CHAPTER-I

Electrophysiology of heart

by

J. Jayasutha,
Lecturer,
Dept. of Pharmacy Practice,
SRM College of Pharmacy,
SRM University
Definition

- **Action Potential**: The change in electrical potential associated with the passage of an impulse along the membrane of a muscle cell or nerve cell.

- **Membrane potential** (also transmembrane potential or membrane voltage) is the difference in **electrical potential** between the interior and the exterior of a biological cell.
• **Refractory period**, the amount of time it takes for an excitable membrane to be ready for a second stimulus once it returns to its resting state following excitation in the areas of biology, physiology, and cardiology.

• **The threshold potential** is the **membrane potential** to which a membrane must be **depolarized** to initiate an **action potential**.
Action Potential & Mechanical Contraction
Action Potential

• Phase 0
 – Stimulation of the myocardial cell
 – Influx of sodium
 – Influx of calcium
 – The cell becomes depolarize
Action Potential

• Phase 1
 – Ions
 • Influx of sodium
 • Efflux of potassium
 – Partial repolarization

• Phase 2
 – Ions
 • Influx of sodium
 • Efflux of potassium
 • Influx of calcium
 – Plateau
Action Potential

• Phase 3
 – Ions
 • Influx of sodium
 • Efflux of potassium*
 • Influx of calcium
 – Repolarization (slower process than depolarization)

• Phase 4
 – Interval between repolarization to the next action potential
 – Pumps restore ionic concentrations
ECG & Membrane Potential of Ventricular Cell

- Phase 0: Fast Na⁺-influx
- Phase 1: Transient efflux of K⁺
- Phase 2: Influx of Ca²⁺ and Na⁺
- Phase 3: Efflux of K⁺ > influx of Ca²⁺ and Na⁺

Myocardial Cell

Na⁺ 140 mM
K⁺ 4 mM
Ca²⁺ 2 mM

Extracellular fluid

(Internal - external potential) =

1mV

Overshoot

Threshold

Contraction

Tension

Absolute refractory period

Fast Na⁺-channels are closed

Relative refractory period

300 ms

Fig. 11-2

Steep phase 0 means rapid depolarisation

KMc
Electrocardiogram—ECG or EKG

EKG
Action potentials of all active cells can be detected and recorded

P wave
atrial depolarization

P to Q interval
conduction time from atrial to ventricular excitation

QRS complex
ventricular depolarization

T wave
ventricular repolarization
ECG Paper
Thank You