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1. Introduction

1.Request-reply

protocols
2. RPC

3. RMI – in 1990s – RMI extension allowing a local object to invoke methods 

of  remote objects

5.2 Request-reply protocols

•typical client-server interactions – request-reply communication is

synchronous  because the client process blocks until the reply arrives

•Asynchronous request-reply communication – an alternative that may be 

useful  in situations where clients can afford to retrieve replies later
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The request-reply protocol

doOperation, getRequest and sendReply

Figure 5.2 Request-reply

communication

doOperation by clients to invoke remote op.; together with additional arguments;  

return a byte array. Marshaling and unmarshaling!

getRequest   by server process to acquire service requests; followed by

sendReply   send reply to the client
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Figure 5.3 Operations of the request-reply

protocol

Figure 5.4 Request-reply message

structure
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Message identifiers

1. requestID – increasing sequence of integers by the 

sender  2.server process identifier – e.g. internet address 

and port

Failure model of the request-reply protocol

A. UDP datagrams

communication failures (omission failures; sender order not guaranteed )

+ possible crash failures

action taken when a timeout occurs depends upon the delivery guarantees 

being  offered

Timeouts  – scenarious for a client bahaviour

Discarding duplicate request messages  – server filtering out duplicates
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r
a

Lost reply messages

idempotent operation – an ope

tio

with the same effect as if it had been performed exactly once

History

retransmission by server ... problem with memory size ... ←− can be cured by the  

knowledge that the message has arrived, e.g.:

clients can make only one request at a time ⇒ server can interpret each request 

as  an acknowledgement of its previous reply!

Styles of exchange protocols   Three different types of protocols (Spector

[1982]):

•the request (R) protocol

– No confirmation needed from server - client can continue right away –

UDP-implementation
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•the request-reply (RR) protocol

– most client-server exchanges

•the request-reply-acknowledge reply (RRA) 

protocol  Figure 5.5 RPC exchange protocols

Name Messages sent by

Client Server Client

R

RR  

RRA

Request

Request  

Request

Reply  

Reply Acknowledge reply
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B. TCP streams to implement request-reply protocol

•TCP streams

– transmission of arguments and results of any size

* flow-control mechanism

· ⇒ no need for special measures to avoid overwhelming the  

recipient

– request and reply messages are delivered reliably

* ⇒ no needfor

·retransmission

·filtering of duplicates

·histories
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Example: HTTP request-reply protocol

fixed set of methods (GET, PUT,POST, etc)

In addition to invoking methods on web resources:

• Content negotiation: information – what data representations client can 

accept  (e.g, language, media type)

• Authentication: Credentials   and   challenges   to   support  password-

style  authentication

– When a client receives a challenge, it gets the user to type a name and  

password and submits the associated credentials with subsequent

requests

HTTP – implemented over TCP

Original version of the protocol – client-server interaction steps:

•The client requests and the server accepts a connection at the default server

port  or at a port specified in the URL
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•The client sends a request message to the server

•The server sends a reply message to the client

•The connection is

closed  Later version

• persistent connections – connections remain open ofer a series of request-

reply  exchanges

– client may receive a message from the server saying that the connection 

is  closed while it is in the middle of sending another request or

requests

* browser will resend the requests without user involvement, 

provided  that the operations involved are idempotent (like GET-

method)

* otherwise – consult with the user
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– resources can be represented as byte sequences and may be compressed

•Multipurpose Internet Mail Extensions (MIME) – RFC 2045 – standard for  

sending multipart data containing, for example, text, images and sound

HTTP methods

• GET: Requests the resource whose URL is given as its argument. If the URL  

refers to data, then the web server replies by returning the data identified

– Arguments may be added to the URL; for example, GET can be used to  

send the contents of a form to a program as an argument

• HEAD: identical to GET, but does not return any data but instead, all the 

infor- mation about the data

• POST: data supplied in the body of the request, action may change data on 

the  server
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• PUT: Requests that the data supplied in the request is stored with the given

URL as its identifier, either as a modification of an existing resource or as a

new resource

• DELETE: deletes the resource identified by the given URL

• OPTIONS: server supplies the client with a list of methods it allows to be

applied to the given URL (for example GET, HEAD, PUT) and its special

requirements

• TRACE: The server sends back the request message. Used for diagnostic

purposes

operations PUT and DELETE – idempotent, but POST is not necessarily
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Message contents

Figure 5.6 HTTP Request 

message

Figure 5.7 HTTP Reply

message
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5.3 Remote procedure call (RPC)

•Concept by Birrell and Nelson [1984]

5.3.1 Design issues for RPC

Three issues we will look:

•the style of programming promoted by RPC – programming with interfaces

•the call semantics associated with RPC

•the key issue of transparency and how it relates to remote procedure calls

Programming with interfaces

Interfaces in distributed systems: In a distributed program, the modules can run in  

separate processes

service interface – specification of the procedures offered by a server, defining 

the  types of the arguments of each of the procedures
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(RPC)  number of benefits to programming with interfaces in distributed 

systems (separa-

tion between interface and implementation):

•programmers are concerned only with the abstraction offered by the service  

interface and need not be aware of implementation details

•not need to know the programming language or underlying platform used to  

implement the service (heterogeneity)

•implementations can change as long as long as the interface (the external 

view)  remains the same

Distributed nature of the underlying infrastructure:

•not possible for a client module running in one process to access the 

variables  in a module in another process

•parameter-passing mechanisms used in local procedure calls (e.g., call by 

value;  call by reference) – not suitable when the caller and procedure are in 
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– parameters as input or output

•addresses cannot be passed as arguments or returned as results of calls to

remote  modules

Interface definition languages (IDLs)

designed to allow procedures implemented in different languages to invoke one  

another

•IDL provides a notation for defining interfaces in which each of the 

parameters  of an operation may be described as for input or output in 

addition to having its  type specified
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Figure 5.8 CORBA IDL

example
✞ ☎

/ /Inf i l ePerson.i d l

s t r u c tPerson {

s t r i n gname;  s t

r i n gp l a ce ;  

longyear ;

}  ;

i n t e r f a c ePe rso nLi s t

{ readonlya t t r i b u t es t r i n gl i s t n a me ;

,  outPersonp ) ;

voidadd Person ( inPersonp )  ;

voidget Person ( ins t r i n gname 

longnumber ( ) ;

};
✝
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RPC call semantics

doOperation implementations with different delivery

guarantees:

•Retry request message

•Duplicate filtering

•Retransmission of

results  Figure 5.9 Call

semantics
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Maybe semantics   – remote procedure call may be executed once or not at all

•when no fault-tolerance measures applied, can suffer from

– omission failures (the request or result message lost)

– crash failures

At-least-once semantics  – can be achieved by retransmission of request messages

•types of failures

– crash failures when the server containing the remote procedure fails

– arbitrary failures – in cases when the request message is retransmitted,

the remote server may receive it and execute the procedure more than

once, possibly causing wrong values stored or returned

– If the operations in a server can be designed so that all of the procedures

in their service interfaces are idempotent operations, then at-least-once

call semantics may be acceptable
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At-most-once semantics  – caller receives either a result or an exception

Transparency

at least location and access transparency

consensus is that remote calls should be made transparent in the sense that the

syntax of a remote call is the same as that of a local invocation, but that the

difference between local and remote calls should be expressed in their interfaces

End of week 5

5.3.2 Implementation of RPC

Figure 5.10 Role of client and server stub procedures in RPC
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stub procedure behaves like a local procedure to the client, but instead of

executing the call, it marshals the procedure identifier and the arguments into a

requestmessage, which it sends via its communication module to the server

•RPC generally implemented over request-reply protocol

•general choices:

– at-least-once or

– at-most-once

5.3.3 Case study: Sun RPC

•designed for client-server communication in Sun Network File System (NFS)

•interface language called XDR

– instead of interface names – program number (obtained from central au-

thority) and a version number
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(RPC)

– procedure definition specifies a procedure 

signature and a procedure  number

– single input

parameter

Figure 5.11 Files interface in Sun

XDR
✞ ☎✞ ☎
c o n s tMAX  =  1000 ;

t y p e d e fi n tF i l e I d e n t i f i e r ;

t y p e d e fi n tF i l e P o i n t e r ;

t y p e d e fi n tLength ;

s t r u c tData {

i n tl e n g t h   ;

charb u f f e r [MAX] ;

} ;

/ /. . .c o n t i n u e d:

s t r u c treadargs {

F i l e I d e n t i f i e rf   ;

F i l e Po i n t e rp o s i t i o n   ;

Lengthl e n g t h ;

} ;

programFILEREADWRITE   {

s t r u c tw r i t e a r g s { v e r s i o nVERSION {

F i l e I d e n t i f i e rf   ; voidWRITE ( w r i t e a r g s ) = 1 ; / /1

F i l e Po i n t e rp o s i t i o n ; DataREAD ( readargs ) = 2 ; / /2

Datadata  ; }= 2 ;  / /v e r s i o nnunber=2

} ;   / /. . . }  =   9999 ;    / /programnumber=999
✝ ✝
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•interface compiler rpcgen can be used to generate the following from an inter-

face definition:

•client stub procedures

•server main procedure, dispatcher and server stub procedures

•XDR marshalling and unmarshalling procedures for use by the dispatcher 

and  client and server stub procedures

Further on Sun RPC:http://www.cdk5.net/rmi

http://www.cdk5.net/rmi
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5.4 Remote method invocation (RMI)

Remote method invocation  (RMI) closely related to RPC but  extended into   

the

world of distributed objects

•a calling object can invoke a method in a potentially remote object. As with  

RPC, the underlying details are generally hidden from the user

Similarities between RMI and RPC, they both:

•support programming with interfaces

•typically constructed on top of request-reply protocols

•can offer a range of call semantics, such as

– at-least-once

– at-most-once

•similar level of transparency –
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– local and remote calls employ the same syntax

– remote interfaces

* typically expose the distributed nature of the underlying call e.g. 

sup- porting remote exceptions

RMI added expressiveness for programming of complex distributed applications 

and  services:

•full expressive power of object-oriented programming

– use of objects, classes and inheritance

– objectoriented design methodologies and associated tools

•all objects in an RMI-based system have unique object references 

(independent  of they are local or remote)

– object references can also be passed as parameters ⇒ offering

significantly  richer parameter-passing semantics than in RPC
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1. Design issues for RMI

Transition from objects to distributed objects

The object model

some langueages allow accessing object instance variables directly (C++, Java) –

in distributed object system, object’s data can be accessed only with the help of its

methods

Object references: to invoke a method object’s reference and method name are  

given

Interfaces: definition of the signatures of a set of methods without their  

implementation

Actions: initiated by an object invoking a method in another 

object  three effects of invocation of a method:

1.The state of the receiver may be changed
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2. A new object may be instantiated, for example, by using a constructor in 

Java  or C++

3.Further invocations on methods in other objects may take place

Exceptions:  a block of code may be defined to throw an exception; another

block

catches the exception

Garbage collection:  ...Java vs C++ case...

Distributed objects

Distributed object systems – different possible architectures

•client-server architecture ... but also possibly:

•replicated objects – for enhanced performance and fault-tolerance

•migrated objects – enhanced availability and performance
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The distributed object model

Each process contains a collection of objects

objects that can receive remote invocations – remote

objects

Figure 5.12 Remote and local method invocations

Remote object reference: identifier that can be used throughout a distributed 

sys- tem to refer to a particular unique remote object

•Remote object references may be passed as arguments and results of remote  

method invocations

Remote interfaces: which of the object methods can be invoked remotely
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Figure 5.12 A remote object and its remote

interface

•CORBA interface definition language

(IDL)

•Java RMI – keyword:  Remote✞

☎
✝

✆

NB! Remote interfaces cannot contain

constructors!

Actions in a distributed object system

•remote reference of the object must be available to the

invoker
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invocation (RMI)  Remote object references may be obtained

as the results of remote method invocations

Figure 5.14 Instantiation of remote

objects

Java) – also RMI 

should

Garbage collection in a distributed-object system:

if garbage collection supported by the language (e.g.  

allow it + a module for distributed reference counting

Exceptions:  usual exceptions + e.g. timeouts
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5.4.2 Implementation of RMI

Figure 5.15 The role of proxy and skeleton in remote method

invocation

We will discuss:

• What are the roles of each of the com-

ponents?

• What are communication and remote  

reference modules?

• What is the role of RMI software that  

runs over them?

• What is generation of proxies and why  

is it needed?

• What is binding of names to their re-

mote object references?

• What is the activation and passivation  

of objects?
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Communication module

– responsible for transfering request and reply messages between the client and

server uses only 3 fields of the messages: message type, requestId and remote

reference (Fig. 5.4)

communication modules are together responsible for providing a specified

invoca- tion semantics, for example at-most-once

Remote reference module

– responsible for translating between local and remote object references and for

cre- ating remote object references

using remote object table – correspondence between local object references in

that  process and remote object references

•An entry for all the remote objects held by the process

•An entry for each local proxy
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(RMI)  Actions of the remote reference module:

•When a remote object is to be passed as an argument or a result for the first

time,  the remote reference module creates a remote object reference, and 

adds it to its  table

•When a remote object reference arrives in a request or reply message, the

remote  reference module is asked for the corresponding local object 

reference, which  may refer either to a proxy or to a remote object

– In the case that the remote object reference is not in the table, the RMI

software creates a new proxy and asks the remote reference module to

add it to the table

Servants

– instance of a class providing the body of a remote object

•handles the remote requests passed on by the corresponding skeleton
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•living within a server process

•created when remote objects instantiated

•remain in use until they are no longer needed (finally being garbage collected

or  deleted)

The RMI software

Proxy: making remote method invocation transparent to clients – behaving like a

local  object to the invoker

•forwards invocation in a message to a remote object

•hides the details of:

– remote object reference

– marshalling of arguments, unmarshalling of results
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– sending and receiving of messages from the client

•just one proxy for each remote object for which a process holds a remote 

object  reference

•implements:

– the methods in the remote interface of the remote object it represents

– each method of the proxy marshals:

* a reference to the target object

* its own operationId and its arguments

– ... into a request message and sends it to the target

•then awaits the reply message

– unmarshals it and returns the results to the invoker
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(RMI)  server has one dispatcher and one skeleton for each class representing a 

remote object

Dispatcher: receives request messages from the communication module

•uses the operationId to select the appropriate method in the skeleton, passing  

on the request message

Skeleton:  implements the methods in the remote interface

•unmarshals the arguments in the request message

•invokes the corresponding method in the servant

•waits for the invocation to complete

•marshals the result (together with any exceptions in a reply message to the

send- ing proxy’s method)

Generation of the classes for proxies, dispatchers and skeletons
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Dynamic invocation: An alternative to proxies

–useful in applications where some of the interfaces of the remote objects cannot 

be  predicted at design time

•dynamic downloading of classes to clients (available in Java RMI) – an 

alterna- tive to dynamic invocation

•Dynamic skeletons

– Java RMI generic dispatcher and the dynamic downloading of classes 

to  the server

– (book Chapter 8 on CORBA)

Server and client programs

Server program : classes for

•dispatchers, skeletons, supported servants +
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•initialization section

– creating and initializing at least one of the hosted servants, which can 

be  used to access the rest

– may also register some of its servants with a binder

Client program: classes for proxies for all of the remote objects that it will invoke

•can use a binder to look up remote object references

Factory methods:

remote object interfaces cannot include constructors ⇒ servants cannot be

created  this way

•Servants created either in

– the initialization section or by

– factory methods – methods that create servants
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•factory object – an object with factory

methods

Any remote object that needs to be able to create new remote objects on 

demand  for clients must provide methods in its remote interface for this

purpose.

> Such methods are called factory methods

The binder in a distributed

systembinder – a separate service that maintains a table containing mappings from textual  

names to remote object references

•binder used by:

– servers to register their remote objects by

name

– clients to look them up

CORBA Naming Service – Chapter 8
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(RMI)  The Java binder – RMIregistry, see case study on Java RMI in Section 5.5

Server threads

– each remote invocation executed on a separate thread – (to avoid blocking)

... programmer has to take it into account...

Activation of remote objects

active-passive modes of service objects – to economise on resources

• active object - available for invocation

• passive object -

1. the implementation of its methods

2. its state in the marshalled form

Activation: creating an active object from the corresponding passive object by
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•creating a new instance of its class

•initializing its instance variables from the stored 

state  An activator is responsible for:

•registering passive objects that are available for activation (involves recording  

the names of servers against the URLs or file names of the corresponding

passive  objects)

•starting named server processes and activating remote objects in them

•keeping track of the locations of the servers for remote objects that it has

already  activated

•Java RMI – the ability to make remote objects activatable [java.sun.com

IX]

– uses one activator on each server computer
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(RMI)

•CORBA case study in Chapter 8 describes the implementation repository

– a weak form of activator that starts services containing objects in an

initial  state

Persistent object stores

An object that is guaranteed to live between activations of processes is called a

persis- tent object

•generally managed by persistent object stores, which store their state in a 

mar- shalled form on disk

Object location

remote object reference – Internet address and port number of the process that

created  the remote object – to quarantee uniqueness
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(RMI)  some remote objects exist in series of different processes, possibly

on different

computers, throughout their lifetime

location service – helping clients to locate remote objects from their remote

object  references

•using database: remote object reference   −→ probable current location

5.4.3 Distributed garbage collection

Java distributed garbage collection algorithm

•server keeping track, which of its objects are proxied at which clients

– protocol for creation and removal of proxies with notifications to the

server

•based on no client proxies to an object exist and no local references either,  

garbage collection can remove the object at the server
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Leases in Jini

•references to a certain object are   leased to other (outside) processes

•leases have a certain pre-negotiated time period

•before the lease is about to expire, the client must request a renewal if

needed
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5.5 Case study: Java RMI

Example:  shared

whiteboard

www.cdk5.net/rmi

Remote interfaces in Java RMI

•extending an interface   Remote in java.rmi

package

•must throw RemoteException
Figure 5.16 Java Remote interfaces Shape and
ShapeList
✞

☎

1   importjava  . rmi . * ;

2   importjava  . u t i l . Vector ;

3  publicinterfaceShapeextendsRemote {  / /i.e.Shapei saremotei n t e r f a c e

4

5

i n tgetVersion   ( )   throwsRemoteException ;

GraphicalObjectget All State  ( )  throwsRemoteException  ;   / /1

6  }

7   publicinterfaceShapeListextendsRemote {

8

9

10

ShapenewShape  ( GraphicalObjectg  )   throwsRemoteException   ;   /

/2

VectorallShapes   ( )   throwsRemoteException ;

i n tgetVersion   ( )   throwsRemoteException ;

http://www.cdk5.net/rmi
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RMI
11  }

✝

Parameter and result passing

In Java RMI:

•parameters of a method – input parameters

•result of a method – single   output parameter

Any object that is serializable – implements the Serializable interface – can be  

passed as an argument or result in Java RMI.

•All primitive types and remote objects are serializable

Passing remote objects: When the type of a parameter or result value is defined

as a remote interface, the corresponding argument or result is always passed

as a remote object reference
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RMI

Passing non-remote objects: All serializable non-remote objects are copied and  

passed by value
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RMI  The arguments and return values in a remote invocation are serialized to 

a stream

using the method described in Section 4.3.2, with the following modifications:

1. Whenever an object that implements the Remote interface is serialized, it is  

replaced by its remote object reference, which contains the name of its (the  

remote object’s) class

2. When any object is serialized, its class information is annotated with the

location  of the class (as a URL), enabling the class to be downloaded by 

the receiver

Downloading of classes

•If the recipient does not already possess the class of an object passed by 

value,  its code is downloaded automatically

•if the recipient of a remote object reference does not already possess the 
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RMI  1.There is no need for every user to keep the same set of classes in their 

working

environment

2.Both client and server programs can make transparent use of instances of 

new  classes whenever they are added

RMIregistry

– binder for Java RMI

•on every server computer that hosts remote objects

•maintains a table mapping textual, URL-style names to references to remote  

objects hosted on that computer

•accessed by methods of the Naming class

– methods take as an argument a URL-formatted string of the form:
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✞ ☎

/ / computerName : port / 

objectName✝
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RMI
Figure 5.17 The Naming class of Java RMIregistry

void rebind (String name, Remote obj)

This method is used by a server to register the identifier of a remote object by  

name, as shown in Figure 15.18, line4.

void bind (String name, Remote obj)

This method can alternatively be used by a server to register a remote object by  

name, but if the name is already bound to a remote object reference an  exception 

is thrown.

void unbind (String name, Remote obj)

This method removes a binding.

Remote lookup(String name)

This method is used by clients to look up a remote object by name, as shown in  

Figure 5.20 line 1. A remote object reference is returned.

String [] list()

This method returns an array of Strings containing the names bound in the registry.
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5.5.1 Building client and server

programs

Server program
Figure 5.18 Java class ShapeListServer with main

method
✞ ☎

1

2

3

4

importjava  . rmi . * ;

importjava  . rmi . server . UnicastRemoteObject ;

publicclassShapeListServer {

publics t a t i cvoidmain ( Stringargs   [ ] ) {

5 System . setSecurityManager ( newRMISecurityManager ( ) ) ;

6 t r y {

7 ShapeListaShapeList =  newShapeListServant  ( ) ; / /1

8 ShapeListstub = / /2

9 ( ShapeList ) UnicastRemoteObject . exportObject ( aShapeList , 0 ) ; / /3

10 Naming . rebind ( "/ /bruno.ShapeList"    ,  stub  ) ; / /4

11 System . out . p r i n t l n ( "ShapeList server ready" ) ;

12

13

14

15

} catch ( Exceptione  ) {

System . out . p r i n t l n ( "ShapeList server main " + e . getMessage ( ) ) ; }

}
}
✝
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Figure 5.19 Java class ShapeListServant implements interface

ShapeList
✞ ☎

1   importjava   . u t i l . Vector ;

2  publicclassShapeListServantimplementsShapeList {

3

4

privateVectorthe List ; / /containsthel i s to fShapes

privatei n tversion ;

5

6 / /1

7

publicShapeListServant   ( ) { . . . }

publicShapenewShape ( GraphicalObjectg  ) {

version ++;

8 version ) ; / /2

9

10

Shapes =  newShapeServant  (   g ,

the List . addElement (s ) ;

returns ;

11

12

13

}

publicVectorallShapes ( ) { . . . }

publici n tgetVersion ( )   {   . . .  }

14  }
✝
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Figure 5.20 Java client

ShapeList
✞ ☎

1   importjava

2   importjava

3   importjava

. rmi . * ;

. rmi . server . * ;

. u t i l . Vector ;

4   publicclassShapeListClient

{
5 publics t a t i cvoidmain ( Stringargs [ ] ) {

6

7

8

9

10

System . setSecurityManager ( newRMISecurityManager ( ) ) ;

ShapeListaShapeList = nu l l ;

t ry {

aShapeList  =  ( ShapeList )  Naming . lookup ( "/ /bruno.ShapeList"   ) ;   / /1

Vectors List =  aShapeList . allShapes () ; / /2

} catch ( RemoteExceptione )  { System . out . p r i n t l n ( e . getMessage ( ) ) ;

} catch ( Exceptione )  { System . out . p r i n t l n ( "Client:  " + e . getMessage ( ) ) ;

}

11

12

13 }

14  }
✝
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Callbacks

server should inform its clients whenever certain event occurs

callback  – server’s action of notifying clients about an event

•client creates a remote object – callback object – that implements an interface  

containing a method for the server to call

•server provides an operation allowing interested clients to inform it of the re-

mote object references of their callback objects

•Whenever an event of interest occurs, the server calls the interested 

clients  Problems with polling solved, but at the same time, attention is 

needed because:

•server needs to have up-to-date lists of the clients’ callback objects, but clients  

may not always inform the server before they exit, leaving the server with in-
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– leasing technique can be used to overcome this problem

•server needs to make a series of synchronous RMIs to the callback objects in  

the list

– TextBook Chapter 6 gives some ideas on solving this issue

⇒WhiteboardCallback interface could be defined

as:
✞ ☎

{publicinterfaceWhiteboardCallbackimplementsRemote  

voidcallback   ( i n tversion   )   throwsRemoteException

;

} ;
✝

– implemented as a remote object by the client

•client needs to inform the server about its callback object

ShapeList interface requires additional methods such as register and deregister, de-

fined as follows:
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✞ ☎

i n tr e g i s t e r ( WhiteboardCallbackcallback  )  throwsRemoteException  

;voidderegister  ( i n tcal lback Id   )  throwsRemoteException 

;✝

5.5.2 Design and implementation of Java RMI

Use of reflection

Reflection used to pass information in request messages about the method to be  

invoked.

– with the help of the Method class in reflection package

Java classes supporting RMI

Inheritance structure of the classes supporting Java RMI servers:
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RMI
Figure 5.21 Classes supporting Java

RMI

End of week

6
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6 Indirect communication

6.1 Introduction

Roger Needham, Maurice Wilkes and David 

Wheeler:  “All problems in computer science can be 

solved byan- other level of indirection”

Indirect communication  –What does it mean?communication 

be-

tween entities in a distributed system

through an intermediary with no direct

coupling be- tween the sender and the

receiver(s)
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2 key properties stemming from the use of an intermediary:

1. Space uncoupling

•the sender does not know or need to know the identity of the receiver(s)

•participants (senders or receivers) can be replaced, updated, replicated 

or  migrated

2. Time uncoupling

•the sender and receiver(s) can have independent lifetimes

– ⇒ more volatile environments where senders and receivers may

come  and go
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Figure 6.1 Space and time coupling in distributed

systems Time-coupled Time-uncoupled

Properties:  Communication directed to- Properties:  Communication directed to-

Space wards a given  receiver  or receivers; re- wards   a   given   receiver   or receivers;

coupling ceiver(s)  must  exist  at  that  moment in sender(s) and receiver(s) can have  inde-

time pendent lifetimes

Examples:  Message passing, remote in- Examples: See Exercise 6.3

vocation (see Chapters 4 and 5)

Space un-

Properties: Sender does not need to

know the identity of the receiver(s); re-

ceiver(s) must exist at that moment in

time

Examples: IP multicast (see Chapter 4)

Properties: Sender does not need to

know the identity of the receiver(s);

sender(s) and receiver(s) can have inde-

pendent lifetimes

Examples: Most indirect communication

paradigms covered in this chapter

coupling
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The relationship with asynchronous communication

•In asynchronous communication, a sender sends a message and then 

continues  (without blocking) ⇒ no need to meet in time with the receiver to

communicate

•Time uncoupling adds the extra dimension that the sender and receiver(s) 

can  have independent existences

6.2 Group communication
Group communication – a message is sent to a group −→ message is delivered

to

all members of the group

•the sender is not aware of the identities of the 

receivers  Key areas of application:

•the reliable dissemination of information to potentially large numbers of

clients
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•support for a range of fault-tolerance strategies, including the consistent 

update  of replicated data

•support for system monitoring and management

JGroups toolkit

1. The programming model

group & group membership < processes may join or leave the group

aGroup.send(aMessage))

process groups

• e.g. RPC

object groups

•marshalling and dispatching as in RMI

•Electra – CORBA-compliant system supporting object groups
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closed and open groups

Figure 6.2 Open and closed

groups

overlapping and non-overlapping

groups

synchronous and asynchronous systems
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2. Implementation issues

Reliability and ordering in multicast

integrity, validity + agreement

ordered multicast possibilities (hybrid solutions also possible) :

• FIFO ordering: First-in-first-out (FIFO) (or source ordering) – if sender

sends one before the other, it will be delivered in this order at all group

processes

• Casual ordering: – if a message happens before another message in the dis-

tributed system, this so-called casual relationship will be preserved in the

deliv- ery of the associated messages at all processes

• Total ordering: – if a message is delivered before another message at one

pro- cess, the same order will be preserved at all processes
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Group membership

management
Figure 6.3 The role of group

member- ship management

•Providing an interface for group  

membership changes

•Failure detection

•Notifying members of group 

mem- bership changes

•Performing group

address  

expansion

IP multicast as a weak case of a group membership service

•IP multicast itself does not provide group members with information about 

cur- rent membership delivery; is not coordinated with membership

changes
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6.2.3 Case study: the JGroups

toolkit

Figure 6.4 The architecture

of  JGroups

• Channel – acts as a handle onto a  

group

core functions of joining, leaving,  

sending and receiving

– connect – to a particular

named group

if the named group does not

exist, it is implicitly created

at the time of the first

connect

– disconnect – to leave a group

– getView – returns the current

member list

– getState – historical applica-

tion state associated with the

group
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Figure 6.5 Java class

FireAlarmJG
✞ ☎

1   importorg  . jgroups . JChannel ;

2    publicclassFireAlarmJG {

3

4

5

6

publicvoidraise ( ) {

t r y {

JChannelchannel    =  newJChannel   ( ) ;

channel . connect ( "AlarmChannel" ) ;

Messagemsg    =  newMessage   ( null  ,   null  ,   "Fire!"   ) ; /

/dest inat ion,source,payload
7

8 / /d e s t i n a t i o n=n u l l −  d i s t r i b u t etowholegroup;sourcen u l l −  source

addedautomatical lybythesystemanyway

channel . send (msg) ;9

10

11

}

catch ( Exceptione  ) {

}12

13 }

14  }
✝

✞ ☎

/ /createanewinstanceoftheFireAlarmJGclassFireAlarmJGalarm =  newFireAlarmJG  ( ) ;

alarm . ra ise ( ) ;  / /r a i seanalarm
✝
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Figure 6.6 Java class

FireAlarmConsumerJG
✞ ☎

1   importorg  . jgroups . JChannel ;

2   publicclassFireAlarmConsumerJG

{
3

4

5

6

publicStringawait ( ) {

t r y {

JChannelchannel    =  newJChannel   ( ) ;

channel . connect ( "AlarmChannel" ) ;

7 Messagemsg

8    / /parameter:t imeoutzero

= ( Message ) channel . receive ( 0 ) ;

−  thereceivemessagew i l lb locku n t i lamessagei srece ived

9   / / incomingmessagesarebufferedandreceivereturnsthetopelementintheb u f f e r

return  ( String ) msg . GetObject ( ) ;10

11

12

13

14

}

catch ( Exceptione  ) {

returnnu l l ;

}

15 }

16  }
✝

☎✞

FireAlarmConsumerJGalarm Call =  newFireAlarmConsumerJG   ( )

;

/ /( . . .r eceivercode. . . )

Stringmsg   =  alarm Call . await ( ) ;

System . out . p r i n t l n ( "Alarm received: " + msg) ;
✝
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building  on  the  underlying  service  offered 

by

• Building blocks

– higher-level abstractions,  

channels

– MessageDispatcher

* e.g. castMessage method that sends a message to a group and 

blocks  until a specified number of replies are received

– RpcDispatcher – invokes specified method on all objects associated 

with  a group

– NotificationBus – implementation of a distributed event bus, in which 

an  event is any serializable Java object

• The protocol stack

– underlying communication protocol, constructed as a stack of composable  

protocol layers
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bidirectional stack of protocol

layers
✞ ☎

publicObjectup ( Eventevt  ) ;

publicObjectdown ( Eventevt  ) ;
✝

– UDP most common transport layer in JGroups (IP multicast for sending

to all members in a group; TCP layer may be preferred; PING for

member- ship discovery etc.)

– FRAG – message packetization to maximum message size (8,192 bytes

by default)

– MERGE – unexpected network partitioning and the subsequent

merging of subgroups after the partition

– GMS implements a group membership protocol to maintain consistent

views of membership across the group
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– CAUSAL implements causal ordering (Section 6.2.2 Chapter 15)
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6.3 Publish-subscribe systems

also referred to as distributed event-based systems

•publishers publish structured events to an event service and subscribers 

express  interest in particular events through subscriptions which can be 

arbitrary pat- terns over the structured events

•event notifications

•one-to-many communications paradigm

Applications of publish-subscribe systems

application domains needing large-scale dissemination of 

events  Examples:

•financial information systems

•other areas with live feeds of real-time data (including RSS feeds)
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•support for cooperative working, where a number of participants need to be  

informed of events of shared interest

•support for ubiquitous computing, including the management of events

emanat- ing from the ubiquitous infrastructure (for example, location

events)

•a broad set of monitoring applications, including network monitoring in the  

Internet

Figure 6.7 Dealing room system
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Characteristics of publish-subscribe

systems

• Heterogeneity

• Asynchronicity

• different delivery guarantees

6.3.1 The programming model

Figure 6.8 The publish-subscribe

paradigm

(un)publish(event);  

(un)subscribe(filter)

;  advertise(filter);  

notify(event)
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systems  Expressiveness of publish-subscribe system determined by the 

subscription  (fil-

ter) model:

• Channel-based

– publishers publish events to named channels

– subscribers then subscribe to one of these named channels to receive all  

events sent to that channel

*  CORBA Event Service (see Chapter 8)

• Topic-based (also referred to as subject-based):

– each notification is expressed in terms of a number of fields, with one

field  denoting the topic

– Subscription defined in terms of topic of interest
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– generalization of topic-based approaches allowing the expression of 

sub- scriptions over a range of fields in an event notification

• Type-based

– subscriptions defined in terms of types of events

– matching is defined in terms of types or subtypes of the given filter

•  + concept-based subscription models

– filters are expressed in terms of the semantics as well as the syntax of  

events

•  + complex event processing (or composite event detection)

– allows the specification of patterns of events as they occur in the

distributed  environment
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6.3.2 Implementation issues

task of a publish-subscribe system:  ensure that events are delivered efficiently  

to

all subscribers that have filters defined that match the event

additional requirements in terms of security, scalability, failure handling, 

concur- rency and quality of service

Centralized versus distributed implementationscentralised broker vs. network of

brokers

Figure 6.9 A network of brokers A step further:

fully   peer-to-peer   implementationof 

apublish-subscribe system – no distinc-

tion between publishers, subscribers and

brokers; all nodes act as brokers, coop-

eratively implementing the required

event routing functionality
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Overall systems architecture

Figure 6.10 The architecture of publish-subscribe

systems

Implementation

approaches:
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• Flooding:

– sending an event notification to all nodes in the network and then 

carrying  out the appropriate matching at the subsciber end

– alternative – send subscriptions back to all possible publishers, with the  

matching carried out at the publishing end

– can be implemented

* using an underlying broadcast or multicast facility

* brokers can be arranged in an acyclic graph in which each 

forwards  incoming event notifications to all its neighbours

– benefit of simplicity but can result in a lot of unnecessary network

traffic

• Filtering (filtering-based routing)

– Brokers forward notifications through the network only where there is a  

path to a valid subscriber
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– each node must maintain

* neighbours list containing a list of all connected neighbours in the  

network of brokers

* subscription list containing a list of all directly connected 

subscribers  serviced by this node

* routing table

Figure 6.11 Filtering-based routing
✞ ☎

1  uponreceivepublish ( evente  ) fromnodex

2

3

4

5

matchl ist   :=  match ( e , subscript ions )

sendn o t i f y ( e ) tomatchlist ;  f w 

d l i s t := match ( e , routing ) ;  

sendpublish ( e )   tof w d l i s t − x ;

6  uponreceivesubscribe ( subscriptions  ) 

fromnodex
7

8

9

10

i fxisc l i e n tthen  

addxtosubscriptions

;

elseadd  ( x ,   s )   torouting ;

sendsubscribe  ( s )   toneighbours    − x ;

✝
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* subscriptions essentially using a flooding approach back towards all  

possible publishers

• Advertisements: propagating the advertisements towards subscribers in a 

simi- lar (actually, symmetrical) way to the propagation of subscriptions

• Rendezvous: rendezvous nodes, which are broker nodes responsible for a 

given  subset of the event space

– SN(s) – given subscription, s –> one or more rendezvous nodes that 

take  responsibility for that subscription

– EN(e) – given event e –> one or more rendezvous nodes responsible 

for  matching e against subscriptions in the system
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Figure 6.12 Rendezbous-based 

routing
✞ ☎

1  uponreceivepublish ( evente  ) fromnodexatnodei

2

3

4

5

6

7

r v l i s t := EN( e ) ;

i fiinr v l i s tthenbegin

matchl ist  <− match ( e ,   subscript ions ) ;

sendn o t i f y ( e )  tomatchlist  ;

end

sendpublish  ( e ) tor v l i s t −  i ;

8  uponreceivesubscribe ( subscriptions  ) 

fromnodexatnodei
9

10

11 ;

r v l i s t := SN( s ) ;

i fiinr v l i s tthen  

addstosubscriptions

else12

13 sendsubscribe  ( s )  tor v l is t −  i ;

✝

•distributed hash table (DHT) – can be used

– hash table distributed over a set of nodes in P2P

manner
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6.3.3 Examples of publish-subscribe systems

Figure 6.13 Example publish-subscribe

systems
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4. Message queues

1. The programming model

•Types of receive operations:

– blocking receive

– non-blocking receive

– notify operation

Figure 6.14 The message queue

paradigm
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•A number of processes can send messages to the same queue

•a number of receivers can remove messages from a queue

•queuing policy

– (normally) first-in-first-out (FIFO) but most message queue 

implementa- tions also support the

– concept of priority

* higher-priority messages delivered first

•Consumer processes

can select messages from the queue based on message properties

– destination (a unique identifier designating the destination queue)

– metadata associated with the message

* priority of the message
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* the delivery mode

* body of the message (though body – normally opaque and 

untouched  by the message queue system)

•message content serialized

•length of a message varying (can be 100s megabytes...)

messages are persistent – system preserves messages indefinitely (or until they 

are  consumed)

also system can commit messages to disk – for reliable delivery:

•any message sent is eventually received (validity)

•the message received is identical to the one sent, and no messages are 

delivered  twice (integrity)

can also support additional functionality:
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•support for the sending or receiving of a message to be contained within a

trans- action (all or nothing)

•support for message transformation (e.g. in heterogeneous environments)

•support for security

difference with message-passing systems (MPS):

•MPS have implicit queues associated with senders and receivers (for 

example,  the message buffers in MPI),

message queuing systems have explicit queues that are third-party entities,

separate from the sender and the receiver – making it into indirect communication

paradigm with the crucial properties of space and time uncoupling
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2. Implementation issues

Case study: WebSphere MQ (textbook pp.272-274)

3. Case study: The Java Messaging Service

(JMS)

JMS – specification of a standardized way for distributed Java programs to  

communicate indirectly

•unifies the publish-subscribe and message queue paradigms at least

superficially  by supporting topics and queues as alternative destinations of

messages

implementations:
Joram from OW2

Java Messaging from  

JBoss

Sun’s Open MQ  

Apache

ActiveMQ  

OpenJMS

WebSphere MQ pro-

vides a JMS interface
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Key roles:

• JMS client – Java program or component that produces or consumes

messages

– JMS producer – program that creates and produces messages

– JMS consumer – program that receives and consumes messages

• JMS provider – any of the multiple systems that implement the JMS  

specification

• JMS message – object that is used to communicate information between 

JMS  clients (from producers to consumers)

• JMS destination – object supporting indirect communication in JMS –

either:

– JMS topic

– JMS queue
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Programming with JMS

Figure 6.16 The programming model offered by

JMS

•two types of connection can be established:

– TopicConnection

– QueueConnection

Connections can be used to create one or more

sessions
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•session – series of operations involving the creation, production and 

consump- tion of messages related to a logical task

•session object also supports operations to create transactions, supporting all-

or- nothing execution of a series of operations

• TopicConnection can support one or more topic sessions

• QueueConnection can support one or more queue sessions (but it is not

possible  to mix session styles)

session object – central to the operation of JMS – methods for creation of 

messages,  message producers and message consumers:

• message consists of three parts:

–header

*  destination – reference to:
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·topic

·queue

* priority

* expiration date

* message ID

* timestamp

–properties   – user-defined

–body – text message, byte stream, serialized Java object, stream of 

primi- tive Java values, structured set of name/value pairs

• message producer – object to publish messages under particular topic or to

send  messages to a queue

• message consumer – object to subscribe to messages with given topic or

receive  messages from a queue



287Indirect

communication6.4

Message

queues
– filters: message selector (over header or

properties)

* subset of SQL used to specify properties

– can block using a receive operation

– can establish message listener object

* – has to establish method onMessage
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A simple

example
Figure 6.17 Java class

FireAlarmJMS
✞ ☎

1   importjavax  . jms . * ;

2   importjavax  . naming . * ;

3   publicclassFireAlarmJMS

{
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

publicvoidraise ( ) {

t r y {

Contextctx = newIn i t i a l C o n t e x t  ( ) ;

TopicConnectionFactorytopic Factory = / /f i n df a c t o r y

( TopicConnectionFactory ) ctx . lookup ( "TopicConnectionFactory" )

;  Topictopic = ( Topic ) ctx . lookup ( "Alarms" ) ;  / /t o p i c 

TopicConnectiontopicConn    =   / /connect ion

topicConnectionFactory . createTopicConnection ( ) ;

TopicSessiontopicSess = topicConn . createTopicSession ( fa lse ,

Session .AUTO_ACKNOWLEDGE) ; / /session  

TopicPublishertopicPub = topicSess . create Publisher ( topic ) ;  

TextMessagemsg = topicSess . createTextMessage ( ) ; / /createmessage  

msg. set Text ( "Fire!" ) ;

topicPub . publish ( message ) ;  / /publ ishi t

}   catch  ( Exceptione  )  {

}

20  }
✝
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✞ ☎

/ /createanewinstanceoftheFireAlarmJMSclassandthenraiseanalarmi s:

alarm  =  newFireAlarmJMS   ( ) ;

alarm . ra ise ( ) ;
✝

Figure 6.18 Java class

FireAlarmConsumerJMS
✞ ☎

1   importjavax  . jms . * ;

2   importjavax  . naming . * ;

3  publicclassFireAlarmConsumerJMS {

4

5

6

7

8

9

10

11

12

13

14

15

16

17

publicStringawait ( ) {

t r y {

Contextctx = newIn i t i a l C o n t e x t  ( ) ;

TopicConnectionFactorytopic Factory =

( TopicConnectionFactory ) ctx . lookup ( "TopicConnectionFactory" )

;  Topictopic = ( Topic ) ctx . lookup ( "Alarms" ) ;  

TopicConnectiontopicConn   =

topicConnectionFactory . createTopicConnection ( ) ;

TopicSessiontopicSess = topicConn . createTopicSession ( fa lse ,

Session .AUTO_ACKNOWLEDGE) ; / /. . .i d e n t i c a luptohere  

TopicSubscribertopicSub = topicSess . createSubscriber ( topic )

;  topicSub . s t a r t ( ) ; / /t o p i csubscr ibercreatedands t a r t e d  

TextMessagemsg = ( TextMessage ) topicSub . receive ( ) ; / / rece ive  

returnmsg . getText ( ) ;  / /r e t urnmessageass t r i n g
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18 }   catch  ( Exceptione  )  {

returnnu l l ;19

20 }

21  }
✝

✞ ☎

/ /c lassusagebyaconsumer:

FireAlarmConsumerJMSalarm Call =  newFireAlarmConsumerJMS  ( )

;

Stringmsg   =  alarm Call . await ( ) ;

System . out . p r i n t l n ( "Alarm received: "+msg) ;

✝
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6.5 Shared memory approaches

6.5.1 Distributed shared memory (DSM)

Figure 6.19 The distributed shared memory

abstraction

•DSM – tool for parallel applications

•shared data items available for access directly

•DSM runtime – sends messages with updates between

computers

•managed replicated data for faster access
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approaches  One of the first examples: Apollo Domain file system [1983] – DSM 

can bepersistent

Non-Uniform Memory Access (NUMA) architecture

•processors see a single address space containing all the memory of all the

boards

•access latency for on-board memory less than for a memory module on a

differ- ent board

Message passing versus DSM

• service offered

– message passing: variable marshalled-unmarshalled into variable on 

other  processor

– DSM – not possible to run on heterogeneous architectures
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– via message model

– locks and semaphores in DSM implementations

•DSM can be made persistant

•message-passing systems: processes have to coexist in

time

• Efficiency – very problem-dependent
suitable   for   hand-tuning   on supercomputer-

sized

– message-passing:  

clusters

– DSM – can be made to perform as well at least for small numbers of 

pro- cessors
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2. Tuple space communication

•David Gelernter [1985], Yale University

• generative communication

– processes communicate indirectly by placing tuples in a tuple space

– from which other processes can read or remove them

– Tuples

* do not have an address

* are accessed by pattern matching on content (content-addressable  

memory)

* consist of a sequence of one or more typed data fields such as

·   <"fred", 1958>

·   <"sid", 1964>

·   <4, 9.8, "Yes">
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*  tuples are immutable

– Tuple space (TS)

* any combination of types of tuples may coexist in the same tuple

space

* processes share date through it

· write operation

· read (or take) operation

read – TS not affected

take – returns tuple and removes it from TS

both blocking operations until there is a matching tuple in TS

– associative addressing – processes provide for read and take operation a  

specification – any tuple with a matching specification is returned

– Linda programming model – Linda programming language
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Figure 6.20 The tuple space

abstraction

Properties associated with tuple

spaces

• Space uncoupling:
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– A tuple placed in tuple space may originate from any number of sender

processes and may be delivered to any one of a number of potential

recipients

– also referred to as distributed naming in Linda

• Time uncoupling:

– A tuple placed in tuple space will remain in that tuple space until

removed (potentially indefinitely) ⇒ hence the sender and receiver do

not need to overlap in time

a form of distributed sharing of shared variables via the tuple 

space  Variations:

•multiple tuple spaces

•distributed implementation



298Indirect

communication6.5

Shared memory

approaches
•Bauhaus Linda:

– modelling everything as (unordered) sets – that is, tuple spaces are sets 

of  tuples and tuples are sets of values, which may now also include

tuples

•turning the tuple space into an   object space

– e.g. in JavaSpaces

Implementation

issues

centralized vs

distributed

•Replication or   state machine approach (read more in textbook)

•peer-to-peer approaches
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Case study: JavaSpaces

tool for tuple space communication developed by Sun

•Sun provides specification, third-party developers offer implementations:

– GigaSpaces

– Blitz

•strongly dependent on   Jini (Sun’s discovery service)

– Jini Technology Starter Kit includes

*  Outrigger (JavaSpaces implementation)

goals of the JavaSpaces technology are:

•to offer a platform that simplifies the design of distributed applications and  

services

http://www.gigaspaces.com/
http://www.dancres.com/
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•to be simple and minimal in terms of the number and size of associated

classes

•to have a small footprint

•to allow the code to run on resource-limited devices (such as smart phones)

•to enable replicated implementations of the specification

– (although in practice most implementations are centralized)

Programming with JavaSpaces

programmer can create any number of instances space – shared, persistant 

repository  of objects

an item in JavaSpace – referred to as an entry: a group of objects contained in a  

class that implements net.jini.core.entry.Entry
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Figure 6.23 The JavaSpaces

API

•placing an entry with   write operation

– entry can have an associated l✿e✿a✿s✿e✿

*  numerical value in milliseconds or

Lease.FOREVER

– write returns granted Lease value
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• read or take

– matching specified by a template

– matching entry has the same class or subclass

• notify

– uses Jini distributed event notification

– notification via a specified RemoteEventListener interface

operations in JavaSpaces can take place in the context of a transaction, ensuring 

that  either all or none of the operations will be executed
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Figure 6.24 Java class

AlarmTupleJS
✞ ☎

1   importnet  . j i n i . core . entry . * ;

2  publicclassAlarmTupleJSimplementsEntry {

3

4

publicStr ingalarmType ;

publicAlarmTupleJS   ( ) {

}5

6

7

8

publicAlarmTupleJS   ( StringalarmType   ) {

th is . alarmType =  alarmType ;

}

9  }
✝

Figure 6.25 Java class

FireAlarmJS
✞ ☎

1   importnet  . j i n i . space . JavaSpace ;

2  publicclassFireAlarmJS {

3

4

5

6

7

8

9

publicvoidraise ( ) {

t r y {

JavaSpacespace    =  SpaceAccessor . findSpace ("AlarmSpace" ) ;

AlarmTupleJStuple =  newAlarmTupleJS   ( "Fire!"  ) ;

space . write ( tuple ,  null  ,  60*60* 1000) ;

catch  ( Exceptione  )  {

}

10 }

11  }
✝
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c

✞ ☎
/ /thecodecanbecalledusing:  

FireAlarmJSalarm =  newFireAlarmJS  ( ) ;  

alarm . ra ise ( ) ;

✝

Figure 6.26 Java class

FireAlarmReceiverJS
✞ ☎

1   importnet  . j i n i . space . JavaSpace ;

2  publicclassFireAlarmConsumerJS {

3

4

5

6

7

8

publicStringawait ( ) {

t r y {

JavaSpacespace = SpaceAccessor . findSpace ( ) ;  

AlarmTupleJStemplate =  newAlarmTupleJS   ( "Fire!" ) ;  

AlarmTupleJSrecvd    =  ( AlarmTupleJS )  space . read ( template ,   null

,

Long .MAX_VALUE) ;

returnrecvd  . alarmType ;

9

10

11

12

13

}

catch  ( Exceptione  )  {

returnnu l l ;

}

14 }

15  }
✝
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✞ ☎

/ /consumer:

FireAlarmConsumerJSalarm Call =  newFireAlarmConsumerJS  ( )

;

Stringmsg   =  alarm Call . await ( ) ;

System . out . p r i n t l n ( "Alarm received: " + msg) ;

✝

End of week 7

7 Operating systems support

End of week 8
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8 Distributed objects and components

8.1 Introduction

Distributed object middleware

suited to

distributed

• encapsulation in object-based solutions –

well  programming

• data abstraction – clean separation between the specification of an object

and its implementation ⇒ programmers to deal solely in terms of interfaces

and not concern with implementation details

• ⇒ more dynamic and extensible solutions

Examples of distributed objects middleware: Java RMI and CORBA
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Component-based middleware

– to overcome a number of limitations with distributed object middleware:

Implicit dependencies: Object interfaces do not describe what the

implementation of an object depends on

Programming complexity:  need to master many low-level details

Lack of separation of distribution concerns: Application developers need to

con- sider details of security, failure handling and concurrency – largely similar

from one application to another

No support for deployment: Object-based middleware provides little or no

support for the deployment of (potentially complex) configurations of objects
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8.2 Distributed objects

•DS started as client-server architecture

•with emergence of highly popular OO languages (C++, Java) the OO 

concept  spreading to DS

•Unified Modelling Language (UML) in SE has its role too in middleware 

devel- opments (e.g. CORBAand UML standards developed by the same

organisation)

Distributed object (DO) middleware

•Java RMI and CORBA – quite common

•but CORBA – language independent

in DO he term class is avoided – instead factory instantiating new objects from a

given  template
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•in Smalltalk – implementational inheritance

•in DO – interface inheritance:

– new interface inherits the method signatures of the original

interface

*  + can add extra ones
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Distribut

ed

objects

Figure 8.1 Distributed

objects
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objects  OO: objects + class + inheritance ←→ DO: encapsulation + data

abstraction +

design methodologies

The added complexities with DO:

• Inter-object communication

– remote method invocation

– + often other communications paradigms

*  (e.g. CORBA’s event service + associated notification service)

• Lifecycle management

– creation, migration and deletion of DO
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• Activation and deactivation

– # DOs may be very large...

– node availabilities

• Persistence

state of DO need to be preserved across all cycles (like [de]activation, 

system  failures etc.)

• Additional services

– e.g. naming, security and transaction services
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8.3 Case study: CORBA

Object Management Group (OMG)
•formed in 1989

•designed an interface language

– independent of any specific implementation

language

object request broker (ORB)

– to help a client to invoke a method on an object

Common Object Request Broker Architecture

(CORBA)

CORBA 2 specification

CORBA3 – introduction of a component model
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8.3.1 CORBARMI

CORBA’s object model

CORBA objects refer to remote objects

wide range of types PL support ⇒ no classes ⇒instances of classes cannot be  

passed as arguments

CORBAIDL

Figure 8.2 IDL interfaces Shape and
ShapeList
✞

☎

1    structRectangle   {   / /1

2

3

4

5

longwidth ;  

longheight ;  

longx ;

longy ;

6    } ;

7   structGraphicalObject {   / /2

8

9

stringtype ;

Rectangleenclosing ;
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10 booleani s F i l l e d  ;

11    } ;

12  interfaceShape {   / /3

13

14

longgetVersion   ( ) ;

GraphicalObjectget All State ( )  ;  / /r e t urnssta teof theGraphica l Object

15    } ;

16   typedefsequence    <Shape ,   100>  A l l ;   / /4

17  interfaceShapeList {   / /5

18

19

20

21

exceptionFull Exception  {   } ;   / /6

ShapenewShape ( inGraphicalObjectg )   raises  ( Full Exception ) ; /

/7 A l lallShapes ( ) ; / /r e t urnssequenceofremoteobjectreferences/ /8  

longgetVersion   ( ) ;

22    } ;
✝

•same lexical rules as C++

– + distribution keywords

*  – e.g. interface, any, attribute, in, out, inout, readonly, raises

•grammar of IDL – subset of ANSI C++ + constructs to support method  

signatures
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IDL modules:

module defines a naming scope  

Figure 8.3 IDL module

Whiteboard
✞ ☎

1  moduleWhiteboard {

2

3

4

5

6

7

8

9

10

structRectangle {

. . . } ;

structGraphicalObject {

. . . } ;

interfaceShape {

. . . } ;

typedefsequence    <Shape ,  100>  A l l ;

interfaceShapeList {

. . . } ;

11    } ;
✝

IDL interfaces

• IDL interface describes the methods that are available in CORBA objects 

that  implement that interface
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•Clients of a CORBA object may be developed just from 

the knowledge of its  IDL interface
IDL methods

The general form of a method signature

is:
[oneway] <return_type> <method_name> (parameter1,..., 

parameterL)  [raises (except1,..., exceptN)] [context 

(name1,..., nameM)];

Example:

void getPerson(in string name, out Person p);

•parameters:   in, out, inout

•return value acting as if additional   out parameter

– return type may be void

Passing CORBA objects:
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•Any parameter specified by the name of an IDL interface – a reference to a  

CORBAobject

– the value of a remote object reference is passed

Passing CORBA primitive and constructed types:

•Arguments of primitive and constructed types are copied and passed by 

value  Invocation semantics

remote invocation call semantics defaults to: at-most-once

•to specify method invocation with   maybe semantics: keyword oneway

– non-blocking call on the client side

– ⇒ method should not return a result



319Distributed objects and

components8.3

Case study:

CORBA
Exceptions in CORBA IDL

•optional   raises expression indicates user-defined

exceptions

•exceptions may be defined to contain variables, e.g:

– exception FullException {GraphicalObjectg };

IDL types:

•15 primitive types,   const keyword

•object - remote object references
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Figure 8.4 IDL constructed

types
Type Examples Use

sequence typedef sequence <Shape, 100> All;

typedef sequence <Shape> All;  

Bounded and unbounded sequences  

of Shapes

Defines a type for a variable-length

sequence of elements of a specified IDL

type. An upper bound on the length may

be specified.

string string name;

typedef string<8> SmallString;  

Unbounded and bounded sequences  

of characters

Defines a sequence of characters,

terminated by the null character. An  

upper bound on the length may be  

specified.

array typedef octet uniqueId[12];

typedef GraphicalObject GO[10][8];

Defines a type for a multi-dimensional

fixed-length sequence of elements of a  

specified IDL type.
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Type Examples Use

record struct GraphicalObject {

string type;  Rectangle

enclosing;  boolean isFilled;

};

Defines a type for a record containing a

group of related entities.

enumerated enum Rand

(Exp, Number, Name);

The enumerated type in IDL maps a type

name onto a small set of integer values.

union union Exp switch (Rand) {

case Exp: string vote; case

Number: long n; case

Name: string s;

};

The IDL discriminated union allows one

of a given set of types to be passed as an  

argument. The header is parameterized  

by an enum, which specifies which  

member is in use.

•All arrays or sequences used as arguments must be defined in

typedefs
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•None of the primitive or constructed data types can contain references

•passing non-CORBA objects (nCO) by value – CORBA’s  valuetype

– nCO operations cannot be invoked remotely

– makes it possible to pass a copy of a nCO between client and server

• valuetype – struct with additional method signatures (like those of an

interface)

• valuetype arguments and results – passed by value

– the state is passed to the remote site and used to produce a new object 

at  the destination

– if the client and server are both implemented in Java, the code can be  

downloaded

– common C++ implementation – the necessary code to be present at 
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Attributes

IDL interfaces can have methods and

attributes

•like public class fields in Java

•may be readonly

•private to CORBAobjects

value set-

retrieve

generated by IDL

compile

r

– pair of

attribute  

automatically

Inheritance

IDL interfaces may be extended through interface 

inheritance  Example:

•interface B extends interface A ⇒
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– B may add new types, constants, exceptions, methods and attributes to  

those ofA

*  + can redefine types, constants and exceptions

*  not allowed to redefine methods

IDL interface may extend more than one interface
interfac

e

interfac

e

interfac

e

interfac

e

A { };

B: A{ };

C {};

Z : B, C

{};

(but inheriting common names from two different interfaces not 

alowed)  IDL type identifiers

•generated by the IDL compiler

IDL:Whiteboard/Shape:1.0
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•has three parts – the IDL prefix, a type name and a version number

•programmers have to provide a unique mapping to the interfaces – may

use

pragma prefix for this

IDL pragma directives

•for specification of additional non-IDL properties in IDL 

interface  for example,

•specifying that an interface will be used only locally

•supplying the value of an interface repository 

ID  Example:

#pragma version Whiteboard 2.3
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CORBA language mappings

primitive types in IDL −→ corresponding primitive types in that

language

structs, enums, unions −→ Java classes

IDL allows to have multiple return values... can be solved like this:
void getPerson(in string name, out Person p); 

//IDL  void getPerson(String name, PersonHolder 

p); //java

Asynchronous RMI

CORBA RMI allows clients to make non-blocking invocation requests on CORBA  

objects

•intended to be implemented in the client - server unaware on invocation syn-

chronous or asynchronous (except e.g. Transaction Service)

Asynchronous RMI invocation semantics:

•callback – client passes an extra parameter with a reference to a callback
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⇒ server can call back with the results

•polling – server returns a valuetype object that can be used to poll or wait for  

the reply

8.3.2 The architecture of CORBA

Figure 8.5 The main components of the CORBA architecture

•3 additional components compared to Figure 5.15 (at right)...

•object adaptor; implementation repository; interface repository

a) Static invocation – object interfaces known at compile time – skeleton can be

used

b) Dynamic invocation
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ORB core

– role of [Fig. 5.15  communication  module]  +  an  interface  which includes

the  following:

•operations enabling it to be started and stopped

•operations to convert between remote object references and strings

•operations to provide argument lists for requests using dynamic invocation

Object adapter (OA)

– role of [Fig. 5.15 reference and dispatcher modules]

CORBA objects with IDL interfaces ←→ the programming language interfaces

of  the corresponding servant classes

OAtasks:

•creates remote object references for CORBA objects (Section 8.3.3)
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•dispatches each RMI via a skeleton to the appropriate servant

•activates and deactivates servants

-gives each CORBA object a unique object name (forms part of its remote object  

reference)

- keeps a remote object table that maps the names of CORBA objects to their  

servants

- also has its own name (forms part of the remote object references of all of the  

CORBA objects it manages)

Portable Object Adapter (POA)

allows applications and servants to be run on ORBs produced by different 

developers  supports CORBA objects with two different sorts of lifetimes:

•those whose lifetimes are restricted to that of the process in which their

servants  are instantiated (transient object references)
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•those whose lifetimes can span the instantiations of 

servants in multiple pro- cesses (resistant object

references)

...for further details the textbook Section 8.3.2...

Skeletons

Chapter 5.4.2:

Skeleton:  implements the methods in the remote interface

• unmarshals the arguments in the request message

• invokes the corresponding method in the servant

• waits for the invocation to complete

• marshals the result (together with any exceptions in a reply message to the sending proxy’s  

method)
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Client stubs/proxies

The class of a proxy (for OO languages) or a set of stub procedures (for procedu-

ral languages) is generated from an IDL interface by an IDL compiler for the client

language

Implementation repository

– responsible for:

•activating registered servers on demand

•locating servers that are currently running

•stores a mapping from the names of object adapters to the pathnames of files  

containing object implementations

When object implementations are activated in servers, the hostname and port

number of the server are added to the mapping
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object adapter name pathname of object

implementation

hostname and port number

of server

Some objects (e.g. callback) created by clients, run once and cease to exist 

when  they are no longer needed – do not use the implementation repository

Interface repository

– information about registered IDL interfaces to clients and servers that require it

•adds a facility for reflection to CORBA

Every CORBA remote object reference includes a slot that contains the type identi-

fier of its interface, enabling clients that hold it to enquire its type of the interface

repository

•applications using static (ordinary) invocation with client proxies and IDL

skele- tons do not require an interface repository

•Not all ORBs provide an interface repository
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Dynamic invocation interface

CORBA does not allow classes for proxies to be downloaded at runtime (as in Java  

RMI) – The dynamic invocation interface is CORBA’s alternative

•used when it is not practical to employ proxies

•The client can obtain from the interface repository the necessary information  

about the methods available for a given CORBA object

•The client may use this information to construct an invocation with suitable  

arguments and send it to the server

Dynamic skeletons

•Consider CORBA object whose interface was unknown when the server was  

compiled

with dynamic skeletons, server can accept invocations on the interface of a 

CORBA  object for which it has no skeleton
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•When a dynamic skeleton receives an invocation, it inspects the request

contents  to discover its

– target object

– the method to be invoked

– the arguments

– then invokes the target

Legacy code

•The term legacy code refers to existing code that was not designed with dis-

tributed objects in mind

A piece of legacy code may be made into a CORBA object by defining an IDL

inter- face for it and providing an implementation of an appropriate object adapter

and the necessary skeletons
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3. CORBA remote object reference

called: interoperable object references (IORs)

IOR format

1. IDL interface type ID2. Protocol and address details3. Object key

interface repository

identifier type

IIOP host domain

name

port number adapter name object name

1. Note that IDL interface type ID is also identifier for the ORB interface 

reposi- tory (if it is existing)

2. Transport protocol: Internet InterORB protocol (IIOP) – uses 

TCP  May be repeated to allow possible replications

3.Used by ORB to identify a CORBA object

Transient IOR  last only as long as the process that hosts object

Persistant IOR  last between activations of the CORBA objects
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8.3.4 CORBAservices

specification of commen services includes in

CORBA:
CORBA Service Role

Naming service Supports naming in CORBA, in particular mapping names to

remote object references within a given naming context (see  

Chapter 9).

Trading service Whereas the Naming service allows objects to be located by

name, the Trading service allows them to be located by  attribute; 

that is, it is a directory service. The underlying  database manages a 

mapping of service types and associated  attributes onto remote 

object references.

Event service Allows objects of interest to communicate notifications to

subscribers using ordinary CORBA remote method  invocations 

(see Chapter 6 for more on event services  generally).
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CORBA Service Role

Notification

service

Extends the event service with added capabilities including

the ability to define filters expressing events of interest and  

also to define the reliability and ordering properties of the  

underlying event channel.

Security service Supports a range of security mechanisms including

authentication, access control, secure communication,  

auditing and nonrepudiation (see Chapter 11).

Transaction

service

Supports the creation of both flat and nested transactions (as

defined in Chapters 16 and 17).

Concurrency

control service

Uses locks to apply concurrency control to the access of

CORBA objects (may be used via the transaction service or 

as  an independent service).
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CORBA Service Role

Persistent state Offers a persistent object store for CORBA, used to save and

service restore the state of CORBA objects (implementations are 

retrieved from the implementation repository).

Lifecycle service Defines conventions for creating, deleting, copying and

moving CORBA objects; for example, how to use factories to  create

objects.
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8.3.5 CORBA client and server

example

compiler idlj generates the following

items:

•2 Java interfaces per IDL interface:Figure 8.7 Java interfaces generated by idlj from CORBA interface
ShapeList
✞ ☎

1   publici n te r fa c eShapeListOperations

{
2

3

4

ShapenewShape  ( GraphicalObjectg  )  throwsShapeListPackage  . Full Exception

;

Shape [ ] allShapes ( ) ;

i n tgetVersion  ( ) ;
5  }

6

7  publicinterfaceShapeListextendsShapeListOperations ,  org .omg.CORBA. Object ,

8 org .omg.CORBA. portable . IDLEnti ty  { }
✝

•server skeletons

– The names of skeleton classes end in POA – for example,

ShapeListPOA

•The proxy classes or client stubs, one for each IDL interface
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– The names of these classes end in Stub – for example, _ShapeListStub

•A Java class to correspond to each of the structs defined with the IDL

interfaces

– In our example, classes Rectangle and GraphicalObject are generated.

– Each of these classes contains a declaration of one instance variable for

each field in the corresponding struct and a pair of constructors, but no

other methods.

•Classes called helpers and holders, one for each of the types defined in the 

IDL  interface.

– A helper class contains the narrow method, which is used to cast down

from a given object reference to the class to which it belongs, which is

lower down the class hierarchy.

* For example, the narrow method in ShapeHelper casts down to 
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– The holder classes deal with out and inout 

arguments, which cannot be  mapped directly 

onto Java.

Server

program
CORBA objects – instances of servant classes.

When a server creates an instance of a servant class, it must register it with the

POA (Portable Object Adaptor), which makes the instance into a CORBA object

and gives it a remote object reference

Figure 8.8 ShapeListServant class of the Java server program for CORBA

inter- face ShapeList
✞ ☎

1   importorg  .omg.CORBA . * ;

2   importorg  .omg. Portable Server .POA;

3  classShapeListServantextendsShapeListPOA {

pr iva tePOAtheRootpoa ;4

5

;

privateShapethe List [ ] ;  

privatei  n tversion  

pr ivates t a t i ci n tn =0;

6

7

8 publicShapeListServant   (POArootpoa  ) {
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9 theRootpoa  =  rootpoa ;

/ /i n i t i a l i z e theo ther ins tancevar iab les10

11

12

13

14

}

publicShapenewShape ( GraphicalObjectg  )  throwsShapeListPackage  . Full Exception  {   / 

/1

version ++;

Shapes    =  nu l l ;

ShapeServantshapeRef    =  newShapeServant  (   g ,   version ) ;

t r y {

15

16

17 org .omg.CORBA. Objectr e f = theRootpoa . servant_ to_ reference ( shapeRef ) ;  /

/2

s = ShapeHelper . narrow ( r e f ) ;

}   catch  ( Exceptione  )   { }

18

19

20 . Full Exception ( ) ;i f ( n >=100) thrownewShapeListPackage  

the List [ n++] = s ;

returns ;

21

22

23

24

25

}

publicShape   [ ]   allShapes ( ) {   . . . }

publici n tgetVersion ( )   {   . . .  }

26  }
✝

Main method in Server class:

Figure 8.9 Java class
ShapeListServer

✞ ☎

1   importorg  .omg. CosNaming . * ;

2   importorg  .omg. CosNaming . NamingContextPackage . * ;
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3   importorg  .omg.CORBA . * ;

4   importorg  .omg. Portable Server . * ;

5  publicclassShapeListServer {

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

publics t a t i cvoidmain ( Stringargs   [ ] ) {

t ry {

ORBorb    = ORB. i n i t ( args ,   nu l l ) ; / /1

POArootpoa   = POAHelper . narrow ( orb . r e s o l ve_ in i t ia l_ r e fe rences ( "RootPOA" ) ) ;  /

/2

rootpoa . the_POAManager ( ) . act ivate  ( ) ; / /3

ShapeListServantSLSRef    =  newShapeListServant  ( rootpoa ) ;   / /4

org .omg.CORBA. Objectr e f = rootpoa . servant_ to_ reference ( SLSRef ) ;  / /5

ShapeListSLRef =  ShapeListHelper . narrow ( r e f ) ;

org .omg.CORBA. ObjectobjRef = orb . r e so l ve_ in i t ia l_ r e fe rences ( "NameService" ) 

;  NamingContextncRef = NamingContextHelper . narrow ( objRef ) ; / /6  NameComponentnc    

=  newNameComponent  ( "ShapeList"  ,   "" ) ;    / /7

NameComponentpath [ ] = { nc } ; / /8  

ncRef . rebind ( path , SLRef ) ; / /9  

orb . run ( ) ; / /10

}   catch  ( Exceptione  )   {   . . .   }
21 }

22  }
✝
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The client

program
Figure 8.10 Java client program for CORBA interfaces Shape and
ShapeList
✞ ☎

1   importorg  .omg. CosNaming . * ;

2   importorg  .omg. CosNaming . NamingContextPackage . * ;

3   importorg  .omg.CORBA . * ;

4    publicclassShape List Client {

5

6

7

8

9

10

11

12

13

14

15

16

17

publics t a t i cvoidmain ( Stringargs   [ ] ) {

t ry {

ORBorb    = ORB. i n i t ( args ,   nu l l ) ; / /1

org .omg.CORBA. ObjectobjRef =

orb . r e s o lve_  in i t i a l_  r e fe rences  ( "NameService" ) ;  

NamingContextncRef = NamingContextHelper . narrow ( objRef ) ;  

NameComponentnc = newNameComponent ( "ShapeList" , "" ) ;  

NameComponentpath [ ]   =  {  nc   } ;

ShapeListshapeListRef =

ShapeListHelper . narrow ( ncRef . resolve ( path ) ) ; / /2  

Shape [ ]   s List =  shapeListRef . allShapes ( ) ; / /3 

GraphicalObjectg =  s List [ 0 ] . get All State ( ) ;   / /4

}  catch ( org .omg.CORBA. SystemExceptione  )   { . . . }   / /5

18 }

19  }
✝
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Callback

s
Similar to

JavaRMI
✞ ☎

i n te r fa c eWhiteboardCallback

{
onewayvoidcallback ( ini n tversion ) ;

} ;
✝

•implemented by client enabling the server to send version number whenever  

objects get added

•for this the ShapeList interface requires additional methods:

✞ ☎

i n tr e g i s t e r   ( inWhiteboardCallbackcallback ) ;

voidderegister  ( ini n tcallback Id ) ;
✝
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346Distributed objects and components8.4

8.4 From objects to components

Component-based approaches – a natural  

computing

Issues with object-oriented middleware

Implicit dependencies      – internal (encapsulated) behaviour of an object is 

hidden

– think remote method invocation or other communication paradigms... – not  

apparent from the interface

•there is a clear requirement to specify not only the interfaces offered by an

object  but also the dependencies that object has on other objects in the 

distributed  configuration

Interaction with the middleware – too many relatively low-level details 

associated  with the middleware architecture
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•clear need to:

– simplify the programming of distributed applications

– to present a clean separation of concerns between code related to

operation  in a middleware framework and code associated with the

application

– to allow the programmer to focus exclusively on the application code

Lack of separation of distribution concerns: Application developers need to

deal explicitly with non-functional concerns related to issues such as

security, trans- actions, coordination and replication – largely repeating

concerns from one ap- plication to another

•the complexities of dealing with such services should be hidden wherever 

pos- sible from the programmer

No support for deployment: objects must be deployed manually on individual

machines – can become a tiresome and error-prone process
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•Middleware platforms should provide intrinsic 

support for deployment so that  distributed software 

can be installed and deployed in the same way as 

software  for a single machine, with the complexities 

of deployment hidden from the user

−→ component based

middleware

Essence of components

software component – unit of composition with contractually

spec- ified interfaces and explicit context dependencies

only

•dependencies are also represented as

interfaces
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•component is specified in terms of a contract, which includes:

– a set of provided interfaces

* – interfaces that the component offers as services to other

components

– a set of required interfaces

* – the dependencies that this component has in terms of other

compo- nents that must be present and connected to this

component for it to function correctly

•every required interface must be bound to a provided interface of another  

component

• →software architecture consisting of components, interfaces and 

connections  between interfaces
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Example: Architecture of a simple file system  

Figure 8.11 An example software

architecture
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components  Many component-based approaches offer two styles of interface:

•interfaces supporting remote method invocation, as in CORBA and Java RMI

•interfaces supporting distributed events (as discussed in Chapter 

6)  Component-based system programming concerned with

•development of components

•composition of components

Moving from software development to software assembly



352Distributed objects and

components8.4

From objects to

components
Components and distributed systems

Containers:

Containers support a common pattern often encountered in distributed 

applications,  which consists of:

•a front-end (perhaps web-based) client

•a container holding one or more components that implement the application 

or  business logic

•system services that manage the associated data in persistent 

storage  components deal with application concerns

container deals with distributed systems and middleware issues (ensuring that non-

functional properties are achieved)
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Figure 8.12 The structure of a

container

the container does not provide direct access to the components but rather inter-

cepts incoming invocations and then takes appropriate actions to ensure the desired

properties of the distributed application are maintained
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components  Middleware supporting the container pattern and the separation

of concerns im-

plied by this pattern is known as an application server

This style of distributed programming is in widespread use in industry today: –

range of application servers:Technology Developed by Further details

WebSphere Application Server IBM www.ibm.com

Enterprise JavaBeans SUN java.sun.com

Spring Framework SpringSource

(a division of VMware)

www.springsource.org

JBoss JBoss Community www.jboss.org

CORBA Component Model OMG [Wang et al. 2001JOnAS]

JOnAS OW2 Consortium jonas.ow2.org

GlassFish SUN glassfish.dev.java.net

http://www.ibm.com/
http://java.sun.com/
http://www.springsource.org/
http://www.jboss.org/
http://jonas.ow2.org/
http://glassfish.dev.java.net/
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Support for deployment

Component-based middleware provides support for the deployment of   

component

configuration

•components are deployed into containers

•deployment descriptors are interpreted by containers to establish the required  

policies for the underlying middleware and distributed system services

container therefore includes

•a number of components that require the same configuration in terms of dis-

tributed system support

Deployment descriptors are typically written in XML with sufficient information 

to  ensure that:

•components are correctly connected using appropriate protocols and 

associated  middleware support
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•the underlying middleware and platform are

configured to provide the right level  of support to the 

component configuration

•the associated distributed system services are set up to provide the right level

of  security, transaction support and so on

8.5 Case study: Enterprise JavaBeans
End of week 9


