15MA101		CALCULUS AND SOLID GEOMETRY		1 3	T 1	P 0	C 4
Co-requisite:	NA						
Prerequisite:	NA						
Data Book /							
Codes/Standards							ļ
Course Category	В	CORE	MATHEMATICS				
Course designed by	De	partment of Mathematics					
Approval	A	Academic Council Meeting , 2016			•	•	

PUI	PURPOSE To acquire analytical ability on solving Calculus and Solid Geometry problems as applied to the respective all branches of Engineering.						
INSTRUCTIONAL OBJECTIVES STUDENT OUTCOMES							
At t	At the end of the course, student will be able to						
1.	Apply advanced matrix knowledge to Engineering problems. a e						
2.	Equip themselves familiar with functions of several variables.	a	e				
3.	3. Familiarize with the applications of ordinary differential equations a e						
4.	Improve their ability in solving geometrical applications of differentia	l a	e				
	calculus problems.						
5.	Expose to the concept of three dimensional analytical geometry.	a	e				

Session	Description of Topic		C- D- I- O	IOs	Reference
	UNIT I: MATRICES	12			
1.	Characteristic equation	1	C,I	1	1-7
2.	Eigen values and Eigen vectors of a real matrix	2	C,I	1	1-7
3.	Properties of Eigen values	2	C,I	1	1,3,4,6
4.	Cayley – Hamilton theorem orthogonal reduction of a symmetric matrix to diagonal form	2	C,I	1	1,3,4,6
5.	Orthogonal matrices	1	C,I	1	1,3,4
6.	Reduction of quadratic form to canonical form	2	C,I	1	1,3,4,6
7.	Quadratic form to canonical form by orthogonal transformations.	2	C,I	1	1,3
	UNIT II: FUNCTIONS OF SEVERAL VARIABLES	12			
8.	Function of two variables – Partial derivatives	2	C,I	2	1,3,4,6
9.	Total differential	2	C,I	2	1,3,4,6
10.	Taylor's expansion	2	C,I	2	1,3
11.	Maxima and Minima	2	C,I	2	1,3,4,6
12.	Constrained Maxima and Minima by Lagrangian Multiplier method	2	C,I	2	1,3,

13.	Jacobians	2	C,I	2	1-7
	UNIT III: ORDINARY DIFFERENTIAL EQUATIONS	12			
14.	Linear equations of second order with constant and variable coefficients	2	C,I	3	2,5,7
15.	Homogeneous equation of Euler type	2	C,I	3	2,5,7,1
16.	Homogeneous equation of Legendre's Type	2			
17.	Equations reducible to homogeneous form	2	C,I	3	2,5,7
18.	Variation of parameters	2	C,I	3	1,2
19.	Simultaneous first order with constant co-efficient.	2	C,I	3	1,2
	UNIT IV: GEOMETRICAL APPLICATIONS OF DIFFERENTIAL CALCULUS	12			
20.	Curvature – Cartesian coordinates	2	C,I	4	7
21.	Curvature – polar coordinates	2	C,I	4	7
22.	Circle of curvature	2	C,I	4	1
23.	Centre of curvature	2	C,I	4	7
24.	Evolutes	2	C,I	4	4,5
25.	Envelopes	2	C,I	4	7
	UNIT V: THREE DIMENSIONAL ANALYTICAL GEOMETRY	12			
26.	Equation of a sphere – Plane section of a sphere	2	C,I	5	3,4
27.	Tangent Plane – Orthogonal spheres	2	C,I	5	3,4
28.	Equation of a cone	2	C,I	5	4
29.	Right circular cone	2	C,I	5	3,4
30.	Equation of a cylinder	2	C,I	5	2,3
31.	Right circular cylinder.	2	C,I	5	3,4
	Total contact hours	60			

LEAF	LEARNING RESOURCES					
Sl. No.	TEXT BOOKS					
1.	Kreyszig.E, "Advanced Engineering Mathematics", John Wiley & Sons. Singapore, 10 th edition, 2012.					
2.	K.Ganesan, Sundarammal Kesavan, K.S.Ganapathy Subramanian &V.Srinivasan, "Engineering Mathematics", Gamma publications, Revised Edition, 2013.					

	REFERENCE BOOKS/OTHER READING MATERIAL
3.	Grewal B.S, Higher Engineering Mathematics, Khanna Publications, 42 nd Edition,2012.
4.	Veerajan. T, "Engineering Mathematics I", Tata McGraw Hill Publishing Co, New Delhi, 5th edition, 2006.
5.	Kandasamy P etal. "Engineering Mathematics", Vol.I (4th revised edition), S.Chand &Co., New
	Delhi, 2000.
6.	Narayanan S., Manicavachagom Pillay T.K., Ramanaiah G., "Advanced Mathematics for
	Engineering students", Volume I (2nd edition), S.Viswanathan Printers and Publishers, 1992.
7.	Venkataraman M.K., "Engineering Mathematics" – First Year (2nd edition), National Publishing
	Co., Chennai, 2000.

Course nature					Theory			
Assessment Method (Weightage 100%)								
In-	Assessment tool	Cycle test I	Cycle test II	Cycle T	est III	Surprise Test	Quiz Tota	
semester	Weightage	10%	15%	150	%	5%	5%	50%
End semester examination Weightage: 50%								