
UNIT-II

COMMUNICATION IN DISTRIBUTED
SYSTEM

38System

models2.1

Outlin

e
2 System models

1. Outline

What are the three basic ways to describe Distributed systems? –

• Physical models – consider DS in terms of hardware – computers and devices that constitute a

system and their interconnectivity, without details of specific technologies

• Architectural models – describe a system in terms of the computational and communication

tasks performed by its computational elements. Client-server and peer-to-peer most commonly

used

• Fundamental models – take an abstract

perspective in order to describe solutions to

individual issues faced by most distributed

systems

– interaction models

– failure models

– security models

Difficulties and threats for distributed systems:

• Widely varying modes of use

• Wide range of system environments

• Internal problems

• External threats

39System models2.2 Physical

models
2.2 Physical models

•Baseline physical model – minimal physical model of a distributed system as

an extensible set of computer nodes interconnected by a computer network

for the required passing of messages.

Three generations of distributed

systems

•Early distributed systems

– 10 and 100 nodes interconnected by a local area network

– limited Internet connectivity

– supported a small range of services e.g.

* shared local printers

* file servers

* email

40System

models2.2

Physical

models
* file transfer across the Internet

•Internet-scale distributed systems

– extensible set of nodes interconnected by a network of networks (the

Internet)

•Contemporary DS with hundreds of thousands nodes + emergence of:

– mobile computing

* laptops or smart phones may move from location to location –

need for added capabilities (service discovery; support for

spontaneous interoperation)

– ubiquitous computing

* computers are embedded everywhere

– cloud computing

41System

models2.2

Physical

models
* pools of nodes that together provide a given service

•Distributed systems of systems (ultra-large-scale (ULS) distributed

systems)

42System

models2.2

Physical

models
•significant challenges associated with contemporary

DS:

Figure 2.1 Generations of distributed systems

Architectural

Models

43System models2.3

2.3 Architectural Models

Major concerns: make the system reliable, manageable, adaptable and cost-

effective

2.3.1 Architectural elements

•What are the entities that are communicating in the distributed system?

•How do they communicate, or, more specifically, what communication

paradigm is used?

•What (potentially changing) roles and responsibilities do they have in the

overall architecture?

•How are they mapped on to the physical distributed infrastructure (what is

their placement)?

44System

models2.3

Architectural

Models
Communicating entities

•From system perspective: processes

– in some cases we can say that:

* nodes (sensors)

* threads (endpoints of communication)

•From programming perspective

– objects

* computation consists of a number of interacting objects

representing natural units of decomposition for the given problem

domain

* Objects are accessed via interfaces, with an associated interface

defi- nition language (or IDL)

45System models2.3 Architectural

Models

– components – emerged due to some weaknesses with distributed

objects

* offer problem-oriented abstractions for building distributed

systems

* accessed through interfaces

·+ assumptions to components/interfaces that must be present

(i.e. making all dependencies explicit and providing a more

complete contract for system construction.)

– web services

* closely related to objects and components

* intrinsically integrated into the World Wide Web

·using web standards to represent and discover services

46System

models2.3

Architectural

Models
The World Wide Web consortium

(W3C):

Web service is a software application identified by a URI, whose interfaces

and bindings are capable of being defined, described and discovered as

XML artefacts. A Web service supports direct interactions with other

software agents using XML-based message exchanges via Internet-based

protocols.
•objects and components are often used within an organization to develop

tightly coupled applications

•web services are generally viewed as complete services in their own right

47System

models2.3

Architectural

Models
Communication paradigms

What is:

•interprocess communication?

•remote invocation?

•indirect communication?

Interprocess communication – low-level support for communication between pro-

cesses in distributed systems, including message-passing primitives, direct access

to the API offered by Internet protocols (socket programming) and support for

multicast communication

Remote invocation – calling of a remote operation, procedure or method

Request-reply protocols – a pattern with message-passing service to

support client-server computing

48System

models2.3

Architectural

Models
Remote procedure call (RPC)

•procedures in processes on remote computers can be called as if they are

proce- dures in the local address space

•supports client-server computing with servers offering a set of operations

through a service interface and clients calling these operations directly as if

they were available locally

– RPC systems offer (at a

m

Remote method invocation (RMI)

•strongly resemble RPC but in a world of distributed

objects

•tighter integration into object-orientation framework

49System

models2.3

Architectural

Models
In RPC and RMI –

•senders-receivers of messages

– coexist at the same time

– are aware of each other’s identities

Indirect communication

•Senders do not need to know who they are sending to (space uncoupling)

•Senders and receivers do not need to exist at the same time (time

uncoupling)

Key techniques in indirect communication:

•Group communication

•Publish-subscribe systems:

50System models2.3 Architectural

Models

– (sometimes also called distributed event-based systems)

– publishers distribute information items of interest (events) to a

similarly large number of consumers (or subscribers)

•Message queues:

– (publish-subscribe systems offer a one-to-many style of

communication), message queues offer a point-to-point service

– producer processes can send messages to a specified queue

– consumer processes can

* receive messages from the queue or

* be notified

•Tuple spaces (also known as generative communication):

– processes can place arbitrary items of structured data, called tuples, in a

persistent tuple space

51System models2.3 Architectural

Models

– other processes can either read or remove such tuples from the tuple

space by specifying patterns of interest

– readers and writers do not need to exist at the same time (Since the

tuple space is persistent)

•Distributed shared memory (DSM):

– abstraction for sharing data between processes that do not share

physical memory

52System models2.3 Architectural

Models Figure 2.2 Communication entities and

communication paradigms

53System

models2.3

Architectural

Models
Roles and responibilities

•Client-server

Figure 2.3 Clients invoke individual

servers

54System

models2.3

Architectural

Models
•Peer-to-peer

Figure 2.4a Peer-to-peer

architecture

– same set of interfaces to each

other

55System

models2.3

Architectural

Models
Placement

•crucial in terms of determining the DS

properties:

– performance

– reliability

– security

Possible placement strategies:

• mapping of services to

multiple

servers
– mapping distributed objects

between servers, or

– replicating copies on several

hosts

– more closely

coupled multiple-servers –

cluster

Figure 2.4b A service provided by

multi- ple servers

56System

models2.3

Architectural

Models
• cachin

g

– A cache is a store of recently used data objects that is closer to one

client or a particular set of clients than the objects themselves

Figure 2.5 Web proxy

server

57System

models2.3

Architectural

Models
• mobile code

– Applets are an example of mobile

code Figure 2.6 Web Applets

– yet another possibility – push model: server initiates interaction (e.g. on

information updates on it)

58System

models2.3

Architectural

Models
• mobile

agents

– Mobile agent – running program (including both code and data) that

travels from one computer to another in a network carrying out a

task on someone’s behalf (e.g. collecting information), and

eventually re- turning with the results.

– could be used for

* software maintenance

* collecting information from different vendors’ databases of

prices

Possible security threats with mobile code and mobile agents...

59System

models2.3

Architectural

Models
2.3.2 Architectural patterns

Layering

Layered approach – complex system partitioned into a number of layers:

•vertical organisation of services

•given layer making use of the services offered by the layer below

•software abstraction

•higher layers unaware of implementation details, or any other layers beneath

them

60System models2.3 Architectural

Models

Platform and Middleware

Figure 2.7 Software and hardware service layers in distributed systems

•A platform for distributed systems and applications consists of the

lowest-level hardware and software layers.

61System models2.3 Architectural

Models

•Middleware – a layer of software whose purpose is to mask hetero-

geneity and to provide a convenient programming model to

application programmers.

62System

models2.3

Architectural

Models
Tiered architecture

Tiering is a technique to organize functionality of a given layer and place this

functionality into appropriate servers and, as a secondary consideration, on to

physical nodes

Example: two-tier and three-tier architecture

functional decomposition of a given application, as follows:

•presentation logic

•application logic

•data logic

63System models2.3

Architectural

Models
Figure 2.8 Two-tier and three-tier

architectures

• three aspects par-

twotitioned into

processes

• (+) low latency

• (-) splitting applica-

tion logic

• (+) one-to-one map-

ping from logical

elements to physical

servers

• (-) added complexity,

network traffic and la-

tency

64System models2.3 Architectural

Models

AJAX (Asynchronous Javascript And XML) – a way to create

interactive, partially/selectively-updatable webpages

•extension to the standard client-server style of interaction in

WWW

– Javascript forntend and server-based backend

Figure 2.9 AJAX example: soccer score

updates
✞ ☎

,newAjax . Request (’s c o r e s.php?game=Arsenal:L i v e r p o o

l’

{ on Success : update Score }) ;

fu nc t ionupdate Score (reques t) {

.(reque s tc o n t a i n sthes t a t eoftheAjaxr eques tin c l u d in gthereturnedr e s u

l t

.

Ther e s u l ti sparsedtoo bta insomet e x tg i v i n gthescore , whichi

sused toupdatether e l e v a n tport ionofthecurrentpage .)

.

}
✝

(two-tier

architecture)

65System

models2.3

Architectural

Models
Thin clients

•enabling access to sophisticated networked services (e.g. cloud services)

with few assumptions to client device

•software layer that supports a window-based user interface (local) for

executing remote application programs or accessing services on remote

computer

Figure 2.10 Thin clients and computer servers

Concept led to Virtual Network Computing (VNC) – VNC clients accessing

VNC servers using VNC protocol

66System

models2.3

Architectural

Models
Other commonly occurring patterns

• proxy pattern

– designed to support location transparency in RPC or RMI

– proxy created in local address space, with same interface as the remote

object

• brokerage in web services

– supporting interoperability in potentially complex

distributed infrastructures

– service provider, service requestor and service broker

– brokerage reflected e.g. in registry in Java RMI and naming service in

CORBA

67System

models2.3

Architectural

Models
Figure 2.11 The web service architectural

pattern

• Reflection pattern

– a means of supporting both:

* introspection (the dynamic discovery of properties of the system)

* intercession (the ability to dynamically modify structure or

behaviour)

– used e.g. in Java RMI for generic dispatching

– ability to intercept incoming messages or invocations

68System

models2.3

Architectural

Models
– dynamically discover interface offered by a given object

– discover and adapt the underlying architecture of the system

2.3.3 Associated middleware solutions

The task of middleware is to provide a

higher-l development of distributed systems and, through layering, to abstract over

heterogene- ity in the underlying infrastructure to promote interoperability and

portability.

69System

models2.3

Architectural

Models
Categories of middleware

Figure 2.12 Categories of

middleware

70System

models2.3

Architectural

Models
Limitations of middleware

Some communication-related functions can be completely and reliably imple-

mented only with the knowledge and help of the application standing at the end

points of the communication system.

Example: e-mail transfer need another layer of fault-tolerance that even TCP

can- not offer

71System

models2.4

Fundamental

models
4. Fundamental models

What is:

•Interaction model?

•Failure model?

•Security model?

1. Interaction model

•processes interact by passing messages –

– communication (information flow) and

– coordination (synchronization and ordering of activities) between pro-

cesses

72System models2.4 Fundamental

models

•communication takes place with delays of considerable duration

– accuracy with which independent processes can be coordinated is

limited by these delays

– and by difficulty of maintaining the same notion of time across all the

computers in a distributed system

Behaviour and state of DS can be described by a distributed algorithm:

•steps to be taken by each interacting process

•+ transmission of messages between them

State belonging to each process is completely private

73System

models2.4

Fundamental

models
Performance of communication channels

• latency – delay between the start of message’s transmission from one

process and the beginning of receipt by another

• bandwidth of a computer network – the total amount of information that can

be transmitted over it in a given time

• Jitter – the variation in the time taken to deliver a series of messages

Computer clocks and timing events

• clock drift rate – rate at which a computer clock deviates from a perfect

refer- ence clock

74System

models2.4

Fundamental

models
Two variants of the interaction

model

Synchronous distributed

systems:

•The time to execute each step of a

process has known lower and

upper bounds

•Each message transmitted over a

channel is received within a

known bounded time

•Each process has a local clock

whose drift rate from real time has

a known bound

Asynchronous distributed

systems:

No bounds

on:

•Process execution

speeds

•Message transmission

delays

•Clock drift

rates

75System

models2.4

Fundamental

models
Event ordering

Figure 2.13 Real-time ordering of

events

• Logical time – based on event

ordering

76System

models2.4

Fundamental

models
2. Failure model

•faults occur in:

– any of the computers (including software faults)

– or in the network

•Failure model defines and classifies the faults

Omission failures

•process or communication channel fails to perform actions it is supposed to

do

Process omission failures

•cheaf omission failure of a process is to crash

– crash is called fail-stop if other processes can detect certainly that the

pro- cess has crashed

77System

models2.4

Fundamental

models

p’s outgoing

Communication omission failures

•communication channel does not transport a message

from message buffer to q’s incoming message buffer

– known as dropping messages

* send-omission failures

* receive-omission failures

* channel-omission

failures

Figure 2.14 Processes and channels

All failures so far: benigh

failures

78System models2.4 Fundamental

models

Arbitrary failures

arbitrary or Byzantine failure is used to describe the worst possible failure

se-

mantics, in which any type of error may

occur Figure 2.15 Omission and

arbitrary failures

79System

models2.4

Fundamental

models
Timing failures

•applicable in synchronous distributed

systems Figure 2.16 Timing failures

Masking failures

•knowledge of the failure can enable a new service to be designed to mask the

failure of the components on which it depends

80System

models2.4

Fundamental

models
Reliability of one-to-one communication

•reliable communication:

– Validity: Any message in the outgoing message buffer is eventually

deliv- ered to the incoming message buffer

– Integrity: The message received is identical to one sent, and no

messages are delivered twice

81System

models2.4

Fundamental

models
3. Security model

•modular nature of distributed systems and their openness exposes them to

attack by

– both external and internal agents

•Security model defines and classifies attack forms,

– providing a basis for the analysis of threats

– basis for design of systems that are able to resist them

the security of a distributed system can be achieved by securing the processes

and the channels used for their interactions and by protecting the objects that

they encapsulate against unauthorized access.

82System

models2.4

Fundamental

models
Protecting objects

•Users with access rights

•association of each invocation and each result with the authority on which it

is issued

– such an authority is called a principal

* principal may be a user or a process

Figure 2.17 Objects and principals

83System

models2.4

Fundamental

models
Securing processes and their interactions

•securing communications over open

cahnnels

•open service interfaces

The enemy

or also: adversary

Figure 2.18 The enemy

84System

models2.4

Fundamental

models
Threats to processes

•lack of knowledge of true source of a

message

– problem both to server and client side

– example: spoofing a mail server

Threats to communication channels

•threat to the privacy and integrity of

messages

•can be defeated using secure channels

85System

models2.4

Fundamental

models
Defeating security threats

Cryptography and shared secrets

•Cryptography is the science of keeping messages secure

•Encryption is the process of scrambling a message in such a way as to

hide its contents

Authentication

•based on shared secrets authentication of messages – proving the identities

sup- plied by their senders

86System

models2.4

Fundamental

models
Secure channels

Figure 2.19 Secure

channels

Properties of a secure channel:

•Each of the processes knows reliably the identity of the principal on whose

behalf the other process is executing

•A secure channel ensures the privacy and integrity (protection against

tamper- ing) of the data transmitted across it

87System models2.4 Fundamental

models

•Each message includes a physical or logical timestamp to prevent messages

from being replayed or reordered

Other possible threats from an enemy

•Denial of service:

– the enemy interferes with the activities of authorized users by making

ex- cessive and pointless invocations on services or message

transmissions in a network, resulting in overloading of physical

resources (network band- width, server processing capacity)

•Mobile code:

– execution of program code from elsewhere, such as the email

attachment etc.

88System

models2.4

Fundamental

models
The uses of security models

Security analysis involves

•the construction of a threat model:

– listing all the forms of attack to which the system is

exposed

– an evaluation of the risks and consequences of each

End of week 2

144Interprocess

communication4.1

Introductio

n
4 Interprocess communication

4.1 Introduction
Figure 4.1 Middleware layers

How middleware and application programs can use UDP and TCP?

What is specific about IP multicast? Why/how could it be made more

reliable? What is an overlay network?

What is MPI?

145Interprocess

communication4.2

The API for the Internet

protocols
2. The API for the Internet protocols

1.The characteristics of interprocess communication

Synchronous and asynchronous communication

synchronous – sending and receiving processes synchronize at every message

•both send and receive – blocking operations

– whenever send is issued – sending process blocked until receive is

issued

– whenever receive is issued by a process, it is blocked until the message

arrives

w

asynchronous – send – nonblocking; receive – either blocking or non-

blocking In case threads are supported (Java) blocking receive has no

disadvantages

thread is handling the communication while other threads can continue their

work

146Interprocess

communication4.2

The API for the Internet

protocols
Message destinations

•messages sent to (Internet address, local

port)

Reliability & ordering – also important factors

4.2.2 Sockets
socket – abstraction providing an endpoint for communication

betwee

Figure 4.2 Sockets and

ports

147Interprocess

communication4.2

The API for the Internet

protocols
Java API for Internet addresses

•Java class InetAddress referring to Domain Name System (DNS)

hostnames
✞ ☎

Inet AddressaComputer = Inet Address . getByName (

"bruno.dcs.qmul.ac.uk"

) ;
✝

4.2.3 UDP datagram communication

– datagram transmission without acknowledgement or retries

•create a socket bound to an Internet address of the local host and a local port

1.A server will bind its socket to a server port

2.A client binds its socket to any free local port

•The receive method returns the Internet address and port of the sender, in

addi- tion to the message (allowing the recipient to send a reply)

148Interprocess communication4.2 The API for the Internet

protocols Issues related to datagram communication:

Message size:

•in IP protocol – ≤ 216(incl. headers), but in most environments ≤ 8

kilobytes

Blocking:

•Sockets normally provide non-blocking sends and blocking receives

Timeouts:

•if needed, should be fairly large in comparison with the time for message

transmission

Receive from any:

•by default every message is placed in a receiving queue

– but it is possible to connect a datagram socket to a particular remote

149Interprocess

communication4.2

The API for the Internet

protocols
Failure model for UDP datagrams

(In Chapter 2: failure model for communication channels – reliable

communication in terms of 2 properties – integrity and validity)

UDP datagrams suffer from

•Omission failures

•Ordering

Applications – provide your own checks!

Use of UDP

•Domain Name System (DNS)

•Voice over IP (VOIP)

No overheads associated with guaranteed message delivery. But overheads on:

150Interprocess communication4.2 The API for the Internet

protocols

•the need to store state information at the source and destination

•transmission of extra messages

•latency for the sender

Java API for UDP datagrams

2 classes: DatagramPacket and DatagramSocket

Class DatagramPacket – provides constructor for making an instance out of

•an array of bytes comprising a message

•the length of the message

•and the Internet address and

•local port number of the destination socket

151Interprocess communication4.2

The API for the Internet

protocols
DatagramPacke

tarray of bytes containing message length of message Internet address port number

152Interprocess communication4.2 The API for the Internet

protocols On the receiving side: DatagramPacket has another constructor +

methods get-

Data, getPort and getAddress• Class DatagramSocket – supports sockets for sending
and receiving datagrams

• •constructor with port number

• – has also no-argument case – system to
choose a free port

• •Methods: for specified time

before

throwin

g

– send and receive

* argument –
DatagramPacket

– setSoTimout – block receive

InterruptedIOException
– connect – to connect to a particular remote port and internet address for

exclusive communication to/from there

153Interprocess communication4.2 The API for the Internet

protocols

Figure 4.3 UDP client sends a message to the server and gets a

reply
✞ ☎

importjava . net . * ;

importjava . i o . * ;

pu bl i cc l a s sUDPClient

{

publ ics t a t i cvoidmain

(S t r i n gargs []) {

/ /argsg i v emessagec o n t e n t sands e r v e rhostname

DatagramSocketa Socket = n u l l ;

t r y {

a Socket = newDatagramSocket () ;

byte [] m = args [0] . g e t B y t e s () ;

Inet AddressaHost = Inet Address . getByName (args [1]) ;

i n ts erve rPo rt = 6789 ;

DatagramPacketr eques t = newDatagramPacket (m,m. l e ng th () , aHost , se rve rPort

) ;

aSocket . send (reques t) ;

byte [] buffer = newbyte [1 0 0 0] ;

DatagramPacketr ep ly = newDatagramPacket (buffer , b u f f e r . l e n g t h) ;

aSocket . re c e i v e (reply) ;

System . out . p r i n t l n ("Reply: " + newS tr in g (rep ly . get Data ())) ;

} catch (Socket Exceptione) { System . out . p r i n t l n ("Socket: " + e . get Message ()) ;

} catch (IOExceptione) { System . out . p r i n t l n ("IO: " + e . get Message ()) ; }

} f i n a l l y { i f (aSocket != n u l l) aSocket . c l o s e () ; }

}}
✝

154Interprocess communication4.2 The API for the Internet

protocols

Figure 4.4 UDP server repeatedly receives a request and sends it back to the

client
✞ ☎

(S t r i n gargs []) {

= n u l l ;

importjava . net . * ;

importjava . i o . * ;

pu bl i cc l a s sUDPServer

{

publ ics t a t i cvoidmain

DatagramSocketa

Socket try {
a Socket = newDatagramSocket (6 7 8 9)

;

byte [] buffer = newbyte [1 0 0 0] ;

while (tru e) {DatagramPacketr eques

t

= newDatagramPacket (buffer , b uf fe r . l e n g th)

;aSocket . re c e i v e (reques t) ;

DatagramPacketr ep ly = newDatagramPacket (request . get Data () ,

reques t . get Length () , reque s t . getAddress () , reques t . getPort ()) ;

aSocket . send (reply) ;

}

} catch (Socket Exceptione) { System . out . p r i n t l n ("Socket: " + e . get Message ()

) ;

} catch (IOExceptione) { System . out . p r i n t l n ("IO: " + e . getMessage ()) ; }

} f i n a l l y { i f (aSocket != n u l l) aSocket . c l o s e () ; }

}}
✝

155Interprocess communication4.2 The API for the Internet

protocols

4.2.4 TCP stream communication

Network characteristics hidden by stream abstraction:

•Message sizes

•Lost messages

•Flow control

•Message duplication and ordering

•Message destinations

– once connection established – simply read/write to/from stream

– to establish connection

* connect request (from client)

* accept request (from server)

156Interprocess communication4.2 The API for the Internet

protocols Pair of socets associated with srtream – read and write

Issues related to stream communication:

•Matching data items – (e.g. int should be followed by float – matching in

both side)

•Blocking –

– while trying to read data before it has arrived in queue

– writing data to the stream, but the TCP flow-control mechanism still

wait- ing for data acknowledgements etc.

•Threads – usually used

Failure model

•integrity

157Interprocess

communication4.2

The API for the Internet

protocols
– checksums

– sequence numbers

•validity

– timeouts

– retransmission

Use of TCP

HTTP, FTP, Telnet, SMTP

Java API for TCP streams

Classes ServerSocket and Socket

Class ServerSocket:

•to listen connect reqests from

clients

158Interprocess

communication4.2

The API for the Internet

protocols
• accept method

– gets a connect request from the queue or

– if the queue is empty, blocks until one arrives

– result of executing accept – an instance of Socket – a socket to use for

communicating with the client

Class Socket:
•for use by pair of processes

•client constructor – to create a socket specifying DNS hostname and port of

a server

– connects to the specified remote computer and port number

•methods:

– getInputStream and getOutputStream

159Interprocess communication4.2 The API for the Internet

protocols

Figure 4.5 TCP client makes connection to server, sends request and receives

reply
✞ ☎

importjava . net . * ;

importjava . i o . * ;

pu bl i cc l a s sTCPClient

{

publ ics t a t i cvoidmain

(S t r i n gargs []) {

/ /argumentssupplymessageandhostnameofd e s t i n a t i o n

Sockets = n u l l ;

try {

i n ts erve rPort = 7896 ;

s = newSocket (args [1] , s e r v e r P o r t) ;

Data Input Streamin = newData Input Stream (s . get Input Stream ()) ;

DataOutputStreamout = newDataOutputStream (s . get Output Stream ()) ;

out . writeUTF (args [0]) ; / /UTFi sas t r i n gencodingseeSn4 . 3

St r in gdata = in . readUTF () ;

System . out . p r i n t l n ("Received: "+ data) ;

} catch (UnknownHostExceptione) {

System . out . p r i n t l n ("Sock:" +e . get Message ()) ;

} catch (EOFExceptione) { System . out . p r i n t l n ("EOF:" +e . get Message ()) ;

} catch (IOExceptione) { System . out . p r i n t l n ("IO:" +e . get Message ()) ; }

} f i n a l l y { i f (s != n u l l) try { s . c l o s e () ; } catch (IOExceptione) { System .

out .

p r i n t l n ("c l o s e:" +e . get Message ()) ; } }

}}
✝

160Interprocess communication4.2 The API for the Internet

protocols

Figure 4.6 TCP server makes a connection for each

client and then echoes the client’s request

✞ ☎

{

(S t r i n gargs []) {

importjava . net . * ;

importjava . i o . * ;

publ icc l a s sTCPServer

publ ics t a t i

cvoidmain try {

i n tserverPort = 7896 ;

= newServer Socket (serverPort)

;

Server Socketl i s t e n S o c k e

t while (t ru e) {

Socketc l i e n t S o c k e t = l i s t e n S o c k e t . accept ()

;

Connectionc = newConnection (c l i e n t S o c k e t)

;
}

} catch (IOExceptione) { System . out . p r i n t l n ("Li s t e

n

:" +e . get Message ()) ;

}}

{

}

c l a s

sConnectionextendsThread

Data Input Streamin ;

DataOutputStreamout ;

Socketc l i e n t S o c k e t ;p u b l i cConnection (Socketa Cl i entSocket)

{

t r y {

c l i e n t S o c k e t = a Cl i e n tS oc ke t ;

161Interprocess communication4.2 The API for the Internet

protocols

in = newDataInput Stream (c l i e n t S o c k e t . get Input Stream ()) ;

out =newDataOutputStream (c l i e n t S o c k e t . get Output Stream ()) ;

t h i s . s t a r t () ;

} catch (IOExceptione) { System . out . p r i n t l n ("Connection:" +e . get Message ()) ;

}

/ /anechos e r v e r

}

p u b l i cvoidrun () {

t r y {

St r in gdata = in . readUTF ()

;out . writeUTF (data) ;

} catch (EOFExceptione) { System . out . p r i n t l n ("EOF:" +e . get Message ()) ;

} catch (IOExceptione) { System . out . p r i n t l n ("IO:" +e . get Message ()) ; }

} f i n a l l y { t ry { c l i e n t S o c k e t . c l o s e () ; } catch (IOExceptione) { / * c l o s ef a i l e d */

}}

}}
✝

162Interprocess communication4.3 External data representation and

marshalling
4.3 External data representation and marshalling

•messages ←−

– data values of many different types

– different floating-point number representations

– integers – big-endian, little-endian order

– ASCII – 1byte; Unicode – 2bytes

⇒ either:

a) convert data to agreed external format, or

b) transmit data in sender’s format + format used – recipient converts the values if

needed

external data representation: agreed standard for the representation of data struc-

tures and primitive values

163Interprocess communication4.3 External data representation and

marshalling

marshalling: process of taking a collection of data items and assembling them into

a form suitable for transmission in a message

unmarshalling: process of disassembling a collection data items from a message

at the destination

•CORBA’s (Common Object Request Broker Architecture) common data

representation (bin, just values)

•Java’s object serialization (bin, data + type info)

•XML (Extensible Markup Languaga) (txt, may refer to externally

defined

namespaces)

•Google – protocol buffers (both stored and transmitted data)

•JSON (JavaScript Object Notation)http://www.json.org

http://www.json.org/

164Interprocess communication4.3 External data representation and

marshalling

4.3.1 CORBA’s Common Data Representation (CDR)
primitive

types: 1.short

(16-bit)
2.long (32-

bit)
3.unsigne

d short

5.float (32-bit)

6.double

(64

-

bit)

8.boolean

(TRUE,

FALSE)

9.octet (8-

bit)

4.unsigned 7.char 10.any

(which long can represent

any basic or

constructed

type)

Constructed (composite) types: sequence of bytes in a particular

order: Figure 4.7 CORBA CDR for constructed types

165Interprocess communication4.3 External data representation and

marshalling CORBA CDR that contains the three fields of a struct whose

respective types are

string, string and unsigned long:

•Person struct with value: {‘Smith’, ‘London’,

1984} Figure 4.8 CORBA CDR message

166Interprocess communication4.3

External data representation and

marshalling
✞ ☎

structPerson {

stringname ;

stringplace ;

unsignedlongyear

;

} ;
✝

Marshalling through CORBA IDL

Sun XDR standard

•similar to CORBA in many ways

•sending messages between clients and servers in Sun

NFS

•http://www.cdk5.net/ipc

http://www.cdk5.net/ipc

167Interprocess

communication4.3

External data representation and

marshalling
4.3.2 Java object

serialization
✞ ☎

publ i cc l a s sPersonimplementsS e r i a l i z a b l e {

;

p ri v a t eS trin gname

;

p ri v a t eStringp lace

p r i v a t ei n tyear ;
, in taYear) {p ub l i cPerson (StringaName , StringaPlace

name = aName ;

place = aPlace ;

year = aYear ;

}

/ /f o l l o w e dbymethodsf o ra c c e s s i n gt h ei n s t a n c ev a r i a b l e s

}
✝

serialization – flattening an object or a connected set of objects into a serial form

suitable for storing on disk or transmitting in a message

168Interprocess communication4.3 External data

representation and marshalling

deserialization – vica versa, assuming no a priori knowledge about of types of

objects

– self-containness

•serialization of an object + all objects it references as well to ensure that with

the object reconstruction, all of its references can be fulfilled at the

destination

•recursive procedure
✞ ☎

Personp = newPerson ("Smith" , "London" , 1984)

;✝

Figure 4.9 Indication of Java serialized

form

169Interprocess

communication4.3

External data representation and

marshalling
•serialize:

– create an instance of the class ObjectOutputStream and invoke its

writeObject method

•deserialize:

– open an ObjectInputStream on the stream and use its readObject

method to reconstruct the original object

(de)serialization carried out automatically in RMI

Reflection -– the ability to enquire about the properties of a class, such as the

names and types of its instance variables and methods

•enables classes to be created from their names

•a constructor with given argument types to be created for a given class

170Interprocess communication4.3 External data representation and

marshalling

•Reflection makes it possible to do serialization and deserialization in a com-

pletely generic manner

4.3.3 Extensible Markup Language (XML)

•defined by the World Wide Web Consortium (W3C)

•data items are tagged with ‘markup’ strings

•tags relate to the structure of the text that they enclose

•XML is used to:

– enable clients to communicate with web services

– defining the interfaces and other properties of web services

– many other uses

* archiving and retrieval systems

171Interprocess communication4.3 External data representation and

marshalling

* specification of user interfaces

* encoding of configuration files in operating systems

•clients usually use SOAP messages to communicate with web services

SOAP – XML format whose tags are published for use by web services and their

clients

XML elements and attributes

Figure 4.10 XML definition of the Person

structure
✞ ☎

< personid ="123456789" >

<name>Smith </ name>

<place >London </ place

>

<year >1984 </ year >

<!−− acomment −−></ person >
✝

Elements: portion of character data surrounded by matching start and end

tags

172Interprocess communication4.3 External data representation and

marshalling

•An empty tag – no content and is terminated with /> instead of >

– For example, the empty tag <european/> could be included within

the

<person> ...</person> tag

Attributes: element – generally a container for data, whereas an attribute – used

for labelling that data

•Attributes are for simple values

•if data contains substructures or several lines, it must be defined as an element

Names start with letter _ or :

Binary data – expressed in character data in base64

Parsing and well-formed documents

173Interprocess communication4.3

External data representation and

marshalling
✞ ☎

<?XMLversio

n

= "1 .0" encoding = "UTF−8" standalone = "yes"

?>✝

XML namespaces – URL referring to the file containing the namespace

definitions.

•For example:✞ ☎

xmlns : pers = "http: /

/www.cdk5.net/person"✝

Figure 4.11 Illustration of the use of a namespace in the Person

structure
✞ ☎

>< personpers : id ="123456789" xmlns : pers = "h t t p: / /www.cdk

5.net/person"

< pers : name> Smith </ pers :name>

< pers : place > London </ pers : p l a c e >

< pers : year > 1984 </ pers : year >

</ person >✝

http://www.cdk5.net/person
http://www.cdk5.n/

174Interprocess communication4.3 External data representation and

marshalling
XML schemas [www.w3.org VIII] defines the elements and attributes that can ap- pear in a

document, how the elements are nested and the order and number of elements, and

whether an element is empty or can include text

•used for encoding and

validation
Figure 4.12 An XML schema for the Person

structure
✞ ☎

<xsd : schemaxmlns : xsd = URLofXMLschemad e f i n i t i o n s

>

< xsd : elementname = "person" type ="person Type" / >

< xsd : complexTypename ="person Type" >

<xsd : sequence > = "name"

= "p lace"

= "year"

type ="xs:s t r i n g" / >

type ="xs:s t r i n g" / >

type ="xs:p o s i t i v e I n t e g e r" /

>

<xsd :

elementname

<xsd :

elementname

<xsd :

elementname

</ xsd : sequence >

type = "xs:p o s i t i v e I n t e g e r" /

>

<xsd : a t t r i b u t ename = "i

d"

</ xsd : complexType >

</ xsd : schema >✝

APIs for accessing XML – in Java, Python

etc.

http://www.w3.org/

175Interprocess

communication4.3

External data representation and

marshalling
4. Remote object references

Java, CORBA

• remote object reference is an identifier for a remote object that is valid

through- out a distributed system

Figure 4.13 Representation of a remote object reference

176Interprocess

communication4.4

Multicast

communication
4. Multicast communication

single message from one process to each of the members of a group of

processes,

usually in such a way that the membership of the group is transparent to the sender

1.Fault tolerance based on replicated services

2.Discovering services in spontaneous

networking 3.Better performance through

replicated data 4.Propagation of event

notifications

4.4.1 IP multicast – An implementation of multicast communication

Java’s API to it via the MulticastSocket class

IP multicast

177Interprocess

communication4.4

Multicast

communication
•group specified by a Class D Internet address

– first 4 bits are 1110 in IPv4

•Being a member of a multicast group allows a computer to receive IP

packets sent to the group

•membership dynamic

– computers allowed to join or leave at any time

– to join an arbitrary number of groups

– possible to send datagrams to a multicast group without being a

membe

•At the application programming level, IP multicast available only via UDP

•Multicast routers

• time to live (TTL)

178Interprocess

communication4.4

Multicast

communication
Multicast address allocation:

•Local Network Control Block (224.0.0.0 to 224.0.0.225)

•Internet Control Block (224.0.1.0 to 224.0.1.225)

•Ad Hoc Control Block (224.0.2.0 to 224.0.255.0)

•Administratively Scoped Block (239.0.0.0 to 239.255.255.255) –

constrained propagation

Failure model for multicast datagrams

•failure characteristics as UDP datagrams

• ureliable multicast

179Interprocess

communication4.4

Multicast

communication
Java API to IP

multicast
Figure 4.14 Multicast peer joins a group and sends and receives
datagrams
✞

☎

{

importjava . net . * ;

importjava . i o . * ;

publ icc l a s sMult icas tPee

r publ ics t a t i

cvoidmain

(S t r i n gargs []) {

/ /argsg i v emessagec o n t e n t s&d e s t i n a t i o nm u l t i c a s tgroup(e.g." 2 2 8 . 5 . 6 . 7 ")

Mu lt i c as tS oc ke ts = nul l ;

t r y {

Inet Addressgroup = Inet Address . getByName (args [1]) ;

s = newMul t i ca s tSocket (6789) ;

s . join Group (group) ;

byte [] m = args [0] . g e t B y t e s () ;

DatagramPacketmessageOut =

newDatagramPacket (m, m. l ength , group , 6789) ;

s . send (messageOut) ;

byte [] buffer = newbyte [1 0 0 0] ;

for (i n ti =0; i < 3 ; i ++) { / /ge tmessagesfromo t h e r si ngroup

DatagramPacketmessage In =

newDatagramPacket (buffer , b u f f e r . l e n g t h) ;

s . re c e i v e (message In) ;

System . out . p r i n t l n ("Received:" + newSt r ing (message In . get Data ())

) ;

180Interprocess communication4.4 Multicast

communication

}

s . leave Group (group) ;

} catch (Socket Exceptione) { System . out . p r i n t l n ("Socket: " + e . get Message ()) ;

} catch (IOExceptione) { System . out . p r i n t l n ("IO: " + e . get Message ()) ;

} f i n a l l y { i f (s != n u l l) s . c l o s e () ; }

}
}
✝

End of week

4

181Interprocess communication4.5 Network virtualization: Overlay

networks
4.5 Network virtualization: Overlay networks

Network virtualization – construction of many different virtual networks over an

existing network

•each virtual network redefines its own addressing scheme, protocols, routing

algorithms – depending on particular application on top

182Interprocess

communication4.5

Network virtualization: Overlay

networks
1. Overlay networks

overlay network – virtual network consisting of nodes and virtual links, which

sits on top of an underlying network (such as an IP network) and offers

something that is not otherwise provided:

•a service for a class of applications or a particular higher-level service

– e.g. multimedia content distribution

•more efficient operation in a given networked environment

– e.g. routing in an ad hoc network

•an additional feature

– e.g. multicast or secure communication.

This leads to a wide variety of types of overlay as captured by Figure 4.15

183Interprocess

communication4.5

Network virtualization:

Overlay networks

Figure 4.15 Types of

overlay

184Interprocess

communication4.5

Network virtualization: Overlay

networks
Figure 4.15 Types of overlay

(Continued)

185Interprocess

communication4.5

Network virtualization: Overlay

networks
•Advantages:

– new network services changes to the underlying network

– encourage experimentation with network services and the

customization of services to particular classes of application

– Multiple overlays can coexist

•Disadvantages:

– extra level of indirection (henceperformance penalty)

– add to the complexity of network services

186Interprocess communication4.5 Network virtualization: Overlay

networks

4.5.2 Skype: An example of an overlay network

Peer-to-peer application offering VoIP; 370M users (2009); developed by

Kazaa

p2p filesharing app

Skype architecture

•hosts and super nodes (which being selected on

demand) Figure 4.16 Skype overlay architecture

187Interprocess

communication4.5

Network virtualization: Overlay

networks
User connection

•users authenticated via login server

Search for users

•super nodes – to perform the efficient search of the global index of users dis-

tributed across the super nodes

– On average, eight super nodes are contacted

– 3-4 seconds to complete for hosts that have a global IP address (5-6

second, if behind a NAT-enabled router)

Voice connection

•TCP for signalling call requests and terminations and either UDP or TCP for

the streaming audio

188Interprocess communication4.5 Network virtualization: Overlay

networks

– UDP is preferred

– TCP can be used in certain circumstances to circumvent firewalls

Case study:

MPI

189Interprocess communication4.6

4.6 Case study: MPI

MPI (The Message Passing

Interface)

•A message-passing library specification

– extended message-passing model

– not a language or compiler specification

– not a specific implementation or product

•Full featured; for parallel computers, clusters, and heterogeneous networks

•Designed to provide access to advanced parallel hardware for end users,

library writers, and tool developers

MPI as STANDARD

Goals of the MPI standard MPI’s prime goals are:

190Interprocess

communication4.6

Case study:

MPI
•To provide source-code portability

•To allow efficient

implementations MPI also offers:

•A great deal of functionality

•Support for heterogeneous parallel architectures

4 types of MPI calls

1.Calls used to initialize, manage, and terminate communications

2.Calls used to communicate between pairs of processors (Pair

communication) 3.Calls used to communicate among

groupsof processors (Collective

communication)

191Interprocess

communication4.6

Case study:

MPI
MPI basic subroutines (functions)

MPI_Init: initialise MPI

MPI_Comm_Size: how many PE?

MPI_Comm_Rank: identify the

PE MPI_Send

MPI_Receive

MPI_Finalise: close

MPI

192Interprocess communication4.6 Case study:

MPI

Example (Fortran90) 11.1 Greetings(

http://www.ut.ee/~eero/SC/

konspekt/Naited/greetings.f90.html)

Figure 4.17 An overview of point-to-point communication in

MPI

http://www.ut.ee/~eero/SC/konspekt/Naited/greetings.f90.html
http://www.ut.ee/~eero/SC/konspekt/Naited/greetings.f90.html

193Interprocess

communication4.6

Case

study:

MPI

Figure 4.18 Selected send operations in

MPI

