UNIVERSITY

Wb vction 308 UG Act 1958}

UNIT-III




Remote invocation5.2 Request-pe.pl;SRM

_ protocols*¥
1. Introduction UNIVERSITY

1.Request-reply
protocols
2. RPC

3. RMI —in 1990s — RMI extension allowing a local object to invoke methods
of remote objects

5.2 Request-reply protocols

otypical client-server interactions — request-reply communication is
synchronous because the client process blocks until the reply arrives

» Asynchronous request-reply communication — an alternative that may be
useful in situations where clients can afford to retrieve replies later



Remote

Request_—pepl)s R P 1
protocols*¥

Invocation5.2
The request-reply protocol

doOperation, getRequest and sendReply
Figure 5.2 Request-reply

Client

UNIVERSITY

Server

getRequest
select object
execute
method

doOperation frequest
. message
{
(wait)
: - Reply
message

(continuation)

sendReply

doOperation by clients to invoke remote op.; together with additional arguments;
return a byte array. Marshaling and unmarshaling!

getRequest by server process to acquire service requests; followed by

sendReply send reply to the client



197Remote Request-gepl
invocation5.2 protocols™¥ SRM
Figure 5.3 Operations of the request-reply UNIVERSITY

sertins 3 of UGE Al 1958

pro public byte[] doOperation (RemoteRef s, int operationld, byte[ ] arguments)
sends a request message to the remote server and returns the reply.
The arguments specify the remote server, the operation to be invoked and the
arguments of that operation.

public byte[] getRequest ();
acquires a client request via the server port.
public void sendReply (byte[ ] reply, InetAddress clientHost, int clientPort);

sends the reply message reply to the client at its Internet address and port.

Figure 5.4 Request-reply message

messageType int (O=Request, 1= Reply)
requestld int

remoteReference RemoteRef

operationld int or Operation

arguments array of bytes




Remote Request-fepl
invocation5.2 protocols*¥ S l H ‘?I
Message identifiers UNIVERSITY

1. requestID — increasing sequence of integers by the

sender 2.server process identifier — e.g. internet address

and port

Failure model of the request-reply protocol

A. UDP datagrams
communication failures (omission failures; sender order not guaranteed )

+ possible crash failures
action taken when a timeout occurs depends upon the delivery guarantees

being offered

Timeouts — scenarious for a client bahaviour

Discarding duplicate request messages — server filtering out duplicates



Remote Request-pepl;s R P 1
invocation5.2 protocols**

Lost reply messages UNIVERSITY
Idempotent operation —an opq
tio

W TE SaTTIe efect a5 11 1t a’ DeerT pertormed exacay onee.

History

retransmission by server ... problem with memory size ... <— can be cured by the
knowledge that the message has arrived, e.g.:
clients can make only one request at a time = server can interpret each request

as an acknowledgement of its previous reply!

Styles of exchange protocols Three different types of protocols (Spector
[1982]):

the request (R) protocol

— No confirmation needed from server - client can continue right away —

T NN A= sy s e G b E = ey



Remote Request_—pepl)s R P 1
invocation5.2 protocols*¥
the request-reply (RR) protocol UNIVERSITY

— most client-server exchanges

the request-reply-acknowledge reply (RRA)

protocol Figure 5.5 RPC exchange protocols

Name Messages sent by
Client  Server Client
R Request

RR | Request Reply
RRA | Request Reply Acknowledge reply




Remote Request-gepl
invocation5.2 | protocols*¥ S RM
B. TCP streams to implement request-reply protocol UNIVERSITY

*TCP streams

— transmission of arguments and results of any size

* flow-control mechanism
- = no need for special measures to avoid overwhelming the

recipient
— request and reply messages are delivered reliably
* = no needfor

-retransmission
-filtering of duplicates
-histories



Remote Request-pepl;s R P 1
invocation5.2 protocols*¥
Example: HT TP request-reply protocol UNIVERSITY

fixed set of methods (GET, PUT,POST, etc)
In addition to invoking methods on web resources:

 Content negotiation: information — what data representations client can
accept (e.g, language, media type)

 Authentication: Credentials and challenges to support password-
style authentication

— When a client receives a challenge, it gets the user to type a name and
password and submits the associated credentials with subsequent

requests

HTTP — implemented over TCP
Original version of the protocol — client-server interaction steps:

*The client requests and the server accepts a connection at the default server



Remote Request-pepl;SRM
invocation5.2 protocols**
*The client sends a request message to the server UNIVERSITY

*The server sends a reply message to the client

*The connection is

closed Later version

e persistent connections — connections remain open ofer a series of request-
reply exchanges

— client may receive a message from the server saying that the connection
Is closed while it is in the middle of sending another request or
requests

* browser will resend the requests without user involvement,
provided that the operations involved are idempotent (like GET-
method)

* otherwise — consult with the user



Remote invocation5.2 Requestsepl
TEYSRM

protocols
UNIVERSITY
— resources can be represented as byte sequences and may be compressed

*Multipurpose Internet Mail Extensions (MIME) — RFC 2045 — standard for
sending multipart data containing, for example, text, images and sound

HTTP methods

« GET: Requests the resource whose URL is given as its argument. If the URL
refers to data, then the web server replies by returning the data identified

— Arguments may be added to the URL; for example, GET can be used to
send the contents of a form to a program as an argument

« HEAD: identical to GET, but does not return any data but instead, all the
Infor- mation about the data

« POST.: data supplied in the body of the request, action may change data on



Remote invocation5.2 Requestsepl
TEYSRM

protocols

UNIVERSITY
« PUT: Requests that the data supplied in the request is stored with the given

URL as its identifier, either as a modification of an existing resource or as a
new resource

« DELETE: deletes the resource identified by the given URL

« OPTIONS: server supplies the client with a list of methods it allows to be
applied to the given URL (for example GET, HEAD, PUT) and its special

requirements

« TRACE: The server sends back the request message. Used for diagnostic
purposes

operations PUT and DELETE — idempotent, but POST is not necessarily



Remote Request_—pepl)S R P 1
invocation5.2 protocols*¥

Message contents UNI"I.J’EHSIT‘T"
Figure 5.6 HT TP Request
me:  method URL or pathname HTTP version headers message body

GET [lwww.dcs.gqmw.ac.uk/index.html | HTTP/ 1.1

Figure 5.7 HTTP Reply
HTTP version status code reason headers message body

HTTP/1.1 200 OK resource data




Remote Remote proceguge ?RM
invocation5.3 (RPC) 2%
5.3 Remote procedure call (RPC) UNIVERSITY

*Concept by Birrell and Nelson [1984]
5.3.1 Design issues for RPC
Three issues we will look:

*the style of programming promoted by RPC — programming with interfaces

*the call semantics associated with RPC

the key issue of transparency and how it relates to remote procedure calls

Programming with interfaces

Interfaces in distributed systems: In a distributed program, the modules can run in

separate processes
service interface — specification of the procedures offered by a server, defining

the types of the arguments of each of the procedures



(RPC) number of benefits to programming with interfaces in distribuyeH MEFEIN

systems (separa-
tion between interface and implementation):
sprogrammers are concerned only with the abstraction offered by the service
Interface and need not be aware of implementation details

*not need to know the programming language or underlying platform used to
Implement the service (heterogeneity)

*implementations can change as long as long as the interface (the external
view) remains the same

Distributed nature of the underlying infrastructure:

*not possible for a client module running in one process to access the
variables In a module in another process

eparameter-passing mechanisms used in local procedure calls (e.g., call by



Remote Remote proceguge ?RM
invocation5.3 (RPC) 2%

— parameters as input or output U_NI‘_H.!’EH_S_IT}’

*addresses cannot be passed as arguments or returned as results of calls to
remote modules

Interface definition languages (IDLS)

designed to allow procedures implemented in different languages to invoke one
another

IDL provides a notation for defining interfaces in which each of the
parameters of an operation may be described as for input or output in
addition to having its type specified



Remote proceguge

SRM

ERE Ot itfocation5.3

(RPC) =%

UNIVERSITY _

fUnder seciion 3 of UGEC Acl 1958) ‘q

e)ﬁllrmjilieePerson.i dl

structPerson {
stringname; st

ringplace ;
longyear ;
} o

interfacePersonList

{
voidaddPerson
voidgetPerson
longnumber ();
¥

readonlyattributestringlistname

(inPersonp )
(instringname

outPersonp );




Remote Remote proceguge glRM
invocation5.3 (RPC) e
RPC call semantics UNIVERSITY
doOperation implementations with different delivery
guarantees:
*Retry request message
*Duplicate filtering
*Retransmission of
rest
Fault tolerance measures Call :
Sen semantics
Retransmit request  Duplicate Re-execute procedure
message filtering or retransmit reply
No Not applicable  Not applicable Maybe
Yes No Re-execute procedure  At-least-once

Yes Yes Retransmit reply

At-most-once




Remote invocation5.3 Remote proceﬁgreggRM
(RPC) bl

UNIVERSITY
Maybe semantics — remote procedure call may be executed once or not at all

*when no fault-tolerance measures applied, can suffer from

— omission failures (the request or result message lost)

— crash failures

At-least-once semantics — can be achieved by retransmission of request messages

types of failures

— crash failures when the server containing the remote procedure fails

— arbitrary failures — in cases when the request message Is retransmitted,
the remote server may receive it and execute the procedure more than
once, possibly causing wrong values stored or returned

— If the operations in a server can be designed so that all of the procedures
In their service interfaces are idempotent operations, then at-least-once



Remote invocation5.3 Remote proceﬁgreseiRM
(RPC) 2

UNIVERSITY
At-most-once semantics — caller receives either a result or an exception

Transparency

at least location and access transparency
consensus Is that remote calls should be made transparent in the sense that the

syntax of a remote call is the same as that of a local invocation, but that the
difference between local and remote calls should be expressed in their interfaces

5.3.2 Implementation of RPC

procedures in RPC

client process

O Request

Repl
client stub Py
rocedure

SErver process

J

server stub
procedure

service
procedure

client
program Communication Communication

module module dispatcher



Remote invocation5.3 Remote proceﬁqreSQRM
- o

(RPC)
UNIVERSITY

stub procedure behaves like a local procedure to the client, but instead of
executing the call, it marshals the procedure identifier and the arguments into a
requestmessage, which it sends via its communication module to the server

*RPC generally implemented over request-reply protocol

general choices:

— at-least-once or

— at-most-once

5.3.3 Case study: Sun RPC

designed for client-server communication in Sun Network File System (NFS)
einterface language called XDR

— instead of interface names — program number (obtained from central au-



Remote invocation5.3 Remote proceﬂregRM
(RPC) k2

UNIVERSITY
— single input
paranmtercedure definition specifies a procedure
Figure 5.11 Files interface in Syn
DR signature and a procedure number
i St :
constMAX = 1000 ; /]...continued:
typedefintFileldentifier ; structreadargs {
typedefintFilePointer ; Fileldentifierf
typedefintLength ; FilePointerposition
structData { Lengthlength;
intlength ; };
charb uffer [MAX];
}s programFILEREADWRITE {
structwriteargs { versionVERSION {
Fileldentifierf ; VOIdWRITE (writeargs)=1; /11
FilePointerposition : DataREAD (readargs )=2; /112
Datadata ; }=2; /[/versionnunber=2
| RN A } = 9999 ; //programnumber=999
T T




Remote Remote proceguge ?RM
invocation5.3 (RPC) bl
UNIVERSITY

-interface compiler rpcgen can be used to generate the following from an inter-
face definition:

«client stub procedures

eserver main procedure, dispatcher and server stub procedures

*XDR marshalling and unmarshalling procedures for use by the dispatcher
and client and server stub procedures

Further on Sun RPC:


http://www.cdk5.net/rmi

Remote Remote method inchagg' R P 1
jgwoc jon5.4 _ _ (RMI) L
4 Remote method invocation (RMI) UNIVERSITY
Remote method invocation (RMI) closely related to RPC but extended into

the
world of distributed objects

*a calling object can invoke a method in a potentially remote object. As with
RPC, the underlying details are generally hidden from the user

Similarities between RMI and RPC, they both:
support programming with interfaces
stypically constructed on top of request-reply protocols

-can Offer a range of call semantics, such as

— at-least-once

— at-most-once



Remote invocation5.4 Remote method irp.cch'gR P 1
(RMI) L

UNIVERSITY
— local and remote calls employ the same syntax

— remote interfaces

* typically expose the distributed nature of the underlying call e.g.
sup- porting remote exceptions

RMI added expressiveness for programming of complex distributed applications
and services:

«full expressive power of object-oriented programming

— use of objects, classes and inheritance

— objectoriented design methodologies and associated tools

*all objects in an RMI-based system have unique object references
(independent of they are local or remote)

— object references can also be passed as parameters = offering

cinniFiranthhy ricrchar naramaoatar naceinAa ecamantire thearn 1im DD



Remote Remote method inchagg' R P 1
invocation5.4 (RMI) L
1. Design issues for RMI UNIVERSITY

Transition from objects to distributed objects

The object model

some langueages allow accessing object instance variables directly (C++, Java) —
In distributed object system, object’s data can be accessed only with the help of its
methods

Object references: to invoke a method object’s reference and method name are
given

Interfaces: definition of the signatures of a set of methods without their
Implementation

Actions: Initiated by an object invoking a method in another

object three effects of invocation of a method:

1.The state of the receiver may be changed



Remote invocation5.4 Remote method irp.cch'gR P 1
(RMI) L

UNIVERSITY
2. A new object may be instantiated, for example, by using a constructor in

Java or C++

3.Further invocations on methods in other objects may take place

Exceptions: a block of code may be defined to throw an exception; another
block

catches the exception
Garbage collection: ...Java vs C++ case...

Distributed objects

Distributed object systems — different possible architectures
eclient-server architecture ... but also possibly:

replicated objects — for enhanced performance and fault-tolerance

emiorated obiecte — enhanced availahilitv and nerformance



Remote Remote method inchagg' R P 1
invocation5.4 _ (RMI) L
The distributed object model UNIVERSITY

Each process contains a collection of objects

objects that can receive remote invocations — remote
objects

remote
e invocation

remote

invocation E

Remote object reference: identifier that can be used throughout a distributed
sys- tem to refer to a particular unigue remote object

*Remote object references may be passed as arguments and results of remote
method invocations

Remote interfaces: which of the object methods can be invoked remotely




Remote

Remote method inyQc

invocation5.4

Figure 5.12 A remote object and its remote

remote
interface

*CORBA interface definition language

(IDL)

«Java RiMI — keyword: Remote

(RMI)

SRM

Ry

remoteobject

Data

implementation:

Q}ds
& J

+  NB! Remote interfaces cannot contain

@onstructors!

T 2 :
Actions in adhistributed object system

sremote reference of the object must be available to the

-
B VY If\llf\lf



25 SRM
LINIVETRITY
Figure 5.14 Instantiation of remote

R

\

remote
invocation

remote instantiate instantiate

invocation

In\IUUMLIUII \I \1VI I/ 1 \CIl11IVLlL UIJJL;UL ITvivi viivouoy |||uy Mo UM LuUlli Ied

Garbage collection in a distributed-object system:

as theaitega Re lgfiRorReFIEBMAY MgersatidHs Java) — also RMI

allow it + a module for distributed reference counting ~ should

Exceptions: usual exceptions + e.g. timeouts




emote Invocationo. emaote me
5.4.2 I?pleg{ﬁ@ﬁn of RMI UNIVERSITY
m\ﬁ&ﬁ 19h) e of proxy and skeleton in remote method
Invocation

Server

client
remote

/“skeleton ™ gbiect B
7 (& dispatcher ]—
\for B’s class

objectA proxy forB — \ Request
( g 8 |
\ \J‘ Reply

i e servant
Remote Communication Communication ~ Remote reference
reference module module module module
We will discuss: * What is generation of proxies and why
IS it needed?

e \What are the roles of each of the com-

ponents?
* What is binding of names to their re-

e \What are communication and remote mote object references?
reference modules?

* What is the role of RMI software that * What is the activation and passivation
runs over them? of objects?



Remote Remote method inyqpa@RM
invocation5.4 (RMI) bl

Communication module UNIVERSITY

— responsible for transfering request and reply messages between the client and
server uses only 3 fields of the messages: message type, requestld and remote
reference (Fig. 5.4)

communication modules are together responsible for providing a specified
Invoca- tion semantics, for example at-most-once

Remote reference module

— responsible for translating between local and remote object references and for
cre- ating remote object references

using remote object table — correspondence between local object references in
that process and remote object references

*An entry for all the remote objects held by the process

*An entry for each local proxy



UNIVERSITY

(RMI) Actions of the remote reference module:

*When a remote object is to be passed as an argument or a result for the first
time, the remote reference module creates a remote object reference, and
adds it toits table

*When a remote object reference arrives in a request or reply message, the
remote reference module is asked for the corresponding local object
reference, which may refer either to a proxy or to a remote object

— In the case that the remote object reference is not in the table, the RMI
software creates a new proxy and asks the remote reference module to
add it to the table

Servants

— Instance of a class providing the body of a remote object

ehandlac the reamnte radaliacte naccad an by the carrecnandinag cleeletan



Remote Remote method inyqpa'gRM
invocation5.4 (RMI) 2%

-living within a server process UNIVERSITY
created when remote objects Instantiated

eremain In use until they are no longer needed (finally being garbage collected
or deleted)

The RMI software

Proxy: making remote method invocation transparent to clients — behaving like a
local object to the invoker

forwards invocation in a message to a remote object

*hides the details of:

— remote object reference

— marshalling of arguments, unmarshalling of results



Remote Remote method inyqpa'gRM
invocation5.4 o (RMI) 2%
— sending and receiving of messages from the client UNIVERSITY

*just one proxy for each remote object for which a process holds a remote
object reference

simplements:

— the methods in the remote interface of the remote object it represents
— each method of the proxy marshals:

* areference to the target object
* 1ts own operationld and its arguments

— ... Into a request message and sends it to the target
then awaits the reply message

— unmarshals It and returns the results to the invoker



remote object

Dispatcher: receives request messages from the communication module

uses the operationld to select the appropriate method in the skeleton, passing
on the request message

Skeleton: Iimplements the methods in the remote interface

eunmarshals the arguments in the request message
invokes the corresponding method in the servant

waits for the invocation to complete

*marshals the result (together with any exceptions in a reply message to the
send- ing proxy’s method)

Cannvatinn AnfF +lhna Alacene FArr nravine AienatrlhAavre armA cloAala+tAne



Remote Remote method inyqpa'gRM
invocation5.4 _ ~ (RMI) 2%
Dynamic invocation: An alternative to proxies UNIVERSITY

—useful in applications where some of the interfaces of the remote objects cannot
be predicted at design time

*dynamic downloading of classes to clients (available in Java RMI) — an
alterna- tive to dynamic invocation

*Dynamic skeletons

— Java RMI generic dispatcher and the dynamic downloading of classes
to the server

— (book Chapter 8 on CORBA)

Server and client programs
Server program : classes for

edispatchers, skeletons, supported servants +



Remote Remote method inyqpa'gRM
invocation5.4- _ (RMI) =5
*initialization section UNIVERSITY

— creating and initializing at least one of the hosted servants, which can
be used to access the rest

— may also register some of its servants with a binder

Client program: classes for proxies for all of the remote objects that it will invoke

ecan use a binder to look up remote object references

Factory methods:
remote object interfaces cannot include constructors = servants cannot be

created this way

«Servants created either in

— the initialization section or by

— factory methods — methods that create servants



Remote Remote method inyqpa'gRM
invocation5.4 . (RMI) L
factory object — an object with factory UNIVERSITY

methods

Any remote object that needs to be able to create new remote objects on
demand for clients must provide methods in its remote interface for this
purpose. |

> Such methods are called tactory methods

The binder in a distributed

bingltena separate service that maintains a table containing mappings from textual
names to remote object references

binder used by:

— servers to register their remote objects by
name

— clients to look them up

PN NP~ A NI N 7~ 1 1 N




NIVER

(RMI) The Java binder — RMlregistry, see case study on Java RMI In Section %%

Server threads

— each remote invocation executed on a separate thread — (to avoid blocking)
... programmer has to take it into account...

Activation of remote objects

active-passive modes of service objects — to economise on resources

* active object - available for invocation

e passive object -
1. the implementation of its methods

2. Its state in the marshalled form

A~tvratinln® ArrantinAa an artiv/ae nhiarrt frorm thoa A~AarrcennanAdinAa nacenn/a nhinrt Ky



Remote Remote method inyqpa'gRM
invocation5.4 _ _ (RMI) =5
ecreating a new Instance of its class UNIVERSITY

*initializing its instance variables from the stored

state An activator is responsible for:

eregistering passive objects that are available for activation (involves recording
the names of servers against the URLSs or file names of the corresponding
passive objects)

estarting named Server processes and activating remote objects in them

keeping track of the locations of the servers for remote objects that it has
already activated

«Java RMI — the ability to make remote objects activatable [java.sun.com
1X]



Remote invocation5.4 Remote method imcw
- o

(RMI)
UNIVERSITY

*CORBA case study in Chapter 8 describes the implementation repository

—a weak form of activator that starts services containing objects in an
Initial state

Persistent object stores

An object that is guaranteed to live between activations of processes is called a
persis- tent object

«generally managed by persistent object stores, which store their state in a
mar- shalled form on disk

Object location

remote object reference — Internet address and port number of the process that
created the remote object — to quarantee unigueness



on different

computers, throughout their lifetime
location service — helping clients to locate remote objects from their remote
object references

using database: remote object reference — probable current location

5.4.3 Distributed garbage collection
Java distributed garbage collection algorithm

eserver keeping track, which of its objects are proxied at which clients

— protocol for creation and removal of proxies with notifications to the
server

*based on no client proxies to an object exist and no local references either,



Remote Remote method inyqpa'gRM
invocation5.4 (RMI) L
Leases in Jini UNIVERSITY

references to a certain object are leased to other (outside) processes

*lecases have a certain pre-negotiated time period

before the lease is about to expire, the client must request a renewal if
needed



© 00 N O a A W N BB

10

Remote Case sty
invocation5.5 RMI ¢
5.5 Case study: Java RMI UNIVERSITY

Example: shared
whiteboard

Remote interfaces in Java RMI

«extending an interface Remote In java.rmi
package

'must throw RemoteException

Figure 5.16 Java Remote interfaces Shape and
Shapel ist

Under section 3 of UG

www.cdk5.net/rmi

--v‘. A A

d[f'mportjava rmi . * ;
importjava .util.Vector ;
publicinterfaceShapeextendsRemote { //i.e.Shapeisaremoteinterface
intgetVersion () throwsRemoteException ;
GraphicalObjectget All State () throwsRemoteException ; / /1
}
publicinterfaceShapeListextendsRemote {

ShapenewShape (GraphicalObjectg ) throwsRemoteException ; /
12

VectorallShapes () throwsRemoteException ;

intogetVersion () throwsRemoteException :

[ Y


http://www.cdk5.net/rmi

Remote Case Stm:SéRM
invocation5.5 RM| =¥

11 _1}— U_N |HE_HS|T‘T" ‘
; C hct 106 |

Parameter and result passing

In Java RMI:

eparameters of a method — Input parameters

eresult of a method — single output parameter

Any object that Is serializable — implements the Serializable interface — can be
passed as an argument or result in Java RMI.

All primitive types and remote objects are serializable

Passing remote objects: When the type of a parameter or result value is defined
as a remote interface, the corresponding argument or result is always passed
as a_remote object reference




Remote invocation5.5 Case SMySﬁM
RMI L

UNIVERSITY
Passing non-remote objects: All serializable non-remote objects are copied and

passed by value




: : : UNIVERSITY
RMI The arguments and return values in a remote invocation are seriatized %0 2

a Stream

using the method described in Section 4.3.2, with the following modifications:

1. Whenever an object that implements the Remote interface is serialized, it is
replaced by its remote object reference, which contains the name of its (the
remote object’s) class

2. When any object is serialized, its class information is annotated with the
location of the class (as a URL), enabling the class to be downloaded by
the receiver

Downloading of classes

o[ the recipient does not already possess the class of an object passed by
value, its code is downloaded automatically

1f the recinient of a remote obiect reference does not alreadv nossess the



working

environment

2.Both client and server programs can make transparent use of instances of
new classes whenever they are added

RMIregistry

— binder for Java RMI

*on every server computer that hosts remote objects

emaintains a table mapping textual, URL-style names to references to remote
objects hosted on that computer

*accessed by methods of the Naming class

— methods take as an aratiment a L JRI -formatted <trina of the form:



“Remateinvocations;

-I-AIA: AAAAAAAA

vavv‘.- - Wi dE N



Case SW@RM
Figyre PRI S tHaR P Cergil 2 RMIregistry N UNIVERSITY

void rebind (String name, Remote obj)
This method is used by a server to register the identifier of a remote object by

name, as shown in Figure 15.18, line4.

void bind (String name, Remote obj)
This method can alternatively be used by a server to register a remote object by

name, but if the name is already bound to a remote object reference an exception
Is thrown.

void unbind (String name, Remote obj)
This method removes a binding.

Remote lookup(String name)
This method is used by clients to look up a remote object by name, as shown in

Figure 5.20 line 1. A remote object reference is returned.
String [] list()
This method returns an array of Strings containing the names bound in the registry.




m&i'(th/a M . %
g importjava .rmi .server . UnicastRemoteObject;
2 publicclassShapeListServer {
3 publicstaticvoidmain (Stringargs []){
45 System . setSecurityManager ( newRMISecurityManager () ) ;
6 try{
7 ShapelListaShapelList = newShapeListServant ();
8 ShapeListstub =
9 (ShapeList) UnicastRemoteObject . exportObject (aShapelList,0) ;
10 Naming . rebind ( , stub );
11 System.out.println( ) ;
12 } catch (Exceptione ) {
13 System.out.printlin( + e.getMessage());}
14 }
15-F

245Remote

Case st

Invocation5.5 _
5.5.1 Building client and server

programs

Server program : : :
Idfklgure .18 Java class ShapeL.istServer with main

tYSRM

UNIVERSITY

fUnder seciion 3 of UGEC Acl 1958)

T 4

/11
/112
/113
/14

P\




Remote invocation5.5 _ _ ase
i' Flgtlig i|19 Java class ShapeL.istServant implements interface

UNIVERSITY _

fUnder seciion 3 of UGEC Acl 1958) ‘q

10

11

12

13

14

ondpecist
importjava .util.Vector;

publicclassShapelListServantimplementsShapelList

privateVectorthelist , //containsthel i s to fShapes

privateintversion ;

publicShapeListServant (){...}

publicShapenewShape (GraphicalObjectg ) {
version ++;

Shapes = newShapeServant ( g, version);

theList .addElement(s);
returns ;
}
publicVectorallShapes O){...}
publicintgetVersion () { ... }




H

N

O 01

~

10
11
12
13

14

24 /Remote

Invocation5.5
Client

Elgu

gram
re 5.20 Java client

o LVSRM
RMI ™%
UNIVERSITY

fUnder seciion 3 of UGEC Acl 1958)

publ

—+

|mppr%la\|/§1[ M Lx;

importjava .rmi.server .x;
importjava .util.Vector;

icclassShapeListClient
publicstaticvoidmain (Stringargs []){

System . setSecurityManager (newRMISecurityManager () ) ;

ShapelListaShapeList =null;

try{
aShapelList = (ShapeList ) Naming .lookup (
VectorsList = aShapelList . allShapes () ;

). 11
112

} catch (RemoteExceptione ) {System.out.println (e.getMessage());

}catch (Exceptione ) {System.out.printin (
y !

+ e.getMessage());




Remote Case stpdy:w
RM| ¥

invocation5.5
Callbacks UNIVERSITY

server should inform its clients whenever certain event occurs
callback — server’s action of notifying clients about an event

oclient creates a remote object — callback object — that implements an interface
containing a method for the server to call

eserver provides an operation allowing interested clients to inform it of the re-
mote object references of their callback objects

*Whenever an event of interest occurs, the server calls the interested

clients Problems with polling solved, but at the same time, attention is

needed because:

eserver needs to have up-to-date lists of the clients’ callback objects, but clients

mayvs hnt ahwwavie infarm tha canar hofara thaovs oavit lasviinAa thoa carnviar wiith 1n.



Remote Case stpdy:SgRM
invocation5.5 RM| =¥

— leasing technique can be used to overcome this problem UNIVERSITY

server needs to make a series of synchronous RMls to the callback objects in
the list

— TextBook Chapter 6 gives some ideas on solving this issue

?WhiteboardCallback Interface could be defined

void (int ) throws

Féubcinterface implements {

S

— implemented as a remote object by the client

oclient needs to inform the server about its callback object

ShapelL.ist interface requires additional methods such as register and deregister, de-
fined as follows:



Remote Case stpdy:S@RM
Invocations.5 RM| =¥

int ( ) throws
void (int ) throws

5.5.2 Design and implementation of Java RMI

Use of reflection

Reflection used to pass information in request messages about the method to be
Invoked.

— with the help of the Method class in reflection package

Java classes supporting RMI

Inheritance structure of the classes supporting Java RMI servers:



RemoteObject

\

RemoteServer

/

Activatable

UnicastRemoteObject

\

<servant class>

Lkl
| -
L L

L
AN



Indirect

mmunigationb.1 . - .
M AECE communication UNIVERSITY

6.1 Introduction

Roger Needham, Maurice Wilkes and David
Wheeler: “All problems in computer science can be
solved byan- other level of indirection”

Indirect communication — communication
be-

tween entities In a distributed system
through an intermediary with no direct
coupling be- tween the sender and the
receiver(s)



Indirect ~d n%
communication6.1 bl o

2 key properties stemming from the use of an intermediary: UNIVERSITY

1. Space uncoupling

the sender does not know or need to know the identity of the receiver(s)

eparticipants (senders or receivers) can be replaced, updated, replicated
or migrated

2. Time uncoupling

the sender and receiver(s) can have independent lifetimes

— = more Vvolatile environments where senders and receivers may
come and go



Indirect

communication6.1

Figure 6.1 Space and time coupling in distributed

. o

UNIVERSITY

systems

Space

coupling

Space un-

coupling

Time-coupled

Time-uncoupled

Properties: Communication directed to-
wards a given receiver or receivers; re-
ceiver(s) must exist at that moment in
time

Examples: Message passing, remote in-

vocation (see Chapters 4 and 5)

Properties: Communication direlcﬁaflrto-
wards a given receiver or receivers;

sender(s) and receiver(s) can have inde-

ctio
N

pendent lifetimes

Examples: See Exercise 6.3

Properties: Sender does not need to
know the identity of the receiver(s); re-

ceiver(s) must exist at that moment in
time

Examples: IP multicast (see Chapter 4)

Properties: Sender does not need to

know the identity of the receiver(s);
sender(s) and receiver(s) can have inde-
pendent lifetimes

Examples: Most indirect communication

paradigms covered in this chapter




Indirect Group =
communication6.2 o commuhitatg' FI:H ‘?I
The relationship with asynchronous communication UNIVERSITY

In asynchronous communication, a sender sends a message and then
continues (without blocking) = no need to meet in time with the receiver to
communicate

*Time uncoupling adds the extra dimension that the sender and receiver(s)
can have independent existences

6.2 Group communication
Group communication — a message Is sent to a group — message is delivered

to
all members of the group

the sender is not aware of the identities of the

receivers Key areas of application:

othe reliable dissemination of information to potentially large numbers of



Indiregt commL{Crf]icati n6.2 ‘rouf} SRJ\?I

*support for a range ot fault-tolerance strategies, including the consistentersiy

com UBHQ&C&I lgrnicated data

support for system monitoring and management

JGroups toolkit

1. The programming model
group & group membership < processes may join or leave the group

( )

process groups
e .. RPC

object groups
*marshalling and dispatching as in RMI

*Electra — CORBA-compliant system supporting object groups



257Indirect

communication6.2
closed and open groups




Indirect Group =
communication6.2 commuTTiEa&S’ FIHVI
2. Implementation issues UNIVERSITY

Reliability and ordering in multicast

Integrity, validity + agreement
ordered multicast possibilities (hybrid solutions also possible) :

« FIFO ordering: First-in-first-out (FIFO) (or source ordering) — if sender
sends one before the other, it will be delivered in this order at all group
processes

 Casual ordering: — If a message happens before another message in the dis-
tributed system, this so-called casual relationship will be preserved in the
deliv- ery of the associated messages at all processes

 Total ordering: — if a message Is delivered before another message at one
pro- cess, the same order will be preserved at all processes




Indirect Group =
communication6.2 commuhiﬁat%?l%M

Group membership UNIVERSITY
management

Figure 6.3 The role of group *Providing an interface for group
member- ship management membership changes

Failure detection

Group
TR /Q *Notifying members of group
Q mem- bership changes
Multicast Q ol Group membership
communication — management
o Q *Performing group
address

Process group

expansion

IP multicast as a weak case of a group membership service

[P multicast itself does not provide group members with information about

cur- rent membership delivery; is not coordinated with membership
changes



Indirect

communication6.2

6.2.3 Case study: the JGroups

toolkit

Figure 6.4 The architecture

Applications

Building
blocks

Channel

GU SAL )

GMS
MERGE

FRAG

UDP

e Channel — acts as a handle onto a

group

Protocol stack

Group g~
commuhiﬁat%?l%M

UNVERSITY

core functions of joining, leaving,
sending and receiving

— connect — to a particular

named group

If the named group does not
exist, it is implicitly created
at the time of the first
connect

disconnect — to leave a group

getView — returns the current
member list

getState — historical applica-
tion state associated with the



Group
commuhiﬁatgFRM

[EEY

w

10

11

12

13

14

¢ J9HAdTERE EBMmunication6.2 LEEEING

|mp|o_r|tEJer'gL\|a5mGJpsz JChannel ;
publicclassFireAlarmJG {
publicvoidraise () {
try{
JChannelchannel = newJChannel ();
channel .connect( )
Messagemsg = newMessage (null , null, )/
/destination, souree,payioad  _  gistributetowholegroup:;sourcenull — source
addedautomaticallybythesystemanyway
channel .send (msg) ;
}
catch (Exceptione ) {
}
}
2
L -
FireAlarmJGalarm = newFireAlarmJG () ; //createanewinstanceoftheFireAlarmJGclass

alarm.raise (); //raiseanalarm




[EEY

N

] (&) B g (V)

10

11

12

13

14

15

16

Group

commuhiﬁa

+ TR ESMmMunication6.?2

eV

UNIVERSITY

findor section 3 of UOG Act 1058)
|mp|o_r|t()eré\lagrm}59n§ anne‘lj('j
publicclassFireAlarmConsumerJG
publicStringawait () {
try {
JChannelchannel = newJChannel ();
channel .connect( )
Messagemsg = (Message) channel.receive (0);
/Iparameter:timeoutzero — thereceivemessagew illblocku ntilamessageisreceived
/lincomingmessagesarebufferedandreceivereturnsthetopelementintheb uffer
return (String )msg.GetObject ();
}
catch (Exceptione ) {
returnnu Il ;
}
}
2
i -
FireAlarmConsumerJGalarm Call = newFireAlarmConsumerJG () [//(...receivercode...)
Stringmsg = alarm Call .await();

System.out.printin( + msg) ;




Indirect Group =
communication6.? commuhifat%?l%M

« Building blocks UNIVERSITY
— higher-level abstractions, building on the underlying service offered
channels by

— MessageDispatcher

* e.¢. castMessage method that sends a message to a group and
blocks until a specified number of replies are received

— RpcDispatcher — invokes specified method on all objects associated
with agroup

— NotificationBus — implementation of a distributed event bus, in which
an event is any serializable Java object

» The protocol stack
— underlying communication protocol, constructed as a stack of composable

protocol layers



Indirect Group =
communication6.? commuhifat%?l%M
bidirectional stack of protocol UNIVERSITY

layers
s

public ( )
public ( ) ;

— UDP most common transport layer in JGroups (IP multicast for sending
to all members in a group; TCP layer may be preferred; PING for
member- ship discovery etc.)

— FRAG — message packetization to maximum message size (8,192 bytes
by default)

— MERGE - unexpected network partitioning and the subsequent
merging of subgroups after the partition

— GMS implements a group membership protocol to maintain consistent
views of membership across the group



Indirect communication6.2 Group
"¢ SRM

communication
UNIVERSITY

— CAUSAL implements causal ordering (Section 6.2.2 Chapter 15)



Indirect Publish-sut;sqrig%M
icatiqn6.3 systems ¥

ommuyni :
6.3 Publish-subscribe systems UNIVERSITY
also referred to as distributed event-based systems |

publishers publish structured events to an event service and subscribers
express interest in particular events through subscriptions which can be
arbitrary pat- terns over the structured events

ecvent notifications

*one-to-many communications paradigm

Applications of publish-subscribe systems

application domains needing large-scale dissemination of
events Examples:

financial information systems

other areas with live feeds of real-time data (including RSS feeds)



Publish-subsgri

Indirect communication6.3
UNIVERSITY

systems
-support for cooperative working, where a number of participants need to be

Informed of events of shared interest

support for ubiquitous computing, including the management of events
emanat- ing from the ubiquitous infrastructure (for example, location

events)
a broad set of monitoring applications, including network monitoring in the

External Dealer’s computer

Dealer’'s computer
source

F i g | éfl Notification /ﬂ' U Notification

Notification Information
provid

Notification

Notificatio oy
Notification

Notification
Dealer’'s computer

Dealer’s computer
Notification

Information
provider

D Notification
External
source

Notification

Dealer 8‘7



Publish-subsgri
o _ _ s;stelrsns SU%&“@‘%M
Characieriiectf iR SN 6. 3 RER

systems

» Heterogeneity
* Asynchronicity

« different delivery guarantees

6.3.1 The programming model

Publishers Subscribers

publish(e?)

publish(e2)

subscribe(t1)

subscribe(t2)

(un)publish(event);

Publish-subscribe system

(un)subscribe(filter)

notiy(e1) ; advertise(filter);

notify(event)

aavertise(t1)



systems Expressiveness of publish-subscribe system determined by tili‘lg] VERSITY

subscription (fil-

ter) model:

e Channel-based

— publishers publish events to named channels

— subscribers then subscribe to one of these named channels to receive all
events sent to that channel

* CORBA Event Service (see Chapter 8)

 Topic-based (also referred to as subject-based):

— each notification is expressed in terms of a number of fields, with one
field denoting the topic

— Subscription defined in terms of topic of interest



Indirect communication6.3 Publish-supspr@RM
- o

systems

UNIVERSITY
— generalization of topic-based approaches allowing the expression of

sub- scriptions over a range of fields in an event notification
» Type-based

— subscriptions defined in terms of types of events

— matching is defined in terms of types or subtypes of the given filter

 + concept-based subscription models

— filters are expressed in terms of the semantics as well as the syntax of
events

« + complex event processing (or composite event detection)

— allows the specification of patterns of events as they occur in the
distributed environment



Indirect communication6.3 Publish-supapr@RM
- o

systems
UNIVERSITY

6.3.2 Implementation issues

task of a publish-subscribe system: ensure that events are delivered efficiently
to

all subscribers that have filters defined that match the event
additional requirements in terms of security, scalability, failure handling,

concur- rency and quality of service

@%ﬁf?&’ﬁ?g@m‘ﬁ YRRl implementations

brokers

Figure 6.9 A network of brokers A step further:
fully peer-to-peer implementationof
o publlsh -subscribe system — no distinc-

tion between publishers, subscribers and
brokers; all nodes act as brokers, coop-
eratively implementing the required
event routing functionality

Publishers




272Indirect Publish- sugsqugRM
communication6.3 systems
Overall systems architecture UNIVERSITY

flindier seciion 3 of UGE Aci 1956

Figure 6.10 The architecture of publish-subscribe

Sysl P Publish-subscribe architecture — — — — — — g

|

: ( Matching > |

| |

| |

Event routing | Flooding Filtering Irgggrsrggd |
l |

I I

roker Group ,
| .

— — — — — — — — — — — — — — —

Network protocols TCP/|P m 802119 MAC bcast

Implementation
approaches:

Overlay networks



Indirect Publish-sut;sqrig%M
communication6.3 systems ™
» Flooding: UNIVERSITY

— sending an event notification to all nodes in the network and then
carrying out the appropriate matching at the subsciber end

— alternative — send subscriptions back to all possible publishers, with the
matching carried out at the publishing end

— can be implemented

* using an underlying broadcast or multicast facility
* brokers can be arranged in an acyclic graph in which each
forwards incoming event notifications to all its neighbours

— benefit of simplicity but can result in a lot of unnecessary network
traffic

« Filtering (filtering-based routing)

— Brokers forward notifications through the network only where there is a



Indirect communication6.3 Publish-supspr@RM
e o

systems
UNIVERSITY

— each node must maintain

* neighbours list containing a list of all connected neighbours in the
network of brokers

* subscription list containing a list of all directly connected
subscribers serviced by this node

* routing table
Eigure 6.11 Filtering-based routing

1| uponreceivepublish (evente ) fromnodex
2 matchlist := match (e, subscriptions )
3 sendnotify (e)tomatchlist ; fw
4 dlist:=match (e, routing );
5 sendpublish (e) tofwdlist =—x;
6| uponreceivesubscribe (subscriptions )
fromnodexisc 1ien tthen
3 addxtosubscriptions
9
10
+

sendsubscribe (s) toneighbours —x;



Indirect Publish-sut;sqrig%M
communication6.3 systems ¥
UNIVERSITY
* subscriptions essentially using a flooding approach back towards all
possible publishers

« Advertisements: propagating the advertisements towards subscribers in a
simi- lar (actually, symmetrical) way to the propagation of subscriptions

» Rendezvous: rendezvous nodes, which are broker nodes responsible for a
given subset of the event space

— SN(s) — given subscription, s —> one or more rendezvous nodes that
take responsibility for that subscription

— EN(e) — given event e —> one or more rendezvous nodes responsible
for matching e against subscriptions in the system



o ~ (o2} ol £ w N =

10

11

12
13

Indirect Publish-sualgsgrig R P 1
communication6.3 systems ¥

Figure 6.12 Rendezbous-based UNIVERSITY
routing
T
uponreceivepublish (evente ) fromnodexatnodei
rvliist:=EN(e);
ifiinrvlistthenbegin
matchlist <— match (e, subscriptions );
sendnotify (e) tomatchlist ;
end
sendpublish (e)torvlist — i;
uponreceivesubscribe (subscriptions )
fomnodexataqdei g s ) ;
i fiilnr v Ilistthen
addstosubscriptions
else
s sendsubscribe (s) torvlist — i;

«distributed hash table (DHT) — can be used

— hash table distributed over a set of nodes in P2P
manner

[ X



277Indirect

communication6.3

Publish- sugsqugRM

systems

6.3.3 Examples of publish-subscribe systems UNIVERSITY
Figure 6.13 Example publish-subscribe
System (and further reading) Subscription Distribution Event routing
model model
CORBA Event Service (Chapter 8) Channel-based  Centralized -
TIB Rendezvouz [Oki ef al. 1993] Topic-based Distributed Ffiltering
Scribe [Castro et al. 2002b] Topic-based Peer-to-peer Rendezvous
(DHT)
TERA [Baldoni ef al. 2007] Topic-based Peer-to-peer Informed gossip
Siena [Carzaniga et al. 2001] Content-based  Distributed Filtering
Gryphon [www.research.ibm.com] Content-based  Distributed Filtering
Hermes [Pietzuch and Bacon 2002] Topic- and Distributed Rendezvous and
content-based filtering
MEDYM [Cao and Singh 2005] Content-based  Distributed Flooding
Meghdoot [Gupta et al. 2004] Content-based  Peer-to-peer Rendezvous

Structure-less CBR [Baldoni et al. 2005]

Content-based

Peer-to-peer

Informed gossip



Indirect

communication6.4
Message queues

1. The programming model
*Types of receive operations:
— blocking receive

— non-blocking receive

— notify operation

Figure 6.14 The message aueue

p Afi Producers Message queue system

Send /
— |

T e

Send —_—
. —

Consumers

Pol/

.

Notify

:

FSRM

UNIVERSITY



Indirect Megs
communication6.4 qU‘éﬁgRM

*A number of processes can send messages to the same queue UNIVERSITY
«a number of receivers can remove messages from a queue
squeuing policy

— (normally) first-in-first-out (FIFO) but most message queue
Implementa- tions also support the

— concept of priority

* higher-priority messages delivered first

eConsumer Processes
can select messages from the queue based on message properties

— destination (a unique identifier designating the destination queue)
— metadata associated with the message

* priority of the message



Indirect communication6.4 qusgw

queues L
UNIVERSITY

* the delivery mode
* body of the message (though body — normally opaque and
untouched by the message queue system)

emessage content serialized
length of a message varying (can be 100s megabytes...)

messages are persistent — system preserves messages indefinitely (or until they
are consumed)

also system can commit messages to disk — for reliable delivery:

«any message sent is eventually received (validity)

the message received is identical to the one sent, and no messages are
delivered twice (integrity)



Indirect communication6.4 qusgq%M

queues L
UNIVERSITY
support for the sending or receiving of a message to be contained withina

trans- action (all or nothing)

support for message transformation (e.g. in heterogeneous environments)
support for security

difference with message-passing systems (MPS):

*MPS have implicit queues associated with senders and receivers (for
example, the message buffers in MPI),

message queuing systems have explicit queues that are third-party entities,
separate from the sender and the receiver — making it into indirect communication
paradigm with the crucial properties of space and time uncoupling



Indirect M.esngM
communication6.4 otrel
2. Implementation issues UNIVERSITY

Case study: WebSphere MQ (textbook pp.272-274)

3. Case study: The Java Messaging Service

(IMS)
JMS — specification of a standardized way for distributed Java programs to

communicate indirectly

unifies the publish-subscribe and message queue paradigms at least
superficially by supporting topics and queues as alternative destinations of

messages
Implementations:
Joram from OW2 Sun’s Open MQ WebSphere MQ pro-
Java Messaging from Apache vides a JMS interface
JBoss ActiveMQ

OpenJMS



Indirect Megs
communication6.4 qU‘éﬁgRM

Key roles: UNIVERSITY

JMS client — Java program or component that produces or consumes
messages

— JMS producer — program that creates and produces messages

— JMS consumer — program that receives and consumes messages

JMS provider — any of the multiple systems that implement the JMS
specification

JMS message — object that is used to communicate information between
JMS clients (from producers to consumers)

JMS destination — object supporting indirect communication in JMS —
either:

— JMS topic



Indirect

\jegs
communication6.4 q‘O‘é‘USRM
Programming with JIMS UNIVERSITY

Under seciion 3 of UGE Acl 1954

Figure 6.16 The programming model offered by

(

Connection
Message Session Message
l———— P
producer consumer
|
Sends to ¢ A Receives from
|
Destination Message Destination

Topic

Topic
Queue

Queue

«two types of connection can be established:

— TopicConnection

— QueueConnection

Connections can be used to create one or more
sessions



Indirect communication6.4 SS

queues
UNIVERSITY
esession — Series of operations involving the creation, production and
consump- tion of messages related to a logical task

esession object also supports operations to create transactions, supporting all-
or- nothing execution of a series of operations

 TopicConnection can support one or more topic sessions

« QueueConnection can support one or more gueue sessions (but it is not
possible to mix session styles)

session object — central to the operation of JMS — methods for creation of
messages, message producers and message consumers:

« message consists of three parts:

—header

* Aectination — reference to:



Indirect communication6.4 qusgw

queues L
UNIVERSITY

-topic
-queue
* priority
* expiration date
* message ID
* timestamp

—properties —user-defined

—body — text message, byte stream, serialized Java object, stream of
primi- tive Java values, structured set of name/value pairs

* message producer — object to publish messages under particular topic or to
send messages to a queue

e message consumer — object to subscribe to messages with given topic or
receive messages from a queue



Indirect

communication6.4
— filters: message selector (over header or

properties)
* subset of SQL used to specify properties
— can block using a receive operation
— can establish message listener object

* — has to establish method onMessage

UNIVERSITY



288Indirect

communication6.4
A simple

UNIVERSITY

fUnder seciion 3 of UGEC Acl 1958)

example
Figure 6.17 Java class
LIS MR .
2| importjavax .naming .« ;
3| publicclassFireAlarmJMS
4 publicvoidraise () {
5{3 try {
6 Contextctx = newlnitialContext ();
7 TopicConnectionFactorytopic Factory = /Hfindfactory
8 (TopicConnectionFactory)ctx .lookup (
9 ; Topictopic = (Topic)ctx .lookup ( ); [/ltopic
10 TopicConnectiontopicConn = //connection
11 topicConnectionFactory .createTopicConnection () ;
12 TopicSessiontopicSess =topicConn .createTopicSession (false ,
13 Session .AUTO ACKNOWLEDGE); / /session
14 TopicPublishertopicPub = topicSess.createPublisher (topic);
15 TextMessagemsg =topicSess . createTextMessage () ;//createmessage
16 msg. setText ( )
17 topicPub .publish (message); //publishit
18 } catch (Exceptione ) {
19 }
2o_|}

P\




289Indirect

(5

N

S

o1

10

11

12

13

14

15

16
17

communication6.4
+

UNIVERSITY _,

fUner section 3 of UGE Aci 1956) ‘1

[ IcreateanewinstanceoftheFireAlarmJMSclassandthenraiseanalarmi s:
newFireAlarmJMS ();
alarm .raise () ;

alarm =

Figure 6.18 Java class

P\

m ElTEATATCONSUMETIVS

importjavax .naming . *;
publicclassFireAlarmConsumerJMS {
publicStringawait () {
try {
Contextctx = newlnitialContext ();

TopicConnectionFactorytopic Factory =

; Topictopic = (Topic)ctx .lookup ("Alarms" );
TopicConnectiontopicConn =
topicConnectionFactory .createTopicConnection () ;

TopicSessiontopicSess =topicConn .createTopicSession (false,
Session .AUTO ACKNOWLEDGE);//...identicaluptohere
TopicSubscribertopicSub = topicSess.createSubscriber (topic)
; topicSub .start();//topicsubscribercreatedands tarted
TextMessagemsg = ( TextMessage ) topicSub .receive () ;//receive
.getText () ;

returnmsg /Ireturnmessageasstring

(TopicConnectionFactory)ctx .lookup ("TopicConnectionFactory"

)




Inditelct°’cormimdnication6.4 UNIVERSITY

returnnu ;

}
}
.l_
T
//classusagebyaconsumer:
FireAlarmConsumerJMSalarm Call = newFireAlarmConsumerJMS ()
Stringmsg = alarm Call .await();
System.out.println ( +msgq) ;

[ Y

.|..



Indirect Shared memp&y S R P 1
communication6.5 approaches ™
6.5 Shared memory approaches UNIVERSITY

6.5.1 Distributed shared memory (DSM)
Figure 6.19 The distributed shared memory

Distributed shared memory

S Y A ¥ DSM appears as
accessmg DSM memory in address
Mappings space of process
PhyS|caI " Physical Physwal
memory memory memory

| | |

*DSM — tool for parallel applications
shared data items available for access directly

*DSM runtime — sends messages with updates between
computers

etrratraocand rarnlicratead Aata fA+r factar aL~race



approaches One of the first examples: Apollo Domain file system [1983]1"'3J B@ﬁw

can be persistent

Non-Uniform Memory Access (NUMA) architecture

sprocessors See a single address space containing all the memory of all the
boards

access latency for on-board memory less than for a memory module on a
differ- ent board

Message passing versus DSM

» service offered

— message passing: variable marshalled-unmarshalled into variable on
other processor

— DSM — not possible to run on heterogeneous architectures



Indirect Shared memp&y S R P 1
communication6.5 approaches ™
— via message model UNIVERSITY

— locks and semaphores in DSM implementations

*DSM can be made persistant

*message-passing systems: processes have to coexist in
time

- Efficiency — very problem-dependent
— message-passing:  suitable for hand-tuning on supercomputer-

clusters sized

— DSM — can be made to perform as well at least for small numbers of
pro- cessors



Shared memgRy

approaches ™%

2 294 IR PeE ORI Ton6 . 5 st e

*David Gelernter [1985], Yale University

* generative communication

— processes communicate indirectly by placing tuples in a tuple space
— from which other processes can read or remove them
— Tuples

* do not have an address

* are accessed by pattern matching on content (content-addressable
memory)

* consist of a sequence of one or more typed data fields such as
- <"fred", 1958>
- <"sid", 1964>
- <4, 9.8, "Yes">



Indirect communication6.5 Shared Qenpof
<'SRM

approaches
UNIVERSITY

* tuples are immutable
— Tuple space (TS)
* any combination of types of tuples may coexist in the same tuple
space
* processes share date through it
- write operation

- read (or take) operation
read — TS not affected
take — returns tuple and removes it from TS
both blocking operations until there is a matching tuple in TS

— assoclative addressing — processes provide for read and take operation a
specification — any tuple with a matching specification is returned

— Linda programming model — Linda programming language



\ lake(<String, ‘Scotland’, String>)

write(<'Population’, "Wales', 2900000>) o~

<'Capital’, ‘Scotland’, "Edinburgh’>
<'Capital, "Wales', "Cardiff’>

<"Capital’, ‘N. Ireland’, "Belfast’>
<'Capital’, "England’, "London">

<'Population’, "Scotland’, 5168000>

~ <"Population’, "UK", 61000000>

read(<"Population’, String, Integer>)

take(<String, “Scotiand”. Integers) \

(%
e
':U'”'l.' <



Indirect communication6.5 Shared me

approaches
UNIVERSITY
— Atuple placed in tuple space may originate from any number of sender
processes and may be delivered to any one of a number of potential

recipients

— also referred to as distributed naming in Linda

* Time uncoupling:

— A tuple placed in tuple space will remain in that tuple space until
removed (potentially indefinitely) = hence the sender and receiver do

not need to overlap in time

a form of distributed sharing of shared variables via the tuple
space Variations:

*multiple tuple spaces

edistributed implementation



Indirect Shared memgwy

communication6.5 approaches ™%
*Bauhaus Linda: UNIVERSITY

— modelling everything as (unordered) sets — that is, tuple spaces are sets
of tuples and tuples are sets of values, which may now also include
tuples

turning the tuple space into an object space

— e.g. In JavaSpaces

Implementation
ISsues

centralized vs
distributed

*Replication or state machine approach (read more in textbook)

epeer-to-peer approaches



Indirect Shared memgwy

communication6.5 approaches ™%
Case study: JavaSpaces UNIVERSITY

tool for tuple space communication developed by Sun

*Sun provides specification, third-party developers offer implementations:

ostrongly dependent on Jini (Sun’s discovery service)

— Jini Technology Starter Kit includes

* Qutrigger (JavaSpaces implementation)

goals of the JavaSpaces technology are:

«to offer a platform that simplifies the design of distributed applications and
services


http://www.gigaspaces.com/
http://www.dancres.com/

Indirect communication6.5 Shared me

approaches

UNIVERSITY
*to be simple and minimal in terms of the number and size of associated
classes

to have a small footprint
-to allow the code to run on resource-limited devices (such as smart phones)

*to enable replicated implementations of the specification

— (although in practice most implementations are centralized)

Programming with JavaSpaces

programmer can create any number of instances space — shared, persistant
repository of objects

an item in JavaSpace — referred to as an entry: a group of objects contained in a
class that implements net.jini.core.entry.Entry



301Indirect Shared memgxy

communication6.5 approaches ™%
Figure 6.23 The JavaSpaces UNIVERSITY
Operation Effect
Lease write(Entry e, Transaction txn, long lease) Places an entry into a particular
JavaSpace
Entry read(Entry tmpl, Transaction txn, long timeout) Returns a copy of an entry matching

a specified template
Entry readlfExists(Entry tmpl, Transaction txn, long timeout) As above, but not blocking

Entry take(Entry tmpl, Transaction txn, long timeout) Retrieves (and removes) an entry
matching a specified template

Entry takelfExists(Entry tmpl, Transaction txn, long timeout)  As above, but not blocking

EventRegistration notify(Entry tmpl, Transaction txn, Notifies a process if a tuple matching
RemoteEventListener listen, long lease, a specified template is written to a
MarshalledObject handback) JavaSpace

eplacing an entry with write operation

— entry can have an associated lgase.

* numerical value in milliseconds or
Lease.FOREVER

— write retiirne aranted | eace valiie



Shared memgwy
approaches ™%

O eAIdIre¥E communication6.5 LINIVETRITY

— matching specified by a template

— matching entry has the same class or subclass
* notify

— uses Jini distributed event notification

— notification via a specified RemoteEventListener interface

operations in JavaSpaces can take place in the context of a transaction, ensuring
that either all or none of the operations will be executed



N o o &~ w NP

©

~N o o B~ w NP

© o

10

11

303Indirect

Shared memgxy

communication6.5
Figure 6.24 Java class

approaches =¥
UNIVERSITY

fUner section 3 of UGE Aci 1956) ‘1

imp'oa?!ﬁngHHI.%%$e .entry . x;
publicclassAlarmTupleJSimplementsEntry {
publicStringalarmType
publicAlarmTupledS () {
}
publicAlarmTupledS ( StringalarmType ) {
th is . alarmType = alarmType;
}
_l}

Figure 6.25 Java class

[ Y

im plozljtr;l%'ta‘l.?rm‘.]§pace . JavaSpace;

publicclassFireAlarmJS {
publicvoidraise () {

try {

JavaSpacespace = SpaceAccessor .findSpace (
AlarmTupleJStuple = newAlarmTupledS (
space.write (tuple, null, 60x60+«1000);

catch (Exceptione ) {

}

—+-




© o ~N o a A W N P

R o e =
A W N B O

[EEY
o1

—+-

304Indirect Shared memgxy

communication6.5 approaches =¥

4 C

/ Ithecodecanbecalledusing:
FireAlarmJSalarm = newFireAlarmJS () ;
alarm .raise () ;

.l_

UNIVERSITY _,

fUner section 3 of UGE Aci 1956) ‘1

Figure 6.26 Java class

im plozlltr;]eé'ta‘l ?rm &%Q@JV?JVJagp ace;

publicclassFireAlarmConsumerJS {
publicStringawait () {

try {
JavaSpacespace = SpaceAccessor . findSpace () ;

AlarmTupleJStemplate = newAlarmTupleJS ( ) ;

Long .MAX_ VALUE) ;
} returnrecvd .alarmType ;

catch (Exceptione ) {
returnnu Il ;

}

AlarmTupleJSrecvd = (AlarmTupleJS) space .read (template ,

null

[ Y




Operating system

%:upportG.S
LA LA S T
AT 'q"l._l_'l.\._;'l l-'.rr
//lconsumer: gction 3 of UGC Act 195
FireAlarmConsumerJSalarm Call = newFireAlarmConsumerJS ()
Stringmsg = alarm Call . await();
System.out.println ( + msgq);
.|..

/7 Operating systems support




Distributed objects and ~d n%
h--'h

£ i Fibuted objects and components ONIVERSITY

8.1 Introduction

Distributed object middleware

« encapsulation In object-based solutions - suited to
well programming distributed

« data abstraction — clean separation between the specification of an object
and its implementation = programmers to deal solely in terms of interfaces
andnot concern with implementation details

« = more dynamic and extensible solutions

Examples of distributed objects middleware: Java RMI and CORBA



Distributed objects and Nn%
componentss.1 _ >
Component-based middleware UNIVERSITY

— to overcome a number of limitations with distributed object middleware:
Implicit dependencies: Object interfaces do not describe what the

Implementation of an object depends on

Programming complexity: need to master many low-level details
Lack of separation of distribution concerns: Application developers need to

con- sider details of security, failure handling and concurrency — largely similar
from one application to another

No support for deployment: Object-based middleware provides little or no
support for the deployment of (potentially complex) configurations of objects



Distributed objects and Dist;;ibu@R P 1
componentsa 2 objetts
8.2 Distributed objects UNIVERSITY

DS started as client-server architecture

*with emergence of highly popular OO languages (C++, Java) the OO
concept spreading to DS

*Unified Modelling Language (UML) in SE has its role too in middleware
devel- opments (e.g. CORBA and UML standards developed by the same
organisation)

Distributed object (DO) middleware
«Java RMI and CORBA — quite common

but CORBA — language independent

In DO he term class Is avoided — instead factory instantiating new objects from a
given template



Distributed objects and Dis_@u?RM
components8.2 _ - objeets
in Smalltalk — implementational inheritance UNIVERSITY

«in DO — Interface inheritance:

— new interface inherits the method signatures of the original
Interface

* + can add extra ones



310Distributed objects and

componentss.2

Figure 8.1 Distributed
Obj‘ Obj;ct; - Distributed objects

Object references  Remote object references

Interfaces Remote interfaces

Actions Distributed actions
Exceptions Distributed exceptions
Garbage collection Distributed garbage collection

& SRM
T
UNIVERSITY

fUnder section 3 of OC Aci 19568)

Description of distributed object

Globally unique reference for a ) IS'[FI b Ut
distributed object; may be passed as a
parameter. j

Provides an abstract specification of the
methods that can be invoked on the
remote object; specified using an
interface definition language (IDL).

bjects

Initiated by a method invocation,
potentially resulting in invocation
chains; remote invocations use RMI.

Additional exceptions generated from
the distributed nature of the system,
including message loss or process
failure.

Extended scheme to ensure that an
object will continue to exist if at least
one object reference or remote object
reference exists for that object,
otherwise, it should be removed.
Requires a distributed garbage
collection algorithm.



objects OO: objects + class + inheritance «<— DOQO: encapsulation W'cﬁﬂas-'v

abstraction +

design methodologies
The added complexities with DO:
* Inter-object communication

— remote method invocation
— + often other communications paradigms

* (e.g. CORBAs event service + associated notification service)
« Lifecycle management

— creation, migration and deletion of DO



Distributed objects and Dis_tpibu@R P 1
objetts

componentss.2 -
 Activation and deactivation UNIVERSITY

— # DOs may be very large...

— node availabilities

* Persistence
state of DO need to be preserved across all cycles (like [de]activation,
system failures etc.)

« Additional services

— e.¢g. naming, security and transaction services



Distributed objects and

Case siyd

componentss.3

8.3 Case study: CORBA

Object Management Group (OMG)
«formed in 1989

designed an interface language

— Independent of any specific implementation
language

object request broker (ORB)
—to help a client to invoke a method on an object

Common Object Request Broker Architecture
(CORBA)

CORBA 2 specification
CORBA?3 — introduction of a component model

CORBX

SRM

UNIVERSITY



Distributed objects and Case md;SRM

componentss.3 CORBX
8.3.1 CORBARMI UNIVERSITY

CORBA’s object model

CORBA objects refer to remote objects
wide range of types PL support = no classes =instances of classes cannot be

passed as arguments

CORBAIDL
Figure 8.2 IDL interfaces Shape and

Shapelist
ﬂ%tructRectangle { /1
longwidth ;

longheight ;
longx ;
longy ;

H

structGraphicalObject { 112
stringtype ;
Rectangleenclosing ;

PN\



10

11

12

13

14

15

16

17

18

19

20

21

22

Distributed objects and Case md;SRM

componentss.3 CORBX

}
interfaceShape { //3

H
typedefsequence <Shape, 100> All; //4

booleanisFilled ; UNWEHSH?I‘:

longgetVersion () ;
GraphicalObjectget All State () ; //returnsstateoftheGraphical Object

interfaceShapelList { /5

exceptionFull Exception { }; //6
ShapenewShape (inGraphicalObjectg ) raises (Full Exception); /

I7 AllallShapes ();//returnssequenceofremoteobjectreferences/ /8

longgetVersion () ;

esame lexical rules as C++

— + distribution keywords

* —e.g. Interface, any, attribute, in, out, inout, readonly, raises

«grammar of IDL — subset of ANSI C++ + constructs to support method
signatures




Distributed objects and Case _g-ud;S: R P 1
componentss.3 CORBX
IDL modules: UNIVERSITY

module defines a naming scope
Figure 8.3 IDL module

modu th\Iltne|tte) g)oaarr {

1

2 structRectangle {

3 -

4 structGraphicalObject {
5 b

6 interfaceShape {

7 .k

8 typedefsequence <Shape, 100> All;
9 interfaceShapelList {

10 . h

11_|_},

IDL interfaces

 IDL interface describes the methods that are available in CORBA objects
that implement that interface

[ X}



Distributed objects and compo

CORBA

nents8.3 Case study*
ZYSRM

UNIVERSITY

Clients of a CORBA object may be developed just from

IDL methods

TH RO IRAEE Rty diabwrterface

[oneway] <return type> <method name> (parameterl,...,
parameterl) [raises (exceptl, ..., exceptN) ] [context
(namel, ..., nameM) |;

Example:

void getPerson(in string name,

eparameters: in, out, inout

out Person p);

return value acting as if additional out parameter

— return type may be void

™ .. __" _ . ASNSN/r NS ™S/ L. . L



Distributed objects and components8.3 Case study*
D E¥SRM

CORBA
UNIVERSITY
« Any parameter specified by the name of an IDL interface — a reference to a

CORBA object

— the value of a remote object reference is passed

Passing CORBA primitive and constructed types:

« Arguments of primitive and constructed types are copied and passed by

value Invocation semantics

remote invocation call semantics defaults to: at-most-once

*to specify method Invocation with maybe semantics: keyword oneway

— non-blocking call on the client side

— = method should not return aresult



Distributed objects and

Case siyd

componentss.3
Exceptions in CORBA IDL

soptional raises expression indicates user-defined
exceptions

sexceptions may be defined to contain variables, e.g:
— exception { };

IDL types:

*15 primitive types, const keyword

*object - remote object references

CORBX

SRM

UNIVERSITY



Distributed objects and e S R P 1
componentss.3 2%

Figure 8.4 IDL constructed UNIVERSITY
types
Type Examples Use Case
sequence | typedef sequence <Shape, 100> All; | Defines a type for a variable-length
typedef sequence <Shape> All; sequence of elements of %Gt\slﬁ!é;ﬁﬁed IDL
Bounded and unbounded sequences | type. An upper bound onChQ%ay
of Shapes be specified.
string string name; Defines a sequence of characters,
typedef string<8> SmallString; terminated by the null character. An

Unbounded and bounded sequences | upper bound on the length may be

of characters specified.

array typedef octet uniqueld[12]; Defines a type for a multi-dimensional
typedef GraphicalObject GO[10][8]; | fixed-length sequence of elements of a

specified IDL type.




Distributed objects and

components8.3

C dw
conit SRM

Type Examples

Use UNIVERS

record struct GraphicalObject {

string type; Rectangle
enclosing; boolean isFilled,;

3

Defines a type for a record containing a
group of related entities.

enumerated |enum Rand
(Exp, Number, Name);

The enumerated type in IDL maps a type
name onto a small set of integer values.

union union Exp switch (Rand) {

case Exp: string vote; case
Number: long n; case
Name: string s;

3

The IDL discriminated union allows one
of a given set of types to be passed as an

argument. The header is parameterized
by an enum, which specifies which

member is in use.

*All arrays or sequences used as arguments must be defined in

VR I o



Distributed objects and components8.3 Case study*
D E¥SRM

CORBA
UNIVERSITY

*None of the primitive or constructed data types can contain references

passing Nnon-CORBA objects (nCO) by value — CORBA’s valuetype

— nCO operations cannot be invoked remotely

— makes it possible to pass a copy of a nCO between client and server

* valuetype — struct with additional method signatures (like those of an
Interface)

« valuetype arguments and results — passed by value

— the state is passed to the remote site and used to produce a new object
at the destination

— If the client and server are both implemented in Java, the code can be
downloaded

AArmrtAan L simdnanlarmantatiAn +hnAn nAarAanccar s ~ndAa A kha ARracAant A+



Distributed objects and Case Wd)SRM

components8.3 CORBX
Attributes UNIVERSITY

IDL interfaces can have methods and
attributes

*like public class fields in Java
*may be readonly

*private to CORBA objects
— pair of value set- generated by IDL
attribute retrieve compile

automatically r

Inheritance
IDL interfaces may be extended through interface

inheritance Example:

sinterface B extends interface A =



Distributed objects and components8.3 Case stydy:
CORBA L SRJH
UNIVERSITY

— B may add new types, constants, exceptions, methods and attributes to

those of A

* + can redefine types, constants and exceptions
* not allowed to redefine methods

IDL interface may extend more than one interface
interfac A { };

e B: A{ };
interfac C {};
e Z : B, C

~interfac {1}’ : _
(but meherltlng common names from two different interfaces not

alowed) IDL type identifiers
intérrtac

«generated by the IDL compiler

IDL:Whiteboard/Shape:1.0



Distributed objects and components8.3 Case stydy:
CORBA L SRJH

UNIVERSITY
*has three parts — the IDL prefix, a type name and a version number

eprogrammers have to provide a unigue mapping to the interfaces — may
use

pragma prefix for this

IDL pragma directives

«for specification of additional non-IDL properties in IDL

Interface for example,

specifying that an interface will be used only locally

supplying the value of an interface repository

ID Example:

#oraoma version Whiteboard 2.3



Distributed objects and Case §I-I.Ld)SZ R P 1
componentss.3 CORBX

CORBA language mappings UNIVERSITY

primitive types in IDL — corresponding primitive types in that
language
structs, enums, unions —> Java classes

IDL allows to have multiple return values... can be solved like this:

void getPerson(in string name, out Person p);
//IDL void getPerson (String name, PersonHolder
p): //java

Asynchronous RMI

CORBA RMI allows clients to make non-blocking invocation requests on CORBA
objects

intended to be implemented in the client - server unaware on invocation syn-
chronous or asynchronous (except e.g. Transaction Service)

Asynchronous RMI invocation semantics:

P b b P

Al ARt miamr~rAa~ Ard AvzdFra mavrarmantAar s anntlh A rAfFAramman A A AalllIRAALS



Distributed objects and components8.3 Case stydy:
CORBA L SRJVI

UNIVERSITY
= server can call back with the results ———
polling — server returns a valuetype object that can be used to poll or wait for

the reply

8.3.2 The architecture of CORBA

RA architartiira
implementation interface SEVEl client server
repository repository object skeleton ) e remote
object B
adapter object A proxy for B Request |

& dispatcher
for B’s class
Request

Reply

e N servant
Remote Communication Communication Remote reference

or dynamic skeleton reference module module module module

or dynamic invocation

*3 additional components compared to Figure 5.15 (at right)...

*object adaptor; implementation repository; interface repository

a) Static invocation — object interfaces known at compile time — skeleton can be
used

I TWr/mAarmims 1y 7Aa~natsAn



Distributed objects and Case Wd)SRM

components8.3 CORBX
ORB core UNIVERSITY

— role of [Fig. 5.15 communication module] + an interface which includes
the following:

eoperations enabling it to be started and stopped
soperations to convert between remote object references and strings

soperations to provide argument lists for requests using dynamic invocation

Object adapter (OA)

— role of [Fig. 5.15 reference and dispatcher modules]
CORBA objects with IDL interfaces <— the programming language interfaces

of the corresponding servant classes
OA tasks:

ecreates remote object references for CORBA objects (Section 8.3.3)



Distributed objects and Case §I-I.Ld)SZ R P 1
components8.3 | | CORBX
dispatches each RMI via a skeleton to the appropriate servant UNIVERSITY

eactivates and deactivates servants

-gives each CORBA object a unigue object name (forms part of its remote object
reference)

- keeps a remote object table that maps the names of CORBA objects to their
servants

- also has its own name (forms part of the remote object references of all of the
CORBA objects it manages)

Portable Object Adapter (POA)

allows applications and servants to be run on ORBs produced by different
developers supports CORBA objects with two different sorts of lifetimes:

*those whose lifetimes are restricted to that of the process in which their
servants are instantiated (transient object references)



Distributed objects and components8.3 Case study*
D ZFSRM

CORBA
LRSI

*those whose lifetimes can span the instantiations of
Skeletonsaryants in multiple pro- cesses (resistant object
Chapter ¥éf&rences

Skeleton: implements the methods in the remote interface

* unmarshals the arguments in the request message
* invokes the corresponding method in the servant

* waits for the invocation to complete

* marshals the result (together with any exceptions in a reply message to the sending proxy’s
method)



Distributed objects and Case §I-I.Ld)SZ R P 1
componentss.3 CORBX

Client stubs/proxies UNIVERSITY

The class of a proxy (for OO languages) or a set of stub procedures (for procedu-

ral languages) is generated from an IDL interface by an IDL compiler for the client
language

Implementation repository
— responsible for:
eactivating registered servers on demand

locating servers that are currently running

estores a mapping from the names of object adapters to the pathnames of files
containing object implementations

When object implementations are activated in servers, the hostname and port
number of the server are added to the mapping



Distributed objects and Case Wd)SRM

components8.3 _ CORBA
object adapter name | pathname of object | hostname and port numbemIVERSITY

Implementation of server

Some objects (e.g. callback) created by clients, run once and cease to exist
when they are no longer needed — do not use the implementation repository

Interface repository

— information about registered IDL interfaces to clients and servers that require it

adds a facility for reflection to CORBA

Every CORBA remote object reference includes a slot that contains the type identi-
fier of its interface, enabling clients that hold it to enquire its type of the interface
repository

eapplications using static (ordinary) invocation with client proxies and IDL
skele- tons do not require an interface repository

*Not all ORBs provide an interface repository



Distributed objects and Case §I-I.Ld)SZ R P 1
componentss.3 CORBX

Dynamic invocation interface UNIVERSITY

CORBA does not allow classes for proxies to be downloaded at runtime (as in Java
RMI) — The dynamic invocation interface is CORBA’s alternative

*used when it is not practical to employ proxies

*The client can obtain from the interface repository the necessary information
about the methods available for a given CORBA object

*The client may use this information to construct an invocation with suitable
arguments and send it to the server

Dynamic skeletons

*Consider CORBA object whose interface was unknown when the server was
compiled

with dynamic skeletons, server can accept invocations on the interface of a
CORBA object for which it has no skeleton



Distributed objects and components8.3 Case %
CORBA bl

UNIVERSITY
*When a dynamic skeleton receives an invocation, it inspects the request

contents to discover its

— target object
— the method to be invoked
— the arguments

— then invokes the target

L_egacy code

*The term legacy code refers to existing code that was not designed with dis-
tributed objects in mind

A piece of legacy code may be made into a CORBA object by defining an IDL
Inter- face for it and providing an implementation of an appropriate object adapter
and the necessarv skeletons



Distributed objects and Case Wd)SRM

componentss.3 _ CORBX
3. CORBA remote object reference UNIVERSITY
called: interoperable object references (IORS) -
IOR format
1. IDL interface type ID2. Protocol and address details3. Object key
interface repository [IOP | hostdomain | portnumber [adaptername | object name
identifier type name

1. Note that IDL interface type ID is also identifier for the ORB interface
reposi- tory (if it Is existing)

2. Transport protocol: Internet InterORB protocol (11OP) — uses
TCP May be repeated to allow possible replications

3.Used by ORB to identify a CORBA object

Transient IOR last only as long as the process that hosts object

Persistant IOR last between activations of the CORBA objects




Distributed objects and ~
componentss.3 L Sl:{J ‘FI

8.3.4 CORBAservices UNIVERSITY
specification of commen services includes in
CORBA: Cacn

CORBA Service Role .

Naming service Supports naming in CORBA, in particular mapping nafries to
remote object references within a given naming conte@@e‘g BA

Chapter 9).

Trading service Whereas the Naming service allows objects to be located by
name, the Trading service allows them to be located by attribute;
that is, it is a directory service. The underlying database manages a
mapping of service types and associated attributes onto remote
object references.

Event service Allows objects of interest to communicate notifications to
subscribers using ordinary CORBA remote method invocations

(see Chapter 6 for more on event services generally).




Distributed objects and ~ SRH
componentss.3 i

CORBA Service Role UNIVERSITY
Notification Extends the event service with added capabilities including
service the ability to define filters expressing events of it8fest and

also to define the reliability and ordering prop@tti,edyt the
underlying event channel. CORBA

Security service

Supports a range of security mechanisms including
authentication, access control, secure communication,

auditing and nonrepudiation (see Chapter 11).

Transaction
service

Supports the creation of both flat and nested transactions (as
defined in Chapters 16 and 17).

Concurrency
control service

Uses locks to apply concurrency control to the access of
CORBA objects (may be used via the transaction service or

as an independent service).




Distributed objects and

components8.3

< SRM

CORBA Service

Role

UNIVERSIT

v

Persistent state Offers a persistent object store for CORBA, used to save and
service  restore the state of CORBA objects (implementations arélse

retrieved from the implementation repository).

study:

Lifecycle service

Defines conventions for creating, deletirg,(cdgying and

moving CORBA objects; for example, how to use factories to create

objects.




Distributed objects and Case siyd

o ~ (o2} (@) £ W =

components8.3

3.5 CORBAclient and server
example
compiler idlj generates the following
items:

Elgure Rafalmeipicstases asnariaddeg:dlj from CORBA interface

CORBX

SRM

UNIVERSITY

d

napeList

publicinterfaceShapeListOperations

ShapenewShape (GraphicalObjectg ) throwsShapeListPackage . Full Exception

Shape [] allShapes ();

intgetVersion ();

}
publicinterfaceShapeListextendsShapeListOperations , org .omg.CORBA. Object ,
+ org .omg.CORBA. portable . IDLEntity { }

PN

eserver skeletons

— The names of skeleton classes end in POA — for example,
ShapeListPOA



Distributed objects and components8.3 Case study*
D E¥SRM

CORBA
UNIVERSITY

— The names of these classes end in Stub — for example, _ShapeListSt'u'b”

»A Java class to correspond to each of the structs defined with the IDL
Interfaces

— In our example, classes Rectangle and GraphicalObject are generated.

— Each of these classes contains a declaration of one instance variable for
each field in the corresponding struct and a pair of constructors, but no
other methods.

*Classes called helpers and holders, one for each of the types defined in the
IDL interface.

— A helper class contains the narrow method, which is used to cast down
from a given object reference to the class to which it belongs, which is
lower down the class hierarchy.

[ e e Y e P L N e U e T Y T (e e N IR I N I e e e e | B e N TP



Distributed objects and components8.3 Case study*
D ZFSRM

CORBA
SNIVERSITY

Server : :
orogram — 1 he holder classes deal with out and inout

CORBA objecec 15B0HS L SHAOR A pe mapned direetly

When a seg\/rgtcj:rrpa?er']s an Instance of a servantclass, ust regis
POA (PortablObeckloM@aptor), which makes the instance into a CORBA object
and gives it a remote object reference

Figure 8.8 ShapelListServant class of the Java server program for CORBA

i%gter- face ShapeList

importorg .omg.CORBA. x;

importorg .omg. Portable Server .POA;
classShapelistServantextendsShapeListPOA {

privatePOAtheRootpoa
privateShapethelList [1;

privatei n tversion

privatestaticintn =0:

publicShapeListServant (POArootpoa ){

[ Y



342Distributed objects and

componentss.3

Case §J;ud
CORBX S I H V l

9 theRootpoa = rootpoa; UNIVERSITY
fner section 3 of LOG Act 1955)
10 /linitializetheotherinstancevariables
11 }
12 publicShapenewShape (GraphicalObjectg ) throwsShapelListPackage .Full Exception { /
13 1
o version++;
15 Shapes = nu ll;
- ShapeServantshapeRef = newShapeServant ( g, version);
17 ) i)rg .0omg.CORBA. Objectref = theRootpoa.servant_to_reference (shapeRef); /
18 12
1 s = ShapeHelper.narrow (ref);
20 }r eAtsB16EY@RBUMNEY IndPeListPackage . FullException ()
21 the List [n++] =s;
22 returns ;
23 }
24 publicShape [] allShapes (){ ... }
25 publicintgetVersion O { ...}
261}
Main method in Server class:
Figure 8.9 Java class
1 |mpobrpoar5)e<|3_n!1$gt% amlng

2| importorg .omg. CosNaming . NamingContextPackage .k

PN\



S

o1

10

11

12

13

14

15

16

17

18

19

20

21

22

Case §

—-

dye
CORB%,:"" SRM

importorg .omg.CORBA. x;

i;ﬁ?ﬁﬁgﬁﬁﬁtﬁ%éaefgbj’écts and components8.3

publicstaticvoidmain (Stringargs []) {
try {
ORBorb =ORB.init(args, null); //1
POArootpoa = POAHelper.narrow (orb.resolve_initial _references (
12

rootpoa .the_POAManager ().activate (); //3
ShapelListServantSLSRef = newShapelListServant (rootpoa);
org .omg.CORBA. Objectref =

ShapelListSLRef = ShapelListHelper .narrow (ref);
org .omg.CORBA. ObjectobjRef =

/14
rootpoa.servant_to_reference (SLSRef) ;

orb.resolve_initial_references (

UNIVERSITY

fUnder seciion 3 of UGEC Acl 1958)

));

/15

)

; NamingContextncRef = NamingContextHelper . narrow (objRef );//6 NameComponentnc

= newNameComponent ( ! ), 17
NameComponentpath []={nc };//8
ncRef .rebind (path ,SLRef);//9

orb .run (); //10
} catch (Exceptione ) { ... }




1

2
3
4

10
11
12
13
14
15
16
17
18

19

344Distributed objects and Case gud;S R P 1
components8.3 CORBX
The client UNIVERSITY

ram funger section 3 of UGG Act 1956)
E'Qure 8.10 Java client program for CORBA interfaces Shape and
dha

eLISt

impadrtorg .omg. CosNaming .

importorg .omg. CosNaming . NamingContextPackage .k
importorg .omg.CORBA. *;
publicclassShapelListClient {
publicstaticvoidmain (Stringargs []) {
try{

ORBorb =ORB.init(args, null); //1
org .omg.CORBA. ObjectobjRef =
orb .resolve_initial_ references ("NameService" );

NamingContextncRef = NamingContextHelper . narrow (objRef );
NameComponentnc = newNameComponent ( "ShapelList” ,"" ) ;
NameComponentpath [] = { nc };

ShapelListshapeListRef =

ShapelistHelper.narrow (ncRef.resolve (path)); //2

Shape [] s List = shapelListRef .allShapes (); /I3
GraphicalObjectg = s List [0].get All State (); //4

} catch (org .omg.CORBA. SystemExceptione ) {...} / /5

-

XY




Distributed objects and Case WdSRM

components8.3 COREBX
Callback UNIVERSITY

S

imilar to

[ X

|ar\1/t%|r-$£1\éleIWh iteboardCallback

onewayvoidcallback (inintversion );

«implemented by client enabling the server to send version number whenever
objects get added

«for this the ShapeList interface requires additional methods:
T

intregister (inWhiteboardCallbackcallback );

[ Y

voidderegister (ini ntcallbackld );




Distributed objects and components8.4 From objectsq

_ components ¥
8.4 From objects to components UNIVERSITY

Component-based approaches — a natural  eyolution from distributed
computing object

Issues with object-oriented middleware

Implicit dependencies — Internal (encapsulated) behaviour of an object is
hidden

— think remote method invocation or other communication paradigms... — not
apparent from the interface

othere IS a clear requirement to specify not only the interfaces offered by an
object but also the dependencies that object has on other objects in the
distributed configuration

Interaction with the middleware — too many relatively low-level details
assoclated with the middleware architecture



Distributed objects and From objectsq

components8.4 components ™%
eclear need to: UNIVERSITY

— simplify the programming of distributed applications

— to present a clean separation of concerns between code related to
operation in a middleware framework and code associated with the
application

— to allow the programmer to focus exclusively on the application code
Lack of separation of distribution concerns: Application developers need to
deal explicitly with non-functional concerns related to issues such as

security, trans- actions, coordination and replication — largely repeating
concerns from one ap- plication to another

the complexities of dealing with such services should be hidden wherever
pos- sible from the programmer

No support for deployment: objects must be deployed manually on individual



Distributed objects and components8.4 From objectgQ
components L SRM

RLINERSILY
——> component based
middleware
Essengylg,éé@,m@eg@tforms should provide intrinsic
S T cP I [ IS N SO EE R B S SO RS o ---re

software component — unlt of composition with contractually
spec- Ified interfaces and explicit context dependencies

only _ | | 1es
-dep@figeplayment-piddan fikom the user

interfaces



Distributed objects and components8.4 From objectgQ
components L S l H V I

UNIVERSITY
«component is specified in terms of a contract, which includes:

— a set of provided interfaces

* — Interfaces that the component offers as services to other
components

— a set of required interfaces

* — the dependencies that this component has in terms of other
compo- nents that must be present and connected to this
component for it to function correctly

cvery required interface must be bound to a provided interface of another
component

« —>software architecture consisting of components, interfaces and
connections between interfaces



Directory service

i Flat file service

File service

_c

—

Block mdule Device module

Required interface

Provided interface



components Many component-based approaches offer two styles of mterFchSéw

einterfaces supporting remote method invocation, as in CORBA and Java RMI

einterfaces supporting distributed events (as discussed in Chapter

6) Component-based system programming concerned with

*development of components
ecomposition of components

Moving from software development to software assembly



Distributed objects and From objectsq

componentss.4 . components =¥
Components and distributed systems UNIVERSITY

Containers:

Containers support a common pattern often encountered in distributed
applications, which consists of:

*a front-end (perhaps web-based) client

a container holding one or more components that implement the application
or business logic

system services that manage the associated data in persistent

storage components deal with application concerns

container deals with distributed systems and middleware issues (ensuring that non-
functional properties are achieved)



353Distributed objects and From objects,tq SRM

componentss.4 components ™
Igure 8.12 The structure of a UNIVERSITY

= = fUnder seciion 3 of UGEC Acl 1958)
Lifecycle interface

External (provided)

interfaces \

Calls to external
distributed system
P> services

-Components

Interception

Incoming invocations
the container does not provide direct access to the components but rather inter-
cepts incoming invocations and then takes appropriate actions to ensure the desired
properties of the distributed application are maintained



UNI"I.!’EF\SIT‘T’

components Middleware supporting the container pattern and the separation:

of concerns im-

plied by this pattern is known as an application server
This style of distributed programming is in widespread use in industry today: —

ran Technology Developed by Further details
| WebSphere Application Server | IBM www.ibm.com
Enterprise JavaBeans SUN Java.sun.com
Spring Framework SpringSource WWW.SPringsource.org
(a division of VMware)
JBosS JBoss Community Www.]b0ss.org
CORBA Component Model OMG [Wang et al. 2001JOnAS]
JONAS OW?2 Consortium [onas.ow?2.0rg
GlassFish SUN glassfish.dev.java.net



http://www.ibm.com/
http://java.sun.com/
http://www.springsource.org/
http://www.jboss.org/
http://jonas.ow2.org/
http://glassfish.dev.java.net/

Distributed objects and From objectsq

componentss.4 components ¥
Support for deployment UNIVERSITY

Component-based middleware provides support for the deployment of
component

configuration
ecomponents are deployed into containers

*deployment descriptors are interpreted by containers to establish the required
policies for the underlying middleware and distributed system services

container therefore includes

*a number of components that require the same configuration in terms of dis-
tributed system support

Deployment descriptors are typically written in XML with sufficient information
to ensure that:

ecomponents are correctly connected using appropriate protocols and

P R | = . x



Distributed objects and components8.5 Case study: Entergrise
D FEEEESRM

JavaBeans
UNIVERSITY

the associated distributed system services are set up to provide the right level

oitlseewrd engpaiprrsiiddevwareoand platform are

configured to provide the right level of support to the

55 o USRIt RyEeean



