
Unit IV: TRANSIENT ANALYSIS



7.1 INTRODUCTION 

So far steady state analysis of electric circuits was discussed. Electric circuits will be 

subjected to sudden changes which may be in the form of opening and closing of 

switches or sudden changes in sources etc. Whenever such a change occurs, the 

circuit which was in a particular steady state condition will go to another steady state 

condition. Transient analysis is the analysis of the circuits during the time it changes 

from one steady state condition to another steady state condition. 

Transient analysis will reveal how the currents and voltages are changing during the 

transient period. To get such time responses, the mathematical models should 

necessarily be a set of differential equations. Setting up the mathematical models for 

transient analysis and obtaining the solutions are dealt with in this chapter. 

A quick review on various test signals is presented first. Transient response of simple 

circuits using classical method of solving differential equations is then discussed. 

Laplace Transform is a very useful tool for solving differential equations. After 

introducing the Laplace Transform, its application in getting the transient analysis is 

also discussed. 
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 What is TRANSIENT ANALYSIS? 



Step function 

Step function is denoted as u(t) and is described by 

u(t) = X for t ≥ 0 

     = 0 for t < 0                                                                                                              

Fig. (a) shows a step function. 

 

 

 

 

 

The step function with X = 1 is called as unit step function. It is described as 

u(t) = 1.0 for t ≥ 0 

     = 0 for t < 0                                                                                                              

Unit step function is shown in Fig. (b). 
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Exponentially decaying function 

Exponentially decaying function is described by 

x(t) = X e - α t  for t ≥ 0 

      = 0 for t < 0                                                                                                           

The value of this function decreases exponentially with time as shown in Fig. below. 
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For exponentially decaying function, the time required for the signal to reach zero value, 

when it is decreased at a constant rate, equal to the rate of decay at time t = 0, is called 

TIME CONSTANT. Time constant is the measure of rate of decay. 

 

 

 

 

 

Consider the exponentially decaying signal shown and described by  

x(t) = X e - α t                                                                                                                (7.5) 

 Its slope at time t = 0 is given by  

dt

dx
       = - α X e - α t        = - α X                                                                                  (7.6) 

Minus sign indicates that the function value is decreasing with increase in time. Then, 

as stated by the definition, time constant τ  is given by     τ  = 
Xα

X
 =  

α

1
                  (7.7) 
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For this exponentially decaying function, knowing  α τ  = 1, the value of x(t) at time t = τ  

is obtained as 

x(t)           =  X e - α t         =  X e - 1 = 0.368 X    

Therefore, for exponentially decaying function, time constant τ  is also defined as the 

time required for the function to reach 36.8 % of its value at time t = 0. This aspect is 

shown in previous Fig. 

Now consider the two exponentially decaying signals shown. They are described by 

x1 (t) = X tα1e                                                                                                              

x2 (t)= X   tα2e                                                                                                        

 

 

Their time constants are 
1
τ and 

2
τ respectively. It is seen that 

1
τ < 

2
τ and hence          

α1 > α2. Further, it can be noted that, smaller the time constant faster is the rate of 

decay. 
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Exponentially increasing function 

The plot of      x(t) = X (1 - e- α t)                                                                                 (7.36) 

is shown in the Fig. It is to be seen that at time t = 0, the function value is zero and the 

function value tends to X as time t tends to ∞. This is known as exponentially increasing 

function 

 

                                                  

 

 

For such exponentially increasing function, time constant, τ  is the time required for the 

function to reach the final value, if the function is increasing at the rate given at time       

t = 0. 

dt

dx
       = 0 + α X e - α t        = α X        Therefore  τ  = 

α

1

Xα

X
                                (7.37) 

The value of x(t) at time t = τ  is obtained as      x(t) = X (1 - e-1) = 0.632 X             (7.38) 

Thus, for exponentially increasing function, time constant τ  is also defined as the time 

taken for the function to reach 63.2 % of the final value. This is shown in Fig. above. 
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In the Fig. (a) shown below, x(t) is continuous. 

 

 

 

 

 

 

 

 

 

In Fig. (b) shown,  x(t) has discontinuity at time t = t1. The value of 
dt

dx
at time t = t1 

tends to infinity. 
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7.3 CERTAIN COMMON ASPECTS OF RC AND RL CIRCUITS 

While doing transient analysis on simple RC and RL circuits, we need to make use of 

the following two facts. 

1. The voltage across a capacitor as well as the current in an inductor cannot 

have discontinuity. 

2. With dc excitation, at steady state, capacitor will act as an open circuit and 

inductor will act as a short circuit. 

These two aspects can be explained as follows. 

The current through a capacitor is given by iC = C (dv / dt). If the voltage across the 

capacitor has discontinuity, then at the time when the discontinuity occurs, dv / dt 

becomes infinity resulting the current  iC to become infinity. However, in physical 

system, we exclude the possibility of infinite current. Then, we state that in a capacitor, 

the voltage cannot have discontinuity. Suppose, if the circuit condition is changed at 

time t = 0, the capacitor voltage must be continuous at time t = 0 and hence            

vC(0+) = vC(0-).                                                                                                           (7.14) 

where time 0+ refers the time just after t = 0 and time 0- refers the time just before t = 0. 



Similarly the voltage across an inductor is vL = L (di / dt). If the current through the 

inductor has discontinuity, then at the time when the discontinuity occurs, di / dt 

becomes infinity resulting the voltage vL to become infinity. However, in physical 

system, we exclude the possibility of infinite voltage. Then, we state that in an inductor, 

the current cannot have discontinuity. Suppose, if the circuit condition is changed at 

time t = 0, the inductor current must be continuous at time t = 0 and hence               

iL(0
+) = iL(0

-)                                                                                                               (7.15) 

 

With dc excitation, at steady state condition, all the element currents and voltages are 

of dc in nature. Therefore, both di / dt and dv / dt will be zero. Since iC = C (dv / dt) and    

vL = L (di / dt), with dc excitation, at steady state condition, the current through the 

capacitor as well as the voltage across the inductor will be zero. In other words, with dc 

excitation, at steady state condition, the capacitor will act as an open circuit and the 

inductor will act as a short circuit. 



Switching occurs at time t = 0 

vC(0+) = vC(0-)    iL(0
+) = iL(0

-) 

 

 

With DC excitation, at steady state 

capacitor acts as OPEN CIRCUIT and 

inductor acts as SHORT CIRCUIT 



7.4 TRANSIENT IN RC CIRCUIT 

While studying the transient analysis of RC and RL circuits, we shall encounter with two 

types of circuits namely, source free circuit and driven circuit.  

Source free circuit 

A circuit that does not contain any source is called a source free circuit. Consider the 

circuit shown in Fig. 7.7 (a). Let us assume that the circuit was in steady state condition 

with the switch is in position S1 for a long time. Now, the capacitor is charged to     

voltage E and will act as open circuit. 

 

   

 

 

Suddenly, at time t = 0, the switch is moved to position S2. The voltage across the 

capacitor and the current through the capacitor are designated as vC and iC 

respectively. The voltage across the capacitor will be continuous. Hence 

vC(0+) = vC(0-) = E                                                                                                    (7.16) 
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Fig. 7.7 Source free RC circuit. 



The circuit for time t > 0 is shown in Fig. 7.7 (b). We are interested in finding the voltage 

across the capacitor as a function of time. Later, if required, current through the 

capacitor can be calculated from iC = C
dt

dv
. Voltage at node 1 is the capacitor voltage 

vC. The node equation for the node 1 is 

0
dt

dv
C

R

v CC         (7.17) 

i.e. 0
CR

v

dt

dv CC       (7.18) 

We have to solve this first order differential equation (DE) with the initial condition 

vC(0+) = E                                                                                                                 (7.19) 

We notice that DE in Eq. (7.18) is a homogeneous equation and hence will have only 

complementary solution. Let us try          vC(t) = K est                         (7.20) 

as a possible solution of Eq. (7.18).  
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0
CR

v

dt

dv CC   with the initial condition  vC(0+) = E 

A possible solution is: vC(t) = K est 

Substituting the solution in the DE. we get 

s K est  
CR

1
 K est = 0           i.e. K est ( s + 

RC

1
) = 0 

The above equation will be satisfied if 

K est = 0 and or (s +
RC

1
) = 0 

From Eq. (7.20) it can be seen that K est = 0 will lead to the trivial solution of vC(t) = 0. 

We are looking for the non-trivial solution of Eq. (7.18). Therefore 

s + 
RC

1
= 0                                                                                                                (7.21)  



s + 
RC

1
 = 0                                                                                                                (7.21) 

This is the characteristic equation of the DE given in Eq. (7.18). Its solution s = - 
RC

1
is 

called the root of the characteristic equation. It is also called as the natural frequency 

because it characterizes the response of the circuit in the absence of any external 

source. Thus the solution of the DE (7.18) is obtained by substituting s = - 
RC

1
in the 

solution vC(t) = K est. Therefore, 

vC(t) = K 
t

CR

1

e


                                                                                                         (7.22) 

The constant K can be found out by using the initial condition of vC(0) = E  Substituting  

t = 0 in the above equation, we get 

vC(0) = K = E                                                                                                        (7.23) 

Thus the solution is                                       vC(t) = E 
t

CR

1

e


                             (7.24) 



Thus the solution is                       vC(t) = E 
t

CR

1

e


                                              (7.24) 

It can be checked that this solution satisfy 

0
CR

v

dt

dv CC   with the initial condition  vC(0+) = E 

Obtained solution is sketched in Fig. 7.8. It is an exponentially decaying function. 

 

 

 

 

 

In this case, the time constant  τ  = RC. By varying values of R and C, we can get 

different exponentially decaying function for vC(t). The dimension of time constant RC 

can be verified as time as shown below. 
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Fig. 7.8 Plot of vC(t) as given by Equation (7.24). 



vC(t) = E 
t

CR

1

e


                                                                                                         (7.24) 

The current through the capacitor, in the direction as shown in Fig. 7.7 (b), is given by 

iC(t) = C 
t

CR

1

C e)
CR

1
(EC

dt

dv 

  

      = - 
t

CR

1

e
R

E 

                                                                                                        (7.25) 

Since the capacitor is discharging, the current is negative in the direction shown in    

Fig. 7.7 (b). The plot of capacitor current iC(t) is shown in Fig. 7.9. 
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Fig. 7.9 Plot of iC(t) as given by  Equation (7.25). 
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Driven circuit 

Again consider the circuit shown in Fig. 7.7 (a) which is reproduced in Fig. 7.10 (a). Let 

us say that the switch was in position S2 long enough so that vC(t) = 0 and iC(t) = 0 i.e. 

all the energy in the capacitor is dissipated and the circuit is at rest. Now, the switch is 

moved to position S1. We shall measure time from this instant. As discussed earlier, 

since the capacitor voltage cannot have discontinuity, 

vC(0+) = vC(0-) = 0                                                                                                      (7.26) 

The circuit applicable for time t > 0, is shown in Fig. 7.10 (b).  

 

 

 

 

 

Node equation for the node 1 gives 

0
dt

dv
C

R

Ev CC 


                                              
 i.e.
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E

CR

v

dt

dv CC                (7.28)  

(a)                                                                        (b) 
Fig. 7.10 Driven RC circuit. 
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CR

E

CR

v

dt

dv CC                                                                                                        (7.28)                                                                                  

Unlike in the previous case, now the right hand side is not zero, but contains a term 

commonly called the forcing function. For this reason, this circuit is classified as driven 

circuit. The initial condition for the above DE is 

vC(0+) = 0                                                                                                                   (7.29) 

The complete solution is given by  

vC(t) = vcs(t) + vps(t)                                                                                                    (7.30) 

where vcs(t) is the complementary solution and  vps(t) is the particular solution. 

The complementary solution vcs(t) is the solution of the homogeneous equation 

0
CR

v

dt

dv CC                                                                                                            (7.31) 

Recalling that Eq. (7.22) is the solution of Eq. (7.18), we get                 

vcs(t) = K 
t

CR

1

e


                                                                                                       (7.32) 



Since the forcing function is a constant, the particular solution can be taken as 

vps(t) = A 

Since it satisfies the non-homogeneous equation given by Eq. (7.28),

 CR

E

CR

v

dt

dv CC   

on substitution, we get 

CR

E

CR

A
0   i.e. A = E.  

Thus    vps(t) = E                                                                                                        (7.33)  

Addition of vcs(t) and vps(t) yields          vC(t) = K 
t

CR

1

e


+ E                                      (7.34) 

To determine the value of K, apply the initial condition of vC(0) = 0 to the above 

equation. Thus 

0 = K + E          i.e. K = - E  

Thus, the complete solution is      vC(t) = - E 
t

CR

1

e


+ E    =   E (1 - 
t

CR

1

e


)             (7.35) 



The plot of capacitor voltage vC(t) = E (1 - 
t

CR

1

e


)  is shown in Fig. 7.11.                                                                                                    

For this function, time constant τ  is = RC. 

The current through the capacitor is calculated as 

iC(t) = C 
dt

dvC  =  C 
CR

E
 

t
CR

1

e


 

       = 
R

E
 

t
CR

1

e


                                                                                                       (7.39) 

Now, the capacitor current as marked in Fig. 7.10 (b), is positive and the capacitor gets 

charged. This capacitor current is plotted as shown in Fig. 7.12. 

 

 

 

 

 

 
Fig. 7.12 Plot of iC(t) as given by Eqn. (7.39). 
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Fig. 7.11 Plot of vC(t) as given by Eqn. (7.35). 
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We have solved the circuits shown in Fig. 7.10 (b) and the resulting solutions are shown 

in Figs. 7.11 and 7.12. They are reproduced in Fig. 7.13. 

 

 

 

 

 

These results can be obtained straight away recognizing the following facts. 

The solution of first order differential equation will be either exponentially decreasing or 

exponentially increasing. It is known that vC(0+) = 0. With dc excitation, at steady state, 

the capacitor will act as open circuit and hence vC( ) = E. Thus, the capacitor voltage 

exponentially increases from 0 to E. 

Since vC(0+) = 0, initially the capacitor is short circuited and hence iC(0) = 
R

E
. With dc 

excitation, at steady state, the capacitor will act as open circuit and hence iC( ) = 0. 

Thus the capacitor current exponentially decreases from 
R

E
 to zero. 

Similar reasoning out is possible, in other cases also, to obtain the responses directly. 
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Fig. 7.13 RC driven circuit and voltage and current responses. 
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More general case of finding the capacitor voltage 

In the previous discussion, it was assumed that the initial capacitor voltage vC(0) = 0. 

There may be very many situations wherein initial capacitor voltage is not zero. There 

may be initial charge in the capacitor resulting non-zero initial capacitor voltage 

(Example 7.8). Further, the circuit arrangements can also cause non-zero initial 

capacitor voltage. For this purpose consider the circuit shown below. The switch was in 

position S1 for a long time. It is moved from position S1 to S2 at time t = 0.  
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We shall assume the following: 

1. At time t = 0- the circuit was at steady state condition with the switch in position S1 

2. After switching to position S2, the circuit is allowed to reach the steady state condition 

Thus, we are interested about the transient analysis for one switching period only.  

Initial capacitor voltage vC(0) is E1 and the final capacitor voltage  vC( ),will be E2.  

The more general expression for the capacitor voltage can be obtained as 

vC(t) = vC( ) + [vC(0) - vC( )] 
t

CR

1

2e


                                                                    (7.47) 
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Summary of formulae useful for transient analysis on RC circuits 

1. Time constant τ   = RC      α = 1 / RC 

2. When the capacitor is discharging from the initial voltage of E 

 vC(t) = E 
t

CR

1

e


 

 

3. When the capacitor is charged from zero initial voltage to final voltage of E 

 vC(t) = E ( 1 - )e
t

CR

1


 

 

4. When the capacitor voltage changes from vC(0) to )(vC   

 vC(t) = vC( ) + [vC(0) - vC( )] 
t

CR

1

e


 

 

5. Capacitor current iC(t) = C
dt

(t)dvC  

Plot of vC(t) depends on values of vC(0) and vC( ) 
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Example 7.1     An RC circuit has R = 20 Ω and C = 400 µF. What is its time constant? 

Solution     For RC circuit, time constant τ   = RC. 

Therefore, τ  = 20 x 400 x 10-6 s = 8 ms 

 

Example 7.2   A capacitor in an RC circuit with R = 25 Ω and C = 50 µF is being   

charged with initial zero voltage. What is the time taken for the capacitor voltage to 

reach 40 % of its steady state value? 

Solution With R = 25 Ω and C = 50 µF, τ  = RC = 1.25 x 10-3 s; hence 1/RC = 800 s-1. 

Taking the capacitor steady state voltage as E,   vC(t) =  E (1 - 
t

CR

1

e


)                        
 

Let t1 be the time at which the capacitor voltage becomes 0.4 E. Then 

0.4 E = E (1- 1t800
e


) i.e. 0.4 = 1 - 1t800

e


 

1t800
e


 = 0.6 i.e. - 800 t1 = ln 0.6 = - 0.5108 

Therefore, t1 = ms0.6385s10x0.6385s
800

0.5108 3    



Example 7.3   In an RC circuit, having a time constant of 2.5 ms, the capacitor 

discharges with initial voltage of 80 V. (a) Find the time at which the capacitor voltage 

reaches 55 V, 30 V and 10 V (b) Calculate the capacitor voltage at time 1.2 ms, 3 ms 

and 8 ms. 

Solution     (a) Time constant RC = 2.5 ms; Thus 
RC

1
= 

2.5

1000
= 400 s-1  

During discharge, capacitor voltage is given by     vC(t) = 80 e- 400 t V 

Let t1, t2 and t3 be the time at which capacitor voltage becomes 55 V, 30 V and 10 V. 

              55 = 80 1t400
e


; - 400 t1 = ln 

80

55
= - 0.3747; Thus t1 = 0.93765 ms 

              30 = 80 2t400
e


; - 400 t2 = ln 

80

30
= - 0.9808; Thus t2 = 2.452 ms 

             10 = 80 3t400
e


; - 400 t3 = ln 

80

10
= - 2.0794; Thus t3 = 5.1985 ms 

(b)                  vC(1.2x 10-3) = 80 e- 400 t = 80 e-0.48 = 49.5027 V 

                      vC(3x 10-3) = 80 e- 400 t = 80 e-1.2 = 24.0955 V 

                      vC (8x 10-3) = 80 e- 400 t = 80 e-3.2 = 3.261 V 



Example 7.4     Consider the circuit shown below. 

 

 

 

(a) Find the values of R and C. (b)   Determine the time constant. 

(c) At what time the voltage vC(t) will reach half of its initial value? 

Solution     (a) Given that vC(t) = 56 e- 250 t V. Therefore τ  = RC = 
250

1
s 

Resistance R = Ω8000
(t)i

(t)vC  ; Thus capacitance C = μF 0.5  F
8000X250

1
  

(b) Time constant = RC = 4 x 10-3 s = 4 ms 

(c) Let t1 be the time taken for the voltage to reach half of its initial value of 56 V. 

          Then, 56 1t250
e


= 28;   i.e. 1t250

e


= 0.5      i.e. - 250 t1 = ln 0.5 = - 0.6931;  

                           Time t1 = ms2.7724s10x2.7724s
250

0.6931 3  
 

Given 

 vC(t) = 56 e- 250 t V  for t > 0 

 i(t) = 7 e- 250 t mA      for t > 0 

vC(t) 

i 

R C 

+ 

- 



Example 7.5 

Find the time constant of the RC circuit shown in below.  

 

 

 

Solution     Thevenin’s equivalent  across the capacitor, is shown below. 

 

 

 

 

Referring to Fig. (b) above, RTh = 44 + (20││80) = 60 Ω 

Time constant τ  = RC = 60 x 0.5 x 10-3 s = 30 ms 

(a)                                                                           (b) 

 VTh 0.5 mF 

RTh 

- 

+ 

 RTh 

20 Ω 

80 Ω 

44 Ω 

30 V 0.5 mF 

20 Ω 

80 Ω 

44 Ω 

- 

+ 

 



Example 7.6     The switch in circuit shown was in position1 for a long time. It is moved 

from position 1 to position 2 at time t = 0. Sketch the wave form of vC(t) for t > 0. 

 

 

  

 

Solution     With switch is in position 1, capacitor gets charged to a voltage of 75 V.    

i.e. vC(0+) = 75 V. The switch is moved to position 2 at time t = 0. 

Time constant RC = 8 X 103 X 500 X 10-6 = 4 s 

Finally the capacitor voltage decays to zero. Thus, 

                              vC(t) = 75 e- 0..25 t  

Wave form of the capacitor voltage is shown. 
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2 

1 

500 µF 
8 kΩ 

5 kΩ 

75 V 

- 

+ 

 

vC(t) 

75 V 

0 t 



Example 7.7     A series RC circuit has a constant voltage of E, applied at time t = 0 as 

shown in  Fig. below. The capacitor has no initial charge. Find the equations for i, vR 

and vC. Sketch the wave shapes.    

 

 

 

 

Solution     Since there is no initial charge, vC(0+) = vC(0-) = 0 

For t ˃ 0, capacitor is charged to final voltage of 100 V. 

Time constant RC = 5000 x 20 x 10-6 = 0.1 sec. 

vC(t) = E (1 - 
t

CR

1

e


). Thus,  vC(t) = 100 (1 - e-10 t) V 

 i(t) = C 
dt

dvC

 = 20 X 10-6 X 100 x 10 e-10 t  =  0.02 e-10 t  A  

Voltage across the resistor is vR(t) = R i(t) = 100 e-10 t V 

Wave shapes of i, vR(t) and vC(t) are shown.  
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Example 7.8   A 20 µF capacitor in the RC circuit shown  has an initial charge of          

q0 = 500 µC with the polarity as shown. The switch is closed at time t = 0. Find the 

current transient and the voltage across the capacitor. Find the time at which the 

capacitor voltage is zero. Also sketch their wave shape.  

 

 

 

 

Solution     Initial charge of q0 in the capacitor is equivalent to initial voltage of 

vC(0) = - ;V25
10X20

10X500

C

q
6

6
0 





                          Further, vC( ) = E = 50 V 

Time constant RC = 1000 X 20 X 10-6 = 20 X 10-3 s.      Thus 1/RC = 50 s-1   

                             vC(t) = vC( ) + [vC(0) - vC( )] 
t

CR

1

e


   

                             vC(t) = 50 + [ - 25 - 50 ] e- 50 t = 50 - 75 e- 50 t 

                             Current i(t) = C 
dt

dvC

 = 20 X 10-6 X 75 X 50 e-50 t  A  =  0.075 e-50 t  A 

E = 50 V 

R = 1000 Ω 

C = 20 µF 

0 

1 

t = 0 

i 

E C 

R 

- 

+ 

q0 



Let t1 be the time at which the capacitor voltage becomes zero. Then 

50 - 75 
1t50

e


 = 0   i.e. 
1t50

e


 = 0.6667 

- 50 t1 = - 0.4054 i.e. t1 = 8.108 X 10-3 s 

The capacitor voltage becomes zero at time t1 = 8.108 ms  

Wave forms are shown in Fig. 7.24 

 

 

 

 

 

 
Fig. 7.24 Wave forms - Example 7.8. 

0.075 A 

0 

i(t) 

t - 25 V 

50 V 

vC(t) 

t 



Example 7.9      

Consider the circuit shown below. The switch was in closed position for a long time. It is 

opened at time t = 0. Find the current i(t) for t > 0. 

 

 

 

 

Solution     Circuit at time t = 0 - is shown. 

 

vC(0-) = 35 X V10
500200

200



 

For time t > 0, capacitor voltage of 10 V is discharged through a resistor of 250 Ω. 

Time constant RC = 250 X 2 X 10-3 = 0.5 s;                              vC(t) = 10 e-2 t V 

               iC(t) = C 
dt

dvC
 = 2 X 10-3 X ( - 20) e

-2 t A = - 40 X 10-3 e-2 t A = - 0.04 e-2 t A 

               Thus i(t) = - iC(t) = 0.04 e-2 t A 

i 
2 mF 

50 Ω 

200 Ω 

t = 0 500 Ω 

35 V 
- 

+ 

 

iC(t) vC(0-) 
- 

+ 

50 Ω 

200 Ω 

500 Ω 

35 V 
- 

+ 

 



Example 7.10   Consider the circuit shown. The switch was in open position for a long 

time. It is operated as shown. Compute and plot the capacitor voltage for t > 0. Also find 

the time at which the capacitor voltage is 50 V. 

 

 

 

 

 

Solution     Circuit at time t = 0 - is shown in Fig. (a). 

 

 

 

 

 

 

Capacitor acts as open circuit. I16 Ω = 0. Voltage VA = 80 V and voltage VB = 60 V 

Thus vC(0) = 20 V 

vC + 

2.5 F 

t = 0 

16 Ω 

80 V 3 A 20 Ω  
- 

+ 

 

- 

- - 

A B 

0 0 

B A 

- + vC(0) 

2.5 F 

16 Ω 

80 V 3 A 20 Ω  

+ 

 

vC + 

2.5 F 

16 Ω 

80 V 3 A  

+ 

 

- 

(a)                                                                                       (b) 



With the switch is in closed position, the circuit will be as shown in Fig. (b). With the 

steady state reached, Capacitor acts as open circuit. I16 Ω = 0.   

Voltage VA = 80 V and voltage VB = 0 V.     Thus vC( ) = 80 V 

RC = 16 X 2.5 = 40 s 

Using vC(t) = vC( ) + [vC(0) - vC( )] 
t

CR

1

e


 we get 

 vC(t) = 80 + [20 - 80] e-0.025 t = 80 - 60 e-0.025 t V 

Plot of the capacitor voltage is shown. 

Let t1 be the time at which the capacitor voltage = 50 V. Then 

80 - 60 1t0.025e 
 = 50 i.e. 60 1t0.025e 

 = 30   i.e. 1t0.025e   = 0.5  i.e. - 0.025 t1 = - 0.6932 

Thus t1 = 27.728 s 

Capacitor voltage becomes 50 V at time t1 = 27.728 s 

20 V 

80 V 

vC(t) 

t 



Example 7.11  Consider the circuit shown below. The switch was in position S1 for a 

long time. It is operated as shown. Compute and plot the capacitor voltage for t > 0. 

Also find the time at which the capacitor voltage becomes zero. 

 

 

 

Solution     Voltage vC(0) = - 20 V 

Circuit for time t > 0 and its Thevenin’s equivalent are shown below. 

 

 

 

 

VTh = V2025X
520

20



 

 

 

RTh = 5││ 20 = 4 Ω;  Thus RC = 4 x 0.5 = 2 s 

Using vC(t) = vC( ) + [vC(0) - vC( )] 
t

CR

1

e


we get 

vC(t) = 20 + [ - 20 - 20] e-0.5 t = 20 - 40 e-0.5 t V 

20 V 

- 

+ 

8 Ω 

 20 Ω 

t = 0 

25 V 
0.5 F 

5 Ω S1 S2 

- 

+ 

 

i 

20 Ω 25 V 
0.5 F 

5 Ω S2 

- 

+ 

 

i 

VTh 
0.5 F 

S2 

- 

+ 

 

RTh 



vC(t) = 20 - 40 e-0.5 t V 

iC(t) = C 
dt

dvC
 = 0.5 X 20 e

-0.5 t A = 10 e-0.5 t A 

Wave shapes of vC(t) and iC(t) are shown below. 

 

 

 

 

 

 

Let t1 be the time at which the capacitor voltage reaches zero value. Then 

20 - 40 1t0.5e   = 0; i.e. 1t0.5e 
 = 0.5; i.e. - 0.5 t1 = - 0.6931; Thus t1 = 1.3863 s 

Capacitor voltage reaches zero value at time t1 = 1.3863 s 

So far we have done transient analysis for one switching period. Now we shall illustrate 

how to carry out transient analysis for two switching period through an example. 

- 20 V 

20 V 

vC(t) 

t 

10 A 

0 

i(t) 

t 



Example 7.12   In the initially relaxed RC circuit shown the switch is closed on to 

position S1 at time t = 0. After one time constant, the switch is moved on to position S2. 

Find the complete capacitor voltage and current transients and show their wave forms. 

 

 

 

 

Solution    RC = 500 X 0.5 X 10-6 s = 0.25 X 10-3 s = 0.25 ms     1/RC = 4000 s-1 

During the first switching period, capacitor gets charged from zero volt. Its voltage 

exponentially increases towards 20 V. Thus  

                                      vC(t) = 20 (1 - e- 4000 t) V   

                                     At t = 1 time constant, vC = 20 (1 - e-1) = 12.64 V 

For the second switching operation, there is initial capacitor voltage of 12.64 V.  

S2 

S1 

E2 

E1 = 20 V;  E2 = 40 V 

R = 500 Ω 

C = 0.5 µF 

0 

vC 

iC 

E1 C 

R 



Let the second switching occurs at time t’ = 0. Time t’ = 0 implies  time t = 0.25 X 10-3 s 

i.e.   t’ = t - 0.25 X 10-3. For t’ > 0, capacitor voltage changes from its initial value, vC(0), 

of 12.64 V to final value,  vC )( , of - 40 V. Knowing that 

                             vC(t) = vC( ) + [vC(0) - vC( )] 
t

CR

1

e


 we get 

                             vC(t’) = - 40 + [12.64 + 40] e- 4000 t’   = 52.64 e- 4000 t’ - 40 V 

Therefore, capacitor voltages for the two switching periods are 

                              vC(t) = 20 (1 - e- 4000 t) V  for t > 0 and ≤ 0.00025 s 

                              vC(t) = 52.64 e- 4000 (t - 0.00025)  - 40 V for t ≥ 0.00025 s 

                             with vC(0.00025-) = vC(0.00025+) = 12.64 V 

(Note that the capacitor voltage shall maintain continuity) 



Knowing that 

vC(t) = 20 (1 - e- 4000 t) V  for t > 0 and ≤ 0.00025 s 

vC(t) = 52.64 e- 4000 (t - 0.00025)  - 40 V for t ≥ 0.00025 s 

For the first switching period 

Capacitor current iC(t) = C 
dt

dvC  = 0.5 X 10-6 X 20 X 4000 e- 4000 t = 0.04 e- 4000 t A 

iC(0.00025-) = 0.04 e-1 = 0.01472 A 

 

For the second switching period, 

vC(t’) = 52.64 e- 4000 t’ - 40 V 

iC(t’) = 0.5 X 10-6 X ( - 52.64 X 4000 e- 4000 t’) =  - 0.10528 e- 4000 t’ A    

i.e.  iC(t - 0.00025) = - 0.10528 e- 4000 (t - 0.00025)  A          iC(0.00025+) = - 0.10528 A 



 

 

 

 

 

 

              

           

 

 

 

Note: At the switching time, voltage across the capacitor does not have discontinuity i.e. 

vC(0.25 X 10-3)- =  vC(0.25 X 10-3)+. On the other hand, the current through the capacitor 

has discontinuity at the instant of switching. The current just before switching and just 

after switching can be calculated by considering the circuit conditions at the respective 

time.     At time t = (0.25 X 10-3)-, current i = A0.01472
500

12.6420



 

At time t = (0.25 X 10-3)+, current i = A0.10528
500

12.6440-



 

 

t 

- 0.10528 A 

0.01472 A 

0.04 A 

τ   

iC(t) 

ms 25τ

  

- 40 V 

12.64 V 

τ   

20 V 

vC(t) 

t 



 

RC Circuit RL Circuit 

 

τ   = RC          α = 1 / RC 

 
Switching at t = 0       vC(0+) = vC(0-)  

 
With DC, at SS capacitor acts as open circuit 
 

vC(0) ≠ 0;  vC( ) = 0;  Then  

vC(t) =  vC(0)  
t

CR

1

e


 
  

vC(0) = 0;  vC( ) ≠ 0;  Then 

vC(t) = vC( )   (1 - 
t

CR

1

e


) 
 

vC(0) ≠ 0;  vC( ) ≠ 0;   Then 

vC(t) = vC( ) + [vC(0) - vC( )] 
t

CR

1

e


 
 

  iC(t) = C
dt

(t)dvC    

 

τ   = L / R           α = R / L 

 
Switching at t = 0        iL(0

+) = iL(0
-) 

 
With DC, at SS inductor acts as short circuit 

 
iL(0) ≠ 0;    iL( ) = 0;  Then 

iL(t) = iL(0) 
t

L

R

e


 
 
iL(0) = 0;  iL( ) ≠ 0;   Then   

iL(t) = iL( ) ( 1 - 
t

L

R

e


) 
 
iL(0) ≠ 0;    iL( ) ≠ 0;  Then 

iL(t) = iL( ) + [iL(0)  -  iL( )] 
t

L

R

e


 
 

vL(t) = L
dt

(t)diL  



7.5 TRANSIENT IN RL CIRCUIT 

Now we shall  consider RL circuit for the transient analysis. As stated earlier, 

1. The current in an inductor cannot have discontinuity at the time when switching 

occurs. 

2. With dc excitation, at steady state, inductor will act as a short circuit. 

Now also we shall end up with first order DE whose solution will be exponential in 

nature. 

Source free circuit 

A circuit that does not contain any source is called a source free circuit. Consider the 

circuit shown in Fig. 7.35 (a). Let us assume that the circuit was in steady state 

condition with the switch is in position S1 for a long time. Now the inductor acts as short 

circuit and it carries a current of 
R

E
. 

 

   

 

 

iL 

1 
vL 

iL 

0 

L 

R 

(a)                                                                        (b) 
Fig. 7.35 Source free RL circuit. 

R 

L 
E 

S2 

S1 



Suddenly, at time t = 0, the switch is moved to position S2. The current through the 

inductor and the voltage across the inductor are designated as i L and vL respectively. 

The current through the inductor will be continuous. Hence 

 

 

iL(0+)= iL(0-) = 
R

E
                                                                                                       (7.49)               

The circuit for time t > 0 is shown above. We are interested in finding the current 

through the inductor as a function of time. Later, if required, voltage across the inductor 

can be calculated from vL = L
dt

di
. The mesh equation for the circuit is 

0
dt

di
LiR L

L                (7.50)                                  i.e. 0i
L

R

dt

di
L

L                    (7.51) 

We need to solve the above equation with the initial condition 

iL(0+) = 
R

E
                                                                                                                  (7.52) 

1 
vL 

iL 

0 

L 

R 

 



The structure of the equation (7.51) is the same as Eq. (7.18). In this case, the time   

constant, τ  is 
R

L
. The inductor current exponentially decays from the initial value of 

R

E

to the final value of zero.  Thus the solution of equation 7.51 yields 

iL(t) = 
R

E t
L

R

e


                                                                                                          (7.53) 

The plot of inductor current is shown in Fig.  (a). 

 

 

 

 

 

It can be seen that the dimension of L / R is time. Dimensionally 

sec.
sec/linkageFlux

linkageFlux

volt

amp.

amp.

linkageFlux

R

L
  

The voltage across the inductor is:    vL(t) = L
dt

di
 = L 

R

E
( - )

L

R t
L

R

e


= - E 
t

L

R

e


    (7.54) 

The plot of the voltage across the inductor is shown in Fig. (b). 

- E 

vL(t) 

t 

(a)                                                                        (b) 

R

E
 

0 

iL(t) 

t 

 



Driven circuit 

Consider the circuit shown in Fig. 7.37 (a). After the circuit has attained the steady state 

with the switch in position S2, the switch is moved to position S1 at time t = 0. We like to 

find the inductor current for time t > 0. 

 

 

 

 

 

Since the current through the inductor must be continuous 

iL(0+) = iL(0-) = 0                                                                                                         (7.55)  

The circuit for time t > 0 is shown in Fig. 7.37 (b). The mesh equation is 

 E
dt

di
LiR L

L                    (7.56)                             i.e. Ei
L

R

dt

di
L

L                    (7.57) 

We need to solve the above DE with the initial condition iL(0) = 0 

iL 

(a)                                                                        (b) 

Fig. 7.37 Driven RL circuit. 

0 

E 
L 

R 

S2 

S1 

iL 

vL 

E 
L 

R 

 



Ei
L

R

dt

di
L

L   

ics = K 
t

L

R

e


  and  ips = A 

Substituting ips in the DE, we get 

0 = 
R

E
Ahenceand

L

E
A

L

R
  

This gives, ips = E / R 

The total solution is   iL(t) = K 
t

L

R

e


 + 
R

E
 

Using the initial condition in the above, we get 

0 = K + 
R

E
 i.e. K = - 

R

E
 

Therefore the inductor current is 

iL(t) = - 
R

E t
L

R

e


 + 
R

E
      = 

R

E
(1 - 

t
L

R

e


)                               (7.58) 

 



Inductor current iL(t) exponentially increases from 0 to 
R

E
 with time constant, τ  = 

R

L
as 

shown in Fig. 7.38 (a). 

 

 

 

 

 

 

 

Now, the voltage across the inductor is obtained as 

vL(t) = L 
t

L

R

e
L

R

R

E
L

dt

di 

    = E 
t

L

R

e


                                                                       (7.59) 

It can be seen that the voltage vL(t) exponentially decreases from E to zero with the time 

constant, τ  = 
R

L
as shown in Fig. 7.38 (b). 

It is to be noted that the initial and the final values of the inductor current and the 

voltage across it can be readily computed by considering the circuit condition at that 

time. 

E 

0 

vL(t) 

t 

R

E
632.0  

R

E
 

τ  

iL(t) 

t 

(a)                                                                        (b) 
Fig. 7.38 Plot of iL(t) and vL(t). 

 



More general case of finding the inductor current 

In the previous discussion, it was assumed that the initial inductor current iL(0) = 0. 

There may be very many situations wherein initial inductor current is not zero.  

The circuit arrangements can cause non-zero initial inductor current. For this purpose 

consider the circuit shown below. The switch was in position S1 for a long time. It is 

moved from position S1 to S2 at time t = 0.  

 

 

 

 

t = 0 

E2 

R2 

E1 

L 

R1 S2 S1 

 



 

 

 

 

 

 

We shall assume the following: 

1. At time t = 0- the circuit was at steady state condition with the switch in position S1 

2. After switching to position S2, the circuit is allowed to reach the steady state condition 

Thus, we are interested about the transient analysis for one switching period only.  

Initial inductor current iL(0) is E1 / R1 and the final inductor current   iL( ),will be E2 / R2.  

The more general expression for the inductor current can be obtained as 

iL(t) = iL( ) + [iL(0)  -  iL( )] 
t

L

R2

e


                                                                            (7.63) 

 

t = 0 

E2 

R2 

E1 

L 

R1 S2 S1 

 



Summary of formulae useful for transient analysis on RL circuits 

1. Time constant τ   = L / R           Hence α = R / L 

2. When the inductor current is decaying from the initial value of iL(0) to zero 

 iL(t) = iL(0) 
t

L

R

e


 

 

3. When the inductor current is exponentially increasing from zero to iL( ) 

 iL(t) = iL( ) ( 1 - )e
t

L

R


 

 

4. When the inductor current changes from iL(0) to )(iL 
 

iL(t) = iL( ) + [iL(0)  -  iL( )] 
t

L

R

e


 

 

 

5. Inductor voltage vL(t) = L
dt

(t)diL  

iL(t) 

iL(0) 

0 t 

iL(∞) 

iL(t) 

t 

iL(0) 

iL(∞) 

iL(t) 

t 

Plot of iL(t) depends on values of iL(0) and iL( ) 



Example 7.13    An RL circuit with R = 12 Ω has time constant of 5 ms. Find the value of 

the inductance. 

Solution     R = 12 Ω;   Time constant, L / R = 5 X 10-3 s 

Inductance L = 12 X 5 X 10-3 = 60 mH 

 

Example 7.14 

In an RL circuit having time constant 400 ms the inductor current decays and its value 

at 500 ms is 0.8 A. Find the equation of iL(t) for t > 0. 

Solution    L / R = 400 X 10-3 s;     R / L = 2.5 s-1;   As iL(t) decays,   iL(t) = iL(0) 
t

L

R

e


               

                           When t = 500 ms,   iL(t) = 0.8 A.   Using this 

                           0.8 = iL(0) e- 2.5 X 0.5 = iL(0) e- 1.25 = 0.2865 iL(0) 

                           Thus iL(0) = 0.8 / 0.2865 = 2.7923 A 

                           Therefore iL(t) = 2.7923 e- 2.5 t 



Example 7.15     In a RL circuit with time constant of 1.25 s, inductor current increases 

from the initial value of zero to the final value of 1.2 A. 

(a)     Calculate the inductor current at time 0.4 s, 0.8 s and 2 s. 

(b)     Find the time at which the inductor current reaches 0.3 A, 0.6 A and 0.9 A. 

Solution       L / R = 1.25 s     iL(0) = 0      iL( ) = 1.2 A      α = 1/1.25 = 0.8 s-1 

(a)       iL(t) = 1.2 (1 - e- 0.8 t) A 

           When time t = 0.4 s, iL = 1.2(1 - e-0.32) = 0.3286 A 

           When time t = 0.8 s, iL = 1.2(1 - e-0.64) = 0.5672 A 

           When time t = 2 s, iL = 1.2(1 - e-1.6) = 0.9577 A 

(b) Let t1, t2 and t3 be the time at which current reaches 0.3 A, 0.6 A and 0.9 A. 

           0.3 = 1.2 (1 - )e 1t0.8  i.e. 1t0.8e   = 0.75 i.e. 0.8 t1 = 0.2877 i.e. t1 = 0.3596 s 

           0.6 = 1.2 (1 - )e 2t0.8  i.e. 2t0.8e   = 0.5 i.e. 0.8 t2 = 0.6931 i.e. t2 = 0.8664 s 

           0.9 = 1.2 (1 - )e 3t0.8  i.e. 3t0.8e 
 = 0.25 i.e. 0.8 t3 = 1.3863 i.e. t3 = 1.7329 s 



Example 7.16 

In the RL circuit shown in Fig. below, the voltage across the inductor for t > 0 is given 

by vL(t) = 0.16 Ve t200 . Determine the value of the inductor L and obtain the equation 

for current iL(t). Also compute the value of voltage E. 

 

 

  

Solution   vL(t) = 0.16 Ve t200 ;   R = 0.2 Ω     α = 
R 0.2

200; i.e. L H 1 mH
L 200
    

When the switch is closed inductor current exponentially increases from 0 to i L( ).  It is 

iL(t) = iL( ) ( 1 - )e
t

L

R


       Also vL(t) = L 
t

L

R

L

t
L

R

L
L e)(iRe

L

R
)(iL

dt

di 

  

Comparing vL(t) = 
R

t
L

LR i ( ) e


   with vL(t) = 0.16 Ve t200
 

Therefore, 0.2 iL( ) = 0.16     i.e.   iL( ) = 0.16 / 0.2 = 0.8 A 

Thus, iL(t) = 0.8 (1 - )e t200

   

Also iL( )  = 
E

0.2           Therefore, V0.16EThus0.8;
0.2

E
  

t = 0 

0 

iL 

vL 

E 
L 

0.2 Ω 



Example 7.17     The switch in the circuit shown was in open position for a long time. It 

is closed at time t = 0. Find iL(t) for time t > 0. 

 

 

 

 

Solution     Current iL(0) = 0 

When the switch is closed, Current iL( ) = 24 / 2 = 12 A 

Thevenin’s resistance = 8││2 = 1.6 Ω      τ  = L / R = 0.8 / 1.6 = 0.5 s ;      α = 2 s-1      

Inductor current exponentially increases from 0 to 12 A. 

Current iL(t) = 12 ( 1- e- 2 t) A 

Same result can be obtained by getting the Thevenin’s equivalent circuit for time t > 0 

as shown in Fig. below. 

 

 

 

8 Ω 0.8 H 
iL 

t = 0 

24 V 

2 Ω 

- 

+ 

 

1.6 Ω 

0.8 H 
iL 

19.2 V 
- 

+ 

 



Example 7.18     The switch in the circuit shown was in closed position for a long time. 

Find current iL(t) for time t > 0. 

 

 

 

Solution 

Circuit for t = 0- and t = are shown in Fig. (a) and (b) below. 

 

 

 

 

 

 

Current iL(0) = 20 / 40 = 0.5 A                    Further, current iL( ) = 20 / 40 = 0.5 A 

Therefore, current iL(t) = iL( ) + [iL(0)  -  iL( )] 
t

L

R

e


 = 0.5 A 

iL(0) 

30 Ω 
8 Ω 

20 V 

10 Ω 

- 

+ 

 
)(iL   

30 Ω 

20 V 

10 Ω 

- 

+ 

 

(a)                                                                                 (b) 

30 Ω 
8 Ω 

0.5 H 
iL 

t = 0 

20 V 

10 Ω 

- 

+ 

 

 



Example 7.19   In the circuit shown the switch was in open position for a long time. 

Determine the current iL(t) and the voltage vR(t) for time  t > 0. 

 

 

 

Solution 

Circuit for t = 0- and t = are shown in Fig. (a) and (b) below. 

 

 

 

 

 

Current iL(0) = 20 / (10 + 30) = 0.5 A;   Current iL( ) = 0:  Thevenin’s resistance = 10 Ω 

Time constant = L / R = 2.5 / 10 = 0.25 s;   α = 4 s-1 

Thus iL(t) = 0.5 e- 4t  A                 Voltage vR(t) = - 10 iL(t) = - 5 e- 4 t V 

(a)                                                                                 (b) 

+   vR    - 

30 Ω 

20 V 

10 Ω 

- 

+ 

 
)(iL   

+   vR    - 

30 Ω 

iL(0) 
20 V 

10 Ω 

- 

+ 

 

+   vR    - 

30 Ω 

2.5 H iL t = 0 20 V 

10 Ω 

- 

+ 

 



Example 7.20 

The circuit shown was in steady state condition with the switch open. Find the inductor 

current for time t > 0. 

 

 

 

Solution 

Current iL(0) = 8 / (4 + 4) = 1 A 

 

 

 

 

Thevenin’s resistance wrt inductor = 4 + 3 = 7 Ω 

Time constant L / R = 1.4 / 7 = 0.2 s;  α = 5 s-1 

Current iL(t) = iL( ) + [iL(0)  -  iL( )] 
t

L

R

e


= 0.8571 + [1 - 0.8571] e- 5 t  A 

                  = 0.8571 + 0.1429 e- 5 t  A 

Circuit for t =   is 

iT = 8 / 7 = 1.1429 A 

iL( ) = (12/16) 1.1429 A 

         = 0.8571 A 

4 Ω 

12 Ω 
1.4 H iL 

t = 0 

8 V 

4 Ω 

- 

+ 

 

4 Ω 

12 Ω iL 

t = 0 

8 V 

4 Ω 

- 

+ 

 



Example 7.21     With the switch open, the circuit shown below was in steady state 

condition. At time t = 0, the switch is closed. Find the inductor current for time t > 0 and 

sketch its wave form. 

 

 

 

 

Solution 

Circuit for t = 0- and t = are shown in Fig. (a) and (b). 

 

 

 

 

To find iL(0):  RT = 16 + 8 = 24 Ω;    IT = 12 / 24 = 0.5 A;      iL(0) = 0.5 X 
50

10
 = 0.1 A 

To find iL( );      12 / 40 = 0.3 A;                       Further, RTh = 40 Ω 

40 Ω 

10 Ω 8 H iL 

t = 0 

12 V 

16 Ω 

- 

+ 

 

40 Ω 

10 Ω 
iL(0) 

12 V 

16 Ω 

- 

+ 

 

40 Ω 

10 Ω 
)(iL   

12 V 

- 

+ 

 

 



Time constant = L / RTh = 8 / 40 = 0.2 s      α = 5 s-1 

Current iL(t) = iL( ) + [iL(0)  -  iL( )] 
t

L

R

e


= 0.3 + [0.1 - 0.3] e- 5 t 

     = 0.3 - 0.2 e- 5 t A 

Current wave form is shown in Fig. 7,51.  

  

 

 

 

 

 

 

 
t 

0.3 A 

0.1 A 

0 

iL(t) 

Fig. 7.51 Wave form of iL(t) - Example 7.21. 

 



Example 7.22 

For the initially relaxed circuit shown, the switch is closed on to position S 1 at time t = 0 

and changed to position S2 at time t = 0.5 ms. Obtain the equation for inductor current 

and voltage across the inductor in both the intervals and sketch the transients. 

 

 

 

 

Solution 

With the switch is in position S1, inductor current exponentially increases from zero to 

the steady state value of 100 / 100 = 1 A. Knowing the time constant as L / R =  

0.2 / 100 = 1 / 500 s, equation of inductor current in the first switching interval is 

vL 

S2 

S1 

E2 

E1 = 100 V; E2 = 50 V 

R = 100 Ω 

L = 0.2 H 

0 

iL 

E1 L 

R 

 



iL(t) = 1 - e- 500 t A               Corresponding voltage is 

vL(t) = L 
dt

diL  = 0.2 X 500 e- 500 t V = 100 e- 500 t V       for 0.5 X 10-3 ≥ t > 0 

Therefore          iL(0.5 X 10-3) = 1 - e- 0.25 = 0.2212 A 

                         vL(0.5 X 10-3) = 100 e- 0.25 = 77.88 V 

Let the second switching occurs at time t’ = 0.  

Then, t’ = t - 0.5 X 10 -3 

For time t’ > 0, the mesh equation is 

R iL(t’)  + L 
dt'

diL = - E2  i.e.  
dt'

diL + 
L

R
 iL(t’)  = - 

L

E2  with i(0) = 0.2212 A 

vL 

S2 

S1 

E2 

0 

iL 

E1 L 

R 

 



dt'

diL + 
L

R
 iL(t’)  = - 

L

E2  with i(0) = 0.2212 A 

ics = K 
t'

L

R

e


and      ips = A 

Substituting the particular solution to the non-homogeneous DE, we get 

L

R
 A = - 

L

E2  i.e.  A = - 
R

E2  = - 0.5 

Complete solution is 

iL(t’) = K e- 500 t’ - 0.5 

Using the initial condition 

K - 0.5 = 0.2212 i.e.  K = 0.7212. Thus 

iL(t’) = 0.7212 e- 500 t’ - 0.5  A 

vL(t’) = 0.2 X (- 0.7212 X 500) e- 500 t’ = - 72.12 e- 500 t’ V 

 



When t’ = 0, inductor voltage = - 72.12 V 

The current and voltage transients are shown in Fig. 7.53. 

 

 

 

 

 

 

 

 

 

 

0 
tC 

Fig. 7.53 Wave forms - Example 7.22. 

t 

- 0.5 A 

0.2212 A 

1.0 A 

iL(t) 

tC = 0.5 ms 

tC 
0 

vL(t) 

77.88 V 

100 V 

- 72.12 V 

t 

 



7.6 LAPLACE TRANSFORM 

In circuits with several capacitances and inductors, we often come across with integro-

differential equations. Such equations can be rewritten as higher order DEs. The 

classical method of solving the DEs is rather involved. Here, the complimentary solution 

and the particular solution have to be determined and finally the arbitrary constants 

have to be obtained from the initial conditions. The Laplace Transform (LT) method is 

much superior to the classical method due to the following reasons. 

1. Laplace transformation transforms exponential and trigonometric functions into 

algebraic functions. 

2. Laplace transformation transforms differentiation and integration into 

multiplication and division respectively. 

3. It transforms integro-differential equations into algebraic equations which are 

much simpler to handle. 

4. The arbitrary constants need not be determined separately. Complete solution 

will be obtained directly. 

The LT of f(t) is defined by         F(s) = dtef(t)
0

ts





                                                 (7.65) 

 



The following Table 7.1 gives the LT of some important functions used quite often in 

transient analysis. 

Table 7.1 Laplace transform of certain time functions. 

Time function f(t) Laplace transform F(s) Time function f(t) Laplace transform F(s) 

u(t) 

 

e- a t 

 

sin ωt 

 

cos ωt 

 

dt

df
 




0

dtf(t)  

f(t - t1) 

 

s

1
 

as

1


 

22 ωs

ω


 

22 ωs

s


 

 
s F(s) - f(0+) 
 
 

s

F(s)
 

 

F(s)e st1
  

E 

 

e a t 

 

sin (ωt + θ) 

 

cos (ωt + θ) 

 

2

2

dt

fd
 

 
 

e- α t  f(t) 

 

t 

s

E
 

as

1


 

22 ωs

θcosωθ sin s




 

22 ωs

θsinωθ cos s




 

 

s2 F(s) - s f(0+} - f’(0+) 
 
 
 
F(s + α) 
 

2s

1
 

 



While finding inverse Laplace Transform, in many cases, as a first step, F(s) is to be 

split into sum of functions in s. This is done using partial fraction method. The results of 

two cases that are used quite often are furnished below. 

1. F(s) = 
c)(sb)(sa)(s

qsps2




 = 

cs

K

bs

K

as

K 321








 

Here  K1 = (s + a) F(s) 

                      K2 = (s + b) F(s)   

                      K3 = (s + c) F(s)   

 

2. F(s) = 1 2k kA A 1 A 1 A 1 1
( )

s (s B) s s + B B s B s B B s s B
     

  
  

s = - c 

s = - b 

s = - a 

(7.66) 

(7.67) 



7.7 TRANSFORM IMPEDANCE AND TRANSFORM CIRCUIT 

When LT method is used for transient analysis, Transform Circuit shall be arrived 

first. In the transform circuit, all the currents and voltages are the transformed 

quantities of the currents and voltages. Further, all the element parameters are 

replaced by their Transform Impedances. Transform impedances of the individual 

element shall be arrived at as discussed below. 

Resistor 

The terminal relationship for the resistor, in time domain is 

v(t) = R i(t)                                                                                                                 (7.68) 

Taking LT on both sides,           V(s) = R I(s)                                                            (7.69) 

Fig. below shows the terminal relationships of resistor in time and transform domains. 

 

 
+   V(s)   - 

I(s) R R 

+   v(t)   - 

i(t) 



Inductor     For an inductor, v-i relationships in time domain are 

v(t) = L 
dt

di
                              (7.70)                        i(t) = )(0idtv

L

1
t

0

                 (7.71) 

where i(0+) is the current flowing through the inductor at time t = 0+. On taking LT of 

these equations, we get 

V(s) = L s I(s) - L i(0+)             (7.72)                           I(s) = 
s

)(0i

sL

V(s) 

                 (7.73) 

Note that above two equations are not different. Fig. below shows the representation of 

the terminal relationship of inductor in time and transform domains. 

 

 

 

 

It is to be noted that both the transform domain circuits shown above are equivalent of 

each other. One can be obtained from the other using source transformation. 

+         V(s)           - 

L i(0+) 

-       + 

L s 

+            V(s)              - 

I(s) 
 

i(0+) 

L 

+      v(t)      - 

i(t) 

s

)(0i 

 

L s I(s) 

 



Capacitor     For a capacitor, v-i relationships in time domain are 

i(t) = C 
dt

dv
                          (7.74)                       v(t) = )(0vdti

C

1
t

0

                    (7.75) 

where v(0+) is the voltage across the capacitor at time t = 0+. On taking LT of these 

equations, we get 

I(s) = C s V(s) - C v(0+)            (7.76)                  V(s) = 
s

)(0v

sC

(s) 


I

                      (7.77) 

Note that the above two equations are not different. They are written in different form. 

Fig. below shows the representation of the terminal relationship of capacitor in the time 

and transform domains. 

 

 

 

 

 

Here again, both the transform domain circuits shown are equivalent of each other. One 

can be obtained from the other using source transformation. 

s

v(0 )

 
sC

1
 

+   v(0+)   - 

C 

+          v(t)          - 

i(t) 

C v(0+) 

sC

1
 

I(s) 

 

+       - 

+            V(s)              - 

I(s) 
 

+            V(s)              - 



Example 7.23     For the circuit shown below, obtain the transform circuit. 

 

 

 

 

 

 

 

Solution     Fig. below shows the transform circuit. 

 

 

 

 

 

 

 

 

Li0 

-        + 

s

e0
 

sC

1

1

 

I2(s) 
I1(s) 

i0 

+ 

- 

- 

+ 

E(s) 

Ls R3 

R2 

R1 

sC

1

2

 
 

 

 

i2 
i1 

i0 

e0 

+ 

- 

- 

+ 

e(t) 
C2 

L R3 

R2 

R1 
C1 

 

 



7.8.1 RL CIRCUIT 

Consider the RL circuit shown in Fig. 7.59(a). Assume that the switch is closed at time  t 

= 0 and assume that the current i at the time of switching is zero. 

 

 

 

 

 

The transform circuit in s domain is shown in Fig. 7.59 (b). From this, 

I(s) = 




























L

R
s

1

s

1

L/R

L/E

)
L

R
(ss

L/E

sLR

s/E
 =  























L

R
s

1

s

1

R

E
                             (7.78) 

Taking inverse LT          i(t) = )e1(
R

E t
L

R


                                                                (7.79) 

Thus, inductor current rises exponentially with time constant L / R. 

 
(a)                                                                            (b) 

Fig. 7.59 Time domain and s domain - R-L circuit. 

s

E
 

I(s) 

vL 

0 

R 

Ls i 

vL 

0 

R 

L 
E 

S1 

 



Voltage across the inductor is given by  

V(s) = L s I(s) = 

L

R
s

E



                                                                                            (7.80) 

Taking inverse LT              vL(t) = E 
t

L

R

e


                                                                 (7.81) 

Inductor voltage increases exponentially with time constant L / R. The current and 

voltage transients are shown in Fig. 7.60. 

 

 

 

 

 

 

 

τ  

E 

0 

vL(t) 

t 

R

E
 

τ  

i(t) 

t 

(a)                                                                        (b) 

Fig. 7.60 Plot of iL(t) and vL(t). 

 



Consider the circuit shown in Fig.(a). Let us say that with the switch in position S1, 

steady state condition is reached. The current flowing through the inductor is E / R. At 

time t = 0, the switch is turned to position S2. Then 

i(0+) = i(0-) = E / R 

The transform circuit for time t > 0 is shown in Fig. (b). 

 

 

 

 

 

Considering the transformed circuit       I(s) = 

L

R
s

R

E

sLR

R

LE






                                (7.82) 

Taking inverse LT           i(t) = 
t

L

R

e
R

E 

                                                                      (7.83) 

The current decays exponentially with time constant L / R. 

(a)                                                                   (b) 

E 
L 

R 

S2 

S1 

R

LE
 

+ 

- 

Ls 

0 

I(s) 

V(s) R 

 

 



Since R I(s) + V(s)  = 0 the voltage across the inductor is     

V(s) = - R I(s) = - 

L

R
s

E



                                                                                          (7.84) 

Taking inverse LT          vL(t) = - E 
t

L

R

e


                                                                (7.85) 

The inductor voltage exponentially changes from - E to zero with time constant L / R. 

The current and voltage transients are given by the above two equations are shown. 

 

 

 

 

 

τ  

τ  
- E 

vL(t) 

t R

E
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i(t) 
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Example 7.24    Initially relaxed series RL circuit with R = 100 Ω and L = 20 H has dc 

voltage of 200 V applied at time t = 0. Find (a) the equation for current and voltages 

across different elements (b) the current at time t = 0.5 s and 1.0 s (c) the time at which 

the voltages across the resistor and inductor are equal. 

Solution     Transform circuit for time t > 0 is shown. 

(a)  I(s) = 
s20100

s

200


= 












 5s

1

s

1
2

5)(ss

10
 

Therefore, current i(t) = 2 (1- )e t5  A     

Voltage vR(t) = R i(t) = 200 (1- )e t5  V 

Voltage vL(t) = L Ve200e5X2X20
dt

di t5t5    

(b) i(0.5) = 2 (1- )e 5.2  = 1.8358 A            i(1.0) = 2 (1- )e 5  = 1.9865 A 

(c) Let t1 be the time at which vR(t) = vL(t). Then 

200 (1- )e 1t5 = 200 1t5e    i.e.  1t5e   = 0.5      This gives t1 = 0.1386 s 

+   vR    - 

I(s) 
s

200
 

vL 

0 

100 

20 s 



Example 7.25     For the circuit shown, with zero inductor current the switch is closed on 

to position S1 at time t = 0. At one mille second it is moved to position S2 Obtain the 

equation for the currents   in both the intervals. 

 

 

 

Solution     Transform circuits are shown. 

 

 

 

 

 

The transform circuit for the first interval is shown in Fig. 7.65 (a). From this 

I(s) = 
s0.250

s

100


= 












 250s

1

s

1
2

250)(ss

500
 

Thus, i(t) =  2 (1- )e t 250  A          i(0.001) = 2 (1- )e 0.25  = 0.4424 A 

s

100
 

s

100
 

0.2 s 0.2 s 

(a)                                                                          (b) 
0 0 

0.08848 

s

50
 

+ 

- 

Ls 
I(s) 

V(s) R 

 

+ 

- 

0.2 s 
I(s) 

V(s) 50 

 I(s) 

vL 

0 

50 

I(s) 

vL 

0 

50 

vL 

S2 

S1 

E2 

E1 = 100 V; E2 = 50 V 

R = 50 Ω 

L = 0.2 H 

0 

iL 

E1 L 

R 



At time t = 0.001 s, the switch is moved to position S2. We shall say that this is done at 

time t’ = 0. Thus t’ = 0 implies that t = 0 and hence t’ = t - 0.001. 

The transform circuit for time t’ > 0 is shown in Fig. 7.65 (b) in which  

L i(0+) = 0.2 X 0.4424 = 0.08848 

Now, I(s) = 
s0.250

s

50



 08848.0

 

= 
250s

K

s

K

250)(ss

s0.4424250

s)0.2(50s

s0.0884850 21












 

 

K1 = 1
250s

s0.4424250





      K2 = 0.5576 -

s

s0.4424250



 

Thus, I(s) = 
250s

0.5576

s

1


  

Taking inverse LT we get, current i(t’) = 1 - 0.5576 t'250e    

Thus for the two intervals currents are given by 

i(t) = 2 (1- )e t 250  A     0.001 ≥ t > 0 

i(t) = 1 - 0.5576 Ae 0.001) - (t250     t > 0.001 

s = 0 s = - 250 



Example 7.26     In the previous example, compute the voltage across the inductor in 

both the intervals and sketch the wave form. 

Solution     In the first interval,     i(t) = 2 (1- )e t 250  A      

vL(t) = L Ve100e250X2X0.2
dt

di t250t250          vL(0.001) = 100 V77.88e 0.25   

In the second interval,     i(t’) = 1 - 0.5576 t'250e   

vL(t’) = L Ve27.88 e27.88e250X0.5576X0.2
dt'

di 0.001)-(t250-t'250t'250    

vL(0.001) = vL(t’)              =  27.88 V 

The wave form of the voltage across the inductor is shown below. 

 

 

 

 

 

 

 

t’ = 0 

t = 0.001 s 

27.88 V 

t 0 

vL(t) 

77.88 V 

100 V 

 



Example 7.27      

In the initially relaxed RL circuit shown, the sinusoidal source of e = 100 sin (500 t) V is 

applied at time  t = 0. Determine the resulting transient current for time t > 0. 

 

 

 

 

Solution 

                                            e = 100 sin (500 t) V; Its LT is      

                                            E(s) = 
42

4

2 10X25s

10X5

250000s

500X100





 

                                            Impedance = 5 + j 0.01 s 

e  i 

5 Ω 

0.01 H 
- 

+ 

~ 



Current I(s) = 
s)0.01(5)10X25(s

10X5
42

4


 = 

500)(s)10X25(s

10X5
42

6


 

                  = 
42

21

10X25s

KsK




 + 

500s

K 3


 

K3 = 
42

6

10X25s

10X5


                  = 10 

Since 
500)(s)10X25(s

10X5
42

6


= 

42

21

10X25s

KsK




 + 

10

s 500
 

5 X 106 = (K1 s + K2) (s + 500) + 10 (s2 + 25 X 104) 

                              = (K1 + 10) s2 + (500 K1 + K2) s + (500 K2 + 25 X 105) 

Comparing the coefficients, in LHS and RHS 

K1 + 10 = 0  i.e. K1 = - 10 

500 K1 + K2 = 0 i.e. K2 = - 500 K1. Thus K2 = 5000 

Therefore,     I(s) =  [
2 4

-10 s

s 25 X10
 + 

2 4

5000

s 25 X10
 + 

10

s 500
] 

On taking inverse LT, we get     i(t) = 10 [- cos 500 t + sin 500 t + t500e  ] A 

                                                        = 14.14 sin (500 t - 450) + 10 Ae t500  

s = - 500 



7.8.2 RC CIRCUIT     Consider the RC circuit shown in Fig. 7.68 (a). Assume that the 

switch is closed at time  t = 0 and assume that the voltage across the capacitor at the 

time of switching is zero. 

 

 

 

 

 

The transform circuit for time t > 0 is shown in Fig. 7.68 (b). From this 
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                                                                       (7.85)   

Taking inverse LT        i(t) = 
t

RC

1

e
R

E 

                                                                        (7.86) 

Voltage across the capacitor is  VC(s) = 







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
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(a)                                                                            (b) 

Fig. 7.68 Time domain and s domain - RC circuit. 
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Voltage across the capacitor is  VC(s) = 





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Taking inverse LT, we get the capacitor voltage as 

vC(t) = E (1 - 
t

CR

1

e


)                                                                                                   (7.88) 

The circuit current and the voltage across the capacitor vary as shown in Fig. below. 
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Now, consider the circuit shown in Fig. (a).The switch was in position S1 for sufficiently 

long time to establish steady state condition. At time t = 0, it is moved to position S2. 

Before the switch is moved to position S2, the capacitor gets charged to voltage E. 

Since the voltage across the capacitor maintains continuity, 

vC(0+) = vC(0-) = E 

 

 

 

 

 

The transform circuit for time t > 0 is shown in Fig. (b). From this 

I(s) = - 

C R

1
s

R / E

1sCR

CE

sC

1
R

s/E










                                                            (7.89)   

Taking inverse LT      i(t) = - 
t

RC

1

e
R

E 

                                                                     (7.90) 

(a)                                                                   (b) 
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It is to be seen that  R I(s) + VC(s) = 0 

Thus    VC(s) = - R I(s) = 

C R

1
s

E



                                                                      (7.91) 

Taking inverse LT    vC(t) = E 
t

CR

1

e


                                                                    (7.92) 

The wave form of circuit current and the capacitor voltage are shown in Fig. 7.71. 
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(a)                                                                   (b) 

Fig. 7.71 Plot of i(t) and vC(t) as given by Eq. (7.90) and (7.92).  

 



Example 7.28     In the RC circuit shown below, the capacitor has an initial charge q0 = 

2500 µC. At time t = 0, the switch is closed. Find the circuit current for time t > 0. 

 

 

 

Solution 

vC(0) = - V50
10X50

10X2500

C

q
6

6

0 




 

Transform circuit for time t > 0 is shown in Fig. 7.73. 

Referring to Fig. 7.73, 

I(s) = 
2000s

15

20000s10

150

s

20000
10

s

50

s
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



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Taking inverse LT, current i(t) = 15 Ae t2000  

50 µF 
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Fig. 7.73 Circuit - Example 7.28. 



Example 7.29     For the circuit shown below, find the transient current, assuming that 

the initial charge on the capacitor as zero, when the switch is closed at time t = 0. 

 

 

 

 

Solution     E(s) = 
s25

10

sC

1
;

250000s

500X200 6

2



 

Therefore, I(s) = 
)10X4s(100250000)(s

s10

s

10X4
100

250000s

10

42

5

4

2

5







 

                         =  
400)s(250000)(s

s1000
2 

 = 
250000s

KsK
2

21




 + 

400s

K 3


 

(200 sin 500 t)  V 25 µF 

0 

i 

vC 

100 Ω 

S1 

- 

+ 

~ 

 



K3 = 
250000s

s1000
2 

                    = - 0.9756 

Further,    1000 s = (K1 s + K2) (s + 400) - 0.9756 (s2 + 250000) 

                            = (K1 - 0.9756) s2 + (400 K1 + K2) s + (400 K2 - 0.9756 X 250000) 

Comparing the coefficients, in LHS and RHS we have 

K1 - 0.9756 = 0 and 400 K1 + K2 = 1000 

On solving, K1 = 0.9756; K2 = 609.76 

Thus, I(s) = 
250000s

s 0.9756
2 

 + 
250000s

609.76
2 

 - 
400s

0.9756


 

                = 0.9756 
400s

0.9756

500s

500
1.2195

500s

s
2222 






 

Taking inverse LT   i(t) = 0.9756 cos 500 t + 1.2195 sin 500 t - 0.9756 t400e   A 

Knowing that 1.5617(1.2195)(0.9756) 22   and tan-1 (0.9756 / 1.2195) = 38.660 

current i(t) = 1.5617 sin (500 t + 38.660) - 0.9756 Ae t400  

s = - 400 

 



7.8.3 RLC CIRCUIT 

Consider the RLC series circuit shown in Fig. 7.75 (a). Assume that there is no initial 

charge on the capacitor and there is no initial current through the inductor. The switch is 

closed at time t = 0. Transform circuit for time t > 0 is shown in Fig. 7.75 (b). 

 

 

 

 

 

Using the transform circuit, expression for the current is obtained as 

I(s) = 

CL

1
s

L

R
s

L/E

1sCLsCR

CE

sC

1
sLR

s/E

2
2
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





                                        (7.93) 

The roots of the denominator polynomial are 

s1, s2 = - βα
CL

1
)

L2

R
(

L2

R 2                                                                          (7.94) 

where α = - 
CL

1
)

L2

R
(βand

L2

R 2                                                                       (7.95) 

 
(a)                                                                            (b) 

Fig. 7.75 Time domain and s domain - RLC circuit. 
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Depending on whether  2)
L2

R
(  >

CL

1
, 2)

L2

R
(  = 

CL

1
 or 2)

L2

R
(  < 

CL

1
the discriminant 

value will be positive, zero or negative and three different cases of solutions are 

possible. 

The value of R, for which the discriminant is zero, is called the critical resistance, RC.    

                        Then   ;
CL

1

L4

R
2

2

C                                                                                              

                         C

L
2RThus C                                           (7.96) 

                         If the circuit resistance R > RC, then 2)
L2

R
(  > 

CL

1
. 

                         If the circuit resistance R < RC, then 2)
L2

R
(  < 

CL

1
. 

 



Case 1 

2)
L2

R
(  > 

CL

1
 i.e. R > RC                                                                                            (7.97) 

The two roots s1 and s2 are real and distinct.   s1 = α + β and s2 = α - β                   (7.98) 

Then, I(s) = 
β)(αs

K

β)(αs

K 21





                                                                       (7.99) 

Taking inverse LT, we get 

i(t) = K1 tβ)(αe  + K2 tβ)(αe   = ]tβ

2

tβ

1

tα eKeK[e                                                               (7.100) 

Its plot is shown in Fig. 7.76. In this case the current is said to be over-damped. 
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Fig. 7.76 RLC circuit over-damped response. 

 



Case 2 

2)
L2

R
(  = 

CL

1
 i.e. R = RC                                                                                          (7.101) 

Then, β = 0 and hence the roots are    s1 = s2 = α                                                   (7.102) 

Thus, I(s) = 
22 α)(s

K

α)(s

L/E





                                                                              (7.103) 

Taking inverse LT, we get    i(t) = K t tαe                                                                (7.104) 

The plot of this current transient is shown in Fig. 7.77. In this case, the current is said to 

be critically damped. 
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Fig. 7.77 RLC circuit critically-damped response. 

 



Case 3         2)
L2

R
(  < 

CL

1
 i.e. R < RC                                                                     (7.105) 

For this case, the roots are complex conjugate,   s1 = α + j β and s2 = α - j β         (7.106) 

Then, I(s) = 
β)jα-(sβ)jα(s

L/E


 = 

22 β)α(s

L/E


= 

22 βα)(s

β

βL

E


              (7.107) 

                = 
22 βα)(s

β
A


                                                                                   (7.108) 

Taking inverse LT, we get     i(t) = A tβsine tα
                                                      (7.109) 

As seen in Equation 7.95, α will be a negative number. Thus, for this under damped 

case, the current is oscillatory and at the same time it decays.  
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Example 7.30     For the RLC circuit shown, find the expression for the transient current 

when the switch is closed at time t = 0. Assume initially relaxed circuit conditions. 

 

 

 

 

Solution     The transform circuit is shown in Fig. 7.80. 
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Fig. 7.80 Transform circuit - Example 7.30. 



Current I(s) = 
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The roots of the denominator polynomial are 

s1, s2 = 887.3and1127
2

10X0.41010 663




 

              Therefore, I(s) = 
887.3s

K

1127s

K

887.3)(s1127)(s

2000 21






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                          K1 = 
887.3s

2000


                      = 2.582 

                          K2 = 
112.7s

2000


                      = - 2.582 

                 Thus, I(s) = 2.582 [ ]
887.3s

1

112.7s

1





 

                 Taking inverse LT, we get    current  i(t) = 2.582 ( A)ee t887.3t112.7    

                 This is an example for over-damped. 

s = - 112.7 

s = - 887.3 



Example 7.31     Taking the initial conditions as zero, find the transient current in the 

circuit shown in Fig. 7.81 when the switch is closed at time t = 0. 

 

 

 

 

 

Solution     The transform circuit is shown in Fig. 7.82. 
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Fig. 7.82 Transform circuit - Example 7.31. 
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Fig. 7.81 Circuit for Example 7.31. 
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The roots of the denominator polynomial are 

s1, s2 = 139.1941j25
2

80000250050



 

It can be seen that 

s2 + 50 s + 20000 = (s + 25)2 + (139.1941)2 

Thus, I(s) = 
2222 (139.1941)25)(s

139.1941
7.1842

(139.1941)25)(s

0100



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Taking inverse LT, we get     i(t) = 7.1842 At)(139.1941sine t25  

This is an example for under-damped. 


