinrich Schwenke, Ulrich Neuschaefer-Rube, Tilo Pfeifer, Horst Kunzmann, "Optical Methods for Dimensional Metrology in Production Engineering", CIRP Annals Manufacturing Technology, 51(2) (2002) 685–699 - 11. Weckenmann, T. Estler, G. Peggs, D. McMurtry, "Probing Systems in Dimensional Metrology", CIRP Annals Manufacturing Technology, 53 (2) (2004) 657–684 - 12. A.M.A. Al-Ahmari, Javed Aalam, "Optimizing parameters of freeform surface reconstruction using CMM", Measurement, 64 (2015) 17–28 - 13. K. Duraivelu and S. Karthikeyan. "Engineering Metrology and Measurment", Universities Press (India) Private Limited, 2018. | Learning Assessr | ment | | | 2000 | A STATE | | 10000 13 | - 600 | | | | |------------------|-------------------|--------|----------|---------|---------------------|-------------------|----------|---------|----------------------|-------------------|---------------------| | | Bloom's | | | Contin | nuous Learning Asse | essment (50% weig | htage) | | | Final Evamination | n (50% weightage) | | | Level of Thinking | CLA - | 1 (10%) | CLA – 2 | 2 (15%) | CLA - | 3 (15%) | CLA - 4 | (10% <mark>)#</mark> | Filiai Examinatio | ii (50% weigiilage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember | 40 % | | 30 % | | 30 % | 14 1 | 30 % | | 30% | _ | | LOVOIT | Understand | 10 70 | | 00 70 | | 00 70 | | 00 70 | | 0070 | | | Level 2 | Apply | 40 % | 1 | 40 % | | 40 % | _ | 40 % | | 40% | _ | | LCVCI Z | Analyze | 40 70 | | 40 /0 | | 40 70 | | 40 70 | | 4070 | | | Level 3 | Evaluate | 20 % | 150 | 30 % | | 30 % | | 30 % | | 30% | | | Level 3 | Create | 20 % | | 30 % | - 111 | 30 % | - 17 | 30 % | | 30% | - | | | Total | 10 | 00 % | 100 |) % | 10 | 0 % | 100 |) % | 10 | 0 % | [#]CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |-----------------------------------|---|--------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Subburathinam_Shankar@cat.com | 1. Dr. G. Rajamohan, NIFFT, grajamohan.nifft@gov.in | 1. Mr.Sundar S, SRMIST | | 2. Sridhar.narasimhan@hexagon.com | 2. Dr.N.Arunachalam, IIT Madras, chalam@iitm.ac.in | 2. Dr. A. Vijaya, SRMIST | | Course | Code | 18MEC207T | Course Name | CA | CAD/CAM | | | | | | egory | С | | | Profe | ssiona | al core | е | | L
3 | T
0 | P
0 | 3 | , | |------------------------|-----------|----------------------------------|---|---|--|--|---------------------|-----------------|-------------------------|-----------------------|-------------------------------|----------------------|--|-----------------------|-------------------|---------------------------------|---------|-----------------------|---------------|--------------|--------------------|--------|----------|--------| | | Pre-regi | uisite Courses | N | il Co-requisite Courses | 3 | Nil | | | | | | Prog | ressiv | e Cou | rses | | | | | | Nil | | | \neg | | Course O | | | | Mechanical Engineering | | ok / Codes/Standards | S | | | 1 | | 09 | 00011 | 0 000 | 000 | | - | | | | | | | | | | | | | | 2 T T T T | V. Cin | | | | | | | | | | | | | | | | | | _ | | Course Le
Rationale | | The pur | pose of learning this cou | rse is to: | | N. 15 | L | _earn | ing | | | | | Progra | am Le | earning | g Out | tcome | s (PL | .O) | | | | | | | | ar with the conc | epts of modeling in 2D a | nd 3D | | | 1 | 2 | 3 | 1 | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | | ematical Representation | | | | | | 1 | | | | - 5 | | | | | | | | | | | | | CLR-3: | Be famili | ar with the conc | epts of Computer Gra <mark>ph</mark> i | cs | | | of Thinking (Bloom) | Proficiency (%) | (% | e | | - | ear | | | | | 논 | | a) | | | | | | CLR-4: | Be famili | ar with the basic | es of CNC machines and | manufacturing systems | | | | | | | | neu | Ses | (D) | | | | 8 | | Finance | | | | | | | | | | production planning and control | ion planning and control | | | | | | .si | opr | n, F | gag | ஒ | | | E | _ | ië | ing. | | | | | CLR-6: | Be famili | ar with the conc | epts of CAD an <mark>d CAM</mark> | | A STATE OF THE STA | | | | | | alys | še | ssig | Ď | 를 | ± >. | | Ğ | ţį | ∞ | all | | | | | | | | | | | | | | | | Problem Analysis | Design & Development | Analysis, De <mark>sign, Research</mark> | Modern Tool Usage | Society & Culture | Environment &
Sustainability | | ndividual & Team Work | Communication | Project Mgt. | Life Long Learning | _ | 2 | က | | Course Le | earning | A 4 4 4 | | | 100 | 1777 | e e | Expected | Expected Attainment (%) | Engineering Knowledge | bler | ign | ılysi | derr | iety | iri
itai | S | Λid | III I | ject | ᅙ | | <u>.</u> | 0-3 | | Outcomes | | At the e | nd of this co <mark>urse, lear</mark> nei | s will be able to: | DO BOARD CO | 2011 | Level | | 监 | l Ei | Pro | Des | Ana | Mod | Soc | Sus | Ethics | ndi | ල් | Pro | <u> </u> | PSO | PSO | PSO | | CLO-1: | Recogniz | ze and analyze t | the concept <mark>s of mod</mark> eling | in 2D and 3D | 1000 | E.V. | 3 | 90 | 85 | Н | M | H | L | L | - | - | - | - | L | M | | | M . | М | | CLO-2: | Apply the | e concepts learn | ed in Math <mark>ematical</mark> Repr | esentation of curves and surfaces | 1000 | Water to the A | 3 | 90 | | Н | М | Н | L | L | - | - | - | - | L | М | L | Н | Μ. | М | | | | | | Graphics like shading, coloring, clipping, a | animation and sir | mulation | 3 | | | Н | L | М | Н | М | - | - | - | - | L | | | | | Μ | | | | | | ines and manufacturing systems | 15 m 16 m | | 3 | | | Н | М | L | L | L | - | М | - | - | L | М | Н | | | Н | | | | | | ed production planning and control | | | 3 | | | Н | М | L | L | L | - | М | - | - | L | | | | М | | | CLO-6: | Understa | and, apply and e | valuate th <mark>e concep</mark> ts of (| CAD and CAM | | | 3 | 90 | 85 | Н | М | М | L | L | - | L | - | - | L | М | М | Н | Μ. | Μ | | | | | | NA SECTION | | 310 300 a | Duratio | n (hour) | | 9 | 9 | | 9 | | | | | | 9 | | | | 9 | | | | | | | | | | S-1 | SLO-1 | Fundamentals | of Comput <mark>er aided d</mark> esig | circie | Cohen Sutherla | and Clipping Algorithr | n | | | mental.
fication | | | | es, | | Com | outer | Aideo | l Prod | cess F | Plannii | ng (C | APP) | | | S-2 | SLO-1 | Product Life C | ycle | Mathematical representation of
Hermite curves | Shading and its | s types | | | CNC p | rinciple | s of o | oerati | on an | d feati | ıres | Mate
study | | Requi | remei | nt plai | nning | with (| Case | | | S-3 | SLO-1 | sequential and | concurrent e <mark>ngineering</mark> | Mathematical representation of Bezier curves, B-spline curves | Colouring and | its types | | | Machi | ning Ce | nters a | and it | s type | s | | Mana
study | | ent R | esour | ce pla | anning | with | case | | | S-4 | SLO-1 | Coordinate Sys | stems, 2D transfo <mark>rmation</mark> | Parametric representation of plane | Introduction to | Data exchange stand | dards | | Introdi
types | iction to | Grou | p tec | h <mark>nol</mark> o | g <mark>y an</mark> d | its | | city F | Planni | ng an | nd Dat | ta colle | ection | ١ | | | S-5 | SLO-1 | 3D transformat | tions | parametric representation of Surface
o
revolution and Tabulated cylinder | arametric representation of Surface of Deta evaluate standards: IC | | | | | | coding | and | class | ificatio | n | | | contr | ol and | d mor | nitoring | g syst | ems | | | S-6 | SLO-1 | Wire frame mo | deling and Surface | Hidden line removal - Visibility Techniques | l <mark>ine removal - Visibility Data exchange standards: DX</mark> | | | | | | CALS Production flow analysis | | | ase st | udy | Inven | ntory (| contro | l and | Case | e study | / | | | | S-7 | SLO-1 | Solid modeling
Geometry | ı - Constructive Solid | Priority and Area -oriented Algorithm | Animation Type | es | | | Machi
study | ne c <mark>ell</mark> | design | with | nume | rical c | ase | JIT a _l | pproa | ach ar | nd Ca | se stı | ıdy | | | | | S-8 | SLO-1 | Solid modeling
Representation | | Hidden surface removal algorithms | rface removal algorithms Animation Techniques | | | | | | FMS. | type | s, app | olicatio | ns | Lean | Man | ufactu | ıring | | | | | | | S-9 | SLO-1 | Feature Entitie | s and Representation | hnique | | FMS :components, Layout Configurations and implementation Agile manufacturing | 1. | Ibrahim Zeid, "Mastering CAD /CAM (Sie)", Tata McGraw-Hill, New Delhi, 2010 | |-----------|----|--| | Learning | 2. | P.N. Rao, "CAD/CAM Principles and Application",3rd Edition, Tata McGraw-Hill, New Delhi, 2012 | | Resources | 3. | Mikell P. Groover, "Automation, Production systems and computer integrated manufacturing", Prentice Hallof India Private Ltd., New Delhi, 2008. | | | 4. | Mikell P. Groover, Emory W. Zimmers Jr., "CAD/CAM: Computer Aided Design and Manufacturing", Prentice Hall of India Private Ltd., New Delhi, 2008. | | | | | | Learning Assessm | nent | | | | | NI I | | | | | | | | |------------------|------------------------|-------------------|--|--------|----------|--------|----------|---------|----------|-----------------------------------|-------------------|--|--| | | Bloom's | | Continuous Learning Assessment (50% weightage) | | | | | | | | o (50% woightage) | | | | | Level of Thinking | CLA – 1 (10%) | | CLA - | 2 (15%) | CLA – | 3 (15%) | CLA – 4 | 4 (10%)# | Final Examination (50% weightage) | | | | | | Level of Thirtking | Theory | Practice | | | | Level 1 | Remember
Understand | 40 % | 77 - 15 | 30 % | | 30 % | Z.A | 30 % | 1 - | 30% | - | | | | Level 2 | Apply
Analyze | 40 % | | 40 % | | 40 % | | 40 % | 111- | 40% | - | | | | Level 3 | Evaluate
Create | 20 <mark>%</mark> | - | 30 % | 1994 | 30 % | | 30 % | - | 30% | - | | | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 100 % | | | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | NGT STATE OF THE S | |---|--|--| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr.R.Kalimuthu,ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. S. Sridhar, PSNA college of Engg. & Tech., Dindigul | 1. Mr.J.Daniel Glad Stephen, SRMIST | | 2. Dr.A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Mr.V.Selvakumar, vselvakumar86@gmail.com, Ford India, Chennai | 2. Dr. P. Nandakumar, SRMIST | | Course Code | 18MEC208 ⁻ | Course Name | MECHANICA | AL ENGINEERING DESIGN | | | Co | urse Cate | gory | С | ; | F | Profess | onal c | ore | | L
3 | T
1 | P
0 | | C
4 | |------------------------|-----------------------|---|---|--|--------------|----------|---|-----------------------|------------------|----------------------|---|------------|------------------|--------------------------|--------------|---------------|--------------|-------------|----------|-----|--------| | Pre-requisite Cou | urses | 18MEC206T | Co-requisite Cou | rses | Nil | | | | Progr | ressiv | e Cour | ses | | | | 18M | IEE40 | 1T | | | | | Course Offering | Department | Мес | chanical Eng <mark>ineering</mark> | Data Book / Code | es/Standards | | | | | | | ŀ | PSG De | esign D | ata B | ook | | | | | | | Course Learning (CLR): | Rationale The | purpose of learning this cours | e is to: | CH 11 | 10 | Lea | rning | | | | F | rogra | ım Lear | ning O | utcom | nes (P | LO) | | | | | | CLR-1: Know | fundamental con | cepts to design the mecha <mark>nic</mark> | al components. | | | 1 | 2 3 | 1 | 2 | 3 | 4 | 5 | 6 7 | ' 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | CLR-2: Be far | miliar with the cor | ncepts to design the shaft <mark>s, ke</mark> | eys and couplings | | | (Bloom) | (%) | Ф | | | | | | | × | | | | | | | | CLR-3: Know | the concepts to d | design the temporary joi <mark>nts.</mark> | 41 | | | 900 | | Engineering Knowledge | | Design & Development | | _ | | | Work | | Finance | | | | | | CLR-4: Be far | miliar with the cor | ncepts to design the p <mark>ermane</mark> | <mark>nt joints. </mark> | Cold of Miles | |) (B | Expected Proticiency (
Expected Attainment (| Ne Ne | S | ndo | | Tool Usage | a l | | E | | inaı | ng | | | | | CLR-5: Know | the concepts to d | design the levers an <mark>d springs</mark> . | | THE PROPERTY. | | Thinking | air de | ş | lysi |)el | Design, | US | Culture
ent & | | Team | on | 8
F | Learning | | ļ | | | CLR-6: Know | the fundamental | concepts in design of machin | e elements | | _ + | 들 | A# Pro | DE 1 | na | De | Des | 00 | ᇍ | ∄
 ~× | cati | | Les | | | | | | | | | | | of T | Expected Expected | ē | Problem Analysis | ∞ŏ | sis, l
arch | Ţ | ∞ E | Sustainability
Ethics | Individual & | Communication | Project Mgt. | Long | _ | 2 | က | | Course Learning | Outcomes A444 | e end of this co <mark>urse, lear</mark> ners | will be able to | ALCOHOLD THE | 400 | e c | | ji. | ple | ign | alys | gen | ig ig | Stair | Vid | Шщ | ject | 2 | <u>-</u> | - | | | (CLO): | ' At th | e ena ot tnis <mark>course, lea</mark> rners | will be able to: | | 100 | evel | 윘 | l lü | o _r o | Oes | Analysis <mark>,</mark>
Res <mark>earch</mark> | Modern | Society Environr | Sustail
Ethics | ndi | Sor | Pro | <u>i</u> je | 200 | PSO | PSO | | | n of mechanical o | components. | | | C. A. C. C. | | 35 75 | H | Н | Н | M | L | L | . L | L | Ĺ | L | ī | L | Н | L | | | n of shafts, keys | | | STORY OF STREET | | 3 8 | 35 75 | Н | Н | Н | М | L | L L | . L | L | L | L | L | L | Н | L | | | n of temporary jo | | and the second second | No. of the State o | 7.00 | | 35 75 | Н | Н | Н | М | L | L L | . L | L | L | L | L | L | Н | L | | | n of permanent jo | | | | 1 | 3 8 | 35 75 | Н | Н | Н | M | L | L L | . L | L | L | L | L | L | Н | L | | | n of levers and s | | 1000 | | A | 3 8 | 35 75 | Н | Н | Н | M | L | L L | . L | L | L | L | L | L | Н | L | | | n of machine elei | | | | | 3 8 | 35 75 | Н | Н | Н | M | L | L L | . L | L | L | L | L | L | Н | L | | Duration | (hour) | FUNDAMENTALS OF MECHANICAL
DESIGN | VARIABLE STRESSES ,DESIGN OF SHAFTS,KEYS AND COUPLINGS | DESIGN OF TEMPORARY JOINTS | DESIGN OF PERMANENT JOINTS | DESIGN OF LEVERS AND SPRINGS | |----------|--------|--|--|--|---|---| | | | 12 | 12 | 12 | 12 | 12 | | S-1 | SLO-1 | Introduction to design, typ <mark>es of des</mark> ign.
Criteria for Design based on strength, | Analysis of variable stresses: Endurance limit. Classification of variable stresses, | Design of Pin joints- cotter joints, basic concepts and types Design of Socket and | Riveted joints: Types, materials, arrangement of rivets, terminology of | Levers: Types, applications and analysis | | 0-1 | SLO-2 | fatigue, stiffness. | factors influencing the endurance limit and fatigue stress determination. | spigot cotter joint | riveted joints Riveted joints: Types of failures. | | | | SLO-1 | Criteria for Design based on, wear | Stress concentration, Methods of reducing stress concentration, Notch | 420 | Strength and efficiency of a riveted joint, | Design of hand lever, foot lever. | | S-2 | SLO-2 | resistance, vibration resistance, heat resistance and reliability. | sensitivity.theoritical stress concentration
factor and fatigue stress concentration
factor. | Design of Sleeve and cotter joint | Design of riveted joints for non eccentric loads. | | | | SLO-1 | Overview of Engineering materials and their properties. Impact stress, Resilience. | Variable stresses using Soderberg | Design of Gib and cotter joint for square | Design of riveted joints for pressure | | | S-3 | SLO-2 | Principal Stresses and Principal Planes,
Application of Principal Stresses in design
of machine members. | method, Goodman method. Variable stresses using Gerber method. | rods. | vessels. | Design of cranked lever, bell crank lever | | S-4 | SLO-1 | Tutorial -Problems on Principal Stresses | | | Tutorial –Problems on riveted joints for structural applications and pressure | Tutorial – Problems on cranked lever and | | 0-4 | SLO-2 | | method and Gerber method. | Tutorial - problems on cotter joint. | vessels. | bell crank lever | | Duration | ı (hour) | FUNDAMENTALS OF MECHANICAL DESIGN | VARIABLE STRESSES ,DESIGN OF SHAFTS,KEYS AND COUPLINGS | DESIGN OF TEMPORARY JOINTS | DESIGN OF PERMANENT JOINTS | DESIGN OF LEVERS AND SPRINGS | |----------|----------------|---|---|--|--|---| | | , , | 12 | 12 | 12 | 12 | 12 | | S-5 | SLO-1
SLO-2 | Theories of failure, Rankine theory, Guests theory, St. Venants theory, Maximum strain energy theory and Distortion energy theory | Types of Shafts, Shafting Materials and working stresses in shafts. Design of uniform cross sectional Shafts. | Design of Knuckle joint | Design of Diamond riveted joint. | Design of lever safety valve ,Rocker-Arm | | S-6 | SLO-1 | Distortion energy theory. Theories of failure, Rankine theory, Guests theory, St. Venants theory, | Design of shaft subjected to combined | Bolted joints: Design procedure and | Design of Eccentrically loaded riveted | Springs: classification, application, spring materials and their properties. | | 3-0 | SLO-2 | Maximum strain energy theory and Distortion energy theory. | twisting moment and bending moment. | problems on bolted joints with non eccentric loads, | joint. | Terminology and end conditions of helical compression spring | | 0.7 | SLO-1 | Design of members subjected to | Design of shaft subjected to combined | | Welded joints: Types and strength | Design of circular and non circular wire helical springs for static loadings, | | S-7 | SLO-2 | combined stresses with eccentric load. | twisting moment, bending moment and axial loads. | Design of bolted joints for cylinder cover | calculations | Eccentric loading of helical springs, buckling of compression springs | | S-8 | SLO-1
SLO-2 | Tutorial –Design of membe <mark>rs subject</mark> ed to combined stresses with eccentric load | Tutorial –Problems on Design of shaft. | Tutorial –Problems on bolted joints | Tutorial - Problems on axially loaded welded joints | Tutorial - Problems on helical springs | | 0.0 | SLO-1 | Eccentric loading in curved beams, crane | Design of keys: Types of keys, forces acting on a key Couplings: Types of | Design of bolted joints with eccentric load | Welded joints subjected to axial loads for | Design of concentric helical springs | | S-9 | SLO-2 | hooks | couplings, design of sleeve coupling and clamp coupling. | parallel to axis of bolt and perpendicular to axis of bolt | unsymmetrical sections | Design of helical springs for fatigue loading | | S-10 | SLO-1
SLO-2 | Eccentric loading in frames, clamps | Design of Flange coupling | Design of bolted joints with eccentric load in the plane containing bolts. | Eccentrically loaded linear fillet welded joints. | Design of helical torsion springs
Design of Belleville springs | | 0.44 | SLO-1 | Standardization, interch <mark>angeabili</mark> ty, fits and tolerances-Termino <mark>logy of fit</mark> s and | | Design of Power screws; types, working | Eccentrically loaded circular fillet welded | Design of leaf springs, analysis and | | S-11 | SLO-2 | Tolerances Tolerances and their grades, fundamental deviation, Fits and its classifications | Design of bushed pin Flexible coupling | principal and analysis of power screws. | joints. Welded joint subjected to fatigue loading | nipping of leaf springs | | S-12 | SLO-1
SLO-2 | Tutorial –Problems on computation of IT tolerances, fundamental deviations | Tutorial – Problems on coupling | Tutorial – Problems on bolted joints with eccentric load and Power screws. | Tutorial –Problems on eccentrically loaded welded joint. | Tutorial –Problems on leaf springs | | 1. | Robert C.Juvinalland Kurt M. Marshek "Fundamentals of Machine Component Design", John wiley& sons, 2017. | |----|---| | 2. | Spotts.M.F. ShoupT.E. "De <mark>sign of Ma</mark> chine Elements". Prentice Hall of India Eighth Edition, 2006. | Learning Resources - Joseph Edward Shigley and Charles ,R.Mischke, "Mechanical Engineering Design",McGraw-Hill International Editions,10th edition., 2015 William Orthwein, "Machine Component Design", Vol. I and II, JaicoPublishing house, New Edition, 2006. Khurmi, R.S. and Gupta J.K, "Machine design", S.Chand publishing, 14th Edition, 2014. V.B. Bandari, "Design of Machine Elements", McGraw-Hill International Editions, 4th edition., 2016 P.S.G Tech., "Design Data Book", KalaikathirAchchagam, 2012 | Learning Assessm | nent | | | | | | | | | | | | | | |------------------|-------------------|--|---------------|--------|---------------|--------|----------|---------|----------|--------|----------------------------|--|--|--| | | Bloom's | Continuous Learning Assessment (50% weightage) | | | | | | | | | n (E00/ woightogo) | | | | | | Level of Thinking | CLA – | CLA – 1 (10%) | | CLA – 2 (15%) | | (15%) | CLA – 4 | 4 (10%)# | | camination (50% weightage) | | | | | | Level of Thirking | Theory | Practice | | | | | Level 1 | Remember | 40 % | 4 | 30 % | 1000000 | 30 % | | 30 % | _ | 30% | _ | | | | | Level 1 | Understand | 70 /0 | | 30 70 | | 30 70 | | 30 70 | _ | 3070 | | | | | | Level 2 | Apply | 40 % | | 40 % | | 40 % | 4 1 | 40 % | _ | 40% | _ | | | | | LCVCI Z | Analyze | 40 70 | | 40 70 | | 40 /0 | 4/1/ | 40 70 | | 4070 | | | | | | Level 3 | Evaluate | 20 % | | 30 % | | 30 % | 7/1 | 30 % | _ | 30% | | | | | | Level 3 | Create | 20 /0 | | 30 /0 | | 30 /0 | | 30 /8 | - | 3070 | _ | | | | | | Total | 100 % 100 % 100 % | | | | | 0 % | 100 % | | | | | | | # CLA – 4 can be from any combination of
these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|---|--------------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr.R.Kalimuthu,ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. T.Jeyapoovan jeyapoovan@hindustanuniv.ac.in, Hindustan University, Chennai. | 1. Dr.R.Santhana Krishnan., SRM IST, | | 2. Dr.A.Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Mr. V.Sundara Raghavan,sundararaghavanv@bharatpetroleum.in Bharat Petroleum Corporation Limited, Chennai | 2. Dr. P. Nandakumar, SRMIST | | Course C | Code | 18MEC209L | Course Name | CAD/CAM | LABORATORY | | | Cour
Cate | | | С | | | Pro | fessio | onal core | | L | | T
0 | P
2 | |)
1 | |---|--|---|--|---|---|----------------------|--|--|---|---|------------------------|--------------------------|-----------------------|-----------|--------------|---------------------------------------|----------|---------------------|--------|--------------------|------------------|--------------|--------| | Pre-requis | ite Course | · · · · · · · · · · · · · · · · · · · | Nil | Co-requisite Cou | rses | 18MEC | 207T | | | | | Pro | aress | ve C | ourses | 2 | | | Nii | | | | | | Course Of | | | 7111 | Mechanical Engineerin | | Data Book / Co | | ndar | ds | | | ; | 91000 | | <u>ouroo</u> | | Nil | | | | | | | | Course Le CLR): CLR-1: CLR-2: CLR-3: CLR-4: CLR-5: CLR-5: COurse Le CLO): CLO-1: CLO-2: | arning Ra Learn to I Prepare a Design an Familiariz Machinin arning Ou Acquire k Understa. | tionale The purpose of Modeling of 3D Mechanic assembly drawings of join and prepare modelling for the CNC Part programming of components using Components using Components are the end of the mowledge on Modeling and the concepts of assertion | nts, couplings and machine Jigs and fixtures of given c g techniques for Lathe ope ENC Lathe and CNC milling is course, learners will be a of 3D Mechanical Compone mbly drawings of joints, cou | elements
omponents
rations and milling operations
machine
ble to: | | | Tewel of Thinking (Bloom) 1 (8) 80 (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9 | rning 2 (%) (Superior Line 1) (Superior Line 2) | 3 (%) Expected Attainment (%) 3 (%) | T H Engineering Knowledge | · · · Problem Analysis | H H Design & Development | M M Analysis, Design, | ool Usage | 6 | earming C 8 8 Sustainability 8 Ethics | m Work 6 | nes (P | | Life Long Learning | 13 L - OSG L M M | 14 - PSO - 2 | | | | | | p <mark>art progr</mark> amming for Lathe
p <mark>achining o</mark> f components us | | | 174 | 3 9 | | 35
35 | H | - | H | M | H | - | | - | - | - | - | L | | 1
| | Duration | | Modeling of mechanic | cal components | Machine Tool components | Jigs& | & Fixtures | 77 | т | 777 | | CNO | C LA | THE | | | | | CN | IC MII | LING | | | | | (hour) | | 6 | | 6 | | 6 | | | | | | 6 | | | | | | | 6 | | | | | | 3 | fasteners, | of Simple Mechanical Co
Modeling of component
t and blend feature | o <mark>mponent</mark> s and temporary
s <mark>with swee</mark> p ,variable | Assembly modeling for
Machine Vice | Assembly modelling f
broaching fixtures ty | pes | | tı
o | ırning
rdinar | NC Part Program for Facing, Step
Irning, Taper and Finish Turning using
Irdinary cycle CNC Part Program for Linear and Circ
Interpolation using Milling operation | | | | | on | | | | | | | | | | J-4 | Assembly | Modeling of joints and 0 | Cou <mark>plings</mark> | Assembly modelling for
Lathe tail stock | Assembly modelling box, post, pot drill jig | s and automatic | drill jig: | s a | nd Ax | ial Drii | ling U | sing | canne | ed cy | cle | and 7 | hread | ling O _l | perati | on. | | ` | g | | 5-0 | | modeling of Screw jack | | Assembly modeling of connecting rod | Assembly modelling
shaping and welding | | planning, Machining of components on Turning operation using CNC Lathe Machine | | | | | | | | | | | ntei | | | | | | | lote: Cour | | tee will follow any 11 ex | | | | VE - | | | | 1 | | | | | | | | | | | | | | | Learning
Resources | 2. | 2006.
Gopalakrishnan.K.R, Ma | P and Venk <mark>ataReddy.K</mark> , Ma
chine Drawing, Subash Pul
ines and automation", Dhar | | rnational, New Delhi, | 4. James
5. P.S.G | | | | | | | | | | Press Inc.
2012 | , New | York, | 1996 | 6. | | | | | | Bloom's | | Final Evamination | (E00/ woightogo) | | | | | | | | | |---------|------------------------|--------|-------------------|------------------|----------|---------|----------|--------|----------|-----------------------------------|----------|--| | | Level of Thinking | CLA – | 1 (10%) | CLA – 2 (15%) | | CLA – 3 | 3 (15%) | CLA – | 4 (10%)# | Final Examination (50% weightage) | | | | | Level of Thirtking | Theory | Practice | | | Level 1 | Remember
Understand | - | 40 <mark>%</mark> | | 30 % | NO I | 30 % | | 30 % | - | 30% | | | Level 2 | Apply
Analyze | - | 40 % | 15 | 40 % | 200 | 40 % | | 40 % | - | 40% | | | Level 3 | Evaluate
Create | - 1 | 20 % | | 30 % | | 30 % | | 30 % | - | 30% | | | | Total | 100 | 0 % | 10 | 0 % | 100 | % | 10 | 0 % | 10 | 0 % | | # CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |---|--|--------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr.R.Kalimuthu,ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. S. Sridhar, PSNA college of Engg. & Tech., Dindigul | 1. S.Balamurugan, SRMIST | | 2. Dr.A.Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Mr.V.Selvakumar, vselvakumar86@gmail.com, Ford India, Chennai | 2. J.Santhakumar, SRMIST | | Course Code | 18MEC210L | Course Name | AUTOMATION LABORATORY | | ourse | Categ | jory | С | | | Prof | fessio | nal core | | L | | T
0 | P
2 | , | |--|---|--|--|---------------------------------|--------------|-------------------------|-----------------------|------------------|----------------------|---|-------------------|-------------------|------------------------------|-----------------------|---------------|------------------------|--------------------|---------|---------| | Pre-requisite 0 | | Nil | Co-requisite Courses | | Nil | | | | Pro | gressiv | ve Co | ourses | 3 | | | Nil | | | | | Course Offerin | g Department | | Mechanical Engineering Da | ta Book / Codes/ | Stand | dards | | | | | | | | Nil | | | | | | | Course Learni
(CLR): | ng Rationale The purpose | e of learning this course is to |): | | _earn | ng | | | | ı | Progr | am L | earning (| Outcor | nes (F | PLO) | | | | | | sign pneumatic circuits for l | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 8 | 9 | 10 | 11 | 12 | 13 | 14 | | CLR-3: Des
CLR-4: Des
CLR-5: Imp
CLR-6: Des | sign logic circuits and exect
element photo electric and t
sign circuits and simulate h | servo and ste <mark>pper moto</mark> r co
ute using PL <mark>C</mark>
ultrasonic, positional and vel | locity sensors, Virtual instrumentation and pick and placero
per, servo motors for industrial applications. | pot. Tevel of Thinking (Bloom) | ted Proficie | Expected Attainment (%) | Engineering Knowledge | Problem Analysis | Design & Development | Analysis, Desi <mark>gn,</mark>
Researc <mark>h</mark> | Modern Tool Usage | Society & Culture | Environment & Sustainability | ndividual & Team Work | Communication | Project Mgt. & Finance | Life Long Learning | PSO - 1 | PSO - 2 | | () | uire knowledge on designi | | The second secon | 3 | 90 | 85 | Н | | Н | 4 11 | _ | 0) | шОЛ | | | - 11 | | H | М | | | uire knowledge on designi | | | 3 | | 80 | М | | М | | | | | | | | | М | М | | | | | s, control of stepper and servo motors for various applicati | ons. 3 | 85 | 80 | М | | L | | | | | | | | | L | М | | | PLC ladder logic programn | | | 3 | 90 | 85 | Н | | М | | Н | | | | | | | Н | L | | CLO-5 : Use | | posi <mark>tional, ve</mark> locity sensors | for various applications and virtual instrumentation and pic | k and place 3 | 90 | 85 | М | | L | | Н | | | | | | | М | М | | CLO-6: Des | sign low cost automation ar | nd pr <mark>ovide sol</mark> ution for indus | trial and societal needs | 3 | 85 | 80 | Н | | М | | Н | | | | | | | М | М | | Duration
(hour) | Devising and simulation of pneumatic circuits | Designing and simulation of hydraulic circuits | Electro pneumatics, servo and stepper motor control circuits | PLC based ladder logic circuits | Virtual instrumentation and pick & place robot | |--------------------|--|--|--|---|--| | (Hour) | 10 | 4 | 6 | 4 | 6 | | | Continuous reciprocation of double acting cylinder with speed control circuit. | Synchronization circuit for two cylinders | | PLC Controlled Pneumatic / Hydraulic
linear actuator Circuits | Process control: Temperature/ force/
pressure/ control using virtual
instrumentation | | S
3-4 | Seanencina or two cylinaets Circuit | Force, velocity calculations in hydraulic linear actuation | open and closed loop control | PLC application circuits: Basic Trainer kit/
Water Level Controller/ Material Handling
system | Characteristics of inductive, capacitive and photoelectric proximity sensors | | S
5-6 | Cascading circuit for trapped signal- 2 Cylinder | Alland | Positional control of a stepper motor | Study of SCADA and PAC systems | Pick and place operation using industrial robot in Teach pendent method / Manual mode | | S
7-8 | Cascading circuit for trapped signal – 3 Cylinder | | | | Study of Image Processing Technique | | S
9-10 | Implementation of logic circuits: AND, OR | | | | | Note: Course committee will follow any 11 experiment | Learning | 1. Laboratory Manual | 3. FESTO manual, "Fundamentals of
Pneumatics", Vol I, II and III. | |-----------|--|---| | Resources | 2. Anthony Esposito, "Fluid Power with applications", Pearson Education Inc, 2015. | 4. Joji Parambath "Industrial Hydraulic Systems: Theory and Practice", Universal Publishers, USA, 2016. | | | Dia ami'a | | | Conti | inuous Learning Ass | essment (50% weig | htage) | | | Final Evansination | (EOO) | |---------|------------------------|--------|---------------|--------|---------------------|-------------------|---------------|--------|----------|--------------------|--------------------| | | Bloom's | CLA – | CLA – 1 (10%) | | CLA – 2 (15%) | | CLA – 3 (15%) | | l (10%)# | Finai Examinatio | on (50% weightage) | | | Level of Thinking | Theory | Practice | | Level 1 | Remember
Understand | - | 40 % | 137 | 30 % | | 30 % | | 30 % | - | 30% | | Level 2 | Apply
Analyze | - 11 | 40 % | 11 | 40 % | | 40 % | 7 | 40 % | - | 40% | | _evel 3 | Evaluate
Create | - 1 | 20 % | | 30 % | 100.00 | 30 % | 80 · | 30 % | - | 30% | | | Total | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 0 % | 10 | 00 % | [#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc., | Course Designers | | | |--|--|-----------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | 1. Dr. P. Hariharan, Anna University, hari@annauniv.edu, hariharan2311@gmail.com | 1. Mr. B.Ramprasath, SRMIST | | 2. Dr. A. Velayutham, DRDO, Avadi, velayudham.a@cvrde.drdo.in | 2. Dr.N.Arunachalam, IIT Madras, chalam@iitm.ac.in | 2. Mr.R. Murugesan, SRMIST | | Course Code | 18MEC211L | Course Name | METROLOGY AND QUAL | LITY CONTROL LABORATORY | | | Cour | se Cate | gory | С | | | Profe | ession | al Cor | е | <u> </u> | L
0 | T
0 | P
2 | C
1 | |-------------------|---|----------------------------------|---|--|----------|--------------------------|-------------------------|-----------------------|------------------|------------------|-----------|------------|-----------|------------------------------|-----------------|--------------|----------------|--------------|--------------|--------|---------------| | Pre-requisite Cou | ses | | Nil Co-requisite Courses | 18MEC206TMetrology and Quality Cont | trol | | P | rogress | ive C | ourse | s | | | | | N | 7 | | | | | | Course Offering D | | | Department of Mechanical Engineering | Data Book / Codes/Standards | | | | | | | | | | Nii | l | | | | | | | | Course Learning F | Rationale The purpo | ose of learning th | nis cour <mark>se is to:</mark> | C. C. C. | Le | earnir | ng | | i | h | | Prog | ram L | .earnir | ng Out | come | s (PLC | O) | | | | | | tandvarious standard | ds of measureme | ent (l <mark>ine, end and</mark> wavelength standard) | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 ′ | 11 | 12 1 | 3 1 | 4 15 | | CLR-2: Perceiv | ethe measurement o | of Gear, Thread a | an <mark>d Form err</mark> ors | |) | | | | | | earch | | | | | | | | | | | | | ntthe calibration of m | | | The second second | (Bloom) | %) | (%) | ge | | t- | eal | | | | | 춪 | | Φ | | | | | | Acquire and explore the use of computer aided measuring techniques | | | | | | | 9 | | me | Res | <u>e</u> | | | | Work | | auc | _ | | | | | : Interpret and drafting sampling and control charts | | | | | | | NO. | SIS. | do | II, | sag | <u>le</u> | | | Ē | _ i | Finance | <u>.</u> | | | | CLR-6: Recogi | nize the various meas | suring techn <mark>ique</mark> | s in dimensional, optical and computer aided | inspection and its role in SQC | Thinking | ğ | Itair | 조 | alys | Development | Design, 1 | U I | Culture | ± ≥ | | e | je lej | ∞ಶ | Learning | | | | | | | 1 2100 | 化化学经验 医异类性 医甲基 | Η | d P | φ | ring | An | 8
D | Ğ | Tool Usage | & C | ner
ilig | | <u>∞</u> | <u>ප</u> ු : | √gt | g Le | | | | Course Learning (| Outcomes | | | | o | ce | cte | nee | lem | gn & | ysis | eru | ety, | onr | တ္က | <u>ig</u> | [] | ਲ | 0 | 1 | - 2 | | (CLO): | At the end | d of this <mark>course, .</mark> | learners will be able to: | | eve | Expected Proficiency (%) | Expected Attainment (%) | Engineering Knowledge | Problem Analysis | Design | Analysis, | Modern | Society a | Environment & Sustainability | Ethics | Individual & | Communication | Project Mgt. | <u>=</u> 2 | | PSO SO | | | strate and practice di | ifferent standard | s of measuring instrument (line, end& wavele | | 3 | 95 | 90 | Н | Н | | 1 | H | S | шо | 1 — | <u>-</u> | $\frac{0}{1}$ | а | | HI | $\frac{1}{N}$ | | | | | Gear, Thread and Form errors | | 3 | 95 | 90 | Н | Н | | ī | ï | | | М | 1 | M | | | i i | L M | | | and Perform the cali | | | | 3 | 95 | 90 | H | Н | | М | | | | | ī | | | 1 1 | и і | M M | | | | | omputer aided measuring techniques. | | 3 | 95 | 90 | Н | Н | | М | Н | М | | Н | M | М | | | H | M M | | | tion and drafting sam | | | | 3 | 95 | 90 | | | Н | | М | L | | | Н | | | | М | L H | | 1 - 7 | <u> </u> | , | 1000000 | A STATE OF THE PARTY PAR | | | | _ | | | | | | | | | - ' | | | | | | Duration | lend line and light standard | | | | | | Mea | sureme
mea | | ing co
g tech | | | led | 0 | ptical i | | ds & l | | | npling | g and | | (hour) | 6 | | 6 | 6 | | | | | | 6 | | | | | | | | 6 | | | | | Vernier | S Linear measurements using Vernier calliper, micrometer, height gauge Gear tooth measurement using Gear tooth (Micrometer, Vernier Caliper, Vernier and Parkinson Gear
Tester) Calibration of Measuring Instrument (Micrometer, Vernier Caliper, | | | Calibration of Measuring Instruments
(Micrometer, Vernier Caliper, Vernier He.
gauge and Dial) | eigh | | | s param
iterized | | | | nt us | ing | Attr
gau | ibute (
iges | Contro | l Cha | ırts us | sing G | o, No | -Go | | Learning | Laboratory Observation Manual | | |-----------|---|--| | Resources | 2. Machine Manuals supplied by supplier/Company | | Surface roughness measurement Measurement using different comparators (mechanical, electronic and pneumatic) Fundamental measurements including Measurement using Machine Vision system circularity using CMM Demo on Interferometers and Tool Angle measurement in tool makers measurements using laser microscope Angle measurements using Sine bar and Indirect linear and angular measurements using standard balls and rollers 3-4 S Thread parameter measurement using Straightness, flatness measurement using floating carriage autocollimator | | DI | | | Cont | tinuous Learning Ass | sessment (50% weigh | tage) | | | Final Francischie | · (FOO) ····: | |---------|------------------------------|---------|----------|--------|----------------------|---------------------|----------|---------|----------|-------------------|-------------------| | | Bloom's
Level of Thinking | CLA – ´ | 1 (10%) | CLA - | - 2 (15%) | CLA – 3 | (15%) | CLA – 4 | (10%)# | Final Examination | n (50% weightage) | | | Level of Thirtking | Theory | Practice | | Level 1 | Remember | | 40 % | | 30 % | N. Car | 30 % | | 30 % | | 30% | | Level i | Understand | - | 40 /0 | | 30 /6 | NU / | 30 /6 | | 30 /0 | - | 30 /0 | | Level 2 | Apply | | 40 % | 1.0 | 40.0% | | 10.0% | | 40 % | | 40% | | Level 2 | Analyze | - | 40 /0 | | 40 % | | 40 % | | 40 /0 | - | 4070 | | Level 3 | Evaluate | | 20 % | - 10 | 30 % | | 30 % | | 30 % | | 30% | | Level 3 | Create | - | 20 % | | 30 % | | 30 % | | 30 % | - | 30% | | | Total | 100 |) % | 10 | 00 % | 100 | % | 100 | 0 % | 10 | 0 % | | Course Designers | | | |--|--|--------------------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | 1. Dr. R. Kalimuthu, ISRO, Mahendragiri, r_kalimuthu@vssc.gov.in | Samsudeen, National Skill Training institute, CTI Campus, ssamsadt@gmail.com | 1. Dr. A Vijaya, , SRMIST | | 2. Dr. A. Velavutham, DRDO, Avadi, velavudham,a@cvrde.drdo.in | 2. Mr. Ramesh Ramanathan ,rramanathan@outlook.com | 2. Mr. S. Muralidharan, SRMIST | | Course Code | 18MEC350T | Course Name | COMPREHENS | ON | Course
Category | С | | | Profess | ional Co | ore | | L | . T | P
0 | C
1 | |---|------------------------------|--|---|-----------------------------|--------------------------------------|----------|----------|----------------------|--------------------------|------------------------|------------|-----------|----------|--------|--------|--------| | Pre-required Course Offering | uisite Courses
Department | Nil
Mecha | Co-requisite Courses parical Engineering Data Boo | Nil
k / Codes/Standards | Pr | ogressiv | e Course | es | | Nil | | Nil | | | | | | Course Learning (CLR): | g Rationale The p | urpose of learning this co | urse is to: | TENC | 100 | l | _earning | | | Prog | gram Lea | rning Out | comes (| PLO) | | | | CLR-1: Understand the concepts in design engineering courses CLR-2: Understand the concepts in thermal engineering courses CLR-3: Understand the concepts in manufacturing engineering courses CLR-4: Understand the concepts in engineering that they have learnt so far in the Mechanical Engineering programme Course Learning Outcomes (CLO): At the end of this course, learners will be able to: CLO-1: Gain the confidence and competence to solve the design engineering problems CLO-2: Gain the confidence and competence to solve the thermal engineering problems CLO-3: Gain the confidence and competence to solve the manufacturing engineering problems 1,283 85 80 H H H M L L L L L L L L L L L M M M M CLO-3: Gain the confidence and competence to solve the manufacturing engineering problems 1,283 85 80 H H M M L L L L L L L L L L L L L L L L | | | | | | | | | -3 | | | | | | | | | CLO-4: Gain | the confidence an | d competen <mark>ce to solv</mark> e re | al life engineering problems | | | 1,28 | | | HH | M L | LLL | | L | _ L | M M | M | | S-1 SLO-1
SLO-2 | Tutorial on Engir | 5
neering gra <mark>phics and</mark> desi | gn Tutorial on | 5
Thermodynamics | | 93
91 | 7 | Futorial | on Material | l technoi | logy | <u> </u> | | | | | | S-2 SLO-1
SLO-2 | Tutorial on Engir | neering Me <mark>chanics</mark> | Tutorial on | Fluid mechanics | T-LIVE OF | - | 7 | ^r utorial | on Manu <mark>fac</mark> | <mark>cturing</mark> t | echnolog | ıy | | | | | | S-3 SLO-1
SLO-2 | Tutorial on Mech | nanics of so <mark>lids</mark> | Tutorial on | Applied thermal engineering | | μŠ | 7 | ^r utorial | on Metrolog | gy and q | quality co | ntrol | | | | | | S-4 SLO-1
SLO-2 | Tutorial on Mach | ines and m <mark>echanism</mark> s | Tutorial on | Heat and mass transfer | | | 7 | ^r utorial | on CAD <mark>/CA</mark> | AM | | | | | | | | S-5 SLO-1
SLO-2 | CLA-1 | | CLA-2 | 1/// | | | C | CLA-3 | | | | | | | | | | Learning
Resources | 1. R.S.i
S.Ch | Khurmi, J.K.Gupta, Mecha
and & Co., 2018 | nnical Engineering: Conventional and Obje | ctive Types, 2. I | R.K.Jain, Convent
Competitions, k | | | | | Answer | s on Mec | hanical E | ngineeri | ng for | | | | Learning Asse | essment | | | 7110000 | Old State of | 110 1100 | IT THEY SEE | | | | | |---------------|------------------------|---------------|----------|---------------|--------------------|--------------------|-------------|--------|----------|-----------|-----------| | _ | Bloom's | | 17 | Contin | uous Learning Asse | essment (100% weig | htage) | | | Final Ev | amination | | | Level of Thinking | CLA – 1 (20%) | | CLA – 2 (30%) | | CLA – 3 | 3 (30%) | CLA – | 4 (20%)# | Fillal ⊑X | ammanom | | | Level of Thirtking | Theory | Practice | | Level 1 | Remember
Understand | 40% | | 30% | _ | 30% | - | | - | - | - | | Level 2 | Apply
Analyze | 60% | | 70% | - | 70% | | - | - | - | - | | Level 3 | Evaluate
Create | - | - | | Janes I. | - | | - | - | - | - | | | Total | 10 | 0 % | 100 |) % | 100 | 1% | | 0 | | - | | Course Designers | | | |-----------------------|--|----------------------| | Experts from Industry | Experts from Higher Technical Institutions | Internal Experts | | | | Dr.M.Kamaraj, SRMIST | SRM Institute of Science & Technology – Academic Curricula (2018 Regulations) - Control copy