UNIVERSITY

Wb vction 308 UG Act 1958}

UNIT-II

o

odels?.1
39980 dtem models UNIVERSITY
1. Outline

What are the three basic ways to describe Distributed systems? —

* Physical models — consider DS in terms of hardware — computers and devices that constitute a
system and their interconnectivity, without details of specific technologies

* Architectural models — describe a system in terms of the computational and communication
tasks performed by its computational elements. Client-server and peer-to-peer most commonly
used

* Fundamental models — take an abstract Difficulties and threats for distributed systems:
perspective in order to describe solutions to

individual issues faced by most distributed
systems

Widely varying modes of use

Wide range of system environments

— interaction models

_ Internal problems
— failure models

— security models

External threats

System models2.2 F}hysiglR P 1
models L

2.2 Physical models UNIVERSITY

*Baseline physical model — minimal physical model of a distributed system as
an extensible set of computer nodes interconnected by a computer network
for the required passing of messages.

Three generations of distributed
systems

Early distributed systems

— 10 and 100 nodes interconnected by a local area network
— limited Internet connectivity
— supported a small range of services e.g.

* shared local printers
* file servers

* email

System Ppxsi e
models2.2 rﬁb‘des l H b I

~ file transfer across the Internet UNIVERSITY

Internet-scale distributed systems

— extensible set of nodes interconnected by a network of networks (the
Internet)

*Contemporary DS with hundreds of thousands nodes + emergence of:

— mobile computing

* laptops or smart phones may move from location to location —
need for added capabilities (service discovery; support for
spontaneous interoperation)

— ubiquitous computing
* computers are embedded everywhere

— cloud computing

System PMSIS_RM
models2.2 mote

* pools of nodes that together provide a given service UNIVERSITY

Distributed systems of systems (ultra-large-scale (ULS) distributed
systems)

A2System PHSISRM
models2.2 _ _ node
esignificant challenges associated with contemporary UNIVERSITY
DS:
Fig ..., ,
istributed systems: Early Internet-scale Contemporary
Scale Small Large Ultra-large
Heergenay Limited (typically Significant in terms of ﬁ?:i&g;gi?:;ﬁgfn
relatively homogenous platforms, languages ; £ 5 £
configurations) and middleware radienllyCiiierentutylesg
architecture
Openness Significant priority Major research challenge
e £ P with existing standards not
Not a priority with range of standards
——— yet able to embrace
= complex systems
Quality of service Significant priority Major research challenge
In its infancy with range of services PPy e
: teodiond yet able to embrace

complex systems

System models2.3 ArchitgqugRM
: Models*
2.3 Architectural Models UNIVERSITY

Major concerns: make the system reliable, manageable, adaptable and cost-

effective

2.3.1 Architectural elements

*\What are the entities that are communicating in the distributed system?

*How do they communicate, or, more specifically, what communication
paradigm is used?

*\What (potentially changing) roles and responsibilities do they have in the
overall architecture?

*How are they mapped on to the physical distributed infrastructure (what is
their placement)?

System Architpc;ug R P 1
models2.3 Models™¥

Communicating entities UNIVERSITY

From system perspective: processes

— In some cases we can say that:

* nodes (sensors)
* threads (endpoints of communication)

*From programming perspective

— objects

* computation consists of a number of interacting objects
representing natural units of decomposition for the given problem
domain

* Objects are accessed via interfaces, with an associated interface
defi- nition language (or IDL)

System models2.3 Archij.ectlglR P 1
Models L

UNIVERSITY
— components — emerged due to some weaknesses with distributed
objects

* offer problem-oriented abstractions for building distributed
systems

* accessed through interfaces

-+ assumptions to components/interfaces that must be present
(i.e. making all dependencies explicit and providing a more
complete contract for system construction.)

— web services

* closely related to objects and components
* Intrinsically integrated into the World Wide Web

-using web standards to represent and discover services

System Architpgiu g‘RM
models2.3 _ Models¥
The World Wide Web consortium UNIVERSITY
(W3C):

Web service is a software application identified by a URI, whose interfaces

and bindings are capable of being defined, described and discovered as

XML artefacts. A Web service supports direct interactions with other

software agents using XML-based message exchanges via Internet-based

protocols.
*objects and components are often used within an organization to develop

tightly coupled applications

*web services are generally viewed as complete services in their own right

System Archi_tpc;u@RM
models2.3 _ Models¥
Communication paradigms UNIVERSITY

What is:
eInterprocess communication?
sremote invocation?

eindirect communication?

Interprocess communication — low-level support for communication between pro-
cesses In distributed systems, including message-passing primitives, direct access
to the API offered by Internet protocols (socket programming) and support for
multicast communication

Remote invocation — calling of a remote operation, procedure or method
Request-reply protocols — a pattern with message-passing service to

support client-server computing

System Architpgiu g%M
models2.3 Models¥
Remote procedure call (RPC) UNIVERSITY

sprocedures in processes on remote computers can be called as if they are
proce- dures in the local address space

esupports client-server computing with servers offering a set of operations
through a service interface and clients calling these operations directly as if
they were available locally

— RPC systems offer (at a
m

Remote method invocation (RMI)

ostrongly resemble RPC but in a world of distributed
objects

etighter integration into object-orientation framework

System ArChitﬂug%M
models2.3 Models¥
In RPC and RMI — UNIVERSITY

senders-receivers of messages

— coexist at the same time

— are aware of each other’s identities

Indirect communication
*Senders do not need to know who they are sending to (space uncoupling)

*Senders and receivers do not need to exist at the same time (time
uncoupling)

Key techniques in indirect communication:
«Group communication

*Publish-subscribe systems:

System models2.3 Archij.ectlglR P 1
Models L

UNIVERSITY
— (sometimes also called distributed event-based systems)

— publishers distribute information items of interest (events) to a
similarly large number of consumers (or subscribers)

*Message queues:

— (publish-subscribe systems offer a one-to-many style of
communication), message queues offer a point-to-point service
— producer processes can send messages to a specified queue

— consumer Processes can

* receive messages from the queue or
* be notified

*Tuple spaces (also known as generative communication):

— processes can place arbitrary items of structured data, called tuples, in a

System models2.3 Archij.ectlglR P 1
Models L

UNIVERSITY
— other processes can either read or remove such tuples from the tuple

space by specifying patterns of interest

— readers and writers do not need to exist at the same time (Since the
tuple space Is persistent)

Distributed shared memory (DSM):

— abstraction for sharing data between processes that do not share
physical memory

UNIVERSITY

b e tins ol Mui“

Communicating entities
(what is communicating)
System-oriented Problem-
entities oriented entities
Nodes Objects
Processes Components
Web services

Communication paradigms
(how they communicate)
Interprocess Remote Indirect
communication invocation communication
Message Request- Group
passing reply communication
Sockets RPC Publish-subscribe
Multicast RMI Message queues
Tuple spaces

DSM

53System Architﬁqug_RM
models2.3 - Models¥
Roles and responibilities UNIVERSITY

fUnder seciion 3 of UGEC Acl 1958)

Client-server
Figure 2.3 Clients invoke individual

invocation invocation

result

Key:
Process: O Computer:

objects

Peersd .. N /..

3

System Architﬁqug R P 1
models2.3 Models™¥

Placement UNIVERSITY

ecrucial in terms of determining the DS
properties:
— performance

— reliability

— Ssecurity

Possible placement strategies:
- mapping of services to Figure 2.4b A service provided by

multiple multi- ple servers
Servers

— mapping distributed objects |
between servers, or
— replicating copies on several
hosts

— more closely
|

coupled multiple-servers — L r

Service

System Architpgiu g‘RM
models2.3 Models¥
- cachin Al
g

— A cache is a store of recently used data objects that is closer to one
client or a particular set of clients than the objects themselves

Figure 2.5 Web proxy
sen

server

N

v \
O (s

server

System Architpgiu g‘RM
models2.3 Models™¥

« mobile code UNIVERSITY

— Applets are an example of mobile
code Figure 2.6 \Web Applets

a) client request results in the downloading of applet code

Applet code SErve

b) client interacts with the applet

Web
Ry Applet server

— yet another possibility — push model: server initiates interaction (e.g. on
Information updates on it)

(0

System Architpgiu g‘RM
models2.3 Models¥
 mobile UNIVERSITY
agents
— Mobile agent — running program (including both code and data) that
travels from one computer to another in a network carrying out a
task on someone’s behalf (e.g. collecting information), and

eventually re- turning with the results.

— could be used for

* software maintenance

* collecting information from different vendors’ databases of
prices

Possible security threats with mobile code and mobile agents...

System ArChi_’[ﬁq@u@_RM
models2.3 Models¥
2.3.2 Architectural patterns UNIVERSITY

Layering

Layered approach — complex system partitioned into a number of layers:

evertical organisation of services
given layer making use of the services offered by the layer below
*software abstraction

higher layers unaware of implementation details, or any other layers beneath
them

System models2.3 Arch_ij.ectlglR P 1
Models R

UNIVERSITY
Platform and Middleware

' layers in distributed systems

Applications, services

Middleware

Operating system

Platform

Computer and network hardware

A platform for distributed systems and applications consists of the
lowest-level hardware and software layers.

System models2.3 Arch_ij.ectlglR P 1
Models L

UNIVERSITY
*Middleware — a layer of software whose purpose is to mask hetero-

geneity and to provide a convenient programming model to
application programmers.

System ArChitNu@‘RM
models2.3 Models¥
Tiered architecture UNIVERSITY

Tiering Is a technique to organize functionality of a given layer and place this
functionality into appropriate servers and, as a secondary consideration, on to
physical nodes

Example: two-tier and three-tier architecture
functional decomposition of a given application, as follows:

epresentation logic
application logic

«data logic

Architggtu

Figure 2.8 Two-tier and three-fier

. AN N A [P Vo W N

) Personal computers

or mobile devices

User view,
controls and
data manipulation

"~ User view,
controls and

data manipulation /

Tier 1

b) Personal computers
or mobile devices

User
view and

controls

_User
view and

controls /

Tier 1

Tier 2
Application server
Database server
Application
»logiq
- Database
manager
Application,_— |
. logic
Tier 2 Tier 3

Server

- Application
and data management

‘Application
and data management

tree BAREE PAGNIVERSITY

t|t|0ned Into twdzerm--:r 3 of UGE Act 1958
processes

(+) low latency

(-) splitting applica-

tion logic

(+) one-to-one map-

ping from logical
elements to physical
servers

(-) added complexity,
network traffic and la-

tency

System models2.3 Arch_ij.ectlglR P 1
Models e,

UNIVERSITY

A N SR KRR way to create

interactive, partially/selectively-updatable webpages
— Javascript forntend and server-based backend

Iﬁ:]:igure 2.9 AJAX example: soccer score

urg%gv%geg(. Request (

{onSuccess : updateScore });
functionupdateScore (request) {
.- (- requestcontainsthestateoftheAjaxrequestincludingthereturnedresu
It Theresultisparsedtoobtainsometextgivingthescore , whichi
sused toupdatetherelevantportionofthecurrentpage)

(two-tier
architecture)

models2.3 Models¥
Thin clients UNIVERSITY

cnabling access to sophisticated networked services (e.g. cloud services)
with few assumptions to client device

software layer that supports a window-based user interface (local) for
executing remote application programs or accessing services on remote
computer

Fig Compute server
Network computer or PC

network Application
Process

Concept led to Virtual Network Computing (VNC) — VNC clients accessing
VNC servers using VNC protocol

System Architpc;ug R P 1
models2.3 Models™¥

Other commonly occurring patterns UNIVERSITY

e proxy pattern

— designed to support location transparency in RPC or RMI

— proxy created in local address space, with same interface as the remote
object

 brokerage in web services

— supporting Interoperability in potentially complex
distributed infrastructures
— service provider, service requestor and service broker

— brokerage reflected e.g. in registry in Java RMI and naming service in
CORBA

System Architpgiu g‘RM
models2.3 Models¥

Figure 2.11 The web service architectural UNIVERSITY
patt
//4 //SerViCé\ \
p Droker 4
/" Service > Service
’\‘\Bequestei/* ._Provider /

 Reflection pattern

— a means of supporting both:

* Introspection (the dynamic discovery of properties of the system)

* Intercession (the ability to dynamically modify structure or
behaviour)

— used e.g. in Java RMI for generic dispatching

— abilitv to intercent incomina messaaes or invocations

System Architpc;ug R P 1
models2.3 _ _ _ ~ Models*
— dynamically discover interface offered by a given object UNIVERSITY

— discover and adapt the underlying architecture of the system

2.3.3 Associated middleware solutions

The task of middleware is to provide a
higher-1 development of distributed systems and, through layering, to abstract over
heterogene- ity in the underlying infrastructure to promote interoperability and
portability.

R
il

Distributed objects (Chapters 5, 8)

Distributed components (Chapter 8)

Publish-subscribe systems (Chapter 6)

Message queues (Chapter 6)

Web services (Chapter 9)

Peer-to-peer (Chapter 10)

SUN EJB

CORBA Component Model
JBoss

CORBA Event Service
Scribe

IMS

Websphere MQ

IMS

Apache Axis

The Globus Toolkit
Pastry

Tapestry

Squirrel

OceanStore

Ivy

System ArChi_’[ﬁq@u@_RM
models2.3 _ Models¥
Limitations of middleware UNIVERSITY

Some communication-related functions can be completely and reliably imple-
mented only with the knowledge and help of the application standing at the end

points of the communication system.
Example: e-mail transfer need another layer of fault-tolerance that even TCP

can- notoffer

System FundqmenglR P 1
models2.4 modefs¥
4. Fundamental models UNIVERSITY

What is:
eInteraction model?
eFallure model?

«Security model?

1. Interaction model

eprocesses interact by passing messages —

— communication (information flow) and

— coordination (synchronization and ordering of activities) between pro-
Ccesses

System models2.4 FundgmelglR P 1
models L

UNIVERSITY
ecommunication takes place with delays of considerable duration

— accuracy with which independent processes can be coordinated is
limited by these delays

— and by difficulty of maintaining the same notion of time across all the
computers in a distributed system

Behaviour and state of DS can be described by a distributed algorithm:
esteps to be taken by each interacting process
«+ transmission of messages between them

State belonging to each process is completely private

System Fundqmengl R P 1
models2.4 models™

Performance of communication channels UNIVERSITY

» latency — delay between the start of message’s transmission from one
process and the beginning of receipt by another

 pbandwidth of a computer network — the total amount of information that can
be transmitted over it in a given time

o Jitter —the variation in the time taken to deliver a series of messages

Computer clocks and timing events

« clock drift rate — rate at which a computer clock deviates from a perfect
refer- ence clock

System Fundqmengl R P 1
models2.4 models¥

Two variants of the interaction UNIVERSITY
model
Synchronous distributed Asynchronous distributed
systems: systems:
*The time to execute each step of a No bounds
process has known lower and on- _
*Process execution
upper bounds
speeds
*Each message transmitted over a *Message transmission
channel is received within a delays |
known bounded time *Clock drift
rates

*Each process has a local clock
whose drift rate from real time has
a known bound

75System FundgmgnglRM
models2.4 modele™
Event ordering UNIVERSITY

fUnder seciion 3 of UGEC Acl 1958)

Figure 2.13 Real-time ordering of

eve send receive receive
X . 0 »>
1 m 4
send Tz |
Y 2 e 3 Jeceive Physical
) < ;
receive time
7 £
receive receive
A
receive receive receive
{7 %, i3

« Logical time — based on event
ordering

System Fundgmengal
models2.4 modelt¥ gRM
2. Failure model UNIVERSITY

efaults occur In:

— any of the computers (including software faults)

— or In the network

Failure model defines and classifies the faults

Omission failures

eprocess or communication channel fails to perform actions it is supposed to

do

Process omission failures

cheaf omission failure of a process is to crash

— crash Is called fail-stop If other processes can detect certainly that the

System Fund_a}m(_enSIVRM
models2.4 - _ models*¥
Communication omission failures UNIVERSITY

ecommunication channel does not transport a message p’s outgoing
from message buffer to g’s incoming message buffer

— known as dropping messages

* send-omission failures
* recelve-omission failures
* channel-omission

failures
- | g| process p process q
| |
| /
\ Communication channel /
Outgoing message buffer Incoming message buffer

All failures so far: benigh

fAar1liivace

System models2.4 Fund@meglR P 1
models bt

UNIVERSITY

fUnder seciion 3 of UGEC Acl 1958)

Arbitrary failures

mar "

arbitrary or Byzantine failure is used to describe the worst possible failure

se-
Class of failure Affects Description
Fail-stop Process Process halts and remains halted. Other processes may
detect this state.
Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.
Omission Channel A message inserted in an outgoing message buffer never

arrives at the other end’s incoming message buffer.
Send-omission Process A process completes a send, but the message is not put
in its outgoing message buffer.
Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.
Arbitrary Process or Process/channel exhibits arbitrary behaviour: it may
(Byzantine) channel send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
Incorrect step.

System Fundqmengl R P 1
models2.4 models¥

Timing failures UNIVERSITY

*applicable in synchronous distributed

systems Figure 2.16 Timing failures

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

Masking failures

*knowledge of the failure can enable a new service to be designed to mask the
failure of the components on which it depends

System Fundqmengl R P 1
models2.4 models™

Reliability of one-to-one communication UNIVERSITY

ereliable communication:

— Validity: Any message in the outgoing message buffer is eventually
deliv- ered to the incoming message buffer

— Integrity: The message received is identical to one sent, and no
messages are delivered twice

System Fundqmengl R P 1
models2.4 models¥

3. Security model UNIVERSITY

*modular nature of distributed systems and their openness exposes them to
attack by

— both external and internal agents
Security model defines and classifies attack forms,

— providing a basis for the analysis of threats

— Dbasis for design of systems that are able to resist them

the security of a distributed system can be achieved by securing the processes
and the channels used for their interactions and by protecting the objects that
they encapsulate against unauthorized access.

System Fundqm(_engIRM
models2.4 models¥
Protecting objects UNIVERSITY
*Users with access rights
eassociation of each invocation and each result with the authority on which it

IS Issued

— such an authority is called a principal

* principal may be a user or a process

Figure 2.17 Objects and principals
Access rights Object

invocation

@
result

Principal (user) Network Principal (server)

Server

System Fund_a;m(_enSIrRM
models2.4 - _ models*
Securing processes and their interactions UNIVERSITY

esecuring communications Over open
cahnnels

sopen service Interfaces

The enemy
or also: adversary

Process (

Process P
Communication channel

System

Fundgme

models2.4
Threats to processes

*lack of knowledge of true source of a
message

— problem both to server and client side

— example: spoofing a mail server

Threats to communication channels

othreat to the privacy and integrity of
messages

can be defeated using secure channels

models¥

SRM

UNIVERSITY

System Fundqmengl R P 1
models2.4 models¥

Defeating security threats UNIVERSITY

Cryptography and shared secrets

*Cryptography i1s the science of keeping messages secure

*Encryption is the process of scrambling a message in such a way as to
hide its contents

Authentication

*based on shared secrets authentication of messages — proving the identities
sup- plied by their senders

System Fundqmengl R P 1
models2.4 models¥

Secure channels UNIVERSITY
Figure 2.19 Secure

Principal A /Principal B

\

@ Secure channel Process

Properties of a secure channel:

*Each of the processes knows reliably the identity of the principal on whose
behalf the other process is executing

*A secure channel ensures the privacy and integrity (protection against
tamper- ing) of the data transmitted across it

System models2.4 FundgmelglR P 1
models L

UNIVERSITY
*Each message includes a physical or logical timestamp to prevent messages
from being replayed or reordered

Other possible threats from an enemy

eDenial of service:

— the enemy interferes with the activities of authorized users by making
ex- cessive and pointless invocations on services or message
transmissions in a network, resulting in overloading of physical
resources (network band- width, server processing capacity)

*Mobile code:

— execution of program code from elsewhere, such as the email
attachment etc.

System Fundgmengal
models2.4 _ models gRM
The uses of security models UNIVERSITY

Security analysis involves

the construction of a threat model:

— listing all the forms of attack to which the system is
exposed

— an evaluation of the risks and consequences of each

1441Interprocess P ngw
ication4 il 7

m
A IHEY process communication UNIVERSITY

der seciion 3 of UG Acl 1958)

4.1 Introduction
Figure 4.1 Middleware layers

Applications, services
Remote invocation, indirect communication

This Underlying interprocess communication primitives: Mitlidleware
chapter | Sockets, message passing, multicast support, overlay networks HyeiB

UDP and TCP

How middleware and application programs can use UDP and TCP?
What is specific about IP multicast? Why/how could it be made more

reliable? What is an overlay network?
What is MP1?

Interprocess The API for the Int‘emeSRM

commu ication4. 1!2 protocols
2. e API for the Internet protocols UNIVERSITY

1.The characteristics of interprocess communication

Synchronous and asynchronous communication

synchronous — sending and receiving processes synchronize at every message

*both send and receive — blocking operations

— whenever send is issued — sending process blocked until receive is
Issued

— whenever receive is issued by a process, it is blocked until the message

arrives
asynchronous — send — nonblocking; receive — either blocking or non-

blocking In case threads are supported (Java) blocking receive has no

disadvantages

thread is handling the communication while other threads can continue their

I

Interprocess The API for the In_t,emeSRM
communication4.? protocols bl
Message destinations UNIVERSITY

*messages sent to (Internet address, local
port)

Reliability & ordering — also important factors

4.2.2 Sockets _ o _ -
socket — abstraction providing an endpoint for communication

betwee
Figure 4.2 Sockets and

por D

d
socket D/ any port agreed R (l sgeket
message

client D\ /ﬂ server
|} other ports ‘CI

Internet address = 138.37.94.248 Internet address = 138.37.88.249

Interprocess The API for the Int‘emeSRM

communication4.2 protocols
Java API for Internet addresses UNIVERSITY

Java class InetAddress referring to Domain Name System (DNS)
hostnames

PN\

T
:

4.2.3 UDP datagram communication
— datagram transmission without acknowledgement or retries

ecreate a socket bound to an Internet address of the local host and a local port

1.A server will bind its socket to a server port

2.A client binds its socket to any free local port

*The receive method returns the Internet address and port of the sender, in
addi- tion to the message (allowing the recipient to send a reply)

UNIVERSITY

protocols Issues related to datagram communication:

Message size:

«in IP protocol — < 216(incl. headers), but in most environments < 8
Kilobytes

Blocking:
*Sockets normally provide non-blocking sends and blocking receives

Timeouts:

*if needed, should be fairly large in comparison with the time for message
transmission

Receive from any:
by default every message Is placed in a receiving queue

— but it 1S possible to connect a dataaram socket to a narticular remote

Interprocess The API for the Int‘emeSRM

communication4.2 protocols
Failure model for UDP datagrams UNIVERSITY

(In Chapter 2: failure model for communication channels — reliable
communicationin terms of 2 properties — integrity and validity)

UDP datagrams suffer from
*Omission failures
*Ordering

Applications — provide your own checks!

Use of UDP
*Domain Name System (DNS)

*Voice over IP (VOIP)

No overheads associated with guaranteed message delivery. But overheads on:

Interprocess communication4.2 The API for the In;e;ngRM
protocols L

UNIVERSITY
ethe need to store state information at the source and destination
transmission of extra messages

elatency for the sender

Java API for UDP datagrams

2 classes: DatagramPacket and DatagramSocket
Class DatagramPacket — provides constructor for making an instance out of

an array of bytes comprising a message
the length of the message
and the Internet address and

elocal port number of the destination socket

The API for the IntpmeS_RM
protocols

UNIVERSITY
port number

array of bytes containing message |length of message | Internet address

methods get-

Paiay.gepar i estaddressupports sockets for sending
and receiving datagrams

e econstructor with port number

 — has also no-argument case — system to
— s]’e]nd and rece{':ve
choose a free port
* argument —
DatagramPacket

' for specified time throwin
: .M%Q&%ut—block receive before g

Interruptedl OEXxception : :
— connect — to connect to a particular remote port and internet address for

exclusive communication to/from there

199 nterProcesy EomAUMIEAt I NE 3V A ATPIPfor th

e IR

newDatagramPacket (m,m.length () ,aHost,serverPort

reply .. _
fetoesls ™+
Importjava .io0.=*;
publicclassUDPClient
(Stringargs []){
{ /largsgivemessagecontentsandserverhostname
BRI VOS8R IRet = null:
try {
aSocket = newDatagramSocket ();
byte [] m=args[0].getBytes();
InetAddressaHost = InetAddress.getByName(args|[1]);
intserverPort = 6789;
DatagramPacketrequest =
);
aSocket .send (request);
byte [] buffer = newbyte [1000];
DatagramPacketreply = newDatagramPacket (buffer , buffer.length);
aSocket . receive(reply);
System .out. printin(+ newString (reply.getData()));
} catch (Socket Exceptione){System .out.println(
}catch (1OExceptione){System .out.println(
}finally {if(aSocket != null) aSocket.close();}
1

+ e.get Message ());
+ e.get Message ());}

15TiHten

DB SE Ve PRIPHIERSES 2 TeCPRRS AR It

&-SRM
fRSERRE

Jretocels -

Importjava .io.=*;
publicclassUDPServer

(Stringargs []){
{ =null;

publicstaticvoidmain

Datagrangegketa
Socket try{

byte [] buffer newbyte
whidg kdreakketreques

hSocket . receive (request);
DatagramPacketreply newDatagramPacket (r

request.getLength (), request.getAddress
aSocket .send (reply) ;

k

newDatagramSocket (6789)

[1000];
newDatagramPacket

¥
ik
}catch (I1OExceptione) {System.out.println(

}finally {if(aSocket null) aSocket.close () ;}

3}

catch (Socket Exceptione){System .out.printin(

(buffer ,buffer.length)

equest.getData (),
(), request.getPort());

+ e.get Message ()

+ e.getMessage ());}

Interprocess communication4.2 The API for the Inpe(ngRM
protocols bl

UNIVERSITY
4.2.4 TCP stream communication
Network characteristics hidden by stream abstraction:
*Message Sizes
Lost messages
*Flow control

*Message duplication and ordering

*Message destinations

— once connection established — simply read/write to/from stream
— to establish connection

* connect request (from client)
* accept request (from server)

UNIVERSITY

protocols Pair of socets associated with srtream — read and write

Issues related to stream communication:

*Matching data items — (e.g. int should be followed by float — matching In
both side)

*Blocking —

— while trying to read data before it has arrived in queue

— writing data to the stream, but the TCP flow-control mechanism still
wait- ing for data acknowledgements etc.

*Threads — usually used

Failure model

*integrity

Interprocess The API for the Int,e-meSRM

communication4.2 protocols
— checksums UNIVERSITY

— seguence numbers
evalidity

— timeouts

— retransmission

Use of TCP
HTTP, FTP, Telnet, SMTP

Java API for TCP streams
Classes ServerSocket and Socket

Class ServerSocket:

*to listen connect regests from

I T

Interprocess The API for the Int‘emeSRM

communication4.2 protocols
* accept method UNIVERSITY

— gets a connect request from the queue or

— If the queue is empty, blocks until one arrives

— result of executing accept — an instance of Socket — a socket to use for
communicating with the client

Class Socket:
for use by pair of processes

eclient constructor — to create a socket specifying DNS hostname and port of
a server

— connects to the specified remote computer and port number
*methods:

— getlnputStream and getOutputStream

%?&ﬁw‘téﬁ it P TR SRR SIS R YGRS MR -
drotaegls .

(Stringargs []) {
{ /largumentssupplymessageandhostnameofd estination
Pugdtesdiaticxoigmain
try{
intserverPort = 7896 ;
s = newSocket (args[1], serverPort);
DatalnputStreamin = newData Input Stream (s.get InputStream ());
DataOutputStreamout = newDataOutputStream (s.get Output Stream ()) ;
out.writeUTF(args [0]); [//UTFisastringencodingseeSn4.3
Stringdata = in.readUTF () ;
System .out .printin(+ data) ;
} catch (UnknownHostExceptione) {
System . out. printin (+e.getMessage ());
}catch (EOFExceptione){System.out.println(+e.getMessage ()) ;
}catch (10OExceptione){System.out.printin(+e.getMessage ()) ;}

Yfinally {if(s!=null) try {s.close();}catch (1OExceptione){System.
out .

printin(+e.getMessage ());}}
;)

160Interprocess communication4.2 The API for the Ir;;e&nSRM
T 4

protocols
UNIVERSITY

fUnder seciion 3 of UGEC Acl 1958)

T
importjava .net.=x;
;”;ET{C“FI@E%&;Z}V@ TCP server makes a connection for each
bIICS Stringargs [1)-
elight:and,then echoés the Hiknt’s request
intserverPort = 7896,
ServerSocketlistenSocke = newServerSocket (serverPort)
t while (true){ ,
SocketclientSocket = listenSocket.accept()
} ’Connectionc = newConnection (clientSocket)
} catch (10Exceptione) {System.out.println(“Liste :"+e.getMessage ());
P b
¥
clas {

sConnectionextendsThread

Data Input Streamin ;

DataOutputStreamout

poddatcdoenestioket (SocketaClientSocket)
{

try {
clientSocket = aClientSocket:

PN

161Interprocess’co yﬁql ations 92“”5Fﬁ€%(fl3‘l>for the IR

out =newDataOutputStream Socket.getOutputStream ()

Drotog@lSart
} catch (10OExceptione) {System.out.println(+e.getMessage ()) ;
})
publicvoidrun () {
try { /lanechoserver
Stringdata = in.readUTF ()
out .writeUTF (data);
} catch (EOFExceptione) {System.out.println(+e.getMessage ()) ;
} catch (10Exceptione) {System.out.println(+e.getMessage ());}
} finally{ try {clientSocket.close ();}catch (I1OExceptione){/*closefailed */
1}
} 2

Interprocess communication4.3 External data representation grRd
p - 25 SRM

marshalling _ ,
4.3 External data representation and marshalling UNIVERSITY

'‘messages < —

— data values of many different types
— different floating-point number representations
— Integers — big-endian, little-endian order

— ASCII — 1byte; Unicode — 2bytes

= either:

a) convert data to agreed external format, or
b) transmit data in sender’s format + format used — recipient converts the values if
needed

external data representation: agreed standard for the representation of data struc-
tures and primitive values

Interprocess communication4.3 External data representation ;.u;Ld S R P 1

marshalling
UNIVERSITY

marshalling: process of taking a collection of data items and assembling them into
a form suitable for transmission in a message

unmarshalling: process of disassembling a collection data items from a message
at the destination

*CORBA’s (Common Object Request Broker Architecture) common data
representation (bin, just values)

«Java’s object serialization (bin, data + type info)

XML (Extensible Markup Languaga) (txt, may refer to externally
defined

namespaces)
*Google — protocol buffers (both stored and transmitted data)

*JSON (JavaScript Object Notation)

http://www.json.org/

Interprocess communication4.3 External data representation gRd
marshalling L Sl%lbl

LINIVETRITY
4.3.1 . CORBA’s Common Data Representation (CDR)
primitive 4.unsigned 7.char 10.any
types: 1.short (which long can represent
8.boolean basi

DIt 5.float (32-bit) (TRUE Ay BasIE OF
Qﬁ)'% 232' ' ’ constructed
bit) FALSE)
3.unsigne 6.double type)

d short 9.octet (8-

©®4 iy

Constructed (composite) types: sequence of bytes in a particular
order: Figure 4.7 CORBA CDR for constructed types

Iype Representation

sequence length (unsigned long) followed by elements in order

string length (unsigned long) followed by characters in order (can also
can have wide characters)

array array elements in order (no length specified because it is fixed)

struct in the order of declaration of the components

enumerated unsigned long (the values are specified by the order declared)

union type tag followed by the selected member

,,,,, nterprocess communication4 xternal data representation#8k D A/

marshalling CORBA CDR that contains the three fields of a struct w#é"s'gﬁﬁﬁﬁ

respective types are

string, string and unsigned long:

eParcnn ctriint wxrith vvaliias S¢Qmith’ ‘T Aandan’

index in notes |
198 sequence of bytes +T 4 bytes — on representation

0-3 5 length of string

4-7 "Smit" “Smith’

8—11 "h L

12-15 6 length of string

16—19 "Lond" ‘London’

29_23 "on "

24-27 1984 unsigned long

The flattened form represents a Person struct with value: {{Smith’, ‘London’, 1984}

External data representation q.nd

marshalling

Jhl

LW

D

[m]|
\._.T'I

SI%M

struct

stringname ;
stringplace

unsignedlongyear

Interprogcess communication4.3

I k.

'q"

| -
|_[1

[

“Marshalling through CORBA IDL

Sun XDR standard

esimilar to CORBA in many ways

*sending messages between clients and servers in Sun

NFS

http://www.cdk5.net/ipc

Interprocess External data representation q.nd S R P 1
communication4.3 marshalling
4.3.2 Javaobject UNIVERSITY o

'S%rljﬁllii@‘iié)ﬁPersonimplementsSerializable {

privateStringname

B EE%?Eb%gpl(asctrlngaName , StringaPlace | intaYear) {
prlvagﬁwty ame ;

place = aPlace;

year = aYear;

}

[lfollowedbymethodsforaccessingtheinstancevariables

serialization — flattening an object or a connected set of objects into a serial form
suitable for storing on disk or transmitting in a message

2 SRM
deserfﬁ'ﬂ@r*k?r‘bcé‘é‘? YRS PAATEHMESHIB A RSN knowledgeabptiof typesERSITY

reﬁresgﬂt%tr; on and marshalling

eserialization of an object + all objects it references as well to ensure that with
the object reconstruction, all of its references can be fulfilled at the

destination
L -
P e ERCUISIVEDFRERAU on (, . 1984)
t : ‘

Figure 4.9 Indication of Java serialized
Serialized values Explanation
Person 8-byte version number hO class name, version number
3 int year java.lflng.String java.lang.String| number, type and name of
name: place: instance variables
1984 5 Smith | 6 London hl values of instance variables

The true serialized form contains additional type markers; hO and h1 are handles

Interprocess External data representation q.nd S R P 1

communication4.3 marshalling
*serialize: UNIVERSITY

— create an instance of the class ObjectOutputStream and invoke its
writeObject method

edeserialize:

— open an ObjectinputStream on the stream and use its readObject
method to reconstruct the original object

(de)serialization carried out automatically in RMI

Reflection -— the ability to enquire about the properties of a class, such as the
names and types of its instance variables and methods

ecnables classes to be created from their names

*a constructor with given argument types to be created for a given class

Interprocess communication4.3 External data representation ;.u;Ld S R P 1

marshalling
UNIVERSITY

Reflection makes it possible to do serialization and deserialization in a com-
pletely generic manner

4.3.3 Extensible Markup Language (XML)
defined by the World Wide Web Consortium (W3C)
edata items are tagged with ‘markup’ strings
otags relate to the structure of the text that they enclose

XML i1s used to:

— enable clients to communicate with web services
— defining the interfaces and other properties of web services

— many other uses

v arcrhnnrinAa anA ratrinv/al ey rectarme

Interprocess communication4.3 External data representation, @Qd S R P 1
marshalling

UNIVERSITY
* specification of user interfaces

* encoding of configuration files in operating systems

eclients usually use SOAP messages to communicate with web services

SOAP — XML format whose tags are published for use by web services and their
clients

XML elements and attributes
Figure 4.10 XML definition of the Person

<pes;[gcl)JnC|%ur:e >
<name>Smith </name>
<place >London</place
>
<year >1984</year >

</ person > <|—— acomment ——>

Elements: portion of character data surrounded by matching start and end

tance

Interprocess communication4.3 External data representation ;.u;Ld S R P 1
marshalling

UNIVERSITY
*An empty tag — no content and is terminated with /> instead of >

— For example, the empty tag <european/> could be included within
the

<person> ...</person> tag

Attributes: element — generally a container for data, whereas an attribute — used
for labelling that data

o Attributes are for simple values

«if data contains substructures or several lines, it must be defined as an element

Names start with letter _or:
Binary data — expressed in character data in base64

Parsing and well-formed documents

External data representation @.nd SRM
marshalling
T UNIVERSHTY &

<’>XMI_I tr [REOCESS CQm&H‘é’Jb‘ﬁw@t'Q”“w standalone =""Jag=~™

-l_n Lo TN

XML namespaces — URL referring to the file containing the namespace
definitions.

+ *Forexample:

xmins : pers =

-l_\l\l\l\l\l\l I\AIIE r\r\'l'lhr\rr\nh

PN\

Figure 4.11 Illustration of the use of a namespace in the Person

T
< pggH%Wse cid = xmlns : pers = www.cdk >
5.n

< pers :name> Smith </ pers :name>
<pers :place > London </pers:place>
<pers :year > 1984 </ pers :year>

http://www.cdk5.net/person
http://www.cdk5.n/

Interprocess communication4.3 External data representation, qu

llin
QP\%[S ('-Pl\ 95 lwww.w3.org VI defines the elements and attributes that can apumggﬁw
document, how the elements are nested and the order and number of elements, and
whether an element is empty or can include text

sused for encoding and

~ validation
Iﬁ?ﬁlgure 4.12 An XML schema for the Person

‘Strugtw’.eschemaxmlns : xsd = URLofXMLschemadefinitions
>

<xsd :elementname = type = />
<xsd : complexTypename = >
<xsd<gegquence > = type= />
elementname = type= />

<xsd: = type= /
elementname >

<xsd ¥4 ributename =
elementname S

</ xsFt EBtpIRAYGPES>

-l-/! ved ‘erhpma>

I
—+
<
©
D
1
~

[Y

APIs for accessing XML —in Java, Python

ntr

http://www.w3.org/

Interprocess

communication4.3

4. Remote object references

Java, CORBA

External data representation q.nd SRM

marshalling

UNVERSITY

 remote object reference is an identifier for a remote object that is valid
through- out a distributed system

Figure 4.13 Representation of a remote object reference

32 bits

32 bits

32 bits

32 bits

Internet address

port number

time

object number

interface of
remote object

Interprocess Multicast
commmic tion4,4 .. communic“al‘tfors l H vV I
4. ulticast communication UNIVERSITY

single message from one process to each of the members of a group of |

processes,
usually in such a way that the membership of the group is transparent to the sender

1.Fault tolerance based on replicated services
2.Discovering services in spontaneous
networking 3.Better performance through
replicated data 4.Propagation of event

notifications

4.4.1 IP multicast — An implementation of multicast communication
Java’s API to It via the MulticastSocket class

IP multicast

Interprocess Multicast =
communication4.4 communic%l‘tfbrs l H V I
-group specified by a Class D Internet address UNIVERSITY

— first 4 bits are 1110 in IPv4

*Being a member of a multicast group allows a computer to receive IP
packets sent to the group

*membership dynamic

— computers allowed to join or leave at any time
— to join an arbitrary number of groups

— possible to send datagrams to a multicast group without being a
membe

At the application programming level, IP multicast available only via UDP

*Multicast routers

) —m— ———

Interprocess Multicast =
communication4.4 _ communic%l‘tfbrs l)'d V I
Multicast address allocation: UNIVERSITY

*Local Network Control Block (224.0.0.0 to 224.0.0.225)

Internet Control Block (224.0.1.0 to 224.0.1.225)

*Ad Hoc Control Block (224.0.2.0 to 224.0.255.0)

* Administratively Scoped Block (239.0.0.0 to 239.255.255.255) —
constrained propagation

Failure model for multicast datagrams

ofailure characteristics as UDP datagrams

« ureliable multicast

179Interprocess Multicast
communication4.4 communléa‘t‘r‘orSRM
Java APl to IP UNI\JEHSITY

ﬂ&fﬁ'& 631834 Multicast peer joins a group and sends and receives
datagrams
Timportjava .net.#;
importjava .io0.x*;
publicclassMulticastPee {
r publicstati (Stringargs []1){
tlegsgivemessagecontents&destinationmulticastgroup(e.g."228.5.6.7")
MulticastSockets =null;
try {
InetAddressgroup = InetAddress.getByName(args|[1]);
s = newMulticastSocket (6789);
s.joinGroup (group);
byte [] m=args[0].getBytes();
DatagramPacketmessageOut =
newDatagramPacket (m, m.length, group, 6789);
s.send (messageOut);
byte [] buffer = newbyte [1000];
for(inti =0; 1< 3; 1++) { /lgetmessagesfromothersingroup
DatagramPacketmessageln =
newDatagramPacket (buffer ,buffer.length);
s.receive (messageln);
System .out. printin(+ newString (messageln.getData ())

)i

P\

180Interprocess communication4.4 M_chRM

communication i 8
U_NI"IJEH’_SI;I_"‘(
by
s.leaveGroup (group);
} catch (Socket Exceptione){System.out.println(+ e.get Message ());

} catch (1OExceptione){System.out.printin(+ e.get Message ());
} finally { if(s !'= null) s.close();}

ny!

Interprocess communication4.5 Network virtualization: Oyl
p BERM

networks , o
4.5 Network virtualization: Overlay networks UNIVERSITY

Network virtualization — construction of many different virtual networks over an
existing network

cach virtual network redefines its own addressing scheme, protocols, routing
algorithms — depending on particular application on top

Interprocess Network virtualization: OWI&SRM

communication4.5 networks
1. Overlay networks UNIVERSITY

overlay network — virtual network consisting of nodes and virtual links, which
sits on top of an underlying network (such as an IP network) and offers
something that is not otherwise provided:

*a service for a class of applications or a particular higher-level service
— e.g. multimedia content distribution

*more efficient operation in a given networked environment
— e.g. routing in an ad hoc network

an additional feature
— e.g. multicast or secure communication.

This leads to a wide variety of types of overlay as captured by Figure 4.15

183Interprocess

communication4.5
Figure 4.15 Types of

UNIVERSITY

o btar e tine S o |LE &ri)

ove Motivation

Tailored for
application needs

Type
Distributed hash tables

Peer-to-peer file
sharing

Content distribution
networks

Description

One of the most prominent classes of overlay
network, offering a service that manages a
mapping from keys to values across a potentially
large number of nodes in a completely
decentralized manner (similar to a standard hash
table but in a networked environment).

Overlay structures that focus on constructing
tailored addressing and routing mechanisms to
support the cooperative discovery and use (for
example, download) of files.

Overlays that subsume a range of replication,
caching and placement strategies to provide
improved performance in terms of content
delivery to web users; used for web acceleration
and to offer the required real-time performance
for video streaming [www.kontiki.com].

1841Interprocess

communication4.5
Figure 4.15 Types of overlay

Tailored for Wireless ad hoc
network style networks
Disruption-tolerant
networks
Offering additional Multicast
features
Resilience
Security

Network virtualization: OMaSRM

networks
UNIVERSITY

. : fUndier section 3 of UGG Aci 1956)
Network overlays that provide customized

routing protocols for wireless ad hoc networks,
including proactive schemes that effectively
construct a routing topology on top of the
underlying nodes and reactive schemes that
establish routes on demand typically supported
by flooding.

Overlays designed to operate in hostile
environments that suffer significant node or link
failure and potentially high delays.

One of the earliest uses of overlay networks in
the Internet, providing access to multicast serv-
ices where multicast routers are not available;
builds on the work by Van Jacobsen, Deering
and Casner with their implementation of the
MBone (or Multicast Backbone) [mbone].

Overlay networks that seek an order of
magnitude improvement in robustness and
availability of Internet paths
[nms.csail.mit.edu].

Overlay networks that offer enhanced security
over the underling IP network, including virtual
private networks, for example, as discussed in
Section 3.4.8.

Interprocess Network virtualization: OWI&SRM

communication4.5 networks
*Advantages: UNIVERSITY

— new network services changes to the underlying network

— encourage experimentation with network services and the
customization of services to particular classes of application

— Multiple overlays can coexist
*Disadvantages:

— extra level of indirection (henceperformance penalty)

— add to the complexity of network services

Interprocess communication4.5 Network virtualization: Oyl
; LIERM

networks
UNIVERSITY

4.5.2 Skype: An example of an overlay network
Peer-to-peer application offering VoIP; 370M users (2009); developed by
Kazaa

p2p filesharing app

Skype architecture

*hosts and super nodes (which being selected on

Skype

login server :
den / ay architecture

o o £
- —\) —‘ e
\ €9
e —— e
E/SN — & ™
- \/SN~\\ _

)
3
o—@
w'/
2]

SN Super node

2, Ordinary host

Interprocess Network virtualization: OWI&SRM

communication4.5 networks
User connection UNIVERSITY

eusers authenticated via login server

Search for users

super nodes — to perform the efficient search of the global index of users dis-
tributed across the super nodes

— On average, eight super nodes are contacted

— 3-4 seconds to complete for hosts that have a global IP address (5-6
second, if behind a NAT-enabled router)

\oice connection

*TCP for signalling call requests and terminations and either UDP or TCP for
the streaming audio

Interprocess communication4.5 Network virtualization: Oyl
; LIERM

networks
UNIVERSITY

— UDP is preferred

— TCP can be used in certain circumstances to circumvent firewalls

Interprocess communication4.6 Cgsg SSQRM
MPY
4.6 Case study: MPI UNIVERSITY

MPI (The Message Passing
Interface)

A message-passing library specification
— extended message-passing model

— not a language or compiler specification

— not a specific implementation or product

Full featured; for parallel computers, clusters, and heterogeneous networks
*Designed to provide access to advanced parallel hardware for end users,

library writers, and tool developers

MPI as STANDARD
Goals of the MPI standard MPI’s prime goals are:

Interprocess Cgse

SRM

communication4.6 Vi

To provide source-code portability

*To allow efficient

Implementations MPI also offers:

*A great deal of functionality
*Support for heterogeneous parallel architectures
4 types of MPI calls

1.Calls used to initialize, manage, and terminate communications

2.Calls used to communicate between pairs of processors (Pair
communication) 3.Calls used to communicate

groupsof processors (Collective

communication)

UNIVERSITY

among

Interprocess Cgsg sggRM

communication4.6 MPY
MPI basic subroutines (functions) UNIVERSITY

MPI Init: initialise MPI

MPI Comm Size: how many PE?

MPI Comm Rank: identify the

PE MPI Send

MPI Receive

MPI Finalise: close

MPI

192Interprocess communication4.6
MPI

Example (Fortran90) 11.1 Greetings(

Process ¢

receive

I__\TI

MPI library buffer

http://www.ut.ee/~eero/SC/konspekt/Naited/greetings.f90.html
http://www.ut.ee/~eero/SC/konspekt/Naited/greetings.f90.html

193Interprocess

communication4.6 -
Figure 4.18 Selected send operations iIn

Send operations

Generic

Synchronous

Buffered

Ready

Blocking

MPI Send: the sender blocks until
it is safe to return — that is, until the
message is in transit or delivered
and the sender’s application buffer
can therefore be reused.

MPI Ssend: the sender and receiver
synchronize and the call only
returns when the message has been
delivered at the receiving end.

MPI Bsend: the sender explicitly
allocates an MPI buffer library
(using a separate

MPI Buffer attach call) and the
call returns when the data is

successfully copied into this buffer.

MPI _Rsend. the call returns when
the sender’s application buffer can
be reused (as with MPI Send), but
the programmer is also indicating to
the library that the receiver is ready
to receive the message, resulting in
potential optimization of the
underlying implementation.

Non-blocking

MPI Isend: the call returns
immediately and the programmer is
given a communication request
handle, which can then be used to
check the progress of the call via
MPI_Wait or MPI Test.

MPI Issend: as with MPI Isend,
but with MPI Wait and MPI Test
indicating whether the message has
been delivered at the receive end.

MPI Ibsend: as with MPI Isend
but with MPI Wait and MPI Test
indicating whether the message has
been copied into the sender’s MPI
buffer and hence is in transit.

MPI Irsend: the effect is as with
MPI Isend, but as with

MPI Rsend, the programmer is
indicating to the underlying
implementation that the receiver is
guaranteed to be ready to receive
(resulting in the same
optimizations),

UNIVERSITY

flindier seciion 3 of UGE Aci 1956

Case
study:
MPI

