ACADEMIC CURRICULA

Professional Core Courses

CHEMICAL ENGINEERING

Regulations - 2018

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

MARN LEAP LEAD

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Kancheepuram, Tamil Nadu, India

Cou		18CHC203T Course Name	CHEMICAL PROCESS CALCULATIO	INIS	ourse tegory	,	С				Profe	ssional	Core					L 3	Γ I	P C 0 4
	equisite	Nil	Co-requisite Courses			gress		Nil												
		Department Chemical Engineering		/ Codes/Standards	Nil	ouroc	,,,													
Course	Learning	Rationale (CLR): The purpose of learning	ng th <mark>is course is t</mark> o:	and the state of	L	.earni	ng					Program	Learr	ning C	utcon	nes (P	LO)			
CLR-1	Expla	in the system of units, predict the PVT prope	e <mark>rties of Idea</mark> l gases, understand the compos	ition of various mixtures	1	2	3	1	2	3	4	5 6	7	8	9	10		12	13 ′	14 15
CLR-2 CLR-3		ulate and solve material balance for non-real					1	w .			.ch		oility							
CLR-3		ulate and solve material balance for rea <mark>ctive</mark> ulate and solve energy balance for ch <mark>emical</mark>		A STATE OF THE REAL PROPERTY.	000	(%)	(%)	40	5	aut	sear		ainat		ork		e			
CLR-5		ulate and solve material balance for <mark>simple p</mark>		- 1 - 1 St. 10 St. 11 St.	<u>(a)</u>	ency	nent	A N	(O	bme	, Re	age	nste		۸		nan	б		
CLR-6	: Expla	in mass and energy balance for re <mark>active and</mark>	non-reactive systems	12 Sept 1	king	ofici	tainr	X S	alysi	velo	sign	I Use	8		Теаг	tion	& Fi	arni		
			PIRA	State Her	Thi	ed Pr	ed Att	ering	n Ana	& De	is, De	1 Tool	ment		s let	unicat	Mgt.	ng Le	_	3 2
Course	Learning	Outcomes (CLO): At the end of this cou	rse, learners will be able to:	The same of the sa	Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning		PSO -
			ses using ideal gas equation, calculate the c	omposition of mixtures	2	80	75	H	Н	7	-		-	-	-	-	-	-	Н	
CLO-2		the material balance for non-reactive Chem		The William	2	80	75	Н			-		-	-	-	-	-			Н -
CLO-3 CLO-4		the material balance for the reactive chemic		The state of the s	2	80	75 75	H		M	-			-	-	-	-			H - M M
CLO-4		the energy balance for chemical process sy the material balances including recycle, pur			2	80	75	H		M				-	-	-	-		п i	L M
CLO-6		rm mass and energy balance <mark>s for varie</mark> d che			2	80	75	H		-	-		-	-	-	-	-		Н	
Duratio	n (hour)	12	12	12	10	H			•	12							12	2		
S-1 -		Concept of various systems of Units and dimensions.	Law of conservation of mass	Chemical reactions and stoic equations	chiom	etric	7	hermo p	hysics:	Heat o	apacit	y, <mark>Kopp</mark>				n to m		l balan	ce for	
3-1	SLO-2	Unit conversions	Formulation of overall and individual component balance equations	Limiting reactant, excess rea			S	Sensible l	eat, la	tent he	at and	<mark>enthal</mark> p	1/			n to m proces		l balan	ce for	
S-2	SLO-1	Various Temperature scales	Material balance for non-reactive chemical process systems: mixing	Conversion, Degree of comp selectivity and yield.			E	nergy ba	lance	for non	-reacti	ve syste		Basic strea		epts o	f recy	cle and	l purg	е
3-2	SLO-2	Types of Pressure	Material balance for non-reactive chemical process systems: mixing	Conversion, Degree of comp selectivity and yield.	pletion	١,	E	nergy ba	lance	for no <mark>n</mark>	- <mark>rea</mark> cti	<mark>ve s</mark> yste	ms	Basic strea		epts o	f recy	cle and	l purg	е
S-3	SLO-1	Temperature and Pressure unit conversions	Problems in mixing	Problem solving in Conversi				Problem s	olving	on sen	sible l	eat		Basic	conc	epts o	f bypa	ass stre	eam	
3-3	SLO-2	Concept of mole	Problems in mixing	Problem solving in Degree o selectivity and yield.			n, F	Problem s	olving	on sen	sible h	eat		Basic	conc	epts o	f bypa	ass stre	am	
S-4	SLU-1	Predicting PVT properties of gases using ideal gas law	Material balance problems on crystallization process	Material balances for proces reactions.				hermo c		•		-		streal	m.			•		recycle
3-4	SLO-2	Predicting PVT properties of gases using ideal gas law	Material balance problems on crystallization process	Material balances for proces reactions.			C	Standard f combus		f forma	tion, s	tandard	heat	Mate strea		lances	s for s	ystems	with	recycle
S-5	SLO-1	Problems using Ideal gas law	Material balance problems on drying Process	Tutorial in Material balances with reactions.	for pr	oces	ses _F	less law						Tutor	ial on	Recyc	cle St	ream		
	SLO-2	Problems using Ideal gas law	Material balance problems on drying	Tutorial in Material balances	for pr	oces.	ses 7	utorial o	Ther	nocher	nistry			Tutor	ial on	Recyc	de St	ream		

			Process	with reactions.		
S-6	SLO-1	Basis of calculations	Material balance problems on membrane separation process	Combustion as a special case of material balance with reactions.	Heat of reaction from heat of formation or combustion	Material balances for non-reactive systems with bypass and purge stream
5-0	SLO-2	Basis of calculations	Material balance problems on membrane separation process	Combustion as a special case of material balance with reactions.	Tutorial on Thermochemistry	Material balances for non-reactive systems with bypass and purge stream
S-7	SLO-1	Composition of mixtures – Solids	Material balance problems on distillation process	Fuels, types of fuel, flue gas	Tutorial on Thermochemistry	Tutorial on Multiple processes
3-1	SLO-2	Composition of gas mixtures - mole, mass, volume and partial pressure.	Material balance problems on distillation process	Orsat analysis, theoretical air, excess air	Tutorial on Thermochemistry	Tutorial on Multiple processes
S-8	SLO-1	Density of gas mixtures	Tutorial on distillation	Problems on Combustion	Enthalpy changes in reactions with different temperatures	Material and energy balance analysis for multi-unit processes
3-0	SLO-2	Density of gas mixtures	Tutorial on distillation	Problems on Combustion	Problem solving on Enthalpy for reactive systems	Case studies with simple process flow sheets
S-9	SLO-1	Problems on composition	Material balance problems on extraction process	Problems on Combustion	Problem solving on Enthalpy for reactive systems	Case study 1
3-9	SLO-2	Problems on composition	Material balance problems on extraction process	Problems on Combustion	Problem solving on Enthalpy for reactive systems	Case study 1
S-10	SLO-1	Problems on composition	Partial saturation and humidity, types of humidity	Analysis of products of combustion	Problem solving on Enthalpy for reactive systems	Case study 2
	SLO-2	Problems on composition	Relative humidity and percentage humidity	calculation of excess air	Theoretical flame temperature.	Case study 2
S-11	SLO-1	Solutions and their concentrations	Material balances involved in two-phase gas-liquid systems as in humidification and dehumidification.	Tutorial on excess air	Theoretical flame temperature.	Case study 3
	SLO-2	Solutions and their concentrations	Tutorial on Humidification	Tutorial on excess air	Tutorial on Energy Balance	Case study 3
C 10	SLO-1	Tutorial on concentrations	Tutorial on Humidification	Tutorial on Reactive systems	Tutorial on Energy Balance	Tutorial on Mass balance for process flowsheets
S-12	SLO-2	Tutorial on concentrations	Tutorial on Humidification	Tutorial on Reactive systems	Tutorial on Energy Balance	Tutorial on Mass balance for process flowsheets

Loorning	1.	David M. Himmelblau, James B. Riggs, Basic Principles and Calculations in Chemical Engineering, 8th ed.,	3.	B. Lakshmikutty, K. V. Narayanan, Stoichiometry and Process Calculations, PHI Publishers, Delhi
Learning Resources		Pearson - Prentice Hall International	4.	Richard M. Felder, Ronald W. Rousseau, Elementary Principles of Chemical Processes, 3 rd ed.,
Resources	2.	B. I. Bhatt, S. B Thakore., Stoichiometry, 5th ed., Tata McGraw-Hill Publishing Company, New Delhi		John Wiley & Sons, Inc.

Learning Asse	essment		9								
	Bloom's			Conti	nuous Learning Ass	sessment (50% weigh	itage)			Final Evamination	n (EOO/ weightage)
		CLA – 1	1 (10%)	CLA -	2 (15%)	CLA – 3	(15%)	CLA –	4 (10%)#		n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %		30 %	-	30 %		30 %	-	30%	-
Level 2	Apply Analyze	40 %		40 %	-	40 %	- 1	40 %	-	40%	-
Level 3	Evaluate Create	20 %	_	30 %	-	30 %		30 %	30 % -		-
	Total	100	0 %	100	0 %	100	%	10	0 %	10	0 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Mr. V. Ganesh, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Ms. E. Kavitha, SRMIST

Cou		18CHC205T	Course Name	CHEMICAL ENGINEERING FLUID MEC	HANICS	Course Categor		С				Pro	ofessio	nal C	ore			-	L 3	T 0	P 0
Co	requisite ourses	Nil		Co-requisite Nil			ogres: Course		Nil												
Course	Offering	Department	Chemical Enginee	ering Data Boo	k / Codes/Standards	Nil															
Course	e Learning	g Rationale (CLR)): The purpose of lea	arning this course is to:			Learn	ing					Prog	ıram l	earnin	g Outco	omes (PLO)			
CLR-1				lu <mark>ids (fluid stat</mark> ics and fluid dynamics) and fluid	flow phenomena	1	2	3		1 2	2 3	4	5	6	7	8 9	10	11	12	13	14 1
CLR-2 CLR-3 CLR-4 CLR-5 CLR-6	: Analy : Eluci	date the transpor pare the metering	immersed bodies tation of fluids			Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	Problem Analysis Design & Development	is, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics Individual & Team Work	Communication	Project Mgt. & Finance	ng Learning	_	2 2 3 3
Course		g Outcomes (CLC		course, learners will be able to: perties, classification, flow in boundary layers,	and pressure measuremen		% Expect				T Design		Modern	Society	- Enviror	· Ethics	Comm	· Project	· Life Long	н PSO - 1	H PSO -
CLO-2	: Interp	oret Bernoulli equ	ation, Frictio <mark>n factor a</mark> nd	pressure measurements	A. 17 1 19	2	85	75		H F	H M	М	М	-	1-		-	-	-	Н	Н -
CLO-3				ettling velocity and fluidization		2	80				M M		М	-	-		-	-	-	Н	Н -
CLO-4			seals, valves <mark>and pum</mark> ps			2					L M		M	-	-		-	-	-	Ļ	Н -
CLO-5 CLO-6			ers and flow r <mark>ate calcu</mark> lati ehavior of flu <mark>ids and t</mark> hei			2	85	75		H I	Н Н		М	-	-		-	-	-	L	Н -
CLO-0	. Onde	rstand the now b	enavior or nui <mark>us and th</mark> ei	i nanuling.			10			-	-										
Duration	on (hour)		9	9	9							9						,	9		
	SLO-1	Introduction to fi	luids	Streamlines and stream tubes	Drag, drag coefficients				Introduc	ion to	: pipe a	and tub	oing		Int	roducti	on to:	Meter	ing of	fluids	
S-1	SLO-2	Continuum hypo	othesis, Forces <mark>on fluids</mark>	Eulerian and Lagrangian descriptions Continuity equation	Drag coefficients of typic	al shape	s		Transpo						Ту	pes of	meten	ing of	fluids		
S-2	SLO-1	Tutorial on force		Bernoulli equation	Ergun equation				Joints ar							onstruc					
02	SLO-2	Newtonian and	Non-Newtonian fluid <mark>s</mark>	Pump work in Bernoulli equation	Navier–Stokes equation				Stuffing .	boxes,	, Mech	anic <mark>al</mark>	seals			orking p					
S-3	SLO-1	Hydrostatic equ		Tutorial on Bernoulli equation	Settling velocity				Gate val						Ве	rnoulli	equat	ion		ment i	by using
	SLO-2	Fluid statics - pr	essure distribution	Tutorial on Bernoulli equation	Free and hindered settling	ngs			Plug cod							itorial c	n vent	uri me	ter		
S-4	SLO-1	Tutorial on pres	sure	Friction factor	Terminal settling velocity	′	SI.		Classific pumps	ation a	and se	ection	and d	esign	of Co	onstruc	tional	feature	es of c	rificen	neter
3-4	SLO-2	Eddy viscosity		rela <mark>tionships betwee</mark> n skin-friction parameters	Tutorial on Settling veloc	city			Design o	f blow	ers an	d com	presso	rs		orking p	-				
C.E.	SLO-1	Reynolds numb	er	Flow of incompressible fluids	Tutorial on Settling veloc	city			Compres	sible	flow					erivatio ernoulli			asure	ment i	by using
S-5	SLO-2	laminar and turb	oulent nature	Flow of incompressible fluids in conduits and thin layers	Tutorial on Free and hine	dered sea	ttlings		<mark>Pumps:</mark> requirem		ped he	ead, su	ıction I	lift, po	wer Tu	torial c	n orific	cemet	er		
S-6	SLO-1	laminar and turk	ulent flow in boundary	Friction factor, Moody diagram	Stokes' law				Construc	tional	featur	es of s	ingle s	uction	n Co	nstruc	tional	feature	es and	worki	ng

		layers, boundary layerformation in tubes			volute centrifugal pump	principles of Pitot tube
	SLO-2	Unsteady flows	Relationships between average velocity and maximum velocity	Newton's law for settling	Working principle of single suction volute centrifugal pump	Derivation for flow measurement by using Bernoulli equation
S-7	SLO-1	Dimensional analysis	roughness parameter, Vorticity and Circulation	criterion for settling regime	Characteristic curves of centrifugal pump, comparison of devices for moving fluids	Constructional features and working principles of Rotameters
S-1	SLO-2	Dimensional analysis derivation for pressure drop	Equivalent diameter, form friction losses in Bernoulli equation, couette flow.	Tutorial on Newton's law for settling	Tutorial on pumps	Derivation for flow measurement
S-8	SLO-1	Boundarylayer	Hagen-Poiseuille equation	Fluidization	Constructional features of reciprocating pump	Tutorial on flow measurement
5-0	SLO-2	Boundary layer formation in flat plate	Hydraulically smooth pipe, von Karman equation	Types of fluidization	working principle of reciprocating pump	Tutorial on flow measurement
	SLO-1	Manometer, types of manometers	Tutorial on Hagen-Poiseuille equation	Conditions for fluidization,	Tutorial on pumps	Target meter, turbine meter
S-9	SLO-2	Tutorial on Manometer		Minimum fluidization velocity	Constructional features and working principle of jet ejectors	Vortex shedding meter, Magnetic flow meter

Π				Т.
	Learning	1	McCabe, W.L., Smith, J.C., Harriot, P., Unit Operations in Chemical Engineering, 7th ed., McGraw-Hill, 2005	١,
	Learning	١.	Wedabe, W.E., Shillin, J.O., Hamot, T., Ohk Operations in Chemical Engineering, T. Ca., Wedraw-hill, 2005	١,
	Resources	2.	Noel de Nevers, Fluid Mechanical for chemical Engineers, 2 nd ed., McGraw Hill International Editions, 1991	ľ

Badger W.L. and Banchero J.T., Introduction to Chemical Engineering, Tata McGraw Hill, 1997
 Coulson. J.M, Richardson. J.F, Backhurst. J.R. Harker. J.M, Coulson & Richardson's Chemical Engineering, Vol. II, 5th ed., Butter worth Heinemann, Oxford, 2002

Learning Assess	ment			100	N. P. Walley Bridge	Million	The State of the S	7 / -			
_	DI			Contir	nuous Learning Ass	essment (50% weigh	ntage)	All other		Final Evancination	- (FOO(
	Bloom's Level of Thinking	CLA -	1 (10%)	CLA – 2	2 (15%)	CLA – C	3 (15%)	CLA – 4	(10%)#	Finai Examinatio	n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %		30 %		30 %		30 %	-	30%	-
Level 2	Apply Analyze	40 %	Cett.	40 %		40 %	. 1.	40 %	-	40%	-
Level 3	Evaluate Create	2 <mark>0 %</mark>	15	30 %		30 %	-	30 %	-	30%	-
	Total	10	00 %	100) %	100) %	100) <mark>%</mark>	10	00 %

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Dr. K. Anbalagan SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Dr. S. Vishali, SRMIST

Cou Co	irse de	18CHC206T	Course Name	MECHANICAL OPERATIONS		ourse tegory		С				Profe	essiona	al Cor	9				L 3	T 0	P 0
С	requisite	Nil	Chaminal English	Co-requisite Nil	l. / Code a /Chandoude	C	gress ourse		Nil												
Course	e Offering	Department	Chemical Engir	neering Data Boo	k / Codes/Standards	Nil															
Course	e Learning	g Rationale (CLR)	The purpose of	learning this course is to:	Charles and Anna	L	earni	ng					Progra	am Le	arning	Outco	mes (F	PLO)			
CLR-1	: Illusti	rate the process o	of Characterizing, han	dling and storage of solids, and Screening conce	pts	1	2	3	1	2	3	4	5	6	7 8	9	10	11	12	13	14 1
CLR-2				ize enlargement of solid particles					97 -					-			1.0				-
CLR-3			of separations of part			(E	(0)	(9)	a)			arch		1							
CLR-4				king of various industrial filtration equipment	The fall Market	00	()	ıt (%	dae)	ent	ese		-	iii ji	Vor)Ce			
CLR-5				and various types of impellers, design of turbine	S) (B	enc	ner	Ne e	S	mdo	Α,	age	a Z	is	>		inar	В		
CLR-6	: Desc	ribe the concepts	of size reduction and	particle handling		king	eji j	ainr	Ş	İsi	/elc	sign	nsi		් ජ	ea	e G	ن <u>ت</u>	illi		
						f Thin	ed Pro	ed Atta	erina	n Ana	& De	s, Des	lool r	w Cu	ment	lal & l	unicati	Mgt. 8	ng Lea	_	2 8
Course	e Learning	g Outcomes (CLO)): At the e <mark>nd of th</mark>	nis course, learners will be able to:		Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Enaineerina Knowledae	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability Fthics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO -
CLO-1	: Char	acterize the partic	cles size analysis		No. of Concession,	2	85	70		H		Н	L	-			-	-	M	H	
CLO-2			ction machin <mark>eries</mark>			1	90	80	Н		-	М	-	-		-	-	-	-	Н	
CLO-3	: Dem	onstrate the fluid-	solid separat <mark>ion techr</mark>	niques	1882 16 1 - 17 4 10	3	85	75	Н	Н	М	Н	-	- 1	И -	-	-	-	-	Н	
CLO-4			concepts an <mark>d design</mark>		Court of the	2	85	75	Н		Н	Н	-	- 1	И -	-	-	-	-	Н	
CLO-5	: Apply	the concepts of	agitation and <mark>mixing i</mark>	n processes		3	80	70	Н		М	Н	-	-		-	-	-	-	Н	
CLO-6	: Unde	erstand particle se	paration bas <mark>ed on siz</mark>	ze and their handling		3	80	70	H	Н	М	Н	-	-	- -	-	-	-	-	Н	- -
										W.											
Durati	on (hour)		9	9	9						9							9			
S-1	SLO-1	Characterization and size	of solids: Par <mark>ticle sh</mark> a	Purposes of size reduction	Motion of particles in fluid			P	rinciples	of Filti	ration					oductic ation	n and	purpo	oses d	f mixii	ng and
3-1	SLO-2	Mixed Particle si techniques	ize measureme <mark>nt</mark>	Principles of Comminution	Free settling and Hindered	settling	1	M	1echanisi	n of fil	tration				Agit	ation e	quipm	nent			
S-2	SLO-1	Specific surface particle size	area of mixture, Aver	Power and Energy requirements in size reduction	Gravity settling processes, (Clarifier	Classifi	ier an	nd F	ilter <mark>M</mark> ed	ium ar	nd Filt <mark>e</mark> i	aids			Imp	ellers .	Turbi	nes			
3-2	SLO-2	Tutorial on partic	cle size	Crushing efficiency	Drag forces and Lift forces, coefficient Terminal settling		ty	С	ake and	Filter ı	mediu <mark>n</mark>	n Resis	stance	s	Pro	pellers	and F	Paddle	s		
0.0	SLO-1	Tutorial on partic	cle size	Empirical relationships-Rittinger's law, Kick's law, Bond's law	Settling under Stoke's law r				rinciples rough fil			ion - F	Pressur	e dro	^O Stai	ndard i	urbine	e desi	gn		
S-3	SLO-2	Tutorial on partic	cle size	Tutorial on power required for size reduction	Newton's law regime			С	ompress akes			npres	siblefili	ter	Flov	v patte	rns in:	side tl	he agi	tation	vessel
0.4	SLO-1	Screen analysis.	: Differential and	Tutorial on power required for size reduction	Tutorial on Stoke's law				onstant p	ressu	re Filtra	ation			Pre	ventio	of sw	virling	and v	ortex	formatio
S-4	SLO-2	Standard screen		Tutorial on power required for size reduction	Tutorial on Stoke's law			C	onstant i	ate filt	ration				Dra	ft tube	3				
S-5	SLO-1	Screening equip and Grizzlies	ment - Stationary scre		Sorting Classifiers: Sink and	l Float	meth	od T	utorial or	filtrat	ion				Flov	v numi	ber				

	SLO-2	Gyrating screens, Vibrating screens	Gyratory crushers	Differential settling method and Equal settling	Tutorial on filtration	Calculation of power consumption in Newtonian liquids
	SLO-1	Ideal and actual screens	Grinders: hammer mills, Impactors	Batch Sedimentation	Tutorial on filtration	Dimensional analysis
S-6	SLO-2	Capacity and Screen effectiveness	Tumbling mills : Ball mill	Equipment for Sedimentation: thickeners	I LUTORIAL ON TUTRATION	Power number correlation through Buckingham's π theorem
	SLO-1	Tutorial on Screen effectiveness	Critical speed of Ball mill	Kynch theory of sedimentation	Filtration equipments	Power correlation
S-7	SLO-2	Tutorial on Screen effectiveness	Tutorial on Ball mill	Design of thickener	Pressure Filters-Batch Process-Plate and Frame Filter press	Significance of dimensionless groups
	SLO-1	Tutorial on Screen effectiveness	Ultrafine grinders - Fluid energy mills	Tutorial on sedimentation	Vacuum Filters	Tutorial on Power correlation
S-8	SLO-2	Tutorial on Screen effectiveness	Cutting machines: Knife cutters	Tutorial on sedimentation	Continuous filters- Rotary Drum Vacuum filter	Tutorial on Power correlation
	SLO-1	Storage and transportation of solids	Size enlargement	Flocculation and Froth floatation	Centrifugal filters-Types of centrifuges	Blending of miscible liquids
S-9	SLO-2	Silos, Bins, Hoppers and conveyors	Open and Closed circuit operation	Cyclone Separators, Centrifugal decanters	Working mechanism of Suspended batch centrifuge	Type of Mixers and its application

Badger W.L., Banchero J.T., Introduction to Chemical Engineering, Tata McGraw Hill, 1997
 Coulson. J.M, Richardson. J.F, Backhurst. J.R., Harker. J.M, Coulson & Richardson's Chemical Engineering, Vol. II, 5th ed., Butter worth Heinemann, Oxford, 2002
 Swain. A, Patra H, Roy. G K, Mechanical Operations, Tata McGraw Hill, 2010

Learning Assessr	ment				The state of the state of	WARRIED TO					
	Bloom's			Conti	nuous Learning Ass	essment (50% weig	htage)	38		Final Evaminatio	n (FOO) weightege)
		CLA –	1 (10%)	CLA -	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	Final Examinatio	n (50% weightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %		30 %	Birth.	30 %		30 %	-	30%	-
Level 2	Apply Analyze	4 <mark>0 %</mark>	1201	40 %		40 %	5.00	40 %	- 1	40%	-
Level 3	Evaluate Create	20 <mark>%</mark>	P.S.	30 %	- 1/	30 %	-	30 %	<u>-</u>	30%	-
	Total	10	0 %	10	0 %	100	0 %	100) <mark>%</mark>	10	00 %

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Dr. K. Deepa, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Mr. K. Selvam, SRMIST 3. Mrs. D. Nanditha, SRMIST

Course Code 18CHC207T Course Name HEAT TRANSFER Co Cat													Prof	essio	nal Co	ore					L 4	T 0	P C 0 4
C	requisite ourses	Nil		Co-requisite Nil Courses		С	gress ourse		Nil														
Course	Offering	Department	Chemical Engineering	ng Data Boo	k / Codes/Standards	Nil																	
Course	Learning	g Rationale (CLR):	The purpose of learn	ing t <mark>his course is t</mark> o:	C.M.W.	L	.earni	ng						Progr	am L	earnir	ng Out	come	es (PL	_O)			
CLR-1	trans	fer coefficient		transfer, analyze steady, unsteady state co		1	2	3	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14 15
CLR-2				<mark>l and fo</mark> rced convection as applied to variou	is flows and geometry.								난			lity							
CLR-3				<mark>ciples in heat exchanger design</mark>	- Aller Miles	Ē	%	(%		Ф			earc			iabi		손		4			
CLR-4		ain the principles of rac					رخ دخ	nt (edg		nen	Ses	(I)		itai		Ş∥		nce			
CLR-5		ribe the principles of e			See See See See) g	ie.	lme		OW	.si	opr	n, F	sag	<u>a</u>	Sus		E	_	ië	ing		
CLR-6	: Desc	ribe the different mode	es of heat transfer, cor	ncepts and applications.		Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)		Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability		ndividual & Team Work	Communication	Project Mgt. & Finance	ng Learning		2 8
Course	~	g Outcomes (CLO):		urse, learners will be able to:	Av any	Level of	Expecte				Problen	Design	Analysi	Modern	Society	Environ	Ethics	Individu	Comm	Project	Life Long	1	PSO - 2
CLO-1				te and unsteady state conduction and evalu		2	80	75		Н	М	L	-	-	-	-	-	-	-	-	-	М	
CLO-2				d convection as applied to various flows an	d geometry	2	80			Н	М	L	١-	-	-	-	-	-	-	-	-	М	М -
CLO-3		gn the heat exchanger		The state of the s	A STATE OF THE STA	2	80			Н	Н	Н	L	-	-	-	-	-	-	-	-	М	M L
CLO-4		ze the principles of ra	diation <mark>heat trans</mark> fer		A THE RESERVE AND A STREET	2	80			Н	М	L	-	-	-	-	-	-	-	-	-	М	
CLO-5		gn the evaporators	<u> </u>	in the second		2	80			Н	Н	М	L	-	-	-	-	-	-	-	-	М	M L
CLO-6	: Unae	erstand the concepts o	r neat tr <mark>ansfer and</mark> the	equipments		2	80	75		Н	М	L	- 1	-	-	-	-	-	-	-	-	М	- -
Durati	on (hour)	,	12	12	12	т.						12								12)		
S-1	SLO-1	Introduction to variou transfer	is modes <mark>of heat</mark>	Concept of heat transfer by convection. Natural and forced convection	Types of heat exchange equ	iipmei	nts	ı	Basic (conce	pts o	f radia	tion			а	ntrodu pplica	tions					
0-1	SLO-2	Concept of resistance	e to heat tra <mark>nsfer.</mark>	Forced convection in systems of simple geometries- Flow over a flat plate	Co-current and counter -cur heat exchangers - Tempera			ution	Emissi	ve po	wer, i	Black	body				ingle e vapora		and I	multi	ole eff	ect	
S-2	SLO-1	Fourier's law of heat		Thermal boundary layer, flow across a cylinder	Double pipe heat exchanger				Gray b			-					ypes o						
0-2	SLO-2	Effect of temperature conductivity		Mean temperature difference, LMTD	Shell and tube heat exchang and multipass	ger-sir	ngle p		Laws o Planck								Vorkinį vapora						
	SLO-1	Steady state conduct plane wall	tion of heat through a	Application of dimensional analysis for convection	Baffles and tube arrangeme	nts			Kirchh	off's la	aw					C	limbin	g film	evap	porat	ors		
S-3	SLO-2	hollow cylinder	tion of heat through a	Heat transfer correlations for natural Convection- Free convection from a flat surface, cylinder	multi -pass shell and tube he LMTD correction factor	eat ex	chan	ger,	View fa	actor						Α	gitate	d film	evap	orato	ors		
S-4	SLO-1	O-1 Tutorial on conduction Tutorial on LMTD Fouling of a h							Tutoria	al on S	Stefar	n-Boltz	mann	law			vapor						
3-4	SLO-2	Tutorial on conduction Tutorial on LMTD Tutorial on heat							Tutoria 4	on S	Stefar	n-Boltz	mann	law			oiling						
S-5	SLO-1	composite plane wall		Heat transfer correlations for forced Convection	Process design consideration	Enthalmy halance agustion for				•	le effec												
	SLO-2	Steady state conduct		Forced convection in laminar and turbulen	nt Enthalpy balance and heat o	luty c	alcula	ation	Gray s	urface	es: Er	nergy (excha	nge b	etwee	en T	utorial	on E	nthal	py ba	alance		

		coaxial cylinders	flow in circular pipes	in double pipe heat exchanger	two large parallel planes	
S-6	SLO-1	Problem solving on composite layers	Overall heat transfer coefficient.	Tutorial on heat exchangers	Energy exchange between two large parallel planes of different emissivity	Tutorial on Enthalpy balance
3-0	SLO-2	Problem solving on composite layers	Relationship between individual and overall heat transfer coefficients	Tutoriai ori rieat exchangers	Energy exchange between a small object placed in a large enclosure	Tutorial on evaporators
S-7	SLO-1	Problem solving on composite layers	Problem solving on Overall heat transfer coefficient.	Enthalpy balance and heat duty calculation in shell and tube heat exchanger	Problem solving on energy exchange	Tutorial on evaporators
3-1	SLO-2	Steady state conduction in bodies with heat sources - The plane wall	Problem solving on Overall heat transfer coefficient.	Tutorial on heat exchangers design	Problem solving on energy exchange	Multiple effect evaporators: Methods of feeding
	SLO-1	Steady state conduction in bodies with heat sources - The cylinder	Momentum and heat transfer analogies	Tutorial on heat exchangers design	Problem solving on energy exchange	Comparison between the methods of feeding
S-8	SLO-2	Combined conductive and convective heat transfer and the concept of Heat Transfer Coefficient	Heat transfer to fluids with phase change- The Condensation Phenomenon	Tutorial on heat exchangers design	Problem solving on energy exchange	Effect of boiling point elevation in a multiple effect evaporator
	SLO-1	Heat transfer between fluids separated by a plane wall	Film wise and drop wise condensation	The effectiveness- NTU method of heat exchanger analysis	Radiation shield	capacity and economy of multiple effect evaporators
S-9	SLO-2	Heat transfer between fluids separated by a cylindrical wall	Heat transfer coefficientfor film wise condensation -condensation on vertical and horizontal cylinders	Expression for Effectiveness of parallel flow double pipe heat exchanger	Radiation intercepted by a shield placed between two large parallel planes	Enthalpy balance equation for multiple effect evaporator
S-10	SLO-1	Tutorial on Combined conductive and convective heat transfer	Tutorial on condensation	Expression for Effectiveness of counter current flow double pipe heat exchanger	Radiation intercepted by a shield in a cylindrical enclosure	Problem solving on evaporators effect
5-10	SLO-2	Tutorial on Combined condu <mark>ctive and convective heat transfer</mark>	Tutorial on condensation	Tutorial on heat exchangers design	Radiation intercepted by a shield in a spherical enclosure	Tutorial on multiple effect evaporators
	SLO-1	Critical insulation thickness, applications	Effect of non-condensable gases	Tutorial on heat exchangers design	Tutorial on Radiation shield	Tutorial on multiple effect evaporators
S-11	SLO-2	Heat transfer from Extended surfaces – The Fins	The boiling phenomenon	Tutorial on heat exchangers design	Tutorial on Radiation shield	Tutorial on multiple effect evaporators
S-12	SLO-1	Unsteady state heat conduction - Introduction	The regimes of boiling in pool boiling	Tutorial on heat exchangers effectiveness	Tutorial on Radiation shield	Tutorial on multiple effect evaporators
3-12	SLO-2	Unsteady state heat conduction - Cartesian coordinates	Correlations for pool boiling heat transfer	Tutorial on heat exchangers effectiveness	Tutorial on Radiation shield	Evaporator selection

Learning 1. Holman J.P, Heat Transfer, 10th ed. Tata McGraw Hill, 2010
Resources 2. Binay K Dutta, Heat Transfer: Principles and Applications, PHI Learning Private Limited, 2010
3. Warren L. McCabe, Julian C. Smith, Peter Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw Hill Education, 2014

Learning Ass	essment		- 4	31	The state of the			The same of				
	Bloom's Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA –	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA -	4 (10%)#	Final Examinatio	n (50% weightage)	
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-	
Level 2	Apply Analyze	40 %	- 1	40 %	-	40 %	- 1	40 %	-	40%	-	
Level 3	Evaluate Create	20 %	-	30 %	-	30 %		30 %	-	30%	-	
	Total	100	0 %	10	0 %	10	0 %	10	0 %	10	00 %	

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Mr. V. Ganesh, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman tr@rajalakshmi.edu.in	2. Ms. E. Kavitha, SRMIST

Cou		18CHC208T	Course Name		PRINC	IPLES	OF MASS TRAN	NSFER		Course Categor		С					Prof	essio	nal C	ore					L 3	T 0	P 0	C 3
C	requisite ourses Offering	<i>Nil</i> Department	Chemical	l Engineerin	Co-requisi Courses			Book /	Codes/Standards		<mark>ogre</mark> Cour	ssive	180	CHC30	3T													
Course	e Learning	Rationale (CLR)	The purpo	ose of learni	ng this course is	s to:	1	*	11-11	di.	l ear	ning						Prog	ıram I	earn	ina O	utcom	nes (P	1 (0)				
CLR-1	-	ain the basic princ					rate of mass tran	nefor		1		2 3		1	2	3	4	5	6	7	8	9	10	,	12	13	14	15
CLR-2									cross fluid interfaces			. 3		1		3		J	U	<u>.</u>	U	<u> </u>	10	- 1 1	12	13	14	13
CLR-3 CLR-4 CLR-5 CLR-6	: Demo	the principles of constrate humidification the principles of the the basics of	ation and dehur of drying, differe	midifi <mark>cation (</mark> ent types of (operations and drying	design	the cooling towe	er	ods	Level of Thinking (Bloom)	(/0) Madioipod Datocay	Expected Attainment (%)		Knowledge	alysis	velopment	Design, Research	l Usage	ulture	Environment & Sustainability		Team Work	lion	& Finance	Learning			
Course	e Learning	g Outcomes (CLO)): At the en	d of this cou	rse, learners wi	ill be al	ole to:			evel of Thin	Day Draw	Expected Att		Engineering Knowledge	Problem Analysis	Design & Development	Analysis, De	Modern Tool Usage	Society & Culture	Environment	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Le	PSO - 1	PSO-2	PSO - 3
CLO-1		basic knowledge								2	8	0 75	5	Н	Н	-	1.	-	-	F	-	-	•	-	-	М		-
CLO-2 CLO-3		rmine mass transi gn the absorption						10		2				H	H	M	M	-	-	-	-	-	-	-	-	M M	M M	-
CLO-4		e humidification ar						3		3				H	Н	M	L	-	-		-	-	-	-	-	M	M	-
CLO-5	: Gain	knowledge on the	e basic princi <mark>ple</mark>	s of drying,	selection of drie	ers and		time		2	8	0 75	,	Н	Н	М	М	-	-	-	-	-	-	-	-	Μ	Μ	-
CLO-6	: Unde	rstand the fundar	mentals of m <mark>ass</mark>	transfer an	d the equipmen	its		4				4	4	4														
Durati	on (hour)		9		5		9		9							9								9				
S-1	SLO-1	Introduction to M	flass Transfer o <mark>p</mark>	perations	Introduction to	Mass t	transfer coefficie	nts	Introduction to Gas ab	sorption			Intro	duction	i to hi	ımidifi	cation				Introd proce		n, Imp	ortan	ce of o	drying	ı in	
5-1	SLO-2	Diffusion and its Diffusion			Types of mass				Packing C <mark>haracteristic</mark>	s			gas,	iidity, d satura	tion h	umidit	/				basis	calcu	lations	s	et Bas		•	
S-2	SLO-1	Steady state mo rest and in lamin		in f <mark>luids at</mark>	Relationship be coefficients	etween	mass transfer		Types of tower packing	gs				tive hu id volui		, perc	entag	e hun	nidity,				ire, ed nd mo		rium n	noistu	re, bo	ound
3-2	SLO-2	Molecular diffusi diffusion of A thr	ion in gases: ste ough non diffus	eady st <mark>ate</mark> ing B	Dimensionless 5 1	group	s in mass transfe	er	Characteristics of solve	ent		11/2	Hum	nid hear	t, tota	l enth <mark>a</mark>	lpy, d	l <mark>ew</mark> po	oint		Mech	anism	of dr	ying				
S-3	SLO-1	Tutorial on diffus	sion		Simultaneous i transfer	momer	ntum, heat and m	nass	Contact between liquic	l and gas			Con	cept of	adiab	atic sa	aturati	on			Const	ant a	nd fall	ing ra	ite pei	riod		
SLO-2 Gas phase equimolal counter diffusion. Diffusion in Multicomponent gas mixtures Theories of mass transfer: film theory						pressure drop and limi	ting flow ra	tes		Adia	batic s	aturat	ion ter	npera	ture			conte	nt	•		critical						
SLO-1 Tutorial on diffusion Penetration theory					Material balances					-bulb te beratur		ature,	ire, theory of wet-bulb				drying	conc	litions	: cons	under stant r	ate p	eriod					
· ·					limiting gas-liquid ratio	id ratio psychrometric line and Lewis relation Calculate drying time: falling Total drying time					rate	perio	d															
S-5 SLO-1 Molecular diffusion in liquids: steady state diffusion of A through non diffusing B Interphase Mass Transfer					Rate of absorption				Hum	nidity ch	nart, u	se of I	numia	ity ch	art		Tutori	al on	const	ant aı	nd fall	ing ra	te pe	riod				

	SLO-2	Tutorial on diffusion	Equilibrium between phases	calculation of tower height	Tutorial on humidification	Tutorial on drying
S-6	SLO-1	Tutorial on diffusion	Concentration profile in Interphase mass transfer	number of transfer units, height of transfer unit	Tutorial on humidification	Tutorial on drying
5-0	SLO-2	Liquid phase equimolal counter diffusion	Two film theory	alternate forms of transfer coefficients	Tutorial on humidification	Classification of dryers, solids handling in dryers
0.7	SLO-1	Tutorial on counter diffusion	Mass transfer using Film Mass transfer Coefficients and Interphase concentrations	Tutorial on absorption	Types of Cooling towers	equipment's for batch and continuous drying processes
S-7	SLO-2	Tutorial on counter diffusion	Overall Mass transfer Coefficients and Driving Forces		Working principle of cooling towers	Working principle of tray drier
0.0	SLO-1	Pseudo – steady state Diffusion.	Relation between individual and overall mass transfer coefficient	Absorption in plate columns: Determination of number of plates, Tray efficiencies	Design of a cooling tower	Working principle of rotary drier
S-8	SLO-2	Tutorial on counter diffusion	Tutorial on mass transfer coefficient	Height equivalent to a theoretical plate	NTU, HTU concept	Working principle of spray drier
S-9	SLO-1	Effect of temperature and pressure on diffusivity	Experimental determination of mass transfer coefficients	Tutorial on HETP	Tutorial on design of a cooling tower	Working principle of fluidized bed drier
5-9	SLO-2	Tutorial on diffusivity	Tutorial on mass transfer coefficient	Introduction to absorption with chemical reaction	Tutorial on design of a cooling tower	Concept of freeze drying

Learning	1. 2	Robert E. Treybal, Mass- <mark>Transfer</mark> Operations, 3 rd ed., McGraw Hill Education, 2012 Warren L. McCabe, Julian C. Smith, Peter Harriott, Unit Operations of Chemical Engineering.	3.	Christie John Geankoplis, Transport Processes and Separation Process Principles (Includes Unit Operations), 4th ed., Pearson India Education Services Pvt. Ltd., 2015
Resources		7 th ed., McGraw Hill Edu <mark>cation, 2</mark> 014	4.	Binay K. Dutta, Principles of Mass transfer and Separation Processes, Prentice- Hall of India, New Delhi, 2007

Learning Assessn	nent			- 15 T - VV										
_	Bloom's		Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA -	1 (10%)	CLA -	2 (15%)	CLA -	3 (15%)	CLA – 4	(10 <mark>%)#</mark>		n (50% weightage)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	40 %	1201	30 %		30 %		30 %	-	30%	-			
Level 2	Apply Analyze	40 <mark>%</mark>	1	40 %	- 1/	40 %	-	40 %	L = -	40%	-			
Level 3	Evaluate Create	20 %	- 6	30 %	- 1/	30 %		30 %	-	30%	-			
	Total	10	<mark>) %</mark>	10	0 %	10	0 %	100) %	10	00 %			

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers	THE RESERVE OF THE PARTY OF THE	
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd.,	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Mrs. E. Poonguzhali, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Ms. E. Kavitha, SRMIST

Course Code	18CHC209L	Course Name	CHEMICAL ENGINEERING LABORATO	JRV - I	Course Category	/	С					Pro	fessio	nal C	ore					L 0	T 0	P (
Pre-requ Course	es 100H2U01, 100		Co-requisite Nil		C	ogress Course		Nil														
Course Off	fering Department	Chemical Enginee	ring Data Book	k / Codes/Standards	Nil																	
Course Lea	arning Rationale (CLR):	The purpose of lea	rning this course is to:			.earni	ing						Prog	gram	Learn	ing O	utcon	nes (F	PLO)			-
CLR-I.	screening equipments		ion & particle separation techniques using Cru	shing, grinding and	1	2	3	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14 1
CLR-3:		separation techniques	and to design of thickener		(iii	(%	(%)		Ф	X		arch			ability		¥					
CLR-5:	Analyze the metering of Compare the transports	tion devices and desig	1 the pumps		g (Bloo	iency (ment (9	N	owledg	<u>.s</u>	opment	n, Rese	age	ம	Sustain		ım Work		inance	ing		
CLR-6 :	Demonstrate the conce	ots of mechanical oper	ation and the fluid mechanics.		evel of Thinking (Bloom)	Expected Proficiency (%)	d Attain		ring Kno	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability		al & Team	Communication	Project Mgt. & Finance	g Learning		
Course Lea	arning Outcomes (CLO)	: At the <mark>end of thi</mark> s	course, learners will be able to:		Level of	Expecte	52 Expected Attainment (%)		Engineering Knowledge	Problem	Design	Analysis	Modern	Society	Environ	Ethics	Individual 8	Commu	Project I	Life Long	PS0 - 1	PSO - 2
	Handle the size reduction			SHOW RESTREET	1	80				L		4					Н					
	Learn the fundamentals				2	80	75		Н	М	М						L					
			ies and can implement the knowledge in desig	n the equipments	3	90			Н	М	М						L			Н		
	Interpret the knowledge			Harry Street, Square, Square,	2	80		- 77	М	М	L	М					L			Н		_
					2				L	L	L	١					L			Н		
CLO-6 :	Analyze the various size	e reduction techniques	and fluid flow.		1	80	75		М	L							Н					
Duration	(hour)	12	12	12							12								12	2		
S SLO-1 SLO-2 Determine Average Particle Size using Sieve Analysis method Calculate efficiency of given cut diameter opening of Sieve using Screen Effectiveness method Effectiveness method			critical speed of mill design of thickener					of par menta	article under gravity													
S 5-8	SLO-1 Find the partic	g Cyclone separat <mark>or</mark>	Calculate Cake and medium resistance using plate and frame filter press	alculate Cake and medium resistance Determine Conveyance efficiency of Screw Calculating plate and frame filter press Conveyor using V					Calculate Cake and Medi <mark>um resista</mark> nce sing Vacuum leaf filter						Find the size reduction ratio of the given material using Drop Weight Crusher							
S	Meter and Ve	nturi meter	Determine discharge coefficient on V-Notch in open flow channel	Verify relationship betwee number and friction factor				Verify p	erfor	mand	e Ch	aracte	eristic	s of		packe	ed bed	1		•		rough
9-12	SLO-2 Find the discharge coefficient using Calculate pressure loss coefficient of contraction, Expansion and fittings on pipe friction test Rig.				Calculate In				minimum fluidization velocity of gh Fluidized bed													

Learning Assess				Cont	inuous Learning Ass	essment (50% weigh	ntage)			Final Francis etta	- (F00/	
	Bloom's	CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3		CLA – 4	4 (10%)#	Final Examination (50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	-	40 %		30 %	27212	30 %		30 %	-	30%	
Level 2	Apply Analyze	-	4 <mark>0 %</mark>	-201	40 %	N.J.	40 %	16.70	40 %	-	40%	
Level 3	Evaluate Create	-	20 %	131	30 %	-	30 %		30 %	-	30%	
	Total	10	0 %	10	0 %	100) %	10	0 %	10	00 %	

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
 Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd., 	1. Dr. Lima Rose Miranda, Anna University, limamiranda2007@gmail.com	1. Dr. K. Selvam, SRMIST
2. Mr. S. T. Kalaimani, CPCL, Chennai	2. Dr. T. R. Sundararaman, Rajalakshmi Engineering College, sundararaman.tr@rajalakshmi.edu.in	2. Mrs. D. Nanditha, SRMIST

