## **NON-PARAMETRIC TEST**

# Statistical tests fall into two categories:

- (i) Parametric tests
- (ii) Non-parametric tests

## The parametric tests make the following assumptions

- the population is normally distributed;
- homogeneity of variance

#### If any or all of these assumptions are untrue

- then the results of the test may be invalid.
- it is safest to use a **non-parametric test.**

#### **ADVANTAGES OF NON-PARAMETRIC TESTS**

- If the sample size is small there is no alternative
- If the data is nominal or ordinal
- These tests are much easier to apply

#### **DISADVANTAGES OF NON-PARAMETRIC TESTS**

- i) Discard information by converting to ranks
- ii) Parametric tests are more powerful
- iii) Tables of critical values may not be easily available.
- iv) It is merely for testing of hypothesis and no confidence limits could be calculated.

## **Non-parametric tests**

- Note: When valid, use parametric
- Commonly used

Wilcoxon signed-rank test Wilcoxon rank-sum test Spearman rank correlation

Chi square etc.

- Useful for non-normal data
- If possible use some transformation
- If normalization not possible
- Note: Cl interval -difficult/impossible

## Which statistical test



## Wilcoxon signed rank test

### To test difference between paired data

#### EXAMPLE

|         | Hours of sleep |         |
|---------|----------------|---------|
| Patient | Drug           | Placebo |
| 1       | 6.1            | 5.2     |
| 2       | 7.0            | 7.9     |
| 3       | 8.2            | 3.9     |
| 4       | 7.6            | 4.7     |
| 5       | 6.5            | 5.3     |
| 6       | 8.4            | 5.4     |
| 7       | 6.9            | 4.2     |
| 8       | 6.7            | 6.1     |
| 9       | 7.4            | 3.8     |
| 10      | 5.8            | 6.3     |

Null Hypothesis: Hours of sleep are the same using placebo & the drug

- Exclude any differences which are zero
- Ignore their signs
- Put the rest of differences in ascending order
- Assign them ranks
- If any differences are equal, average their ranks

Count up the ranks of +ives as T<sub>+</sub>

• Count up the ranks of –ives as T\_

- If there is no difference between drug (T<sub>+</sub>) and placebo (T<sub>-</sub>), then T<sub>+</sub> & T<sub>-</sub> would be similar
- If there is a difference one sum would be much smaller and the other much larger than expected
- The larger sum is denoted as T
- $T = larger of T_{+} and T_{-}$

 Compare the value obtained with the critical values (5%, 2% and 1%) in table

 N is the number of differences that were ranked (not the total number of differences)

So the zero differences are excluded

|         | Hours of sleep |         |            | Rank          |
|---------|----------------|---------|------------|---------------|
| Patient | Drug           | Placebo | Difference | Ignoring sign |
| 1       | 6.1            | 5.2     | 0.9        | 3.5*          |
| 2       | 7.0            | 7.9     | -0.9       | 3.5*          |
| 3       | 8.2            | 3.9     | 4.3        | 10            |
| 4       | 7.6            | 4.7     | 2.9        | 7             |
| 5       | 6.5            | 5.3     | 1.2        | 5             |
| 6       | 8.4            | 5.4     | 3.0        | 8             |
| 7       | 6.9            | 4.2     | 2.7        | 6             |
| 8       | 6.7            | 6.1     | 0.6        | 2             |
| 9       | 7.4            | 3.8     | 3.6        | 9             |
| 10      | 5.8            | 6.3     | -0.5       | 1             |

 $3^{rd}$  &  $4^{th}$  ranks are tied hence averaged; T= larger of T<sub>+</sub> (50.5) and T<sub>-</sub> (4.5)

Here, calculated value of T= 50.5; tabulated value of T= 47 (at 5%)

### significant at 5% level indicating that the drug (hypnotic) is more effective than placebo

### Wilcoxon rank sum test

• To compare two groups

Consists of 3 basic steps

| Non-smokers (n=15) | Heavy smokers (n=14) |
|--------------------|----------------------|
| Birth wt (Kg)      | Birth wt (Kg)        |
| 3.99               | 3.18                 |
| 3.79               | 2.84                 |
| 3.60*              | 2.90                 |
| 3.73               | 3.27                 |
| 3.21               | 3.85                 |
| 3.60*              | 3.52                 |
| 4.08               | 3.23                 |
| 3.61               | 2.76                 |
| 3.83               | 3.60*                |
| 3.31               | 3.75                 |
| 4.13               | 3.59                 |
| 3.26               | 3.63                 |
| 3.54               | 2.38                 |
| 3.51               | 2.34                 |
| 2.71               |                      |

Null Hypothesis: Mean birth weight is same between non-smokers & smokers

## Step 1

 Rank the data of both the groups in ascending order

If any values are equal, average their ranks

## Step 2

 Add up the ranks in the group with smaller sample size

 If the two groups are of the same size either one may be picked

 T= sum of ranks in the group with smaller sample size

#### Step 3

Compare this sum with the critical ranges given in table

 Look up the rows corresponding to the sample sizes of the two groups

A range will be shown for the 5% significance level

| Non-smol      | kers (n=15) | Heavy smok    | ers (n=14) |
|---------------|-------------|---------------|------------|
| Birth wt (Kg) | Rank        | Birth wt (Kg) | Rank       |
| 3.99          | 27          | 3.18          | 7          |
| 3.79          | 24          | 2.84          | 5          |
| 3.60*         | 18          | 2.90          | 6          |
| 3.73          | 22          | 3.27          | 11         |
| 3.21          | 8           | 3.85          | 26         |
| 3.60*         | 18          | 3.52          | 14         |
| 4.08          | 28          | 3.23          | 9          |
| 3.61          | 20          | 2.76          | 4          |
| 3.83          | 25          | 3.60*         | 18         |
| 3.31          | 12          | 3.75          | 23         |
| 4.13          | 29          | 3.59          | 16         |
| 3.26          | 10          | 3.63          | 21         |
| 3.54          | 15          | 2.38          | 2          |
| 3.51          | 13          | 2.34          | 1          |
| 2.71          | 3           |               |            |
|               | Sum=272     |               | Sum=163    |

\* 17, 18 & 19are tied hence the ranks are averaged Hence caculated value of T = 163; tabulated value of T (14,15) = 151 Mean birth weights are not same for non-smokers & smokers they are significantly different

#### **Spearman's Rank Correlation Coefficient**

- based on the ranks of the items rather than actual values.
- can be used even with the actual values

#### Examples

- to know the correlation between honesty and wisdom of the boys of a class.
- It can also be used to find the degree of agreement between the judgements of two examiners or two judges.

R (Rank correlation coefficient) = 
$$1 - \frac{6 \Sigma D^2}{N(N^2 - 1)}$$

D = Difference between the ranks of two items N = The number of observations. Note:  $-1 \le R \le 1$ .

i) When R = +1 Perfect positive correlation or complete agreement in the same direction

ii) When R = -1 Perfect negative correlation or complete agreement in the opposite direction.

iii) When R = 0 No Correlation.

#### **Computation**

- Give ranks to the values of items.
  Generally the item with the highest value is ranked 1 and then the others are given ranks 2, 3, 4, .... according to their values in the decreasing order.
- ii. Find the difference  $D = R_1 R_2$ where  $R_1 = Rank$  of x and  $R_2 = Rank$  of y Note that  $\Sigma D = 0$  (always)
- iii. Calculate  $D^2$  and then find  $\Sigma D^2$
- iv. Apply the formula.

#### If there is a tie between two or more items.

Then give the average rank. If m be the number of items of equal rank, the factor  $1(m^3-m)/12$  is added to  $\Sigma D^2$ . If there is more than one such case then this factor is added as many times as the number of such cases, then



| Student<br>No. | Rank in<br>Maths<br>(R <sub>4</sub> ) | Rank in<br>Stats<br>(R <sub>2</sub> ) | R <sub>1</sub> - R <sub>2</sub><br>D | (R <sub>1</sub> - R <sub>2</sub> ) <sup>2</sup><br>D <sup>2</sup> |
|----------------|---------------------------------------|---------------------------------------|--------------------------------------|-------------------------------------------------------------------|
| 1              | 1                                     | 3                                     | -2                                   | 4                                                                 |
| 2              | 3                                     | 1                                     | 2                                    | 4                                                                 |
| 3              | 7                                     | 4                                     | 3                                    | 9                                                                 |
| 4              | 5                                     | 5                                     | 0                                    | 0                                                                 |
| 5              | 4                                     | 6                                     | -2                                   | 4                                                                 |
| 6              | 6                                     | 9                                     | -3                                   | 9                                                                 |
| 7              | 2                                     | 7                                     | -5                                   | 25                                                                |
| 8              | 10                                    | 8                                     | 2                                    | 4                                                                 |
| 9              | 9                                     | 10                                    | -1                                   | 1                                                                 |
| 10             | 8                                     | 2                                     | 6                                    | 36                                                                |
| N = 10         |                                       |                                       | $\Sigma \mathbf{D} = 0$              | $\Sigma D^2 = 96$                                                 |

