ACADEMIC CURRICULA

POST GRADUATE DEGREE PROGRAMMES

Master of Technology

(Choice Based Flexible Credit System)

Regulations 2021

Volume – 25
Syllabi for School of Mechanical Engineering
Programmes

Professional Core and Elective Courses

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India

ACADEMIC CURRICULA

School of Mechanical Engineering

Professional Core Course

Regulations 2021

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India

Course	21MAC501T	Course	COMPUTATIONAL METHODS	Course		PROFESSIONAL CORE	L	Т	Р	С
Code	ZTIVIACSUTT	Name	COMPUTATIONAL METHODS	Category	C	PROFESSIONAL CORE	3	1	0	4

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil	
Course Offeri		Mathe <mark>matics</mark>	Data Book / Codes / Standards		Statistical Tables	
<u> </u>						

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	learn the concept of one dimensional wave equations and diffusion equation
CLR-2:	construct Fourier series for periodic functions and transform technique to solve elliptic equation
CLR-3:	understand the concepts of Euler's equations
CLR-4:	identify numerical te <mark>chnique t</mark> o solve algebraic transcendental equations, ODE and PDE
CLR-5:	infer the concepts of probability, correlation and regression

Course	At the end of this course, learners will be able to:	75		Programme Outcomes (PO)			
Outcomes (CO):		1		1	2	3	
CO-1:	explain analytic <mark>al soluti</mark> on of partial differential equation		2	3	3		
CO-2:	justify the solution of elliptic type PDE and periodic functions			3	3		
CO-3:	evaluate the so <mark>lution of</mark> functional and vibrational problems			3	3		
CO-4:	adapt numerical solutions for algebraic, transcendental, ODE and PDE			3	3		
CO-5:	solve Statistical problems related to day to day life			3	3		

Module-1 - Transform Techniques

Laplace transform - Fourier transform - One-dimensional wave equation using Laplace transform methods - Displacements in long string - Longitudinal vibration of an elastic bar - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimensional diffusion equation using Fourier sine transform methods - One-dimension equa

Module-2 - Fourier Series and Elliptic Equation

Fourier series representation of periodic functions - Fourier transform methods for Laplace equation.

Module-3 - Calculus of Variations

Euler's Equations - Functional involving x, y, y' - Functional on higher order derivatives - Functional dependent on functions of independent variables - Rayleigh-Ritz method.

Euler's Equations - Functional involving x, y, y - Functional on higher order derivatives - Functional dependent on functions of independent variables - Rayleigh-Ritz metho Module-4 – Numerical Methods

Solution of algebraic and transcendental equations-Iteration method-Newton's method-solution to ODE-Runge Kutta method of 4th order-Milne's predictor corrector method. Solution to PDE-Solution

to Laplace equation-Leibman's method- Solution to Poisson equation- Solution to Parabolic type PDE- Bender Schmidt method-Crank Nicholson method. Module-5 - Statistical Techniques 12 Hour

Random Variables –Discrete and continuous random variables-Mean, median, variance, Standard deviation, moments, skewness, kurtosis, correlation, regression, coherence, multiple and partial correlation.

12 Hour

12 Hour

12 Hour

	 Sankara Rao, K., "Introduction to Partial Differential Equations", PHI, New Delhi, 3rd edition 2011.
Learning Resources	 B.V. Ramana, "Higher Engineering Mathematics", McGraw Hill Publication, 2017. Elsgolts, L., "Differential Equations and Calculus of Variations", Mir Publishers, Moscow, 2013.

- S. S. Sastry, Introductory Methods of Numerical Analysis, 5thEdition, PH1, 2012
 S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, 11th Edition, 2015. S. Ross, A First Course in Probability, 8th Edition., Pearson Education India, 2010.

Learning Assessr	ment		C.F				
	Bloom's Level of Thi <mark>nking</mark>	CLA-1 Avera	Continuous Learnin mative age of unit test 0%)	CL	Learning A-2 1%)	Final Ex	mative amination eightage)
	/ 5 /	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	15%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15%		15%	-
Level 2	Understand	25%	774 1 29 FOLDS 1 1	25%		25%	-
Level 3	Apply	30%		30%		30%	-
Level 4	Analyze	30%	1 257 32 10	30%		30%	-
Level 5	Evaluate		18 1 1 - 1 - 1 Val	8	1		-
Level 6	Create	-,14.5,		ALCOHOLD TO THE		2 -	-
	<u>Total</u>	10	0%	100) %	10	0 %

Course Designers			
Experts from Industry	100	Experts from Higher Technical Institutions	Internal Experts
Mr. Madhan Shanmugasundaram, Infosys Technologies, madshan@gmail.com	3.5	1. Prof. Y.V.S.S. Sanyasiraju, IIT Madras, sryedida@iitm.ac.in	1. Dr. V. Sub <mark>burayan,</mark> SRMIST
	1	2. Prof. K.C. Sivakumar, IIT Madras, kcskumar@iitm.ac.in	2. Dr. P.Sambath. SRM IST

ACADEMIC CURRICULA

Aerospace Engineering

Professional Core Courses

Regulations 2021

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India

Course	211005111	Course	AERODYNAMICS AND AIRCRAFT PERFORMANCE	Course	PROFESSIONAL CORE	L	Т	Р	С
Code	21ASC511J	Name	AERODYNAMICS AND AIRCRAFT PERFORMANCE	Category	PROFESSIONAL CORE	3	0	2	4

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil	
Course Offerin	ng Department	Aerospace Engineering	Data Book / Codes / Standards	1.00	Nil	
			A 12 TO 12 T	181 A .		

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	determine the aerodynamic forces and moments acting on different bodies
CLR-2:	determine the airfoil and wing flow characteristics
CLR-3:	apply the appropriate methods for flow over a body.
CLR-4:	apply the boundary layer separation control methods
CLR-5:	examine the aircraft for optimum performance

Course Outcomes	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
(CO):		1	2	3		
CO-1:	calculate the distribution of pressure and shear stress on various bodies.	2	2	3		
CO-2:	calculate the aerodynamic forces and moments of the thin airfoil and wing.	2	-	3		
CO-3:	examine the flow properties on body using numerical and experimental methods	2	2	3		
CO-4:	examine the boundary layer and flow separation phenomenon	3	-	3		
CO-5:	calculate the performance parameters of an aircraft	2	-	3		

Module-1 - Aerodynamic Forces and Moments

15 Hour

Introduction to Potential flow theory – Eleme<mark>ntary flo</mark>ws and Combinations - Airfoil, & Wing geometrical parameters - Types of vortices - Kutta condition - Kutta Joukowski theorem - Aerodynamic forces and moments - Centre of pressure and Aerodynamic Centre

- 1. Calibration of subsonic wind tunnel
- 2. Flow Visualization over a bluff & streamlined body.

Module-2 - Airfoil & Wing Theory

15 Hour

Thin airfoil theory assumptions, limitations & applications (Symmetric, Asymmetric, & Flapped Airfoils) - The Biot-savart law and its Application - Bound and horseshoe vortex - Prandtl's lifting line theory and its applications (Elliptical and General lift distributions) - Effect of sweep back and delta wings.

- 1. Estimation of pressure distribution over a symmetrical/Unsymmetrical airfoil.
- 2. Estimation of pressure distribution over a symmetrical/ Unsymmetrical airfoil with flap

Module-3 - Numerical and Experimental Methods

15 Hour

Introduction to panel method and its Application (Non lifting and Lifting bodies) - Vortex lattice method and its application —Flow past bodies using computational tools - Introduction to CFD. Non-dimensional numbers - Types of similarities – Low speed wind tunnel design parameters - Wind tunnel techniques

- 1. Estimation of pressure distribution over a finite wing
- 2. Estimation of pressure distribution over a finite wing with winglet

Module-4 - Boundary Layer and Flow Control

15 Hour

Introduction to Boundary Layer and its Parameters - Prandtl's Boundary Layer Equations, Laminar Boundary layer over various bodies, Introduction to Turbulent Flows, Turbulent Boundary Layer, Flow Separation and its control methods (Passive and Active Methods)

- 1. Force measurements over a body using Pressure distribution
- 2. Force measurements over a body using force balance method

Module-5 – Aircraft Performance

Standard Atmosphere - Types of drags - Drag polar - Steady flight: cruise, climb, glide, range, endurance - Accelerated flight: level turn, pull-up, pull-down, V-n diagram - Takeoff and landing.

- 1. Estimation of Drag polar of an airplane model
- 2. Performance analysis of fixed / rotary wing UAV

	1. Anderson, JD, Fundamentals of Aerodynamics, 6th ed., McGraw Hill, 2016	3. Clancy, L, J., Aerodynamics, Pitman, 1986
Learning	2. Houghton EL, Carpenter PW. Aerodynamics for engineering students. 5th ed., Elsevier; 2003	4. John J. Bertin, Russell M. Cummings, Aerodynamics for Engineers, 2013
Resources	3. Anderson, JD, Aircraft Performance & Design, McGraw Hill, 1999	5. Sighard F. Hoerner, Fluid-dynamic Drag: Practical Information on Aerodynamic Drag and
		Hydrodynamic Resistance, 1965

Learning Assessme	ent		20 Jan 198	-17	. 7			
Bloom's Level o <mark>f Thinkin</mark> g		CLA-1 Average	Continuous Learning Formative CLA-1 Average of unit test (45%)		Learning A-2 5%)	Summative Final Examination (40% weightage)		
	-	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20 %	1		20 %	20%	-	
Level 2	Understand	20 %			20 %	20%	-	
Level 3	Apply	60 %		-	30 %	60%	=	
Level 4	Analyze	2 -	-	-	30 %	-	-	
Level 5	Evaluate	- L	- 1/17/-	-	/ 3-7	-	-	
Level 6	Create	. 0 -	- 747	-	7 A- 1	-	-	
	Total	100 %	6	10	0%	100	0 %	

Course Designers	7 by CADA Trail	2
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R. Krishnamurthy, DRDL- DRDO, Hyderabad	Dr. Lakshmana Dora C, IIT Hyderabad, Hyderabad	1. Dr. Mohamed Arif R, SRMIST
2. Dr. Saurav Kumar Ghosh, CSIR-NAL, Bangalore	2. Dr. T Chandra Sekar, IIT Bombay, Mumbai	2. Dr. Bharadwaj K K, SRMIST 3. Dr. Allwyn K, SRMIST

Course Code	21ASC512J	Course Name	AEROSPACE STRUCTURAL	L MECHANICS Course Category	С	PROFESSIONAL CORE	L T P C 3 0 2 4

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil	
Course Offering Department		Aerospace E <mark>ngineering</mark>	Data Book / Codes / Standards		Nil	
				9		

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	describe the concepts of bending in aircraft structural components
CLR-2:	evaluate the shear flow distribution and shear center on thin-walled open sections due to bending and torsion loads
CLR-3:	determine the shear flow distribution and shear center on thin-walled closed sections due to bending and torsion loads
	analyze the behavior of thin plates subjected to bending and buckling loads
CLR-5:	interpret the variation o <mark>f stress a</mark> nd strain in aircraft components

Course Outcomes	At the end of this course, learners will be able to:	Programme Outcomes (PO)		
(CO):		1	2	3
CO-1:	apply the concepts of bending in various aircraft structural components	2	-	3
CO-2:	analyze the shear <mark>flow dist</mark> ribution due to shear and torsion loads in thin-walled open sections	2	2	3
CO-3:	evaluate the shear flow distribution due to shear and torsion loads in thin-walled closed sections	2	-	3
CO-4:	explain the concep <mark>t of vario</mark> us theories of thin plates	2	-	3
CO-5:	analyze the stress and strain of various aircraft components using experimental techniques	3	2	3

Module-1 - Bending of Beams

Overview of various loads on aircraft structural components - Aircraft materials - State of stress at a point - Concept of strain - Constitutive behavior of materials - Modelling the components in terms of 1-D or 2-D structural elements - Euler-Bernoulli beam theory - Timoshenko beam theory - Analysis of symmetrical and unsymmetrical sections - Thin-walled approximations - Box beams - Determination of bending stress determination - Deflection of beams using modern tools

1. Deflection of beams with various end conditions, 2. Unsymmetrical bending of beams, 3. Constant strength beam

Module-2 - Shear Flow in Thin-Walled Open Sections

15 Hour

Relationships between stress, strain and displacement fo<mark>r open section thin-walled beams - Concept of shear flow - Determination of the shear center - Symmetrical and unsymmetrical cross-sections - Shear flow due to bending in open sections - Torsion of thin-walled open section members and determination of stresses</mark>

1. Shear center location for various open thin-walled sections

Module-3 - Shear Flow in Thin-Walled Closed Sections

15 Hour

Shear flow in thin-walled closed sections - Determination of the shear center - Symmetrical and unsymmetrical sections - Flexural shear flow in multi-flange box beams - Bredt-Batho theory - Torsional shear flow in multi-cell tubes - Shear flow due to combined bending and torsion

1. Shear center location for various closed thin-walled sections, 2. Beam subjected to combined bending and torsion

Module-4 - Structural Problems of Thin-Walled Structures

15 Hour

Columns and beam-columns - Classical Kirchhoff-Love theory of plate - First order shear deformation plate theory - Classical laminate theory - Bending and buckling of plates and sheet stringer combination - Failure stress in plates and stiffened panels - Wagner beam theory - Shear lag concept

1. Buckling of columns with different end conditions, 2. Experimental verification of the Wagner beam theory

Module-5 – Analysis of Aircraft Structural Components and Experimental Techniques

15 Hour

Stress analysis of various aircraft structural components - Tapered wing spar - Structural idealization of wings and fuselage and preliminary analysis - Elements of structural testing and experimentation - Strain measurements - Birefringence effect - Interpretation of fringe patterns in photoelasticity - Fundamentals of vibration and aeroelasticity

1. Fabrication of composite laminates, 2. Estimation of mechanical properties of composite laminates, 3. Determination of fringe order using photoelasticity setup, 4. Vibration of beams

Learning
Resources

- 1. Megson T H G,'Aircraft Structures for Engineering Students', Elsevier, Fifth edition, 2013
- 2. Bruhn. E.F., 'Analysis and De<mark>sign of F</mark>light Vehicles Structures', Tri-state offset company, USA 1985 Aircraft Structures Laboratory manual
- 3. Peery, D.J., Aircraft Structures, 2md edition, McGraw-Hill, N.Y., 1999
- 4. Rivello, R.M., Theory and Analysis of Flight Structures, McGraw Hill, 1993.

- 5. B.K. Donaldson, "Analysis of Aircraft Structures An Introduction", Second edition, Cambridge University Press, 2012.
- 6. Autar K Kaw, "Mechanics of Composite Materials", CRC Press, 2nd edition, 2005.
- 7. Dally, J.W., and Riley, W.F., Experimental Stress Analysis, McGraw Hill Inc., New York, 1978
- 8. Timoshenko S., "Vibration Problems in Engineering" John Wiley and Sons, New York, 1993

earning Assessm	ent		1 2 1 No. 11 10 10 10 10 10 10 10 10 10 10 10 10	-12	. 7		
	Bloom's CLA-1 Average of un Level o <mark>f Thinking (45%)</mark>		ative e of unit test	of unit test CLA		Final Exa	native amination eightage)
	-	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20 %	The same than I want		20 %	20%	-
Level 2	Understand	20 %			20 %	20%	-
Level 3	Apply	60 %	S. All Table	-	30 %	60%	-
Level 4	Analyze	7 1-	-	-	30 %		-
Level 5	Evaluate		- 45%	-	7 7	-	-
Level 6	Create	. 0 -	- 747	-	7 7-1	-	-
	Total	100	%	100	0 %	10	0 %

Course Designers	7 L CADA In.	
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. D. Saji, National Aerospace Laboratories, Bangalore	1. Dr. V. Arumugam, Madras Institute of Technology, Chennai	1. Dr <mark>. S. Gurusid</mark> eswar, SRMIST
Dr. Manoj Kumar Buragohain, Defense Research and Development Organization, Hyderabad	2. Dr. K. Vadivuchezhian, National Institute of Technology Karnataka, Surathkal	2. Dr. K. Saravanakumar, SRMIST

Course Code	21ASC513J	Course Name	GAS DYNAMICS AND PROPULSION	Course Category	С	PROFESSIONAL CORE	L T P C 3 0 2 4

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Aerospace E <mark>ngineering</mark>	Data Book / Codes / Standards		Gas Tables

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	describe the basic principles of gas dynamics
CLR-2:	explain the effect of friction and heat transfer for flow in a constant area duct
CLR-3:	explain the properties o <mark>f shock a</mark> nd its relations
CLR-4:	examine the theory a <mark>nd operat</mark> ing principles of jet propulsion
CLR-5:	acquire knowledge on the basic concepts of space propulsion

Course Outcomes	At the end of this course, learners will be able to:	-	Program	me Outco	omes(PO)
(CO):	At the end of this course, learners will be able to.		1	2	3
CO-1:	understand the equations and measurements of compressible flow		2	-	3
CO-2:	describe the flow with heat transfer and friction		2	-	3
CO-3:	determine the shock relations and its applications		2	2	3
CO-4:	describe the ope <mark>rating p</mark> rinciple and performance of various jet engines		2	2	3
CO-5:	describe the various types, staging and performance of rockets		2	-	3

Module-1 - Basic Concepts and Isentropic Flows

15 Hour

Compressibility - Energy and momentum equations of compressible fluid flows - Stagnation states, critical Mach number, Mach Angle, Mach waves and Mach cone-Effect of Mach number on compressibility-Measurements in compressible flow.

Lab1: Study of SRM supersonic wind tunnel and its instrumentations.

Lab2: Calibration of supersonic wind tunnel

Module-2 - Flow with Friction and Heat Transfer

15 Hour

Flow in constant area duct with Friction (Fanno flow)—Fanno curve and fanno flow equations, variation of flow properties, Flow in constant area duct with heat transfer (Rayleigh flow), Rayleigh line and Rayleigh flow equations, maximum heat transfer, flow with heating or cooling in ducts.

Lab 3: Experiment with constant area duct in open jet test facility

Lab 4: Determination of convective heat transfer coefficient over a flat plate by forced convection

Module-3 - Normal and Oblique Shocks

15 Hour

Equations of motion for a normal shock wave – Normal shock relations for a perfect gas –Hugoniot equation – Shock tube - Oblique shock relations – Shock polar -Supersonic flow over a wedge - Prandtl – Meyer relations—Applications.

Lab5: Study of various Supersonic flow visualization techniques and its applications.

Lab 6: Visualization of shock wave pattern on ramp model using Schlieren flow visualization technique

Theory of jet propulsion—Thrust equation—Thrust power and propulsive efficiency—Operating principle, cycle analysis and use of stagnation state performance of ramjet, pulsejet, turbojet, turbofan, and turbo propengines, thrust augmentation

- Lab 7: Thrust measurement of a Ramjet engine
- Lab 8: Characteristic plots of a free jet through a non-circular orifice

Module-5 – Space Propulsion 15 Hour

Types of rocket engines – Propellants – solid and liquid propellants -feeding systems – Ignition and combustion –Theory of rocket propulsion–Performance study–Staging–Terminal and characteristic velocity–specific impulse, Applications–spaceflights.

- Lab 9 : Solid Rocket motor propellant preparation
- Lab 10: Hybrid Rocket motor fuel grain preparation

	1.Anderson, J.D., "ModernCompressible flow", 3rdEdition, McGrawHill, 2003.	6. Zucrow. N. J., "Principles of Jet Propulsion and Gas Turbines", John Wiley, New York, 1970.
	2. Yahya,S.M., "Fundamentals of Compressible Flow", New Age International (P) Limited, New D	elhi, 7. Sutton. G. P., "Rocket Propulsion Ele <mark>ments", Jo</mark> hn Wiley, New York, 1986,.
Learning	1996.	8. Shapiro. A. H., "Dynamics and Therm <mark>odynamic</mark> s of Compressible fluid Flow",John Wiley,
Dogguroog	3. Ethirajan Rathakrishnan, "GasDynamics", 7th Edition, PHI Learning Pvt. Ltd.,2020.	New York, 1953.
Resources	4. Hill. P. and C. Peterson, "Mechanics and Thermodynamics of Propulsion", Addison-We	sley 9. Cohen.H., G.E.C. Rogers and Saravan <mark>amutto, "</mark> Gas Turbine Theory", Longman Group
	Publishing company, 199 <mark>2.</mark>	Ltd.,1980.
	5. Zucrow. N. J., "Aircraft and Missile Propulsion", Vol. 1 & II, John Wiley, 1975	10. Yahya, S.M, " Gas Tables", New Age Inte <mark>rnational</mark> Publishers, 2018

Learning Assessmen	nt 🦊 🏓		140 July 100	1004 8, 670.				
	-	- Earl V.	Continuous Learnin		Summative			
Bloom's Level of Thinking		CLA-1 Avera	Formative CLA-1 Average of unit test (45%)		Life-Long Learning CLA-2 (15%)		native amination eightage)	
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20 %	· /////	-	20 %	20%	-	
Level 2	Understand	20 %	- ///	-	20 %	20%	-	
Level 3	Apply	60 %	- 1/2/0	-	30 %	60%	-	
Level 4	Analyze				30 %	-	-	
Level 5	Evaluate		ADV TO	-	7	-	-	
Level 6	Create	/ / 1	LAIVIN LE	AD TEA		-	-	
	Total	110	00%	" L L 10	00%	10	0%	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. R.S .Praveen, VSSC, ISRO, Thiruvananthapuram	1. Dr.S.R.Chakravarthy, IIT Madras, Chennai	1. Dr. G. Saravanan, SRMIST
2. Dr .Lakshmi V.M., VSSC, ISRO, Thiruvananthapuram	2. Dr. Rajesh Sadanandan, IIST, Thiruvananthapuram	2. Dr. AMuthuram, SRMIST

Course Code	21ASC514T	Course Name	ATMOSPHERIC AND	SPACE FLIGHT MECHANICS	Course Category	С	PROFESSIONAL CORE	L T P C 3 0 0 3
Pre-requisite			Co- requisite		Progressive			

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil	
Course Offeri	ng Department	Aerospace E <mark>ngineering</mark>	Data Book / Codes / Standards		Nil	
			THE RESERVE OF THE PARTY OF			

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	acquire knowledge on the basic aspects of stability and control of an airplane about three axis.
CLR-2:	acquire adequate knowledge on various parameters that decide the stability level of an airplane.
CLR-3:	familiarize with the aspe <mark>cts of cont</mark> rol in longitudinal, lateral and directional modes.
CLR-4:	get introduced to the characteristics of various orbits and the importance of orbital elements.
CLR-5:	get familiarized with the basic aspects of satellite injection and the types of satellite perturbations.

Course Outcomes	At the end of this course, learners will be able to:	Progra	amme Out (PO)	comes
(CO):		1	2	3
CO-1:	determine the fixed neutral point and the stick fixed static margin.	-	-	3
CO-2:	describe the effec <mark>t of cha</mark> nge in cg on the aircraft stability.	-	-	3
CO-3:	apply the small disturbance equations of motion, and identify longitudinal and lateral sets of equations, construct state space models for longitudinal and lateral aircraft dynamics.	2	-	3
CO-4:	estimate the time and position of an object in various orbits.	2	2	3
CO-5:	acquire knowledge on the basic concepts of satellite injection and satellite perturbations.	-	-	3

Module-1 - Static Longitudinal Stability and Control

9 Hour

Static equilibrium and stability – Pitch stability of conventional and canard aircraft – control fixed neutral point and static margin – effect of fuselage and running propellers on pitch stability – control surface hinge moment – control free neutral point – limit on forward CG travel – maneuver stability: Pull – up & level turn – control force and trim tabs – control force for maneuver – measurement of neutral point and maneuver point by flight tests.

Module-2 - Static Lateral, Directional Stability and Control

9 Hour

Yaw and side slip, effect of wing sweep, wing dihedral and vertical tail on directional stability – rudder fixed and rudder free – yaw control – rudder sizing – pedal force - dihedral effect: contribution of various components- roll control.

Module-3 - Aircraft Dynamics

9 Hour

Rigid body equations of motion - Axes systems and their significance — Euler angles — linearization of longitudinal equations — force and moment derivatives — short period and phugoid approximations — pure pitching motion — linearization of equations for lateral — directional motion — roll, spiral and Dutch roll approximations- Pure rolling- Pure yawing — Inertia coupling.

Module-4 - Characteristics of Various Orbits

9 Hour

Properties of elliptic, Parabolic and hyperbolic properties in terms of orbital elements - relations between position and time - Barker's theorem - Whittaker's theory - Sphere of influence.

Module-5 - Satellite Injection and Satellite Perturbations

9 Hour

General aspects of satellite injection – satellite orbit transfer – various cases – orbit deviations due to injection errors – special and general perturbations – Cowell's method and Enake's method – method of variations of orbital elements – general perturbations approach.

Learning Resources

- 1. Michael V. Cook, "Flight Dynamics Principles", Second edition, Elsevier, 2007.
- 2. Nelson, RC, "Flight Stability & Automatic Control", Second edition, McGraw-Hill, 2017.
- 3. Perkins CD & Hage, RE, "Airplane performance, stability and control", Wiley India Pvt Ltd, 2011.
- Cornelisse, JW, Schoyer, HFR & Wakker, KF, "Rocket Propulsion and Space Dynamics", Pitman Publishing, 1979.
- Howard D. Curtis, "Orbital Mechanics for Engineering Students", 3rd Edition, ButterworthHeinemann, 2013.
- 6. Parker, ER, "Materials for Missiles and Spacecraft", Mc.Graw Hill Book Co. Inc., 1982.
- Suresh. BN & Sivan. K, "Integrated Design for Space Transportation System", Springer India, 2015.

ning Assessm		F. J.	_				
	Bloom's Level of T <mark>hinking</mark>	CLA-1 Avera	native ge of unit test %)	CL	n Learning A-2 0%)	Final Ex	mative ramination reightage)
		Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%		20%	77 July - Zea	20%	-
Level 2	Understand —	40%	MATERIAL TO	40%		40%	-
Level 3	Apply	40%	1944 A. S.	40%		40%	-
Level 4	Analyze	7 20 72	100000000000000000000000000000000000000			-	-
Level 5	Evaluate	- 100 Miles	and the profile	and the state of the state of the	F - L		-
Level 6	Create		The second second				-
•	To <mark>tal</mark> 💮	10) %	10	0 %	10	00 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Roshan Dinesh Kumar, GE Industry India Ltd., Bangalore	1. Dr. Lakshmana Dora C, IIT Hyderabad, Hyderabad	1. Dr. K. Allwy <mark>n, SRMI</mark> ST
2. Dr. Saurav Kumar Ghosh, CSIR-NAL, Bangalore	2. Dr. T Chandra Sekar, IIT Bombay. Mumbai	2. Dr. M. Vig <mark>nesh Kum</mark> ar, SRMIST
2. Dr. Saurav Kurriar Griosii, OSIK-IVAL, Bariyalore	z. Dr. i Ghanura Sekar, iri Bumbay. Mullibal	3. Dr. S. M <mark>. Aravind</mark> h Kumar, SRMIST

ACADEMIC CURRICULA

Aerospace Engineering

Professional Elective Courses

Regulations 2021

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India

Course	21ASE511J	Course	APPLIED COMPUTATIONAL FLUID DYNAMICS	Course	Е	PROFESSIONAL ELECTIVE	L	Т	Р	С	1
Code		Name	APPLIED COMPUTATIONAL FLUID DYNAMICS	Category			2	0	2	3	

Pre-requisite Courses	N	Co- requisite Courses	Nil	Progressive Courses	Nil	
Course Offering	Department	Aerospace Engineering	Data Book / Codes / Standards		Nil	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	derive the governing equations of fluid flows and heat transfer
CLR-2:	apply discretization methods to linearize the fluid flow equations
CLR-3:	gain knowledge in solving incompressible flows
CLR-4:	model fluid flow problem with heat transfer
CLR-5:	gain knowledge in solving compressible flows

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
		1	2	3		
CO-1:	identify physical and mathematical models for flow and heat transfer analysis	2	-	3		
CO-2:	apply discretization techniques to numerically solve transport equations	3	-	3		
CO-3:	solve incompressible fluid flows problems numerically	3	3	3		
CO-4:	predict numerical solutions of flows with heat transfer	3	3	3		
CO-5:	solve compressible flow problems	3	3	3		

Module-1: Governing Equations and Boundary Conditions

12 hour

Fundamental Approaches to problem solving Analytical, Experimental & Numerical, Computational Fluid Dynamics-Advantages—Applications-Processes, Reynolds transport theorem, Conservation of mass, Conservation of linear momentum: Navier-Stokes equation, Conservation of Energy, General scalar transport equation, Reynolds averaged Navier-Stokes equation, Selection of Physics and Mathematical models, Initial and boundary conditions

Module -2: Discretization Approaches and Numerical Solutions

12 hour

Overview of domain discretization, Equation Discretization using FVM, Convection -Diffusion Equation using FVM, Discretization of Unsteady problem—Implicit- Explicit Schemes, Solution of Discrete system, Stability, Convergence, Relaxation factors, Grid independent and time independent study, post-processing, turbulent flow modelling

Module -3: Incompressible Flow Computations

12 hour

Basics of Pressure-velocity coupling algorithm, Discretization of 2D incompressible continuity and momentum equations, Pressure correction equation, From formulation, SIMPLE Algorithm, Applications of SIMPLE, Overview of other pressure-velocity coupling algorithms, the basic structure of a CFD code-CFD Solution of Simple flows using ANSYS-FLUENT

Module -4: Flows with Heat Transfer

12 hour

Introduction to Heat Transfer Prediction, Heat Conduction in Solids, Natural Convection in Cavities- Laminar Flow- Turbulent Flow, Effects of Fluid Properties on Natural Convection, Simulation of Forced Convection Heat Transfer, Periodic Heat Transfer, Conjugate Heat Transfer

Module -5: Compressible Flow Simulations

12 hour

Mathematical modelling, Boundary conditions, solution methods, Compressible- Internal and external flows, Flow through C-D Nozzle, Supersonic flow over wedges and airfoils, supersonic jets

List of Recommended Practical Experiments/Exercises

- 1. Geometry and mesh generation for simple flow problems
- 2. Modelling laminar incompressible flow through 2D rectangular channel
- 3. Numerical simulation of incompressible flow through axisymmetric 2D pipe
- 4. Modelling of steady flow past 2D Cylinder
- 5. Numerical simulation of unsteady flow past 2D Cylinder
- 6. Grid independent study for flow past 2D Cylinder
- 7. Numerical simulation of subsonic flow over an airfoil
- 8. Numerical simulation of supersonic flow over an airfoil

- 9. Numerical simulation of supersonic flow over a wedge
- 10. Numerical simulation of turbulent incompressible flow through 2D rectangular channel
- 11. Numerical simulation of flow through nozzle
- 12. Numerical simulation of flow over wing
- 13. Numerical simulation of natural convection heat transfer in cavity Laminar
- 14. Numerical simulation of forced convection heat transfer
- 15. Numerical simulation of conjugate heat transfer
- 16. Fluid flow and heat transfer in a mixing elbow
- 17. Numerical simulation of high-speed jet

Learning
Learning Resources

- 1. Versteeg, H.K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics The finite volume method, Longman Scientific & Technical, 1995.
 2. Patankar, S.V., Numerical Heat Transfer & Fluid Flow, Hemisphere, 1980.
- 3. Hoffmann, K.A. and Chiang, S.T., Computational Fluid Dynamics for Engineers, Engineering Education Systems, 2000.
- 4. Tannehill, J.E., Anderson, D.A., and Pletcher, R.H., Computational Fluid Mechanics and Heat Transfer, 2nd ed., Taylor & Francis, 1997.
- 5. Anderson J.D., Computational Fluid Dynamics The basics with Applications, Mc Graw-Hill, 1995. 6. ANSYS Fluent Tutorial Guide, Release 18.0, Ansys Inc. 2017

Learning Assessme	ent	77 / 7		A. W. C.					
			Continuous Learnin	Cummativa					
	Blo <mark>om's</mark> Level of Thinking	Formative CLA-1 Average of unit test (40%)		Life Long Learning CLA-2 – (20%)		Summative Final Examination (40% weightage)			
		Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	- N. J N. J.	Control of the Control	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	-		
Level 2	Understand	40%		1 2 3 1 5 1 T	20%	40%	-		
Level 3	Apply	60%		/ · · · · · · · · · · · · · · · · · · ·	40%	60%	-		
Level 4	Analyze	7 3 1	- 1777	2 -	30%		-		
Level 5	Evaluate		- 11.77	-	10%		-		
Level 6	Create		- 1/4%	-	J 1. Y		-		
	Total	100) %	10	0 %	10 /	100 %		

Course Designers	The CADA Trans	>
Experts from Industry	Experts from Higher Technical Institutions	Interna <mark>l Experts</mark>
1. Dr. R. Krishnamurthy, DRDL- DRDO, Hyderabad	1. Dr. B. Premachandran, IIT Delhi	
2. Mr. Abhimanyu Singh, Ansys India, Bangaluru	2. Dr. M. Arun, National Institute of Technology (NIT), Karnataka	1. Dr. S. Senthilkumar, SRMIST, KTR

Course Code	21ASE512T	Course Name	AERODYNAMICS FOR PRACTIC	CAL APPLICATIONS	Course Category	E	PROFESSIONAL ELECTIVE	L 3	T P 0 0	C 3
Pre-requis	site	Nil	Co- requisite	Nil	Progress	sive	Nil			

Pre-requisite	Nii	Co- requisite	Nil Progressive	Alil
Courses	INII	Courses	Courses	IVII
Course Offering Department Aer		Aerospace Engineering	Data Book / Codes / Standards	Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	apply principles of aerodynamics in fields other than Aerospace
CLR-2:	examine the role of atmosphere in industrial aerodynamics
CLR-3:	illustrate the importance of aerodynamics in Wind Turbine blade design
CLR-4:	use the aerodynamic principles in the design of automobiles and Sports
CLR-5:	assess the effect of wind flow on buildings and its impact

Course Outcomes (CO):	At the end of this course, learners will be able to:	Progr	Programme Outcomes (PO)				
		1	2	3			
CO-1:	model the terrain and atmospheric boundary layer in a wind tunnel	2	-	3			
CO-2:	apply ae <mark>rodyna</mark> mics in the design of wind turbines	2	-	3			
CO-3:	apply ae <mark>rodyna</mark> mics in streamlining and Drag reduction in Automobiles	2	-	3			
CO-4:	gain knowledge of the fluid-structure interactions and Aerodynamics in sports	2	-	3			
CO-5:	use aero <mark>dynamic</mark> s in the design of buildings and ventilation	2	2	3			

Module-1: Wind and Atmospheric Boundary Layer

9 Hour

Atmospheric circulations, Types of winds - Global and Local, Terrain Types, Atmospheric Boundary Layer (ABL), Mean Velocity Profiles - Power Law and Log Law, Variation of wind velocity with height in ABL for different terrain types, Turbulence Intensity, Variation of Turbulence Intensity and Temperature with height in ABL, ABL simulation in Wind Tunnel, Environmental Wind Tunnels

Module-2: Wind Turbine Aerodynamics

9 Hour

Aerodynamics in Wind Turbine design, Wind Turbines - Classification, parts, advantages, and disadvantages, HAWTs and VAWTs, Dimensionless numbers - Power coefficient, Torque coefficient, Tip speed ratio and Solidity ratio, Betz limit, Power losses, Performance comparison of different wind turbine designs, Aerodynamic Power Control Techniques, Blade design, Wind turbine siting

Module-3: Ground Vehicle Aerodynamics

9 Hour

Effects of vehicle speed - Rolling resistance, Air resistance, Brief History - Four primary phases of car aerodynamics, Pressure distribution over cars, Aerodynamic forces on Automobiles, Lift, Drag and Moments, Sources of vortices in automobiles, Flow separation and wake dynamics, Aerodynamic coefficients on various vehicles, Common Aerodynamic Features and Improvements in a car, Aerodynamics of roofless vehicles, motor bikes, Trucks/Buses and Trains, Ahmed body – Generic automobile shape, Wind tunnel experiments and numerical simulations

Module-4: Sports Aerodynamics and Fluid-Structure Interactions

9 Hour

Introduction to sports aerodynamics, Aerodynamics of race cars, Ground effects, Down force generation, Frontal and rear wings, Aerodynamic braking - Spoilers, Aerodynamics of wheels, Aerodynamics of Cricket ball, Swing and Spin, Effect of dimples on golf ball, Vortex shedding, Strouhal number, Flow induced vibrations, Fluid-structure interactions, Effect of Reynolds number on wake, Aerodynamic flutter, Wake galloping, Vortex shedding control methods and CFD predictions

Module-5: Building Aerodynamics

9 Hour

Need for Building aerodynamics, Flow over a simplified building, Pressure distribution, Wind loads – TVL Formula, Low-rise buildings (LRB), Effects of Roof suction and corner vortices, High-rise buildings (HRB), Dynamic loads, Aerodynamic load mitigation techniques for LRB and HRB, funneling effect, Ventilation and HVAC, Architectural Aerodynamics, Wind catchers, Building codes, Loads on launch vehicles subjected to winds

Learning Resources

- 1. Tom Lawson, Building aerodynamics.: Imperial College Press, 2001.
- Erich Hau, Wind turbines: fundamentals, technologies, application, economics. Springer Science & Business Media, 2013.
- 3. Martin OL Hansen, Aerodynamics of wind turbines. Routledge, 2015
- 4. Joseph Katz, Automotive Aerodynamics, John Wiley & Sons, 2016.
- 5. Joseph Katz, Race Car Aerodynamics, Robert Bentley, 1995

- Hucho, Wolf-Heinrich, ed. Aerodynamics of road vehicles: from fluid mechanics to vehicle engineering. Elsevier, 2013.
- 7. Robert D Blevins, Flow-induced vibration. Van Nostrand Reinhold Co., 1977.
- 8. Helge Nørstrud, Sport aerodynamics. Springer Science & Business Media, 2009.

Learning Assessmen	nt		Y		16.73			
	Bloom's Level of Thinking	Continuous Learning Assessment (CLA) Formative CLA-1 Average of unit test (50%) Continuous Learning Assessment (CLA) Life-Long Learning CLA-2 (10%)		4-2	Summative Final Examination (40% weightage)			
			Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember		20%	William Comment St.	20%	· / - / - / - / - / - / - / - / - / - /	20%	-
Level 2	Understand		20%	Win 1987 1997	20%	- (20%	-
Level 3	Apply		60%	No. 12 to 19 to	-60%		60%	-
Level 4	Analyze		W. C.		1,5,1,000	-	9 -	-
Level 5	Evaluate		747, 452	The same will be			-	-
Level 6	Create		100					-
	Tot <u>al</u>		100	%	100) %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions Ir	nternal Experts
1. Dr. Saurav Kumar Ghosh, CSIR-NAL, Bangalore	1. Dr. Lakshmana Dora Chandrala, IIT Hyderabad, Hyderabad	1. Dr. K. K. <mark>Bharadw</mark> aj, SRMIST
2. Dr. Roshan Dinesh Kumar, GE Industry India Ltd.,	2. Dr. K. Maruthupandiyan, Institute of Aeronautical Engineering,	2. Dr. S. Senthilkumar, SRMIST
Bangalore	Hyderabad	

Course		Course	INSTRUMENTATION, MEASUREMENTS AND EXPERIMENTS IN	Course	_	PROFESSIONAL ELECTIVE	L	Τ	Ρ	С	1
Code	ZIASESISI	Name	FLUIDS	Category		PROFESSIONAL ELECTIVE	3	0	0	3	

Pre-requisite Courses	N	Co- requisite Courses	Nil Progressive Courses	Nil
Course Offerin	ng Department	Aerospace Engineering	Data Book / Codes / Standards	Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	describe the needs and objectives of experimental studies in fluids
CLR-2:	show the importance of different types of wind tunnels and their related instrumentation
CLR-3:	demonstrate the various fluid flow visualization and analogue methods in practice
CLR-4:	show the methods and instr <mark>uments u</mark> sed for pressure, velocity, and temperature measurements in fluids
CLR-5:	illustrate the data acquisition and processing, and the associated uncertainty in fluid flow measurements

Course Outcomes	At the end of this course, learners will be able to:		Programme Outcomes (PO)		
(CO):		1	2	3	
CO-1:	use the principles a <mark>nd worki</mark> ng of experimental methods in fluids	-	-	3	
CO-2:	examine the wind tunnel types and their associated design considerations and instrumentation	-	2	3	
CO-3:	apply flow visualization techniques and analogue methods to fluid flow experiments	2	-	3	
CO-4:	use the technique <mark>s involve</mark> d in pressure, velocity and temperature measurements in fluids	2	-	3	
CO-5:	predict the errors and uncertainty related to the acquired data in experiments in fluids	-	-	3	

Module-1: Experiments in Fluids 9 Hour

Fundamentals of fluid mechanics - Fluid properties, Fluid flow analysis, Basic laws, Kinematics of fluid flow, Potential flow, Viscous flows, Gas dynamics, Need and objectives of experimental study - Fluid mechanics measurements, Measurements systems, Quantitates associated with fluid flow measurements

Module-2: Wind Tunnels 9 Hour

Low-speed wind tunnels, High-speed wind tunnels, Hypersonic tunnels, Hypervelocity facilities, Instrumentation and calibration of wind tunnels, Wind tunnel balance, Losses in wind tunnels

Module-3: Flow Visualization and Analogue Methods 9 Hour

Visualization techniques - Smoke tunnel, Compressible flows - Shadowgraph, Schlieren and Interferometry, Particle image velocimetry, Water flow channel, Analogue methods - Hele-Shaw analogy, Hydraulic

analogy, Hydraulic jumps and their applications Module-4: Fluid Flow Measurements 9 Hour

Pressure measurement - Barometers, Pressure transducers, Pitot, Static and Pitot-static tubes, Velocity measurement - Laser doppler anemometer, Hot-wire anemometer, Fluid-jet anemometer, Particle image velocimetry. Temperature measurement - Thermometers, Thermocouples

Module-5: Data Acquisition and Processing 9 Hour

Data acquisition principle, Multiplexing, Data conversion, Personal computer hardware, Digitization errors, Uncertainty analysis - Estimation of measurement errors, Uncertainty estimation - Flow Mach number, Calculation

	1.	Ethirajan Rathakrishnan, "Instrumentation, Measurements, and Experiments in Fluids",	3.	Stefano Discetti & Andrea Ianiro, "Experimental Aerodynamics", CRC Press, 2016.
Learning		Second Edition, CRC Press, 2016.	4.	Bruno Chanetz, Jean Délery, Patrick Gilliéron, Patrick Gnemmi, Erwin R. Gowree &
Resources	2.	Cameron Tropea, Alexander L. Yarin & John F. Foss, "Springer Handbook of Experimental		Philippe Perrier, "Experimental Aerodynamics, An Introductory Guide", Springer,
		Fluid Mechanics", Springer, 2007.		2020

earning Assessme	ent		Continuous Learning	g Assessment (CLA)		_	
	Bloom's Level of Thinking	Form CLA-1 Averaç (50	ative ge of unit test	Life-Long CL	ı Learning A-2 0%)	Final Ex	mative amination eightage)
		Theory	Practice	Theory	Practice Practice	Theory	Practice
Level 1	Remember	20%		20%	2 - 1	20%	-
Level 2	Understand	20%	Description of the second	20%	- A- 10	20%	-
Level 3	Apply	60%	20 E 10 E 10	60%	(P)	60%	-
Level 4	Analyze	~ ·	3. Jan. 2777	A		0 -	-
Level 5	Evaluate			A 10	(-)	-	-
Level 6	Create			14424		-	-
	Tot <mark>al</mark>	100)%	10	0 %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
 Dr. Roshan Dinesh Kumar, GE Industry India Ltd., 	1. Dr. K. Maruthupandiyan, Institute of Aeronautical Engineering,	1. Dr. Aravind <mark>h Kuma</mark> r S.M., SRMIST
Bangalore	Hyderabad,	
2. Dr. Saurav Kumar Ghosh, CSIR-NAL, Bangalore,	2. Dr. Lakshmana Dora Chandrala, IIT Hyderabad,	2. Mr. Rajkumar S, SRMIST

Course	21ACEF1AT Course	ROCKET PROPUI SION ELEMENTS	Course _	PROFESSIONAL ELECTIVE	L	T	Р	С	
Code	Name	ROCKET PROPULSION ELEMENTS	Category	PROFESSIONAL ELECTIVE	3	0	0	3	

Pre-requisite Courses	Nil	Co- requisite Courses	Nil Progressive Courses	Nil
Course Offeri	ng Department	Aerospace Engi <mark>neering</mark>	Data Book / Codes / Standards	Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
	describe the working principle o <mark>f chemical</mark> rockets and advanced nozzles
CLR-2:	explain the configuration and <mark>analysis o</mark> f cryogenic engine
CLR-3:	explain the working principle, types, and applications of electrical rockets
	examine the principle and classification of nuclear and solar rockets
CLR-5:	acquire knowledge on other advanced non-chemical rockets

Course	At the end of this course, learners will be able to:		Programme Outcomes (PO)		
Outcomes (CO):			1	2	3
CO-1:	explain the equations and measurements of compressible flow		-	-	3
CO-2:	describe the configur <mark>ation, in</mark> sulation, and safety with cryogenic systems		-	-	3
CO-3:	explain the electrical rocket principle and its applications		2	-	3
CO-4:	describe the perform <mark>ance an</mark> alysis of nuclear rockets and principle of solar rockets		2	-	3
CO-5:	describe the other ad <mark>vanced r</mark> ocket propulsion concepts		2	-	3

Module-1 - Chemical Rockets 9 Hour

Basic principles of chemical thermodynamics-basic principle of gas dynamics- Ramjets and scramjets, ram rockets, space planes, Solid rocket motors, Liquid rocket engines, Hybrid propellants rocket propulsion, , Advanced rocket Nozzle-Extendible Nozzle, Dual Bell-Shaped Nozzle, Expansion—Deflection Nozzle, Aerospike Nozzle.

Module-2 - Cryogenic Engines 9 Hour

Cryogenic and semi-cryogenic Engines -Basic configuration, Cryogenic Fluids, Insulation, Cryogenic instrumentation, Cryogenic equipment and cryogenic systems analysis, Safety with cryogenic systems.

Module-3 - Electrical Rockets 9 Hour

Introduction, Basic principles of electrical rocket engine, Classifications of electrical Rockets, Background Physics of Electrical Rockets, Electrothermal thrusters-Electrostatic thrusters, Electromagnetic thruster, Applications of electric propulsion. Electric Power Generation.

Module-4 - Nuclear Rocket Engines and Solar Energy Rockets

9 Hour

Nuclear thermal rockets-Solid core- Classification and performance analysis of nuclear fission and fusion rockets-Liquid core, Gas core, Operational issues, Solar thermal collector, Solar sail, Photon based engines.

Module-5 - Other Advanced Rocket Propulsion

9 Hour

Beam-powered propulsion-Laser rockets, Rotating Detonation Rocket Engine, Tether Propulsion, Green Chemical Propulsion, Other advanced rocket propulsion concepts.

Learning Resources	 Y.M. Timnat, "Advanced Chemical Rocket Propulsion", Academic Press, 1987. D.P. Mishra, "Fundamentals of Rocket Propulsion", 1st Edition, CRC Press, 2017. 	 Giovanni Vulpetti, Les Johnson & Gregory L. Matloff, "Solar Sails: A Novel Approach to Interplanetary Travel", 2nd Edition, Springer-Praxis Books In Space Exploration, 2015. Dan M. Goebel & Ira Katz, "Fundamentals of Electric Propulsion: Ion and Hall Thrusters", 1st Edition, Wiley, 2008. W.H.T. Loh, "Jet, Rocket, Nuclear, Ion and Electric Propulsion: Theory and Design", Springer- Verlag Newyork Inc, 1968.
-----------------------	--	--

	Bloom's Level of Thinking	Continuous Learning Formative CLA-1 Average of unit test (50%)		CL	g Learning LA-2 0%)	Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	25.2.50	20%	(P)	20%	-	
Level 2	Understand	20%	FC 1-1 979.7	20%	- VA	20%	-	
Level 3	Apply	60%		60%	(-4,	60%	-	
Level 4	Analyze		医内侧 使进行工作	1945/24		-	-	
Level 5	Evaluate	-	Carlotte Carlotte	1000		-	-	
Level 6	Create	- 1	A Comment of the Comm				-	
	Total	10	00%	2-1 2 10	00%	10	00%	
D	i -		AR - AR - TEL	No Park	-72			

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. RS . Praveen, VSSC, ISRO, Thiruvananthapuram	1. Dr.S.R.Chakravarthy, IIT Madras, Chennai	1. Dr. G. Saravanan, SRMIST
2. Dr. Lakshmi VM, VSSC, ISRO, Thiruvananthapuram	2. Dr. Rajesh Sadanandan, IIST, Thiruvananthapuram	2. Dr. A. Muthuram, SRMIST

Course		urse	ADVANCED PROPIII SION SYSTEMS	Course	_	PROFESSIONAL ELECTIVE	L	Τ	Ρ	С	
Code	Na Na	me	ADVANCED PROPULSION STSTEINS	Category		PROFESSIONAL ELECTIVE	3	0	0	3	

Pre-requisite Nil Courses	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department A	erospace Engineering	Data Book / Codes / Standards		Nil

THE PARTY OF THE P

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	explain the basics of advanced propulsion systems and it's applications
CLR-2:	predict the performance of electrothermal and electrostatic rocket propulsion systems
CLR-3:	explain the operating principle of electromagnetic rocket thruster
CLR-4:	describe the working of nuclear propulsion systems
CLR-5:	explain the solar rocket propulsion systems

Course Outcomes	At the end of this course, learners will be able to:	Progra	amme Out (PO)	comes
(CO):		1	2	3
CO-1:	describe the various advanced rocket propulsion systems	-	2	3
CO-2:	explain the working principle of electrothermal and electrostatic thruster	-	-	3
CO-3:	describe the different electromagnetic thrusters.	2	-	3
CO-4:	explain the operatio <mark>n of nuc</mark> lear rockets.	2	-	3
CO-5:	gain knowledge on <mark>various s</mark> olar rocket systems	2	-	3

Module-1: Basic Concepts of Advanced Propulsion Systems

9 Hour

Advanced propulsion systems - Classifications- Electrothermal, Electrostatic and Electromagnetic-Nuclear propulsion- Solar Propulsion-Advantages and Disadvantages-Applications- Ramjets and scramjets, ram rockets-Tether Propulsion - Green Chemical Propulsion

Module-2: Electrothermal and Electrostatic Thrusters

9 Hour

Arcjets- Introduction to arc discharges and Cathodes-Electrode phenomena, Description, Operating Principle-Resistojets- Description, Operating Principle Ionization. Introduction to rarefied gases. Charged particle motion. -Electrostatic acceleration: 1-D space charge model-ion production-ion Thrusters-Operating Principle-Beam Optic Beam Neutralization. -Performance Parameters - Hall Thrusters- Hall Effect Unsteady electromagnetic acceleration-Hall Current Thrusters- Operating Principle

Module-3: Electromagnetic Propulsion

поur

Electromagnetic acceleration-Lorentz Force-MHD ch<mark>annel flow -</mark>Magneto Plasma Dynamic (MPD) Thrusters- Description and thrust derivation -Operating Principle-MPD Thruster Design -performance calculation. -Introduction to plasma physics -Ohm's Law for plasma-Pulsed plasma thruster (PPT)- Description-Pulsed plasma thruster (PPT)- Operating Principle-Electric propulsion systems and spacecraft integration. -Overview of advanced concepts-Beamed energy-Fusion propulsion, Antimatter Propulsion

Module-4: Nuclear Rocket Propulsion

9 Hour

Introduction-Nuclear reactions-Nuclear rocket engine design and performance – nuclear rocket reactors -Nuclear rocket nozzles –clear rocket engine control – radioisotope propulsion -Basic thruster configurations – thruster technology -Heat source development – nozzle development -Nozzle performance of radioisotope-propulsion systems.

Module-5: Solar Propulsion System

9 Hour

Introduction-Solar energy technology-Solar radiation- Solar Collectors-Solar Thermal System-Operating Principle, Performance-Solar Electric Propulsion-Operating Principle, Performance-Solar Sail

	1. Physics of Electric Propulsion, Robert Jahn, McGraw-Hill, 1968.	5. Introduction to Plasma Physics and Controlled Fusion 2nd ed., F. F. Chen, Plenum Press,
	2. Mechanics and Thermodynamics of Propulsion 2nd ed., P. Hill and C. Peterson, Addison-Wesley	1985
Learning	Publishing Company, 1992 ISBN 0-201-14659-2.	6. Fundamentals of Plasma Physics 3rd ed., J.A. Bittencourt, Springer Publishing, 2004
Resourc	s 3. G.P. Sutton, "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 1998.	7. J. Dewar, To the End of the Solar System, The Story of the Nuclear Rocket, The University
	4. Space Propulsion Analysis and Design, R. W. Humble, G. N. Henry and W. J. Larson, McGrawHill	Press of Kentucky, 2004, ISBN 0-8131-2267-
	Inc, 1995	

Learning Assessme	ent	<u> </u>	CHIEN	11.12					
			Continuous Learnin	g Assessment (CLA)		Summative Final Examination (40% weightage)			
	Bloom's Level of Thinking	CLA-1 Avera	native ge of unit test 0%)	CL	Learning A-2 0%)				
		Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	19 P. P. P. B.	20%		20%	-		
Level 2	Understand	20%	20.5	20%		20%	-		
Level 3	Apply	60%		60%	(- A)	60%	-		
Level 4	Analyze	- A		1 3 44 5 4 1		-	-		
Level 5	Evaluate	4	Carlot Carlot Carlot			-	-		
Level 6	Create		100 100 100		. 7	<u> </u>	-		
	To <mark>tal</mark>	10	0%	100	0 %	100) %		

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. RS .Praveen, VSSC, ISRO,Thiruvananthapuram	1. Dr. S. R. Chakravarthy, IIT Madras, Chennai	1. Dr. G. Saravanan, SRMIST
2. Dr .Lakshmi V M, VSSC, ISRO, Thiruv <mark>anantha</mark> puram	2. Dr. Rajesh Sadanandan, IIST, Thiruvananthapuram	2. Dr. A. Muthuram, SRMIST

Course Code	21ASE516T	Course Name	EXPERIMENTAL STRUCTURAL MECHANICS	Course Category	Е	PROFESSIONAL ELECTIVE	<u>L</u>	T 0	P 0	3	
				****							1

Pre-requisi Courses	te N	Co- requisite Courses	 Nil	Progressive Courses		Nil
Course Of	fering Department	Aerospace Engi <mark>neeri</mark> ng	Data Book / Codes / Standards		<u>. "+,</u>	Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	explain the principles of measurement and instrumentation
CLR-2:	distinguish the experimental methods involved in mechanics
CLR-3:	analyze the structural integ <mark>rity using</mark> fracture mechanics principles
CLR-4:	examine the principles of impact mechanics to predict the structural response
CLR-5:	employ numerical methods to simulate dynamic behavior and predict structural responses

Course Outcomes	At the end of this course, learners will be able to:	Progra	amme Out (PO)	comes
(CO):		1	2	3
CO-1:	describe the principles of measurement and instrumentation	-	-	3
CO-2:	classify various exp <mark>erimenta</mark> l techniques in mechanics	-	-	3
CO-3:	apply fracture mechanics principle to assess the integrity of engineering structures	2	1	3
CO-4:	apply concepts of impact mechanics to predict the response of structure subjected to impact loading.	2	1	3
CO-5:	analyze structural responses to dynamic loads using mathematical and computational techniques.	2	2	3

Module-1 - Measurements and Instrume<mark>ntation</mark>

Principles of measurements - Conventional measurement methods - Sensors and transducers - Calibration - Fundamentals of data acquisition and processing - Signal conditioning - Statistical analysis of experimental data - Regression analysis - Estimation of measurement errors - Uncertainty calculation

Module-2 - Experimental Mechanics

Displacement measurement: Intrusive and non-intrusive methods - Stress and strain measurements - Strain gauges: Mechanical, electrical, optical, acoustic, pneumatic and other types of strain gauges - Photoelasticity - Moiré - Holography - Speckle pattern interferometry - Digital image correlation technique - Recent advancements in experimental techniques - Testing and analysis of metal and composite specimens

9 Hour

Linear elastic fracture mechanics - Crack growth and fracture mechanisms - Energy release rate - Stress intensity factor - Test methods for fracture toughness - Fatigue and damage tolerance in aerospace structures - Fatigue mechanism - Fatigue properties - S-N curve - Prediction of fatigue life in metals and composites

Module-4 - Impact Mechanics 9 Hour

Propagation of 1D stress pulse - Coaxial collision of bars, Reflection and superposition - Navier's equations - Dilatational and shear waves - Rayleigh and Lamb waves - Quasi-static material test - Pendulum impact test - Drop weight impact test - Split-Hopkinson's bar test - Taylor impact test - Dynamic buckling of beams

Module-5 – Structural Dynamics 9 Hour

Basic elements of vibration - Degrees of freedom - Equations of motion using Newton's laws and Lagrange equations - Free and forced vibration - Damped and undamped systems - Natural frequency - Multi-degree of freedom systems - Mode shapes - Continuous systems - Vibrations of rods, strings, beams, and plates - Shake table tests - Experimental modal analysis - Structural health monitoring and damage detection

9 Hour

9 Hour

	1. Timoshenko S P & Goodier J N, "Theory of Elasticity", Wiley, 2016. 2. Srinath L S, Advanced mechanics of solids, McGraw Hill, 2017	6. C. Lakshmana Rao, V. Narayanamurthy, K. R. Y. Simha, "Applied Impact Mechanics", Wiley, 2016
Learning Resources	 Dally, J.W., and Riley, W.F., "Experimental Stress Analysis", McGraw Hill Inc., New York, 1978 S Suresh, Fatigue of Materials, Cambridge University Press, 1991. TL Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd Edition, CRC Press, 2005. 	7. W.J. Stronge, "Impact Mechanics", Cambridge University Press, 2010 8. L. Meirovitch, Elements of Vibration Analysis, 2nd ed. McGraw-Hill Book Co., 1988 9. W. Weaver, S.P. Timoshenko and D.H. Young, Vibration Problems in Engineering, 5th ed., John Wiley & Sons, 1990

arning Assessme	ing Assessment Continuous Learning Assessment (CLA)							
	Bloom's Level of Thinking	CLA-1 Avera	native age of unit test 0%)	Life-Long CLA (10)	1-2	Final Ex	mative amination eightage)	
	/ 3 /	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	F 2777	20%	- V	20%	-	
Level 2	Understand	20%		20%	(-/,)	20%	-	
Level 3	Apply	60%	3 (4) 18-3-4 (5)	60%		60%	-	
Level 4	Analyze	-	A TOTAL PROPERTY.	- C C C C C C C C		-	-	
Level 5	Evaluate	- 1	A STATE OF THE STATE OF	- 18 July			-	
Level 6	Create		181 1 1 July 9/	Sec. 1 30. 75		-	-	
	Total —	10	00%	100	%	10	0 %	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. D. Saji, National Aerospace Laboratories, Bangalore	Dr. V. Arumugam, Madras Institute of Technology, Chennai	1. Dr. S. Gurusideswar, SRMIST
2. Manoj Kumar Buragohain, Defense Re <mark>search a</mark> nd	1. Dr. K. Vadivuchezhian, National Institute of Technology Karnataka,	2. Dr. K. Saravanak <mark>umar, S</mark> RMIST
Development Organization, Hyderabad	Surathkal	7 ∀ ⊃ 2

Course	21ACE517T	Course	ANALYSIS AND DESIGN OF COMPOSITE STRUCTURES	Course	Е	E PROFESSIONAL ELECTIVE	L	T	Р	С	1
Code	21ASE5171	Name	ANALYSIS AND DESIGN OF COMPOSITE STRUCTURES	Category			3	0	0	3	1

Pre-requisite Courses	N		Nil	Progressive Courses	Nil
Course Offeri	ng Department	Aerospace Enginee <mark>ring</mark>	Data Book / Codes / Standards		Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	describe the key factors influencing the selection of composite materials for aerospace components and structures
CLR-2:	estimate the elastic properties of a lamina using micromechanics approach
CLR-3:	apply various failure theories to predict the strength of an orthotropic lamina
CLR-4:	determine the stress and strain in composite materials using classical laminate theory
CLR-5:	evaluate the structural response of composite beams and plates subjected to bending and buckling.

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
, ,		1	2	3	
CO-1:	examine the fundamentals and properties of composite materials for aerospace applications.	-	-	3	
CO-2:	evaluate the elastic properties of a lamina using micromechanics approach	2	-	3	
CO-3:	analyze the strength of an orthotropic lamina using different failure theories	2	2	3	
CO-4:	evaluat <mark>e the stre</mark> ss and strain of a composite laminate	2	2	3	
CO-5:	examine the behavior of composite beams and plates	2	-	3	

Module-1 - Introduction to Composite Materials

9 Hour

History of composite materials - Significance - Classification - Fibers - Types - Properties - Fabrication of fibers - Polymers - Thermosetting and Thermoplastic Polymers - Properties - Fabrication techniques of fiber reinforced polymers - Scope of composite materials for various aerospace applications - Repair and recycling of composite materials

Module-2 - Micromechanics Approach

9 Hour

Volume and weight fractions - Minimum and cr<mark>itical fibe</mark>r volume fractions – Longitudinal and transverse behaviour of unidirectional lamina - Factors influencing strength and stiffness – Prediction of elastic properties using micromechanics – Typical unidirectional fiber composite properties – Analysis of a lamina using modern tools

Module-3 - Macromechanics Approach

9 Hour

Generalized Hooke's law - Stiffness and compliance matrices - Orthotropic material - Specially orthotropic material - Transversely isotropic material - Plane stress problem - Stress and strain transformations - Transformation of stiffness and compliance matrices - Analysis of lamina - Strength of an orthotropic lamina using different failure theories - Prediction of composite laminate failure using modern tools

Module-4 - Analysis of Composite Laminates

9 Hour

Laminate - Construction and properties of special laminates - Classical laminate theory - Stiffness matrices - Determination of stresses and strains - Hygrothermal stresses - Analysis of laminates after initial failure - Stress analysis of a composite laminate using modern tools

Module-5 – Stress Analysis of Composite Beams and Plates

9 Hour

Design consideration – Mechanical properties of composite materials - Analysis of composite beams – Thin-walled composite beams – Bending and Buckling analysis of composite plates - Analysis of sandwich plates - Inter-laminar stresses - Delamination models - Preliminary design of composite structures for aerospace applications - Composite tailoring and design issues – Future scope for composites research

 rning ources	 Autar K Kaw, "Mechanics of Composite Materials" CRC Press, Taylor and Francis Group 2005. Gibson, R.F. Principles of Composite Material Mechanics (2nd ed.). CRC Press. 2007. Robert M. Jones, "Mechanics of Composite Materials", CRC Press, 2nd Edition, 2006. B.D. Agarwal and L.J. Broutman, "Analysis and Performance of fiber composites", John-Wiley and Sons. 	 I. M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials, Oxford University Press, 1994 G. G. Lubin, Handbook of Composites, Van Nostrand Reinhold, 1982 J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second Edition, CRC Press, 2003 Buragohain, M.K. Composite Structures: Design, Mechanics, Analysis,
	of EMOV	Manufacturing, and Testing (1st ed.). CRC Press. 2017

arning Assessme	ent			344			
	Bloom's Level of Thinking	Continuous Learning Formative CLA-1 Average of unit test (50%)		Life-Long Learning CLA-2 (10%)		Summative Final Examination (40% weightage)	
	/ 3 /	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	N -	50 Fu 500	21 - 171-		-	-
Level 2	Understand	40%		40%	(-4, 1	40%	-
Level 3	Apply	60%	15 TAL WEST 1 1	60%		60%	-
Level 4	Analyze	-	A Page 1	10 mm		-	-
Level 5	Evaluate		A STATE OF THE STA	- 18 (19)	1 - 7	9 -	-
Level 6	Create	A	William States to 1	20 1 30 TV	1 - 1	-	-
	Total —	10	00%	100 %	6	10	0 %

Course Designers	 March 1987 (1987) 1987 (1987) 200 	
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. D. Saji, National Aerospace Laboratories, Bangalore	Dr. V. Arumugam, Madras Institute of Technology, Chennai	1. Dr. K. Saravanak <mark>umar, SR</mark> MIST
2. Manoj Kumar Buragohain, Defense Re <mark>search a</mark> nd	2. Dr. K. Vadivuchezhian, National Institute of Technology Karnataka,	2. Dr. S. Gurusides <mark>war, SRM</mark> IST
Development Organization, Hyderabad	Surathkal	V V) (2)

Course	21ASE611T Course	ADDI IED EI ICHT MECHANICS	Course _	PROFESSIONAL ELECTIVE	L	Т	Р	С
Code	Name	APPLIED FLIGHT MECHANICS	Category		3	0	0	3

Pre-requisite Courses	Ni	Co- requisite Courses	Nil Progressive Courses	Nil
Course Offer	ing Department	Aerospace Engineering	Data Book / Codes / Standards	Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	understand the principles and concepts of control and maneuverability in aircraft.
CLR-2:	comprehend the fundamentals o <mark>f control re</mark> sponse and flight simulation.
CLR-3:	evaluate stability and control through routine wind tunnel and flight tests.
CLR-4:	explore the design considerations for achieving longitudinal and lateral stability.
CLR-5:	understand stability problems associated with unconventional aircraft configurations.

Course	At the end of this course, learners will be able to:	Progra	amme Out (PO)	comes
Outcomes (CO):		1	2	3
CO-1:	understand factors inf <mark>luencing</mark> control and maneuverability.	-	-	3
CO-2:	interpret pilot opinions, predict dynamic handling, analyze control response, and apply flight simulation techniques.	2	-	3
CO-3:	facilitate wind tunnel and flight tests, interpret data, and understand pilot response characteristics.	2	-	3
CO-4:	assess longitudinal and lateral stability, evaluate design parameters, and analyze stability implications.	2	-	3
CO-5:	gain knowledge on stability challenges in unconventional aircraft configurations and propulsion systems.	2	-	3

Module-1 - Control and Maneuverability

9 Hour

Longitudinal Control and Maneuverability - Effects of Structural Flexibility - Control Force and Trim Tabs - Stick-Free Neutral and Maneuver Points - Ground Effect, Elevator Sizing, and CG Limits - Stall Recovery - Lateral Control and Maneuverability - Aileron Reversal - Other Control Surface Configurations - Airplane Spin

Module-2 - Control Response and Flight Simulation

9 Hour

Pilot Opinion - Dynamic Handling Quality Prediction - Response to Control Inputs - Nonlinear Effects and Longitudinal-Lateral Coupling - Euler Angle Formulations - Direction-Cosine Formulation - Euler Axis Formulation - The Euler-Rodrigues Quaternion Formulation.

Module-3 - Testing for Stability and Control

9 Hour

Routine low speed wind tunnel tests - Scale effect - Wind tunnel tests at high subsonic and supersonic speeds - Miscellaneous tunnel tests - Routine flight tests - General handling tests - Spinning tests - Flight tests at high speeds - Miscellaneous flight research - Pilot opinion and pilot response characteristics.

Module-4 - Stability and Design

9 Hour

Longitudinal stability and control - Position of the center of gravity - Tailplane section, planform and position - Tail volume - Stick free stability - elevator forces - Aerodynamic servo-controls - Powered controls - Maneuverability, Effects of compressibility and distortion - Lateral stability and control - Fin section, planform and position - Fin volume and wing dihedral - Rudder design - Rudder free stability - Rudder forces - Aileron forces

Module-5 – Stability Problems of Unconventional Aircraft

9 Hour

Tailless aircraft - Tail-first aircraft - Aircraft with variable wing sweep - Very high-altitude aircraft - Vertical-take-off aircraft - Tail sitting aircraft - Tilting wing aircraft - Aircraft with deflected propeller slipstream - Aircraft with deflected prop

	1.	Warren F. Phillips, "Mechanics of Flight", Second edition, John Wiley & Sons Inc., 2009.	3.	Nelson, RC, "Flight Stability & Automatic Control", Second edition, McGraw-Hill,
Learning	2.	A. W. Babister, "Aircraft Stability and Control", Pergamon Press, 1961.		2017.
Resources			4.	Perkins CD & Hage, RE, "Airplane performance, stability and control", Wiley India Pvt
				Ltd, 2011.

			Continuous Learning Assessment (CLA)				0		
	Bloom's Level of Thinking	Formative CLA-1 Average of unit test (50%)		Life-Long Learning CLA-2 (10%)		Summative Final Examination (40% weightage)			
	/	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	A THE R. LEWIS	20%	- A- V	20%	-		
Level 2	Understand	40%	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40%	(1952) T	40%	-		
Level 3	Apply	40%	150 July 1776	40%		40%	-		
Level 4	Analyze			Marie Tra	(-4)	-	-		
Level 5	Evaluate	-	2004/09/2015 11:55	34550		-	-		
Level 6	Create		Carlotte Carlotte			-	-		
	Tot <u>al</u>	100	0 %	10	0 %	10	00 %		

Course Designers	- 1 : 100 (1998) 100 (1997) - 100 (1997) - 100 (1997) - 100 (1997) - 100 (1997) - 100 (1997) - 100 (1997)	
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Roshan Dinesh Kumar, GE Industry India Ltd., Bangalore	1. Dr. Lakshmana Dora C, IIT Hyderabad, Hyderabad	1. Dr. M. Vignesh Ku <mark>mar, SR</mark> MIST
2. Dr. Sauray Kumar Ghosh, CSIR-NAL, Bangalore	2. Dr. T Chandra Sekar, IIT Bombay, Mumbai	2. Dr. K. Allwyn, SR <mark>MIS</mark> T

Course	21ASF612T	Course	HYDEDSONIC AEDOTHEDMODYNAMICS FOR SDACE VEHICLES	Course	Е	PROFESSIONAL ELECTIVE	L	Τ	Р	С
Code	ZIASEUIZI	Name	TITPERSONIC AEROTTIERWOOD INAMILES FOR SPACE VEHICLES	Category	E	PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	N	Co- requisite Courses	Nil Progressive Courses	Nil
Course Offeri	ng Department	Aerospace Engineering	Data Book / Codes / Standards	Gas Tables

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	explain the significance of hypersonic flow and it's characteristics
CLR-2:	determine the flow properties through shockwave and expansion wave
CLR-3:	describe the approximate method, hypersonic small disturbance equation for inviscid flow.
CLR-4:	explain the boundary layer equations and simulation technique for hypersonic viscous flow.
CLR-5:	describe the aerodynamic heating and role of thermal protection system.

Course Outcomes	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
(CO):		1	2	3	
CO-1:	define hypersonic flow and importance characteristics of hypersonic flow.	-	-	3	
CO-2:	describe shock-wave and expansion-wave relations for hypersonic flow	-	-	3	
CO-3:	illustrate the various simplified method for hypersonic inviscid flow.	2	-	3	
CO-4:	examine the hypersonic transition and role of hypersonic shock-wave boundary layer interaction	2	2	3	
	describe the aerodynamic heating and thermal protection system	1	1	3	

Module-1 - Basics of Hypersonic Flows

9 Hour

Definition, fluid flow regimes, importance and characteristics of hypersonic flow. Historical development and key milestones in hypersonic aerothermodynamics. Challenges and unique features of hypersonic aerodynamics. High temperature flow and communication blackout. Rarefied gas dynamics and its significance at hypersonic speeds.

Module-2 - Hypersonic Shock-Wave and Expansion Wave

9 Hour

Shockwave definition, types. Basics of hypersonic shock relations, the relationship between Mach number, shock angle, and deflection angle. Shockwave relations in terms of the hypersonic similarity parameter and hypersonic expansion-wave relations.

Module-3 - Inviscid Hypersonic Flows

9 Hour

Newtonian flow model, Modified Newtonian theory, Mach-number independence principle, hypersonic small disturbance equation, hypersonic equivalence principle, blast-wave theory, Shock-shock interactions in hypersonic flow and different types of shock-shock interactions. CFD techniques for hypersonic inviscid flow.

Module-4 - Viscous Hypersonic Flows

9 Hour

Governing differential equations, boundary layer and it's equation for hypersonic flow, Hypersonic transition, turbulent boundary layer. Hypersonic shock-wave/boundary-layer interactions. Computational methods for simulating hypersonic viscous flow.

Module-5 – Aerodynamic Heating and Thermal Protection Systems

9 Hour

Aerodynamic heating: sources, mechanism. hypersonic aerodynamic heating and its effects on entropy layer. Types of thermal protection systems (TPS) and their design considerations, Materials used in TPS, Case studies of TPS in hypersonic vehicles.

Learning Resources
Resources

- 1. Anderson Jr, John D. Hypersonic and high-temperature gas dynamics. American Institute of 4. Fletcher, Leroy S., ed. Aerodynamic heating and thermal protection systems. American Aeronautics and Astronautics, 2006.

- Institute of Aeronautics and Astronautics, 1978.
- Bertin, J. J. "Hypersonic Aerothermodynamics, AIAA, Education Series, Washington, D." (1994)
 Anderson Jr, John D. Modern compressible flow: with historical perspective. McGraw-Hill, 2020.

	Bloom's Level of Thinking	Continuous Learning As Formative CLA-1 Average of unit test (50%)		g Assessment (CLA) Life-Long Learning CLA-2 (10%)		Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%		20%	7 2 - 1	20%	-	
Level 2	Understand	30%	100 PT 100 PT	30%	4 4- 0	30%	-	
Level 3	Apply	50%	20 E 10 C G	50%	A 100 TO	50%	-	
Level 4	Analyze		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	71 - T-3		-	-	
Level 5	Evaluate			- Marie 17	- 4	-	-	
Level 6	Create		a de region d	i i i i i i i i i i i i i i i i i i i		-	-	
	Tot <mark>al </mark>	10	0%	10	00 %	10	0 %	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Roshan Dinesh Kumar, GE Industry India Ltd., Bangalore	1. Dr. Lakshmana Dora C, IIT Hyderabad, Hyderabad	1. Dr. Malaikannan G <mark>, SRMIS</mark> T
2. Dr. Saurav Kumar Ghosh, CSIR-NAL, Bangalore	2. Dr. T Chandra Sekar, IIT Bombay, Mumbai	2. Dr. Aravindh Kum <mark>ar S M, S</mark> RMIST

Course	21ASE613T	Course	CRYOGENIC SYSTEMS	Course	Г	PROFESSIONAL ELECTIVE	L	Т	Р	С
Code	21A3E0131	Name	CRTOGENIC STSTEIVIS	Category		PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	N	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offer	ng Department	Aerospace Engineering	Data Book / Codes / Standards		Nil

THE RESERVE

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	explain the basics of cryogenic systems and it's applications
CLR-2:	predict the performance of Gas-Liquefaction Systems
CLR-3:	explain the various Cryo-coolers and gas Refrigeration Systems
CLR-4:	describe the different methods of gas separation and Cryo pumping
CLR-5:	apply the design aspects of cryogenic fluid storage and transfer lines and insulations

Course Outcomes	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
(CO):		1	2	3		
CO-1:	describe the Cryogenic systems	-	-	3		
CO-2:	evaluate the perform <mark>ance of</mark> Gas-Liquefaction Systems	2	1	3		
CO-3:	describe the variou <mark>s cryo-co</mark> olers and gas Refrigeration Systems performance	1	-	3		
CO-4:	explain the various <mark>gas sepa</mark> ration and cryopumping	2	-	3		
CO-5:	examine the variou <mark>s cryoge</mark> nic fluid transfer systems and insulation methods	2	2	3		

Module-1 - Cryogenic Fluids 9 Hour

Cryogenic fluids - Liquid hydrogen, liquid oxygen, liquid nitrogen, liquid helium- Properties of cryogenic fluids at cryogenic temperature - superfluidity -mechanical, thermal, electrical and magnetic properties-superconductivity

Module-2 - Gas Liquefaction Systems

9 Hour

Gas Liquefaction systems- Thermodynamics of gas liquefaction- liquefaction cycles -Joule Thomson effect, Joule Thomson Coefficient, Linde –Hampson System, Claude Liquefaction System, Heylandt System

9 Hour

Cryocoolers- Introduction, Classification of Cryocoolers, Stirling Cryo – cooler, Gifford-McMahon Cry cooler, Gas Cycle Refrigeration system- Classification of Gas Cycle refrigeration, Pulse tube refrigerator, Solvay cycle refrigerator, Vuilleumier refrigerator, Cryogenic regenerators

Module-4 - Thermodynamic Ideal Gas Separation System and Vacuum Technology

9 Hour

Thermodynamic ideal Gas separation system, Principles of gas separation-various adsorbents, salient features – properties, determination of mass of absorbents for the adsorption of gases, Physical principles of adsorption-BET equation for single and multiple layer, Use of sorption process in cryogenics static and dynamic arrangement for the sorption processes, Adsorption columns Linde single column and double column gas separation-Vacuum Technology-Introduction, Production of high vacuum, Flow Regimes in Vacuum, Conductance in Vacuum, Pressure drop-Slip flow and mixed flow

Module-5 - Cryogenic Fluid Transfer Systems and Cryogenic Insulation

9 Hour

Cryogenic fluid storage vessels, Cryogenic fluid transfer system Thermocouples, platinum resistance and semiconductor thermometry. Cool down of cryogenic transfer lines, frost phenomena, cryogenic insulation. in engineering -Cryogenic Insulation, Evacuated powder insulation, Opacified powder insulation, Gas filled powders Multilayer super-insulation, Fibrous materials Multilayer super-insulation, Cryogenic rockets, space simulation chamber

Learning Resources	1. 2. 3.	Randall F. Barron., "Cryogenic Systems", Oxford University, Second edition, 1985 Walker.G, "Cryocoolers", Plenum Press, First edition, New York (1983) Mamata Mukhopadhyay," Fundamentals of Cryogenic Engineering", PHI Learning Fourth edition 2010		J. H. Bell," Cryogenic Engineering", Prentice Hall, Englewood Cliffs, First edition,1963. Parner, S. F., "Propellant Chemistry", Reinhold Publishing Corpn., New York,1985. R.B. Scott, "Cryogenic Engineering", Van Nostrand Co, New Jercy,1959
-----------------------	----------------	--	--	--

	Bloom's Level of Thinking	Bloom's Formative		C	g Learning LA-2 (0%)	Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	100	20%	7 / -	20%	-	
Level 2	Understand	20%	AC - 3_34	20%	- T-7-2	20%	-	
Level 3	Apply	60%	FG 457 (00)	60%		60%	-	
Level 4	Analyze		TEST 307375	77.3		-	-	
Level 5	Evaluate	- /- (2.4		-	-	
Level 6	Create		A SAY A WALLEY	-17175 . ·	7-1	-	-	
	Total =	10	00 %	1 0	00 %	10	0 %	

Course Designers		•
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. RS. Praveen, VSSC, ISRO, Thiruvananthapuram	1. Dr. Parthasarathi Ghosh, Head, Cryogenic Engineering Centre, IIT Kharagpur, Kharagpur	<mark>1. Dr. G.</mark> Saravanan, SRMIST
2. Dr .Lakshmi V M. VSSC, ISRO, Thiruvananthapuram	2. Dr. Raiesh Sadanandan, IIST, Thiruvananthapuram	2. Dr. A. Muthuram, SRMIST

Course		ourse	STRUCTURAL DYNAMICS AND AFROFI ASTICITY	Course	П	PROFESSIONAL ELECTIVE	L	Т	Р	С	1
Code	21ASE0141 Na	ame	STRUCTURAL DYNAMICS AND AEROELASTICITY	Category	_	PROFESSIONAL ELECTIVE	3	0	0	3	

Pre-requisite Courses	N	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Aerospace Engineering	Data Book / Codes / Sta	ndards	Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	understand the single degree of freedom and two-degree of freedom damped and undamped systems
CLR-2:	understand dynamic response of multi degree of freedom system and vibration of elastic bodies.
CLR-3:	understand static aeroelastic phenomena and its classification.
CLR-4:	understand dynamic aero elastic phenomena in detail
CLR-5:	understand flutter phenomena, prevention and control of aeroelastic instabilities.

Course Outcomes	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
(CO):		1	2	3		
CO-1:	solve equation of motion of single degree of freedom and two-degree of freedom of free and forced vibration of damped and undamped systems.	1	1	3		
CO-2:	apply Lagrange and Hamilton principle to solve multi degree of freedom system problems.	2	1	3		
CO-3:	formulate aero elastic equations to solve for steady state aeroelastic problems.	2	2	3		
CO-4:	formulate aeroelastic equations to solve dynamic aeroelastic problems	2	2	3		
CO-5:	explain flutter analysis and calculation of flutter using a suitable method.	2	1	3		

Module-1 - Single and Two Degree of Freedom Systems	9 Hour
Free and forced vibrations of undamped and damped SDOF systems. Free and forced vibrations of damped and undamped 2-DOF systems, Logarithmic decrement, support exci	tation, Numerical solving –solution
of equation of motion	_
Module-2 - Multi Degree of Freedom System	9 Hour
Multi degree of freedom system, co-ordinates coupling, coupled oscillations, orthogonality, Eigen value problems, Lagrange principle and its applications., Hamilton principle. Vibra	ation of elastic bodies
Module-3 – Introduction to Aeroelasticity	9 Hour
Introduction Aeroelastic Problems, Deformation of Structures and Influence Coefficients, Energy Method, Classification and Solution of Aeroelastic Problems. Case study.	
Module-4 - Static Aeroelasticity	9 Hour
Static Aeroelasticity. Divergence of 2-D airfoil and Straight Wing, Aileron Reversal. Control Effectiveness. Wing loading and deformations. Swept Wing	
Module-5 – Dynamic Aeroelasticity and Flutter Calculation	9 Hour
Dynamic Aero elasticity. Dynamic/Flutter model of 2-D Airfoil, Flutter Calculation, U-g Method. P-k Method. Exact Treatment of Bending - Torsion Flutter of Uniform Wing. Flutter Ar	nalysis by Assumed Mode Method,
Panel Flutter-Case study.	

		6. E.H. Dowell et.al., "A Modern Course in Aero elasticity", Sijthoff & Noordhoff, 1980.
		7. R.L. Bisplinghoff, H. Ashley and R.L. Halfman, "Aero elasticity", Addison- Wesley, 1955.
Learning	3. Thomson W.T, Marie Dillon Dahleh, "Theory of Vibrations with Applications", Harlow, Essex Pearson	8. D.H. Hodges and G.A. Pierce, "Introduction to Structural Dynamics and Aeroelasticity"
_	2014	Cambridge Aerospace Series, 2002
Resources	4. F.S. Tse., I.F. Morse and R.T. Hinkle, "Mechanical Vibrations", Prentice-Hall of India, 1985.	9. R.L. Bisplinghoff and H. Ashley, "Principles of Aeroelasticity", Dover, 1962
	5.Rao.J.S. and Gupta.K. "Theory and Practice of Mechanical Vibrations", New Delhi, New Age	10.Y.C. Fung, "An Introduction to the Theory of Aeroelasticity", John Wiley & sons, 1955.
	International, 1999	

Learning Assessme	ent	40		MU AND			
	_		Continuous Learnin	g Assessment (CLA)		Sumi	mativo
	Bloom's Level of Thinking	Formative CLA-1 Average of unit test (50%)		Life-Long Learning CLA-2 (10%)		Summative Final Examination (40% weightage)	
	/ 3 /	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	50.00	20%	7	20%	-
Level 2	Understand	20%		20%	(-2,	20%	-
Level 3	Apply	30%		30%		30%	-
Level 4	Analyze	30%	Carlotte Marian	30%		30%	-
Level 5	Evaluate	- 7	A STATE OF THE STATE OF			· -	-
Level 6	Create	A - 20'	100 may 197	Bar 1 32 7		-	-
	Total —	10	0%	100) %	10	0 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. V. Balamurugan, CVRDE, DRDO, Chennai	1. Dr. Shankar Krishnapillai, IIT Madras, Chennai	1. Dr. S. Sivakumar, <mark>SRMIST</mark>
2.Dr. D. Saji, National Aerospace Laboratories, Bangalore	2. Dr. V. Aurumugam, MIT, Chennai	2. Dr. L. R. Ganapathy Subramanian, SRMIST

Course	21ACE61ET Course	ADDI IED EINITE EI EMENT METHOD	Course _	PROFESSIONAL ELECTIVE	L	Т	Р	С	
Code	Name	APPLIED FINITE ELEMENT METHOD	Category	PROFESSIONAL ELECTIVE	3	0	0	3	

Pre-requisite Courses	Nii	Co- requisite Courses	Nil	Progressive Courses	Nil	
Course Offerin	g Department	Aerospace Enginee <mark>ring</mark>	Data Book / Codes /	Standards	Nil	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	understand the concepts of finite element methods and the various solution schemes available.
CLR-2:	understand one-dimensional fin <mark>ite elemen</mark> ts for structural analysis
CLR-3:	understand two dimensional finite elements for structural analysis.
CLR-4:	formulate mass and stiffnes <mark>s elemen</mark> t matrices for solving vibration problems
CLR-5:	understand finite element method in obtaining solutions to heat transfer and fluid flow problems

Course Outcomes	At the end of this course, learners will be able to:	Progra	amme Out (PO)	comes
(CO):		1	2	3
CO-1:	derive governing equations involving different type of approximate methods	2	1	3
CO-2:	solve one-dimensional problems using finite element method.	2	2	3
CO-3:	solve simple 2-D problems using the finite element method	2	3	3
CO-4:	apply numerical integration techniques in solutions to vibration and buckling	3	3	3
CO-5:	formulate and solve heat transfer and fluid mechanics problems using the FE method	2	3	3

Module-1 - Finite Element Method Concepts

9 Hour

Review of various approximate methods – Rayleigh-Ritz, Galerkin, Collocation and Finite Difference Methods – Problem Formulation – Application to Structural Elements & Practical Problems – Derivation of Stiffness and Flexibility Matrices, Matrix method of Analysis – Spring Systems – Role of Energy Principles – Interpolation, Nodes, Degrees of Freedom – Solution Schemes.

Module-2 - Discrete Elements

9 Hour

Finite Element Structural Analysis Involving 1-D Bar and Beam Elements – Tapered Bar – Temperature Effects – Static Loading – Formulation of the Load Vector for 1-D Elements – Methods of Stiffness Matrix Formulation – Interpolation & Shape Functions – Boundary Conditions – Determination of Displacements & Reactions – Constitutive Relations – Determination of Nodal Loads & Stresses

Module-3 - Continuum Elements

9 Hour

Plane Stress & Plane strain Loading – CST Element – LST Element – Element Characteristics – Problem Formulation & Solution Using Finite Elements – Axisymmetric Bodies & Axisymmetric Loading – Consistent and Lumped Load Vectors – Use of Local, Area and Volume Co-ordinates – Isoparametric Formulation – Shape Functions – Role of Numerical Integration – Load Consideration – Complete FE Solution

Module-4 - Vibration and Buckling

9 Hour

Formulation of the Mass and Stiffness Element Matrices for Vibration Problems – Bar and Beam Elements – Derivation of the Governing Equation – Natural Frequencies and Modes – Damping Considerations – Harmonic Response – Response Calculation Using Numerical Integration – Buckling of Columns – Problem Formulation – Solution – Determination of Buckling Loads and Modes.

Module-5 - Heat Transfer and Fluid Mechanics Problems

9 Hour

One Dimensional Heat Transfer Analysis – Formulation of the Governing Equations in Finite Element Form – Equivalent Load Vector – Solution & Temperature Distribution – Finite Element Formulation and Solution for Sample Problems Involving Fluid Mechanics.

Learning Resources	 Dhanaraj, R., K. Prabhakaran and Nair, K., Finite Element Method, Oxford university press, India, 2015. Krishnamurthy, C.S., Finite Elements Analysis, Tata McGraw – Hill, 1987. 	Applications of Finite Element Analysis, John Wiley & Sons, 4th Edition, 2002.
	SCIENC	U_{AA}

Learning Assessment							
			Continuous Learning	g Assessment (CLA)		Cum	mativa
	Bloom's Level of Thinki <mark>ng</mark>	Formative CLA-1 Average of unit test (50%)		Life-Long Learning CLA-2 (10%)		Summative Final Examination (40% weightage)	
		Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%		20%	(-4,	20%	-
Level 2	Understand	20%		20%		20%	-
Level 3	Apply	30%	A Page 1	30%		30%	-
Level 4	Analyze	30%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30%	. 1 - 7	30%	-
Level 5	Evaluate		RECEIVED OF	8.4 1 20 7		-	-
Level 6	Create	S	No. of the last	The state of the s	- C	-	-
	T <mark>otal /</mark>	100	0 %	100	0 %	10	0 %

Course Designers	MANAGEMENT TO THE PARTY OF THE	
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. V. Balamurugan, CVRDE, DRDO, Chennai	1. Dr. Shankar Krishnapillai, IIT Madras, Chennai	1. Dr. S. Sivakumar, SRMIST
2.Dr. D. Saji, National Aerospace Laborato <mark>ries, Ba</mark> ngalore	2. Dr. V. Aurumugam, MIT, Chennai	2. Dr. L. R. Ganapa <mark>thy Subr</mark> amanian, SRMIST

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India