ACADEMIC CURRICULA & SYLLABUS

POSTGRADUATE DEGREE PROGRAMMES

Master of Technology

Two Year

(Full Time)

Learning Outcome Based Education

Choice Based Flexible Credit System

Regulations 2020

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India

M.Tech. in Structural Engineering

a) Vision of the Department

To become a frontier in various fields of Civil Engineering education and research to meet national and global challenges in accordance with the societal needs.

b) Mission of the Department

Mission Stmt - 1	To move up through international alliances and collaborative initiatives in civil engineering to achieve global excellence
Mission Stmt - 2	To accomplish a process to advance knowledge in a rigorous research environment related to civil engineering and allied disciplines
Mission Stmt - 3	To attract and build people in a rewarding and inspiring environment by fostering freedom, empowerment, creativity and innovation.

c) Program Educational Objectives (PEO)

PEO - 1	The post graduates will exhibit professional skills in multiple domains of structural engineering to deal with practical problems individually in native and global scenarios.
PEO - 2	The post graduates will show their individual innate skills to initiate and to carry out research investigations to cater to national and
	global needs
PEO - 3	The post graduates will have ability to disseminate their research and practical solutions to native and global communities through
PEO - 3	reports and documentations
PEO - 4	The post graduates will have ability to pursue for their higher research degrees at various levels
PEO - 5	The post graduates will have an applicative knowledge of modern developments in systems and software fields

d) Programme Outcomes (PO)

PO - 1	An ability to independently carry out research /investigation and development work to solve practical problems.
PO - 2	An ability to write and present a substantial technical report/document.
PO - 3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

e) Mission of the Department to Program Educational Objectives (PEO) Mapping

	Mission Stmt 1	Mission Stmt 2	Mission Stmt 3
PEO - 1	3	2	3
PEO - 2	3	3	3
PEO - 3	3	3	3
PEO - 4	3	2	2
PEO - 5	3	2	3

^{3 –} High Correlation, 2 – Medium Correlation, 1 – Low Correlation

f) Mapping Program Educational Objectives (PEO) to Program Outcomes (PO)

	Program Outcomes (PO)									
	1	2	3							
PEO – 1	3	3	3							
PEO – 2	3	3	2							
PEO – 3 PEO – 4	3	3	2							
PEO – 4	3	3	2							
PEO – 5	3	2	2							

^{3 –} High Correlation, 2 – Medium Correlation, 1 – Low Correlation

	ogramme Structure (71 Tota										
	1. Professional Core Courses (C) (6 Courses)						2. Professional Elective Courses (E) (4 Courses of 4 credits)				
Course	Course	Hour	rs/ W	eek		Course	Course	المال	rs/ W	look	
	Title	1	T	P	С	Code	Title	L	T T	P	С
	Matrix Computer Method of Structural Analysis	3	1	0	4	111	Applied Mathematics	3	1	0	
	Structural Dynamics	3	1	0	4		Advanced Reinforced Concrete Structures	3	0	2	4
20CEC503T	Theory of Elasticity and Plasticity	3	1	0	4		Advanced Reinforced Concrete Structures Aseismic Design of Structures	3	1	0	4
20CEC504J	Finite Element Method with Computer Application	3	0	2	4		Stability of Structures	3	1	0	
	Advanced Steel Structures	3	1	0	4	ll i	Mechanics of Structural Composite				
	Total Learning Credits				20		Materials	3	1	0	4
	3. Skill Enhancement Course (S)						Concrete Technology and Special Concretes	4	0	0	
Course	Course	Hour	rs/ W	/eek		700-65061	Maintenance and Rehabilitation of Structures	4	0	0	
Code	Title	L	Τ	Р	С	III	Prestressed Concrete Structures	3	1	0	4
20GNS501J	Research Publishing And Presenting Skills Research Methodology (Science and	1	0	2	2	11 2017	Design of Steel-Concrete Composite Structures		1	0	
20GNS502J	Technology)	2	1	2	4	20CEE602T				0	
***					6		Experimental Techniques and			0	4
	3					Instrumentation			1	0	İ
						20CEE604T Design of Reinforced Concrete Foundations 20CEE605T Design of Bridges			1	_	
										0	İ
							Design of Tall Buildings			0	4
						20CEE607T Analysis and Design of Structural Sandwich Panels				0	
	5. Project Work (P)						Advanced Analysis and Design for Wind	3	1	0	
Course	354.55	lours/	wee P		^	Earthquake and Other Dynamic Loads			_	_	4
Code	Title	L T			С		Design of Shell and Folded Plate Structures	3	1	0	İ
20CEP601L	Internship	0 0	8		4	20CEE610T	Computer Aided Design and Programming	3	1	0	
20CEP603L	Project Work Phase I	0 0	12	2	6		Ancient Building Materials and Additives In	4	0	0	
20CEP604L	Project Work Phase II	0 0	32)	16		the Conservation of Heritage Structures	_	0	^	4
200EP004L	Troject trem trace ii	٠		_	_	20CEE612T Seismic Retrofit of Buildings 4 20CEE613T Disaster Resistant Structures 4				0	
	Total Learning	Credit	ts		26	20CEE0131 L	Total Learning Credits		0	U	16
							•				10
						Course	4. Open Elective Courses (0) Course	Нои	rs/ W	/eek	
	7. Mandatory course					Code	Title	I	T	Р	С
	7. Manualory Course					20CEO531T	1100	3	0	0	3
Course	Course	Hour	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
		Hour	S/ VV		_		Total Learning Credits				3
Code	Title	L	T	Р	С		6. Audit course				
20PDM501T	Carrer Advancement Course for Engineers -I	1	0	1	0		(2 Courses)				
20PDM502T	Carrer Advancement Course for Engineers -II	1	0	1	0	Course	Course		Hour		
20PDM601T	Carrer Advancement Course for Engineers -II	1	0	1	0	Code	Title	I	Wee		С
						20CEA531J	Disaster Management	1	0	1	0
						20GNA511T		1	0	0	0
						20001145421					0
						20GNA513J	value Education	- 1	0	1	U

h) Implementation Plan

	Semester - I						
Code	Course Title		Hours/ Week				
	L	Τ	Ρ				
20CEC501T	3	1	0	4			
20CEC502T	3	1	0	4			
20CEC503T	Theory of Elasticity and Plasticity	3	1	0	4		
20MAE501T	Applied Mathematics	3	1	0			
20CEE505T	4	0	0				
20CEE506T	4	0	0				
20CEE502T	3	1	0	4			
20CEE503T	Stability of Structures	3	1	0			
20CEE504T	Mechanics of Structural Composite Materials	4	0	0			
20CEE507T	Prestressed Concrete Structures	3	1	0			
20CEE501J	Advanced Reinforced Concrete Structures	3	0	2			
20GNS501J	Research Publishing and Presenting Skills	1	0	2	2		
20PDM501T	Career Advancement Course For Engineers - I	1	0	1	0		
	Audit Course - 1	1	0	1	0		
	Total Learning Credits				18		

	Semester - II							
Hours/								
0 1	O T::				_			
Code	Course Title	١	Vec	-	С			
		L	1	P				
	Finite Element Method with Computer Application	3	0	2	4			
20CEC505T	Advanced Steel Structures	3	1	0	4			
20CEE506T	Design of Steel-Concrete Composite Structures	3	1	0				
20CEE507T	Offshore Structures	4	0	0	4			
20CEE601T	CEE507T Offshore Structures CEE601T Experimental Techniques and Instrumentation							
20CEE604T	Design of Reinforced Concrete Foundations	3	1	0				
20CEE605T	Design of Bridges	3	1	0				
20CEE606T	Design of Tall Buildings	3	1	0				
20CEE608T	Advanced Analysis and Design for Wind Earthquake and Other Dynamic Loads	3	1	0	4			
20CEE613T	Disaster Resistant Structures	4	0	0				
20GNS502J	Research Methodology (Science and Technology)	2	1	2	4			
20PDM502T	Career Advancement Course For Engineers - II	1	0	1	0			
	Audit Course - 2	1	0	0	0			
	Total Learning Credits				20			

	Semester - III				
Code	Course Title		lours Neel		С
		L	Τ	Р	
20CEE607T	Analysis and Design of Structural Sandwich Panels	3	1	0	
20CEE609T	Design of Shell and Folded Plate Structures	3	1	0	
20CEE610T	Computer Aided Design and Programming	3	1	0	4
20CEE611T	Ancient Building Materials and Additives In the Conservation of Heritage Structures	4	0	0	
20CEE612T	Seismic Retrofit of Buildings	4	0	0	
20CEE613T	Disaster Resistant Structures	4	0	0	
20CEP601L	Internship	0	0	8	4
20CEP603L	Project Work Phase I	0	0	12	6
20PDM601T	Career Advancement Course For Engineers - III	1	0	1	0
20CEO531T	Waste To Energy	3	0	0	3
	Total Learning Credits				17

Code Course Title Hours/ Week L T P C 20CEP604L Project Work Phase II 0 0 32 16 Total Learning Credits 16		Semester - IV				
	Code	Course Title	Hou L	rs/ W	_	С
Total Learning Credits 16	20CEP604L	Project Work Phase II	0	0	32	16
•		Total Learning Credits				16

		Pr	ogram Outcome	s
	Course	,		
Course Code	Name	1	2	3
20CEC501T	Matrix Computer Method of Structural Analysis	3	3	2
20CEC502T	Structural Dynamics	3	3	2
20CEC503T	Theory of Elasticity and Plasticity	3	2	2
20CEC504J	Finite Element Method and Application	3	3	2
20CEC505T	Advanced Steel Structures	3	3	2
20MAE501T	Applied Mathematics	3	3	2
20CEE501J	Advanced Reinforced Concrete Structures	3	3	2
20CEE502T	Aseismic Design of Structures	3	3	2
20CEE503T	Stability of Structures	3	3	2
20CEE504T	Mechanics of Structural Composite Materials	3	3	2
20CEE505T	Concrete Technology and Special Concretes	3	3	2
20CEE506T	Maintenance and Rehabilitation of Structures	3	3	2
20CEE507T	Prestressed Concrete Structures	3	3	2
20CEE601T	Design of Steel-Concrete Composite Structures	3	3	2
20CEE602T	Offshore Structures	3	3	2
20CEE603T	Experimental Techniques and Instrumentation	3	3	2
20CEE604T	Design of Reinforced Concrete Foundations	3	3	2
20CEE605T	Design of Bridges	3	3	2
20CEE606T	Design of Tall Buildings	3	3	2
20CEE607T	Analysis and Design of Structural Sandwich Panels	3	3	2
20CEE608T	Advanced Analysis and Design for Wind Earthquake and Other Dynamic Loads	3	3	2
20CEE609T	Design of Shell and Folded Plate Structures	3	3	2
20CEE610T	Computer Aided Design and Programming	3	3	2
20CEE611T	Ancient Building Materials and Additives In the Conservation of Heritage Structures	3	3	2
20CEE612T	Seismic Retrofit of Buildings	3	3	2
20CEE613T	Disaster Resistant Structures	3	3	2
20CEO531T	Waste To Energy	3	3	3
20PDM501T	Carrer Advancement Course for Engineers -I	3	3	2
20PDM502T	Carrer Advancement Course for Engineers -II	2	3	2
20PDM601T	Carrer Advancement Course for Engineers -III	2	3	2
20CEA531J	Disaster Management	3	3	2
20GNA511T	Constitution Of India	3	3	2
20GNA513J	Value Education	-	2	2
20GNA512L	Physical And Mental Health Using Yoga	2	3	2
20CEP601L	Internship	3	3	2
20CEP603L	Project Work Phase I	3	3	2
20CEP604L	Project Work Phase II	3	3	3

Course	200505047	Course	MATRIX COMPUTED I	METHOD OF STRUCTURAL ANALYSIS	Course	^	PROFESSIONAL CORE	L	Т	Р	С
Code	Code 20CEC501T		MATRIX COMPUTER METHOD OF STRUCTURAL ANALYSIS				PROFESSIONAL CORE	3	1	0	4
Pre-requis	Pre-requisite Nii		Co-requisite	NIII	Progressiv	/e 🔐	lil				•
_	Courses		Courses	IVII	Courses	INI	II				
Course Of	fering Departmer	t CIVIL I	ENGINEERING	Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Introduce fundamental characteristics of elements and system by evaluation of its flexibility and stiffness matrices
CLR-2:	Impart knowledge about analysis of system through direct and element approach of flexibility method
CLR-3:	Analysis of structures by direct and element approach of stiffness method is to be included
CLR-4:	Programming techniques for simple problems and use of standard programmers to be practiced
CLR-5:	Awareness to the use of advanced techniques of matrix methods are to be created
CLR-6:	Acquaint the students with case studies on analysis and design scenarios using matrix methods

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
Outcomes (CO):		1	2	3		
CO-1:	Understanding the Basics of Matrix methods and analysis	3	3	-		
CO-2:	Introduction of flexibility matrix and methods and evaluation	3	3	-		
CO-3:	Introduction of stiffness matrix and method sand evaluation	3	3	2		
CO-4:	Analyse System programming, development and assemblage	3	3	2		
CO-5:	Analyse advanced method of matrices and band width formation	3	3	2		
CO-6:	Create Knowledge of different matrix methods	3	3	2		

Durat	ion (hour)	12	12	12	12	12
S-1	SLO-1	Matrix Fundamentals	latrix Fundamentals Introduction to flexibility methods Introduction to stiffness methods System in		System Programming	Introduction to Advanced Matrix problems
3-1	SLO-2	2 Fundamentals of Matrix and different components Formation of flexibility matrix		Formation of stiffness matrix	System Programming solution techniques	Advanced Matrix problems and equations
S-2	SLO-1	Force Measurement	Direct method applied to beams	Direct method applied to beams	Programming of solution techniques for simultaneous equation solution	Sub structuring techniques
3-2	SLO-2	Problem 1 - Force Measurement	, , , , , , , , , , , , , , , , , , , ,		Programming of solution techniques for simultaneous equation solution – Cont'd	Sub structuring techniques - applications
S-3	SLO-1	Displacement Measurement	Direct method applied to frames	Direct method applied to frames	Matrix operations	Problems on Forces

Dura	ion (hour)	12	12	12	12	12
	SLO-2	Problem 1 - Displacement Measurement	Direct method applied to frames – Problems-1	Direct method applied to frames – Problems-1	Matrix assembly	Matrix formation with forces
S-4	SLO-1	Tutorial 1 – Force method	Tutorial 7 – Flexibility matrices	Tutorial 13 – Stiffness matrices	Tutorial 19 – Matrices in MS-Excel	Tutorial 25 – Sub structure problems
3-4	SLO-2	Tutorial 2 – Displacement method	Tutorial 8 – Beams and frames	Tutorial 14 – Beams and frames	Tutorial: 20 – Basic MS-Excel operations	Tutorial 26 – Force matrix formation
S-5	SLO-1	Generalised or independent measurements	Relationship between element and system	Strain Energy	Simple program development for element stiffness matrix	Problems on Displacement
3-3	SLO-2	Problems on Generalised or independent measurements	Relationship between element and System – Cont'd	Strain Energy in terms of stiffness coefficients	Simple program development for element stiffness matrix – Cont'd	Matrix formation with Displacement
S-6	SLO-1	Constrained or dependent measurements	Strain Energy	Relationship between element and systems	Stiffness matrix elements	Band width
3-0	SLO-2	Problems on Constrained or dependent measurements	Strain Energy in terms of flexibility coefficients	Static loads condensation concepts	Stiffness matrix assemblage	Band width Analysis
	SLO-1	Concept of flexibility usingsystems of springs	Introduction to Betti's Law	Staticcondensation techniques	Complete structure of a stiffness analysis program	Reduction Theory
S-7	SLO-2	Problems on Concept of flexibility usingsystems of springs	Approach to equivalent joint load concept through Betti's Law	Derivations on Staticcondensation techniques	Complete structure of a stiffness analysis program with subroutines	Tri-diagnolisation technique
S-8	SLO-1	Tutorial 3 – Constrained measurements	Tutorial 9 – Betti's law application	Tutorial 15 – Condensation techniques	Tutorial 21 – Development of stiffness matrices	Tutorial 27 – Bandwidth formation
3-0	SLO-2	Tutorial 4 – Flexibility systems	Tutorial 10 – Strain energy formation	Tutorial 16 – Strain energy equivalence	Tutorial 22 – Stiffness programming	Tutorial 28 – Bandwidth problems
	SLO-1	Concept of stiffness usingsystems of springs	Problems in beams -1, including effect of temperature and sinking	Problems in beams -1, including secondary effects	Use ofGTSTRUDL	Band solvers
S-9	SLO-2	Problems on Concept of Problems in beams -2, including Problems in beams -2, including Applications of GTSTRUDL in		Frontal solvers		
S-10	SLO-1	Reciprocal relationships between stiffness and flexibility	Problems in frames -1, including effect of temperature and sinking	Problems in frames -1, including secondary effects	Use ofSTAAD Pro	Re analysis technique
3-10	SLO-2	Reciprocal equations between stiffness and flexibility	Problems in frames -2, including effect of temperature and sinking	Problems in frames -2, including secondary effects	Applications of STADD Pro in trusses, beams and frames.	Transfer matrix method
S-11	SLO-1	Stiffness and flexibility in constrained measurements	Problems in trusses -1, including effect of temperature and sinking	Problems in Grid jointed trusses - 1, including secondary effects	Use ofSAP2000	Use of symmetry and anti- symmetry

Duration (hour)		12	12	12	12	12
	SLO-2	9 Pank of matrix		Applications of SAP2000 in trusses, beams and frames.	Problems on Transfer matrix method	
C 12	SLO-1	Tutorial 5 – Reciprocal relationships of matrices	Tutorial 11 – Frame analysis	Tutorial 17 – Frame analysis	Tutorial 22 – demo of STAAD Pro	Tutorial 29 – Frontal solvers
S-12	SLO-2	Tutorial 6 – Rank of matrix formation	Tutorial 12 – Truss analysis	Tutorial 18 – Pin-jointed truss analysis	Tutorial 22 – demo of SAP2000	Tutorial 30 – Band solvers

	1.	Jack. C, McCormac, " Structural Analysis: Using Classical and Matrix	4. Beaufit F.W et al. "Computer Methods of Structural Analysis", Prentice Hall,1970.
		Methods", John Wiley, Fourth Edition, 2007.	5. John L.Meek, "Matrix Structural Analysis", Mc Graw Hill Book Company, 1971.
Learning	2.	Rajasekaran.S, Sankarasubramanian.G, "Computational Structural	6. Bathe K.J, and Wilson. E.L, "Numerical Methods in Finite Element Analysis", Prentice
Resources		Mechanics", Prentice Hall of India Pvt Ltd, New Delhi - 110 001, First Edition, 2001.	Hall, Engle Wood Cliffs, New Jersey, USA, 1976.
	3.	William McGuire, Richard. H, Gallagher and Ronald. D, Zieian "MatrixStructural	7. Rubinstien. M.F, "Matrix Computer Analysis of Structures", Prentice Hall, 1966.
		Analysis, With MASTAN2", John Wiley, Second Edition, 2000.	, , ,

				Ĺ	earning Assessı	ment			
	Dia a mai'a		Continu	uous Learning Ass	essment (60% we	ightage)		Final Evenination (400)	
	Bloom's Level of Thinking	CLA -	1 (20%)	CLA – 2	2 (25%)	CLA –	3 (15%)	Final Examination (40%	weightage)
	Level of Thirtiking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	-	20%	-	20%	-	20%	-
Level 2	Apply Analyze	40%	-	40%	-	40%	-	40%	-
Level 3	Evaluate Create	40%	-	40%	-	40%	-	40%	-
	Total 100 % 100 %		100 %		100 %				

CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
Dr. G. V. Ramarao, Sr. Scientist, SERC, ramarao@serc.res.in	Dr. Praveen Nagarajan, Professor, NIT, praveen@nitc.ac.in	Dr. S. Senthilselvan, SRMIST						
Mr. S. Kavin Kumar, Director, EPMCR Pvt. Ltd., kavinkumar@epmcr.co.in	Dr.Sivakumar Palaniappan, Asst. Prof., IITM, sp@iitm.ac.in	Dr. K.S. Satyanarayanan, SRMIST						

Course	Course 20CEC502T C		CEOST Course CEDUCTUDAL DVALANICS			Course		PROFESSIONAL CORE	L	T	Р	С
Code			STRUCTURAL DYNAMICS			Category		PROFESSIONAL CORE	3	1	0	4
Pre-requis	ite Nii		Co-requisite Nil			Progressiv	ve ,	Nii				
Courses	3 '\''		Courses			Courses	·	VII				
Course Off	ering Departme	nt CIVIL	ENGINEERING	Data Book / Codes/Stand	lards	IS 1893 PA	RT'	1 : 2018, IS875 PART III :1987, IS 4991 : 1968				
Course Learning Rationale (CLR):		The p	urpose of learning this course is to:		Lea	rning		Program Learning Outcomes (PLO))			

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Give students an understanding about the concept of Dynamics
CLR-2:	Introduce general theory of vibration and solve problems of single degree of freedom (SDOF) systems
CLR-3:	Solve dynamic problems in multi-degree of freedom (MDOF) systems
CLR-4:	Introduce dynamic analysis of continuous systems
CLR-5:	Apply structural dynamic principles to the analysis of structures for seismic and wind loading
CLR-6:	Introduce blast loading

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
Outcomes (CO):		1	2	3		
CO-1:	Understand the concept and principles of dynamics	3	3	2		
CO-2:	Evaluate different theories of vibration and different system with single degree of freedom	3	3	2		
CO-3:	Evaluate the concept of Multiple degrees of freedom	3	3	2		
CO-4:	Apply basic methods and techniques for analysis of continuous systems	3	3	2		
CO-5:	Create method to be adopted for seismic and wind load analysis	3	3	2		
CO-6:	Analyze with various ideas to design structure for blast load	3	3	2		

	ration lour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
	SLO-1 Introduction Transient state response		Transient state response	Modal superposition method	Dynamic Analysis	Quasi static method
S-1	SLO-2	Fundamental objective of Structural Dynamics Analysis	Steady state response	Case on superposition	Response Spectrum Method	Illustration on quasi-static
S-2	SLO-1	Types of Prescribed Loadings	Damped system	Soil Structure Interaction effects	Evaluation of Displacements and Drift	Gust factor method
3-2	SLO-2	Essential characteristics of Dynamic problem	In phase, Out of Phase displacement and Resonance.	Soil-Structure importance	Human Comfort criteria as per code	Problems on gust factor method
S-3	SLO-1	Discretization concepts	Vibration of machine foundation - vibration isolation.	Vibration analysis of Continuous system	Structural Control system	Evaluation of Gust Factor

-	ration lour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
	SLO-2	Methods of discretization	Vibration measuring instruments	Vibration analysis of dis- continuous system	Structural frame systems	Factor analysis
S-4	SLO-1 SLO-2	Tutorial 1 : Types of Loading & Demonstration	Tutorial 4: Matrices for spring mass system - Two and Three Degree system	Tutorial 7: Mode shape problem	Tutorial 10 : Problem on displacement calculations	Tutorial 13 : Assignment on Wind Effects
S-5	SLO-1	Single Degree of Freedom system: Differential equation of motion	Multiple Degrees of Freedom system : Two degrees of freedom	Simply supported beams	Passive Control system	Blast loading
	SLO-2	Newton's second law and D'Alemberts principle	Three Degree system	Transverse Vibration	Base Isolation	Blast effects
	SLO-1	Free vibration	System property matrices	Timoshenko beam	Energy Dissipating devices	Over ground structures
S-6	SLO-2	Undamped system	Matrices formulation	Problems on Timoshenko beam	Energy transfer	Importance of Over ground structures
S-7	SLO-1	Damped system and evaluation of	Solution of Eigen value problem	Effect of axial loads.	Active Control system	Design parameters of Over ground structures
5-1	SLO-2	damping constants	Eigen value problem methods	Effects of lateral loads	Passive control system	Codal provisions on Over ground structures
S-8	SLO-1	Tutorial 2 : Evaluation of Time period	Tutorial 5: Model Making -	Tutorial 8: Soil Structure Interaction Approaches -	Tutorial 11: Model for base	Tutorial 14 : Models for wind
	SLO-2	Natural frequency of Spring mass system	SDOF and MDOF System	assignment	isolation	effects
	SLO-1	Critical damping	Stodola method	Analysis of undamped free vibration of beams	Analysis of Base Isolated System	Evaluation of Blast Load
S-9	SLO-2	Under damped and Over damped conditions	Problems on stodola method	Natural frequency and mode shape	Problems on base isolated system	Codes on blast load
S-10	SLO-1	Logarithmic increment	Orthogonality conditions	Estimation of design forces of multistory buildings using Bureau of Indian Standards (BIS) codes	Wind effects on structures	Front, Roof and Rear Face of Buildings
	SLO-2	Logarithmic decrement	Orthogonality cases	Importance of BIS	Wind power	Analysis of different faces
S-11	SLO-1	Forced Vibration	Mode shape concepts	Determination of Base Shear	Static analysis for wind loads using BIS codes	Underground structures
3-11	SLO-2	Undamped System,	Mode shape importance	Equivalent static lateral force method	Dynamic analysis for wind loads using BIS codes	Assessment techniques

Duration (hour		Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-12 SL	proble	ial 3 : Vibration Isolation em ing model - Vibration Isolation	for beam with different end	_	,	Tutorial: 15:Assignment on Underground structures

Learning	
Resources	

1.Ray W Clough, Joseph Penizen, Dynamics of StructureMcGraw-Hill International, 2.Anil. K, Chopra, "Dynamics of Structures" (Theory and Applications to Earthquake Engineering), Prentice Hall of India Private Limited. New Delhi, Second Edition, 2007. 3.Mukhopadhyay, M., "Structural Dynamics", Ane Books, India, 2006.

4.Paz. M, "Structural Dynamics - Theory and Computations", Kluwer Acedamic Publishers, U.S.A, 2004

5. Short course on Seismic Design of Reinforced Concrete Buildings, CEP, IIT, Kanpur, Dec. 1995.

Learning As	sessment									
	DI 1		Contir	nuous Learning Ass	essment (60% weig	ghtage)		Final Examination (40% weightage)		
	Bloom's Level of Thinking	CLA –	1 (20%)	CLA – 2 (25%)		CLA –	CLA – 3 (15%)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	-	20%	-	20%	-	20%	-	
	Understand									
Level 2	Apply	40%	40%	_	40%	_	40%	_	40%	_
2010.2	Analyze			1070		4070		7070		
l aval 2	Evaluate	400/		400/		400/		4007		
Level 3	Create	40%	-	40%	-	40%	-	40%	-	
	Total	100 %		100 %		100 %		100 %		

[#] CLA - 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers						
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts				
Mr. R. Eswaran, Chief Engineering Manager, L&T, eswaran@Intecc.com	Dr. CVR. Murthy, Professor, IITM, cvrm@iitm.ac.in	Mr.S.Pradeep, SRMIST				
Mr. G. Jayaramalingam, Head – Civil & Structural, Reliance Retail Limited, jaya.ramalingam@ril.com	Dr. S. Arul Jayachandran, Professor, IITM, aruls@iitm.ac.in	Prof. Augustine Maniraj Pandian, SRMIST				

Course	200505025	CEOST COURSE THEODY OF ELACTICITY AND DUACT		Course		^	DDOLLSSIONAL CODE		Т	Р	С
Code	20CEC503T	Name	THEORY OF ELASTICITY AND PLASTICITY	Category	, '	C	PROFESSIONAL CORE	3	1	0	4
Pre-requis	site Nii	'	Co-requisite Nii	Progressiv	ve ,	NI:I					
Course	s IVII		Courses	Courses	s '	IVII					
Course Off	fering Departmei	nt Civil Engineering	Data Book / Codes/Standards	Nil							

Course Learning Rationale (CLR):	The purpose of learning this course is to:			
CLR-1:	relop systematic - knowledge of stress strain concept			
CLR-2:	Familiarize with the fundamentals of two-dimensional problems			
CLR-3:	Develop the knowledge about torsion for shapes like ellipse triangular and rectangular			
CLR-4:	Introduce the energy theorem and the energy methods			
CLR-5:	Problem solving in torsion			
CLR-6:	Give introduction to the problems in plasticity			

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Understanding of stress strain concept and equilibrium conditions	3	2	2	
CO-2:	Evaluate knowledge on fundamentals of two-dimensional problems	3	2	2	
CO-3:	Apply concept in torsion like ellipse triangular and rectangular shape functions	3	2	2	
CO-4:	Analysis using energy theorem and the energy methods	3	2	2	
CO-5:	Able to evaluate the solution in torsion	3	2	2	
CO-6:	Understand the problem in plasticity	3	2	2	

	ration lour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 1 (12)
S-1	SLO-1	Introduction to theory of elasticity	Introduction to 2D problems in Cartesian coordinate system	Introduction to General solution for torsion problems	Introduction to energy method	Introduction to problems in plasticity-
	SLO-2	Assumption in theory of elasticity	Concepts of Airy's stress function	Torsion of prismatic bars	Concept of strain-energy method	Physical assumption
S-2	SLO-1	Concept of Stress at a point	Determination of stress field for various Polynomials	Torsion of prismatic bars by displacement (warping function) force	Strain energy under axial load	Criteria of yielding
	SLO-2	Finding the Stresses in 2D tetrahedron Airy's stress function variable in polynomials for pure shear condition.		Torsion of prismatic bars by Prandtls stress function	Strain energy stored in a member under its self-weight	Theories of failure-Rankin's theory-Maximum strain theory/St.Venant's theory

-	ration lour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 1 (12)
	SLO-1	Determination of principal stress and direction	Airy's stress function variable in polynomials for bending condition.	Torsion of shafts of circular	Strain energy stored under bending	Haigh theory, von-mises theory and Tresca theory
S-3	SLO-2	Stress transformation Matrix formation	Derivation of Biharmonic equation and check with compatibility equation.	Example: Finding the torsion in circular shaft	Strain energy shaft subjected to torsion	Example 1: Theories of failure
S-4	SLO-1 SLO-2	Tutorial: Problem solving using tutorial sheet	Tutorial: Problem solving using tutorial sheet	Tutorial: Problem solving using tutorial sheet 7	Tutorial: Problem solving using tutorial sheet 10	Tutorial: Problem solving using tutorial sheet 13
	SLO-1	Derivation of Equilibrium equation 2D	Introduction to St.Venants Principle	Torsion for non circular cross sectional for elliptical shapes	Introduction to castiglano's theorem	Plastic problems of beams in bending
S-5	SLO-2	Derivation of Equilibrium equation 3D	St. Venants tree usage in formulation of polynomial equations	Example: Finding the torsion in elliptical cross section	Castiglano's theorem 1	Assumptions in Plastic problems of beams in bending
	SLO-1	Strain – Displacement relation application	Biharmonic equation solutions by method of polynomials	Example: Finding the shear stress and angle of twist for elliptical cross section	Castiglano's theorem 2	Idealised Stres-Strain curve
S-6	SLO-2	Relationship between Strain – Displacement	Example 1: Polynomial of degree 1 and 2	Example: Finding the shear stress and angle of twist for elliptical cross section and compare it with strength of material approach	Introduction to Energy principle	Expression of moment in different stages of bending in plastic region
S-7	SLO-1	Concept of Generalized Hooke's law	Example 2: Polynomial of degree 3 and 4	Non circular cross sectional Rectangular shapes only	Principle of stationary potential energy	Shape factor
3-1	SLO-2	Strain Invariants explanation and problems	Example 3: Polynomial of degree 5	Example : Finding the torsional effect for rectangular cross section	Maxwell reciprocal theorem statement	Shape factor calculation for rectangular section
S-8	SLO-1	Tutorial: Problem solving using tutorial sheet 2	Tutorial: Problem solving using tutorial sheet 5	Tutorial: Problem solving using tutorial sheet	Tutorial: Problem solving using tutorial sheet 11	Tutorial: Problem solving using tutorial sheet 14
	SLO-2 SLO-1	Introduction to Plane strain and plane stress	Introduction to Bending of cantilever beam loaded at the end	Concept of Membrane analogy	Explanation on Principle of virtual work	Problems related to stages of bending
S-9	SLO-2	Calculation of various Stress strain in different members	Assumptions and boundary conditions made in Bending of cantilever beam loaded at the end	Assumptions made in membrane analogy	Principle of complementary strain energy	Residual stresses in plastic bending
S-10	SLO-1	Compactability equation	Bending Derivation for a cantilever beam loaded at the end	Salient features of membrane analogy	Dummy load method concept	Plastic torsion

-	ration our)	Module 1 (12)	Module 2 (12) Module 3 (12)		Module 4 (12)	Module 1 (12)	
	SLO-2	Derivation of Navier's equation	Introduction to Bending of simply supported beam loaded with uniformly distributed load	Derivation of membrane equation.	Formation of Finite Difference method	Example Problems in Plastic torsion	
S-11	SLO-1	Introduction to Octahedral strain and Octahedral stress	Assumptions and boundary conditions made in Bending of simply supported beam loaded with uniformly distributed load	Torsion of thin rectangular sections	Concept of Rayleigh Ritz Methods	Residual stress in plastic torsion	
	SLO-2	Example : Problems in octahedral strain and stress	Bending Derivation for a simply supported beam loaded with uniformly distributed load	Torsion of hollow thin walled sections.	Example Problems in Ritzs method	Sand heap analogy	
S-12	SLO-1 SLO-2	Tutorial: Problem solving using tutorial sheet	Tutorial: Problem solving using tutorial sheet	Tutorial: Problem solving using tutorial sheet	Tutorial: Problem solving using tutorial sheet 1	Tutorial: Problem solving using tutorial sheet 15	

Learning Resources

- 1. Richard.G, Budynas, "Advanced Strength and Applied Stress Analysis" Mc Graw-Hill, New Delhi, Second Edition, 2011.
 2. Chakrabarty, "Theory of Plasticity", Tata McGraw Hill Book Co., New Delhi, Third
 - Edition, 2006.
 - 3. Mendelson.A., "Plasticity Theory and Applications", Krieger Pub Co., Florida, U.S.A, Second edition, 1983.
- Chwo.P.C, and Pagano.N.J. "Elasticity Tensor, Dyadic and Engineering Applications", Van Nastrand. D, and Co., Inco. 1990.
- "Applied Elasticity", Mc Graw Hill, New Delhi, 1990 Timoshenko.S, and Goodier .J.N, "Theory of Elasticity" Tata Mc Graw Hill Education., India, Third Edition, 2010.
- Sadhusingh "Theory of Elasticity" Khanna Publishers, New Delhi, Fourth Edition, 2012. https://nptel.ac.in/courses (Theory of Elasticity)

Learning	Assessment

	Division	Continuous Learning Assessment (60% weightage)					Final Examination (40% weightage)			
	Bloom's Level of Thinking	CLA – 1 (20%)		CLA – :	CLA – 2 (25%)		3 (15%)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	20%	-	20%	-	20%	-	20%	-	
Level 2	Apply Analyze	40%	-	40%	-	40%	-	40%	-	
Level 3	Evaluate Create	40%	-	40%	-	40%	-	40%	-	
	Total	100 %		100 %		10	0 %	100 %		

CLA - 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.

Course Designers

Experts from Higher Technical Institutions Internal Experts Experts from Industry

	Dr. Lakshmi Priya, Assistant Professor, IITM, lakshmipriya@iitm.ac.in	Dr. K.S. Satyanarayanan, SRM IST
Dr. G.V. Ramarao, Sr. Scientist, CSIR-SERC, ramarao@serc.res.in	Dr. U. Saravanan, Professor, IITM, saran@iitm.ac.in	Mrs. S.Sivakamasundari, SRM IST

Course	20CEC504J	IJ Course FINITE ELEMENT METHOD WITH COMPUTER APPLICATION			Course		PROFESSIONAL CORE		T	P	С
Code	200203043	Name '	I INTIL LELIMENT MILTITOD WITH	TIOD WITH COMPOTER APPLICATION			PROFESSIONAL CORE	3	0	2	4
Pre-requisite NIII				Progressive	NII			·			
Courses			Courses		Courses	IVII					
Course Offering Department CivilEngineering		ering	Data Book / Codes/Standards	Nil							

Course Learning Rationale (CLR):	The purpose of learning this course is to:
	Provide the fundamental concepts of variational methods
	Provide the fundamental concepts of finite element method
	Introduce the concept of discretization, boundary condition and shape function
CLR-4:	Develop the stiffness matrix for 2D and 3D elements
	Enable the students to formulate the problems into FEA
CLR-6:	Analyze the beam and frame in Excel and STADD pro

Course	At the end of this course, learners will be able to:	Programme Outcome (PO)			
Outcomes (CO):		1	2	3	
CO-1:	To understand the concept of mathematical model and solution for common engineering problems	3	3	2	
CO-2:	To understand finite element method by various approaches	3	3	2	
CO-3:	Development of discretization techniques for different elements	3	3	2	
CO-4:	To evaluate the shape function for different elements	3	3	2	
CO-5:	To apply to field problems	3	3	2	
CO-6:	Understanding and usage of software's	3	3	2	

Duration (hour)		Module 1 (15)	Module 2 (15)	Module 3 (15)	Module 4 (15)	Module 5 (15)	
S-1	SLO-1	Introduction to the methods of Engineering analogy Concept of Displacement field, Compatibility criteria and Convergence criteria		Introduction to 2D rectangular element	Introduction to Jacobian operator	Application of finite elements analysis	
0-1	SLO-2	Introduction to Finite Element Analysis	Introduction to Bar Elements	Coordinate concept in2D rectangular element	Formulation of Jacobian Matrix	Introduction toTorsion	
6.3	SLO-1	Different Stages of Finite Element Simplex, Complex and Multiplex elements		Serendipity family elements	Example 1: Calculation of Jacobian matrix	Displacement approach for torsion problem	
S-2 SL	SLO-2	Boundary Conditions in FEA	Introduction to Basic Equations and Shape Function	Example 1: Calculation of shape function for Serendipity elements	Introduction to numerical integration techniques	Concept of Stress approach in torsion analysis	

	ration lour)	Module 1 (15)	Module 2 (15)	Module 3 (15)	Module 4 (15)	Module 5 (15)	
S-3	SLO-1	Essential Boundary Condition	Concept of Co-ordinate system and Relationship between the co- ordinate system	Lagrangian family elements	Types of numerical integration techniques	Warping function effect in member subjected to torsion.	
3-3	SLO-2	Natural Boundary Condition	Example 1: Shape function for 2 Noded bar element	Example 2: Calculation of shape function for Lagrangian elements	Example 1: Calculation of Single variable numerical integration	Derivation of torsion equation by displacement approximation by warping function	
S-4, S-5	SLO-1 SLO-2	Lab1: Design of Singly Reinforced beam in excel	Lab 4: Design of Two way slab in excel	Lab 7: Design of Compression member in excel	Lab 10: Design of combined footing (Rectangular or Trapezoidal).	Lab 13: Design of 3D frame in Stadd-Pro	
S-6	SLO-1	Boundary Value Problems Explanation	Development of stiffness matrix	Hermitian family elements	Example 2: Calculation of two variable numerical integration	Equation for 3 noded triangular element for analysis of torsion problem	
3-0	SLO-2	Concept of Piecewise approximation. Example 1: Development of stiffness matrix for 2 Noded bar element Example 3: Calculation of shape function for Hermitian elements Introduction to 3D brick element		Introduction to 3D brick elements	Example 1: Torsion analysis by stress approach		
S-7	SLO-1	Introduction to variational Methods	Example 2: Development of stiffness matrix for 3 Noded bar element	Quadrilateral element	Properties of eight nodded elements	Example 2: Torsion analysis by stress approach	
3-1	SLO-2			Example 4: Calculation of shape function for Quadrilateral element	Concept of 3D brick element and its usage in Finite element analysis	Thermal conductivity steady state problems involving conduction and convection	
S-8	SLO-1	Example problem : Finite Difference Method	Analysis of 2D truss and 3D truss	Degenerated elements	Concept of 8 noded brick element and its properties	Torsional analysis in prismatic members	
3-0	SLO-2	Rayleigh Ritz method	Example 1: Problems in truss analysis	Example 5: Calculation of shape function for Degenerated element	Shape function concept in 3D brick elements	Techniques for Non – linear Analysis	
S-9, S-10	SLO-1 SLO-2	Lab2: Design of Doubly Reinforced beam in excel	Lab 5: Analysis of a beam for stiffness in excel	Lab 8:Design of Pile in Excel.	Lab 11: Analysis of 2D frame inStadd-Pro	Lab 14: Analysis of 3D frame subjected to wind load inStadd- Pro	
6.44	SLO-1	Example problem 1: Rayleigh Ritz method	Introduction to Beam elements	Introduction to Iso, Sub and super - parametric element	Example 1: Derivation of shape function for the Eightnoded 3D Brick elements	Application to Plates & Shells	
S-11	SLO-2	Methods of weighted residual - Collocation, sub domain, Galerkin, least square methods	Example 1: Problems in beam element	Example 1: Development of stiffness matrix for Iso-parametric element	Example 2: Development of Stiffness matrix for the3D 8 nodedbirck element.	Choice of displacement function (C0, C1 and C2 type)	
S-12	SLO-1	Example problem 1: Methods of weighted residual	Analysis of plane stain and plane stress conditions	Nodal load vector for quadrilateral element	Introduction to Twenty nodded 3D Brick elements	Steps to analyze the case study related to non linear problems	

Duration (hour)		Module 1 (15)	Module 2 (15) Module 3 (15)		Module 4 (15)	Module 5 (15)
	SLO-2	Displacement model, stress model and hybrid models	Formulation of Shape function for CST elements.	Example 1: calculation of Nodal load vector for quadrilateral element	·	Case Study 1
S-13	SLO-1	Principle of minimum potential energy- Principle of minimum complimentary potential energy	Formulation of Shape function for LST elements.	Concept of axisymmetric elements	Plate bending elements concept, Thin and thick plates	Case Study 2
	SLO-2	Hellinger - Reissner's principle - Steps in Finite Element Analysis.	Formulation of Shape function for QST elements.	Formation of stiffness matrix in axisymmetric elements	Mindlin's plate theory	Case Study 3
S- 14, S-15	SLO- 1 SLO- 2	Lab3: Design of one way slab in excel	Lab 6: Analysis of truss for stiffness matrix calculation.	Lab 9: Design of rectangular Isolated footing	Lab 12: Analysis of 3D frame in Stadd-Pro	Lab 15: Response spectrum analysis of 3D frame in Stadd-Pro

		1. Krishnamoorthy C.S, "Finite Elements Analysis - Theory and
		Programming", Tata McGraw Hill publishing company limited, New Delhi, 2008.
	2. Zienkiewicz. O. C, Taylor. R. L, Zhu. J.Z, "The Finite Element Method: Its Basis	
		and Fundamentals: Its Basis and Fundamentals", Butterworth-Heinemann, 7.
		Sixth Edition, 2005. 3. Krishnamoorthy.C. S, Rajeev. S, Arunachalam Rajaraman., " Computer Aided 8.
	Learning	Design: Software And Analytical Tools", U.K, 2005.
	Resources	 Rajesekaran .S, "Finite Element Methods in Engineering Design", Wheeler Publishers, Allahabad, 1999
		5. Chandrapatla. R.T, and Belagundu, A.D., "Introduction to Finite Elements in Engineering", Second Edition, Prentice Hall of India, 1997
		6. Bathe. K.J, "Finite Element Procedures in Engineering Analysis", PHI, New Delhi, 1990.

- 7. Robert Davis Cook, David. S, Malkus, Michael. E, Plesha., "Concepts and Applications of Finite Element Analysis", John Wiley, , New York, Third Edition 1989.
- 8. Zienkiewicz .O.C, and Taylor. R.L, "The Finite Element Method", Vol.1, Basic Formulation and linear problems, Mc Graw Hill Limited, U.K. 1989.
- 9. Hans. R, Schwarz, "Finite Element Methods", Academic Press, 1988.
- 10. Bruce Irons and Shrire .N, "Finite Element Primer", Ellis Howood Limited, 1983.
- 11. Ernest Hinton. D. Owen, "Finite Element Programming", ACADEMIC Press INC, London, Fifth Edition, 1979.
- 12. Gallagher. R.H, "Finite Element Analysis Fundamentals", Prentice Hall Inc. 1975.
- 13. https://nptel.ac.in/courses/ (Finite Element Analysis)

Learning As	sessment									
	Division	Continuous Learning Assessment (60% weightage)					Final Examination (40% weightage)			
	Bloom's	CLA – 1 (20%)		CLA –	2 (25%)	CLA –	3 (15%)			
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	10%	10%	15%	15%	15%	15%	15%	15%	
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	
_evel 3	Evaluate Create	20%	20%	15%	15%	15%	15%	15%	15%	
	Total	100 %		100 %		10	0 %	100 %		

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
Mr. A. Sivaraman, design Manager, Utracon, sivaram@utracon.com	Prof. A.M. Amit Shaw, Associate Professor, IIT-Kh, abshaw@civil.iitkgp.ac.in	Dr. K.S. Satyanarayanan						
Mr. S. Parthiban, Engineering Manager, L&T, spb@Intecc.com	Dr. Amlan Kumar Sengupta, Professor, IITM, amlan@iitm.ac.in	Mrs. S.Sivakamasundari						

Course	Course 20CEC505T		Course Name ADVANCED STEEL STRUCTURES		Course	^		PROFESSIONAL CORE	L	Т	Р	C
Code					Category	C	'	PROFESSIONAL CORE	3	1	0	4
Pre-requisite Nii		Co-requisite Nil		Progressive Nii				"				
Courses VII			Courses		Courses	, /	III					
Course Of	fering Departmen	nt CIVIL	ENGINEERING	Data Book / Codes/Standards	Nil	•						

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Introduce General principle in the design of steel structures
CLR-2:	Impart knowledge about Various types of connections
CLR-3:	Steel transmission line towers
CLR-4:	Plastic method of structural analysis
CLR-5:	Analysis and design of industrial structures
CLR-6:	Acquaint the students with case studies on different steel connections

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Understanding basics of Steel connections and girders	3	2	2	
CO-2:	Evaluate advanced calculations on connections	3	3	2	
CO-3:	Evaluation of structural steel configuration and tower design	3	3	2	
CO-4:	Apply plastic analysis and mechanism with application to different beam supports	3	2	2	
CO-5:	Analyze assimilation of knowledge to industrial building and roof trusses	2	2	2	
CO-6:	Create knowledge of different connections and industrial buildings	2	3	2	

	ration lour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-1	SLO-1	Introduction to steel design Simple connections and types		Basic structural Steel configurations	Introduction to plastic analysis	Introduction to Industrial buildings
3-1	SLO-2	Advanced steel design concepts	Bolted connections	Free standing towers	Techniques in plastic analysis	Techniques on solving industrial building
S-2	SLO-1	Beams subjected to biaxial bending	Pinned and Welded Connections	Free guyed towers	Plastic Behaviour of Structural Steel	Dead loads, live loads on roofs
3-2	SLO-2	Problem 1 - Beams subjected to biaxial bending	Bolted Connections- Load Transfer Mechanism	Loads on towers	Plastic theory	Wind loads on roofs
S-3	SLO-1	Built-up Purlins	Failure of Bolted Joints	Problem 1 – Tower design	Plastic hinge concept	Design wind speed and pressure
3-3	SLO-2	Problem 1 - Built-up Purlins	Specifications for Bolted Joints	Problem 2 – Tower design	Plastic collapse load	Wind pressure on roofs

	ration lour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-4	SLO-1	Tutorial 1 – Beam bending	Tutorial 7 – Load-Transfer mechanism	Tutorial 13 – guyed towers	Tutorial 19 – Plastic analysis problem 1	Tutorial 25 – Wind speed cases
3-4	SLO-2	Tutorial 2 – Purlin problem	Tutorial 8 – Bolted joints	Tutorial 14 – tower designs	Tutorial: 20 – Plastic analysis problem 2	Tutorial 26 – Loading cases and combinations
S-5	SLO-1	Various types and design	Bearing – Type Connections	Wind loads importance	Conditions of plasticanalysis	Wind effect on cladding
3-3	SLO-2	Various design problems	Tensile Strength of Plate	Wind loads calculations	Theorem of Plastic collapse	Wind effect on louvers
2.6	SLO-1	Design of Wind girders	Strength and Efficiency of the Joint	Introduction to tower foundation design	Methods of Plastic analysis	Design of angular roof truss
S-6 SLO-2		Problems on Design of Wind girders	Combined Shear and Tension	Procedures for tower foundation design	Plastic Mechanism Method	Design of angular roof truss – Cont'd
S-7	SLO-1	Problems 1 - Design of Wind girders	Slip – Critical Connections	Problem 1 - tower foundation design	Applicationto continuous beams	Braced and Unbraced structures
3-1	SLO-2	Problems 2 - Design of Wind girders	Combined Shear and Tension for Slip Critical Connections	Problem 2 - tower foundation design	Problems in continuous beams	Bracing connections
S-8	SLO-1	Tutorial 3 – wind girders functionality	Tutorial 9 – Bearing connections	Tutorial 15 – wind load cases	Tutorial 21 – Plastic collapse scenarios	Tutorial 27 – Angular roof concepts
3-0	SLO-2	Tutorial 4 – wind girder case study	Tutorial 10 – slip-critical connections	Tutorial 16 – factor of safety in winds	Tutorial 22 – Continuous beams	Tutorial 28 – Bracings importance
	SLO-1	Beam-columns joints	Design of Groove welds	Design criteria for different configurations	Applicationto portal frames	Gable frames with gantry
S-9	SLO-2	Problems on Beam-columns	Design of Fillet Welds	Steel configuration analysis	Problems Applicationto portal frames	Problems on gable frames
S-10	SLO-1	Problems on Beam-columns with various support conditions	Design of Intermittent fillet welds	Introduction to transmission line towers	Plastic design of continuous beams	Problem 1 – Gantry girder
3-10	SLO-2	Design offoundations	Failure of Welds	Procedures for transmission line towers	Moment distribution	Problem 2 – Gantry girder
S-11	SLO-1	Design offoundations with lateral loads	Connections Subjected to Eccentric Shear	Problem 1 - transmission line towers	Analysis ofGable frames	Fire resistant design
3-11	SLO-2	Problem on Design offoundations with lateral loads	Moment Resistant Connections	Problem 2 - transmission line towers	Instantaneous Centre of rotation	Fatigue resistant design
S-12	SLO-1	Tutorial 5 - Foundations	Tutorial 11 - welds	Tutorial 17 – steel configuration	Tutorial 23 – gable frame case study 1	Tutorial 29 – gantry girder

Duration (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)	
SLO-2	Tutorial 6 – Lateral loads	Tutorial 12 – Moment resistant connections	Tutorial 18 – steel configuration tech	Tutorial 24 – gable frame case study 2	Tutorial 30 – gable frames	

	1.	Subramanian. N, "Design of Steel Structures: Theory and Practice", Oxforduniversity Press, U.S.A, Third Edition, 2011.
Learning Resources	2. 3.	Duggal.S.K, "Design of Steel Structures", McGraw Hill New Delhi, 2010 Dayaratnam. P, "Design of Steel Structures," Chand. S, Limited, New
		Delhi.2008.
	4.	John. E, Lothers, "Structural Design in Steel", Prentice Hall, 1999.

- 5. Neal. B.G, "Plastic Method of Structural Analysis", Taylor & Francis, ThirdEdition, 1985.
- 6. 6.Edwin .H, Gaylord, Charles .N, Gaylord, James .E, Stallmeyer, "SteelStructures", McGraw Hill, New
- 7. Delhi, 1980.
- 8. Ramchandra, "Design of Steel Structures", Vol I & II Standard Book House, Delhi, 1975.
- 9. 8. Arya.S and Ajmani.J.L, "Design of Steel Structures", Nem Chand & Bros,Roorkee

Learning As	Learning Assessment									
	DI I		C	ontinuous Learnin	ng Assessment (60°	% weightage)		F: 15 : (: /400/ : 1/)		
	Bloom's Level of Thinking	CLA – 1 (20%)		CLA – 2 (25%)		CLA – 3 (15%)		Final Examination (40% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	20%	-	20%	-	20%	-	20%	-	
Level 2	Apply Analyze	40%	-	40%	-	40%	-	40%	-	
Level 3	Evaluate Create	40%	-	40%	-	40%	-	40%	-	
	Total	otal 100 %		100 %		100 %		100 %		

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr. Sabari, Director, SP Structures, sabari@spstructures.com	Dr. P. Jayabalan, Professor, NITT, pjeya@nitt.edu	Dr. S. Senthilselvan, SRMIST
Mr. Cibi Jacob, Chief Consultant, Jacob Engineers, cibijacob@jacobengineers.in	Dr. Lakshmi Priya, Assistant Professor, IITM, lakshmipriya@iitm.ac.in	Dr. K.S. Satyanarayanan, SRMIST

Course Code	2014 A E E O 4 E	Cauras Nama	ADDITED MATIEMATICS	0	0	Causa Catamami	_	Duefoccional Floative	L	T	Р	С
Course Code	20MAE501T	Course Name	APPLIED MATHEMATICS	Course Category	E	Professional Elective	3	1	0	4		

Pre-requisite Courses	Nil	Co-requisite Courses	NIL	Progressive Courses Nil
Course Offering Department	Mathematics		Data Book / Codes/Standards	Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	To learn the concept of One Dimensional wave equations and Diffusion equation
CLR-2:	To understand the concepts of Euler's equations
CLR-3:	To learn concepts of Fredholm and Volterra integral equations
CLR-4:	To learn the concepts of Probability, Correlation and Regression
CLR-5:	To learn the concept of ANOVA and Control Charts

Course	At the end of this course, learners will be able to:	Progi	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3		
CO-1:	Students will be able to solve One Dimensional wave equations and Diffusion equation by using Laplace and Fourier Transform Techniques	3	3	-		
CO-2:	Students become familiar with solving Euler's equations	3	3	-		
CO-3:	Students will be able to understand and solve Fredholm and Volterra integral equations	3	3	2		
CO-4:	Students will be able to understand the concepts of Probability, Correlation and Regression	3	3	2		
CO-5:	Students become familiar with ANOVA table and Control Charts	3	3	2		

Duratio	n (hour)	12	12	12	12	12
S 1	SLO-1	To refresh and enhance the Laplace transform	Euler's Equations	Introduction to Fredholm integral equations	Concepts of probability	Introduction Analysis of Variance
S-1	SLO-2	To refresh and enhance the Fourier Transform Techniques	Euler's Equations	Introduction to Fredholm integral equations	Concepts of probability	Introduction Analysis of Variance
S-2	SLO-1	Solution of One Dimensional Wave Equation using Laplace Transform Methods	Solution of Euler's Equations	To solve Fredholm integral equations	Probability distributions	ANOVA - One way Classification
	SLO-2	Solution of One Dimensional Wave Equation using Laplace Transform Methods	Solution of Euler's Equations	To solve Fredholm integral equations	Probability distributions	ANOVA - One way Classification
S-3	SLO-1	More examples on One Dimensional Wave Equation using Laplace Transform Methods	Functional involving x, y, y'	Introduction to Volterra integral equations	Correlation	ANOVA - Two way Classification

Durati	on (hour)	12	12	12	12	12
	SLO-2	More examples on One Dimensional Wave Equation using Laplace Transform Methods	Functional involving x, y, y	Introduction to Volterra integral equations	Correlation	ANOVA - Two way Classification
S-4	SLO-1	Tutorial 1: Solve One Dimensional Wave equations using Laplace Transforms	Tutorial4 : Solution of Euler's Equations	Tutorial 7 : Fredholm integral equations	Tutorial 10: Probability and Correlation	Tutorial 13: ANOVA TABLE
3-4	SLO-2	Tutorial 1: Solve One Dimensional Wave equations using Laplace Transforms	Tutorial4 : Solution of Euler's Equations	Tutorial 7 : Fredholm integral equations	Tutorial 10: Probability and Correlation	Tutorial 13: ANOVA TABLE
S-5	SLO-1	To find displacements in Long string	To determine functional on higher order derivatives	To solve Volterra integral equations	Regression	More examples on ANOVA – One way and Two way Classification
	SLO-2	To determine the longitudinal vibration of an elastic bar	To determine functional on higher order derivatives	To solve Volterra integral equations	Regression	More examples on ANOVA – One way and Two way Classification
S-6	SLO-1	Solution of One Dimensional Diffusion Equation using Fourier Transform Methods	To calculate functional dependent on functions of independent variables	To find solution of integro- differentialequation	Multiple and Partial Correlation	Introduction and Control theory
5-0	SLO-2	Solution of One Dimensional Diffusion Equation using Fourier Transform Methods	To calculate functional dependent on functions of independent variables	To find solution of integro- differentialequation	Multiple and Partial Correlation	Introduction and Control theory
6.7	SLO-1	Examples on One Dimensional Diffusion Equation using Fourier Transform Methods	More problems on calculate functional dependent on functions of independent variables	Green's function	Multiple and Partial Regression	Control Charts for X and R
S-7	SLO-2	Examples on One Dimensional Diffusion Equation using Fourier Transform Methods	More problems on calculate functional dependent on functions of independent variables	Green's function	Multiple and Partial Regression	Control Charts for X and R
6.0	SLO-1	Tutorial 2: Solve One Dimensional Diffusion equations using Fourier Transforms	Tutorial 5: Functional Higher order	Tutorial 8: Solution of integro- differential equation	Tutorial 11: Regression	Tutorial 14: Problems based on X and R Chart
S-8	SLO-2	Tutorial 2: Solve One Dimensional Diffusion equations using Fourier Transforms	Tutorial 5: Functional Higher Order	Tutorial 8 Solution of integro- differential equation	Tutorial 11: Regression	Tutorial 14: Problems based on X and R Chart

Duratio	on (hour)	12	12	12	12	12
S-9	SLO-1	Solution of One Dimensional Diffusion Equation using Fourier Sine Transform Methods	Geodesics	Introduction to Fredholm equations with separable Kernel	Fitting of straight line	Control Charts for X and S
3- 9	SLO-2	Solution of One Dimensional Diffusion Equation using Fourier Sine Transform Methods	Geodesics	Introduction to Fredholm equations with separable Kernel	Fitting of straight line	Control Charts for X and S
S 40	SLO-1	More problems in One Dimensional Diffusion Equation using Fourier Sine Transform Methods	Rayleigh Ritz method	To solve Fredholm equations with separable Kernel	Fitting of parabola	p and np chart
S-10	SLO-2	More problems in One Dimensional Diffusion Equation using Fourier Sine Transform Methods	Rayleigh Ritz method	To solve Fredholm equations with separable Kernel	Fitting of parabola	p and np chart
0.44	SLO-1	Solution of One Dimensional Diffusion Equation using Fourier Cosine TransformMethods	More Examples in Ritz method	Iterative methods	Maximum likely hood estimates- method of moments	c chart
S-11	SLO-2	Solution of One Dimensional Diffusion Equation using Fourier Cosine TransformMethods	More Examples in Ritz method	Iterative methods	Maximum likely hood estimates- method of moments	c chart
S-12	SLO-1	Tutorial 3: Solve One Dimensional Diffusion equations using Fourier Sine and Cosine Transforms	Tutorial 6: Rayleigh Ritz method	Tutorial 9: Fredholm equations with separable Kernel	Tutorial 12: Fitting of Straight line and Parabola	Tutorial 15 : Problems based on c and np Chart
	SLO-2	Tutorial 3: Solve One Dimensional Diffusion equations using Fourier Sine and Cosine Transforms	Tutorial 6: Rayleigh Ritz method	Tutorial 9 Fredholm equations with separable Kernel	Tutorial 12: Fitting of Straight line and Parabola	Tutorial 15 : Problems based on c and np Chart

Learning	
Resources	,

- 1. Gupta, S.C., & Kapoor, V.K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, Edition 2018
- 2. Dr.B.S.Grewal., "Higher Engineering Mathematics", Khanna Publishers, 44th Edition, 2019
- 3. M. B. K. Moorthy, "Advanced Mathematical Methods", Yesdee Publication, 2nd Edition, 2019.
- 4. Sankara Rao, K., "Introduction to Partial Differential Equations", PHI Publishing, 3rd Edition, 2011.
- 5. *B. V Ramana*, "Higher Engineering Mathematics", McGraw Hill Publication, 2017

				Learnin	g Assessment					
	Bloom's		Conti	nuous Learning Ass	sessment (60% weig	htage)		Einal Evamination	Final Examination (40% weightage)	
	Level of Thinking	CLA -	- 1 (20%)	CLA –	2 (25%)	CLA –	3 (15%) #		(40 % weightage)	
	Level of Thiriking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Lovel 1	Remember	40 %		30 %		30 %		30 %		
Level 1	Understand	40 %	10 %	30 %	-	30 /0	-	JU /0	-	
Level 2	Apply	40 %	0/	40 %	% -	40 %	-	40 %		
Level 2	Analyze	40 %	-	40 %					-	
Level 3	Evaluate	20 %		20.0/		30 %		20.0/		
Level 3	Create	20 %	-	30 %	-	30 %	-	30 %	-	
Total		10	00 %	10	0 %	10	00 %	100	%	

#CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, and Conf. Paper etc.

Course Designers		·
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
 Dr.G. Arul Joseph, Assistant Professor, SRMIST, aruljosg@srmist.edu.in 	Dr. Y.V.S.S. Sanyasiraju, IIT Madras, Chennai sryedida@iitm.ac.in	1. Dr.A.Govindarajan, SRMIST
Mr.V.Maheshwaran, CTS, Chennai maheswaran@yah oo.com	Dr.K.C.SivaKumar, IIT Madras, Chennai kcskumar@iit m.ac.in	2. Dr. N. Parvathi, SRMIST

Course	200555041	Course	Advanced Deinferred Concrete Structures	Course	_	Donfording I Floring	L	T	Р	С
Code	20CEE501J	Name	Advanced Reinforced Concrete Structures	Category	L	Professional Elective	3	0	2	4

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department	CIVIL ENGINEER	ING	Data Book / Codes/Standards	IS 456,SP-16,ACI 3	18, BS 8110, IS:13920, IS: 1893

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Know the basic concepts of reinforced concrete members
CLR-2:	Develop an idea about the design of special R.C. elements
CLR-3:	Familiarize with design and detailing of flat slabs and flat plates
	Limit analysis of concrete beams and cast in situ frames
CLR-5:	Introduce the detailing and strengthening of existing structure
CLR-6:	Test RC Beams in laboratory

Course	At the end of this course, learners will be able to:	Programme Outcome (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Evaluate design RC elements for combined shear, torsion and bending	3	3	-	
CO-2:	Evaluate and create design of special RC elements	3	3	-	
CO-3:	Evaluate design flat slabs and plates	3	3	2	
CO-4:	Evaluate design beams considering moment redistribution and cast in site frames	3	3	2	
CO-5:	Understanding of existing elements ductile detailing and seismic resistance strengthening	3	3	2	
CO-6:	Understanding the behavior of RC beams and slabs	3	3	2	

Duration	(hour)	Module 1 (15)	Module 2 (15)	Module 3 (15)	Module 4 (15)	Module 5 (15)
S-1	SLO-1	Review of basic concepts	Introduction to special R.C. elements	Design of flat slab	Limit analysis of concrete beams	Design and detailing of structures
	SLO-2	Review of basic concepts	Behavior of slender columns	Design of flat slab	Limit analysis of concrete beams	Detailing for ductility in seismic zone
S-2	SLO-1	Behavior of reinforced concrete members considering flexure	Design of slender columns	Design of flat slab- Interior panel	Moment - rotation curves	Detailing for ductility
5-2	SLO-2	Behavior of reinforced concrete members considering flexure	Design of slender columns	Design of flat slab- Interior panel	Moment - rotation curves	Detailing for ductility

Duration	(hour)	Module 1 (15)	Module 2 (15)	Module 3 (15)	Module 4 (15)	Module 5 (15)
S-3	SLO-1	Torsion combined with flexure and shear	Check for bucking of slender columns	Design of flat slab- exterior panel	Moment curvature relationship	Detailing for ductility as per IS code
3-3	SLO-2	Torsion combined with flexure and shear	Check for bucking of slender columns	Design of flat slab- exterior panel	Moment curvature relationship	Detailing for ductility as per IS code
S-4,	SLO-1	Design of concrete mixes LAB - 1	Test on RC column LAB - 7	Casting of RC slab LAB - 13	Casting of concrete cylinders LAB - 19	NDT-Rebound Hammer Test LAB - 25
S-5	SLO-2	Design of concrete mixes LAB - 2	Test on RC column LAB - 8	Casting of RC slab LAB - 14	Casting of concrete cylinders LAB - 20	NDT-Rebound Hammer Test LAB - 26
S-6	SLO-1	Axial compression	Design of RC Walls	Design of flat plate	Moment redistribution in continuous beams	Field control of concrete
5-0	SLO-2	Introduction - Deflection	Design of RC Walls	Design of flat plate	Moment redistribution in continuous beams	Field control of concrete
S-7	SLO-1	Short term and long deflection	Design of shear walls	Design of reinforcement and edge (spandrel) beam	Moment redistribution in continuous beams- three span	Fire resistance of buildings
3-1	SLO-2	Short term and long deflection	Design of shear walls	Design of reinforcement and edge (spandrel) beam	Moment redistribution in continuous beams- three span	Fire resistance of buildings
S-8	SLO-1	Analysis for short term and long deflection	Design for boundary elements	Yield line theory- rectangular slabs	Baker's method of plastic design	Strengthening of existing structures
3-0	SLO-2	Analysis for short term and long deflection	Design for boundary elements	Yield line theory - rectangular slabs	Baker's method of plastic design	Strengthening of existing structures
S-9,	SLO-1	Design of concrete mixes- casting LAB - 3	Test on RC wall LAB - 9	Deflection test on RC slab LAB - 15	Young's modulus of concrete LAB - 21	NDT-Ultrasonic pulse velocity test LAB - 27
S-10	SLO-2	Design of concrete mixes- casting LAB - 4	Test on RC wall LAB - 10	Deflection test on RC slab LAB - 16	Young's modulus of concrete LAB - 22	NDT-Ultrasonic pulse velocity test LAB - 28
C 44	SLO-1	Design of crack width as per IS-456-2000	Design of shear walls	Yield line theory - triangular slabs	Baker's method of plastic design	Strengthening of existing structures- beams
S-11	SLO-2	Design of crack width as per IS-456-2000	Design of shear walls	Yield line theory- triangular slabs	Baker's method of plastic design	Strengthening of existing structures- beams
S-12	SLO-1	Design of crack width as per IS-456-2000	Design of deep beams.	Yield line theory- square slabs	Cast in–situ frames.	Strengthening of existing structures- columns
J-12	SLO-2	Design of crack width as per IS-456-2000	Design of deep beams.	Yield line theory- circular slabs	Cast in–situ frames.	Strengthening of existing structures- columns
S-13	SLO-1	Comparative study with BS 8110 and ACI - 318.	Design of corbels	Hillerborg's strip method	Design of cast in–situ frames.	Design and detailing of structures according to different codes

Duration (I	hour)	Module 1 (15)	Module 2 (15)	Module 3 (15)	Module 4 (15)	Module 5 (15)
	SLO-2	18110 and ACI - 318.	Design of corbels	Hillerborg's strip method	II Jesian of cast in-sitil trames	Design and detailing of structures according to different codes
S-14, S-15	SLO-1	Flexure test on RC beam LAB - 5	Shear test on R.C beam LAB - 11	Flexure test on RC slab LAB - 17	Impact test on concrete LAB - 23	Pull out test on concrete LAB - 29
		Flexure test on RC beam LAB - 6	Shear test on R.C beam LAB - 12	Flexure test on RC slab LAB - 18	Impact test on concrete LAB - 24	Pull out test on concrete LAB - 30

Learning
Resources

- Varghese.P.C, "Advanced Reinforced Concrete Design", Prentice Hall of India, Second Edition, 2009.

 2. Pillai.S.V and Menon.D, "Reinforced Concrete Design", Tata McGraw Hill Book Co., first Edition, 2002.

 3. Purushothaman.P. "Reinforced Concrete Structural Elements", Behavior Analysis and Design. Tata Mc Graw Hill (IS 456-2000)", Second Edition, 2013.
 - 5. N. Krishnaraju, "Advanced Reinforced Concrete Design

1986. 4. Park.R & Paulay.T, "Reinforced Concrete Structures", John Wiley and Sons, 1975.

Learning A	ssessment								
	Dloom's Lovel		Со	ntinuous Learning Ass	essment (60% weighta	age)		Final Exam	ination (40%
	Bloom's Level of Thinking	CLA –	1 (20%)	(20%) CLA – 2 (25%)		CLA – 3	CLA – 3# (15%)		ntage)
	of Friinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Laval 4	Remember	10%	10%	15%	15%	10%	10%	15%	10%
Level 1	Understand	1076	1076	1370	1076	10%	10%	13%	10%
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%
Level Z	Analyze	2070	2070	2070	2070	20 /0	20 /0	2070	2070
Level 3	Evaluate	20%	20%	15%	15%	20%	20%	15%	20%
Level 3	Create	20%	20%	1370	1076	20%	20%	13%	20%
	Total	100 %		100	100 %		100 %		0 %

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
Mr. R. Eswaran, Chief Engineering Manager, L&T, eswaran@Intecc.com	1. Dr. R. Santhakumar, Professor, NITTTR, rsk65@nitttrc.ac.in	1. Dr. R. Ravi						
Mr. S. Kavin Kumar, Director, EPMCR, kavinkumar@epmcr.co.in	2. Dr. Devdas Menon, Professor, IITM, dmenon@iitm.ac.in	2. Dr. P.R. Kannan Rajkumar						

Course	200555025	Course	Assistantia Destina of Stantaturas	Course	_	Duefeesienal Fleeties	L	T	Р	С	1
Code	20CEE502T	Name	Aseismic Design of Structures	Category	E	Professional Elective	3	1	0	4	

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department	CIVIL ENG	INEERING	Data Book / Codes/Standards	IS1893 PART 1 : 2018 , IS 13920 :2	2018

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Develop a basic knowledge about Engineering Seismology
CLR-2:	Address concepts related to past earthquakes and performance of various materials under cyclic loading
CLR-3:	Create insights to the various structural systems
CLR-4:	Address concepts related to Seismic analysis and design
CLR-5:	Address about computing storey displacement, drift and detailing as per Indian Standards
CLR-6:	Acquaint the students with studies on Damage assessment and Retrofitting Techniques

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Understand the various causes and types of earthquake	3	2	-	
CO-2:	Able to relate materials and structural performance with respect to the past earthquakes	2	2	-	
CO-3:	Knowledge on various structural systems	3	3	-	
CO-4:	Able to do seismic analysis of Structure	2	3	2	
CO-5:	Apply the concept of Ductile detailing	2	3	2	
CO-6:	Knowledge of basic assessment and Retrofitting Techniques	3	3	2	

Duratio	on (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
6.1	ISI ()-1	Introduction to engineering seismology		Floating Column, Pounding, Soft Storey	Brick masonry	Damage Assessment procedure
S-1	SLO-2	Plate Tectonics	Steel and Concrete		Behavior of Brick Masonry houses during earthquake	Assessment techniques
	SLO-1	Causes of Earthquake	Vertical Frame systems	Seismic Design Philosophy	Ductile detailing	Non Destructive testing
S-2	SLO-2	Types of Earthquake	Lateral Load resistant system	Seismic design importance	Ductile detailing of reinforced concrete structures subjected to seismic forces as per code	NDT Methods
S-3	SLO-1	Types of Faults	Rigid Frame	· · ·	Flexural members – Longitudinal reinforcement	Retrofitting Techniques
3-3	SLO-2		Braced Frame and its types, Staggered truss system	Quality Control in Construction	Web reinforcement	Retrofitting Materials

Duratio	n (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-4	SLO-1 SLO-2	Tutorial 1 – Earthquake intensity	Tutorial 4 – Frame system	Tutorial 7 – Short column effect study	Tutorial 10 - Ductility	Tutorial 13 - Retrofitting
S-5	SLO-1	Seismic Waves	Interacting System of Braced and Rigid frame, Outrigger and Belt Truss system	Importance of Flexibility	Column and Frame Members subjected to Bending and Axial Load	Local Retrofitting
	SLO-2	Measuring Instruments	Framed tube system and Truss tube system	Flexibility calculations	Longitudinal reinforcement	Global Retrofitting
S-6	SLO-1	Strong Ground Motion and its characteristics	Bundle tube system, Framed wall interactive system and In filled frames	Indian Seismic Code and its Importance	Transverse reinforcement	Structural Control system
3- 0	SLO-2	Magnitude and Intensity	Diagrid and Tensegrity structural system	Estimation of design forces of multistory buildings using Bureau of Indian Standards (BIS) codes	Special Contining reinforcement	Passive Control and Active Control system
S-7	SLO-1	Past earthquakes in India and World	Shear wall system	Determination of Base Shear	Column with varying stiffness	Base Isolation
3-1	SLO-2	Seismic Zones of India	Hybrid Structural System	Equivalent static lateral force method	Column stiffness cases	Energy Dissipative devices
S-8	SLO-1 SLO-2	Tutorial 2 – Seismic zones	Tutorial 5 – Structural systems	Tutorial 8 – Various seismic codes comparison	Tutorial 11 – Reinforcement judgement	Tutorial 14 – Energy dissipation
	SLO-1	Seismic Effects on Structures	Architectural Features affects Building during earthquake	Dynamic Analysis	Joints of Frames	Earthquake Effects on Non Structural Elements
S-9	SLO-2	Structural importance	Retrofitting methods	Response Spectrum Method	Shear Walls	Protecting Non Structural elements
S-10	SLO-1	Cyclic Loading	Horizontal and Vertical Layout of buildings	Evaluation of Displacements and Drift	Flexural Strength	Essential features of confined masonry house
3-10	SLO-2	Performance of Various materials under cyclic loading	Irregular Buildings	Human Comfort criteria as per code	Boundary elements	Seismic Design of Foundation
	SLO-1	Masonry, steel	Torsional Irregularity, Plan Irregularity, Vertical Irregularity	Earthquake Effects on Reinforced Concrete Buildings	Coupled shear wall, Opening in walls,	Liquefaction of soil
S-11	SLO-2	Concrete and soil	Mass Irregularity, Diaphragm Discontinuity, Out of plane offsets, Non parallel system	Earthquake Effects on Steel Buildings	Discontinuous walls and Construction Joints	Quality and Earthquake safety
S-12	SLO-1	Tutorial 3: Cyclic loading	Tutorial 6 – Irregular buildings	Tutorial 9 – Earthquake effects	Tutorial 12 – Joints assessment	Tutorial 15 – Soil liquefaction

Duration (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
SLO-2					

Learning	
Resource	s
Resource	5

- 1. 1.Paulay. Tand Priestly. M.N.J, "Aseismic Design of Reinforced Concrete and Masonry Building", John Wiley and Sons, 1987.
- 2. 2.Agarwal. P, and Shrikhande. M, "Earthquake Resistant Design of Structures" Prentice Hall of India, New Delhi, 2007
- 3. IITK-BMTPC Earthquake Tips:: Learning Seismic Design and Construction
 4. Guidelines for "Improving Earthquake Resistance of Housing", Building Materials and Technology Promotion Council, Ministry of Urban Development and Poverty Alleviation, Department of Urban Employment and Poverty Alleviation, Government of India, New Delhi, 1999 – 2000.

Learning	Assessment										
			Contin	uous Learning Ass	sessment (60% we	ightage)		Final Evenination (400/			
	Bloom's	CLA –	1 (20%)	CLA –	2 (25%)	CLA –	3 (15%)	Final Examination (40% wei	gntage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%		20%		20%		20%			
Level I	Understand	20%	2070	2070	-	20%	-	20%	-	20%	-
Level 2	Apply	400/	40% -	40% -		40%	-	40%	-		
Level 2	Analyze	40%	-		-	40%					
Laval 2	Evaluate	400/	4007	4007	400/		4007				
Level 3	Create	40%	-	40%	-	40%	-	40%	-		
	Total	10	0 %	10	0 %	10	0 %	100 %			

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
 Mr. G. Jayaramalingam, Head, civil & structural, Reliance Retail, jaya.ramalingam@ril.com 	Dr. Deendayal Rathod, Assistant Professor, deendayal@nitt.edu, deendayalrathod123@gmail.com	1. Mr.S.Pradeep, SRMIST
Mr. R.Eswaran, Chief Engineering Manager, L&T, eswaran@Intecc.com	Dr. R Senthilkumar, Assistant Professor, senthilr@nitt.edu	2. Mr. H. Thiagu, SRMIST

Course	Cours	Otal-lift of Otal-ton-	0	_	Desferational Florida	L	Т	Р	С
Code	20CEE503T Name	Stability of Structures	Course Category	E	Professional Elective	3	1	0	4

Pre-requisite Courses	Nil Co-requisit	e Courses Nil	Progressive Courses	Nil
Course Offering Department	Civil Engineering	Data Book / Coo	les/Standards IS 2210 – 1988 Criteria for de and folded plates	sign of reinforced concrete shell structures

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Get exposed to the concept of stability
CLR-2:	Understand the characteristics of stability problems and methods used for stability analysis
CLR-3:	Understand the behavior of short and long columns with various end conditions
CLR-4:	Gain knowledge on behavior of beams subjected to torsional and lateral buckling
CLR-5:	Determine critical load for different shape plates with different boundary conditions
CLR-6:	Study about geometry of shells and to gain knowledge on membrane theory of shells

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Understand the concept and characteristics of stability problems	3	3	2	
CO-2:	Analyze columns with different end conditions	3	3	2	
CO-3:	Know the importance of torsional and lateral buckling on behavior of structural members	3	3	2	
CO-4:	Analyze rectangular and circular plates for buckling load	3	3	2	
CO-5:	Identify approximate methods and application of finite difference methods for stability analysis	3	3	2	
CO-6:	Understand the behavior of shells and identify the theory required for stability analysis of thin shells	3	3	2	

Duratio	on (Hour)	12	12	12	12	12	
S-1	SLO-1	Introduction to Concept of stability	Buckling of columns	Torsional buckling, Shear Centre - Definition	Buckling of plates	Introduction to shells	
J-1	SLO-2	Types of structural instability	Stability analysis for eccentrically loaded column	I LORGIONAL CTITTINGGE OF MOMBOR	Difference in behavior of columns and behavior of plates	Geometry of shells	
	SLO-1	Characteristics of stability	Analysis of hinged – hinged			Shells of revolution and important	
S-2	OLO-1	problems	eccentrically loaded column	characteristics of member	plates	terminologies in shells	
3-2	510-7	1	Analysis of fixed – free eccentrically loaded column	Uniform torsion – Definition and example	Small deflection theory of thin plates	Classification of shells	
S-3	SLO-1	Equilibrium method of critical	Analysis of fixed – hinged	Non - Uniform torsion – Definition	Assumptions and principle used in	Detailed classification of stressed	
3-3	SLU-1	load analysis - Principle	eccentrically loaded column	and example	small deflection theory	skin surfaces	

Duratio	on (Hour)	12	12	12	12	12
	SLO-2	Finding critical load for various types of columns	Analysis of fixed column	Torsion equation for uniform torsion – circular and non-circular section	Governing differential equation for plates – Navier's solution	Analysis of cylindrical shells
	SLO-1	Tutorial: Critical load – Fixed free, fixed column	Tutorial: Inelastic buckling of columns	Tutorial: Torsion equation for non- uniform torsion	Tutorial: Establishing equilibrium equation of in-plane forces	Tutorial: Analysis of doubly curved shells
S-4	SLO-2	Tutorial: Critical load - Hinged and fixed – hinged columns	Tutorial: Column curve, Behavior of short column	Tutorial: Torsional buckling – equilibrium approach	Tutorial: Establishing equilibrium equation of bending moment	Tutorial: Elastic stability of shells
S-5	SLO-1	Energy approach - Principle	Stability analysis for short columns	Equation for torsional buckling of columns	Establishing equilibrium equation of shear force	Causes of instability in shells
3- 3	SLO-2	Critical load – Hinged column (Energy method)	Difference in stability analysis for long and short columns	Derivations on torsion	Establishing equilibrium equation of twisting moment	Buckling in various types of shells
S-6	SLO-1	Critical load – Fixed column (Energy method)	Double modulus theory and tangent modulus	Buckling load – members subjected to combined flexural and torsional buckling	Derivation of governing differential equation	Buckling in cylindrical shells
5-0	SLO-2	Finding critical load for column with given deflected shape equation	Effective modulus – Definition and significance	Lateral buckling of beams	Navier's solution	Buckling in doubly-curvedshells
0.7	SLO-1	Comparison on critical load expression using energy and equilibrium method	Tangent modulus theory – Assumptions	Behavior of laterally supported and unsupported beams	Analysis of plates for critical load	Buckling in folded plates and Specifications for design of
S-7	SLO-2	Application of energy approach for stability analysis	Finding effective modulus – Rectangular section	Analysis of beam subjected to bending	Critical load for rectangular plate with Simply supported ends	Reinforced Concrete shells using IS 2210 - 1988
0.0	SLO-1	Tutorial: Imperfection approach	Tutorial: Finding effective modulus – Idealized I section	Tutorial: Analysis of Simply Supported rectangular beam for critical moment	Tutorial: Critical load for rectangular plate with clamped ends	Tutorial: Governing equations for analysis of shells
S-8	SLO-2	Tutorial: Analysis of crooked column – Equilibrium method	Tutorial: Beam - column	Tutorial: Assumptions made and deformation for lateral buckling analysis	Tutorial: Critical load for circular plate with clamped ends	Tutorial: Membrane analysis – Governing equation
	SLO-1	Stability analysis – Imperfection approach	Behavior of beam – column member	Deriving equation for moments	Application of Navier's solution in finding critical load	Equation for membrane analysis
S-9	SLO-2	Finding maximum deflection and moment for imperfect column	Objectives of beam – column analysis	Deriving equilibrium equation for lateral torsional buckling	Buckling shapes of plates	Bending analysis - Governing equation
S-10	SLO-1	Importance – Imperfection approach	Finding maximum deflection and maximum moment	Finding critical moment – lateral buckling	Critical load for plates with various end conditions – Navier's solutions	Equation for bending analysis

Duratio	n (Hour)	12	12	12	12	12
	21 (1-7	Dynamic method of stability analysis		Finding critical stress – lateral buckling	Different shapes of buckling for plates – Example	Membrane equilibrium with axial symmetry
S-11 -	SLO-1	principle for stability analysis	subjected to uniformly distributed	Determination of buckling load	Introduction to finite difference method	Membrane theory - Application
3-11	SLO-2		subjected to concentric load	Comparison on equilibrium equation between lateral buckling and lateral-torsional buckling		Membrane theory for anti- symmetrically loaded shells.
S-12	SLO-1	Tutorial: Dynamic method		Tutorial: Analysis of rectangular cantilever beam for critical moments	Tutorial: Finding critical load for rectangular plates using finite difference method	Tutorial: Stability analysis for thin shells
3-12		Tutorial: Higher order differential equation for stability analysis		Tutorial: Analysis of rectangular cantilever beam for critical stress	Tutorial: Finding critical load for circular plates using finite difference method	Tutorial: Problems on thin shells

Learning Resources

- 1. Chajes, "A Principles of Structures Stability Theory", Prentice Hall, 1974.
- 2. Allen.H.G, and Bulson.P.S, "Background to Buckling", McGraw Hill Book Company, 1980.
- 3. Brush and Almorth, "Buckling of Bars, Plates and Shells", McGraw Hill book Company, 1975.
- 4. Seely, F.B, and Smith, J.O, "Advanced Mechanics of Materials", 2nd Edition, John Wiley and Sons, Inc., New York. 1952.
- 5. Timoshenko.S, and Woinowsby Krieger.S, "Theory of Plates and Shells", 2nd Ed. McGraw Hill Book Co., New York 1959.
- 6. Ashwini Kumar, "Stability Theory of Structures", Tata McGraw Hill Co., New Delhi, 1985.
- 7. N G R lyengar, "Elastic stability of structural elements", Laxmi Publications, 2007
- 8. IS: 2210 1988, Indian Standard Criteria for Design of Reinforced Concrete Shell Structures and Folded Plates, New Delhi.
- 9. NPTEL Course: Finite element method for vibration and stability analyses https://nptel.ac.in/courses/105108141/

Learning A	Assessment									
	Bloom's	Continuous Learning Assessment (60% weightage)					Final Examination (/	Final Evamination (409/ weighters)		
	Level of	CLA –	1 (20%)	CLA – 2 (20%)		CLA – 3 (10%)		Final Examination (40% weightage)		
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20 %	_	20 %	_	20 %		20 %	-	
LEVEI I	Understand	20 /0	_	20 /0	-	20 /0	-	20 /0	<u>-</u>	
Level 2	Apply	30 %	_	30 %	_	30 %	_	30 %	_	
LCVCI Z	Analyze	30 /0	_	30 70	_	30 /0		30 70	-	
Level 3	Evaluate	50 %		50 %	_	50 %		50 %	_	
Level 3	Create	30 70	_	JU /0	-	30 /0	-	30 76	-	
·	Total	10	% 0	100) %		100 %	100 %	6	

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
 Dr. G.V. Ramarao, Sr. Scientist, CSIR-SERC, ramarao@serc.res.in 	 Dr. AlagappanPonnalagu, Assistant Professor, IITM, alagappan@iitm.ac.in 	1. Ms. T.M. Jeyashree, SRMIST						
Mr. S. Kavin Kumar, Director, EPMCR, kavinkumar@epmcr.co.in	2. Dr. Phanisri Pradeep Pratapa, Assistant Professor, IITM, ppratapa@iitm.ac.in	2. Dr. S. Sindhu Nachiar, SRMIST						

Course	Course	Machaniae of Churchural Commonite Metariale	Course _	Duefeesiens Fleetive	L T P C
Code 20CEE504T	Name	Mechanics of Structural Composite Materials	Category	Professional Elective	3 1 0 4

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department	CIVIL ENGINEERIN	IG	Data Book / Codes/Standards	Nil	

Course Learning Rationale (CLR): The purpose of learning this course is to:

Learning Program Learning Outcomes (PLO)

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Introduce students with the fundamentals of composites with applications
CLR-2:	Familiarize with micromechanical analysis of composites with processing
CLR-3:	Develop the knowledge about composite lamina and laminate analysis
CLR-4:	Familiarize with the problems of micro and macro mechanical analysis
CLR-5:	Introduce the students with the concept of analysis of composite beams with eigen value problems of laminated beams
CLR-6:	Develop the knowledge of structural composite materials

Course Outcomes (CO):	At the end of this course, learners will be able to:		Programme Outcomes (PO)		
Outcomes (CO):			2	3	
CO-1:	Understand the fundamentals of composites with applications	2	3	1	
CO-2:	Able to understand the micromechanical analysis of composites with processing	2	3	2	
CO-3:	Knowledge on lamina and laminate analysis	3	3	2	
CO-4:	Able to familiarize with the problems of micro and macro mechanical analysis	3	3	2	
CO-5:	Apply the concept of analysis of composite beams with Eigen value problems of laminated beams	3	3	2	
CO-6:	Evaluate Knowledge of structural composite materials	3	3	2	

Duration (hour)		12	12	12	12	12
S-1	SLO-1		processing of composites	concept of micro mechanical		Different terms related to analysis of composite beams will be known to them.
	SLO-2	ICANCANT AT TINAT TAINTATCAA	Students will be able to use a		They will be able to apply the concepts. For solving problems.	Students will learn the difference between the isotropic beam and laminated beam
S-2	SLO-1	Different constituents of composites will be known to the students.	They will learn different procedures of processing FRPs.	I I DOV WIII IOARD ADOLIT TOO DIACTIC	Students will learn on the assumptions of Classical laminated plate theory.	Students will be able to differentiate between isotropic beam and laminated beam.

Duratio	on (hour)	12	12	12	12	12	
	SLO-2	Different type of fibers as reinforcing materials will be known by them.	Students will be able to demonstrate different processes.	Students will be able to use the elastic properties of unidirectional lamina for laminates.	They will be introduced with the parameters of analysis.	Students will know the basic assumptions of developing formulae for analysis of composite beams	
S-3	SLO-1	Students will be able to distinguish between different matrices including polymeric matrix.	Students will learn to select particular materials for processing.	They will gain knowledge on stress- strain relationship and engineering constants.	They will be introduced with the approach of CLT for laminated plates.	They will know the limitations and the scope of applying formulae for analyzing composite beams.	
3-3	SLO-2	Different types of FRPs will be known to them for different applications.	Students will be able to select particular method of processing for typical applications.	They will be able to apply the stress- strain relationship and various engineering constants for engineering purposes.	Students will be able to apply the concept of the CLT for laminated plate analysis.	They will be able to distinguish between the plate and the composite beam problems.	
	SLO-1	T 500					
S-4	SLO-2	Tutorial – FRP and stresses	Tutorial – Selection of materials	Tutorial – Stress-strain relationships	l utorial – Laminated plates	Tutorial – Analytical methods	
S-5	SLO-1	Students will be able to distinguish between unidirectional, bi-directional and multi directional laminae.	They will be introduced with the different moulding.	The stress-strain relationship of a thin lamina will be added to the concepts of students.	Characteristic of flexure of laminated plates are to be added to the concepts of the students.	Students will be introduced analysis of laminated beams	
5-5	SLO-2	They will be able to understand the manufacturing of laminates and their relation between lamina and laminate.	They will be able to select particular moulding to their requirement.	Students will be able to apply the concept for analysis of laminae.	They will have concepts on assumptions of bending theory of plates.	They will be able to analyze laminated beams using the formulae.	
	SLO-1	their characteristics.	Student will learn about the different procedure of moulding depending on the materials.	Students will acquire the knowledge of laminate-strain – displacement relationship.	They will be able to use the concepts for developing formation for flexural analysis of laminates.	They will be introduced with the flexural problems with different boundary conditions.	
S-6	SLO-2	They will be able to identify the characteristics which makes FRPs different from other materials.	They will be able to select one based on the manufacturing method.	Students will be able to apply that for laminate analysis.	Students will be able to analyze the laminated plates subjected to bending.	They will be to solve flexural problems of composite beams for three- point problems.	
	SLO-1	Concept of micro mechanics of composite materials will be gained by the students.	The concept of contact moulding will be gained by the student.	They will conceptualize equilibrium equations and laminate stiffness.	Students will learn the theory of shear deformation in laminated plates.	They will be able to use the idea for the analysis of composite beams for fourpoint problems.	
S-7	SLO-2	They will be able to correlate the micro mechanics with the macro mechanics of the composite material.	They will be able to understand the advantages, disadvantages and applicability of contact moulding.	Students will be able to use those concepts to solve problems on laminates.	I'	They will be able to use the knowledge to solve practical problems.	
S-8	SLO-1		Tutorial – Moulding procedures			Tutorial – Boundary conditions	
	I .		1	1		II.	

Duratio	n (hour)	12	12	12	12	12
	SLO-2	Tutorial – Lamina and laminates		Tutorial – Laminate equilibrium stiffness	Tutorial – Theory of shear deformation	
	SLO-1	Typical composite materials will be in their concept.	Students will gain the concept of Compression moulding.	They will learn to determine the lamina stress – strain.	Students will be introduced with the theory of higher order shear deformation.	Students will be introduced to eigen value concepts.
S-9	SLO-2	They will be able to select typical composite materials as per requirement.	They will be able to use the concept of compression moulding for practical purposes.	i strain and stress of lamina	They will use the concept to solve the problem of higher order shear deformation of laminated plate.	Students will gain the knowledge about physical significance of eigen values in structural elements.
		They will be able to know about the properties of typical composite materials.	Students will learn the process of filament winding.	lattaate and various tunae at laminata	Basic concept of layer wise theory will be acquired by the students.	Students will be introduced to eigen value problems on beams made of conventional materials.
S-10	SLO-2	Students will be able to differentiate between the isometric and the composite materials.	Students will be able to select filament winding for manufacturing as per need.	They will be able to demonstrate coupling effects and differentiate various types of laminate configurations.	They will be able to conceive the layer-wise theory.	Students will be gain wider knowledge on eigen value problems in structural Engineering.
S-11		Students will learn about the different applications of the composites.	Students will be demonstrated with the practical requirements of the methodologies for laminate composite manufacturing.	Students will learn about laminate engineering constants.	They will be able to solve problems using layer wise theory.	Students will be introduced to eigen value problems of laminated beams.
	SLO-2	They will be able to select particular composite as per the requirement.	Students will be capable of using typical method as per resources and requirements.	lconstants to solve problems in	Students will be address practical problems using layer wise theory.	Students will be able to apply the concepts for solving eigen value problems of laminated beams.
S-12	SLO-1 SLO- 2	Tutorial – Composite materials	Tutorial – Moulding procedures	Tutorial – Coupling effects	Tutorial – Shear deformation cases	Tutorial – Laminated beams

Learning
Resources

- Mukhopadhyay.M, "Mechanics of Composite Materials and Structures", Universities Press.
- Jones. R.M, "Mechanics of Composite Materials", Taylor and Francis.
- Kaw, Autar. K, "Mechanics of Composite Materials Taylor and Francis.
 Gibson. R.F, "Principles of Composite Material Mechanics", CRC Press.

Learning	Learning Assessment										
	Division		Continu	ious Learning Ass	essment (60% wei	ghtage)		Final Examination (400/ weightage)			
	Bloom's Level of Thinking	CLA – 1 (20%)		CLA –	2 (25%)	CLA –	3 (15%)	Final Examination (40% weightage)			
	Level of Hilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	-	20%	-	20%	-	20%	-		

	Understand								
Level /	Apply	40%		40%	-	40%		40%	
	Analyze	40%	-	40%		4070	-	4076	-
Laval 2	Evaluate	400/		400/		400/		4007	
Level 3	Create	40%	-	40%	-	40%	-	40%	-
	Total	100) %	100	%	100	0 %	100 %	

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course	Course Designers								
Experts from Industry			from Higher Technical Institutions	Internal Experts					
1.	Mr. Vinayak Dave, Business development manager, Metecno India, Vinayak.dave@metecno.in	1.	Prof.A.Y.Vyavahar, Assistant Professor, VNIT, ayvapm@vnit.ac.in	1.	Dr. Alak Kumar Patra, SRMIST				
2.	Mr. A. Sivaraman, Design Manager, Utracon, sivaram@utracon.in	2.	Prof. Yogesh desai, Professor, IITB, desai@civil.iitb.ac.in	2.	Dr. K.S. Satyanarayanan, SRMIST				

Course	20CEE505T	Course	Concrete Technology and Special Concretes	Course	Е	Drefessional Elective	L	Τ	Р	С
Code	20CEE5051	Name	Concrete Technology and Special Concretes	Category		Professional Elective	4	0	0	4

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department	Civil Engineering		Data Book / Codes/Standards	IS 10262: 2019 and IS 456: 2000	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Know about concrete characteristics
CLR-2:	Know about chemical and mineral admixtures used in concrete. Also understand about concrete mix design
CLR-3:	Know about the properties of lightweight, high strength, high performance concrete and ferrocement
CLR-4:	Know about the self-compacting concrete and ready mixed concrete
CLR-5:	Know about other special concretes: Fibre reinforced concrete, polymer concrete and blended cement concrete
CLR-6:	Know about the other special concretes: SIFCON, bacterial concrete, geopolymer concrete, roller compacted, recycled aggregate and reactive powder concrete.

Course	At the end of this course, learners will be able to:	Programme Outo (PO)		
Outcomes (CO):		1	2	3
CO-1:	Understand the concrete characteristics	3	3	-
CO-2:	Evaluate the chemical and mineral admixtures used in concrete and concrete mix design without and with admixtures	3	3	-
CO-3:	Apply the properties of lightweight, high strength, high performance concrete and ferrocement	3	3	2
CO-4:	Apply the self-compacting concrete and ready mixed concrete	3	3	2
CO-5:	Apply the special concretes: Fibre reinforced concrete, polymer concrete and blended cement concrete	3	3	2
CO-6:	Understand the SIFCON, bacterial concrete, geopolymer concrete, roller compacted, recycled aggregate and reactive powder concrete.	3	3	2

Duratio	n (hour)	12	12	12	12	12
S-1		concrete – workability – workable concrete – affecting	DESIGN Overview –Chemical and		CONCRETE Definition – Material –Example of mixes.	OTHER SPECIAL CONCRETES Fibre reinforced concrete - definition - basic requirements - properties of FRC - factors affecting FRC.
	SLO-2	Segregation – types – favourable conditions – remedies. Bleeding – effects – test.	Super plasticizers – effects in – fresh and hardened concrete.	Classifications of lightweight concrete		Effects of fibre in concrete - Types of FRC - Application of FRC.
S-2	SLO-1	Hardened concrete. Density. Compressive strength –	Accelerators – accelerating plasticizer.	Methods for making concrete in lightweight	Workability requirement for fresh self-compacting concrete	Polymer impregnated concrete

Durati	on (hour)	12	12	12	12	12	
		affecting factors – test procedure.					
	SLO-2	Flexural strength – Central point load – two-point load tests. Splitting tensile test. Stress-strain curve for concrete.	Retarders – use – materials. Water proofers.	Lightweight aggregates used in concrete			
S-3	SLO-1	Stress - Strain curve for cement paste, aggregate and concrete.	Fly ash – characteristics – use – classification –effects in fresh concrete.	Natural aggregates as lightweight aggregate	Production and placing.	Dolumer coment concrete	
S-3	SLO-2	Modulus of elasticity of concrete - Different elastic moduli - Test procedure.	Fly ash –effects in hardened concrete.	Artificial aggregates as lightweight aggregate	Production and placing.	Polymer cement concrete	
S-4	SLO-1	Shrinkage of concrete - situation leads to shrinkage - Factors affecting shrinkage	Silica fume – characteristics – effects in fresh concrete.	Industry – domestic – wastes – used in concrete	Mix design	Polymer concrete	
	SLO-2	Causes for shrinking - Types of Shrinkage in Concrete	Silica fume – effects in hardened concrete.	Agricultural waste as aggregate in concrete	-		
S-5	SLO-1	Concrete creep - definition - Factors Affecting Creep.	GGBS - effects in fresh concrete	Use of Oil palm shell in concrete	Test methods	Partially impregnated surface coate	
3-3	SLO-2	Effects of Creep on Concrete.	GGBS - effects in hardened concrete – uses.	Coconut shell concrete - Application of lightweight concrete.	Slump flow test	polymer concrete Properties - Advantages - Applications.	
S-6	SLO-1	Variability of concrete strength - three component sources - distribution of results - normal distribution curve - mean and standard deviation.	Metakaolin – application.	Design of lightweight concrete mix.	T ₅₀ Slump flow test.	Blended cement concrete - Definition - Characteristics – Types.	
	SLO-2	Concrete quality control - Importance of quality control - Quality control application in concrete construction	Advantages – uses.	Mixing procedure for lightweight concrete production	J-ring test	Technical - Environmental - General advantages - uses.	
S-7	SLO-1	Process of manufacturing of concrete - various stages - Batching methods - Mixing methods	Definition – Principle of mix design – Factors choice of mix proportion – Properties of concrete related to mix design.	High Strength Concrete - Definition	V-funnel test	Slurry infiltrated fibrous reinforced concrete (SIFCON) - Composition - Process - Design principles.	

Duratio	n (hour)	12	12	12	12	12	
	SLO-2	Methods of transportation.	Physical properties of materials required for mix design.	Making of high strength concrete in general		Factors affecting the efficiency of SIFCON - Advantages - Disadvantages - Application.	
S-8	SLO-1			Materials used for high strength concrete– Properties	L-box test	Priofly about Postarial caparata	
J-0	SLO-2	Compacting - Curing - Finishing.	Objective of mix design – List of methods of mix design.	Advantages - Disadvantage – Applications of high strength concrete	U-box test	Briefly about Bacterial concrete	
	SLO-1	Special Concreting Methods	Basic steps — Information required for mix design.	High performance concrete – Definition.	Fill box test		
S-9	SLO-2	Cold and hot weather concreting. Indian standard method of mix design- step by step mix design procedure.		Properties - Classification – uses of high- performance concrete.	GTM screen stability test	Geopolymer concrete	
S-10	SLO-1	Effects of Cold Weather on Concrete - Different conditions aspect of cold weather concreting - Precautions to be taken.	Mix design example : Without admixture	mixing – placing – application –	Ready mixed concrete – definition - types	Roller compacted concrete	
	SLO-2	Hot Weather Concreting - Definition- Special problems - Precautions Taken		advantages – disadvantages.	Information to be supplied by the purchaser	Smart concrete	
S-11	SLO-1	Vacuum dewatered concrete		mple: With chemical High performance concrete - Definition -		Recycled aggregate concrete	
•	SLO-2	Rate of Extraction of Water.	admixture.	Properties - Classification - uses.	Advantages - Properties	- 1.00 j o.00 agg. ogato oonoroto	
S-12	SLO-1	Under water concreting – bottom bucket method	Mix design example: With mineral	Ferrocement - Differs from conventional concrete - Definition - Materials - Mixing	Ready mixed concrete versus site mixed concrete	Paactiva nawdar cancrata	
5-12	SLO-2	Tremie pipe method	admixture.	Casting Techniques - Applications and Advantages of ferrocement.	Limitations	Reactive powder concrete	

Learning
Resources

- Neville, A.M. Properties of Concrete, Fifth Edition, Pearson, 2011.
 Shetty, M.S. Concrete Technology, Theory and Practice, S. Chand & Company, New Delhi, 2013.
- 3. A.R. Santhakumar, Concrete Technology, 2009 Edition, Oxford University Press
- 4. Kumar Mehta Paulo,P and Monteiro, J.M. Concrete Microstructure, Properties and Materials, Fourth Edition, McGraw Hill Education, 2006, copy right ©2014.
- 5. NPTEL Course: Concrete Technology: https://nptel.ac.in/courses/105102012/
- 6. Gunasekaran K and Annadurai R. Coconut shell as an aggregate concrete in Concrete, LAMBERT Academic Publishing, Saarbrucken, Germany, 2017.

	Division		Contir	nuous Learning Ass	sessment (60% weig	jhtage)		Final Examination (40% weightage)							
	Bloom's	CLA –	1 (20%)	CLA – 2 (25%)		CLA – 3 (15%)									
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice						
11 4	Remember	20%	200/	200/	200/	200/	200/	200/		20%		20%		20%	
Level 1	Understand		-	2070	-	2070	-	20%	-						
Level 2	Apply	30%	2007	200/	200/	200/	2007		30%		30%		30%		
Level 2	Analyze		-	30%	-	30%	-	30%	-						
	Evaluate	500/	500/	500/	500/	500/	500/		F00/		500/		F00/		
Level 3	Create	50%	-	50% -		50%	-	50%	-						
Total		100 %		100 %		100 %		-	100 %						

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. G.Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. R. Santhakumar, Professor, Centre for Rulal Department, NITTTR, shanthakumar@nittrc.ac.in	1. Dr. K. Gunasekaran, SRMIST
2. Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai, desigan.agv@gmail.com	2. Dr. P. Jayabalan, NIT, Trichy, pjeya@nitt.edu	2. Dr. K.S. Satyanarayanan, SRMIST

Course	00000000	0 N	Maintanana and Dahahilitatian of Otomatoma	0	-	Doefees is not Floative	L	T	Р	С
Code	20CEE506T	Course Name	Maintenance and Rehabilitation of Structures	Course Category	E	Professional Elective	4	0	0	4

Pre-requisite Courses /	Nil Co	o-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department	Civil Engineering		Data Book / Codes/Standards	Nil	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Provide a comprehensive knowledge on the diagnosis, assessment and material application relating to maintenance and rehabilitation of structures.
CLR-2:	Assess the diagnosis and extent of distress
CLR-3:	Arrive at the repair techniques
CLR-4:	Choose the appropriate material and its application
CLR-5:	Study strengthening and demolition of structural components
CLR-6:	Know about maintenance of structures

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Apply material application relating to maintenance and rehabilitation of structures.	3	3	2	
CO-2:	Analyse the extent of distress	3	3	2	
CO-3:	Understanding the repair techniques and fi methods	3	3	2	
CO-4:	Evaluate the appropriate material and its application	3	3	2	
CO-5:	Create, strengthen and demolish structural components	3	3	2	
CO-6:	Evaluate maintenance of structures	3	3	2	

Duration	n (Hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-1	1510-1	Performance of construction materials	Maintenance and Diagnosis of Failure	Damages and their remedies	Materials and techniques of repair	Strengthening and demolition aspect
	SLO-2	components in actual structure	Failure analysis	Corrosion damage	Repairing conditions	General criteria
S-2	SLU-1	components in actual structure for strength	Definitions: Maintenance	Corrosion damage of reinforced concrete	Special concrete and mortar	Strengthening of existing structures
3-2	SLO-2	components in actual structure for permeability	Definitions: Repair and Rehabilitation	methods of corrosion protection	Importance of materials	General principle of strengthening
S-3	SI ()-1	components in actual structure for durability	Facets of Maintenance	Corrosion inhibitors	Importance of durability in concrete	Strengthening super structures
3-3		components in actual structure for thermal properties	importance of Maintenance	corrosion resistant steels	Importance of water-cement ratio in concrete	Plating methods
S-4	SLO-1	Types of maintenance	Assessment procedure for evaluating a damaged structure	cathodic protection	concrete chemicals	Conversation tocomposite construction
	SLO-2	General Maintenance	causes of deterioration	rust eliminators	expansive cement	Post stressing

Duration	n (Hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-5		cracking effects	Quality assurance for concrete	Coatings to reinforcement	Polymerconcrete	Jacketing of existing structures
3-3		cracking effects due to climate	Concrete testing	Case study on rust elimination	Polymerconcrete: characterization	Reinforcement addition
S-6	SLU-1	cracking effects due to temperature	Various aspects of inspection	Causes ofdeterioration of concrete	sulphur infiltrated concrete	Strengthening substructures
5-6	SLO-2	cracking effects due to chemicals	Assessment procedure for evaluating a damaged structure	Causes ofdeterioration of steel	sulphur infiltrated concrete: characterization	Enhancing the load capacity of footing
S-7	1 1 1 1 1	cracking effects due to wear and tear	Causes of deterioration	Causes ofdeterioration of masonry	Ferro cement	Engineered demolition methods: Mechanical methods
3-1	SLO-2	cracking effects due to erosion	distress diagnostictechniques	Causes ofdeterioration of timber	Ferro cement: Material characterization	Wrecking Ball Method
	SLO-1	Design and construction errors	Structural appraisal	surface deterioration	Fiber reinforced concrete	Pusher Arm technique
S-8	SLO-2	Major mistakes in construction	Economic appraisal	Case study on deterioration	Fiber reinforced concrete: Material characterization	Thermic Lance Technique
. .	SLO-1	Effects of cover thickness	Diagnosis of construction failures	Efflorescence introduction and impacts	Methods of repair in concrete structures	Non – Explosive Demolition
S-9	- SI U-2	Factors determining cover thickness	Reasons for failure	Causes of Efflorescence	Methods of repair in steel structures	Concrete Sawing Method
0.40	SLO-1	Sustained elevated temperature	Failure analysis	preventive measures	Methods of repair in masonry structures	Deliberate Collapse Method
S-10	1510-71	IS code on elevated temperatures	Case studies on failures of structures	Case study on efflorescence	Methods of repair in timber structures	Pressure Jetting
S-11	SLO-1	Causes of distress in structures	Structure failure due to extreme loads	Damage remedial measures from corrosion	Gunite andshotcrete	Implosion techniques
3- 11	SLO-2	Construction and design failures	Structure failure due to elevated temperature	Damage remedial measures from deterioration	Advantages of Gunite andshotcrete	Non Engineering Demolition - Manual Demolition
	- SI ()- I I	Condition assessment and distress-diagnostic techniques	Failure assessment	Concrete and steel maintenance assessment	Epoxy injection	Safety measures during demolition operation
S-12	SLO-2	Inspection and evaluating damaged structure	Failure forensics	Masonry and timber maintenance assessment	Materials for epoxy injection and bonding	Dismantling of buildings and reuse of materials/fittings fromenvironmental and financial point of view

Learning
Resources

- 1. Shetty .M.S, "Concrete, Technology", Theory and Practice, S.Chand and Company, New Delhi 2010.
- 2. Raiker .R.N, "Learning from Failures, Deficiencies in Design, Construction and Service", R&D Centre (SDCPL), Raikar Bhavan, Bombay 1987.
- 5. Allen R.T and Edwards S.C, "Repair of Concrete Structures", Blakie and Sons, UK, 1987
- 6. Dayaratnam.P and Rao.R, "Maintenance and Durability of Concrete Structures", University Press, India, 1997.

- 3. "Repair & Rehabilitation" "Compilation from The Indian Concrete Journal", ACC- RCD Publication 2001.
- 4. "Health Monitoring of Structures" A Proactive strategy proceedings of theISTE sponsored short course, organized by the Department of Civil Engineering,S.R.M. Engineering College, S.R.M. Nagar, January 2003.
- 7. Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance and Repair", Longman Scientific and Technical, UK, 1991.
- 8. Dodge Woodson.R,"Concrete Structures protection, repair and rehabilitation", Elsevier
 Butterworth Heinmann, UK, 2009

Learning	Assessment									
	Bloom's		Cont	inuous Learning	Assessment (60°	% weightage)		Final Examination (40% weightage)		
	Level of Thinking	CLA – 1	1 (20%)	CLA – 2 (20%)		CLA – 3 (10%)		Final Examination (40% weightage)		
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	_	20%	_	20%	_	20%	_	
LCVCII	Understand	2070		2070		2070		2070		
Level 2	Apply	30 %	30 %	30 %	_	30 %	_	30 %	_	
LCVCI Z	Analyze	30 70		30 70	-	30 %		30 70		
Level 3	Evaluate	50%		50%		50%		50%		
Level 3	Create	30 /0	ı	50 /0	-	50 /0	-	30 %	-	
Total		100 %		100 %		100 %		100 %		

[#] CLA - 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
 Mr. Lavina D'souza, Head, RMC, Ultratech, lavina.dsouza@adityabirla.com 	 Dr. J. Karthikeyan, Associate Professor, NITT, jk@nitt.edu 	1. Dr. K.S. Satyanarayanan, SRMIST								
Mr. R. Eswaran, Chief Engineering Manager, L&T, eswaran@Intecc.com	2. Dr.Manu Santhanam, Professor, IITM, manus@iitm.ac.in	2. Dr. S. Senthilselvan, SRMIST								

Course	200555077	0 N	D	0		Duefe estand Florition	L	T	Р	С
Code	20CEE507T	Course Name	Prestressed Concrete Structures	Course Category	E	Professional Elective	3	1	0	4

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses Nil
Course Offering Department	Civil engineerin	g	Data Book / Codes/Standa	rds IS 1343-2012, IS 3370 Part IV

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Know the utilize and concepts of prestress concrete
CLR-2:	Understand about the tension member
CLR-3:	Carry out the complete design of compression members and piles
	Study analysis and design of composite beam member a
CLR-5:	Understand to analyze folded plates and shell
CLR-6:	Study analysis and design of indeterminate structures

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
Outcomes (CO):		1	2	3		
CO-1:	Analyze behavior of PSC member flexure and deflection	3	3	-		
CO-2:	Analyze behavior of PSC member shear and tension	3	3	-		
CO-3:	Understand the effect of compression member	3	3	2		
CO-4:	Evaluate the concepts in performing design of composite design	3	3	2		
CO-5:	Evaluate design of folded plates and shell	3	3	2		
CO-6:	Evaluate moments on continuous beam and identify the concordant cable and partial prestressing	3	3	2		

Duratio	on (Hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
SLO-1		Analysis of rrestress Introduction to basic concepts of prestressed concrete			Composite construction Introduction of composite action, advantages	Continuous beams: psc continuous member , advantages
	SLO-2	Type of psc system	torsionDesign for shear	without flexure	and types of composite construction	Analysis of continuous member using theorem of three moments
S-2	SI U-1	Pre tensioned and post tensioned system			Construction methods – propped and unpropped construction.	Design problem:1 two span
3-2	SLO-2	Analysis of psc	Design problem:2 design of shear reinforcement		Analysis of stresses in propped and unpropped construction	continuous member
	SLO-1	Concentric and eccentric tendons				
S-3	SLO-2	Stresses at transfer and service loads, analysis of stress for rectangular section	Design problem: design of torsion member	Design:2 design a member without flexure	Design:1 design of propped section	Design problem:2 two span continuous member
S-4	SLO-1					

Tutorial: analysis of stress for rectangular section Design problem: analysis of			Tutorial: design:2 design of	Tutorial : design and concept of	
		II .	unpropped section	linear transformation	
atropa for aummetrical i castian	problem: analysis of Design procedure, behaviours	section	Design a composite section with differential in shrinkage	Concordant tendon profile	
Istress for symmetrical i- section	for symmetrical i- section		Design :1 design of cast in situ slab with shrinkage	Concordant tendon pronie	
Deflection Deflection of PSC member(is)	Pr(is) Design problem:1 combination of	Design:3 design a unbonded section		Design: analysis of concordant	
Short term deflection: uncracked member		Example: retanagular and t-section	design	cable for continuous beam	
Design problem 1:	problem 1: Water tanks: design of	Piles, PSC piles, advantages, types,	Design of composite section	Cap cables Introduction of moment re	
0 7	prestressed concrete water tanks	application of PSC piles		distribution	
Tutorial: long term deflection: cracked member	- · ·		Tutorial: design:1analysis of eccentricity and prestressing force	Tutorial : design of moment re distribution	
Design problem 1: deflection due to creep, shrinkage		Pile reinforcement detail		Design : beam member 1	
Design problem 2: deflection due	problem 2: deflection due		action		
to creep, shrinkage and temperature	p, shrinkage and water tank type 2	Design:1 design of pile	Design: folded plate design	Design : beam member 2	
Design of end blocks, stress	of end blocks, stress	Design:2 design of pile	Shell: introduction, advantages	Partial prestressing Introduction of	
distribution in end block	PINAS NASION OF PAL DINAS			partial prestressing	
Tutorial: Anchorage zone stress-		Tutorial: Design of crack width	Tutorial: Circular cylindrical shell	Tutorial: Design of partial PSC member	
De dis	esign stribu itoria	esign of end blocks, stress stribution in end block Pipes: design of PSC pipes utorial: Anchorage zone stress- Tutorial: Design of cylinder and	esign of end blocks, stress stribution in end block Pipes: design of PSC pipes Crack and crack width of PSC pipes torial: Anchorage zone stress- Tutorial: Design of cylinder and Tutorial: Design of crack width	Pipes: design of PSC pipes Design:2 design of pile Shell: introduction, advantages, types of shells	

Lagraina	1. 2.	Krishna Raju.N "Prestressed Concrete", 6th Edition, Tata McGraw Hill Publishing Co. chennai 2018 Sinha .N.C & S.K. Roy, "Fundamentals of Prestressed Concrete S.Chand & Co., 1985	6.	Leonhardt.F. "Prestressed Concrete Design and Construction" Edition Wilhelm Ernst & Sohn, Berlin, 1964
Learning Resources	3.	Lin .T.Y. "Design of Prestressed Concrete Structures", John Wiley and Sons - Inc –2010.	1.	Guyon .V. "Limit State Design of Prestressed Concrete", Applied Science Publishers, London 1995
	4.	Rajagopalan.N. "Prestressed Concrete", 2th Edition, Alpha Science International, Limited, 2005	8. 9.	Dayaratnam.P., "Prestressed Concrete", Tata McGraw Hill Publishing . https://nptel.ac.in/courses/105106117/
	5.	IS: 1343-2012 "IS Code of Practice for Prestressed Concrete", BIS, New Delhi, 2012.		

Learning Ass	Learning Assessment Continuous Learning Assessment (60% weightage) Final Examination (40%											
	Bloom's Level		Final Exam	nation (40%								
	of Thinking	CLA –	1 (20%)	CLA – 2	2 (25%)	CLA – 3	3# (15%)	weigl	ntage)			
	of Hilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	20 %		20 %	_	20 %		20 %				
Level I	Understand	20 %	-	20 %	-	20 70	-	20 %	-			
Level 2	Apply	40 %		40 %		40 %		40 %				
Level Z	Analyze	40 /0	-	40 /0	-	40 /0	-	40 /0	-			
Level 3	Evaluate	40 %		40 %		40 %		40 %				
Level 3	Create	40 %	-	40 %	-	40 %	-	40 %	_			
	Total	100	0 %	100 %		100 %		100 %				

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, and Conf. Paper etc.

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
 Mr. A. Sivaraman, Design Manager, Utracon, sivaram@utracon.com 	 Dr. Amlan Kumar Sengupta, Professor, IITM, amlan@iitm.ac.in 	Dr. K.S. Satyanarayanan,SRMIST
Mr. V.N.Ramakkrishnan, Head, Business development, CCCL, bd@ccclindia.in	Mr. R. Jayasankar, Associate Professor, NITT, rj@nitt.edu	2. Ms C. Sudha, SRMIST

Course	200556045	Course	Design of Steel Company Community Structures	Course	г	Drafagaignal Floating	L	T	Р	C
Code	20CEE601T	Name	Design of Steel-Concrete Composite Structures	Category	_	Professional Elective	3	1	0	4

Pre-requisite Courses	20CEC502T/20CEC504J	Co-requisite Courses	Nil	Progressive Courses Nil
Course Offering Department	CIVIL ENGINEERING		Data Book / Codes/Standards	IS 456 :2000, IS 800: 2007, IS 11384, Steel Tables

Course Learning Rationale (CLR):	The purpose of learning this course is to:	Learning	Program Learning Outcomes (PLO)

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Know the concept of steel-concrete composite member design and to get introduced to the relevant IS codes
CLR-2:	Create insights to the concepts of Limit state method of design
CLR-3:	Utilize the concepts in performing design of steel-concrete composite beams, slabs and columns
CLR-4:	Utilize the concepts in performing design of steel-concrete composite connections
CLR-5:	Understand the behavior of composite girder bridges
CLR-6:	Create insights to the seismic behaviour of composite structures

Course Outcomes (CO):	At the end of this course, learners will be able to:			Programme Outcomes (PO)				
Outcomes (CO):		1	2	3				
CO-1:	Understand the effect of external loads on steel-concrete composite members and the factors influencing their behaviour and to get familiarity with the relevant IS codes	3	3	2				
CO-2:	Analyze the behavior of steel-concrete composite sections under flexure, shear and compression	3	3	2				
CO-3:	Evaluate Limit state method of design to steel-concrete composite beams, slabs and columns	3	3	2				
CO-4:	Evaluate Limit state method of design to steel-concrete composite connections	3	3	2				
CO-5:	Analyze the behavior of steel-concrete composite girder bridges	3	2	-				
CO-6:	Analyze the seismic behaviour of composite structures	3	2	-				

Duration (hour)		tion (hour) Module 1 (12) Module 2 (12)		Module 3 (12)	Module 4 (12)	Module 5 (12)		
6.1	SLO-1	Introduction Introduction to Steel - Concrete Composite Construction-Advantages- Limitations	Design Of Steel-Concrete Composite Members Design of Composite beams and slabs	Design Of Steel-Concrete Composite Connections Introduction	Design Of Steel-Concrete Composite Girder Bridges Introduction	Seismic Behaviour Of Steel-Concrete Composite Structures Introduction		
S-1	SLO-2	Materials to be used- Structural advantages- Factors deciding selection of materials	Design Procedure	Types of Connections	Types-Comparison with conventional bridge types	Basic concepts		

Durat	ion (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-2	SLO-1	Introduction to steel - concrete composite codes/standards	Relevant BIS code provisions	Types of Connections	Materials to be used	General design criteria
3-2	SLO-2	Limitations of using BIS codes-Introduction to Eurocode 4	Choice of cross-sections	Choice of Connections in Composite structures	Types of cross-sections	General design criteria
C 2	SLO-1	Theory of composite structures	Design of Composite Trusses	Behaviour of Connections in Composite structures	Basic Design concepts	Relevant BIS Code provisions
S-3	SLO-2	Behaviour of composite beams and slabs	Design Procedure	Basic concepts	Basic Design concepts	Seismic behavior of composite beams
0.4	SLO-1	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial
S-4	SLO-2	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial
S-5	SLO-1	Behavior of composite beams and slabs	Relevant BIS code provisions	Relevant BIS Code provisions	Configurations	Seismic behavior of composite beams
3-3	SLO-2	Behavior of composite columns	Choice of cross-sections	Design procedure	Examples	Seismic behavior of composite slabs
	SLO-1	Behavior of composite columns	Design of Composite Columns	Design Example 1	Behavior of girder bridges	Seismicbehavior of composite slabs
S-6	SLO-2	Limit state method of design of steel-concrete composite sections under flexure-code provisions	Design Procedure	Design Example 1	Behavior of girder bridges	Seismic behavior of composite columns
	SLO-1	Limit state method of design of steel-concrete composite sections under shear- code provisions	Relevant BIS code provisions	Design Example 2	Basic design considerations	Seismic behavior of composite columns
S-7	SLO-2	Limit state method of design of steel-concrete composite sections under compression- code provisions	Choice of cross-sections	Design Example 2	Basic design considerations	Seismic behavior of composite connections
0.0	SLO-1	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial
S-8	SLO-2	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial
0.0	SLO-1	Example 1	Design Example 1	Design of Shear Connections	Failure types	Seismic behavior of composite trusses
S-9	SLO-2	Example 1	Design Example 1	Basic concepts	Failure types	Seismic behavior of composite trusses
S-10	SLO-1	Example 2	Design Example 2	Relevant BIS Code provisions	Relevant code provisions	Design methods

Dura	Duration (hour) Module 1 (12) Module 2 (12) Modu		Module 3 (12)	Module 4 (12)	Module 5 (12)	
	SLO-2	Example 2	Design Example 2	Design procedure	Mandatory checks	Case Studies
S-11	SLO-1	Example 3	Design Example 3	Design Example 1	Case Studies	Strengthening measures
3-11	SLO-2	Example 3	Design Example 3	Design Example 2	Case Studies	Introduction to Sandwich Construction
S-12	SLO-1	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial
3-12	SLO-2	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial

Learning
Resources

- 1."Teaching Resource Material for Structural Steel Design", Volume 2/3 jointly prepared by 1. I.I.T., MS 2. Anna University SERC, MS 4. "Institute for Steel Development and growth", Calcutta.
- 2. Owens .G.W, &Knowels.P. "Steel Designs Manual", (sixth Edition) Steel Concrete Institute (UK) Oxford Black; well Scientific Publications, 2003.
- 3. Johnson.R.P, "Composite Structures of Steel and Concrete". Vol-I, # Oxford Black; well Scientific Publications (Third Edition) U.K. 2004.
- 4. Subramanian.N, Design of Reinforced Concrete Structures, Oxford University Press New Delhi, 2013

Learning As	sessment																	
	Bloom's		Contir	nuous Learning Ass	sessment (60% wei	ghtage)		Final Examination (40% weightage)										
	Level of Thinking	CLA –	1 (20%)	CLA –	2 (25%)	CLA –	3 (15%)											
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice									
Level 1	Remember	20%	_	20%	_	20%	_	20%	_									
Level I	Understand	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070	2078 -	- 2070		2070		2070	-
Level 2	Apply	40%	100/	100/	100/	400/	100/	100/	10%	_	40%	_	40%	_	40%	_		
LEVEI Z	Analyze			4070	-	40 /0	-	4070	-									
Level 3	Evaluate	40%	-	40%		40%	-	40%										
	Create	40 /0		40 /0	-	4070		4070	-									
	Total	10	% 0	10	0 %	10	0 %		100 %									

CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr.G.V.Ramarao, Sr. Scientist, CSIR-SERC, ramarao@serc.res.in	1. Prof.S.ArulJayachandran, IITM, Chennai, aruls@iitm.ac.in	1. Prof.G.AugustineManirajPandian, SRMIST
2. Mr. S. Parthiban, Engineering Manager, spb@Intecc.om	2. Prof. S. R.Satish Kumar, IITM, Chennai, kim@iitm.ac.in	2. Prof. N.Umamaheswari, SRMIST

Cauraa Cada	200556025	Cauras Nama	Offich and Standards	Course	F	Duefessional Floative	L	T	P)	С
Course Code	20CEE602T	Course Name	Offshore Structures	Category	E	Professional Elective	4	0	0)	4

Pre-requisite Courses	Nil Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department	CIVIL ENGINEERING	Data Book / Codes/Standards	API RP 2A	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Develop intermediate level knowledge about offshore structures and design principles
CLR-2:	Address concepts related to wave generation process
CLR-3:	Create insights to different types of offshore structures foundation and structural modelling
CLR-4:	Address concepts related to foundation analysis and dynamics of offshore structures
CLR-5:	Address concepts of offshore elements, piping and failure issues
CLR-6:	Acquaint the students with case studies on failure issues

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Understanding the development of the knowledge of wave generalized process and wave theories	3	3	-	
CO-2:	Understanding the forces acting on offshore structure	3	3	-	
CO-3:	Creating an idea about foundation and structural modeling	3	3	2	
CO-4:	Familiarize with the evaluation of foundation analysis and dynamics of offshore structures	3	3	2	
CO-5:	Design of evaluation offshore structures with failure probability	3	3	2	
CO-6:	Assess the knowledge of basic environmental legislations	3	3	2	

Duratio	n (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
	SLO-1	Review of basic fluid mechanics	Itungs of ocean waves and their	Classification of marine soils and relative distribution	Fundamentals of Newtonian Mechanics: Newton's laws, impulse and momentum	Types of offshore structures and conceptual development
S-1	SLO-2	FILING KINEMATICS		Characteristics of marine deposits in the Indian sub-continent	Fundamentals of Newtonian Mechanics: angular momentum, work and energy, systems of particles.	Analytical models for jacket structures
S-2	SLO-1	Introduction to wave mechanics	Geomorphology and structures of ocean floor	Engineering behavior of marine soils	Fundamentals of Analytical Mechanics: Degrees of freedom, generalised coordinates	Materials and their behaviour under static loads
	SLO-2	IVV2VA AANATSTIAN NV WINA	Marine sediments and formation, types, distribution	Strength and deformation behavior under static and cyclic loading	Stationary value of a definite integral, principle of virtual work	Materials and their behaviour under dynamicloads

Duratio	n (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)	
	SLO-1	Small amplitude wave theory: formulation and solution	Wave forces	Offshore soil investigation	Truss Element: Mathematical model	Various design methods and Code Provisions	
S-3		Small amplitude wave theory: wave celerity, length and period, classification based on relative depth	Morison Equation	General characteristics of offshore soil exploration	Truss Element: Discrete model	Statutoryregulations	
S-4		Small amplitude wave theory: orbital motions and pressure	Wave force on a Circular cylinder	In-situ determination of strength of submarine soils	Structural matrix analysis for truss structures in 2D	Operational loads	
3-4	SLO-2	Standing waves, wave trains and energy	Wave force on a Vertical Cylinder	Penetrometer, piezocone, vane and pressure meter techniques	Basic concepts of the Finite Element Method	Environmental loads due to wind, wave, current and buoyancy	
0.5	SLO-1	Wave reflection, refraction and diffraction	Wave force on an inclined and oscillating cylinder	General reconnaissance procedure for installation of fixed structures (gravity and piled type)	Beam Element: Mathematical model	Principles of Static and dynamic analyses of fixed platforms	
S-5	SLO-2	Breaking of waves Application of wave forces		General reconnaissance procedure for installation offloating structures, sea bed anchors and submarine pipelines.	Beam Element: Discrete model	Use ofapproximate methods	
S-6	SLO-1	Finite amplitude waves and theory	Wave forces on submarine pipelines	Foundations for Gravity Structures: Types of gravity structures	Equilibrium and energy method for buckling and post-buckling analysis of single degree-of-freedom rigid systems	Design issues and rectifications	
	SLO-2	Higher order wave theories	Pipelines in proximity to seabed	Foundations for Gravity Structures:Installation techniques, Movement of gravity structures	Applications and problems on SDOF	Design of structural elements, mooring cables and pipelines	
S-7	SLO-1	Stokes wave theory	Pipelines near the shore	Stressdistribution beneath gravity structures	Equilibrium and energy method for buckling and post-buckling analysis of Multi degree-of-freedom rigid systems	Design of platforms	
	SLO-2	Cnoidal wave theory, Solitary wave theory	Pipelines within the zone of wave influence	Stability of gravity structures under static andcyclic loads	Applications and problems on MDOF	Problems on platform design	
S-8	SLO-1	Wave interaction with currents	Froude krylov theory	Foundations for jack up platforms: Types of jack up platforms	Equilibrium approach for buckling of continuous systems	Design of helipad	
J-0	SLO-2	Wave pressure and interaction with land	Problems on Froude krylov theory	Piles and mat supported	Equilibrium approach for buckling of continuous Beam systems	Problems on helipad design	
S-9	SLO-1	Wave slamming	Diffraction theory	Axial and lateral load capacity of piles	Equilibrium approach for buckling of continuous Frame systems	Introduction to tubular joints and possible modes of failure	
G-0	SLO-2	Wave slapping	Close form solutions of cylinder	Lateral load deformationbehaviour of piles	Problems on frame buckling systems	Eccentric connections and offset connections	

Duratio	n (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-10		Sea general structure and geological feature	Close form solutions of large fixed vertical cylinder	Design considerations of pile foundations	Equilibrium approach for buckling of continuous Truss systems	
3-10	SLO-2	Sea as a stationary random process	Wave forces on sea walls	Calculation of bearing capacity of piles with API RP 2A guidelines	Problems on truss buckling systems	Fatigue behaviour
	SLO-1	Wave Spectral Density	Wave forces on breakwaters		,	Corrosion - Corrosion mechanism - Types of corrosion
S-11	SLO-2	Mathematical spectrum models	Applications of wave force regimes	Response of offshore structures	The geometric stiffness matrix	Offshore structure corrosion zones – Biological corrosion - Preventive measures of Corrosion
6 13	SLO-1	Short term wave statistics	Different types of loads acting on offshore structures	Single and Multiple Degrees of Freedom	Offshore analytical problems	Principles of cathodeprotection systems
S-12	SLO-2	Applications of wave spectrum	Load visualization	Dynamic characteristics and amplification factor	I ITTENOTA ANAINEIE AND TACNNIGIIAE	Sacrificial anode method and impressed current method

Company Malahar Florida 1991	Learning Resources	 Ocean Structures and Materials: Video Course – NPTEL Dean, R.G., and Darlymple, R.A., Water Wave Mechanics for Engineers and Scientists, Prentice Hall, Inc. 1993. Chakrabarti, S.K., Hydrodynamics of Offshore Structures, Springer Verlag, 1987. Reddy. DV, and Arockiasamy M, "Offshore Structures", Vol.1, Krieger Publication Company, Malabar, Florida, 1991. 	 Dawson, T. H., Offshore Structural Engineering, Prentice Hall, 1983. API RP 2A., Planning, Designing and Constructing Fixed Offshore Platforms, API. Graff, W. J., Introduction to Offshore Structures, Gulf Publ. Co.1981. Wilson, J. F., Dynamics of Offshore Structures, John Wiley, 2002.
------------------------------	-----------------------	--	--

Learning As	Continuous Learning Assessment (60% weightage)									
	Bloom's	CLA –	1 (20%)		2 (25%)		3 (15%)	Final Examination (40% we	ightage)	
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	20%	-	20%	-	20%	-	20%	-	
Level 2	Apply Analyze	30%	-	30%	-	30%	-	30%	-	
Level 3	Evaluate Create	50%	-	50%	-	50%	-	50%	-	
	Total	100	0 %	10	0 %	10	0 %	100 %		

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers

Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Vijayanandan, Head, Technical, Taamaesek Engineering	 Dr. S. Nallayarasu, Professor, DOE, IITM - 	1. Dr. S. Senthilselvan, SRMIST
Consortium, vijayanandan@taamaesek.com	nallay@iitm.ac.in	1. Dr. S. Sentriiservan, Skiviis i
2. Mr. G. Jayaramalingam, Head, Civil & Structural, Reliance	2. Dr.Santosh G Thampi , Professor (HAG), NIT Calicut -	2 Mr. A. Vijov, SDMIST
Retail Limited, jaya.ramalingam@ril.com	santosh@nitc.ac.in	2. Mr. A. Vijay, SRMIST

0 0 1	000550005	0 1	For the state of the second state of the secon	Course	_	De Control El C	L	Т	Р	С
Course Code	20CEE603T	Course Name	Experimental Techniques and Instrumentation	Category	E	Professional Elective	3	1	0	4

Pre-requisite Course	es N	lil	Co-requisite Courses	Nil	Progressive Courses Nil
Course Offering Department	artment		Civil Engineering	Data Book / Codes/Standard	s Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Give students an understanding about the experimental techniques and instrumentation in engineering fields
CLR-2:	Understand force and strain measuring instruments
CLR-3:	Introduce various devices that are used for vibrating systems
CLR-4:	Familiarize with sound and wind flow measurement
CLR-5:	Apply the concept of nondestructive testing
CLR-6:	Understand modern experimental techniques

Course	At the end of this course, learners will be able to:	Progr	amme Out (PO)	comes
Outcomes (CO):		1	2	3
CO-1:	To familiarize with force and strain measurement devices	3	3	-
CO-2:	Understand the concept of instruments used for vibration measurement and stress	3	3	-
CO-3:	Understand model analysis, data acquisition systems and wind tunnel studies	3	3	2
CO-4:	Able to evaluate distress in a structure and NDT methods	3	3	2
CO-5:	Able apply nondestructive testing according to requirement	3	3	2
CO-6:	Able to apply use of modern experimental techniques	3	3	2

Durat	ion (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)	
	SLO-1	FORCE AND STRAIN	STRESS AND VIBRATION	RECORDING ACOUSTICS AND			
S-1	SLO-2	MEASUREMENTS	If the control of the		DISTRESS MEASUREMENTDistress – types - causes	SPECIAL MEASUREMENT TECHNIQUESMoire fringes – principle purpose- example	
S-2	SLO-1	Jacks - types	Plane and circular polariscopes	X-Y plotter-Chart plotterSound level	Defects – concrete –steel Cracks	Holography -HologramsRecording	
3-2	SLO-2	Load cells types	isoclinics and isochromatics	meter	classification	set up Single and double exposure	
S-3	SLO-1 SLO-2	Proving ringsCalibration of instruments Resultanalysis.	Stress optic law result analysis	Data acquisition system principle and applications	Crack measurement—crack meter- monitor	Use of laser for structural testing	
S-4	SLO-1 SLO-2	Tutorial on Load cells types	Tutorial on stress optics	Tutorial on CRO	.Tutorial on crack measurement	Tutorialon structural	
S-5	SLO-1					Prototype testing - necessity	

Durati	ion (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
	SLO-2	Strain gauges- characteristics Introduction to types of strain gaugesSelection criteria- applications	Vibration-effects-types characteristics of structural vibration -Vibration meter,analyser and exciter	Wind tunnel principle need – working of wind tunnel	Cracking due to corrosion- mechanism of cracking	Structural element testing
S-6	SLO-1 SLO-2	Electrical strain gaugesResistance gauges	Seismic waves-seismograph	Applications and uses of wind tunnel	Half-cell – principle – equipment – test procedure	Transmission tower testing Station arrangement-technical specification Assembling
S-7	SLO-1 SLO-2	Gauge factor-strain gauge tructure	Linear variable differential transducer (LVDT) principle-construction-operation	Model-Prototype Objective of model studies	NDT Rebound hammer –principle test procedure -application -	Damage assessment procedure – Flow chart
S-8	SLO-1 SLO-2	Tutorial on strain gauge	Tutorial on LVDT	Tutorial on model studies	Tutorial on NDT	Tutorial on damage assessment
S-9		Strain gauge circuitsWheatstone bridge circuit Potentiometer circuit	LVDT advantages-disadvantages and applications .		Ultrasonic pulse velocity (UPV) test principle equipment- application	Demolition reason steps before demolition
S-10	SLO-1 SLO-2	Strain gauge configuration Advantages of electrical resistance strain gauges	Transducers-classification Velocity transducer-types		Brittle coating - Coating stress - crack detection	Principle of dismantling –methods – demolition techniques
S-11	SLO-1 SLO-2	Strain gauge data analysis	Accelorometer-transducer- principlePressure transducer		Advantages and disadvantages of brittle coating	Controlled blasting for demolition advantages and disadvantages
S-12	SLO-1 SLO-2	Tutorial on strain gauge	Tutorial Pressure on accelerometer	Tutorial on similitude	Tutorial on coating stress	Tutorial on demolition techniques

	Model analysis of structures –Dr.T.P.Ganesan- University press	
Learning	2. Experimental stress analysis –Sadhu singh- Khanna publishers	
Resources	3. Non-Destructive evaluation –Bray and Stanely-McGraw Hill Publishing	
	company	

- Experimental stress analysis –Lecture Notes-Dr.M.Lakshmipathy ,A.U.1985
 5.Experimental stress analysis L.S. Srinath et al-Tata McGraw Hill company

Learning Ass	Learning Assessment									
		Continuous Learning Assessment (60% weightage)					Final Francischier (400/ mainhtens)			
	Bloom's Level of Thinking	CLA 1	CLA 1 (20%)		CLA – 2 (25%)		3 (15%)	Final Examination (40% weightage)		
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20 %		20%		20%		20%		
	Understand	20 %	-	20%	-	20%	-	20%	_	

Level 2	Apply	40%		40%		40%		40%	
Level 2	Analyze	40%	-	40%	-		-		-
Laval 2	Evaluate	40.0/		400/					
Level 3	Create	40 %	-	40%	-	40 %	-	40 %	-
	Total	100 %		100 %		100 %		100 %	

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
Mr. D. Manoj Kumar, Managing Partner, Mukesh Associates, manojkumar@mukeshassociates.com, salemmanoj@gmail.com	Dr. Rupen Goswami, Associate Professor, IITM, rg@iitm.ac.in	1. Dr. K. Gunasekaran, SRMIST						
Dr. G.V. Ramarao, Sr. Scientist, CSIR-SERC, ramarao@serc.res.in	2. Dr. S. R. Satishkumar, Professor, IITM, kim@iitm.ac.in	2. Mr. G. Vimalanandan, SRMIST						

Course	200555047	Course	Decima of Deinferred Community Foundations	0	_	Duefe edienal Flechies	L	Т	Р	С	
Code	20CEE604T	Name	Design of Reinforced Concrete Foundations	Course Category	E	Professional Elective	3	1	0	4	

Pre-requisite Courses	Nil Co-requisite Courses	Nil	Progressive Courses Nil
Course Offering Department	CIVIL ENGINEERING	Data Book / Codes/Standards	IS 456-2000,SP-16 Charts, IS 2950 Part – I, Transmission Line Tower Charts

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Know the structural aspects of footings and raft foundations
CLR-2:	Familiarize in the design of strap footings
CLR-3:	Improving the knowledge on design of pile and well foundations and understand the methodologies to solve different type of pile caps
	Analyse the behavior of annular footings
CLR-5:	Familiarize in understanding the fundamentals of machine foundations and design the various types of machine foundations
CLR-6:	Improve the knowledge in the design of foundation for towers.

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Solve the foundation for structures based on the different soil conditions and evaluation	3	3	-	
CO-2:	Evaluate and interpret the advantages of using four pile cap over three pile cap	3	3	-	
CO-3:	Evaluate the design of under reamed pile foundation	3	3	2	
CO-4:	Understanding the computational analysis of beams on flexible foundations	3	3	2	
CO-5:	Analyze and design the foundation for machines	3	3	2	
CO-6:	Apply Limit state method of design to tower foundations	3	3	2	

Dura	ition (Hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-1	SLO-1	Review of limit state design of reinforced concrete	Introduction to pile foundation	Principles of Structural Design of flat slab rafts	Introduction to well foundations	Introduction to machine foundations
	SLO-2		Introduction to different types of pile foundation	Determination of thickness of raft slab	Applications of well foundation	Classification of machine foundation
0.0	SLO-1	Principles of Structural design of isolated footings		Principles Structural Design of flat slab rafts		Design of Rotary type of machine foundation
S-2	SLO-2		Design of compound wall using underreamed pile foundation		Physical characteristics – shape and size of well foundation	Design for amplitude
S-3	SLO-1	Principles of Structural design of isolated footings – square with pedestal	Design of pile foundation	Design of raft slab for shear	Components of well foundation	Design for natural frequency

						, , , , , , , , , , , , , , , , , , , ,
	SLO-2	Design of footings for shear and bending	Determining the uplift capacity of pile	Detailing of reinforcement for raft slab	Principle use of steining, intermediate plug etc., in well foundation	Detailing ofreinforcement
0.4	SLO-1	Principles of Structural design of isolated rectangular footings	Principles of design of pile foundation on clayey soil	Principles of Structural Design of mat foundation with beam and slabs	Shifts and tilt in well foundation	Design of multiple machines on single foundation block
S-4	SLO-2	Design of isolated rectangular footings without pedestal	Structural Design of Pile foundation	Proportioning of raft slab and beam	Remedial measures for the tilt and shift in well foundation	Proportioning of foundation block
S-5	SLO-1	Principles of Structural design of isolated rectangular footings with pedestal	Structural Design of two pile cap	Design of raft slab for shear	Stability check for well foundation	Design for natural frequency and amplitude
	SLO-2	Design of isolated rectangular footings for shear and bending	Structural Design of two pile cap for bending and shear	Design of raft slab for bending	Check for buoyancy	Detailing of reinforcement
	SLO-1	Principles of Structural design of isolated footings with biaxial moment	Structural Design of three pile cap	Design of mat foundation for bending in raft beams	Design of well curb in well foundation	Design of Impact Machine foundation
S-6	SLO-2	Computation of soil pressure at the corners of the footings	Structural Design of three pile cap for bending	Design of mat foundation for shear foundation in raft beams	Design of cutting edge in well foundation	Design for amplitude
	SLO-1	Principles of Structural design of Combined foundation- Proportioning	Design of three pile cap for shear	Structural Design of raft combined with pile foundation in basement floors	Design of well cap in well foundation	Design for natural frequency
S-7	SLO-2	Structural design of Combined foundation for resultant of loads	Detailing of reinforcements for pile cap	Design of mat slab for shear foundation in raft slabs	Design of bottom plug in well foundation	Detailing of reinforcement
0.0	SLO-1	Structural design of Combined foundation for bending	Structural Design of four pile cap	Design of mat slab for bending in raft slabs	Design of intermediate plug in well foundation	Introduction to steel tower
S-8	SLO-2	Structural design of Combined foundation for shear and detailing	Structural Design of four pile cap for bending and shear	Check for uplift force due to water pressure in the design of mat slab	Design of steining in well foundation	Various forces on steel tower
S-9	SLO-1	Principles of Structural design of Strip footing- Proportioning	Design of four pile cap based on strut and tie method	Design of mat foundation for transfer of force in the footing	Analysis of flexible beams on elastic foundations	Introduction to different types of tower foundations

	SLO-2	Structural design of Strip footing for resultant of loads	Detailing of the four pile cap	Detailing of reinforcement for mat foundation	Different methods to analyse the well foundation	General design criteria for tower foundations
	SLO-1	Structural design of Strip footing for bending	Design of in filled virendeel frame foundations	Design of foundation for Chimneys	ACI Method of analysis of flexible beams on elastic foundations	Structural design of tower foundations
S-10	SLO-2	Structural design of Strip footing for shear and detailing	Continued	Design for wind pressure on chimneys	Continued	Design for uplift
S-11	SLO-1	design of Strap footing-	Principles in design of base plate, pedestal and anchor bolts for columns subjected to large eccentricity	Proportioning of foundation to avoid eccentricity	Analysis of flexible plates on elastic foundations	Design for downward load
	SLO-2	Structural design of Strap footing for resultant of loads	Design of base anchor bolts for columns	Design of foundations for shear	Continued	Design for shear
	SLO-1	Structural design of Strap footing for bending	Design of pedestal subjected to large eccentricity	Design for bending in foundation for chimneys	Analysis of flexible plates on elastic foundations	Design for biaxial moments
S-12	SLO-2	Structural design of Strap footing for shear and detailing	Design of foundation for the pedestals	Detailing of reinforcement of chimney foundation	Continued	Detailing of reinforcements

Learning
Resources

- Varghese.P.C, "Design of Reinforced Concrete Foundations", Prentice Hall of India 4. Kurien .N.P, "Design of foundation systems-Principles and Practices", 3rd Edition, Alpha 2. UnnikrishnaPillai.S and DevadasMenon, "Reinforced Concrete Design,"
- Tata MacGraw Hill Publishing Company Limited, Third, New Delhi, 2012.

 3. Vazirani.V.N and Ratwani.M.M, "Design of Reinforced concrete Structures", 6. 16th Edition, Khanna Publishers, New Delhi.
- Science International, 2005.
 - 5. Subramanian N, "Design of Reinforced Concrete Structures", Oxford University Press, New Delhi, 2013.
 - Punmia.B.C, Ashok Kumar Jain, A run Kumar Jain, Limit State Design of Reinforced Concrete,1st edition, Laxmi Publications Pvt. Ltd., 2007

Learning As	ssessment								
			Contin	uous Learning Ass	essment (60% we	ightage)		Final Examination (400/	-l-4\
	Bloom's Level of Thinking	CLA 1	(20%)	CLA –	2 (25%)	CLA –	3 (15%)	Final Examination (40% wei	gntage)
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20 %		20%		20%		20%	
Level I	Understand	20 /0	-	2070	_	2070	_	2076	-
Level 2	Apply	40%		40%		40%		40%	
Level 2	Analyze	4 0%	-	40%	_	4 0%	-	40%	-

Laval 2	Evaluate	40 %		400/		40 %		40 %	
Level 3	Create	40 %	-	40%	-	40 %	-	40 %	-
	Total	100	% (100) %	100	0 %	100 %	

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. G.Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. G. AppaRao, Professor, IIT Madras, garao@iitm.ac.in	1.Prof.G.AugustineManirajPandian, SRMIST
2. Er. UP. Vijay, Senior Engineering Manager, L&T Construction, Buildings and Factories, Chennai,upvijay@Intecc.com	Dr. R. Senthil, Professor, Anna University, senthil@annauniv.edu	2. Dr. P.R.KannanRajkumar, SRMIST

0	0000000	O N	Desire of Bridges	0	_	Duefe estada Electiva	L	Τ	Р	С	
Course Code	20CEE605T	Course Name	Design of Bridges	Course Category	E	Professional Elective	3	1	0	4	

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses Nil
Course Offering Department	Civil Engineering		Data Book / Codes/Standards:	IRC 6-2014, IRC21-2000, IRC 83-1999(PART-I), IRC 83-2015(PART-II), IRC 112-2011, IS 456:2000, PIGEAURDS CHART, IRC 22-2000, IS 1342-2012, IS 800:2007

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Get exposed to the design aspects of various types of Bridges.
CLR-2:	Study the various types of loads
CLR-3:	Design the slabs and T beam Bridges
CLR-4:	Design the balanced cantilever, Arch bridge, Prestressed and Composite bridges
CLR-5:	Study the various types of bearings and expansion joins
CLR-6:	Design the bearings and Substructure

Course	At the end of this course, learners will be able to:	Progr	amme Out (PO)	comes
Outcomes (CO):		1	2	3
CO-1:	Understand the various types of bridges and calculate the design discharges	3	3	2
CO-2:	Understand the various types of Loads	3	3	2
CO-3:	Evaluate the knowledge on design of slab Bridges with various methods	3	3	2
CO-4:	Able to evaluate the design the long span bridges	3	3	2
CO-5:	Apply knowledge and basis of Bearings, Expansion joints and Sub structures	3	3	2
		3	3	-

Duration	n (Hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-1	SLO-1	Introduction And Investigation For Bridges	Loads on Bridges	Slab and T - Beam Bridges	Long Span Bridges	Bearings and Substructure
3-1	SLO-2		Indian Road Congress (IRC) bridge codes	Introduction	Hollow girder bridges	Design of bearings for slab
S-2	SLO-1	Classification - Need for investigation	Indian Road Congress (IRC) bridge codes	Design of slab bridges- Introduction	balanced cantilever bridge	Problems in Bearings
3-2	SLO-2	-Bridge site - Data collection	dimensions - dead and live loads	Propidme in adeian of eigh bridad	Problems in Balanced Cantilever bridge	Design of bearings for slab
6.3	SLO-1	design discharge	impact effect	"Propiome in accian of clap bridge	Problems in Balanced Cantilever bridge	Design of bearings for slab
S-3	SLO-2	Problems in Design Discharge	wing and seismic torces	skew slab culverts - box culverts- Introduction	continuous girder bridges -	Design of bearings for slab

Duratio	n (Hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-4	SLO-1	Tutorial for Design Discharges	Tutorial for Loads	Tutorial for Slab Bridges	rigid frame bridges	Tutorial for Bearings
	SLO-2 Tutorial for Design Discharges Tutorial for Loads		Tutorial for Loads	Tutorial for Slab Bridges	rigid frame bridges	Tutorial for Bearings
S-5	SLO-1	Problems in Design Discharge	longitudinal and centrifugal forces	Design Procedure for skew slab culvert and box culvert slab	Tutorial for Balanced Cantilever Bridge	Design of bearings for slab
3- 3	SLO-2	Problems in Design Discharge	hydraulic forces	T - beam bridges - Pigeaud curves- Introduction	Tutorial for Arch Bridge	girder, skew bridges
	SLO-1	linear waterway	earth pressure	Problems using Pigeaud curve	arch bridges	girder, skew bridges
S-6	SLO-2	Problems in Linear Water way	temperature effect and secondary stresses	T - beam bridges - Pigeaud curves- Introduction	Problem in Arch Bridge	Design of piers
S-7	SLO-1	Tutorial for Linear Water way	Tutorial for Live load Calculations	Tutorial for T Beam Bridges	bow string girder bridges Theory	Tutorial for Piers
3-1	SLO-2	Tutorial for Linear Water way	Tutorial for temperature and secondary stresses	Tutorial for T Beam Bridges	Prestressed concrete bridges	Tutorial for Skew Bridges
	SLO-1	economical span	Shrinkage of Concrete, Creep of Concrete	Problems using Pigeaud curve	Tutorial for Prestressed concrete Bridge	Problems in Pier
S-8	SLO-2	Problem and Derivation in Economical Span	Steel reinforcement-Strength of Steel Reinforcement-Size of Steel Reinforcement	Problems using Pigeaud curve	Tutorial for Prestressed concrete Bridge	Problems in Pier
S-9	SLO-1	Problem and Derivation in Economical Span	Prestressing Reinforcement- Pre- tensioned vs Post-Tensioned Systems	Courbon's theory- Introduction	Problems in Prestressed concrete Bridge	Problems in Pier
	SLO-2	Problems in Scour Depth	Commonly Used Tendons-Strength of Tendons	Problems using Courbon's Theory	Problems in Prestressed concrete Bridge	abutments - trestles
S-10	SLO-1	Tutorial for Scour Depth	Tutorial for Prestress Basics	Tutorial for Courbon's Theory	Problems in Prestressed concrete Bridge	Tutorial for Pier and Trestles
	SLO-2	Tutorial for Scour Depth	Tutorial for Prestress Basics	Tutorial for Courbon's Theory	Composite Bridge	Tutorial for Pier and Trestles
0.44	SLO-1	Case Study 1	Case Study 1	Case Study 1	Composite Bridge	Case Study 1
S-11	SLO-2	Example Problem 1	Example Problem 1	Example Problem 1	Composite Bridge	Example Problem 1
S-12	SLO-1	Case Study 2	Case Study 2	Case Study 2	Tutorial for Prestressed Concrete Bridge	Case Study 2
3- 12	SLO-2	Example Problem 2	Example Problem 2	Example Problem 2	Tutorial for Prestressed Concrete Bridge	Example Problem 2

	1.	Johnson Victor. D, "Essentials of Bridge Engineering", Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 2006.
Learning	2.	Krishna Raju .N, "Design of Bridges", fourth edition Oxford & IBM Publishing
Resources	3.	Co, Bombay,2009. Raina .V.K. "Concrete Bridge Practice", Tata McGraw Hill Publishing Co., New

Delhi - 1991

- 4. . Taylor. F.W, Thomson S.E, and Smulski .E. "Reinforced Concrete Bridges", John Wiley & Sons, New York 1955.
- 5. Conference Proceedings, 'Advances and Innovations in Bridge Engineering', IIT, Madras and Indian Institute of Bridge Engineers, Tamilnadu, Allied Publisher, New Delhi, 1999.

Learning As			Continu	uous Learning Ass	sessment (60% we	ightage)		F: 15 : " (100(: 11)					
	Bloom's Level of Thinking	CLA ²	1 (20%)	CLA –	2 (25%)	CLA –	3 (15%)	Final Examination (40%	weigntage)				
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember	20 %	20 %		20%		20%		20%				
_evei i	Understand			-	2070	-	2070	-	2070	-			
Level 2	Apply	400/	400/	400/	40%	400/		40%		40%		40%	
_evei Z	Analyze	40%	-	40%	-	40%	-	4070	-				
1.0	Evaluate	40.07		4007		40.07		40.0/					
Level 3	Create	40 %	-	40%	-	40 %	-	40 %	-				
	Total	10	0 %	10	0 %	10	0 %	100 %	<u> </u>				

CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Er. G.Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	1. Dr. G. AppaRao, Professor, IIT Madras, garao@iitm.ac.in	Dr. K.S. Satyanarayanan, SRMIST
2. Er. UP. Vijay, Senior Engineering Manager, L&T Construction, Buildings and	2. Dr. R. Senthil, Professor, Anna University,	Mr. M. Drokoob, CDMICT
Factories, Chennai,upvijay@Intecc.com	senthil@annauniv.edu	Mr. M. Prakash, <i>SRMIST</i>

Course	200555055	Course	Design of Tall Desilations	0	F	Duefo edienal Floridos	L	Τ	Р	С]
Code	20CEE606T	Name	Design of Tall Buildings	Course Category	E	Professional Elective	3	1	0	4	

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department	Civil engineerin	g	Data Book / Codes/Standards	IS 456-2002, IS1893- 2016(par	t 1)-2016, IS 875 PART III

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Introduce various systems and materials of tall buildings
CLR-2:	Know about different types of loads and analysis
CLR-3:	Impart knowledge about static, dynamic and stability analysis of various systems
CLR-4:	Introduce design of various structural systems
CLR-5:	Know about the secondary effect stability of structures
CLR-6:	Know about wind effect in tall buildings

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
Outcomes (CO):		1	2	3		
CO-1:	Understanding utilization of material to the engineering application	3	3	-		
CO-2:	Analyze behavior of Static and dynamic system	3	3	-		
CO-3:	Analyze structural behavior in framed system	3	3	2		
CO-4:	Evaluate design with various loads framed structure	3	3	2		
CO-5:	Evaluate design the gravity load with that effect	3	3	2		
CO-6:	Create advanced development of tall structures	3	3	2		

Durati	on (Hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
6.4	S-1 Structures /		DESIGN OF STRUCTURAL SYSTEMS Behavior of structural system in High Rise structures		SYSTEMS Behavior of structural ANALYSIS AND DESIGN STAB	
3-1			load, live load , Impact and construction load calculation	Various system in steel and concrete	shear wall and behavior of shear wall under lateral force	secondary effects -Creep, shrinkage and temperature.
S-2	SLO-1 SLO-2	Scope and realure or tall	Design example: Gravity load calculation for frame. Live load reduction	Different system for load distribution in steel and concrete	Coupled shear wall system	Case study:1
S-3	SLO-1 SLO-2	growin and form of Human	Factors affecting height, growth and form of Human comfort criteria, Vertical and horized physics of frame comfort criteria, Vertical and horized physics of frame comfort criteria, Vertical and horized physics of frame comfort criteria, Vertical and horized physics of frame comfort criteria, Vertical and horized physics of frame comfort criteria, Vertical and horized physics of frame comfort criteria, Vertical and horized physics of frame comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, Vertical and horized physics of the comfort criteria, vertical and horized physics of the comfort criteria, vertical and horized physics of the comfort criteria, vertical and horized physics of the comfort criteria, vertical and horized physics of the comfort criteria, vertical and horized physics of the comfort criteria, vertical and horized physics of the comfort criteria, vertical and horized physics of the comfort criteria, vertical and horized physics of the comfort criteria and horized physics of the comfort criteria and horized physics of the comfort criteria and horized physics of the comfort criteria and horized physics of the comfort criteria and horized physics of the comfort criteria and horized physics of the comfort criteria and horized physics of the comfort criteria and horized physics and horized physics of the comfort criteria and horized physics and ho		Design example: RC shear wall	Second order effects of gravity loading, P-Δ effect, P-Δ effect and various methods of analysis
S-4	SLO-1		Tutorial : Frame analysis	Tutorial :		Tutorial :

Durati	Duration (Hour) Module 1 (12)		Module 1 (12) Module 2 (12) Module 3 (Module 4 (12)	Module 5 (12)		
	SLO-2	Tutorial : World tallest structure and history			Tutorial : wall frames systems, behavior of symmetric wall frame			
S-5	SLO-1 SLO-2	Essential amenities system	Modal analysis	Computation of lateral stiffness considering beam and columns	Design example: 1 Analysis wall frame using chart	P-∆ effect influence of foundation instability, out of plumb effects		
S-6	SLO-1 SLO-2	Fire safety, Water supply	Design example: Frame analysis	Computation of lateral deflection for the given horizontal load	Design example: 2 Analysis wall frame using chart	Design example :1		
S-7	SLO-1		Wind loading - Static and dynamic	Braced frames, types of bracing	Tubular systems, behavior of tubular	Blast load résistance of tall		
0-1	SLO-2	Structural and foundation systems	approach	system in steel and concrete	structures	structures		
S-8	SLO-1 SLO-2	Tutorial : Foundation settlement and soil structure interaction	Tutorial : Computation of wind load in tall building using static system	Tutorial : Behavior of braced frames	Tutorial : Analysis wall frame using chart	Tutorial : Case study		
S-9	SLO-1 SLO-2		Computation of wind load in tall building using dynamic system	Analysis of wall frame with various methods	In filled frame system and behavior in high rise structure	Structural systems for future generation buildings		
S-10	SLO-1 SLO-2	High strength concrete Light weight concrete	Design example: 1 Wind load analysis static	Design example: Portal frame method	Outrigger braced systems, methods of analysis, assumption for analysis	Fire safety, Water supply		
S-11	SLO-1 SLO-2		Design example: 2 Wind load analysis dynamic	Design example: Cantilever method	Outrigger braced systems, analysis for horizontal deflection	Drainage and Garbage disposal Structural and foundation systems		
S-12	SLO-1 SLO-2	Tutorial : Composite Materials	Tutorial : Analytical and wind tunnel experimental method	Tutorial : Comparison with two methods	Tutorial : Core structures, behavior and analysis	Tutorial : Foundation settlement and soil structure interaction		

Learning
Resources

- 1. Schuller .W.G, "High Rise Building Structures", John Wiley & sons, 1977.
- 2. Lin T.Y, and Burry. D, Stotes, "Structural Concepts and Systems for Architects and Engineers", John Wiley, 1994..
- 3. Gupta.Y.P,(Editor), "Proceedings of National Seminar on High Rise Structures Design and Construction Practices for Middle Level Cities", New Age International Limited. New Delhi.1995
- 4. Lecture Notes on "Tall Buildings"- Short Term Course organized by Civil Engineering Department, SRM Engg college, Kattankulathur. June 2002.
- 5. Smith .B.S, and Coull .A, "Tall Building Structure", 'Analysis and Design', John Wiley & Sons, Inc.,
- 6. Taranath .B.S, "Structural Analysis and Design of Tall Buildings", Mc Graw Hill Co. 1988.

Learning	Assessment								
	Dlaamia		Contir	nuous Learning Ass	sessment (60% weig	ghtage)		Final Examir	nation (40% weightage)
	Bloom's	CLA –	1 (20%)	CLA –	2 (25%)	CLA –	3 (15%)		, , ,
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	-	20%	-	20%	-	20%	-
Level 2	Apply Analyze	40%	-	40%	-	40%	-	40%	-
Level 3	Evaluate Create	40%	-	40%	-	40%	-	40%	-
	Total	10	0 %	10	0 %	10	00 %		100 %

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Dr. S. Vishnuvardhan, Scientist, CSIR-SERC, svvardhan@serc.res.in	1. Dr. R. Santha Kumar, NITTTR, rsk65@nitttrc.ac.in	Prof. G. Augustine Maniraj Pandian, SRMIST
Mr. Nithin Khandelwal, Scientist, CSIR-SERC, nitin@serc.res.in	 Dr. Beulah Gnana Ananthi, Associate Professor, Anna University, beulah28@annauniv.edu, beulahceg@gmail.com 	2. Ms. C. Sudha, SRMIST

Course Code	20CEE607T	Course Name	Analysis and Desig	gn of Structural Sandwich Panels	Course Category	E	Professional Elective	<u>L</u>	1	P 0	C
Pre-requisite Courses		Nil	Co-requisite Courses	Nil	Progressive Co	urses	Nil				
Course Offering Department		nt CIVIL ENGINEER	ING	Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Introduce the basic principles related to the structural sandwich panels.
CLR-2:	Learn about methods of analysis of sandwich panels
CLR-3:	Know about design methodologies of sandwich panels
CLR-4:	Learn about various standards for testing and procedures
CLR-5:	Know buckling loads of sandwich panels
CLR-6:	Know the application of sandwich panels

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)		
Outcomes (CO):		1	2	3
CO-1:	Understandingthe basic difference between the sandwich and other types of composites.	3	3	-
CO-2:	Able to learn about methods of analysis of sandwich panels	3	3	-
CO-3:	Evaluate knowledge on design methodologies of sandwich panels	3	3	2
CO-4:	Able to understand about various standards for testing and procedures	3	3	2
CO-5:	Evaluation knowledge on buckling loads of sandwich panels	3	3	2
CO-6:	Create knowledge of application of sandwich panels	3	3	2

Duration (hour)		Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)	
S-1	SLO-1	Studentswillbeintroducedwithth e basic concepts of sandwich panels.	Studentswillbeintroduced to the basic concepts of buckling of sandwich struts.	Students will learn about the basic assumptions in bending and buckling of an isotropic sandwich panel.	They will be introduced with the basic theory of sandwich panels.	Students were introduced with the importance of testing of materials used in sandwich panels.	
	SLO-2	Students will be able to distinguish between the sandwich and other types of composites.	Students gain basic knowledge on the concepts of buckling of sandwich struts.	Students will be familiar with the basic assumptions in bending and buckling of an isotropic sandwich panel.	knowledge on basic theories of sandwich panels.	They will be able to gain knowledge on the importance of testingofmaterials used in sandwich panels.	
S-2	SLO-1	They will have the concept of antiplane core.	sandwich struts.	isotropic sandwich panel.	Students will acquire knowledge on the theory of sandwich panel and with various boundary conditions.	methods used in testing of materials.	
	SLO-2	They will be able to understand the use of anti-plane core			Students will be familiar with the theory of sandwich panel and with various boundary conditions.	They will be familiar with the various methods used in testing of materials.	

Duration	n (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
		concept in analysis of sandwich beams.				
S-3		with antiplane core and thin faces.	They will learn about the buckling of a sandwich panel	equations of bending and buckling of	They will learn about the simply supported edge condition for the design of sandwich panel.	method suitable for various types o sandwich construction materials.
3-3	SLO-2 SLO-2 SLO-2 SLO-2 Students will be able to perform the analysis of sandwich panels with antiplane core and thin faces. Students will be able to demonstrate about the buckling of a sandwich panel.		differential equations of bending and buckling of a sandwich panel.		They will be able to adopt the method suitable for testing of the required material used in sandwick construction.	
S-4		Tutorial	Tutorial	Tutorial	Tutorial	Tutorial
J-4		Tutorial	Tutorial	Tutorial	Tutorial	Tutorial
		Students will learn about the analysis of antiplane core and with faces of unequal thickness.	Students will learn the key idea on strain energy method.	Students will be introduced to wrinkling and other terms of local instability.	Students will be introduced to the large deflection of sandwich beams.	
S-5	SLU-2	Students will be able to perform the analysis of antiplane core and with faces of unequal thickness.	Students will be familiar with the strain energy method.		Students will be able to demonstrate the large deflection of sandwich beams.	
S-6	SLU-1	Students will gain knowledge on analysis of sandwich beams with core of considerable modulus of elasticity.	They will acquire knowledge on sandwich beam and strut.	definitions of wrinkling and other	Students will be introduced to the various boundary conditions in design of sandwich beams.	Studente will learn in denth anelit the
3-0	SLU-2	Students will be familiar with analysis of sandwich beams with core of considerable modulus of elasticity.	knowledge acquired in sandwich beam an	terms of local instability.	sandwich beams.	about the phase material.
		Students will gain idea on deflection of a sandwich panels.	of sandwich beam and strut by strain	types of wrinkling and other terms of	Students will be introduced to the initial deformation of sandwich beams.	
S-7	SLO-2	Students will be in a state to demonstrate about the deflection of a sandwich panels.	They will be able to perform analysis of sandwich beam and strut by using strain energy method.		Idetormation of candwich heams	Students will be able to select the suitable core material based on their requirement.
C 0	SLO-1	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial
S-8	SLO-2	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial

Duration (hour)		Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-9		Students will learn the concept of analysis of sandwich beams with symmetrical loading and unsymmetrical loading.	They will gain knowledge on isotropic and orthotropic sandwich strut.	Students will be introduced to formulae for analysis.	Students will be introduced to the basic concepts of design of sandwich beams, struts and panels.	Students were introduced with the importance of testing of sandwich constructions.
	SLO-2	Students will differentiate between the performance of analysis of sandwich beams with symmetrical loading and unsymmetrical loading.	They will be familiar with isotropic and orthotropic sandwich strut.	Students will be able to demonstrate the formulae for analysis.	Students will be able to introduce the basic concepts of design of sandwich beams, struts and panels.	They will be able to gain knowledge on the importance of testing of sandwich constructions.
S-10	SLO-1	Students will learn about the analysis of sandwich beams with symmetrical loading.	They will learn the basic differences between isotropic and orthotropic sandwich strut.	Students will learn about the definitions of formulae for analysis.	Students will learn about the steps followed in design of sandwich beams, struts and panels.	They will learn about the various methods of testing in sandwich constructions.
	SLU-2	Students will be able to perform the analysis of sandwich beams with symmetrical loading.	They will be familiar in differentiating isotropic and orthotropic sandwich strut.	Students will be able to demonstrate the definitions of formulae for analysis.	Students will be confident enough to follow the steps in design of sandwich beams, struts and panels.	Studentswillbe able to adopt the suitabletestingmethodbased on the type of sandwich construction.
S-11	SLU-1	Students will learn about the analysis of sandwich beams with unsymmetrical loads including point load and udl.	They learn about performing the analysis of isotropic and orthotropic sandwich strut by Ritz method.	Students will learn about the formulae for analysis of sandwich beams.	Students will learn to design a sandwich beam, struts and panels.	Students will gain knowledge on various properties of materials used in sandwich construction.
	SLO-2	Students will be able to perform the analysis of sandwich beams with unsymmetrical loads including point load and udl.	Students will be able to carry out performing the analysis of isotropic and orthotropic sandwich strut by Ritz method.	Students will be able to demonstrate the formulae for analysis of sandwich beams.	They will be able to carry out the design of a sandwich beam, struts and panels.	They will be able to demonstrate the various properties of the materials used in sandwich construction.
S-12	SLO-1	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial
	SLO-2	Tutorial	Tutorial	Tutorial	Tutorial	Tutorial

Learning	1.	HOWARD G.ALLEN, "Analysis and design of structural sandwich panels" –	2. DAVID RANDAL AND STEVE LEE, "The Polyurathanes Book"-November, 2002, JOHN
Resources		Firstedition 1969, PERGAMON PRESS.	WILEY, LTD.

Learning Assessment											
	Bloom's Level of Thinking	Continuous Learning Assessment (60% weightage)					Final Examination (40% weightage)				
		CLA –	1 (20%)	CLA – 2	2 (25%)	CLA –	3 (15%)	Final Examination (40%	weightage)		
Level of Till	ei oi miliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		

Level 1	Remember	20%		20%		20%		20%	
	Understand	2070	_	2070	_		-		-
	Apply	400/		40%					
Level 2	Analyze	40%	-	40%	-	40%	-	40%	-
Laval 2	Evaluate			400/					
Level 3	Create	40%	-	40%	-	40%	-	40%	-
Total		100	0 %	100) %	100	0 %	100 %	

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
Dr. S.R. Balasubramainan, Sr. Scientist, CSIR-SERC, srbala@serc.res.in	1. Dr. R. Santhakumar, NITTTR, rsk65@nitttrc.ac.in	1. Dr. Alok Kumar Patra, SRMIST							
Mr. S. Parthiban, Engineering Manager, L&T, spb@Intecc.com	2. Dr. Jane Helena, Professor, Anna University, jane@annauniv.edu	2. Dr. K.S. Satyanarayanan, SRMIST							

Course	rse 20CEE608T	Course	Advanced Analysis and Design for Wind Earthquake and Other	Course	_	Duafacai anal Electiva	L	T	Р	(;
Code	20CEE6081	Name	Dynamic Loads	Category	E	Professional Elective	3	1	0	4	,

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses Nil
Course Offering Department	CIVIL ENGINEER	ING	Data Book / Codes/Standards	IS 875,Part 1,2,3,IS1893,part 1 2002: IS13920: 1993

Course Learning Rationale (CLR):	The purpose of learning this course is to:	Learning	Program Learning Outcomes (PLO)

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Study the behavior of reinforced cement concrete under the action of impact and cyclic loads
CLR-2:	Study the interaction of soil and structure
CLR-3:	Study the effect of wind loads, response of the structure
CLR-4:	Analyze and design the structure subjected to wind loads
CLR-5:	Characteristics of seismic loading and to design structures subjected to seismic loads
CLR-6:	Study the design of structures against impact loading

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):			2	3	
CO-1:	Understand the various sources of loading conditions	3	3	-	
CO-2:	Able to evaluate and identify the response of soil and structure	3	3	-	
CO-3:	Apply knowledge on calculation of wind loads	3	3	2	
CO-4:	Able to recognize the evaluating effect of wind loads and failure modes	3	3	2	
CO-5:	Apply the concept of seismic loading	3	3	2	
CO-6:	Evaluate knowledge of basic and heavy impact loading	3	3	2	

Durat	tion (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
		Introduction about structures, élément, idéalisation, and load	Introduction about wind loading	Wind load acting on structures	Detail discussion of Theory of plate tectonics,	Blast load definition, basic terminology
S-1		Behavior of concrete, various advance technique's used in concrete –under impact load.	Spectral studies, construction of response spectra	Discuss in detail the various classification of structures under wind load	Basic elements of engineering seismology	Various types of blast loading, characteristics,
S-2 -		Behavior of steel, various types, manufacturing process, basic parameters - under impact load.	Gust factor, definition, merits,demerits, Applications	Discuss the static and dynamic effects of structures	Earth quake size and intensity, various earth quake measurement equipment's	Blast wave profile,Friedlander's equation
3-2	SLO-2	Components and types of masonry structures,	Analysis of building frames using approximate lateral load method	Tall buildings-definitions, basicterminology	Various category of structures according to earthquake print of view	Scaling law, stand off distance

Dura	tion (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
	SLO-1	Interaction between soil structure under impact loading	Estimation of lateral loads on a building frame	Various Structural systems based on the storey height of building	Various classification of damage to buildings subjected to earth quake	Various types of explosives,basic classification of explosion
S-3	SLO-2	Basic definition about Structural dynamics and its terminology	Various step by step procedure followed inapproximate lateral load method	Various advantages and disadvantages of tall buildings	Construction of response spectra	Various types of ignition, sources
S-4	SLO-1	Tutorial: Definition of degree of freedom, support conditions,	Tutorial :Structural design requirement' for approximate lateral load method	Tutorial :Bundled tube structural	Tutorial :Response spectrum for support excitation	Tutorial :Pressure distribution on building above the ground due to external blast.
3-4	SLO-2	Types—single degree of freedom (SDOF), Response of SDOF with various lading	Response of two hinged symmetric portal frame to lateral loads	system-Detail	Response spectrum for elastic design	Pressure distribution on building above the ground due to internal blast.
S-5	SLO-1	Multi degree of freedom (MDOF) Response of MDOF with various lading	Response of symmetric portal frame with rigid base and rigid beam to lateral load.	Tube in tube structural system- Detail	Seismic response of regular and irregular building	Impact and impulse loads
3-3	SLO-2	Various damping system, methods to evaluate damping	Response of symmetric portal frame with rigid base and rigid base to lateral load.	Framed tube structural system detail	Influence of local soil condition case study	Various types of field blast test- merits,demerits,application.
S-6	SLO-1	Methods to evaluate the force transmitted to foundation- merits and demerits	Symmetric and anti-symmetric components of lateral loading in a symmetric simple bay two storied frame.	Various methods used to analyze the chimney.	Modern concepts used in earth quake resistant design	Various types of equipment's used field blast test-merits,demerits,application.
	SLO-2	Seismic instruments used to measure important parameter	Calculation of basic wind speed from Indian standards	Rigid frame-Types-discuss in detail	Base isolation technique- Types- Functions	Types of steel sections used to resist blast loading
S-7	SLO-1	Material properties, strain rate, importance of ductility, Factors influencing and affecting ductility during dynamic loading.	Methods of measurements of wind speed	Infilled frames- Types-discuss in detail	Limitations ofBase isolation technique-	Basic Sectional requirements of rcc structure subjected to blast
3-7	SLO-2	Definition of ductility ratio, and other basic parameters	Variation of speed with respect to height	Outrigger –braced and hybrid mega system	Case studies performance of regular building under earthquake	Basic Sectional requirements of masonry Structure subjected to blast.
6.0	SLO-1	Tutorial: Static resistance function	Tutorial :Wind tunnel studies ,merits and demerits ,Applications	.Tutorial :Chimney—Various types-	Tutorial :Case studies performance of irregular building under earthquake	Tutorial :Undergroundexplosion, characteristic study
S-8	SLO-2	Various types of sections used in steel subjected to other loading condition Various types of tunnel		Detail	Various methods used for seismic analysis of a four storied RC building as IS1893 (Part 1): 2002	Blast wave design paramètres

Dura	tion (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-9	SLO-1	Various Methods to analyze the structure under various loading	Material Modeling, various software' used in market.	Case study on infilled frames	Step by step procedure for seismic analysis of a four storied RC building as IS1893 (Part 1): 2002	Air blast loading phenomena
	SLO-2	Merits and demerits of the methods to analyze the structure under various loading	Basic Modeling requirements, Inputs and outputs	Case study on types of outrigger	Mathematical modeling of multi storied RC building	Near field shock wave load amplification
	SLO-1	Basic design philosophy	Methods for interpretation of results	Case study on types of chimney	Ductility factors	Compound shock wave load amplifications
S-10	SLO-2	Various design methods used to design structures under earthquake, wind, and other loads	Validation of results using Indian standards provision	Various methods used to analyse the chimney	Discuss the factors affecting ductility	Shock wave reflection and diffraction
	SLO-1	Introduction about the various field test to determine the behavior of structure under other loads	Aero elastic models-definition, Basic terminology	Merits and demerits of different frames	Ductile Detailing consideration shear wall	The underground shock wave-
S-11	SLO-2	Mostly used method used to design structures under earthquake, wind, and other loads	Parametric consideration for aero elastic model.	Case studies on different framed structures in structures	Ductile Detailing consideration as per IS13920: 1993- flexural members	various methods used for design of
S-12	SLO-1	Tutorial: Various Indian standards used to analyze design the structure under wind and other loads	Tutorial:Merits, demerits of Aero elastic models	Problem 1 – Framed load calculation	Tutorial :Relationship between member ductility and system ductility	
	SLO-2	Various software's used to analyze and design the structure under wind ,earthquake loads	Application of Aero elastic models	Problem 2 – Application of loads	3D computer analysis of building system –study of analysis results.	Finite element software used for analysis of structures under blast

Learning Resources	 EarthQuake Engineering – NPTEL BungaleS.Taranath, "Structural Analysis And Design of Tall Buildings:, CRC Press, 2010. Peter Sachas, "Wind Forces in Engineering", Vol I and VollI, Applie Science Publishers, London 1980. BelaGoschy, "Design of Buildings to withstand abnormal loading", Butterworths, 1990. 	 5. Kolousek.Et.al "Wind effects on Civil Engineering structures", Elsevier Publications, 1984 6. Cook, N., "The designers guide to Wind Loading of Building Structures", 1990. 7. Course Notes "SeismicDesign of Reinforced Concrete Structures", IIT Madras
-----------------------	---	--

Learning Assessment									
	Bloom's		Final Examination (40% weighters)						
	Level of Thinking	CLA – 1 (20%)	CLA – 2 (25%)	CLA – 3 (15%)	Final Examination (40% weightage)				

		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%		20%	-	20%	-	20%	
Level I	Understand	2070	_					2070	-
Level 2	Apply	40%		40%	-	40%	-	40%	
Level 2	Analyze	40%	-	40%				40%	-
11 0	Evaluate	400/		4007	,	4007		4007	
Level 3	Create	40%	-	40%	-	40%	-	40%	-
	Total	100 %		100 %		100 %		100 %	

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
Dr. G. Venkataramarao, Sr. Scientist, CSIR-SERC, ramarao@serc.res.in	Prof. Jangid R S, Professor, IITB, rsjangid@civil.iitb.ac.in	Mr. S.A. Vengadesh Subramanian. SRMIST						
Mr. A. Sivaraman, Deign Manager, Utracon, sivaram@utracon.com	2. Dr. S. T. G. Raghukanth, Professor, IITM, raghukanth@iitm.ac.in	2. Mr. S. Pradeep, SRMIST						

Course Code 20	20CEE609T	0 1	Design of Shell and Folded Plate	0.1	_	Professional Elective		Τ	Р	С
Course Code	20CEE6091	Course Name	Structures	Course Category	E	Professional Elective	3	1	0	4

Pre-requisite Courses	Nil Co-requisite Courses	Nil	Progressive Courses Nil
Course Offering Department	CIVIL ENGINEERING	Data Book / Codes/Standards	ASCE Manual for shells, IS 2210-1988.

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Know the structural aspects of shell structures
CLR-2:	Know Importance of membrane theory and its limitation
CLR-3:	Know the Strains in a circular cylindrical shell
CLR-4:	Study the Principles of the design of cylindrical shell
CLR-5:	Know the Principles of Structural Design of Intze type tanks
CLR-6:	Know the Structural Design of a north light folded plates

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Understand and distinguish between the shell structures and folded plate structures	3	3	2	
CO-2:	Evaluate the design a single short cylindrical shell	3	3	2	
CO-3:	Analyze the various types of shells using surface generation.	3	3	2	
CO-4:	Analyze and design aspects of shells-developable and non developable shells	3	3	2	
CO-5:	Evaluate structurally a intze type tank, foundations and design	3	3	2	
CO-6:	Create and perform design of folded plate roofs		3	2	

Duratio	on (Hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-1	SLO-1	Introduction to shell structures	Theory of circular cylindrical shells with combined action of membrane and bending stress resultants	Principles of the design of cylindrical shell		Principles of structural design of folded plates
	SLO-2		Need for the bending theory in cylindrical shells	Sinale shell wilhalli eaae beams	Structural elements of intze type tanks	History of used of folded plates
6.3	31 U-1	Principles of Singly curved shells	Stress Analysis of Cylindrical shells	Single shell with edge beams	Structural Design of intze type tanks	Applications of folded plates
S-2 SLO-2				, , ,	Dimensions of tank based on the capacity of water	Scope and Assumptions
S-3	SLO-1	Shells of translation and rotation	State of Plane stress	Inner shell with small edge members	Design of top spherical dome	Plate and Slab action of folded plates
U-3	SLO-2	Synclastic and anticlastic shells	Strains in a circular cylindrical shell	Inner shell with edge beams	Design of top ring beam	Stress Distribution in folded plates

Durati	on (Hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-4	SLO-1	Stress resultants in a plate element	Rotation of the tangent	Single shell with nominal edge members supported on walls or an closely spaced rows of flexible columns	Design of side walls of tank	Effect of joint moments in folded plates
	SLO-2	Stress resultants in a shell element	Change in circumferential curvature	The end shell	Design of bottom ring beam	The whitney method of analysis
C E	SLO-1	Applications to a simply supported cylindrical shell	Bending theories of cylindrical shells	Selection of shell parameters	Design of conical dome	Structural Design of a northlight folded plates
S-5	SLO-2	Limitations to membrane theory	Finsterwalder theory	Selection of type, radius, semi central angle, width of edge beam	Design for meridional thrust and meridional stress in conical dome	Calculation of ridge loads
6.6		methods of generating the surface of different shells like hyperboloid	D-K-J Theory	Design of single short cylindrical shell without edge beams	Design of bottom spherical dome	Plate loads due to normal loads
S-6	SLO-2	methods of generating the surface of different shells like elliptic paraboloid	Moment curvature relations	Geometry of shell, parameters used	Design of bottom circular girder	Ridge loads due to transverse moments
S-7	SLO-1	methods of generating the surface of different shells like conical	Schorer theory	Matrix for stress resultants	Design of girder for hoop stress	Plate deflections
	SLO-2	Reinforcement detailing of shells	Schorer Differential equation	Boundary Conditions	Reinforcement detailing of domes and girders	Reinforcement pattern in folded plate roofs
S-8	SLO-1	Equilibrium equations for membrane stress resultants	The Dischinger theory	Solution of the equations	Analysis of wind loads on the intze type tank	Structural Design of a northlight folded plates using Simpsons's rule
3-0	SLO-2	Properties of Curves	Aas-Jakobsen's theory	Check for statics	Analysis of seismic loads on the intze type tank	Calculation of ridge loads
S-9	SLO-1	Plane curves used as directrix	The Flugge theory	Design of reinforcement	Design of columns for intze type tank	Plate loads due to normal loads
3- 9	SLO-2	Radius of curvature	Lundgren's theory	Reinforcement for Principal tension	Design of wind forces on the top columns	Ridge loads due to transverse moments
C 40	SLO-1	Stresses in a simply supported shell	Exact and Approximate Theories	Design of single short cylindrical shell without edge beams	Design of moments	Plate deflections
S-10	SLO-2	Components of cylindrical shell	Ivar Holand's method	Bending moment based on ASCE Manual no 31.	Design of bracings for columns of water tank	Reinforcement pattern in folded plate roofs
S-11	SLO-1	Stresses in shells with a semi elliptic directrix	Analysis of long shells	Check for buckling	Design of foundations for the intze type tank	Iteration method of analysis of folded plates
3-11	SLO-2	Cylindrical shell with Circular directrix	Analysis of long shells without edge beams	Boundary conditions	Design of raft slab based on shear	Comments on the iteration of method

Duration (Hour)		Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-12	SLO-1	Cylindrical shell with cycloidaldirectrix	Analysis of short shells	Detailing of the reinforcement in shells	Design of raft slab based on bending moments	Principles of continuous folded plates
3-12	SLO-2	Cylindrical shell with catenary directrix	Analysis of short shells without edge beams	Scheme for de-shuttering of shells	8	Reinforcement pattern for continuous folded plates

Learning Resources

- Ramaswamy. G.S., "Design and Constructions of Concrete Shell Roofs" -CBS Publishers and Distributors - New Delhi – 1986.
- 2. Chatterjee, B.K, "Theory and Design of Concrete Shell", Chapman & Hall, Newyork-third edition, 1988.
- 3. Bandhopadhyay. J.N, "Thin shell Structures" Classical and Modern Analysis" New Age International Publishers New Delhi. 1986.
- 4. Varghese.P.C, "Design of reinforced concrete shells and folded plates", Prentice Hall of India, New Delhi, 2010.
- 5. ASCE Manual of Engineering practice No. 31, Design of cylindrical concrete shell roofs ASC, New York.
- 6. Stephen P Timoshenko and S Woinowsky Krieger, "Theory of Plates and Shells", Tata McGraw Hill Edition, second edition.

Learning Assessment

	DI 1		Continu	ious Learning Ass	essment (60% we	ightage)		Final Examination (400/ weighters)		
	Bloom's Level of Thinking	CLA – 1 (20%)		CLA –	CLA – 2 (25%)		3 (15%)	Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
1 4/41	Remember	20%	_	20%	_	20%	_	20%	_	
	Understand	2070	_	2070	_	2070	_	2070	_	
Level 2	Apply	40%		40%	-	40%		40%		
Level 2	Analyze	4070	-			40%	-	4076	-	
Laval 2	Evaluate	400/		4007		400/		4007		
Level 3	Create	40%	-	40%	-	40%	-	40%	-	
	Total	100 %		100 %		100 %		100 %		

CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
Er. G.Hariharanath, GA Consultants, Chennai, gac1996@hotmail.com	 Dr. G. AppaRao, Professor, IIT Madras, garao@iitm.ac.in 	Prof.G.AugustineManirajPandian, SRMIST						
Er. AGV. Desigan, Design Group Engineering Consultancy Pvt Ltd. Chennai,desigan.agv@gmail.com	Dr. R. Senthil, Professor, Anna University, senthil@annauniv.edu	2. Dr. P.R.KannanRajkumar, SRMIST						

Course Code	20CEE610T	Course Name	Computer Aided Design and Programming	Course Category	Е	Professional Elective	L 3	 P 0	C 4
				, g,		1			

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department	CIVIL ENGIN	IEERING	Data Book / Codes/Standards	Nil	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Develop intermediate level of knowledge about CAD and applications in structural engineering
CLR-2:	Address concepts related to structural analysis in cad
CLR-3:	Create insights to different programming concepts and basics for structural analysis and design
CLR-4:	Address concepts related to Linear programming and statistical methods for optimization
CLR-5:	Address concepts of Artificial methods and related applications in civil engineering
CLR-6:	Acquaint the students with case studies on analysis and design scenarios using beam and truss element

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
Outcomes (CO):		1	2	3		
CO-1:	Understanding the basics of drafting and computer graphic processing	3	3	-		
CO-2:	Understanding of different methods of matrix Structural Analysis and finite element method	3	3	-		
CO-3:	Evaluate use of software for design and detailing and its applications on various packages	3	3	2		
CO-4:	Application of optimal design principles	3	3	2		
CO-5:	Evaluate Fundamentals of AI and expert system	3	3	2		
CO-6:	Knowledge of basic search conditions using Al concept	3	3	2		

Duratio	uration (hour) Module 1 (12)		Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-1	SLO-1	Applications of CAD	Methods of Structural Analysis	Structural design methods of RCC	System Approach	Introduction to Artificial Intelligence (AI)
	SLO-2	Benefits of CAD	Comparison on analytical methods	Structural design methods of Steel	Techniques of operation research	Applications and advantages of Al
S-2	SLO-1	Processor and controller	l	Codal provision in RCC structural elements	Decision making	Heuristic search
3-2	SLO-2	Graphic Primitives	l '	Codal provisions in Steel structural elements	Researchmodels	Concepts of AI with Heuristic search
S-3	SLO-1	Geometric transformations	Analytical methods for beams	chart	Basic concepts of minimum weight, minimum cost design, variables and constraints	Introduction to Data Science
	SLO-2	Geometric 2D transformation concepts	lAnaiviicai meinoos ior irusses		Model and model building, objective function	Scientific method and modelling concepts

Durati	on (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-4	SLO-1	Tutorial in AutoCAD with single unit commands	Tutorial in MS-Excel for beams	Tutorial in MS-Excel for RCC beam design	Tutorial: Statistical tool	Tutorial in R essentials – Commands and Syntax
3-4	SLO-2	Tutorial in AutoCAD with building plan	Tutorial in MS-Excel for continuous span beams	Tutorial in MS-Excel for RCC beam design based on equations	Tutorial: Statistical Analysis	Tutorials in R – packages and libraries
S-5	SLO-1	Types of coordinate systems	Finite element basics	Principles of Steel design	Concept of liner programming	Knowledge based expert systems (KBES)
5-0	SLO-2	Various applications of the coordinate systems	Finite element principles	Steel joints and fasteners characteristics	programming	Concept of super intelligence
S-6	SLO-1	Homogeneous Coordinate systems	Advantages of FEM		Dynamicprogramming and geometric programming methods for optimal design of structuralelements	Architecture structure of KBES
	SLO-2	Cartesian coordinate systems	Applications of FEM	Feeding of Steel beam design in computer program	Standard form of linear programming problem	Applications of KBES
S-7	SLO-1	Modelling of curves	Workflow of FEM methods	Framing Steel beam and joints design flow chart	Solution of system of linear simultaneous equations	Expert Systems (ES)
3- 1	SLO-2	Modelling of surfaces	Discretization techniques	Feeding of Steel beam design and joints in computer program	Application of linear programming methods	Characteristics of Expert Systems
	SLO-1	Tutorial in AutoCAD with curves	Tutorial in MS-Excel for Matrix basic operations	Tutorial in MS-Excel for Steel beam design	Tutorial in Plastic design of frames using linear programming	Tutorial in R – statistical analysis
S-8	SLO-2	Tutorial in AutoCAD with surfaces	Tutorial in MS-Excel for Matrix Stiffness methods	Tutorial in MS Exact for Stool boom	Tutorial in Computer searchmethods of univarite and multivariate minimsation	Tutorial in R – Analytical validation
C 0	SLO-1	Solid Modelling Concepts	Concepts of Meshing	Validating the design components of RCC and Steel structures	Simplex method	Capabilities of Expert Systems
S-9	SLO-2	Solid modelling characteristics	Meshing types and applications	Importance of design and detailing at site	Revised simplex method	Components of Expert Systems
	SLO-1	Graphic standards	Analysis of beam element with FEM		Duality of linear programming sensitivity or post optimality analysis	Convolution Neural Networks (NN)
S-10	SLO-2	Differences among various available graphic standards and importance of ISO standards	Importance of verification and validation	Extracting reinforcement detailing	Optimization by structural theorems	Emerging NN architectures
S-11	SLO-1	Drafting Software Packages	Analysis through application packages	Estimation of bill of materials	CPM and PERT	Recurrent Neural Networks

Duratio	n (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
	SLO-2	Software package uses		3	algorithm and applications.	Long Short-Term Memory and Time Series Forecasting using Recurrent method
S-12	SLO-1	Tutorial in AutoCAD with transformations	Tutorial in ANSYS - Beam formation	Tutorial in MS-Excel in estimation of materials	Tutorial in CPM method	Tutorial in Al and KBES using google
3-12	SI U-7	Tutorial in AutoCAD with ISO graphic standard	Tutorial in ANSYS – Meshing of beam elements	Tutorial in MS-Excel in valuation	Tutorial in PERT method	Tutorial in NN using piped project

	 Harrison .H.B, "Structural Analysis and Design" Vol. I & II, Pergamon Press, 1991. Hinton. E and Owen .D.R.J, Finite Element Programming, Academic Press 1977.
Learning Resources	 Billy. E, Gillet, "Introduction to Operation Research", A Computer OrientedAlgorithmic Approach, Tata McGraw 1982. Krishnamoorthy .C.S and Rajeev .S., "Computer Aided Design", NarosaPublishing House New Delhi . 1991.

- 7. Peter Jackson, "Introduction to Expert Systems", 3rd Edition, Pearson Education, 2007.
- 8. Stuart Russel and Peter Norvig "AI A Modern Approach", 2nd Edition, Pearson Education 2007.
- 9. Deepak Khemani "Artificial Intelligence", Tata Mc Graw Hill Education 2013.
- 10. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall, Third Edition (2009)

Learning Asses	ssment								
	Dloom'o	Continuous Learning Assessment (60% weightage)					Fig. 1 F		
	Bloom's Level of Thinking	CLA –	1 (20%)	CLA –	2 (25%)	CLA –	3 (15%)	Final Examination (40% weight	gniage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%		20%		20%		20%	
Level I	Understand	20%	-	20%	-	20%	-	20%	-
Level 2	Apply	40%		100/	0% -	40%		40%	
Level 2	Analyze	4070	-	4070		4070	-	4070	-
Level 3	Evaluate	40%		40%		40%		40%	
Level 3	Create	40%	-	40%	-	40%	-	40%	-
Т	otal	10	0 %	10	0 %	10	0 %	100 %	<u>-</u>

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. K. Lakshmi, Sr. Scientist, CSIR-SERC, lakshmik@ser.res.in	1. Dr. Mausam, Professor, CSE, IITD-Mausam@cse.iitd.ac.in	1. Dr. S. Senthilselvan, SRMIST
2. Mr. R. Eswaran, Chief Engineering Manager, L&T,	2. Dr. Bhushan Trivedi, Professor, Faculty of Computer	2. Mr. A. Vijay, SRMIST
eswaran@Intecc.com	Technology, GLS University - mca@glsuniversity.ac.in	

0	200556117	Course Name	Ancient Building Materials and Additives in The Conservation Of	Course	_	Duefe selevel Fleether	L	T	P	C
Course Code	20CEE611T	Course Name	Heritage Structures	Category	E	Professional Elective	4	0	0	4

Pre-requisite Courses	Nil Co-requisite Cou	ırses Nil	Progressive Courses	Nil
Course Offering Department	CIVIL ENGINEERING	Data Book / Codes/Standards	Nil	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Know about the various construction materials used in the heritage structures
CLR-2:	Outline the status of conservation practice in the country and the various guidelines for the preservation, conservation and restoration of buildings.
CLR-3:	Know about the role of additives in the ancient construction
CLR-4:	Understand the behavior, repair and strengthening solutions of structural system of historic structures.
CLR-5:	Understand the salient features of ancients' monuments with case studies
CLR-6:	

Course	At the end of this course, learners will be able to:	Programme Outcom (PO)				
Outcomes (CO):		1	2	3		
CO-1:	Understanding various construction materials used in the heritage structures	3	3	-		
CO-2:	Analyze knowledge of conservation, preservation, and restoration of heritage structures.	3	3	-		
CO-3:	Evaluate the role of additives in the ancient construction.	3	3	2		
CO-4:	Analyze the stability of the historic structure	3	3	2		
CO-5:	Understanding the ancient temple architecture in India	3	3	2		
CO-6:		3	3	2		

Durati	on (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
6.1	S ()_1	Introduction of Ancient Building Materials	Introduction of Conservation In India	Introduction of Additives In Ancient Construction	Introduction of Stability Of Historic Structures	Introduction to temple architecture
S-1	SLO-2	Ancient Building Materials- Stones	Ethics of conservation	Need for additives	Introduction to structural components in a historic structure	Elements of temple architecture
S-2	SLO-1	Ancient Building Materials - Bricks	Ethics of conservation	Usesof additives	Introduction to structural components in a historic structure	Elements of temple architecture
5-2	SLO-2	AncientBinders	Preservation of ancient structures	Various natural additives used in ancient construction	Components in historic structure	Using various natural admixtures
6.2	SLO-1	AncientBindersMud	Preservationof ancient structures	Various natural additives used in ancient construction	Components in historic structure	Rock cut productions under Pallavas
S-3	SLO-2	AncientBindersLime	Principles of conservation	Study on the role of organics on ancient mortars	Types of seismic analysis	Rock cut productions under Pallavas

Durati	on (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-4	SLO-1	Types of lime and mud	Listing and documentation of historic structures	Study on the role of organics on ancient mortars	Conditions of stability analysis	Chola Architecture
3-4	SLO-2	Classification of lime and Mud	Listing and documentation of historic structures	plasters of ancient construction	Load conditions of stability analysis	Chola Architecture
S-5	SLO-1	Manufacturing process of lime	UNESCOWorld Heritage Centre guidelines for preservation	plasters of ancient construction	structural systems	Examples for Chola Architecture
3- 3	SLO-2	Manufacturing process of lime	UNESCOWorld Heritage Centre guidelines for preservation	Bio-processing of organics	various types of historic structural systems	Examples for Chola Architecture
S-6	SLO-1	Process of Slaking	rehabilitation of historic structures	Bio-processing of organics	various types of historic structural systems	Temple architectures of kerala
3-0	SLO-2 Hardening of ancient building materials		rehabilitation of historic structures	Organic analysis	Structural analysis	Temple architectures of kerala
S-7	SLO-1	Testing and Storage	adaptive re-use of historic structures	Organic analysis	Historic structural analysis	Northern india-Temple architecture of Gujarat
3-1	SLO-2	Lime putty	adaptive re-use of historic structures	Fourier Transform Infra RedSpectroscopy(FT-IR)	Historic structural analysis	Northern india-Temple architecture of Gujarat
0.0	SLO-1	Lime putty	Monument conservation and the role of Archeological Survey of India	Fourier Transform Infra RedSpectroscopy(FT-IR)	Understanding the failure of historic structures	Northernindia-Temple architecture of Orissa
S-8	SLO-2	Precautions in handling	Monument conservation and the role of Archeological Survey of India	Self healing characteristics of	Understanding the failure of historic structures	NorthernIndia-Temple architecture of Orissa
S-9	SLO-1	Uses of lime	INTACH Heritage academy	Self healing characteristics of ancient mortars	Distress in historic structures	Northern India-Temple architecture of Madhyapradesh
3- 9	SLO-2	Uses of lime	INTACHHeritage academy	Bacterial precipitation	Distress in historic structures	Northern India-Temple architecture of, Madhyapradesh
S-10	SLO-1	carbonations	Central and state government policies and legislations	Bacterial precipitation	various methods of strengthening	Northern India-Temple architecture of Rajasthan
3-10	SLO-2	carbonations	Central and state government policies and legislations	Mechanism of Bacterial precipitation	various methods of strengthening	Northern India-Temple architecture of Rajasthan
S-11	SLO-1	Hydraulic Index	Case studies on restoration of temples	Mechanism of Bacterial precipitation	Check for safety	Mughal architecture
	SLO-2	Hydraulic Index	Case studies on restoration of forts	Culturing of bacteria	Check for safety	Mughal architecture
S-12	SLO-1	Natural additive	Case studies on restoration of Palaces	Tests on bacterial growth	Advanced techniques	Examples of Mughal architecture
J-12	SLO-2	Natural additive	Case studies on restoration of Chettinad houses	Tests on bacterial growth	Advanced techniques	Examples of Mughal architecture

	1.	Percy Brown, Indian Architecture (Buddhist and Hindu Period),,Taraporevala and	3.	Beckmann, Poul 'Structural Aspects of Building Conservation', McGraw
Learning		Sons,Bombay, 1983.		Hill, 1995.
Resources	2.	Satish Grover, The Architecture of India (Buddhist and Hindu Period) Vikas Publishing		
		Housing Pvt. Ltd., New Delhi, 2003.		

Learning	Assessment									
	Dlaam'a		Continu	uous Learning Ass	sessment (60% we	ightage)		Final Eversination (400) weighters)		
	Bloom's Level of Thinking	CLA –	1 (20%)	CLA –	2 (25%)	CLA –	3 (15%)	Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%		20%	-	20%	-	20%		
Level I	Understand	20%	-	2070				20%	-	
Level 2	Apply	30%		200/	30% -	30%	-	30%		
Level 2	Analyze	3070	-	30%				30%	-	
Level 3	Evaluate	50%		50%		50%		50%		
Level 3	Create	JU%	-	30%	-	JU%	-	50%	-	
	Total	10	0 %	100 %		100 %		100 %		

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
 Mr. S. Kavin Kumar, Director, EPMCR, kavinkumar@epmcr.co.in 	 Dr Arun Menon, Associate Professor, IITM, arunmenon@iitm.ac.in 	1. Dr. R. Ravi, SRMIST							
Mr. Vinayak Dave, Sr. Manager, Business Development, Metecno, Vinayak.dave@metecno.in	 Dr. Radhakrishna G. Pillai, Associate Professor, IITM, pillai@iitm.ac.in 	2. Mr. A. Vijay, SRMIST							

Course Code	20CEE6127	Co	urse Name	Seismic Retrofit o	of Buildings	Course	Ε		Professional Elective		L	T 0	Р	C
						Category					4	U	U	4
Pre-requisite	Courses	Nil		Co-requisite Courses	Nil				Progressive Courses	Nil				
Course Offering D	Department		CIVIL ENGINE	ERING	Data Book /	Codes/Standards		Nil	-					

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Know the basic concepts of earthquake resistant design
CLR-2:	Create insights to condition assessment of existing buildings
CLR-3:	Know the materials and techniques of repair
CLR-4:	Understand the local and global deficiencies and retrofitting techniques
CLR-5:	Create insights to retrofitting of heritage structures
CLR-6:	Know about archeological reconstruction

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)					
Outcomes (CO):		1	2	3			
CO-1:	derstand the concepts of retrofitting of buildings due to earthquake		3	2			
CO-2:	Apply the methods of seismic evaluation of buildings	3	3	2			
CO-3:	Apply the local retrofitting techniques	3	3	2			
CO-4:	Analyze the global retrofitting techniques	3	3	2			
CO-5:	Understand strengthening techniques of special structures	3	3	2			
CO-6:	Evaluate retrofitting methods of building	3	3	2			

Duratio	n (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-1	SLO-1	To know the basic concepts of earthquakes seismic design and retrofit of buildings	Causes and effects of EQ	Introduction-	Introduction	Introduction
3-1	SLO-2	seismic vulnerability assessment	Characterization of EQ	Basic terms and definitions	Basic terms and definitions	recommendation of the international council on monuments and sites (ICOMOS)
S-2	SLO-1	retrofit strategies for different types of buildings	Response spectrum	Uses and applications	Uses and applications	Uses and applications
3-2	SLO-2	BASIC CONCEPTS Making buildings safe against earthquakes	Basics of seismic analysis	Limitations	Limitations& codes	Limitations
6.2	SLO-1	Introduction to earthquakes	layout and configuration for seismic design	Codes used	seismic analysis	Codes used
S-3	SLO-2	factors affecting the response of a building	lateral load resisting systems	Difference between retrofitting and repair	building deficiencies to retrofit	cultural heritage

Duratio	n (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
	SLO-1	Importance of lateral strength	capacity based design	Systematic approach to diagonsis	strengthening of roofs and	Natural heritage
S-4	SLO-2	importance of ductility	performance based design	Process of retrofit	Strengthening of upstairs floors	Difference between natural & cultural heritage
C E	SLO-1	importance of integrity	Rapid visual screening, data collection and preliminary evaluation - Overview	Lintel belt	strengthening of pillars	Historical monuments in india
S-5	SLO-2	essentials of seismic design of masonry buildings	rapid visual screening of Masonry Buildings and as per FEMcontentlink54	Corner strengthening	stress relieving techniques	Historical monuments in world
	SLO-1	essentials of seismic design of RC buildings	Data Collection	Gable bracing	global retrofitting techniques	Protection of biodiversity
S-6	SLO-2	how EQ-safe is our building	rapid visual screening of R.C Buildings and as per FEMcontentlink54	In- plan roof bracing	retrofit strategies-Global	Protection of historical places
	SLO-1	To retrofit or not-retrofit of non- engineered	Data Collection	Plinth protection	retrofit strategies-local	Preserve our nature
S-7	SLO-2	To retrofit or not-retrofit of Masonry Buildings	rapid visual screening of steel Buildings and as per FEMcontentlink54	Crack sealing	importance of seismic evaluation	condition assessment
	SLO-1	To retrofit or not-retrofit of RC Buildings	Data Collection	Vulnerability of buildings	selection of retrofit strategy.	strengthening of Masonry walls
S-8	SLO-2	Need for seismic evaluation of existing buildings	preliminary evaluation	seismic resistance features	Deficiencies of single storeyed buildings	strengthening of arches
S-9	SLO-1	attributes to seismic design	Condition Assessment of Existing Buildings: Overview	repair materials	Deficiencies of multi storeyed buildings	strengthening of vaults
3-9	SLO-2	lateral strength	Condition Assessment of Existing Buildings: Introduction	repair techniques	retrofit strategies for single storey buildings	strengthening of domes
S-10	SLO-1	lateral stiffness	property of materials w.r.t the materials in existing buildings	strengthening of roofs	retrofit strategies for multi storeyed buildings	strengthening of towers
	SLO-2	Ductility, stability	its deterioration	strengthening of up stair floors	retrofit of foundations.	strengthening of spires
S-11	SLO-1	integral action of retrofit, repair and rehabilitation	Visual inspection	strengthening of walls	Deficiencies in foundations	reduction of seismic effect on structure
	SLO-2	Retrofit goals	Detailed investigation	strengthening of pillars	condition assessment	Strengthening of soil
	SLO-1	retrofit objectives	NDT	Various instruments to be used	methods of analysis	Strengthening of foundation
S-12	SLO-2	steps in seismic retrofit	intrusive rests.	techniques of global strengthening	Types of interventions.	archeological reconstruction.

	1.	Naeim, F.	(1989).	The seismic	design handbook	. Springer	Science &	& Business	Media.
--	----	-----------	---------	-------------	-----------------	------------	-----------	------------	--------

- 2. Jaiswal, O. R., Rai, D. C., & Jain, S. K. (2004). Review of code provisions on seismic analysis of liquid storage tanks. Document No. IITK-GSDMA-EQ04-V1. 0.
- 3. Fintel, M. (Ed.). (1974). Handbook of concrete engineering (p. 801). New York: Van NostrandReinhold
- 4. Hendry, A. W. (1990). Structural masonry. Scholium International.

Learning

Resources

- Drysdale, R. G., Hamid, A. A., & Baker, L. R. (1994). Masonry structures: behavior and design. Prentice Hall
- 6. Bozorgnia, Y., &Bertero, V. V. (Eds.). (2004). Earthquake engineering: from engineering
- 7. seismology to performance-based engineering. CRC press.
- 8. Gupta, A. K. (1992). Response spectrum method in seismic analysis and design of structures (Vol. 1) CRC press.
- 9. Beskos, D. E., & Anagnostopoulos, S. A. (1997). Computer analysis and design of earthquake resistant structures: a handbook. WIT Press.

Learning Assessment												
_	DI I		Contir	nuous Learning Ass	essment (60% weig	ghtage)		Final Examination (40% weigh				
	Bloom's Level of Thinking	CLA –	1 (20%)	CLA –	2 (25%)	CLA –	3 (15%)					
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	20%	-	20%	-	20%	-	20%	-			
Level 2	Apply Analyze	30%	-	30%	-	30%	-	30%	-			
Level 3	Evaluate Create	50%	-	50%	-	50%	-	50%	-			
Total		100) %	100) %	10	0 %		100 %			

CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
 Dr. Smitha Gopinath, Principal Scientist, CSIR-SERC, smithag@serc.res.in 	1. Dr. U. Saravanan, Professor, IITM, saran@iitm.ac.in	1. Mr. H. Thiagu, SRMIST
Dr. Amar Parakash, Principal Scientist, CSIR-SERC, amar@serc.res.in	 Dr. G.Beulah Gnana Ananthi, Associate Professor, Anna University, beulah28@annauniv.edu, beulahceg@gmail.com 	2. Mr. S. Pradeep, SRMIST

Course Code 20CEE613T	Course Name	Disaster Resis	tant Structures	Structures Course Category		Professional Elective			L 1	Г Р) 0	U
Pre-requisite Courses Course Offering Department	Nil CIVIL ENGINEER	Co-requisite Courses	Nil Data Book / Codes/S	tandards	Nil	Progressive Courses	Nil				
Course Learning Rationale (CL	LR): The purpose	of learning this course is to:		_earning		Program Lear	ning Outcom	es (PLO)			

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Understand the design philosophy for loads, earthquake and wind
CLR-2:	Study the materials to be used, and design to be made for disaster resistant structures
CLR-3:	Study damage assessment and retrofitting
CLR-4:	Understand materials design and detailing for lifeline structures
CLR-5:	Know techniques of damage assessment
CLR-6:	Acquaint the students with case studies on different extreme cases affecting structures

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Understanding design criteria for extreme loads	3	3	2	
CO-2:	Evaluate materials to be used, and design to be made for disaster resistant structures	3	3	2	
CO-3:	Evaluation of Knowledge assimilation of damage assessment and retrofitting	3	3	2	
CO-4:	Application of materials used in disaster prevention	3	3	1	
CO-5:	Techniques of damage assessment and analyse	3	3	2	
CO-6:	Evaluate the knowledge of structures behavior against disaster and inclusion of different strategies	3	3	2	

Duratio	n (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)
S-1	SLO-1		Introduction to Community structures	Untroduction to renabilitation	Modern Materials for disasters reduction	Introduction to damage assessment
3-1		Design philosophy of lifeline structures Design philosophy of communications structures		Introduction to retrofitting	Different tests on repair materials	Techniques of damage assessment
S-2		Design philosophy of flood resistant structures	Safety Analysis	Various repair materials	Test of different Fiber, Mix design with admixtures	Damage surveys
3-2	SI U /	Flood resistant structure models across globe	Safety rating	Repair material properties	Test of different Fiber, Mix design without admixtures	Maintenance and modification to improve hazard resistance
S-3		Design philosophy of cyclone resistant structures	Reliability assessment methods	Criteria for material selection	Artificial fibre reinforced polymers	Effects due to climate, temperature, chemicals, wear and erosion

Duratio	n (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)	
	SLO-2	Cyclone resistant structure models across globe	Virtual assessment	service/exposure properties	Natural fiber like Sisal and Jute	Design and construction errors	
	SLO-1	Design philosophy of earthquake resistant structures	Repair methodology	Testing and evaluation	Adhesive like, Epoxy Resin	Purpose of damage assessment	
S-4	SLO-2	Earthquake resistant structure models across globe	Repair techniques	Different Non-destructive and partial destructive methods of investigation for concrete structures	Special concretes and mortars	Rapid assessment techniques	
S-5	SLO-1	Design philosophy of fire- resistant structures	Retrofitting of structures	Different Non-destructive and partial destructive methods of investigation for masonry structures	Concrete chemicals	Investigation of damage	
3- 3	SLO-2	Fire- resistant structure models across globe	Case studies on retrofitting	Different Non-destructive and partial destructive methods of investigation for timber structures	Special elements for accelerated strength gain	Evaluation of surface cracks	
S-6	SLO-1	National code of practice on lifeline structures	Retrofitting procedures and practices	Schmidt hammer test	Techniques for Repair: Rust eliminators	Evaluation of structural cracks	
3-0	SLO-2	International code of practice on lifeline structures			Vacuum concrete	Crack initiation mechanism	
S-7	SLO-1	Bylaws of urban areas	Nuclear Structures construction practice	Petrography testing techniques	Gunite and Shot Crete Epoxy injection	Damage assessment procedure	
3-1	SLO-2	Bylaws of urban areas closer to coastal zone	Importance of Nuclear structures	Ultrasonic pulse velocity test, Rebar locators, Half cell potentiometers	Detailing aspects of structures subject to probable disasters	NDT Techniques	
	SLO-1	Bylaws of semi-urban areas	Protection of nuclear structures	Classification according to safety level	Importance of ductile detailing	Coastal regulation zones	
S-8	SLO-2	Bylaws of semi-urban areas closer to coastal zone	International structural recommendations on nuclear structures	Methods and materials for strengthening for different disasters	Codal provisions on ductile detailing	Techniques in protecting coastal zones	
•	SLO-1	Past history of floods	Dam Structures construction practice	Regulations and provisions for various types of disasters	Construction techniques	Creation of buffer zones in coastal areas	
S-9	SLO-2	Past history of cyclones	Importance of Dam structures	International laws on protecting structures against various disasters	Analysis methodology for retrofitting	Creation of natural methods in preventing storm surges	
	SLO-1	Past history of earthquake	Protection of Dam structures	Qualification tests	Techniques for optimal performance	Case study on mangroves in preventing storm surge	
S-10	SLO-2	Past history of fire accidents on structure in India	International structural recommendations on Dam structures	Holistic approach for multi-faced disaster mitigation	Structural health monitoring	Damages estimation due to explosion	

Duratio	n (hour)	Module 1 (12)	Module 2 (12)	Module 3 (12)	Module 4 (12)	Module 5 (12)		
0.44	SLO-1	Past lessons learnt	Bridge Structures construction practice	Design issues	Active and passive health monitoring techniques	Foundation improvement techniques		
S-11		Approach to traditional and Modern Structures	Importance of Bridge structures	Seismic retrofitting	Load testing of structures	Foundation improvement techniques – Cont'd		
	51 U-1	Concept of life period-based Design	Protection of Bridge structures	Cyclone shelter and Flood control	Introduction to maintenance management	Application GIS in disaster management		
S-12	SI ()-/	II IVA CASAS OF LIFA NATION-HASAN	International structural recommendations on Bridge structures	Mitigation approaches on structures	Introduction to life estimation of structures	f Case study on GIS in assessment		

Learning Resources	1. 2.	Raiker .R.N, "Learning from failures, Deficiencies in Design, Construction and Service", R&D Center, Raiker Bhavan, 1987. Allen .R.T, and Edwards .S.C., "Repairs of Concrete Structure", # Ie and Sons, U.K.1987.	3. 4.	Moskvin .V "Concrete and Reinforced Concrete" - Deterioration and protection - MIR Publishers - Moscow 1983. Lecture notes on the course "Disasters Management" - conducted by Ann University, 2000.
-----------------------	----------	--	----------	---

Learning A	Learning Assessment										
	Bloom's		Continu	ous Learning Ass	Final Examination (40% wai	abtaga)					
	Level of Thinking	CLA –	1 (20%)	CLA –	2 (25%)	CLA –	3 (15%)	Final Examination (40% wei	% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%		20%		20%		20%			
Level i	Understand	20%	_	20%	-	20%	-	2076	-		
Level 2	Apply	30%	_	30%	-	30%	_	30%	_		
LEVEI Z	Analyze		-	3070		3070	-	3076	_		
Level 3	Evaluate	50%	_	50%	_	50%		50%	_		
LEVEI 3	Create	3070	_	3070	_	3070	-	3076	_		
Total		10	0 %	10	0 %	10	0 %	100 %			

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
Mr. Kishore Balasubramanian, Head, Structures, info@fsa- se.com	1. Dr. P. A. Krishnan, Professor, NITT, pak@nitt.edu	1. Dr. S. Senthilselvan								
 Mr. G. Ramesh, Director-Technical, Kriyaacon, info@kriyaacon.com 	Dr. S. T. G. Raghukanth, Professor, IITM, raghukanth@iitm.ac.in	2. Mr. A. Vijay								

Course	Course 20GNS501J Course		RESEARCH PUBLISHING AND PRESENTING SKILLS			Course	c	Skill Enhancement	L	T	Р	С
Code	20GN35015	Name	RESEARCH PUBLISHING AND PRESENTING SKILLS			Category	3	Skill Elillancement		0	2	2
Pre-requisite	N I! I		Co-requisite	A I ! I		Progressive	A I:I					
Courses	IVII		Courses	IVII		Courses	Nil					
Course Offerin	g Department	All Departments	·		Data Book / Codes/Standards	Nil						

Course Learning Rationale (CLR):	The purpose of learning this course is to:		
CLR-1:	actice different oral presentation material preparations		
CLR-2:	ractice presenting techniques suitable for different audiences		
CLR-3:	Prepare and typeset scientific documents for disseminating research findings		
CLR-4:	Analyze different disseminating techniques available		
CLR-5:	Utilize different intellectual property sharing mechanisms		
CLR-6:	Evaluate amongst different options available to present, publish research findings		

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
Outcomes (CO):		1	2	3		
CO-1:	Identify different oral presentation elements, materials and technologies	1	3	2		
CO-2:	Practice high impact presentation skills	1	3	2		
CO-3:	Identify ways to present technical / scientific content structure and elements	1	3	2		
CO-4:	Practice the different disseminating techniques used in scientific research findings	1	3	2		
CO-5:	Identify intellectual property and its components, ways to protect, share intellectual information	1	3	2		
CO-6:	Analyze the different oral and written publishing techniques to disseminate research findings	1	3	2		

Dura	ation	Oral Content Preparation	Oral Content Preparation Presenting Methods		Publishing Methods	Intellectual Property & Plagiarism	
(hour)		9	9	9	9	9	
S-1	SLO-1	Extempore	Experience, Needs, Goals		Typesetting: LaTex, Word, XML etc.,	Public License, Creative Commons, Share-alike, Reciprocal License,	
		context, need, agenda ,task, and object of the presentation document		Writing Dedication, Acknowledgement, Forward, Background		Copyleft, Patentleft, Open patent, Public Domain	

Dur	ation	Oral Content Preparation	Presenting Methods	Written Content Preparation	Publishing Methods	Intellectual Property & Plagiarism
(h	our)	9	9	9	9	9
\$ 2-3		Practice-1: Create Structure of a Presentation	Practice-4: Building rapport with Audience		Practice-12: LaTex Editor, Word Editor	Practice-13: GNU-GPL, Public License Creative Commons License, Unlicense
S-4	SLO-1	•	Complex Material, Communicating	Literature Review: Narrative, Systematic, Argumentative, Integrative, Theoretical	Disseminating Research Findings: Public Domain, Open Information, Wikipedia	Intellectual Property Rights, Copyrights, Patents, Trademarks, and Trade secrets
5-4			Pressure Situations, Inspiring	Writing Problem Statement, Limitations, Method Adapted, Tools & Technology used	Media, Press Release, Flyers, Brochure, Research Summary, Posters, Websites	Industrial design rights, Plant variety rights, trade dress, geographical indications
S 5-6		Practice-2: Create a structured oral presentation module	Practice-5: Communicating with Greater Impact, Rehersals and Retrials		Practice-11: Study of Various Open Publishing Methods	Practice-14: IPR Law, Private Domain
6.7		Tools: Presentation Slides, Whiteboard Animators, Immersive Technologies	Delivery Styles: Visual, Freeform, Lessig Instructor, Coach, Storytelling, Connector	Main Body: Analysis, Design, Development Steps, Implementation Steps, Evaluations	Patents, Journals, Conferences, Reports, RFCs etc.,	Infringements: Copylefts, Copyrights, Patentlefts, Patentrights,
S-7		Demonstrative Aids, Thought	Persuasive, Interactive, Decision Making, Educational, Takahasi Arousing	Referencing: Documentary, Parenthetical, Numbered, Vancouver, IEEE, Harvard etc.,	Journal Index, Impact Factor, Quality Standards	Plagiarism: Paraphrasing, Verbatim, Mosaic, Global, Self, Accidental etc.,
S 8-9		· ·	Practice-6: Presenting same content using different delivery styles	Practice-9: Writing Main Body	Practice-12:Study of h-index, i10-index, g-index, r-index, π - index	Practice-15: Plagiarism checking and correcting techniques

Learning Resources

- 1. Dale Carnegie, "Develop Self-Confidence, Improve Public Speaking", Amazing Reads, 2018
- 2. Dale Carnegie, "The Art of Public Speaking", Amazing Reads, 2018
- 3. Joseph Mugah, "Essentials of Scientific Writing: How to Write Effective Titles and Abstracts for Research Papers and Proposals", Authorhouse, 2016
- 4. Rajesh Singh, Sanjeev Kumar Sinha, Samir Kumar, "Unfolding Intellectual Property Rights: A Practical Patent Guide for Researchers, Academicians and start-ups", Notion Press, 2019
- 5. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016

	Learning Assessment									
	Dloom's		Co	ntinuous Learning Ass	essment (60% weighta	ge)		Final Exam	ination (40%	
	Bloom's Level of Thinking	CLA –	1 (20%)	CLA –	2 (25%)	CLA – 3	# (15%)	weig	htage)	
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	
Level I	Understand	2070	2070	1070	1370	1370	1370	1370	1370	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	2070	2070	2070	2070	2070	20 /0	2070	2070	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	

Create				
Total	100 %	100 %	100 %	100 %

CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
1. Dr. Sainarayanan Gopalakrishnan, HCL Technologies, sai.jgk@gmail.com	1. Dr. Venkat Adhikari, Technology Licensing Manager, IISC, venkatadhikari@iisc.ac.in	1. Dr. Rajeev Sukumaran SRMIST						
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	Mr. Ateet Palmurkar, Senior Manager IP Licensing, IITM, ipmarketing@iitm.ac.in	2. Dr. V. Nithyananthan SRMIST						

Course	20GNS502J	Course	RESEARCH METHODOLOGY (SCIENCE and TECHNOLOGY)	Course	9	Skill Enhancement	L	Т	Р	С
Code		Name	RESEARCH METHODOLOGY (SCIENCE and TECHNOLOGY)	Category	3	Skill Enhancement	2	1	2	4

Pre-requisite Courses	Co-requisi	ite Courses	Nil	Progressive Courses	Nil
Course Offering Department All Departments		Data Book /	Codes/Standards	Nil	

Course Learning Rationale (CLR):	The purpose of learning this course is to:			
CLR-1:	t overall picture of research methodology			
CLR-2:	earch and find research resources and to review it			
CLR-3:	Get expertise in academic writing and presentation skills			
CLR-4:	Learn the importance of modern statistical tools for research			
CLR-5:	Learn optimization tools, modelling tools and case studies in the domain of study			

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):			2	3	
CO-1:	Demonstrate ability to identify research topic and draft research proposal using the scientific methods of enquiry.	3	3	-	
CO-2:	Carry out literature survey / review in research domains using online, library resources and modern tools.	3	3	-	
CO-3:	Write project proposals, research reports and publish the work with ethical and moral responsibilities.	3	3	2	
CO-4:	Apply statistical principles in data collection, analysis, inference and prediction.	3	2	2	
CO-5:	Apply basic principles and modern tools to model and simulate engineering systems	3	-	3	

Duration (hour)		Research Preparation and	Research Resources	Academic Writing & Presentation	Data Collection, Analysis and	Modelling and Case Studies
		Planning (9+2 Tutorial)	(9+2 tutorial)	(6+5 Tutorial)	Inference (12)	12(practice)
S-1	SI ()_1		ICT enabled tools	funding – Identification of funding	Basic probability distributions – types – applications in	Optimization studies and modern
	ISI ()-/		Databases repositories public	, ,	Normal distribution – exercises –	tools usage in the field of study case studies, use cases,
		knowledge economy	and private sources, indexes		tools	exercises

S-2	SLO-1	Perspectives of stakeholders	Literature search – Keyword, backward and forward search		Binominal and Poisson distributions – exercises using software	
	SLO-2	Types of research - examples	Area of research – background knowledge – new approach	Communication model – audience analysis – tailoring for audience	Weibull and exponential distributions	
S-3	SLO-1	Understanding research goals – examples	Quality measurement tools: citation index, impact factor, h-index, g-index, i10 index, JCR	Identification of suitable journal – format – instructions to authors – structure - major headings	Sampling: types – size of sample – sample designs	
	SLO-2	Critical thinking Vs Creative thinking		Writing discussion & conclusions		
6.4	SLO-1	Templates for design problem definition	Reading research article – meta analysis	Conference presentation types: Oral, poster – difference in audience interaction	Sampling tests: Student t-test – applications in engineering / research – exercises using	Modelling and Simulation in the field of study – case studies, use cases,
S-4	SLO-2	Research proposal – rational techniques to find research ideas	Literature review: Grouping, analyzing & comparison of articles	Synopsis – Thesis - extended abstract – graphical and video abstract - short communications		exercises (to improve analyzing and evaluating skills of scholars)
S-5	SLO-1	Techniques for generating research topic – attributes, justification	Reporting literature review	Contributions of the work – Novelty – Innovation - Examples	F-test and its application in research studies – exercises using software	
3-3	SLO-2	Identifying broad research question and objectives.	Literature gap, refining research question and objectives – case studies	Referencing – style – tools for referencing, Appendix – Manual for preparation of Synopsis	χ2 test and its application in research studies – exercises using software	
S-6	SLO-1	Methods of scientific enquiry – Theoretical, Experimental and Emperical - Examples	Identification of research methods – Experiments – results – Examples	Thesis Writing: Structure – Preliminary pages, Main body, References – contents - Manual	Correlation and regression Analysis- Time series analysis	
	SLO-2			Evaluation of Thesis – examiner reports – example - Oral defense	Forecasting methods	
	SLO-1	Innovation, Tools for scientific enquiry - Questionnaire	Intellectual Property Rights – Motivation – WIPO and WTO – IPR laws – TRIPS	Tutorial on writing an abstract from a manuscript	Factor analysis, Cluster Analysis and Discriminant Analysis	Recent inventions and innovations in the field of study – Case
S-7	SLO-2	Techniques in designing questionnaire – case studies	Copyright – patent – invention – trademark – trade secret – Geographical indication – industrial designs – Technology transfer			studies. 2. Adoption of Artificial
S-8	SLO-1	Hypothesis - Formulation	Patenting procedures; Patent search – case studies	Tutorial on writing materials and methods and methodology /	Design of experiments - basic experimental designs:	Intelligence and Machine Learning tools in the field of
	SLO-2	Hypothesis testing – examples / case studies		experiments	Completely Randomized Design	study – case studies.
S-9	SLO-1	Procedural guidelines in research	Exercise on literature review			

	SLO-2	process – example / use case			Randomized Block Design, Latin	
	OLO-Z			results using charts and graphs	Square Design - Exercises	
	SLO-1	Tutorial on questionnaire	Tutorial on reading a research	Tutorial on writing discussion section	Full factorial design - 22, 23 and 24	Analysis of thesis from library /
S-10	SLO-2	preparation	article			UGC/ other University web portals, etc
	SLO-1	Tutorial on hypothesis formulation	Tutorial on writing literature	literature review. Tutorial on thesis preparation	Fractional factorial designs -	portais, etc
S-11	SLO-2	and testing	review report from literature search		exercises	
C 42	SLO-1				Accuracy, Precision and error	
S-12	SLO-2				analysis	

	1. Mukerjee, S.P., (2020), A Guide to Research Methodology: An Overview of
	Research Problems, Tasks and Methods, CRC Press, Taylor & Francis Group, New
	York
	2. Bairagi, V., and Munot. M.V., (2019), Research Methodology: A practical and
	scientific approach, CRC Press, Taylor & Francis Group, New York.
	3. Locharoenrat, K., (2017), Research Methodology for beginners, CRC Press, Taylor
	& Francis Group, New York
	4. Alvi, M.H., (2016), A Manual for Referencing styles in Research, University of
Resources	Karachi, Karachi, Pakistan.
IVE20010E2	F IEEE Defenses Ovide (2040) IEEE Devictions - Transactions / January

5. IEEE Reference Guide (2018), IEEE Periodicals, Transactions / Journal

6. Ganesan R, Research Methodology for Engineers, MJP Publishers, Chennai. 2011

Department, Piscataway, New Jersey, USA

- 9. Adams, K.A., and Lawrence, E.K., (2019), Research Methods, Statistics and applications, Sage Publication, Thousand ORKS, California, USA
- 10. Gastel, B., and Day, R.A., (2016), How to Write and Publish a Scientific paper, 8th Edition, Greenwood, California
- 11. Kornuta, H.M., and Germaine, R.W., (2006), A concise guide to writing a Thesis or Dissertation, 2nd Edition, Taylor & Francis Group, New York
- 12. Greenfield, T., and Greener, S., John Wiley & Son (2016), Research Methods for Post Graduates, West Sussex, United Kingdom.
- 13. Turabian, T.L., (2007), A Manual for Writers of Research Papers, Thesis and Dissertation, 7th Edition, The University of Chicago Press, Chicago, USA
- 14. Theil, D.V., (2014), Research Methods for Engineers, Cambridge University Press, Cambridge, UK.
- and Scientists, Pearson Prentice Hall, Pearson Education, Inc. 2007.
 Dawson, C., (2002), Practical Research Methods, How to Books, Oxford OX4.1E, United Kingdom.

7. Walpole R.A., Myers R.H., Myers S.L. and Ye, King: Probability & Statistics for Engineers

15. Web resources: Suitable web resources shall be referred by learners.

	Learning Assessment													
	Bloom's		Cor	ntinuous Learning Asse	essment (60% weighta	ige)		Final Exami	ination (40%					
	Level of Thinking	CLA – 1	1 (15%)	CLA – 2	CLA – 2 (20%) CLA – 3 #(2		#(25%) wei		ghtage)					
	Level of Thirking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice					
Level 1	Remember	30 %	_	30 %	_	_	_	30 %	_					
LOVOIT	Understand	00 70		00 70				00 70						
Level 2	Apply	40 %	_	40 %	_	_	80%	40 %	_					
LCVCI Z	Analyze	10 70		10 70			0070	10 70						
Level 3	Evaluate	30 %	_	30 %	_	_	20%	30 %	_					
Level 3	Create	30 70	_	30 70	_	_	2070	30 70	_					

Total	100 %	100 %	100 %	100 %
// OLA OLUM 6 MAIN				

CLA – 3 shall be from Modelling and case studies unit.

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad,	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University,	1. Prof. A. Subbarayan,,							
kumaranuj.anii@gmail.com	meena68@annauniv.edu	SRMIST							
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2 Dr. Vankatagan Cr. Scientist NIOT Channel vankat@nist reg in	2. Prof. D. Kingsly Jeba							
2. Wir. Harinarasuurian - Johnson Controls, Pune, harinarasuurian.v@jor.com	2. Dr. Verikalesari, Sr. Scientist, NiO1, Chemiai, Verikal@niot.res.iii	Singh, SRMIST							

Course	20CEP601L	Course Name	INTERNSHIP	Course Cotegory	В	Internship In Industry	L	T	Р	С
Code	ZUCEPOUIL	Course Name	INTERNOTIF	Course Category	F	Internship in Industry	0	0	0	4

Pre-requisite Courses	Nil	Co-requisite Courses		Progressive Courses	
Course Offering De	partment	CIVIL ENGINEERING	Data Book / C	odes/Standards	Nil

Course Learning Rationale (CLR):	The purpose of learning this course is to:				
CLR-1:	Provide an exposure to an industrial environment or research laboratory / institution				
CLR-2:	Acquire practical knowledge of theoretical concepts				
CLR-3:	Understand the organization structure, functions and protocols				

Course Outcomes (CO):	At the end of this course, learners will be able to:	Progra	Programme Outcomes (PO)			
. ,		1	2	3		
CO-1:	Appreciate the functioning of an organization		3	2		
CO-2:	Apply the theoretical concepts to solve engineering problems	3	3	2		
CO-3:	Take up different roles in a career with confidence	2	2	2		

It is mandatory for every student to undergo this course.

Every student is expected to spend a minimum of 4 to 6 weeks in an Industry/ Company/ Organization, during the summer vacation between II and III semester

The type of industry must be NOT below the Medium Scale category in his / her domain of the degree programme.

The student must submit the "Training Completion Certificate" issued by the industry / company / Organisation as well as a technical report not exceeding 15 pages, within the stipulated time to be eligible for making a presentation before the committee constituted by the department.

The committee will then assess the student based on the report submitted and the presentation made.

Marks will be awarded out of maximum 100.

Appropriate grades will be assigned as per the regulations.

Only if a student gets a minimum of pass grade, appropriate credit will be transferred towards the degree requirements, as per the regulations.

It is solely the responsibility of the individual student to fulfill the above conditions to earn the credits.

The attendance for this course, for the purpose of awarding attendance grade, will be considered 100%, if the credits are transferred, after satisfying the above (1) to (8) norms; else if the credits are not transferred or transferred, after satisfying the above (1) to (8) norms; else if the credits are not transferred or transferred, after satisfying the above (1) to (8) norms; else if the credits are not transferred or transferred or transferred.

The committee must recommend redoing the course, if it collectively concludes, based on the assessment made from the report and presentations submitted by the student, that either the level of training received or the skill and / or knowledge gained is NOT satisfactory.

Assessment for Semes	Assessment for Semester Internship									
	Final Evaluation (100% weightage)	Final Evaluation (100% weightage)								
	Report along with completion certificate from company	Viva-Voce								
Semester Internship	50 %	50 %								

Course	20CEP603L	Course Name	PROJECT WORK PHASE - I	Course Category	D	Project Work / Internship in Industry	L	T	Р	С
Code	ZUCEPOUSE	Course Name	PROJECT WORK PHASE - I	Course Category	Г	Project Work / Internship in Industry	0	0	12	6

Pre-requisite Courses	Co-requisite Courses	Nil	Progressive Courses	
Course Offering Department CIVIL ENGINEERII	VG	Data Book / Codes/Standards	Nil	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Provide students with the opportunity to explore a problem or issue of particular personal or professional interest
CLR-2:	Address the problem or issue through focused study and applied research
CLR-3:	Prepare a technical report and present in a professional manner

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
(60).		1	2	3		
CO-1:	Identify issues/problems pertaining related to structural elements based on individual or societal interest	3	3	2		
CO-2:	Apply and analyse the structural engineering knowledge for finding suitable solutions for the individual/ set of problems	3	3	2		
CO-3:	Compile the outcomes scientifically and communicate in the expert forum	3	3	2		

The project work (Phase – I) is the preparatory phase for the major project to be taken up during the final semester of the programme. Each student is expected to identify an engineering problem in his / her specialization of study. Each student must study in-depth the issues / causes & effects underlying the problem and define the objective of the subsequent work.

A faculty supervisor / mentor will be assigned to each project.

A report of the work done during Phase – I must be submitted at the end of the semester, for evaluation.

Assessment will be made as per the table below:

	Continuous Learning Assessment (70% weightage)			Final Evaluation (30% weightage)		
	Review - 1	Review - 2	Review – 3	Project Report	Viva-Voce	
Project Work (Phase I)	15 %	25 %	30 %	15 %	15 %	

Course	20CEP604L	Course Name	PROJECT WORK PHASE - II	Course Category	D	Project Work / Internship in Industry	L	T	Р	С
Code	20CEP004L	Course Name	PROJECT WORK PHASE - II	Course Category	Г	Project Work / Internship in Industry	0	0	32	16

Pre-requisite Courses	Co-requisite Courses	Nil	Progressive Courses	
Course Offering Department CIVIL ENGINEERIN	IG	Data Book / Codes/Standards	Nil	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Provide students with the opportunity to explore a problem or issue of particular personal or professional interest
CLR-2:	Address the problem or issue through focused study and applied research
CLR-3:	Demonstrate the student's ability to synthesize and apply the knowledge and skills acquired in his/her academic program to real-world issues and problems
CLR-4:	Affirm students' ability to think critically and creatively, to solve practical problems, to make reasoned and ethical decisions, and to communicate effectively
CLR-5:	Prepare a technical report and present in a professional manner

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
Outcomes (CO):		1	2	3		
CO-1:	Understand problem pertaining to various social relevant issues based on individual or Community base	3	3	3		
CO-2:	Apply their expertise to provide a suitable long-term solution to research problems	3	3	3		
CO-3:	Impart his/her specialization knowledge in addressing issues pertaining to the society	3	3	3		
CO-4:	Recommend with suitable justification, by comparing with various standards and regulations	3	3	3		
CO-5:	Compile the output in a scientific way and present it to scientific community	3	3	3		

The project work Phase - II is to extend their academic experience into areas of personal interest, working with new ideas, issues, organizations, and individuals.

The project shall be driven by realistic constraints like that related to economic, environmental, social, political, ethical, health & safety, manufacturability and sustainability. A report of the work done during Phase – II must be submitted at the end of the semester, for evaluation.

Assessment will be made as per the table below:

		Continuous Learning	Assessment	Final Evaluation			
		(70% weight	tage)	(30% weightage)			
	Review - 1	Review - 2	Review - 3	Project Report	Viva-Voce		
Project Work	15 %	25 %	30 %	15 %	15 %		
(Phase I)							

Course Code	20CEA531J	Course Name	DISASTER	R MANAGEMENT	Course Category	Α	Audit	1	T 0	P 1	C
Pre-requisite Courses	Nil		Co-requisite Courses	Nil	Progressive Courses	Nil					
Course Offer Departmen	- UIVII FINGINFERI	NG		Data Book / Codes/Standard	s Nil	•					

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Introduce various types of disasters and role of various stakeholders in disaster management
CLR-2:	Understand various phases of disaster management and risk reduction measures
CLR-3:	Acquire knowledge on hazard management systems
CLR-4:	Manage the pre and post disaster scenario
CLR-5:	Understand the role of disaster management and development
CLR-6:	Understand various disaster management acts

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)				
Outcomes (CO):		1	2	3		
CO-1:	Understand the role of various stakeholders in risk reduction measures	3	3	2		
CO-2:	Develop management measures by considering preparedness, response and recovery and mitigation techniques	3	3	2		
CO-3:	Evaluate the key concepts of hazard management systems	3	3	1		
CO-4:	Distinguish various approaches of pre and post disaster scenarios	3	3	2		
CO-5:	Integrate the management principles in disaster management	3	3	2		
CO-6:	Apply various rules and regulation employed in disaster management	3	3	2		

Dura	tion (hour)	5	5 5		5	5	
S-1		Disaster management; Global Issues; History of Disaster management	Hazards- Geological		Pre-Disaster Management ; Post Disaster Management	Role of Technology in Disaster Management in India; Emergency Management Systems (EMS)	
	SLO-2	Case Study	Case Study	Example of risk evaluation	Discussion- With Case Study	Discussion- NDMP Manual	
S-2	SLO-1		Hazards- Hydrologic, Meteorological	Risk Perception; Vulnerability	Integrated Developmental Planning for Disaster Management; Role of Government agencies and NGO's in Mitigation & Management	Role of Remote sensing, GIS and GPS in Disaster Management	
	SLO-2	Discussion on various strategies	Case Study	Example of Risk assessment	Discussion- With Case Study	Discussion- NDMP Manual	

Dura	tion (hour)	5	5	5	5	5
S-3	SLO-1	Disaster Management- Phases		Preparedness	Vulnerable Groups in Disasters Management ; Essential Supplies; Site Management, Medical Trauma and Stress Management	Disaster Management in India- NDRF
	SLO-2	Discussion- NDMP- Manual	Case Study	Discussion- Need for Preparedness, Role of team work	Discussion- With Case Study	Discussion- NDMP Manual
S-4	SLO-1	Disaster Trends, Relation between Poverty Development	Hazards- Transportation, Infrastructure	Agencies involved; Mitigation- Types	Physical and Socio-economic Impacts of Disasters; Emotional Impacts of Disasters	Disaster Management Act (2005), Disaster Management Policy (2009)
	SLO-2	Discussion- NDMP- Manual	Case Study	Discussion on various types of mitigation and their importance	Discussion- With Case Study	Discussion- NDMP Manual
S-5	SLO-1	Disaster Management- Indian Scenario	Hazards- Industrial, Intentional	of Insurance	Rehabilitation and Reconstruction; Education and Public awareness; Capacity building	Major Disasters in India
	SLO-2	Case Study	Case Study	Case Study	Discussion- With Case Study	Case Studies

	1.	D. Alexander, Natural Disasters, ULC Press, 1999	5.	Disaster Management Act "2005", Ministry of Home Affairs, Govt. of India, 2005
	2.	W.N. Carter, Disaster Management: A Disaster Management Handbook, Asian	6.	Reports of "National Disaster Management Authority", Govt. of India, 2013
Lograina		Development Bank, 2008	7.	https://nptel.ac.in/courses/105104183/#
Learning	3.	Damon P. Coppola, Introduction to International Disaster Management, 3rd edition,	8.	https://nptel.ac.in/courses/124107010/
Resources		Elsevier, 2015		
	4.	C.J. Barrow, Developing the Environment: Problems and Management, Harlow:		
		Longman, 1995		

Learning	earning Assessment								
	Bloom's Level of		Conti	nuous Learning Asses	sment (100% weightag	ge)		Final Examination (0%	
	Thinking	$\Gamma = \Gamma =$		CLA – 2 (50%)		CLA – 3#(20%)		weightage)	
	Hillikilig	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	10%	10%	-	-
Level I	Understand	2070	2070	1370	1370	10 /0	10 /0		
Level 2	Apply	20%	20% 20%	15%	15%	20%	20%	-	-
Level Z	Analyze	2070	2070	1370	1370	20 /0	20 /0		
Level 3	Evaluate	10%	10%	20%	20%	20%	20%	-	-
Level 3	Create	reate 10%		2070	20/0 20/0		20 /0		
	Total	100	%	100 %		100 %		-	

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, and Conf. Paper etc.

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr. Suyash Misra, Arcadis, Bangalore, suyash.misra@gmail.com	Dr. Harish Gupta, Osmania University, Hyderabad, harishgupta78@gmail.com	Dr. R. Sivakumar, SRMIST
Dr. Rajkumar, Director, HECS, Chennai. rajkumar@hecs.in	Dr. E.S.M Suresh, Professor & Head, NITTTR, Chennai, esmsuresh@gmail.com	Dr. P. Purushothaman, SRMIST

Course Code	20GNA511T	Course Name	CONSTITUTION OF INDIA	Course Category	A	Audit	1	T 0	P 0	0 0
Pre-requisite	Nil		Co-requisite Nil	Progres	ssive	Nil				
Courses			Courses	Cours	ses					
Course Offering	All Department	t	Data Book / Codes/ Nil	·						
Department	·		Standards							

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Identify the basic provisions in the Indian constitution
CLR-2:	List the fundamental rights, rights to equality, freedom, religion, culture, education and the right against exploitation
CLR-3:	Identify the fundamental duties of the Union of India, President, Vice-President, Union Ministers and Parliament functions
CLR-4:	Identify the power of states, its legislature, Governors role and the state judiciary
CLR-5:	List the special provisions and functionality of election commission, public service commission, individual tax and GST
CLR-6:	Build knowledge on the various aspects in the Indian Constitution, its provisions and right of a citizen and the society

Course Outcomes (CO):	At the end of this course, learners will be able to:				
Outcomes (CO):		1	2	3	
CO-1:	Define the meaning and nature of constitution of India, its fundamental rights and duties	3	3	2	
CO-2:	Analyse the power of state legislature and personal library	3	3	2	
CO-3:	Define the meaning and nature of fundamental rights and its scope	3	3	2	
CO-4:	Demonstrate the powers of Governor, Chief ministers and Judicial system	3	3	2	
CO-5:	Incorporate the system of union territories and panchayats	3	3	2	
CO-6:	Demonstrate the powers of president rule, election commission and UPSC	3	3	2	

	ration lour)	3 3		3	3	
	SLO-1	Meaning of the constitution law and	The Directive Principles of State	President of India (with Powers and		Local Self Government –
S-1	OLO-1	constitutionalism	Policy	Functions)	and Functions)	Constitutional Scheme in India
	0100	Historical perspective of the	Scheme of the Fundamental Right to	Prime Minister of India (with Powers	The Chief Minister of the State (with	Emergency Provisions : National,
	SLU-Z	Historical perspective of the Constitution of India	Equality	and Functions)	Powers and Functions)	President Rule, Financial Emergency
	01 0 1	Salient features and characteristics	Scheme of the Fundamental Right to	Union Judiciary (Supreme Court)	State Judiciary (High Courts)	Election Commission of India (with
S-2	SLU-1	of the Constitution of India	certain Freedom under Article 19	Jurisdiction of the Supreme Court		Powers and Functions)
3-2	SLO-2	Citizenship	Scope of the Right to Life and	State Government	Union Territories, Panchayats,	The Union Public Service
	SLU-Z		Personal Liberty under Article 21			Commission (with Powers and

Duration (hour)		3 3		3	3	3
						Functions)
	SLO-1	Scheme of the fundamental rights	Union Government, Union Legislature (Parliament)	0 , 0	Municipalities, Scheduled and Tribal Areas	Amendment of the Constitutional Powers and Procedure
S-3		The scheme of the Fundamental Duties and its legal status	33	Powers and Functions of the State Legislature, State Executive	Co-operative Societies	Income Tax, Goods and Services Tax

	1. Durgadas Basu, Introduction to the Constitution of India, Lexis- Nexis, 2015	3. Kaushal Kumar Agarwal, India's No 1 book on Tax : Simple Language Advanced Problems: Income
Learning	2. Subash C Kashyap, Our Parliament, National Books Trust, 2011	Tax, Kindle, 2017
Resources		4. Vivek K R Agarwal, GST Guide for students: Making GST – Good and Simple Tax, Neelam Book House. 2017
		710000, 2011

Learning	Assessment								
	Diagram's Layed of		Conti	inuous Learning Asses	sment (100% weightag	ge)		Final Examination (0%	
	Bloom's Level of Thinking	CLA – 1 (30%)		CLA – 2 (50%)		CLA – 3#(20%)		weightage)	
	Hillikilig	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1 Remember Understand	40%	_	30%	_	30%	_	-	-	
	Understand	4070	_	3070	-	30%	_		
Level 2	Apply	40%		40%		40%		-	-
Level Z	Analyze	40 /0	-	4070	-	40%	-		
Level 3	Evaluate	20%		30%		30%		-	-
Level 3	Create	2070	-	3070	-	30%	-		
	Total	100	%	100 %		100 %			-

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, and Conf. Paper etc.

Course Designers			
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts	
1. Dr. Usha Kodandaraman, ABK AOTS, Chenna.	1 .Dr. S. P.Dhanavel, IITM, Chennai,	1. Dr. K. Anbazhagan, SRMIST	3. Dr. Sukanya Saha, SRMIST
drushak@gmail.com	dhanavelsp@iitm@ac.in	_	
2. Mr. Durga Prasad Bokka, TCS Chennai,	2. Ms. Subashree, VIT, Chennai,	2. Ms. Cauveri B, SRMIST	4. Dr. M. M.Umamaheswari, SRMIST
durgaprasad@tcs.com	subashree@vit.ac.in		5 S. Ramya, SRMIST

Course Code	20GNA513J	Course Name	VALUE EDUCATION	N	Course Category	Α	Audit	L T P C 1 0 1 0
Pre-requisit Courses	e _{Nil}	Co-requisite Nil		Progressive Courses	Nil			
Course Of Departm	• Ali Denarimeni		Data Book / Codes/Standards	lil	·			

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Connect the learners to their potential, identify their potential to create a new positive world
CLR-2:	Analyze the merits and demerits of different educational systems. Identify the different systems of education
CLR-3:	Draw attention towards the weaknesses they are susceptible to and inspire them through positive models
CLR-4:	Instill a sense of professional ethics which help them develop a safe comfortable and prosperous society
CLR-5:	Cultivate a spirit of willing accommodation in an increasingly diverse world
CLR-6:	Strengthen, enhance the spirit of positivity and facilitate positive contribution in various spheres of life

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Equipped with an awareness of their positive energy and power	3	3	-	
CO-2:	Identify the meaning of 'education'; have a clearer and better understanding in taking education to the masses	3	3	-	
CO-3:	Assess their weaknesses; understand risks involved and rectify them through learning from positive and negative instances	3	3	2	
CO-4:	Realize their professional responsibilities	3	3	2	
CO-5:	Acquire the required values in an expanding pluralistic world not be swept off their feet due to the rapid changes	3	3	2	
CO-6:	Equip with better understanding of themselves, society they live. Identify responsibilities in creating a peaceful world	3	3	2	

-	ration nour)	Visions for Youth	Youth and Education	Youth and Society	Youth as Professionals	Youth in Pluralistic Society
(1	ioui)	6	6	6	6	6
	SLO-1	Introduction	Meaning and the significance of	Need for social values in the	Introduction to professional	Introduction to pluralistic society,
	SLU-1		education	present context	values	forces of globalization
S-1		Quiz	Brainstorming	Poem – "Where the mind is without	Brainstorming through visual	Group Discussion
	SLO-2			fear" Write up on various instances	cues	
				from real life		
S-2	SLO-1	Two speeches by great personalities	Overview of different (traditional,	Individual and group behavior,	Engineering societies in India	Science and technology intercultural

			modern)educational systems	respect for others		proximity
	SLO-2	Oral presentations	Debate	Case study on recent happenings	Quiz	Narration of stories from various religions to illustrate the oneness of humanity
S-3	SLO-1	Quotes, proverbs relating to the power and potential of youth, Excerpts: Wings of Fire	Overview of different (traditional, modern) educational systems	Civic sense, bullying-substance abuse, uses of expletives	Challenges to be addressed by Engineers in India	Positive, Negative impact: religion, politics, gender, economic status, aesthetics
	SLO-2	Collecting proverbs highlighting the potential of youth	Debate	Case study on recent happenings	Case Study	Discussion on "To Kill a Mocking Bird"
S-4	SLO-1	Two news articles highlighting the initiatives for social causes by youth	Role of youth in education, Urban and Rural set up, dissemination	Hero worship, gender insensitivity, moral policing	Challenges in different sectors: agriculture	Values required to live in a global society
3-4	SLO-2	Role play in a similar context	Student presentations	Case study on recent happenings	Case Study	Poster presentation on festivals of various religions
S-5	SLO-1	Two news articles highlighting the initiatives for social causes by youth	Designing and framing educational curriculum and materials	Positive contribution by youth in promoting social welfare	Challenges in different sectors: urban development, environment	Learning the etiquettes of various societies
	SLO-2	Role play in a similar context	Students' Presentation based on write ups	Short videos followed by discussions	Group activity (oral and written)	Poster presentation on festivals of various religions
S-6	SLO-1	One song exhibiting the positive energy of youth	The pressing challenges in current educational system	Positive contribution by youth in promoting social welfare		Success of pluralistic society, enliven the society, religious harmony through literary
	SLO-2	Discussion on the song	Collage Design	Short videos followed by discussions	Case Study – from Newspapers	Writing the aspects of pluralistic society based on the text

Learnir	ng
Resourc	ces

- 1. Kalam, APJ Abdul. Wings of Fire: AN Autobiography of APJ Abdul Kalam. Ed. Sangam Books Ltd., 1999
- 2. "Banaras Hindu University Speech" and "To Students". The Voice of Truth. General Editor Shriman Narayan. Navajivan Publishing House. pp. 3-13 and pp. 425-30. www.mkgandhi.org
- 3. Piroda, Sam. "Challenges in Science and Technology". www.nfdindia.org/loc19.htm

- 4. Thomas A Address to VTU Students by Narayana Murthy. https://www.karnataka.com/personalities/narayana-murthy/vtu-address-2006/
- 5. World Economic forum. "India's top 7 challenged from skills to water scarcity

Learning	Assessment								
	Diagram's Layel of		Conti	nuous Learning Asses	sment (100% weightag	ge)		Final Exam	ination (0%
	Bloom's Level of Thinking	CLA – 1	(30%)	CLA – :	2 (50%)	CLA – 3	CLA – 3#(20%)		ntage)
	Hillikilig	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Lavald	Remember	20%	20%	15%	15%	15%	15%	-	-
Level 1	Understand	2070	2070	1370	1370	1370	1370		
Level 2	Apply	20%	20%	20%	20%	20%	20%	-	-
Level Z	Analyze	2070	2070	2070	2070	2070	2070		
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	-	-
	Create	1070	1070	1370	1370	1370	1370		
	Total	100	%	100) %	100) %		-

CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, and Conf. Paper etc.

Course Designers										
Experts from Industry	Experts from Industry Experts from Higher Technical Institutions Internal Experts									
 Dr. Usha Kodandaraman, ABK AOTS, drushsk@gmail.com 	1. Dr. S. P.Dhanavel, IIT Madras, dhanavelsp@jitmac.in	1. Dr .K.Anbazhagan, SRMIST	2. Dr. B. Cauveri, SRMIST							
2. Mr. Durga Prasad Bokka, TCS,	2. Ms. Subashree, VIT, Chennai,	3. Dr. M. M.Umamaheswari, SRMIST	4. Dr. Sukanya Saha,	5. Ms .S. Ramya, SRMIST						
durgaprasad@tcs.com	subashree@vit.ac.in	,	SRMIST	• /						

Course Code	20GNA512L	Course Name	PHYSICAL AND MENTA	AL HEALTH USING YOGA	Course Category	Α	Audit	L 0	T 0	P 2	C
Pre-requisite Courses	Nil		Co-requisite Courses	Nil	Progressive Courses	Nil					
Course Offe Departme	Centre for Applied R	Research in Education	n	Data Book / Codes/ Standards	Nil						

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Utilize rich Indian heritage and knowledge for self-healing and self-protection from diseases
CLR-2:	Apply meditation for attaining happiness and balancing emotions and state of mind and body
CLR-3:	Intellectually develop oneself by identifying oneness with divine state and transform towards absolute oneness in space
CLR-4:	Socially transform into a meaningful and purposeful individual to both self and society
CLR-5:	Spiritually enlighten oneself by purifying the body, soul and have a blissful existence
CLR-6:	Achieve personal benefits of whole health and wellbeing by practicing yoga for physical, emotional and mental fitness

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Identify Indian heritage, culture. Identify key anatomical structures in the human body and basic exercises for the same	3	3	-	
CO-2:	Apply yoga meditation practices for emotional development and wellbeing	3	3	-	
CO-3:	Identify educational and intellectual development methods using five sense realization and transformation	3	3	2	
CO-4:	Demonstrate human values and emotions through thorough understanding about life, naturopathy and food habits	3	3	2	
CO-5:	Impact self and society by peaceful coexistence with self-introspection and balanced diet charts	3	3	2	
CO-6:	Demonstrate yoga exercises and postures to stretch and strengthen the body and mind	3	3	2	

Du	ration	Physical Development	Emotional Development	Intellectual Development	Social Development	Spiritual Development
(hour)		6	6	6	6	6
		Indian Heritage & Culture, Concept of	Brain Functions, Bio-Magnetism,	Education & Intelligence	Introduction: Social Intelligence	Spiritual Connect & Yoga: Self-
	SLO-1	Yoga, Objectives, Science & Art of Yoga	Cognitive Mind	Development using Yoga. Improving		Realization, Self-Awareness, Self-
S-1				Intelligence		Actualization
3-1		Women and Yoga Practice –	Emotional Intelligences, Managing	Learnability through Concentration,	Human values, Ethics &	Cause and Effect Realization
	SLO-2	Classification, Modern Age, Philosophy	Stress and Emotions	Intelligence through learning sense	Morality	(Karma Yoga), Harmony in Life
		of Life		organs		
S-2	SLO-1	Practice1: Standing exercise, Surya	Practice4: Surya Namaskar,	Practice7: Yoga for Youthfulness	Practice10: Kayakalpha,	Practice13: Management of

			Standing asanas		Bhandas, Meditation (Crown)	Physical problems (Yoga therapy)
	SLO-2	Meditation (Self Realization), Relaxation	Meditation (Five Sense Realization), Relaxation	Meditation (Five Sense Realization), Relaxation	Self-introspection Practice (Moralization of Desire) & Relaxation	Meditation (Nine centre) & Relaxation
6.2	SLO-1	1	Meditation for Emotional development: Eyebrow Center (Agna) Meditation	Theory of Intellectual Transformation: Divine state origin, absolute space,	Exercises for Self-Introspection: Analysis of thoughts, Moralization of desires	Spiritual Enlightenment
3-3		Yoga &Youthfulness. Benefits, Comparison between other exercises and Yoga	Genetic Centre (Santhi) Meditation. Stress Relaxation Exercises	Transformation of universe, living beings, Intelligence, Knowledge, Wisdom & Peace	Anger Management, Eradicating worries, concerns & challenges	Purifying the Body (Genetic center)
9 4	510-1	<u> </u>	Practice5: Surya Namaskar, Sitting asanas,	Practice8: Kayakalpha Yoga, Pranayama	Practice11: Kayakalpha Yoga, Krisya Yoga	Practice14: Project Submission
S-3	SLO-2	Meditation (Self Realization) – Relaxation	Meditation (Agna) & Relaxation	Meditation (Agna) - Relaxation	Yoga Mudhras, Meditation (Santhi) & Relaxation	Meditation, Introspection, Sublimination
S-5	SLO-1		Asanas (Postures) for Body Structure: Full Body Structure Maintenance	Exercises: Intellectual development Brain Crown Centre (Thuriyam) Meditation	Therapy for Social Development: Gestures Yoga (Mudhras) – Body locks (Bhandhas)	Spirituality for Stress Management
	SLO-2		Standing, Sitting, Prone & Supine Posture, Benefits of asanas	Five Senses (Panchendriya) Meditation, Consciousness and Law of nature	Indian Medical System: Naturopathy, Food, Nutrition, Diet Chart for Youthfulness	Yoga Practices for blissful existence
S-6	SLO-1		Practice6: Surya Namaskar, Prone & Supine posture Asanas	Practice9: Kayakalpha, Mudhras, Self- introspection Practice (Thought Analysis)		Practice15: Practical Exam
	SLO-2	Meditation (Self Realization) – Relaxation	Meditation (Shanthi) & Relaxation	Meditation (Santhi), & Relaxation	Meditation (Crown) & Relaxation	Meditation & Relaxation

	1. Sadhguru Jaggi Vasudev, Inner Engineering – A yogi's guide to joy, 2016	6. Vivekananda Kenthria Prkasan Trust, Yogam, 2006
	2. Shri Shri Ravi Shankar, The Art of stress-free Living, 2011	7. Swami Chetanananda, Meditation and Its Methods According to Swami Vivekananda,
	3. Swami Ramdev Ji Yog Its Philosophy and Practice, 2008	Jan 2001
Learning Resources	4. Yogiraj Vethathiri Maharishi, Yoga for Modern Age, Tenth edition, Vethathiri	8. Dr. Lakshminarain Sharma, Yoga for the cure of Common Diseases, Mar 2016
11000011000	Publications, 2007	9. Swami Satyananda Saraswati, Asana Pranayama Mudra Bandha, Bihar School of
	5. Yogiraj Vethathiri Maharishi, Simplified Physical Exercises, Forty Second edition, Jan-	Yoga, 1993
	2014	10. Dr. Asana Andiappan, Thirumoolar's Astanga Yoga, International Yoga Academy, 2017

Learning	Assessment								
	Bloom's Level of		Conti	nuous Learning Asses	ssment (100% weighta	ge)		Final Exam	ination (0%
	Thinking	CLA – 1	(30%)	CLA –	2 (50%)	CLA – C	3#(20%)	weigl	ntage)
	minking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	-	40%	-	30%	-	30%	-	-
Level	Understand								
Level 2	Apply	-	40%	-	40%	-	40%	-	-
Level Z	Analyze								
Level 3	Evaluate	-	20%	-	30%	-	30%	-	-
Level 3	Create								
	Total	100	%	100 %		100 %		-	

CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, and Conf. Paper etc.

Course Designers							
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts					
1. Mr. K. Sivakumar, LIC of India, ksivalic1970@gmail.com	Dr. R. Elangovan, Tamilnadu Physical Education and Sports University, relangovantnpesu@yahoo.co.in	1. Dr. V. Nithyananthan, SRMIST					
2. Mrs. R. Piramukutty, World Community Service Centre,	2.Dr. N. Perumal, Vethathiri Maharishi Institute for Spiritual and Intuitional Education,	2. Dr. S. Jahira Parveen SRMIST					
iramukutty.gdvmvkm@gmail.com	visionacademy@vethathiri.edu.in						

Course	20PDM501T	Course	CAREER ADVANCEMENT COURSE FOR ENGINEERS - I	Course	М	Mandatory	L	Т	Р	С
Code	ZUPDIVIJUTI	Name	CAREER ADVANCEMENT COURSE FOR ENGINEERS - I	Category	IVI	Mandatory	1	0	1	0

Pre-requisite Nil	Co-requisite	Nil		Progressive Nil	
Courses ''"	Courses			Courses	
Course Offering	Career Development Centre		Data Book / Codes/	Nil	
Department	Career Development Centre		Standards	INII	

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Become an expert in communication and problem solving skills
CLR-2:	Recapitulate fundamental mathematical concepts and skills
CLR-3:	Strengthen writing skills professionally and understand commercial mathematical applications
CLR-4:	Identification of relationships between words based on their function, usage and characteristics
CLR-5:	Sharpen logical and critical reasoning through skillful conceptualization
CLR-6:	Acquire the right knowledge, skill and aptitude to face any competitive examination

Course Outcomes (CO):	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Acquire communication and problem solving skills	3	-	2	
CO-2:	Build a strong base in the fundamental mathematical concepts	2	-	2	
CO-3:	Acquire writing skill to communicate with clarity	-	3	-	
CO-4:	Use apt vocabulary to embellish language	-	2	-	
CO-5:	Gain appropriate skills to succeed in preliminary selection process for recruitment	2	-	2	
CO-6:	Enhance aptitude skills though systematic application of knowledge	3	-	3	

Dura	ation (hour)	6	6	6	6	6
S-1	SLO-1	Types of numbers, Divisibility tests	Fractions and Decimals, Surds	Percentage - Introduction	Sentence Correction	Number and Alphabet Series
	SLO-2	Solving Problems	Solving Problems	Solving Problems	Practice	Direction Test
S-2	SLO-1	LCM and GCD	Square roots, Cube roots, Remainder	Percentage Problems	Reading Comprehension	Blood Relations
	SLO-2	Solving Problems	Solving Problems	Solving Problems	Practice	Arrangements Linear, Circular
S-3		Unit digit, Number of zeroes, Factorial notation	Identities	Profit and Loss	Reading Comprehension	Ranking
	SLO-2	Solving Problems	Solving Problems	Solving Problems	Practice	Practice

Dura	ation (hour)	6	6	6	6	6
S-4	SLO-1	Verbal Reasoning-Vocabulary	Spotting Errors	Discount	Reading Comprehension	Critical Reasoning-Strengthening
3-4	SLO-2	Practice	Practice	Solving Problems	Practice	Practice
S-5	SLO-1	Verbal Reasoning-Vocabulary	Spotting Errors	Sentence Correction	Linear Equations	Critical Reasoning-Weakening
3-3	SLO-2	Practice	Practice	Practice	Solving Problems	Practice
S-6	SLO-1	Verbal Reasoning-Vocabulary	Spotting Errors	Sentence Correction	Logical Reasoning-Intro	Critical Reasoning-Assumption
3-0	SLO-2	Practice	Practice	Practice	Coding and Decoding	Practice

Learning Resource	(2017). 4. P.A. Anand, "Quantitative Aptitude for Competitive Examination", WILEY Publications	 Arihant. "IBPS PO - CWE Success Master", Arihant Publications(I) Pvt.Ltd – Meerut, First Edition (2018) Nishit Sinha. "Verbal Ability for CAT", Pearson India, First Edition (2018). Archana Ram, "Placementor", Oxford University Press, (2018) Bharadwaj A.P. "General English for Competitive Examination", Pearson Education, First Edition (2013)
	(2019)	9. Thorpe S. "English for Competitive Examination", Pearson Education, Sixth Edition (2012).

Assessment								
Continuous Learning Assessment (100% weightage)								ination (0%
	CLA – 1	(30%)	CLA – 2	2 (50%)	CLA – 3	3#(20%)	weigh	itage)
Hilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Remember	AO 0/.		20.0/		20.0/		-	-
Understand	40 /0	-	30 70	_	30 70			
Apply	40.0/		40 %		40 %	-	-	-
Analyze	4 0 /0	-		_				
Evaluate	20 %		30 %		30 %		-	-
Create	20 /0	-	30 70	-	30 /0	-		
Total	100 %		100 %		100 %		-	
	Bloom's Level of Thinking Remember Understand Apply Analyze Evaluate Create	CLA - 1 Theory Remember 40 % Apply Analyze Evaluate Create 20 % CLA - 1 Theory CLA - 1 Theory Analyze Evaluate 20 % Create Create Create Create Create Classification CLA - 1 CLA - 1 Theory Analyze 40 % Classification Cla	Continuous Continuous Continuous CLA - 1 (30%) Theory Practice	Continuous Learning Asses CLA - 1 (30%) CLA - 2	Continuous Learning Assessment (100% weighted) Thinking	Continuous Learning Assessment (100% weightage) CLA - 1 (30%) CLA - 2 (50%) CLA - 3 (50%) Theory Practice Prac	Bloom's Level of Thinking	Bloom's Level of Thinking

CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, and Conf. Paper etc.

	Course Designers						
Experts from Industry		nternal Experts					
1. Mr. Ajay Zener, Career Launcher, ajay.z@careerlauncher.com	Dr. P. Madhusoodhanan, Head CDC, SRMIST	Dr. M. Snehalatha,, SRMIST					
	Mr. J.Jayapragash , Assistant Professor, SRMIST	Dr.A.Clement, SRMIST					

Course Code 2	20PDM502T	Course Name	CAREER ADVANCEME	NT COURSE FOR ENGINEERS - II	Course Category	М	Mandatory	1	T 0	P 1	0
Dra vasuiaita			Co voquioito		Drawe	!					

Pre-requisite Nii	Co-requisite	Nii	Progressive _{Alii}
Courses	Courses	IVII	Courses TVIII
Course Offering	Career Development Centre	Data Book / Codes/	Nil
Department	Career Development Centre	Standards /	IVII

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Recapitulate fundamental mathematical concepts and building the resume
CLR-2:	Become an expert in communication and problem solving skills
CLR-3:	Sharpen interpretational skills through skillful conceptualization,
CLR-4:	Sharpen analytical reasoning skills and professional skills
CLR-5:	Utilize professionalism with idealistic, practical and moral values that govern the behavior
CLR-6:	Acquire the right knowledge, skill and aptitude to face any competitive examination

Course	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
Outcomes (CO):		1	2	3	
CO-1:	Build a strong base in the fundamental mathematical concepts and resume	2	-	2	
CO-2:	Acquire communication and problem solving skills.	3	-	2	
CO-3:	Gain appropriate skills to succeed in preliminary selection process for recruitment	2	-	2	
CO-4:	Acquire interpretational skills and professional skills	2	2	2	
CO-5:	Develop professionalism with idealistic, practical and moral values	2	-	2	
CO-6:	Enhance lexical skills through systematic application of concepts and careful analysis of style, syntax, semantics and logic	2	3	-	

Dura	ation (hour)	6	6	6	6	6
S-1	SLO-1 SLO-2	Ratio and Proportion-Intro	Sets-Rules	Group Discussion-3	Data Sufficiency-Intro	Personal Interview
3-1	SLO-2	Solving Problems	Solving Problems	Practice	Solving Problems	Practice
S 2	SLO-1 SLO-2	Ratio and Proportion	Sets-Identities, Venn Diagram	Group Discussion-4	Data Sufficiency	Personal Interview
3-2	SLO-2	Solving Problems	Solving Problems	Practice	Solving Problems	Practice
6.2		Mixture and Solutions-Intro	Functions-Intro	Group Discussion-5	Analytical Reasoning-Intro	Mock Interview
3- 3	SLO-2	Solving Problems	Solving Problems	Practice	Solving Problems	Mock Interview
S 4		Mixture and Solutions	Group Discussion- Do's and Don'ts	Data Interpretation-Intro	Analytical Reasoning	Mock Interview
3-4	SLO-2	Solving Problems	Practice	Solving Problems	Solving Problems	Mock Interview

Dura	tion (hour)	hour) 6 6		6 6 6		6
S-5	SLO-1	Profile Building	Group Discussion-1	Data Interpretation-Tables, Pie Chart	Personal Interview-Do's and Don'ts	Mock Interview
	SLO-2	Profile Building	Practice	Solving Problems	Practice	Mock Interview
S-6	SLO-1	Resume Building	Group Discussion-2	Data Interpretation-Lines, Bar Graphs	Personal Interview	Quantitative Reasoning Revision
	SLO-2	Resume Building	Practice	Solving Problems	Practice	Solving Problems

Learning
Resources

- Khattar D. "Quantitative Aptitude", Pearson's Publications, Third Edition (2015).
 Guha A. "Quantitative Aptitude", TATA McGraw Hill Publications, Sixth Edition (2017).
 Butterfield J. "Soft Skills for Everyone", Cengage Learning India Private Ltd, First Edition, (2011).
- 4. Bono E.D. "Six Thinking Hats is a book", Little Brown and Company, First Edition (1981)
 - 5. P.A. Ánand, "Quantitative Aptitude for Competitive Examination", WILEY Publications (2019)
 - 6. Archana Ram, "Placementor", Oxford University Press, (2018)

Learning	Assessment								
	Bloom's Level of		Conti	nuous Learning Asses	sment (100% weighta	ge)		Final Exam	ination (0%
	Thinking	CLA – 1	(30%)	CLA – 2	2 (50%)	CLA – 3	3#(20%)	weigh	ntage)
	Hillikilig	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %		30 %		30 %		-	-
Level I	Understand	40 /0	-	30 %	-	30 //	-		
Level 2	Apply	40 %		40 %	_	40 %	_	-	-
LEVEI Z	Analyze	40 /0	-	40 /0	-	40 70	-		
Level 3	Evaluate	20 %		30 %	_	30 %		-	-
LEVEI 3	Create	20 70	-	30 %	-	30 70	-		
	Total	100	%	100) %	100	0 %		-

CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, and Conf. Paper etc.

Course Designers			
Experts from Industry Internal Experts			
Mr. Ajay Zener, Career Launcher, ajay.z@careerlauncher.com	Dr. P. Madhusoodhanan, Head CDC, SRMIST	Dr. M. Snehalatha,, Assistant Professor, SRMIST	
	Mr.P.Priyanand , Assistant Professor, SRMIST	Mrs.Kaviatha Srisarann, Assistant Professor, SRMIST	

Course		Course		Course			L	T	Р	С
Code	20PDM601T	Name	CAREER ADVANCEMENT COURSE FOR ENGINEERS - III	Category	М	Mandatory	1	0	1	0

Course Learning Rationale (CLR):	The purpose of learning this course is to:
CLR-1:	Acquire knowledge on planning, preparing and designing a learning program
CLR-2:	Prepare effective learning resources for active practice sessions
CLR-3:	Facilitate active learning with new methodologies and approaches
CLR-4:	Create balanced assessment tools
CLR-5:	Hone teaching skills for further enrichment
CLR-6:	Define standards, goals and objectives

Course Outcomes (CO):	At the end of this course, learners will be able to:		Programme Outcomes (PO)		
Outcomes (CO):		1	2	3	
CO-1:	Build a strong foundation in designing a lesson plan	2	-	3	
CO-2:	Acquire knowledge of learning resources for effective delivery			2	
CO-3:	Sharpen teaching skills with the latest methodologies and techniques	3	2	3	
CO-4:	Develop practical assessment tools to ensure validity and flexibility		-	2	
CO-5:	Enhance effective presentation and teaching methods		3	-	
CO-6:	Reinforce Bloom's Taxonomy of educational goals and objectives			2	

Dura	tion (hour)	6	6	6	6	6
S-1		Lower and Higher order learning	Definition and purpose of assessment	Peer Teaching practice	Live Teaching Sessions	Live Teaching Sessions
	ISI ()-2	Outcomes from lower order learning	Practice	Discussion and feedback	Live Teaching Sessions	Live Teaching Sessions
S-2		Planning and preparing a learning programme and session	Distinction between formative and summative assessment	Peer Teaching practice	Live Teaching Sessions	Live Teaching Sessions
_	SLO-2	Practice	Examples and discussions	Discussion and feedback	Live Teaching Sessions	Live Teaching Sessions
S-3	SLO-T	Teacher and Student-Centered class room	Instructional materials	Cooperative learning procedure	Live Teaching Sessions	Live Teaching Sessions
	SLO-2	Discussion	#Examples and discussion	Different models of cooperative learning	Live Teaching Sessions	Live Teaching Sessions
S-4	SLO-1	Roles of teachers and students	Instructional design	Limitations of cooperative learning	Live Teaching Sessions	Live Teaching Sessions

Dura	tion (hour)	6	6	6	6	6
	SLO-2	Discussion	Practice	Discussion	Live Teaching Sessions	Live Teaching Sessions
	SLO-1	Discussion Strategies	Presentation of lesson plans	Structure of a lecture	Live Teaching Sessions	Live Teaching Sessions
S-5	SLO-2	Practice	Discussion	Practice	Live Teaching Sessions	Live Teaching Sessions
S-6	SLU-1	Bloom's Taxonomy of educational goal	Group Work in learning	Live Teaching Sessions	Live Teaching Sessions	Live Teaching Sessions
	SLO-2	Practice	Discussion	Live Teaching Sessions	Live Teaching Sessions	Live Teaching Sessions

Learning
Resource

- 1. Barker I. "Cambridge International Diploma for Teachers and Trainers", Cambridge University Press, 2006.
- 2. Whitehead Jack, Creating a Living Educational Theory from Questions of the kind: How do I improve my Practice? Cambridge Journal of Education, 2006
- 3. Vicki Phillips and Lynn Olson, "Ensuring Effective Instruction: How do I improve teaching using multiple measures?" Bill & Melinda Gates Foundation, 2013
- 4. Dr G M Chaudhary, "Teaching Methodology: Effective Teaching Strategies", Independently Published, 2019

Learning Assessment									
	Diam's Lovel of	Continuous Learning Assessment (100% weightage)					Final Examination (0%		
	Bloom's Level of Thinking	CLA – 1 (30%)		CLA – 2 (50%)		CLA – 3#(20%)		weightage)	
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Lovel 1	Remember	40 %		30 %	_	30 %		-	-
Level 1	Understand	40 %	-	30 %	-	30 %	-		
Level 2	Apply	40 %		40 %	_	40 %		-	-
LEVEI Z	Analyze	40 /0	-	40 /0	-	40 /0	-		
Level 3	Evaluate	20 %	-	30 %	-	30 %	-	-	-
	Create								
	Total	100 %		100 %		100 %		-	

[#] CLA – 3 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, and Conf. Paper etc.

Course Designers					
Experts from Industry	Internal Experts				
Mr Ajay Zener, Career Launcher, ajay.z@careerlauncher.com	Dr. P. Madhusoodhanan, SRMIST	Dr. M. Snehalatha, SRMIST			
	Mr J.Jayapragash , SRMIST	Dr.A.Clement, SRMIST			