Variance and Standard Deviation

Variance: a measure of how data points differ from the mean

- Data Set 1:3,5, 7, 10, 10 Data Set 2: 7, 7, 7, 7, 7

What is the mean and median of the above data set?

But we know that the two data sets are not identical! The variance shows how they are different.

We want to find a way to represent these two data set numerically.

How to Calculate?

- If we conceptualize the spread of a distribution as the extent to which the values in the distribution differ from the mean and from each other, then a reasonable measure of spread might be the average deviation, or difference, of the values from the mean.

$$
\frac{\sum(x-\bar{X})}{N}
$$

- Although this might seem reasonable, this expression always equals 0 , because the negative deviations about the mean always cancel out the positive deviations about the mean.
- We could just drop the negative signs, which is the same mathematically as taking the absolute value, which is known as the mean deviations.
- The concept of absolute value does not lend itself to the kind of advanced mathematical manipulation necessary for the development of inferential statistical formulas.
- The average of the squared deviations about the mean is called the variance.

$$
\begin{aligned}
& \sigma^{2}=\frac{\sum(x-\bar{X})^{2}}{N} \quad \text { For population variance } \\
& s^{2}=\frac{\sum(x-\bar{X})^{2}}{n-1} \quad \text { For sample variance }
\end{aligned}
$$

	Score X	$\mathrm{X}-\overline{\mathrm{X}}$	${ }^{(\mathrm{X}-\overline{\mathrm{X}})^{2}}$
1	3		
2	5		
3	7		
4	10		
5	10		
Totals	35		

The mean is $35 / 5=7$.

	Score \times	$\mathrm{x}-\overline{\mathrm{X}}$	$\left(_{\mathrm{X}-\overline{\mathrm{X}})^{2}}\right.$
1	3	$3-7=-4$	
2	5	$5-7=-2$	
3	7	$7-7=0$	
4	10	$10-7=3$	
5	10	$10-7=3$	
Totals	35		

	Score \times	$\mathrm{x}-\overline{\mathrm{X}}$	$(\mathrm{X}-\overline{\mathrm{X}})^{2}$
1	3	$3-7=-4$	16
2	5	$5-7=-2$	4
3	7	$7-7=0$	0
4	10	$10-7=3$	9
5	10	$10-7=3$	9
Totals	35		38

	Score x	$\mathrm{x}-\overline{\mathrm{x}}$	$(\mathrm{x}-\overline{\mathrm{x}})^{2}$
1	3	$3-7=-4$	16
2	5	$5-7=-2$	4
3	7	$7-7=0$	0
4	10	$10-7=3$	9
5	10	$10-7=3$	9
Totals	35		38

$$
s^{2}=\frac{\sum(x-\bar{X})^{2}}{n}=\frac{38}{5}=7.6
$$

Example 2

Dive	Mark	Myrna	
1		28	27
2		22	27
3		21	28
4		26	6
5		18	27

Find the mean, median, mode, range?

What can be said about this data?

Due to the outlier, the median is more typical of overall performance.
Which diver was more consistent?

Dive	Mark's Score X	$\mathrm{X}-\overline{\mathrm{X}}$	$(\mathrm{X}-\overline{\mathrm{X}})^{2}$
1	28	5	25
2	22	-1	1
3	21	-2	4
4	18	-5	9
5	115	0	25
Totals	26		

Mark's Variance $=64$ / $5=12.8$
Myrna's Variance $=362 / 5=72.4$
Conclusion: Mark has a lower variance therefore he is more consistent.

standard deviation - a measure of variation of scores about the mean

- Can think of standard deviation as the average distance to the mean, although that's not numerically accurate, it's conceptually helpful. All ways of saying the same thing: higher standard deviation indicates higher spread, less consistency, and less clustering.
- sample standard deviation:
- population standard deviation:

$$
s=\sqrt{\frac{\sum(x-\bar{X})^{2}}{n-1}}
$$

$$
\sigma=\sqrt{\frac{\sum(x-\mu)^{2}}{N}}
$$

Another formula

- Definitional formula for variance for data in a frequency distribution

$$
S^{2}=\frac{\sum(X-\bar{X})^{2} f}{\sum f}
$$

- Definitional formula for standard deviation for data in a frequency distribution

$$
S=\sqrt{\frac{\sum(X-\bar{X})^{2} f}{\sum f}}
$$

The mean is 23

Myrna's Score X	f	$\mathrm{X}-\overline{\mathrm{X}}$	$(\mathrm{X}-\overline{\mathrm{X}}) 2$	$(\mathrm{X}-\overline{\mathrm{X}}) 2 \times \mathrm{f}$
28	1			
27	3			
6	1			
115	5			

Myrna's Score X	f	$\mathrm{X}-\overline{\mathrm{X}}$	$(\mathrm{X}-\overline{\mathrm{X}}) 2$	$(\mathrm{X}-\overline{\mathrm{X}}) 2 \times f$
28	1	5		
27	3	4		
6	1	-17		
115	5			

Myrna's Score X	f	$\mathrm{X}-\overline{\mathrm{X}}$	$(\mathrm{X}-\overline{\mathrm{X}}) 2$	$(\mathrm{X}-\overline{\mathrm{X}}) 2 \times \mathrm{f}$
28	1	5	25	
27	3	4	16	
6	1	-17	289	
115	5			

round-off rule - carry one more decimal place than was present in the original data

Variance $=$ S2 $=362 / 5=72.4$
Standard Deviation $=\sqrt{ } 72.4=8.5$

Bell shaped curve

- empirical rule for data (68-95-99) - only applies to a set of data having a distribution that is approximately bell-shaped: (figure pg 220)
- $\approx 68 \%$ of all scores fall with 1 standard deviation of the mean
- $\approx 95 \%$ of all scores fall with 2 standard deviation of the mean
- $\approx 99.7 \%$ of all scores fall with 3 standard deviation of the mean

