LESSON PLAN FOR

PE 2101: MODLLEING OF ELECTRICAL MACHINES

ELECTIVE FOR M.E III SEMESTER POWER ELECTRONICS AND DRIVES SPECIALIZATION

INSTRUCTOR: M. ARUN NOYAL DOSS, ASSOCIATE PROFESSOR

S.NO	UNIT	TOPIC TITLE	NO. OF	REFERENCE
	NO.		HOURS	
1	1	UNIT TITLE: REFERENCE FRAME		
		THEORY	9	1+instructor's
				notes
1.1		Theory of transformation	1	3
1.2		Transformation matrix (phase transformation):		3
		sign conventions, concept of a phasor,	2	
		commonly used transformations		
1.3		Invariance of power, conditions for, proof,	1	3
		power variant transformation		
1.4		Static and rotating reference frames, arbitrary	1	3
		reference frame (ARF)		
1.5		Voltage, flux linkage and torque equations in	2	3
		ARF		
1.6		Balanced steady-state voltage and toque	2	3
		equations		
2	2	UNIT TITLE: MODELLING OF D.C		3
		MACHINES	9	
2.1		Introduction + separately excited DC		3
		machines:	3	
		Speed-torque characteristics, voltage equations,		
		torque equation + computer simulation		
2.2		Introduction + series excited DC machines:		3
		Speed-torque characteristics	2	
2.3		Introduction + shunt excited DC machines:	3	3
		Speed-torque characteristics, voltage equations,		
		torque equation + computer simulation		
2.4		Introduction + compound DC machines:	1	3
		Speed-torque characteristics		

S.NO	UNIT	TOPIC TITLE	NO. OF	REFERENCE
	NO.		HOURS	
3	3	UNIT TITLE: MODELLING OF		
		POLYPHASE INDUCTION MACHINES	9	1+instructor's
				notes
3.1		Introduction + equivalent circuit	1	3
3.2		Complete speed-torque characteristics:		3
		transient and steady-state.	2 3	
3.3		Voltage, flux linkage and torque equations in	3	3
		static and rotating reference frames (ARF)		
3.4		Analysis of steady-state and dynamic		3
		operations: dynamics during starting and	3	
		braking, accelerating time through computer		
		simulation		
4	4	UNIT TITLE: MODELLING OF	9	1+instructor's
		SYNCHRONOUS MACHINES		notes
4.1		Introduction + voltage equations	1	3
4.2		Flux linkage and torque equations in static and		3
		rotating reference frames (ARF)	2	
4.3		Equivalent circuit, phasor equations, phasor		3
		diagrams	2	
4.4		Power-angle characteristics, machine	1	3
		reactances and time constants		
4.5		Analysis of steady-state and dynamic	3	3
		operations: dynamics under balanced and		
		unbalanced fault conditions		
5	5	UNIT TITLE: SINGLE-PHASE MACHINES		3
		AND AC COMMUTATOR MACHINES	9	
5.1		Introduction to single-phase induction motors	1	3
		and revolving field theory		
5.2		Equivalent circuit and cross-field theory		3
			2	
5.3		Starting methods and maximum starting		3
		torque conditions	1	
5.4		Introduction to AC commutator machines and	1	3
		generalized theory of electrical machines		-
5.5		Modeling of AC series motor	1	3
5.6		Analysis of repulsion motor	1	3
5.7		Analysis of Schrage motor	2	3

REFERENCE

- 1. P.C. KRAUSE, O. WASYNCZUK, S.D. SUDHOFF, ANALYSIS OF ELECTRIC MACHINERY AND DRIVE SYSTEMS, IEEE PRESS, SECOND EDITION, 2002.
- 2. R. KRISHNAN, *ELECTRIC MOTOR DRIVES, MODELING, ANALYSIS AND CONTROL*, PRENTICE-HALL OF INDIA, 2002.
- 3. P.S. BHIMBRA, *GENERALIZED THEORY OF ELECTRICAL MACHINES*, KHANNA PUBLISHERS, 1995.