ACADEMIC CURRICULA

POST GRADUATE DEGREE PROGRAMMES

Master of Technology

(Choice Based Flexible Credit System)

Regulations 2021

Volume – 22 Syllabi for School of Bioengineering Programme

Professional Core and Elective Courses

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India

ACADEMIC CURRICULA

Chemical Engineering

Professional Core Courses

Regulations 2021

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India

Course	21CHC501J	Course	COMPUTATIONAL TRANSPORT PHENOMENA	Course	C	PROFESSIONAL CORE	L	Т	Р	С
Code	2101103013	Name	COMPUTATIONAL TRANSPORT PHENOMENA	Category	C	PROFESSIONAL CORE	3	0	2	4

Pre-requisite Courses	Ni	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department Che		Chemic <mark>al Engin</mark> e <mark>eri</mark> ng	Data Book / Codes / Standards		Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	introduce fundamental concepts of transport phenomena and CFD, laying the foundation for advanced study
CLR-2:	explore velocity distributions in laminar flow systems under isothermal conditions.
CLR-3:	investigate turbulent flow phenomena and introduce turbulence modelling techniques.
CLR-4:	examine energy transport mechanisms and equations governing non-isothermal systems, focusing on heat transfer principles.
CLR-5:	explore mass tran <mark>sport ph</mark> enomena and principles, including diffusion and mass transfer analogies

Course Outcomes	At the end of this course, learners will be able to:	Progra	Programme Outcomes (PO)				
(CO):		1	2	3			
CO-1:	understand the basic principles of transport phenomena and CFD, including coordinate systems, substantial derivative, and momentum balance.	1	3	2			
CO-2:	gain proficienc <mark>y in ana</mark> lyzing and solving laminar flow problems, applying equations of change to various geometries.	1	3	2			
CO-3:	develop an un <mark>derstand</mark> ing of turbulent flow characteristics	1	3	2			
CO-4:	acquire skills in analyzing and solving non-isothermal energy transport problems, including heat conduction and cooling processes.	1	3	2			
CO-5:	develop proficiency in analyzing and solving mass transport problems, understanding diffusion mechanisms, and applying mass transfer analogies.	1	3	2			

Module-1 - Introduction to Transpo<mark>rt Phen</mark>omena

9 Hour

Viscosity and the Mechanisms of Momentum Transport - Momentum flux and Kinetic energy, Pressure and shear stress, kinetic energy - Coordinate systems, Vector and tensor analysis, Newton law of viscosity - Substantial derivative and Theory of Continuity - Shell momentum balance and Navier stokes equation - Introduction to CFD and its applications - CFD solution strategies - Types of models in CFD - CFD solution procedure

Module-2 - Velocity Distributions in Laminar Flow - Isothermal Systems

9 Hour

Equations of Change – flow over an inclined plane slab as thin film, flow through pipe, flow through annular pipe and flow through two immiscible liquids, flow through narrow slit

Module-3 - Velocity Distribution in Turbulent Flow - Isothermal Systems

9 Hour

Comparisons of laminar and turbulent flows - Time-smoothed equations of change for incompressible fluids - The time-smoothed velocity profile near a wall - Empirical expressions for the turbulent momentum flux - Introduction to Turbulence Modelling in CFD - Turbulence models - Flow over an object: friction factors, Friction factors for flow in tubes

Module-4 - Mechanisms of Energy Transport and Equations of Change for Non-Isothermal Systems

9 Hour

Shell Energy Balances and special forms of energy equation - Heat Conduction with an Electrical Heat Source, Chemical heat source and viscous heat source - Cooling of a Sphere in Contact with a Well-Stirred

Module-5 - Mechanisms of Mass Transport

9 Hour

Theory of Diffusion, diffusivity and mass transfer coefficient - Shell mass balance equation - Diffusion through a Stagnant Gas Film - Diffusion with a Homogeneous Chemical Reaction - Diffusion into a Falling Liquid Film - Lumped mass transfer - Analogy Momentum, energy and Mass transfer: Reynolds Analogy, Chilton Colburn analogy, Prandtl analogy

Practice	151
1.Introduction to CFD Software Environment	7.Forced Convection over a Flat Plate
2.Flow in a Pipe	8.Cooling of a Heated Block
3.Flow around a Cylinder	9. Diffusion in a Binary System
4. Turbulence Modelling	10.Boundary Conditions Practice
5.Conduction in a Rectangular Plate	11.Meshing Techniques
6 Natural Convection in a Square Enclosure	12 Grid Independence Study

	1.Byron R. Bird., Warren E. Stewart and Edwin N. Lightfoot, "Transport Phenomena", John Wiley	4.H. K. Versteeg and W. Malalasekera, "An introduction to computational fluid dynamics – The finite
	& Sons, New York, 2nd edition 2007.	volume method", Longman Group Ltd 1995.
Learning	2. Christie John Geankoplis "Transport Processes and Separation Process Principles", "Pearson	5.J.H. Ferziger and M. Peric, "Computational Methods for Fluid Dynamics", "Springer", 2002.
Resources	Education", Prentice Hall, 4thEdition 2003.	6.Tu, Jiyuan, Guan-Heng Yeoh, and Chaoqun Liu, "Computational fluid dynamics: a practical
	3.James R. Welty., Charles E. Wicks., Robert E. Wilson. and Gregory L. Rorrer "Fundamentals of	approach". "Butterworth-Heinemann" <mark>, 2018.</mark>
	Momentum, Heat, and Mass Transfer", "John Wiley &Sons", New York, 5th edition, 2007	

Learning Asses	sment	W / 10/10	AND AND A STATE OF	AREA CO.					
			Continuous Learn						
	Bloom's Level of Thinking		Formative CLA-1 Average of unit test (45%)		Life Long Learning CLA-2- Practice (15%)		Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remem <mark>ber</mark>	15%	Fr to Company	Andrea Control	10%	15%	-		
Level 2	Understand	25%	the second of the second		30%	25%	-		
Level 3	Apply	30%			30%	30%	-		
Level 4	Analyze	30%	All Indiana All Indiana	-	30%	30%	-		
Level 5	Evaluate	7	- 1	-			-		
Level 6	Create	2	- 1/1/2	-			-		
	<u>Total</u>	. (1)	100 %		100 %	100) %		

Course Designers	The state of the s	
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Chennai	1.Dr. Lima Rose Miranda, Anna University, Chennai	1. Dr. K. Suresh, SRMIST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr. S. Sam David, SRMIST

Course	21CHC502J	Course	COMPUTER-AIDED PROCESS PLANT SIMULATION	Course	C	PROFESSIONAL CORE	L	T	Р	С
Code	210003023	Name	COMPUTER-AIDED PROCESS PLANT SIMULATION	Category	J	PROFESSIONAL CORE	3	0	2	4

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Chemical E <mark>ngineering</mark>	Data Book / Codes / Standards		Nil
			~ WILL TO 1	11 4 4	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	recap the inventory rate equation for mass and energy
CLR-2:	apply the inventory rate equation to unit operation/processes with recycling and bypassing
CLR-3:	estimate the rate cons <mark>tant and</mark> order of heterogeneous chemical reactions
CLR-4:	prepare block diagra <mark>m, proce</mark> ss flow diagram, piping, and instrumentation diagram
CLR-5:	formulate the proce <mark>ss flow d</mark> iagram with control

Course	At the end of this course, learners will be able to:	5		Programme Outcomes (PO)			
Outcomes (CO):		1		1	2	3	
CO-1:	propose the process modeling for any chemical engineering system		2	2		1	
CO-2:	simulate the process flow sheet with recycling and bypassing			1		2	
CO-3:	estimate the rate of reaction using experimental data of heterogeneous system			2		2	
CO-4:	synthesis of process flow sheet, P&ID diagram, and line sizing			1		2	
CO-5:	perform Aspen dynamic simulation with control system			2		1	

Module-1 - Material and Energy Balance

9 Hour

Material balances involve with and without Chemical Reactions, Electrochemical Reactions, Recycling, Parallel, and Bypassing Unit Operation and Process. Energy balances, heat capacity of gaseous and liquid mixtures, and enthalpy changes accompanying chemical reactions.

Module-2 - Stoichiometry, Unit Operations and Processes

9 Hour

Stoichiometry and Unit Operations Distillation, Absorption and Stripping, Extraction and Leaching, Crystallization, Psychrometry, Drying, Evaporation and Less Conventional Operations, Air requirement and Flue Gases and Combustion Calculations.

Module-3 - Utilization of CO₂ into Methanol

9 Hour

Kinetic parameters for elementary reactions – single and multiple reactants, Methanol Reaction Kinetic model, Refitting of kinetic parameters, Choice of reactor and operation conditions, Preliminary Flowsheet layout study, One-stage synthesis flowsheet, Two-stage synthesis.

Module-4 - Flow sheets and P & I Diagrams

9 Hour

Executing a Process Plant – Feasibility study, Basic Engineering, Execution of the project, Pre-commissioning and Commissioning, and Plant Acceptance and Handover. Flow sheets, Equipment lists, and line lists – Block flow diagram, process flow diagram, Piping and Instrumentation Diagram, Utility P & ID, material selection diagram, line list, and equipment list.

Module-5 - Process Dynamic Modeling

9 Hour

Material balances of Unsteady-state operations and processes with Examples, Control of CSTR systems – Nonlinear Dynamic model, Nonlinear Dynamic Simulation, Effect of Jacket Volume, Demonstration of Aspen Dynamics simulation of CSTRs.

Practice	15 Hour
1.Perform the unit operations simulation	5.Power required for a pump in the process flow sheet
2.Analyze the unit process simulation and optimization	6.Demonstration of Nylon 6,6 resin reactor simulation, Simulation of azeotropic distillation of water-
3.Simulate the flowsheet using the process data and identify the optimum condition	ethanol mixture
4. Utilization of CO₂ into methanol - Kinetic model for reaction, LHHW kinetic model, Methanol Reaction	7.Prepare piping and instrumentation diagram
Kinetic model, Refitting of kinetic parameters, and One-Stage synthesis flowsheet	8.Demonstration of Aspen Dynamics simulation of CSTR

	1. BI Bhatt and SB Thakore, "Stoichiometry", Mc Graw Hill Education, Fifth Edition, 2015. 4. Siddhartha Mukherjee, "Process Engineering and Plant Design: The Complete Industrial Picture",
Learning	2.J.F. Portha, "Kinetics of Methanol Synthesis from Carbon Dioxide Hydrogenation over "Taylor & Francis Group", LLC., CRC Press First edition Publication 2022.
Resources	Copper-Zinc Oxide Catalysts", Ind Eng Chem Res, Vol 56, pp. 13133 - 13145 5. William L. Luyben, "Chemical Reactor Design and Control", "A John Wiley and Sons, Inc.,
	3.Achyuta K, "Techno-Econ <mark>omic Ana</mark> lysis of Utilization of CO ₂ into Methanol",2023 Publication", 2007
'	

Learning Asses	sment		~		B 2 3 5 6	500 - 42 34				
	Bloom's Level of Thinking	m	CLA-	1 Avera	Continu native ge of unit test 5%)	ous Learning Assessr	nent (CLA) Life Long L CLA-2- Pl (15%	ractice		mative n (40% weightage)
	ě		Theory	1,144	Practice	Theory	F	Practice	Theory	Practice
Level 1	Remem <mark>ber</mark>		20%	100	2. 6807	第14 日本の数2	WEST 1	20%	20%	-
Level 2	Underst <mark>and</mark>		20%		H-10 / 12 / 1	N. A. D. M.D.		20%	20%	-
Level 3	Apply		30%	12.0	-1.77 19	The Marie Transfer		30%	30%	-
Level 4	Analyze		30%		100	Service Commence	- 3,1-1,64	30%	30%	-
Level 5	Evaluate		24.5 - 3	100		المناقع الما				-
Level 6	Create	1		10.0	_	Mar			-	-
	Total			10	0 %		100 9	%	10	00 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Int <mark>ernal Exp</mark> erts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Chennai	1. Dr. Lima Rose Miranda, Anna University, Chennai	1. Dr. K. Suresh, SRMIST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr. P. Muthamilselvi, SRMIST

Course	210405031	Course	ADVANCED CHEMICAL REACTION ENGINEERING	Course		PROFESSIONAL CORE	L	Т	Р	С
Code	21CHC503J	Name	ADVANCED CHEMICAL REACTION ENGINEERING	Category	C	FROFESSIONAL CORE	3	0	2	4

Pre-requisite Courses	Nil	Co- requis <mark>ite Courses</mark>	Nil Progressive Courses Nil	
Course Offeri	ng Department	Chemical Engineering	Data Book / Codes / Standards Nil	
	-			

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	understand the catalytic reaction mechanism and kinetics
CLR-2:	familiarize the design a <mark>spects of</mark> reactors with solid catalysts
CLR-3:	develop the rate equation for gas – liquid reactions on solid catalysts
CLR-4:	understand the deve <mark>lopment</mark> of fluid – fluid reaction rate equations
CLR-5:	familiarize the fluid – fluid reactors design calculations

Course	At the end of this course, learners will be able to:	1	Programme Outcomes (PO)				
Outcomes (CO):				1	2	3	
	predict the rate limiting mechanism in catalytic reactions		è	3	1		
CO-2:	design various types of fluidized bed reactors		-	2		1	
	analyze the performance of multiphase reactors			2		1	
CO-4:	develop rate equation for non-catalytic fluid – fluid reactions			2		1	
CO-5:	interpret the de <mark>sign aspe</mark> cts of fluid – fluid reactors			2		1	

Module-1 - Catalysis and Catalytic Reactors

9 Hou

Properties and types of catalyst, Reasons for catalyst deactivation, Sequence of steps in a catalytic reaction, Information required for catalytic reactor design, Molecular adsorption model and dissociative adsorption model for adsorption isotherm, Surface reaction kinetics and types of models, Desorption rate law, Electrical analog to heterogeneous reactions, Developing rate law equation for adsorption as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing rate law equation for surface reaction as rate limiting step, Developing

Module-2 - Reactors with Suspended Solid Catalyst

9 Hour

G/S contacting regimes, from low to very high gas velocity in suspended solid reactors, Geldart classification of solids in Bubbling Fluidized Bed (BFB), Concept of Minimum Fluidizing Velocity and Terminal Velocity, Conditions for Bubbling Fluidized Bed, Material Balance for Gas and for Solids in K – L model for Bubbling Fluidized Bed, Applications of K – L model, Circulating fluidized bed (CFB), Turbulent bed (TB) and solid distribution, Behavior and model of Fast Fluidized Bed (FF), Model for Pneumatic Conveying (PC) reactor and Downflow CFB

Module-3 - G/L Reactions on Solid Catalysts

9 Hour

General rate equation, Various ways of running G/L reactions catalyzed by solids, resistances involved in the G/L reaction on a catalyst surface, Performance equations for an excess of gas reactant (A), Selection criteria for G/L contactor and applications, Slurry reactor – uses, reaction steps and rate equation, Rate limiting steps in slurry reactor, Trickle bed reactor – rate and transport equations, Optimization in chemical reactors

Module-4 - Fluid - Fluid Reaction Kinetics

9 Hour

Factors affecting the kinetics, General rate equation form, General stoichiometry and nomenclature for fluid – fluid reactions, Rate Equation for Straight Mass Transfer (Absorption) of gas reactant, Rate

Equation for Mass Transfer and Reaction, Rate equation for various cases of infinitely fast to very slow reaction, Role of the Hatta Number, Importance of two film theory, Clues to the Kinetic Regime from Solubility Data

Module-5 - Fluid - Fluid Reactors: Design

9 Hour

Factors to consider in selecting a contactor, Typical characteristics of G/L contactors, Contacting patterns for G/L contactors, Rate equation for straight mass transfer in countercurrent tower, Mass Transfer with reaction in a countercurrent tower, Mass Transfer with reaction in a countercurrent tower, Mass Transfer with reaction in a datch agitated tank contactor, Procedure to find the time needed for a given operation

F	Practice		15 Hour

- 1. Performance in a fixed bed reactor
- 2. Performance in a fluidized bed reactor
- 3. Performance in a fluidized bed reactor Effect of fluid velocity
- 4. Performance in a slurry reactor Effect of bubble size

- 5. Performance in a slurry reactor Effect of particle size of the catalyst
- 6. Performance in a trickle bed reactor
- 7. Study of reaction kinetics for a photochemical reaction
- 8. Performance in a photocatalytic reactor

	1. Octave	Levens	piel, "C	Che <mark>mic</mark>	al Rea	ction E	ngineer	ing", "John l	Wiley & Son	s", 3 rd editio	n 1999.	4. S. Su	resh, Su	ındaramod	rth
Learning	2. H. Sco	tt Fogler	, "Elem	en <mark>ts o</mark>	f Chem	ical Re	eaction E	ngineering'	" "PHI India F	Pvt., Ltd"., 3 ¹	d edition	Kinetics,	and Ch	emical Pro	ces
Resources	2004.						₩.			5.77874 F	17.7	5. Misse	n, Ronal	d William,	Ch
	0 1 11 0	"" "0				10' 1	. 11 ((8.4	0 1111111	0-4 1111	004		3,44.0			

3. J. M. Smith, "Chemical Engineering Kinetics", "McGraw-Hill", 3rd edition 1981.

4. S. Suresh, Sundaramoorthy, "Green Chemical Engineering An Introduction to Catalysis, Kinetics, and Chemical Processes", "Routledge Taylor & Francis group", "CRC Press", 2015
5. Missen, Ronald William, Charles W. Mims, and Bradley A. Saville. "Introduction to chemical reaction engineering and kinetics.", "John Wiley & Sons", 1999

Learning Asses	sment	A	30 . 15 . L. P. L. See	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	ė .	
_	9	7	Continuous Learni	ing Assessment (CLA)			
	Bloom's Level of <mark>Thinking</mark>	CLA-1 Ave	ormative erage of unit test (45%)	CLA-2	ng Learning 2- Practice 15%)	Summ Final Examination	
		Theory	Practice	Theory	Practice	<u>The</u> ory	Practice
Level 1	Rememb <mark>er ====================================</mark>	20%		- T. A		20%	-
Level 2	Understan <mark>d</mark>	20%	D. F - NO 5	-	20%	20%	-
Level 3	Apply	30%	-	-	30%	30%	-
Level 4	Analyze	30%	- 3/11/4	-	20%	30%	-
Level 5	Evaluate	. (1)	- /3%	-	30%		-
Level 6	Create				-		-
	Total		100 %	1	00 %	100	%

Course Designers	LAP. TEAD	
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Chennai	1. Dr. Lima Rose Miranda, Anna University, Chennai	1. Dr. K. Deepa, SRMIST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr. M. Magesh Kumar, SRMIST

Course	210405041	Course PROCESS AUTOMATION AND CONTROL		Course	C	PROFESSIONAL CORE	L	Τ	Р	С
Code	2101103043	Name	PROCESS AUTOMATION AND CONTROL	Category	C	FROFESSIONAL CORE	3	0	2	4

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offeri	ng Department	Chemical Engineering	Data Book / Codes / Standards		Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	understand process contr <mark>ol's main</mark> terms and parameters
CLR-2:	find whether the system bound to steady state and unsteady state condition
CLR-3:	differentiate between discrete, multistep, and continuous controllers
CLR-4:	get an exposure on the important parameters to be monitored and analyzed in industry
CLR-5:	learn the essentials of process control and instrumentation for a successful career in process industries

Course	At the end of this course, learners will be able to:	5		Programme Outcomes (PO)		
Outcomes (CO):		4		1	2	3
CO-1:	introduce the dynamics of various processes and modelling of physical processes		ė .	2		1
CO-2:	educate the effect of various control actions			2		3
CO-3:	learn the methods of tuning the controller			3		2
CO-4:	get adequate knowledge about basic and advanced control schemes and related issues			2		1
CO-5:	introduce the concept of Multi input Multi output process and its control schemes			3		1

Module-1 - Time Domain Dynamics and Control

9 Hour

Motivation for Studying Process Control - Uses of Mathematical Models - Examples of Mathematical Models of Chemical Engineering Systems - Two Heated Tanks - Ideal Binary Distillation Column - First order system - Second order system - Linearization - First-Order Linear Ordinary Differential Equation - Second-Order Linear ODES with Constant Coefficients - Nth-Order Linear ODES With Constant Coefficients - Steady state Techniques.

The Living

Module-2 - Frequency-Domain Dynamics and Control

9 Hour

Frequency-Domain Solution Techniques - Bode Plots - Nyquist Plots - Nyquist Stability Criterion - Closed loop Specifications in the Frequency Domain - Phase Margin - Gain Margin - Maximum Closed loop Log Modulus - Frequency Response of Feedback Controllers - Proportional Controller - Proportional-Integral Controller - Proportional-Integral-Derivative Controller.

Module-3 - Conventional Control Systems and Hardware

9 Hour

Control Instrumentation – Sensors – Transmitters - Control Valves - Analog and Digital Controllers - Computing and Logic Devices - Performance of Feedback Controllers - Specifications for Closed loop Response - Load Performance - Controller Tuning - Rules of Thumb - On-Line Trial and Error - Ziegler-Nichols Method – Control of multivariable Processes.

Module-4 - Control Scheme

9 Hour

Cascade, Feed-forward, Feed-forward plus Feedback, Ratio control, Inferential control, Dead time and Inverse response compensation, Nonlinear and Adaptive Control, Model reference adaptive control, Computed Variable Control, Dynamic Matrix Control - DMC Algorithm. Digital Control - Sampling and reconstruction, Discrete systems analysis, Stability and controller design using Z transform and difference equations, Smoothing filter realization using difference equations

Module-5 - Automated Process 9 Hour

Building Blocks of Automation System - Distributed Control System - Evolution and advantages of computer control, Configuration of Supervisory, Direct digital control (DDC) and DCS. Artificial Intelligence in Process Control: Expert systems, Neural networks, Fuzzy logic, Neuro Fuzzy, Genetic algorithm, Virtual instrumentation. Programmable Logic Controllers: Comparison with hard wired relay and semiconductor logic, Hardware, Ladder diagram programming, Case studies. Modeling and Simulation for Plant Automation

Practice

- 1. To study interacting and non-interacting system for the first order system in series
- 2. To study the control valve characteristic
- 3. To study the Valve Positioner
- 4. To study the tuning parameter by using various controllers
- 5. To study the performance of controllers such PI, PID

- 6. To study the advanced control schemes with examples
- 7. To study the Programmable Logic Controllers
- 8. To study the Distributed Control System
- 9. To study the automated distillation Process
- 10. Introduction to Piping software

	1 .William L. Luyben "Process Modelling, Simulation and Control for Chemical	3. Ronald P. Hunter, "Automated Process Control Systems: Concepts and Hardware" "Prentice-
Learning	Engineers" "McGraw-Hill Education", 1990	Hall", 1987.
Resources	2. Carlos A. Smith, Armando B. Corripio, "Principles and Practice of Automatic Process	s 4. Uttam Ray Chaudhuri, Utpal Ray Chaudhuri <mark>, "Fundam</mark> entals of Automatic Process Control",
	Control" "John Wiley & Sons", 2nd edition, 1997	"CRC Press", 2019.

Learning Asses	sment		21 188 335	V 199			
			Continuous Learn	ing Assessment (CLA	Mary 1 Zan		
	Bloom's Level of <mark>Thinking</mark>	CLA-1 Aver	Formative CLA-1 Average of unit test (45%)		Life Long Learning CLA-2- Practice (15%)		mative n (40% weightage)
		Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Rememb <mark>er</mark>	20%	The same of the sa		10%	20%	-
Level 2	<i>Understa<mark>nd</mark></i>	20%			10%	20%	-
Level 3	Apply	30%	- Nu. 4	-	20%	30%	-
Level 4	Analyze	30%	- / /	-	30%	30%	-
Level 5	Evaluate	3-A (111/		30%	-	
Level 6	Create	. n T	AAV		- 1 - -		
	Total	1	00 %		100 %	10	0 %

Course Designers	VDN: True	
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Chennai	1. Dr. Lima Rose Miranda, Anna University, Chennai	1. Dr. P. Muthamilselvi, SRMIST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr. K. Sofiya, SRMIST

15 Hour

Course	21CHC505T	Course	PROCESS INTEGRATION AND INTENSIFICATION	Course		PROFESSIONAL CORE	L		Р	С
Code		Name		Category	C	PROFESSIONAL CORE	3	0	0	3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offeri	ng Department	Chemical Engineering	Data Book / Codes / Standards		Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	outline the meaning, concept and advantages of process integration and process intensification in chemical process industries
CLR-2:	expose the learners to process intensification in heat transfer and know about various compact heat exchangers
CLR-3:	import the knowledge of hybrid separation techniques
CLR-4:	understand the various membrane processes used for process intensification
CLR-5:	provide an overview of miniaturization and microfabrication

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)					
Outcomes (CO):		1	2	3			
CO-1:	explain the concept of process integration and process intensification, and the benefits of process intensification in chemical process industries	2	3	3			
CO-2:	design compact heat exchangers	3	2	3			
CO-3:	apply intensified reactors and/or separators in process industries	2	3	3			
CO-4:	solve process challenges using intensified technologies	3	2	3			
CO-5:	analyze scale up/down issues in the process industries and its advantages	2	3	3			

Module-1 - Introduction 9 Hour

Chemical process design and integration: Definition, hierarchy, approaches. Process Integration: Industrial applications, current status, classification, techniques and energy management through process integration. Process Intensification: Meaning and concept, history, benefits, toolbox, equipment, methods, techniques, application. Process integration vs process intensification.

Module-2 - Heat Exchanger Intensification

9 Hour

Compact Multifunctional Heat Exchangers: A Pathway to Process Intensification: Compact heat exchangers: Classifications, plate heat exchangers, spiral heat exchangers, flat tube-and fin heat exchangers, micro channel heat exchangers, matrix heat exchangers. Selection of heat exchanger technology. Single phase flow, flow pattern, heat transfer and pressure drop, fouling, phase-change heat transfer, heat and mass transfer. Applications: Feed and effluent heat exchangers, integrated heat exchangers in separation processes, reactor heat exchangers. Pinch technology.

Module-3 - Reactive and Hybrid Separations and Their Applications

9 Hour

Overview of reactive separations, need for integration of reactions and separations, reactive absorption/stripping, reactive distillation, reactive extraction, reactive adsorption, reactive crystallization/precipitation. Case study: Absorption of NOx, Synthesis of methyl tertiary butyl ether. Hybrid separations: Extractive distillation, adsorptive distillation and other hybrid separations.

Module-4 - Membrane Engineering in Process Intensification

9 Hour

Application areas of membrane engineering for the realization of process intensification strategy, Desalination: RO pre-treatment, RO post-treatment. Membrane-based reactive separations: membrane bioreactor. Membrane-based hybrid separations: Membrane distillation, integrated distillation-pervaporation/vapor permeation systems, membrane absorption/stripping, membrane chromatography (adsorptive membranes), membrane extraction, membrane crystallization

Module-5 - Miniaturization and Microfabrication

9 Hour

Process intensification through micro-reaction technology: Effect of miniaturization on unit operations and reactions, implementation of micro-reaction technology; microfabrication of reaction and unit operation devices - wet and dry etching Processes.

	1. Stankiewicz, A. and Moulijn, "Reengineering the Chemical Process Plants, Process	5. Reay, Ramshaw, Harvey, "Process Intensification, Engineering for Efficiency, Sustainability
		and Flexibility", "Butterworth-Heinemann", 2013
		6. Enrico Drioli, Andrzej I. Stankiewicz, Francesca Macedonio, "Membrane engineering in
Learning		process intensification—An overview", Journal of Membrane Science. 380 (2011) 1–8.
Resources	3. Kamelia Boodhoo. Adam Harvey, "Process Intensification Technologies for Green	7. Robin Smith, "Chemical Process Design and Integration", John Wiley & Sons, Ltd", 2005
	Chemistry: Engineering Solutions for Sustainable Chemical Processing", "Wiley", 2013	8. https://youtu.be/-uY66EVQksk?si=LIKMjwXQ1ZqVDE9k.
	4. Segovia-Hernández, Juan Gabriel, Bonilla-Petriciolet, Adrián, "Process Intensification	
	in Chemical Engineering Design Optimization and Control", "Springer", 2016	
		Mark Table 1

arning Assessm		N /	Continuous Learnir	ng Assessment (CLA)		0		
	Bloom's Lev <mark>el of Thin</mark> king	Formative CLA-1 Average of unit test (50%)		Life Long Learning CLA-2 (10%)		Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Th <mark>eory</mark>	Practice	
Level 1	Rememb <mark>er</mark>	15%	ON 1994 NO.	10%		15%	-	
Level 2	Understa <mark>nd</mark>	25%	1 1 1 1 1 1 1 1 1 1 1	30%		25%	-	
Level 3	Apply	30%		30%	7	30%	-	
Level 4	Analyze	30%	7 19-2	30%	- C	30%	-	
Level 5	Evaluate			7.00	1-0			
Level 6	Create		1777	2	- Y - Y			
	Total		100 %	10	00 %	10	00 %	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Chennai	1. Dr. Lima Rose Miranda, Anna University, Chennai	1. Dr. E. Poonguzhali, SRMIST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr. S. Prabhakar, SRMIST

ACADEMIC CURRICULA

Chemical Engineering

Professional Elective Courses

Regulations 2021

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India

Course	21CHE551T	Course	CREEN TECHNOLOGY	Course	Е	PROFESSIONAL ELECTIVE	L	T	Р	С
Code	2101123311	Name	GREEN TECHNOLOGY	Category		PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil	
Course Offeri	ng Department	Chemical Engineering	Data Book / Codes / Standards		Nil	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	understand chemical, physical, and biochemical methods for waste minimization and recycling, with a focus on sustainability and safety.
CLR-2:	learn and integrate the principles of green engineering and green chemistry into chemical processes to enhance sustainability and environmental protection.
CLR-3:	explore advanced green process technologies such as sono chemistry, microwave-assisted processes, and carbon capture, emphasizing their role in sustainable engineering.
CLR-4:	apply the green engineering principles of process intensification through miniaturization in chemical engineering operations.
CLR-5:	learn the environmental impact assessment principles and methodologies of sustainable product design to minimize environmental impacts.

Course	At the end of this course, learners will be able to:		gramn omes (
Outcomes (CO):		1	2	3
('()-7'	Implement effec <mark>tive was</mark> te minimization techniques and recycling technologies to manage chemical, physical, and biochemical wastes in an environmentally friendly and safe manner.	2	3	3
CO-2:	Apply green engineering and green chemistry principles to design and optimize chemical processes that minimize environmental impact and promote sustainability.	3	2	3
CO-3:	Utilize advanced green process technologies such as sono chemistry and carbon capture to develop sustainable chemical engineering solutions.	2	3	3
CO-4:	Design and operate miniaturized unit operations and apply reactive separation techniques to enhance process efficiency and sustainability.	3	2	3
CO-5:	Conduct Environmental Impact Assessments and integrate sustainable product design principles to develop eco-friendly and sustainable products.	2	3	3

Module-1 - Waste - Resource, Recovery and Management

8 Hour

Sources and types of waste - chemical, physical and biochemical methods of waste minimization and recycling - Recycling technologies for plastics, metals, and e-waste. Hazard identification, assessment and safety aspects at process development and design stage. Need for environmental mitigation and energy efficient processes

Module-2 - Introduction to Green Technology

9 Hour

Definition and scope of green technology, Importance of sustainability and environmental protection, Principles of green engineering, Life cycle analysis (LCA), Material selection and eco-design, Regulatory framework and standards for green technology, Principles of green chemistry - an overview of green synthesis and catalysis.

Module-3 - Green Process Engineering

10 Hour

Sono chemistry, Microwave assisted processes, photochemistry, Carbon capture and sequestration technologies, carbon trading, Industrial symbiosis and eco-industrial parks, Solvent selection: Supercritical fluids, ionic liquids, water as a green solvent

Module-4 - Process Intensification and Miniaturization

9 Hour

Principles of intensification by miniaturization, Miniaturization for unit operation – Micromixers, Fluid contactor, heat exchanger reactor, challenges in miniaturization. Reactive separation concept- Heat exchanger reactor design, reactive distillation and its application

Module-5 - Environmental Impact Assessment and Case Studies

9 Hour

Environmental impact assessment (EIA) methodologies, Tools and techniques for impact mitigation, The role of legislation, Barries and drivers, Case studies – Green manufacturing of acetic acid, vitamin

C, leather tanning, dyes, pesticides, polymers

l earning	2. Martine Poux, Patrick Cognet, Christophe Gourdon, "Green Process Engineering:	4.David T. Allen, David R. Shonnard, "Green Engineering: Environmentally Conscious Design of Chemical Processes", "Pearson Education", 2001 5. David Reay, Colin Ramshaw, Adam Harvey, "Process Intensification: Engineering for
Resources	,	Efficiency, Sustainability and Flexibility", Butterworth-Heinemann, second edition, 2013.

Learning Assessment		A V	athe Wite.				
<u> </u>	Bloom's Level of Thinking	CLA-1 Avera	Continuous Learning native ge of unit test 0%)	CL	Learning A-2 9%)	Final Exa	native amination pightage)
		Theory	Practice	Theory	Practice	<u>Th</u> eory	Practice
Level 1	Remember	15%	A. 4 1/2 11/2 11	10%	-7	15%	-
Level 2	Understa <mark>nd</mark>	25%	10 may 19 19 19	30%		25%	-
Level 3	Apply	30%	- AND SEC. 18	30%		30%	-
Level 4	Analyze	30%		30%		30%	=
Level 5	Evaluate	Acres No. 1 (18)	The second second				
Level 6	Create	170-2-10	Same March 1				
	Total	10	0 %	100	0 %	10	0 %

Course Designers	10%	1 5
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Chennai	1. Dr. Lima Rose Miranda, Anna University, Chennai	1. Dr. S. Kiruthika, SRMIST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr. K. Selvam, SRMIST

Course 210HE552	Course	DATA SCIENCE IN CHEMICAL ENGINEERING	Course	_	PROFESSIONAL ELECTIVE	L	ı	2	C
Code	Name	DATA SCIENCE IN CHEMICAL ENGINEERING	Category	4	PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offeri	ng Department	Chemical Engineering	Data Book / Codes / Standards		Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	understand the basic statistics for data science
CLR-2:	know the different advanced data structures for data processing
CLR-3:	working with various data formats
CLR-4:	describe ensemble techniques – supervised and unsupervised machine learning
CLR-5:	utilize data analytic <mark>s options</mark> available in python for real-time application development

Course	At the end of this course, learners will be able to:	5	Programme Outcomes (PO)				
Outcomes (CO):		1	1	2	3		
CO-1:	learn measure of central tendency and dispersion		2		1		
CO-2:	create and expl <mark>ore diffe</mark> rent operations on advanced data structures,		1		2		
CO-3:	handle different data formats from different sources of data		1		2		
CO-4:	apply the basic level supervised learning Techniques with working knowledge		2		1		
CO-5:	identify opportunities for the application of data visualization in various domains			2	1		

Module-1 - Understanding Statistics for Data Science

9 Hour

Role of statistics in Data science - Different types of data - Measure of Central Tendency - Measure of Dispersion - Distribution of Data - Analysis of Variance - Statistical analysis of Linear and non-linear Regression models - Error analysis -MSE, RMSE, MAE, MAPE. Introduction to Probability - Sampling Techniques - Simple random, Stratified, Systematic and Cluster sampling -Hypothesis Testing - Categorical vs Continuous -- More than 2 samples-examples - Determine the order and rate constant for elementary and non-elementary reactions. Propose the heat and mass transfer coefficient correlations

Module-2 - Introduction to Python

9 Hour

Introduction to Python programming language - Overview of python Techniques- advantages/ disadvantages - Python IDE installation-windows/Linux And Python IDE overview - Programming basics Variables declaration, operators and indentation - Working with Lists - indexing, slicing, manipulations, operations - Working with Tuples - indexing, slicing, manipulations, operations - Working with Dictionaries - indexing, slicing, manipulations, operations - Conditional statements-If, If-else, nested if else statements - Loops for and while - when and how to use - User defined functions: Creating functions and calling them - Custom functions: lambda and recursive functions - Introduction to strings - String manipulations - String slicing - Datetime class in python - Manipulation of date time functions - Different class/methods associated with datetime

Module-3 - Dataframe and Series in Python

9 Hour

Introduction to Pandas - Data structure in pandas – Dataframe and Series - Accessing and slicing of series and dataframes - Arithmetic and logical operations on dataframe - Sorting and filtering of series and dataframes - Joining and merging of Dataframes - Groupby operations on Dataframe - Pivot tables to understand the relationship between variables in the data with different - Crosstab to understand the relationship between variables in the data aggregation - File handling: Reading a file, file functions - Data structure in pandas – Dataframe and Series - Accessing and slicing of series and dataframes - Arithmetic and logical operations on dataframe - Pivot tables to understand the

relationship between variables in the data with different aggregation - Crosstab to understand the relationship between variables in the data.

Module-4 - Machine Learning

9 Hour

Machine learning what and why? supervised and unsupervised learning. supervised Learning - Maximum likelihood estimation - least squares, robust linear expression, ridge regression. supervise Learning Classification models - Applications and examples -Logistic Regression - Construction of Decision Tree - Classification model performance metric - Confusion matrix - TP, TN, FP and FN - Accuracy, Recall, Precision, F1 score. Unsupervised Learning - Concept and applications in Date measures - Clustering Models: K Means Clustering Mathematics behind KMeans - Cluster Visualization. Antoine equation for vapor pressure, Data collection through online acquisition.

Module-5 - Data Exploration and Visualization

9 Hour

Introduction to Explorative Data analysis – Structure vs unstructure, dependent and independent, Numerical vs Categorical. Univariate Analysis of Data - Visualization of univariate analysis - Bivariate Analysis: Types of Bivariate analysis - Choice of different plots - Data Preprocessing Techniques: Need of Data preprocessing - Missing Value Imputation: Reason for Missing values – MCAR, MAR, MNAR. Data Transformations: Need of transforming data - Types of transformation techniques - Data Scaling with example - Identifying the Outlier: Through IQR and Z Score method.

	1. Dr. Ossama Embarak Apress, "Data Analysis and Visualization Using Python: Analyze	4.Grus, J. "Data Science from Scratch", "O'Reilly Media, Inc", 2nd Edition 2019
Loorning	Data to Create Visualizations for BI Systems" "A press"1st ed. Edition, 2018	5. McKinney, W. "Python for data analysis: Data wrangling with pandas, NumPy, and IPython".
Learning Resources	2. Suresh Kumar Mukhiy <mark>a, Usma</mark> n Ahmed, "Hands-On Exploratory Data Analysis with	"O'Reilly Media, Inc.,", 2018.
Resources	Python"," Packt Publishing",2020	6. Vanderplas, J. T. "Python data science handbook: Essential tools for working with data". "O'Reilly
	3. Glenn J. Myatt, "Making Sense of Data", "Wiley" 2007	Media, Inc.," 2017
	Charles and the second second	

Learning Assessme	ent		No. 1 and State of the Control of th		
	Bloom's Lev <mark>el of Thi</mark> nking	Continuous Learnii Formative CLA-1 Average of unit test (50%)	ng Assessment (CLA) Life Long Learning CLA-2 (10%)	Summativ Final Examin (40% weight	ation
		Theory Practice	Theory Practice	Th <mark>eory</mark> Pro	actice
Level 1	Remember	20%	20% -	20%	-
Level 2	Understand ====	20% -	20% -	20%	-
Level 3	Apply	30% -	30%	30%	-
Level 4	Analyze	30% -	30%	30%	-
Level 5	Evaluate	3 20			
Level 6	Create		3x /		
	Total	100 %	100 %	100 %	

Course Designers	A PERMANENTAL STEVEN	
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pv.	Ltd, Chennai 1. Dr. Lima Rose Miranda, Anna University, Chennai	1.Dr.P. Muthamilselvi, SRMIST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chem	Chennai 2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr. K. Suresh, SRMIST

Course Code	21CHE553T	Course Name	ADVANCED THER	MODYNAMICS	Course E	PROFESSIONAL ELECT	IVE	1 T 3 0	P C 0 3
Pre-requis Courses	i	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil			
Course Of	fering Departm	ent (Chemical Engineering	Data Book / Codes / Sta	andards	Nil			
Course Lea Rationale (rning The pur	pose of learning	this course is to:	13	4	Ta			
CLR-1:			<mark>statistical</mark> thermodynamics to t			<u> </u>			
CLR-2:			<mark>ssical th</mark> ermodynamics to statis		ly.				
CLR-3:			<mark>d law</mark> s of classical thermodyna		namics				
CLR-4:			<mark>rium</mark> as per statistical thermod		W. Company	Va Th			
CLR-5:	depict th	ie rates of c <mark>hem</mark> ic	<mark>al</mark> reactions as per statistical th	hermodynamics	TAKE TO THE REAL PROPERTY.				
Course Outcomes	(CO): At the	end of th <mark>is cour</mark> s	e, learners will be able to:	Service Name			Progra	mme Ou (PO) 2	tcomes 3
CO-1:	identify	statistic <mark>al-mech</mark> an	ical ensembles and postulates		The state of the s		1	3	2
CO-2:			amics variables and laws to er		· 制造数据等 //		1	3	2
CO-3:			namics principles to monoatom				1	3	2
CO-4:			dynamics for chemical equilibri		production of the second		1	3	2
CO-5:	demons	trate sta <mark>tisti</mark> c <mark>al t</mark> he	ermodynamics based rates of c	chemical reaction in ideal mix	ktures		1	3	2
Madula 1	Ctatiotical Mag	haniaal Engambl	es and Thermodynamics		Variation .				9 Hou
				and Canonical Ensemble, Mid	crocanonical Ensemble Entron	y, Other ensembles, characterist	ic equations E	luctuation	
		ons for Ind <mark>epend</mark>		and Canomical Ensemble, with	лосанопісаї Епзетіліе, Епаор	y, Other ensembles, characterist	ic equations, i	iuctuation	<u>9</u> Hoເ
				neous change. Systems of dis	stinguishable and indistinguisha	able particles, Bolt <mark>zmann S</mark> tatistic	s. Translationa	al Partition	
		nic and Diatomic		Transfer eyestino or and	and marchinguione	Julianos, 2012. Anni Ottation	,		9 Hou
				I Degrees of Freedom. Homo	onuclear Diatomics, Molecular F	Partition Functions, Ideal Diatomic	Gas, Vibration	nal. Rotati	
			re, Quantum Statistics, Polyato		1 d th		-, -	,	- ,
Module-4 -	Chemical Equil	ibrium in Ideal M	lixtures	THAT I TIL	AP-IFAN	/ 8 /			9 Hou
				Case, Fluctuations in a Simpl	le Chemical Equilibrium, Exam	oles o <mark>f Chemical</mark> Equilibria			
Module-5 -		ical Reactions in							9 Hou
			Non-Che <mark>mical Applicatio</mark> n of the						

Learning Resources

1. Terrel L. Hill, "An Introduction to Statistical Thermodynamics," "Dover Publications", 2. Donald A. McQuarirre, "Statistical Mechanics", "University Science Books Publishers", 2nd Edition, 2000

			Continuous Learnin	g Assessment (CLA)		C.	ummativa	
	Bloom's Level of Thinking	Formative CLA-1 Average of unit test (50%)		Life Long Learning CLA-2 (10%)		Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	50%		25%	. \- ' - '	25%	-	
Level 2	Understand	25%	-	25%		25%	-	
Level 3	Apply	25%		50%	2 - 1	50%	-	
Level 4	Analyze		A COLUMN		7 4			
Level 5	Evaluate	1	47.770.340	7.3	100			
Level 6	Create		A N. J. St. (1961)					
	Total Total		00 %	10	00 %		100 %	

Course Designers	(2010년 전 1945년 - July 1940년 - 1941년 -	
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Chennai	i 1. Dr. Lima Rose Miranda, Anna University, Chennai	1 <mark>. Dr. M.</mark> P. Rajesh, SRM IST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2 <mark>. D</mark> r. K. Tamilarasan, SRM IST

Course Code	21CHE554T	Course Name	CHEMICAL PROCESS OPTIMIZATION	Course Category	Е	PROFESSIONAL ELECTIVE	L 3	T 0	P 0	C 3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
	ng Department	Chemical Engineering	Data Book / Codes / Standards		Nil
			THE RESERVE OF BUILDINGS AND AND ADMITTAL TO A SECOND SECO		

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	understand the concepts and importance of optimization
	expose the learners to various methods of optimization
CLR-3:	enable the learners to optimize different functions
	understand the solut <mark>ion strate</mark> gy for linear programming problems
CLR-5:	familiarize the appli <mark>cations o</mark> f optimization methods in chemical processes and industries

Course Outcomes (CO):	At the end of this course, learners will be able to:	Prograi	nme Out (PO)	comes
Outcomes (CO).		1	2	3
CO-1:	model the process and optimize the process conditions	3	2	2
CO-2:	formulate the objective function, constraints and identify the variables type	3	2	2
CO-3:	optimize single variable and multi variable function	3	2	2
CO-4:	find the extreme values of functions with different types of constraints	3	2	2
CO-5:	understand the applications of optimization principles in process industries	3	2	3

Module-1 - Nature and Organization of Optimization Problems

9 Hour

Introduction to optimization concepts, need for optimization in chemical industries, scope and hierarchy of optimization, examples of applications of optimization, essential features of optimization problems, general procedure for solving optimization problems, obstacles to optimization, developing models for optimization, classification of models, major activities and phases in model building prior to application, Selecting functions to fit empirical data, procedure to determine the form of a model, typical mathematical forms of models, fitting models and solving problems by least square method, degrees of freedom analysis in model solving, examples of equality and inequality constraints in industrial operations.

Module-2 - Objective Function Formulation and Condition for Optimum

9 Hour

Formulation of the objective function, economic objective functions, time value of money in objective functions, problems based on operating profits and capital costs as objective function, optimum thickness of insulation, optimization involving an integer - valued variable, nonlinear program (NLP) problem statement, NLP geometry, convexity and its applications, convex and concave function, determination of convexity and concavity of functions, positive definiteness and negative definiteness of a function, Hessian matrix and Eigen values concept. Interpretation of the objective function in terms of its quadratic approximation, Necessary and sufficient conditions for an extremum of an unconstrained single variable and multivariable function, mathematical conditions of unimodal and multimodal functions, Problems based on finding extreme values of multi variable functions using partial derivatives

Module-3 - Optimization of Unconstrained Functions: One Dimensional Search and Multivariable Optimization

9 Hou

Numerical methods for optimizing a function of one variable, Scanning and bracketing procedures, Newton and Quasi-Newton methods of uni-dimensional search, Finite difference approximations to derivatives, polynomial approximation methods – Quadratic interpolation and Cubic interpolation methods, Region elimination methods – Golden section and Fibonacci methods, problems based on optimizing a function of one variable, unconstrained multivariable optimization, Methods using function values – random search, grid search, univariate search, Simplex search method and conjugate search directions, Methods that use first derivatives – steepest descent method and conjugate gradient method, problems on unconstrained multivariable optimization, Newton's method and Quasi – Newton

method for multivariable function optimization, forcing the Hessian matrix to be positive-definite, problems based on Newton and Quasi – Newton method

Module-4 - Linear Programming and Applications

9 Hour

Geometry of linear programs (LP), standard form for linear programs, transformation of linear program into standard form, basic linear programming definitions, concept of equivalent systems and pivoting operations, Simplex algorithm, canonical form and test for optimality, degeneracy and unboundedness in LP, iterative solution of an LP problem, graphical representation and solution of LP problems, problems based on Simplex algorithm for LP problems, non - linear programming (NLP) with constraints, direct substitution method, graphic interpretation of constrained optimization problem, Lagrange multipliers concepts and problems, first order necessary conditions for an extremum, problems containing only equality constraints, sensitivity interpretation of Lagrange multipliers, Kuhn-Tucker conditions for inequality constraints - geometrical interpretation, and algebraic statement, problems containing both equality and inequality constraints, second-order necessary and sufficiency conditions for optimality

Module-5 - Applications of Optimization

Edition, 1984.

9 Hour

Examples for optimizing heat transfer rate and energy conservation in chemical plants, case studies and examples, Optimal Shell-and-Tube heat exchanger design, Optimization of a multi-effect evaporator, optimization of flow rates in a liquid-liquid extraction column, fitting vapor-liquid equilibrium data via nonlinear regression, optimal pipe diameter, minimum work of compression, economic operation of a fixed bed filter, modeling and optimization of chemical reactors, optimization of a thermal cracker via linear programming, optimal design of an ammoni<mark>a reactor,</mark> optimization in large scale plant design and operations, process simulators and optim<mark>ization c</mark>odes, optimization using equation-based process simulators, optimization using modular – based simulators, plant optimization hierarchy

Learning Resources
Resources

1.Thomas F. Edgar, David Mautner Himmelblau, Leon S. Lasdon, "Optimization of 3. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M., "Engineering Optimization", "John Wiley", New chemical processes", "McGraw-Hill", 2nd edition, 2001. 2. Rao S.S., "Optimization: Theory and Applications", "Wiley Eastern", New Delhi, 2nd 4.Suman Dutta, "Optimization in Chemical Engineering", "Cambridge University Press", 1st edition

York, 2006, ISBN-13 9780471558149

2016.

Learning Assessmen	t	1.50		ALC 80-1125				
		200 72 1	Continuous Learning Assessment (CLA)			Summative		
	Bloom's Lev <mark>el of Thi</mark> nking	CLA-1 Avera	native age of unit test 0%)	- CL	Learning A-2 0%)	Final Ex	native amination eightage)	
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	- 1	20%		20%	-	
Level 2	Understand	20%	- //1//	20%	7 37	20%	-	
Level 3	Apply	30%	- 100	30%	7 - 1-	30%	-	
Level 4	Analyze	30%		30%	L- / - /	30%	-	
Level 5	Evaluate	<						
Level 6	Create	/ 11 F	ARV-11	AD TOO		7		
	Total	1.110	00 %	10	0 %	10	0 %	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd., Chenr	nai 1. Dr. Lima Rose Miranda, Former Profe <mark>ssor, Anna Unive</mark> rsity, Chennai	1. Dr. M. Magesh Kumar, SRMIST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr. S. Vishali, SRMIST

Course	21CHE555T	Course	ARTIFICIAL INTELLIGENCE IN PROCESS ENGINEERING	Course	Е	PROFESSIONAL ELECTIVE	L	T	Р	С
Code	21000001	Name	ARTIFICIAL INTELLIGENCE IN PROCESS ENGINEERING	Category		PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil	
Course Offeri	ng Department	Chemical Engineering	Data Book / Codes / Standards		Nil	
<u> </u>		26.7	THE RESERVE AND ADDRESS OF THE PARTY OF THE			

	The purpose of learning this course is to:
	analyze the various chara <mark>cteristics</mark> of Intelligent agents
CLR-2:	organize different search strategies in Al
CLR-3:	incorporate knowledge in solving AI problems
CLR-4:	construct in different ways of designing software agents
CLR-5:	plan various applications of Al

Course	At the end of this course, learners will be able to:	75		Progra	mme Out (PO)	comes
Outcomes (CO):		1		1	2	3
CO-1:	use appropriate search algorithms for any Al problem			2		1
CO-2:	represent a problem using first order and predicate logic			1		2
CO-3:	provide the apt agent strategy to solve a given problem		-	2		1
CO-4:	design software agents to solve a problem			2		1
CO-5:	develop application that uses Artificial Intelligence			1		2

Module-1 - Introduction 9 Hour

What is Artificial Intelligence? Types of problems Al addresses like Computer Vision, Natural Language Processing, Robotics, Expert Systems, Object detection and Image segmentation. Applications of Al in chemical engineering areas like fault diagnosis, Process control, Process design, Planning and operations, Modeling and simulation and Product design, development and selection like Separation Design, Heat-Exchanger Network Synthesis, Thermodynamic Model Selection and Physical Property Estimation, Oil reservoir image segmentation, Corrosion and crack predictions based on image detection. Early applications of Al techniques in chemical engineering. The FALCON, CATDEX, BIOEXPERT and the ExSep algorithms

Module-2 - Deep Artificial Neural Networks

9 Hour

Deep Artificial neural networks (DNN). The working of the Rosenblatt perceptron, multilayer perceptrons. Activation functions and their importance in incorporating nonlinearities into the predictive models.

The feedforward process in ANN layers with dense fully connected layers. The error (loss) functions as a measure of the ANN performance. Backpropagation algorithm for neuron learning. Various optimization algorithms for neuron learning like Adams, Stochastic Gradient Descent and their variations. The role of learning rate in backpropagation and learning rate scheduling algorithms

Module-3 - Convolution Neural Networks (CNN)

9 Hour

The drawbacks of Deep ANN. How CNN take into account the spatial patterns. The working of the CNN in pattern recognition. The role of kernels, pooling, padding and stride in CNN learning. How the kernels help in reducing the learning parameters (weight sharing). One, two and three dimensional convolutions. The problems of vanishing and exploding gradients in deep networks. The concept of dropouts and batch renormalization in overcoming some problems in CNN learning.

Module-4 - Sequence Modeling using the Recurrent Neural Networks (RNN)

9 Hour

The application of this architecture in predictions based on sequential data. Various RNN architectures proposed like many to one, One to many and Many to many. The variants of RNN like Gated Recurrent Units (GRU) and the Long Short Term Memory (LSTM) architectures. Object Detection with the R-CNN, Fast and Faster R-CNN algorithms. The working of the YOLO algorithm.

Module-5 - Case Study 9 Hour

Some outstanding deep networks proposed like AlexNet, VGGNet, Inception, GoogleNet and ResNets. The problems they faced and how they resolved the problems. The concept of Transfer Learning and how one can use these proposed networks to solve other relevant problems. Autoencoders for dimensionality reduction.

	1. Raff, Edward, "Inside Deep Learning: Math, Algorithms and Models", "Manning	3. Ian Goodfellow, Yoshua Bengio, Aaron Courville. "Deep Learning. (Adaptive Computation and
Learning	Publications", 2022.	Machine Learning series)". 2015.
Resources	2. Quantrile, Thomas, Liu, Y. A, "Artificial Intelligence in Chemical Engineering",	4. Deepak Khemani, "A First Course in Artificial Intelligence", "McGraw Hill Education", 2013
	"Academic Press", 1991.	741/2

arning Assessme	Bloom's Level of Thinking	CLA-1 Avera	Continuous Learning ative ge of unit test %)	Life Long CL	Learning A-2 9%)	Fin	Summative al Examination % weightage)
		Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	F 12 12 13	20%		20%	-
Level 2	Understa <mark>nd</mark>	20%	N. V. W. S. S. V. S.	20%		20%	-
Level 3	Apply	30%	A Comment States	30%	4 4 -	30%	-
Level 4	Analyze	30%	377 407 7	30%		30%	-
Level 5	Evaluate	E 77 77 1 77 1	3.5	中国为1988年1月1日		0	
Level 6	Create	Water School	777 6 7 2 3	A 175 A			
	Total Total	100)%	100	0 %		100 %

Course Designers		4.0	Mark A		
Experts from Industry		E	xperts from Higher Technical Institutions		Intern <mark>al Expert</mark> s
1. Mr. A. Subramaniam, PESCO Beam	n <mark>Environ</mark> mental Solutions	Pvt. Ltd, Chennai 1.	Dr. Lima Rose Miranda, Anna University, Chennai	7.7	1. Dr <mark>. K. Sure</mark> sh, SRMIST
2. Mr. S. Stalin, Course Director, Chen	n <mark>Skill Dev</mark> elopment Centro	e, Chennai 2.	Dr. N. Anantharaman, Former Professor, NIT Trichy	-7	2. <mark>Dr. P. Mut</mark> hamilselvi, SRMIST

Course	21CHE556T	Course	STRATECIES FOR CO. LITILIZATION	Course	 PROFESSIONAL ELECTIVE	L	Τ	Р	С
Code	21CHE5561	STRATEGIES FOR CO2 UTILIZATION		Category	 PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offeri	ng Department	Chemical Engineering	Data Book / Codes / Standards		Nil
				7 4 .	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	understand the sources of CO₂ emission along with its physical and chemical properties
CLR-2:	exploit on the methods of CO ₂ capture, storage and conversion
CLR-3:	comprehend on variou <mark>s biologi</mark> cal carbonization methods
CLR-4:	understand various techniques of thermo and electrocatalytic conversion of CO ₂
CLR-5:	analyze the carbon capture by renewable energy-based process

Course	At the end of this course, learners will be able to:		Programme Outcomes (PO)				
Outcomes (CO):		1		1	2	3	
CO-1:	understand the sources and treatment strategies for CO₂ reduction		2	3		2	
CO-2:	analyze the methods of CO₂ capture and sequestration methods			3	2		
CO-3:	develop the biological methods to carbonize CO ₂			3	2		
CO-4:	illustrate the method of thermocatalytic and electrocatalytic conversion of CO ₂			3		3	
CO-5:	illustration of ca <mark>rbon cap</mark> ture by solar, photocatalytic and plasma activated process			2		3	

Module-1 - Introduction to CO₂ Related Pollution Sources

Sources of Carbon Dioxide Emission-Physical and Chemical Properties of CO₂-Challenges for Treatment of Carbon Dioxide Emission-Treatment Strategies for CO₂

Module-2 - Conventional Techniques of Carbon Capture

9 Hour

9 Hour

Methods for Carbon Dioxide Capture, Physical and Chemical Separations and Concentrate Technologies- Transportation of Captured CO₂-CO₂ Sequestration Methods-Direct Utilization of CO₂, Storage of CO₂

Module-3 – Non- Conventional Techniques of Carbon Capture

9 Hour

Carbon Capture by Mineral Carbonation and Production of Construction Materials-Methods of Carbonation-Challenges and Perspectives for Carbonation Processing- Biological Conversion of Carbon Dioxide-Photosynthetic CO₂ Reduction by Algae-Green Algae-Microalgae-Biorefinery Concept of Microalgal Biomass

Module-4 - CO₂ Conversion by Conventional Techniques

9 Hour

CO₂ Conversion to Fuels and Chemicals by Thermal and Electro-Catalysis – Principle, Developments and future scope on thermo and electro catalysis

Module-5 - CO₂ Conversion by Novel Techniques

9 Hour

Carbon Dioxide Conversion Using Solar, Thermal and Photo Catalytic Processes. Plasma-Activated Catalysis for CO₂ Conversion

	1. Yatish T. Shah, "Sustainable Energy Strategies book on CO2 Capture, Utilization, and	3. Zhicheng Zhang, Wiley-VCH Verlag, "CO2 Conversion and Utilization - Photocatalytical and
Learning	Sequestration Strategies", "Taylor and Francis", CRC PRESS, First edition, 2022	Electrochemical Methods and Applications", "Wiley", First edition, 2023
Resources	2. Dr. Sonil Nanda, Dai-Viet N. Vo, Van-Huy Nguyen, "Carbon Dioxide Capture and	
	Conversion: Advanced Materials and Processes", "Elsevier" 2022,	

·		200	CIEN	Cr				
Learning Assessme	nt		PATE A	WILL AV				
			Continuous Learnin	g Assessment (CLA)		Cum	motivo	
	Bloom's Level of Thi <mark>nking</mark>	C.I. A-T. AVERAGE OF UNIT TEST		Life Long Learning CLA-2 (10%)		Summative Final Examination (40% weightage)		
	/67	Theory	Practice	Theory	Practice	Theory Theory	Practice	
Level 1	Remember	20%	20 to 350	20%	N Van	20%	-	
Level 2	Understand	20%	3. T. O. St. 177	20%	E A	20%	-	
Level 3	Apply	30%	THE WEST 1 1	30%		30%	-	
Level 4	Analyze	30%	To a Programme	30%		30%	-	
Level 5	Evaluate	146	Ash the Market		J. 1			
Level 6	Create	3 1	Section 20	201 Bull Bull				
	<u>Total</u>	10	0 %	20 10	00 %	10	0 %	

Course Designers				· •
Experts from Industry		Experts from Higher Technical Institutions	Inte	e <mark>rnal Expe</mark> rts
 Mr. A. Subramaniam, PESCO Beam Environment 	<mark>ro</mark> nmental Solutions Pvt. Ltd, Chenna	i 1. Dr. Lima Rose Miranda, Anna University, Chennai	1.L	O <mark>r. G.Kee</mark> rthiga, SRMIST
2. Mr. S. Stalin, Course Director, Chem Skill I	Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trich	y 2. <u>[</u>	<mark>)r. S. An</mark> andhakumar, SRM IST

Course		Course	MODERN SERVENTION BROCESSES	Course	Е	PROFESSIONAL ELECTIVE	L	Τ	Р	С
Code	2101123371	Name	MODERN SEPARATION PROCESSES	Category		PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
	ng Department	Chemical Engineering	Data Book / Codes / Standards		Nil
			THE RESERVE OF BUILDINGS AND AND ADMITTAL TO A SECOND SECO		

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	outline the modern processes applied in the separation of various components from different phases based on size, physical, chemical characteristic, ionic, thermal principles.
CLR-2:	provide an overview of the concepts of membrane separation techniques
CLR-3:	expose the learners to know the separation by sorption techniques
CLR-4:	import the knowledge of various chromatographic techniques
CLR-5:	understand the various other techniques involved in separation process

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
Outcomes (CO):		1	2	3		
CO-1:	appreciate the importance of the concepts involved in separation methods and understand the need for modern separation process	2	3	3		
CO-2:	understand the working mechanism of various membrane separation processes and their application	3	2	3		
CO-3:	recognize the mechanism of adsorption and design the fixed bed adsorber	3	2	3		
	recognize the various chromatographic techniques used for analysis and separation	2	3	3		
CO-5:	understand the advanced extraction techniques and other methods used for separation	2	3	3		

Module-1 – Separation Processes 9 Hour

Batch, continuous and semi continuous process, key operation and auxiliary operation, block flow diagram, process flow diagram, mechanism of separation, general separation process, characteristics of separation processes, separating agent, energy-separating-agent vs. mass-separating-agent processes, categorizations of separation processes, mechanical vs. diffusional processes, equilibration processes vs. rate-governed processes. Basic separation techniques: Separations by phase addition, phase creation, barriers, solid agents, external field or gradient. Component recoveries and product purities, split fractions and split ratios, purity and composition designations, separation sequences, separation factor, selection of feasible separation processes. Conventional separation processes-limitations—need for modern separation processes.

Module-2 - Membrane Separations

9 Hour

Membrane: classification. Membrane separation processes: classification, advantages and limitations. Membrane modules, concepts and mechanism of separations. Mechanism and applications of microfiltration, ultrafiltration, nanofiltration. Reverse Osmosis. SWRO, pretreatment and post treatment, design of RO plant, Mechanism and applications of dialysis & electrodialysis. Design of ED Unit

Module-3 - Adsorption and Ion Exchange

9 Hour

Adsorption: types, mechanism, industrial Applications; Adsorbents: characteristics, properties, selection, types, preparation and activation methods. Adsorption isotherms (Freundlich, Langmuir, BET); Principle and applications of: Pressure swing adsorption and thermal swing adsorption. Regeneration methods. Fixed bed adsorption: Design, Mass Transfer Zone (MTZ), breakthrough curve, length of unused bed (LUB). Ion Exchange, ion exchange equilibria, ion exchange resins, separation factors in ion exchange, ion exchange in a column, mixed bed exchanger, regeneration of resins.

Module-4 - Chromatography

9 Hour

Chromatography basic principle - static/mobile phase, Classification of chromatographic systems, general description of a column chromatography, partition coefficient, retention time, retention volume, capacity factor, retention ratio, relative retention, column efficiency, resolution, peak asymmetry, column processes and band broadening, extra column broadening, LC, HPLC, GC, planar

chromatographic techniques- paper chromatography, thin layer chromatography, high performance thin layer chromatography, preparative chromatography, ion exchange chromatography, applications of chromatographic techniques

Module-5 - Other Separation Techniques

9 Hour

Advanced methods of extraction- ultrasound-assisted extraction, microwave-assisted extraction, super critical fluid extraction, emulsion liquid membrane, supported liquid membrane. Pervaporation, permeation, membrane distillation, forward osmosis, lyophilization

	1.J.D. Seader, Ernest J Henley and D. Keith Roper, "Separation Process Principles – 5.C. J. King, "Separation Processes", "Mc Graw Hill", Second Edition, USA, 1980.
	Chemical and Biochemical Operations", "John Wiley & Sons", United States of America, 6. Ronald W. Roussel, "Handbook of Separation Process Technology" "John Wiley", New York
	3rd edition, 2011. 1987.
Lagraina	2. Kaushik Nath, "Membrane Separation Processes", "PHI Learning Private Limited", New 7. Richard W. Baker, "Membrane Technology and Applications", "John Wiley", England, Second
Learning	Delhi, Second Edition 2017.
Resources	3. K V Narayanan and B Lakshmikutty, "Mass Transfer Theory and Applications," CBS 8.B. Sivasankar, Bioseparations, "Principles and Techniques", "Prentice Hall of India Pvt. Ltd", New
	Publishers and Distributers Private Limited", First Edition New Delhi, 2018. Delhi, 2010
	4.Binay K. Dutta, "Principles of Mass transfer and Separation Processes", "Prentice- Hall 9.M. Mulder, "Basic Principles of Membrane Technology", "Kluwer Academic Publishers"
	of India", New Delhi, 2011 Netherlands, 1996.

Learning Assessment			Continuous Learnin				
	Bloom's Level of Thinking	CLA-1 Avera	Formative CLA-1 Average of unit test (50%)		Life Long Learning CLA-2 (10%)		ımmative Examination weightage)
		Theory	Practice	Theory	Practice	Theo <mark>ry</mark>	Practice
Level 1	Remember	15%		10%		15%	-
Level 2	Understand ===	25%	and - No	30%	7 (7)	25%	-
Level 3	Apply	30%	- !	30%	7- 2-3	30%	-
Level 4	Analyze	30%	- //	30%	7	30%	-
Level 5	Evaluate	1)	1420		121	7.2	
Level 6	Create	7 //					
	Total	10	0 %	10	00 %	21	100 %
	13	AII	$ARN \cdot L$	EAP-IF	AD L		

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Chennai	1. Dr. Lima Rose Miranda, Anna University, Chennai	1. Dr. E. Poonguzhali, SRMIST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr. S. Prabhakar, SRMIST

Course	21CHE558T	Course	FLUIDIZATION ENGINEERING	Course	Е	PROFESSIONAL ELECTIVE	L	Т	Р	С
Code	21CHE5581	Name	FLUIDIZATION ENGINEERING	Category		PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil	
Course Offeri	ng Department	Chemical Engineering	Data Book / Codes / Standards		Nil	
			the fact that the second of the second			

Carres I camaina	
Course Learning	The purpose of learning this course is to:
CLR-1:	establish the foundational understanding of fluidization and its role in chemical engineering processes
CLR-2:	explore the practical applications of fluidized bed technology across various industrial sectors
CLR-3:	investigate the characteristics of fluidization regimes and their mapping
CLR-4:	analyze the operational aspects and characteristics of fluidized beds
CLR-5:	introduce mathematical models for simulating fluidized bed behavior

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	understand the principles underlying different fluidized bed models and their assumptions.	2		3	
	apply CSTR models and two-region models to simulate fluidized bed behavior under various operating conditions.	1		2	
CO-3:	evaluate the ac <mark>curacy a</mark> nd limitations of fluidized bed models in predicting bed performance.	3		1	
CO-4:	utilize the Kunii-Levenspiel model to optimize fluidized bed reactor design and operation.	2		3	
CO-5:	demonstrate proficiency in using mathematical modeling software to simulate and analyze fluidized bed systems.	2		3	

Module-1 - Introduction to Fluidization Phenomenon	III III A	9 Hour
Introduction: Fluidization phenomenon, Liquid-like behavior of a fluidized bed	1.7	
Module-2 - Industrial Applications of Fluidized Beds	37.117	9 Hour

Module-2 - Industrial Applications of Fluidized Beds

Industrial Applications: Physical operations, Synthesis reaction, cracking of hydrocarbons, Combustion, Incineration, and gasification

Module-3 - Fluidization and Mapping of Regimes

9 Hour

Fluidization and Mapping of Regimes: Distributors, Gas jets in fluidized beds, Pressure drop in fixed beds, Geldart classification of particles, Gas fluidization with and without entrainment, Mapping of fluidization regimes.

Module-4 - Fluidized Beds and Their Characteristics

9 Hour

Fluidized Beds: Dense beds, Bubbling fluidized beds, Entrainment from fluidized beds, High velocity fluidization, Solids mixing, segregation, and staging, Gas dispersion and Interchange in bubbling beds, Heat and mass transfer, Industrial applications.

Module-5 - Fluidized Bed Models

9 Hour

Fluidized Bed Models: CSTR model, two region model, Kunii-Levenspiel model

	1.Kunii, D., Levenspiel, O. and Robert, E., "Fluidization Engineering", "Butterworth-	3. Yates, J.G., "Fundamentals of Fluidized Bed Chemical Processes", "Butterworth-Heinemann"
Learning	Heinemann", 1991.	Butterworth's Monographs in Chemical Engineering, 1983.
Resources	2. Coulson, J.M., and Richardson, J.F., "Chemical Engineering", "Asian Books Private	4. Yang, W. and Amin, N.D., "Fluidization engineering: fundamentals and applications", "American
	Limited", Vol. 2, , 2002.	Institute of Chemical Engineers",1988.

arning Assessme	ent		Continuous Learnin	g Assessment (CLA)			
	Bloom's Level of T <mark>hinking</mark>	CLA-1 Aver	mative age of unit test 50%)	Life Long CL	Learning A-2 0%)	Final	ummative Examination 6 weightage)
	/6//	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	REAL STATES	20%	Va-	20%	-
Level 2	Understand	20%	BROOK FREE SE	20%		20%	-
Level 3	Apply	30%	· 原始性 。 5.57	30%		30%	-
Level 4	Analyze	30%	Late Market and Late	30%		30%	-
Level 5	Evaluate	7 7	A STATE OF THE STA	1000			
Level 6	Create	3 197	The County States	1 32 78			
	Total	10	00 %	10	0 %		100 %

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	In <mark>ternal Ex</mark> perts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Chennai	1. Dr. Lima Rose Miranda, Anna University, Chennai	1 <mark>. Dr. S. S</mark> am David, SRM IST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr.K.Suresh, SRM IST

Course 210L	LESSOT Course	BIOMASS CONVERSION AND BIO-REFINERY	Course	_	PROFESSIONAL ELECTIVE	L	Τ	<u> </u>	С
Code	Name	BIOMASS CONVERSION AND BIO-REFINERY	Category	4	PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Nil	Co- requisite Courses	Nil Progressive Courses Nil	
Course Offering Department	Chemical Engineering	Data Book / Codes / Standards Nil	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	examine the significance of bioenergy and the availability of biomass resources utilization in bio refinery process
CLR-2:	elucidates effective methods for the fractionation and conversion of the biomass feedstock.
CLR-3:	decipher an understanding on the biofuels production from biomass by biochemical process
CLR-4:	comprehend the importance and production of various platform chemicals with commercial significance
CLR-5:	apprehend the photocatalytic process for the production of fuels and chemicals with industrial importance

Course	At the end of this course, learners will be able to:	3 1	Programme Outcomes (PO)				
Outcomes (CO):		Z	1	2	3		
CO-1:	understand basic concepts about biomass derived energy		1	3	1		
CO-2:	understand and evaluate various biomass pre-treatment and thermochemical conversion techniques			2	3		
CO-3:	able to understand the various biochemical techniques in biomasses conversion		2	3	2		
CO-4:	ability to design a sustainable bio refinery for biofuels and biochemical production by combining various processes		2	3	2		
CO-5:	accomplish knowledge on the various engineering basics of photocatalytic techniques in bio refinery process		3	2	2		

Module -1 – Biomass Resources 7 Hour

Importance of Bioenergy and bio-fuels, Global and Indian scenario, Availability of biomass, composition and energy potential, waste biomass (municipal, industrial, agricultural and forestry) availability. First, second and third generation biofuels and biomass as energy resources. Oil crops and microalgae as feedstock for biofuels and biochemical productions. Advantages and Challenges of Using Agro-industrial Wastes as the Feedstock for Bio refinery, Agro-industrial Waste Biorefinery: Engineering Breakthroughs, Enhancing biomass properties for biofuels productions, and challenges

Module-2 - Thermo-Chemical Conversion 10 Hour

Biomass pre-processing: size reduction and densification, Fundamentals of thermal conversion process: pyrolysis, gasification, combustion, hydrothermal liquefaction. Biofuel productions from oils, microalgae and seaweeds production. Barriers in lignocellulose biomass conversion, different pre-treatment technologies in the bio refinery concept.

Module-3 - Biochemical Conversion

10 Hour

Lignocellulosic biofuels, direct fermentation for ethanol and butanol production. Biogas plants/systems; classification and models of biogas plant; Types of bio-digesters; floating and fixed dome reactors; Design concept and construction of biogas plant. Bio hydrogen generation from biomass feedstock's, Integration process for bio hydrogen with fuel cell system. Enzymes in Biorefinery, Pretreatment Process in Biorefinery, Enzyme Technology in Bio refineries.

Module-4 - Bio Refinery-Based Platform Chemicals

10 Hour

Platform Chemical for Biofuel and High-Value Biochemicals, Potential C3 and C4 Platform Chemicals production, Process Development Strategies for Enhanced chemicals Production, Application Aspects of C3 and C4 chemicals. Potential of C5 Platform Chemicals and Process Development Strategies, Potential Applications and Market Potential of C5 Platform Chemicals.

Module-5 - Photo Bio-Refinery Concept

8 Hour

Types of photo catalyst, Photocatalytic reactor development, Photo thermal system, Photocatalytic Reforming of Biomass; Photo biorefinery Routes for platform Chemicals and hydrogen Production

Learning	1. Alain A. Vertès, Nasib Qureshi, Hans P. Blaschek, Hideaki Yukawa, "Biomass to Biofuels: Strategies for Global Industries", "John Wiley & Sons, Ltd", 2010	3. Hongzhang Chen., "Lignocellulose Biorefinery Engineering - Principles and Applications "Elsevier Inc Publishers", 2015.
Resources	2. Satinder Kaur Brar, Saurabh Jyoti Sarma, Kannan Pakshirajan, "Platform Chemica Biorefinery, Future Green Chemistry", "Hardback", 1st Edition, ISBN: 9780128029800	$C_{R,A}$
		141/1/2

	Bloom's Level of <mark>Thinking</mark>	Continuous Learning Assessment (CLA) Formative CLA-1 Average of unit test (50%) Continuous Learning Assessment (CLA) Life Long Learning CLA-2 (10%)		Formative		A-2	Final	ımmative Examination weightage)
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	THE RESERVE OF THE	30%		20%	-	
Level 2	Understan <mark>d</mark>	20%	P of	40%		20%	-	
Level 3	Apply	30%	Sec. 10 11 11 11 11 11 11 11 11 11 11 11 11	30%		30%	-	
Level 4	Analyze	30%	1 1 1 1 July 19 19	St 1 22 . 75		30%		
Level 5	Evaluate			1 2 20 No. 1/2 1				
Level 6	Create	E. 72		1793年生		2		
	<u>Total</u>	10	0%	100	0 %		100 %	

Course Designers			
Experts from Industry		Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Bea	m <mark>Environ</mark> mental Solutions Pvt. Ltd, Che	nnai 1. Dr. Lima Rose Miranda, Anna University, Cheni	nai 📗 1. Dr. K. <mark>Tamilara</mark> san, SRMIST
2. Mr. S. Stalin, Course Director, Che	m <mark>Skill Dev</mark> elopment Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT To	richy 2. Dr.S. <mark>Kiruthika,</mark> SRM IST

Course	21CHE560T	Course	ADVANCED BIOCHEMICAL ENGINEERING		_	PROFESSIONAL ELECTIVE	L	Τ	Р	С
Code	21CHE5601	Name	ADVANCED BIOCHEMICAL ENGINEERING	Category		PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offerin	ng Department	Chemical Engineering	Data Book / Codes / Standards		Nil
<u> </u>			A 10 10 10 10 10 10 10 10 10 10 10 10 10		

Course Learning Rationale (CLR):	The purpose of learning this course is to:
	analyze and compare various bioreactors and accessory types and their characteristics
	identify problems associated with bioprocess scale-up
CLR-3:	distinguish different bioprocess control requirements and associated instrumentation
	discern the different methods of product recovery and purification
CLR-5:	comprehend process design of biotechnology processes and techno-economic analysis

Course	At the end of this course, learners will be able to:	3	Progra	mme Out (PO)	tcomes
Outcomes (CO):		1	1	2	3
CO-1:	evaluate and select bioreactors based on bioprocess requirements		1	3	1
CO-2:	demonstrate ability to scale-up of bioreactor in industrial bioprocesses		3	2	3
CO-3:	understand and apply control systems for maintaining optimal bioreactor conditions to enhance bioprocess efficiency		2	3	2
CO-4:	integrate knowledge of cell disruption, separation, isolation, and purification techniques for efficient bioprocessing		2	3	2
CO-5:	develop bioprocesses incorporating sustainability and techno-economic analysis concept		3	2	2

Module-1 - Overview of Biochemical Process

7 Hour

General requirements of biochemical process, Upstream process unit operation, Downstream unit operation, Components - of bioreactor - Classification and configuration of bioreactors - Analysis of batch bioreactors - Analysis of batch bioreactors - Analysis of continuous flow bioreactors

Module-2 - Mass and Heat Transfer in Bioprocess Scale-Up

10 Hour

Biochemical reactor scale-up - Transport phenomena in Bioprocess - systems - Gas-liquid mass transfer - Determination of oxygen transfer rates - Measurement of kLa - Measurement of kLa - Key dimensionless groups - Correlations for mass transfer co-efficients and interfacial area - Overall kLa estimates and power requirement for sparged and agitated vessels - Overall kLa estimates and power requirement for sparged and agitated vessels - Heat transfer - Heat transfer correlations - Scaling of mass transfer equipment - Scaling of mass transfer equipment - Regime analysis of Biochemical reactor processes - Regime analysis of Biochemical reactor processes - Scale-up criteria for bioreactors based on oxygen transfer and power consumption - Scale-up criteria for bioreactors based on oxygen transfer and power consumption

Module-3 - Bioreactor Monitoring and Control

10 Hour

Instrumentation control of bioreactors - Measurement of physical and chemical parameters in bioreactors - Bioreactor sensor s for temperature control - Principles of dissolved oxygen measurement and control - Principles of pH control - Principles of redox measurement and control - On-line sensors Off-line analytical methods - Measurement of medium properties - Analysis of cell population composition - Prevention of foam - Determination of biomass Application of biosensors - Application of biosensors

Module-4 - Biomolecule Recovery and Purification

10 Hour

Product recovery operation - Separation of biomolecules - Cell disruption for release of products - Cell disruption for release of products - Mechanical methods of cell disruption - Enzymatic methods of cell disruption - Cells and solid particle separation - Filtration; Filtration - Centrifugation - Centrifugation - Product isolation - Product isolation, Adsorption - Liquid-

liquid extraction - Product purification- Chromatography - Product purification- Chromatography

Module-5 - Economic Analysis of Bioproducts

8 Hour

Techno-economic analysis: Techno-economic assessment of biofuels and value added products in industrial process, Process design, Equipment sizing, Capital cost estimation, Operating cost estimation, Cash flow analysis

		CUENCE
		1.Bailey, J.E. and Ollis, D.F. "Biochemical Engineering Fundamentals", "McGraw- Hill", 3. Magnus Frohling, Michael Hiete, "Sustainability and Life Cycle Assessment in Industrial
		2nd edition, 1988. Biotechnology", "Springer", 2020.
Res	ources	2. Shuler, M.L. and Kargi, F. "Bioprocess Engineering: Basic Concepts", "PHI", 2002.

earning Assessme	ent						
	Bloom's Level of Thinking	CLA-1 Avera	Continuous Learning native ge of unit test 9%)	CL	Learning A-2 0%)	Final	ummative Examination 6 weightage)
		Theory	Practice	Theory	Practice	The ory	Practice
Level 1	Rememb <mark>er</mark>	20%	1 15 1-3 No. 185	30%	3 /	20%	-
Level 2	Underst <mark>and</mark>	20%		40%		20%	-
Level 3	Apply	30%	7.0	30%		30%	-
Level 4	Analyze	30%	93.0 2 Y			30%	
Level 5	Evaluate	472-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200			
Level 6	Create	1000		ENS. SU			
	<u>Total</u>	100	0 %	10	0 %		100 %

Course Designers		3 /
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Chennai	1. Dr. Lima Rose Miranda, Anna University, Chennai	1. Dr. K. Tamilarasan, SRMIST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr. M.P. Rajesh, SRM IST

Course	21CHE561T	Course	CLEANER TECHNOLOGIES AND SUSTAINABILITY	Course	Е	PROFESSIONAL ELECTIVE	L	Τ	Р	С
Code	2101123011	Name	CLEANER TECHNOLOGIES AND SUSTAINABILITY	Category		PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offeri	ng Department	Chemical Engineering	Data Book / Codes / Standards		Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	elaborate the concepts of clean technology to achieve sustainability
CLR-2:	provide acquaintance with modern, cleaner production processes and emerging energy technologies
CLR-3:	facilitate the understanding of the need for clean technologies in power generation
CLR-4:	familiarize the conce <mark>pts of en</mark> ergy audit
CLR-5:	comprehend the app <mark>lications of cleaner production in chemical process industries</mark>

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
Outcomes (CO):		1	2	3		
CO-1:	analyze the environmental pollutants, comprehend the concepts of clean technology and cleaner production	2				
CO-2:	apply the cleaner production assessment and waste management techniques	2	3			
CO-3:	develop and implement clean technologies for power generation	2		2		
CO-4:	conduct the energy audit and prepare the energy audit report	2	3			
CO-5:	apply cleaner production in chemical process industries	3	3	2		

Module-1 - Sustainability 9 Hour

Sustainability and biodiversity, the problem of environmental pollutants, clean technology and clean-up technology, environmental life cycle assessment, materials reuse: the new industrial ecology, cleaner production definition, evaluation of cleaner production, cleaner production network, and the area covered by cleaner production. Role of cleaner production in achieving sustainability, role of industry, institutions, and Government. Outline about greenhouse gas emission.

Module-2 - Cleaner Production 9 Hour

Overview of cleaner production assessment steps and skills, preparing for the site visit, information gathering, and process flow diagram, material balance, waste reduction at source. Practical techniques for waste minimization: good housekeeping; input material changes; product changes; technical changes, recycling: on-site and off-site recovery.

Module-3 - Clean Technologies for Power Generation

10 Hour

Environmental Issues, emission control in power plants: pre-combustion controls; combustion control techniques; post-combustion technologies, clean power plant configurations: Integrated Gasification Combined Cycle (IGCC) Power Plant. Production of hydrogen: steam reforming, partial oxidation, water electrolysis: reverse fuel cell operation, direct thermal or catalytic splitting of water. Fuel cell: electrochemistry and thermodynamics of fuel cells; proton exchange membrane fuel cell. Use of clean fuels.

Module-4 - Energy Audit

7 Hour

Types of energy audit, energy audit process: pre-site work; site visit; and post-site work, energy audit report preparation, energy conservation via cleaner technology

Module-5 - Case Studies and Cleaner Production Applications

10 Hour

Application of cleaner production in chemical process industries: Ammoniacal nitrogen recovery from wastewater, carbon capture, reuse of water from the sewage treatment plant, practical ways for energy saving in industries, sustainable aviation fuel. Case Studies of cleaner production in chemical process industries

	1.R.C. Kirkwood and A.J. Longley, "Clean Technology and the Environment", "Chapman	4. Bent Sorensen, "Hydrogen and Fuel Cells: Emerging technologies and applications", "Elsevier
	& Hall", 2012.	Academic Press", 3 rd edition, 2018.
Learning	2.P. M. Randall, "Engineers Guide to Cleaner Production Technologies", "CRC Press" 1st	5. Albert Thumann P.E., William J. Younger, "Handbook of energy audits", "Fairmont Press", 9th
Resources	edition 1996.	edition, 2012.
	3.W. Hoyle and M. Lancaster, "Clean Technology for the manufacture of Specialty	744
	Chemicals", Royal Society of Chemistry, 2004.	

arning Assessm			Continuous Learnir	ng Assessment (CLA)		C.		
	Blo <mark>om's</mark> Level o <mark>f Thinki</mark> ng	CLA-1 Ave	ormative erage of unit test (50%)	Life Long Learning CLA-2 (10%)		Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20%	7	20%	-	
Level 2	Understan <mark>d </mark>	20%	State of the second way	20%	19 3	20%	-	
Level 3	Apply	30%	Alta September	30%		30%	-	
Level 4	Analyze	30%		30%	1	30%	-	
Level 5	Evaluate	40.00	7.11.2					
Level 6	Create	11/2 - 22	10 mg 42 N	1				
	<u>Total</u>		100 %	1 = 1 1/2 3 4 1	00 %		100 %	

Course Designers		7 - 7 - 7
Experts from Industry	Experts from Higher Technical Institutions	Internal E <mark>xperts</mark>
Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Chennai	1. Dr. Lima Rose Miranda, Anna University, Chennai	1. Dr. E.Kavitha, SRMIST
2. Mr. S. Stalin, Course Director, Chem Sk <mark>ill Develo</mark> pment Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. D <mark>r.K.Anbal</mark> agan, SRM IST
ALE:	ARN · LEAP · LEAD	

Course Code	L.HEDDZI I	Course Name	NANOSCIENCE AND NA	NOTECHNOLOGY	Course Category	PROFESSIONAL ELEC	CTIVE	L T 3 0	P C 0 3
Pre-requisite Courses		Nil	Co- requisite Courses	Nil	Progressiv Courses		il		
Course Offeri	ng Department	t Ch	emical <mark>Engineering</mark>	Data Book / Codes / St	andards	Nil			
-				THE REAL PROPERTY.	NAU A				
Course Learni Rationale (CLF	R): The purpo	se of learning th			14/				
CLR-1:			<mark>s of nan</mark> omaterials based on						
CLR-2:			<mark>for sy</mark> nthesizing nanomateria						
CLR-3:			<mark>ren</mark> t characterization tools ar	nd techniques	A CONTRACTOR OF THE PARTY OF TH				
CLR-4:		the role o <mark>f na</mark> nose							
CLR-5:	gain insight	t into the <mark>div</mark> erse	applications of nanotechnolo	gy	SHARE TO				
				<u> </u>	What had be				
Course Outcomes (CO	At the end	d of th <mark>is cour</mark> se,	learners will be able to:	1 30 May 10				mme Ou (PO)	
•	•	<i>" " " " " " " " " "</i>	<i>"</i>	ليطالهم والمحاليات	Mary Mary Control	TONICAL AND D	1	2	3
CO-1:			fferent nanomaterials		17 18 18 18 18 18 18 18 18 18 18 18 18 18		3		
CO-2:			ifferent synthesis strategies	NY - 1 194	<u> </u>	4., 4	2		1
CO-3:			hod of characterization	The Contract of the Contract o			2		1
CO-4:			nism of nanosensors	va fielda			2		1
CO-5:	comprenen	na the <mark>application</mark>	s of nanotechnology in variou	is fields			2		1
Madula 4 Ton	f N	4a via la			A STATE OF THE PARTY OF THE PAR				9 Houi
Module-1 - Typ			las Magnatia nananartialas	Organia nananartialas Car	han hasad nanamata	eriala. Carban data aarban nanatubaa	aranhana Dalum	acric none	
Hydrogels, Den			es, magnetic hanoparticles,	Organic nanoparticles, Can	oon- based nanomale	erials - Carbon dots, carbon n <mark>anotube</mark> s,	grapnene, Polyn	ieric riano	particies,
		he Synthesis of I	Nanomatoriale	744	1				9 Hou
				naches - Precinitation Co-	precinitation Solatel s	synthesis, Microemulsions, Solvotherma	I synthasis Than	nolveie A	
			<mark>otoc</mark> hemical synthesis, Synth				i syriuresis, Trieri	iioiysis, iv	liciowave
		of Nanomate <mark>rial</mark> s		iosis ili supercinicai nalas, t	noiogical approaches				9 Hou
				scopy Scanning probe mic	roscone (AFM and ST	「M), Small Angle X <mark>-ray scatter</mark> ing, Vibrat	ing Sample Mag	netometry	
			r; FT-IR Spectrophotometer;				ing dampic magi	lotomotry	, Licelion
Module-4 - Nai		podropnotomotor	, i i ii opodropnotomotor,	whore raman epoca emotor	, Dynamio light ocatio	Ting			9 Hou
Sensing princip	les, Types of se		cal, ac <mark>oustic, magnetic, them</mark>	nal, chemical, radiation, Des	sign, fabrication and cl	haracteriz <mark>ation of nan</mark> osensors, Chemic	al nanosensors, (Optical	0001
nanosensors, N		onotoobnology							0 Ha

9 Hour

Module-5 - Applications of Nanotechnology

Everyday materials and processes, Electronics and Information Technology, Medicine and Healthcare, Energy, Environment, Future transportation

	1. Geoffrey A. Ozin, Andre C. Arsenault, "Nanochemistry: A Chemical Approach to 5. N. John DiNardo, "Nanoscale Characterization of Surfaces and Interfaces", "Wiley", 2008.
	Nanomaterials", Royal Society of Chemistry, Cambridge, UK, 2005. 6. B. D. Cullity, S.R. Stock, "Elements of X Ray Diffraction", "Prentice Hall", 2001.
	2. C. N. R. Rao, Achim Muller, A. K Cheetham, "Chemistry of nanomaterials: Synthesis, 7. Yang Leng, "Materials Characterization: Introduction to Microscopic and Spectroscopic Methods",
Learning	properties and applications", "Wiely-VCH", 2004 "John Wiley & Sons", 2013.
Resources	3. Daniel L. Fedlheim, Colby A. Foss, Marcel Dekker, "Metal Nanoparticles: Synthesis 8. Vinod Kumar Khanna, "Nanosensors: Physical, Chemical, and Biological", "CRC", 2012.
	Characterization & Applications", 2002
	4. Cao Guozhong, ying Wang, "Nanostructures and Nanomaterials - Synthesis, Properties
	and Applications", "World Scientific", 2011.
	and the Market
1	

Learning Assessme	ent			Mary.					
	/ 5 /	Continuous Learning Assessment (CLA)				Summative			
	Blo <mark>om's</mark> Level <mark>of Thinki</mark> ng	Formative Life Long Learning CLA-1 Average of unit test CLA-2 (50%) (10%)		CLA-1 Average of unit test CLA-2		CLA-1 Average of unit test		Final Exa	amination eightage)
		Theory	Practice	Theory	Practice	Th <mark>eory</mark>	Practice		
Level 1	Remember	20%	Strain Company	20%	10 m	10%	-		
Level 2	Understa <mark>nd</mark>	20%		20%		20%	-		
Level 3	Apply	30%	The state of the s	30%		30%	-		
Level 4	Analyze	30%		30%		30%	-		
Level 5	Evaluate	W/, 25.2	a to a see what I want	2 2 2 2 2		10%	-		
Level 6	Create	. 100		THE STATE OF THE S					
	Total	100) %	10	0 %	100	0 %		

Course Designers	102	
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd,	1. Dr. Lima Rose Miranda, Anna University, Chennai	1. Dr. K <mark>. Deepa,</mark> SRMIST
Chennai		
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. D <mark>r. S. Ana</mark> ndhakumar, SRMIST

Course	21CHE563T	Course	COLLOIDS AND SURFACES	Course	_	PROFESSIONAL ELECTIVE	L	Τ	Р	С
Code	21CHE3031	Name	COLLOIDS AND SURFACES	Category		PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	Nil	Co- requ <mark>isite Courses</mark>	Nil	Progressive Courses	Nil		
Course Offering Department		Chemi <mark>cal Engineeri</mark> ng	Data Book / Codes / Standards		Nil		

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	understand the concepts of surface, inter particle and inter molecular forces
CLR-2:	familiarize the concepts of surface wetting, flotation and electrokinetic properties of colloids
CLR-3:	understand the concepts of adsorption, monolayer and multilayer film formation on surfaces
CLR-4:	formation of gels, foams, aerosols and emulsions, and their characterization
CLR-5:	understanding various applications of colloids in different chemical industries

Course Outcomes (CO):	At the end of this course, learners will be able to:	Progra	Programme Outcomes (PO)				
Outcomes (CO):		1	2	3			
CO-1:	summarize the concepts of colloid chemistry using surface forces and electrochemical double layers	3		1			
CO-2:	understand the concepts of wetting and their role in flotation and aggregation	2		1			
CO-3:	understand the concepts of self-assembly process and formation of various colloidal structures	2		1			
CO-4:	characterization of different colloidal structures	1		2			
CO-5:	application of colloids in petrochemical, paint, food, pharma, and cosmetic industries	2		1			

Module-1 - Theory and Colloidal Stability

9 Hour

Introduction to Colloids—Surface Free Energy, Surface Tension, Contact Angle and Young-Laplace Equations and Surface Potential—Surface Forces: Double Layer Forces, Van der Waal's Forces, Steric Forces, and Hydration Forces—Colloidal Stability—Gecko Effect.

Module-2 - Wetting and Electrokinetics

9 Hour

Wetting of Surfaces by Liquids—Lotus Effect—Flotation—Aggregation and Flocculation—Detergency—Friction and Lubrication—Electroosmosis—Electrophoresis—Dielectrophoresis

Module-3 - Adsorption and Self Assembly

9 Hour

Adsorption from Liquids and Gases (including Polymers, Polyelectrolytes and Formation of Polyelectrolyte Complexes)—Surface Films on Liquid and Solid Substrates—Monomolecular Films, Langmuir-Blodgett Films, and Layer-by-Layer Assembled Films—Solution behavior of Micelles, Vesicles, Polyelectrolytes and Free Standing Films.

Module-4 - Dual Systems and Characterization of Colloids

9 Hour

Formation of Gels, Emulsions, Foams and Aerosols—Characterization of Colloids: Zeta Potential and Size, Optical Microscopy, UV-Visible Spectroscopy, Scanning Electron Microscopy and Transmission Electron Microscopy.

Module-5 - Industrial Applications

9 Hour

Exploring the Potential Applications of Colloids and Surface Chemistry in Petrochemical, Paint, Food, Pharma, and Cosmetic Industries.

	1.Drew Myers, "Surfaces, Interfaces, and Colloids: Principles and Applications". "Wiley-4. Rodney Priestley and Robert Prud'homme, "Polymer Colloids: Formation, Characterization and
	VCH", 2nd Ed., 2002. Applications", Royal Society of Chemistry, 2019.
	2.D. J. Shaw, "Colloid & Surface Chemistry", "Butterworth-Hienemann", 4th Edition, 1992. 5. Tharwat F. Tadros, "Handbook of Colloid and Interface Science, Volume 4: Industrial
Resources	3.Jacob N. Israelachvili, "Intermolecular and Surface Forces", "Academic Press" Third Applications: Agroochemicals, Paints, Coatings and Food Systems", "De Gruyter", 2018.
	Edition, 2011. 6. Tharwat F. Tadros, "Handbook of Colloid and Interface Science, Volume 3: Industrial
	Applications: Pharmaceuticals, Cosmetics, and Personal Care", "De Gruyter", 2018.

Learning Assessme	Bloom's Level o <mark>f Thinki</mark> ng	CLA-1 Avera	Continuous Learning Assessment (CLA) Formative Life Long Learning CLA-1 Average of unit test CLA-2 (50%) (10%)			Summative Final Examination (40% weightage)			
		Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	12 M 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20%		20%	-		
Level 2	Understan <mark>d</mark>	20%	St. 1 P. Sand Vol.	20%	(F) (F)	20%	-		
Level 3	Apply	30%	3 - 3 5 To 1	30%		30%	-		
Level 4	Analyze	30%		30%	. 1	30%	-		
Level 5	Evaluate		7.17	7.77	No.				
Level 6	Create	A5"-77-	Street Street						
	<u>Total</u>	100	0 %	10	0 %	10	00 %		
			Way	4	70	3			

Course Designers	
Experts from Industry	Experts from Higher Technical Institutions Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Cheni	nai 1. Dr. Lima Rose Miranda, Anna University, Chennai 1. Dr. K <mark>. Deepa, S</mark> RMIST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy 2. Dr. S. Anandhakumar, SRMIST

LEARN · LEAD

Course	21CHE56/IT	Course	T Course INTERFACIAL SCIENCE AND ENGINEERING Course	Е	PROFESSIONAL ELECTIVE	L	T	Р	С	
Code	21CHE5641	Name	INTERFACIAL SCIENCE AND ENGINEERING	Category		PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	Nii	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offeri	ng Department	Chemical E <mark>ngineering</mark>	Data Book / Codes / Standards		Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	understand the concepts of surface forces, adhesion, cohesion, wetting and adsorption isotherms
CLR-2:	familiarize the concept <mark>s of colloi</mark> dal stability, rheology and optical properties of colloids
CLR-3:	understand the conc <mark>epts of se</mark> lf assembly, their kinetics, and formation of colloidal structures
CLR-4:	investigation on interactions and confinements at engineered interfaces and surfaces
CLR-5:	understanding th <mark>e concep</mark> ts of interfacial phenomenon in chemical and biological separations

Course	At the end of this course, learners will be able to:	Progra	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3		
CO-1:	understanding the surface forces and adsorption isotherms of colloids	3		1		
CO-2:	understand the concepts of colloidal stability, optical and rheological properties of colloids	2		1		
CO-3:	understand the concepts of self assembly process and formation of various colloidal structures	2		1		
CO-4:	investigation of ion and molecular confinements at engineered surfaces, and their adsorption and desorption kinetics	1		2		
CO-5:	the role of interfacial phenomenon in chemical and biological separations	2		1		

Module-1 - Surface Forces and Adsorption Isotherms of Colloids

9 Hour

Introduction to Intermolecular Forces and Interparticle Forces, and Hamaker Constant—Contact Angle and Marangoni Flow—Adhesion, Cohesion, Wetting and Spreading—Adsorption at Interfaces—Physisorption and Chemisorption—Gibbs free energy—Gibbs, Langmuir and BET Isotherms, and Surface Area Calculations.

Module-2 - Stability, Optical and Rheological Properties of Colloids

9 Hour

Colloidal Stability—DLVO Theory—Types of Aggregation, Sedimentation and Kinetics—Smoluchowski Equation—Optical Properties: Theories, Scattering by large and Small Particles and Turbidity—Rheological Properties: Viscosity, Newtonian/Non-Newtonian Fluids and Electroviscous Effects.

Module-3 - Formation and Kinetics of Colloidal Structures

9 Hour

Introduction to Surfactants, Micelles and Self-Assembly—Nucleation, Flocculation and Oswald Ripening—Kelvin Equation—Foams, Gels and Aerosols: Their Preparation and Stability, Mechanisms of Breakup Under Shear and Rheological Properties—Polymers at Interfaces, Blends, Composites and Polymeric Surfactants.

Module-4 - Interactions and Confinements at Engineered Interfaces and Surfaces

9 Hour

Introduction to Chemical Process Systems—Complex Interactions of Ions and Molecules at Engineered Surfaces—Adsorption, Desorption Kinetics Within Common Chemical Engineering Processes—Nanoconfinement at Interfaces—Theory and Approaches of Investigation of Transport and Thermodynamic Properties Within Nanopores at Engineered - Porous Surfaces in Common Chemical Engineering Processes.

Module-5 - Interfacial Phenomenon in Chemical and Biological Separations

9 Hour

Estimation of Mass Separating Agents at Industrial Scales (E.g., Sorbents and Membranes)—Field Induced Separation Processes with Lower Energy and Material Requirements—Colloidal and Interfacial Phenomenon in Bioprocesses to Improve Yield and Purity (E.g., Processes for Bio-derived Chemicals and Proteins)—Engineering Interfaces for Molecular Recognition to Improve the Specificity.

	1.Drew Myers, "Surfaces, Interfaces, and Colloids: Principles and Applications". "Wiley-4.Richard I. Masel, "Principles of Adsorption and Reaction on Solid Surfaces", "Wiley Series in	
Loorning	VCH", 2nd Ed., 2002. Chemical Engineering", 1996.	
Learning	2.D. J. Shaw, "Colloid & Surface Chemistry", "Butterworth-Hienemann", 4th Edition, 1992. 5. Simone Napolitano, "Non-equilibrium Phenomena in Confined Soft Matter", "Springer", 2015.	
Resources	3.Jacob N. Israelachvili, "Intermolecular and Surface Forces", "Academic Press", Third	
	Edition, 2011.	İ

Learning Assessme	ent				
	3 /	Continuous Learning	Summative		
	B <mark>loom's</mark> Lev <mark>el of Thin</mark> king	Formative Life Long Learning CLA-1 Average of unit test CLA-2 (50%) (10%)		Final Examination (40% weightage)	
	1 2 2	Theory Practice	Theory Practice	Theory Practice	
Level 1	Remem <mark>ber </mark>	20% -	20%	20% -	
Level 2	Under <mark>stand</mark>	20%	20%	20% -	
Level 3	Apply	30% -	30% -	30% -	
Level 4	Analyze	30%	30%	30% -	
Level 5	Evaluate				
Level 6	Crea <mark>te</mark>				
	Total	100 %	100 %	100 %	

Course Designers		· ·
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd, Chen	nnai 1. Dr. Lima Rose Miranda, Anna University, Chennai	1. Dr. K. Deepa, SRMIST
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr. S. Anandhakumar, SRMIST

Course	21CHE565T	Course	BIOMATERIALS AND DRUG DELIVERY SYSTEMS	Course	Е	PROFESSIONAL ELECTIVE	L	Τ	Р	С
Code	2101123031	Name	BIOMATERIALS AND DRUG DELIVERY SYSTEMS	Category		PROFESSIONAL ELECTIVE	3	0	0	3

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offeri	ng Department	Chemical Engineering	Data Book / Codes / Standards		Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	understand the fundamental principles in biomaterials, material science and chemistry, and how they contribute to biomaterial development and performance.
CLR-2:	learn more about implant materials and their design along with different regulations.
CLR-3:	understand the fund <mark>amentals</mark> of various characterization techniques involved in evaluating biomaterials.
CLR-4:	earn more about d <mark>rug deliv</mark> ery systems, and different approaches of drug delivery.
CLR-5:	learn more about the emerging drug delivery systems and technologies that can provide better health care and patient compliance.

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)		
Outcomes (CO):		1	2	3
CO-1:	learn more a <mark>bout bi</mark> omaterials and their properties and requirements.	2		1
CO-2:	understand more details about the design and other requirements of biomaterials.	1		2
CO-3:	learn more about various characterization techniques of biomaterials.	3		1
CO-4:	understand the fundamentals of drug delivery systems	1		2
CO-5:	understand different materials and technologies that are being used in drug delivery	2		1

Module-1 - Introduction to Biomaterials

9 Hour

Biomaterials—Classification—Metals, Ceramics, Polymers and Composites—Surface and Bulk Properties—Surface modification and types—Cell surface Interactions—Protein Absorption—Biocompatibility—Immune responses—In-vitro and In-vivo Analysis of Biocompatibility

Module-2 - Implants and Their Requirements

9 нои

Introduction to Implant Materials—Permanent and Absorbable Devices—Criteria for Materials Selection—Survey of Biomaterials and Case Studies—Biocompatibility: Contraction, Scar Formation, Tissue Bonding, Modulus Matching, Corrosion, Wear and Tear—Ethical Clearance and Medical Device Regulations.

Module-3 - Characterization of Biomaterials

9 Hour

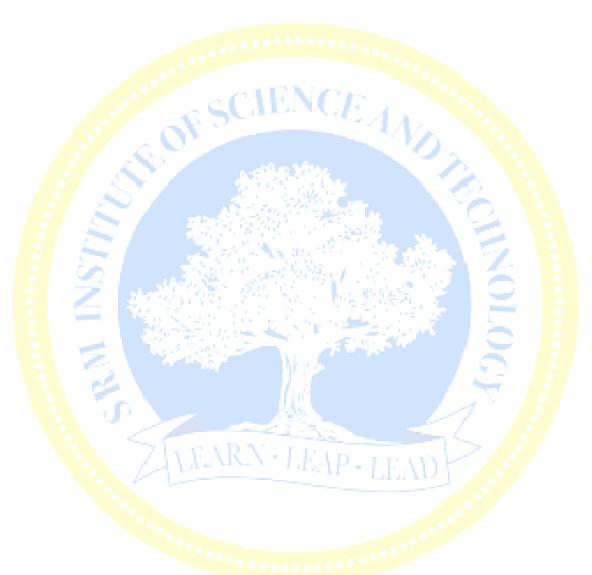
Contact Angle—Universal Testing Machine—Optical Microscopy—X-ray Diffraction—Atomic Force Spectroscopy—Scanning Electron Microscopy—Transmission Electron Microscopy—X-ray Photoelectron Spectroscopy—Secondary Ion Mass Spectrometry (SIMS)—Auger Electron Spectroscopy.

Module-4 - Drug Delivery

9 Hour

Introduction to Drug Delivery Systems—Therapeutic Window—Route Specific Drug Delivery: Oral, Subcutaneous, Intramuscular, Transdermal, Inhalation and Intravenous—Sustained and Controlled Drug Delivery—Targeted Drug Delivery—Prodrugs—Diffusion Controlled Systems: Principle, Fick's Law, Non-Erodible Matrix Systems—Bio-erodible Systems—Drug Conjugates—PEGylation.

Module-5 - Novel Drug Delivery Systems


9 Hour

Introduction to Different Drug Delivery Systems—Emulsions: Type<mark>s and Applications—Hydrogels: Physical and Chemica</mark>l Systems, Cross-linking and Pore Size Calculations—Dendrimers—Liposomes— Niosomes—Micelles—Different Novel Systems: Metal, Ceramic, Polymeric and Hybrid Micro and Nano Particles—Cell and Gene Delivery—Applications of Drug Delivery Systems.

	1.J. S. Temenoff and A. G. Mikos, "Biomaterials", "Pearson Prentice Hall", 2008.	3.1.	V.	Yannas, "Tissue	and	Organ	Regeneration	in	Adults",	"Springer",	ISBN:
Learning	2.W. D. Callister, "Materials Science and Engineering: An Introduction", "John Wiley and	9780	3879	52147,2001							
Resources	Sons", New York, 2001.	4. N.	K. Ja	ain, "Controlled and	<mark>l N</mark> ovel D	Drug Del	livery", "CBS Pu	blishe	er and Dist	ributors Pvt. L	_td.", 2 nd
		Editio	n 20.	23.							

earning Assessme	nt	- OF	Continuous Learning					
	Bloom's Level of T <mark>hinking</mark>	Formative CLA-1 Average of unit test (50%)		Life Long CL	g Learning A-2 0%)	Summative Final Examination (40% weightage)		
	/ 5 / 2	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	A TOOLER AND	20%	(-)	20%	-	
Level 2	Understand	20%	FEE 18 (1977) 1 1 1 1	20%	-	20%	-	
Level 3	Apply	30%	P. D.	30%		30%	-	
Level 4	Analyze	30%	125 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30%	. 1 . 7	30%	-	
Level 5	Evaluate	3.71	STATE GOOD TO BE	Sec. 1 22 . 1				
Level 6	Create	1.0	45 July 1924	and the state of t	72 0			
	<u>Total</u>	10	0%	10	0 %	1	00 %	
		West No. 123	The section is	A substitution of the second				

Course Designers	The Control of the Co	
Experts from Industry	Experts from Higher Technical Institutions	Internal Ex <mark>perts</mark>
1. Mr. A. Subramaniam, PESCO Beam Environmental Solutions Pvt. Ltd,	1. Dr. Lima Rose Miranda, Anna University, Chennai	1.Dr. K. D <mark>eepa, SR</mark> M IST
Chennai	1.7	
2. Mr. S. Stalin, Course Director, Chem Skill Development Centre, Chennai	2. Dr. N. Anantharaman, Former Professor, NIT Trichy	2. Dr. S <mark>. An</mark> andhakumar, SRM IST

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India