
Chapter 5: Regression

'Regression' (latin) means 'retreat', 
'going back to', 'stepping back'. 
In a 'regression' we try to (stepwise) 
retreat from our data and explain 
them with one or more explanatory 
predictor variables. We draw a 
'regression line' that serves as the 
(linear) model of our observed data.

www.vias.org/.../img/gm_regression.jpg



Correlation
In a correlation, we 
look at the 
relationship between 
two variables without 
knowing the direction 
of causality

Regression
In a regression, we 
try to predict the 
outcome of one 
variable from one or 
more predictor 
variables. Thus, the 
direction of causality 
can be established. 
1 predictor=simple 
regression
>1 predictor=multiple 
regression

Correlation vs. regression



Correlation vs. regression
Correlation
For a correlation you 

do not need to 
know anything 
about the possible 
relation between 
the two variables

Many variables 
correlate with each 
other for unknown 
reasons

Correlation underlies 
regression but is 
descriptive only

Regression
For a regression you do want to find 

out about those relations between 
variables, in particular, whether 
one 'causes' the other.

Therefore, an unambiguous causal 
template has to be established 
between the causer and the 
causee before the analysis!

This template is inferential.
Regression is THE  statistical 

method underlying ALL inferential 
statistics (t-test, ANOVA, etc.). All 
that follows is a variation of 
regression.



Linear regression
Independent and dependent variables

In a regression, the predictor variables are 
labelled 'independent' variables. They predict 
the outcome variable labelled 'dependent' 
variable.

A regression in SPSS is always a linear
regression, i.e., a straight line represents the 
data as a model.

http://snobear.colorado.edu/Markw/SnowHydro/ERAN/regression.jp



Method of least squares
In order to know which line to choose as the best 
model of a given data cloud, the method of least 
squares is used. We select the line for which the 
sum of all squared deviations (SS) of all data 
points is lowest. This line is labelled 'line of best 
fit', or 'regression line'. 

Regression line



Simple regression
Regression coefficients

The linear regression equation ( 5.2) is:

Yi = (b0 + b1Xi) + εi
Yi = outcome we want to predict
b0 = intercept of the regression line regression
b1 = slope of the regression line coefficients

Xi = Score of subjecti on the predictor variable
εi = residual term, error

In mathematics, a coefficient is a 
constant multiplicative factor of a 
certain object. For example, the 
coefficient in 9x2 is 9.
http://en.wikipedia.org/wiki/Coefficient



Slope/gradient and intercept

Slope/gradient: 
steepness of the line; 
neg or pos
Intercept: where the line 

crosses the y-axis

Yi = (- 4 + 1.33Xi) + εi

http://algebra-tutoring.com/slope-intercept-form-equation-lines-1-gifs/slope-52.gif



'goodness-of-fit'

The line of best fit (regression line) is compared 
with the most basic model. The former should be 
significantly better than the latter. The most basic 
model is the mean of the data. 



Relation between tobacco and 
alcohol consume

http://images.google.de/imgres?imgurl=http://math.uprm.edu/~wrolke/esma3102/graphs/rssfig2.pn
g&imgrefurl=http://math.uprm.edu/~wrolke/esma3102/rss.htm&h=552&w=553&sz=4&hl=de&start=
23&tbnid=eY0TWAtPXf0_ZM:&tbnh=133&tbnw=133&prev=/images%3Fq%3Dsum%2Bof%2Bsqua
res%26start%3D21%26svnum%3D10%26hl%3Dde%26lr%3D%26sa%3DN



Sum of squares total: SST

Mean, ⎯Y

Yi -⎯Y

The summed 
squared 
differences 
between 
observed 
values and the 
mean, SST, are 
big, hence the 
mean is not a 
good model of 
the data

Mean of Y as basic model



sum of squares residual  SSR 

The summed 
squared 
differences 
between 
observed 
values and the 
regression line, 
SSR, are 
smaller, hence 
this regression 
line is a much 
better model of 
the data

Regression line as a model



SSM: sum of squared differences between the 
mean of Y and the regresion line (as our model) 

Sum of squares 
model, SSM

Mean, ⎯Y

Model 



Comparing the basic model and the 
regression model: R2

The  improvement by the regression model 
can be expressed by dividing the sum of 
squares of the regression model SSM by the 
sum of squares of the basic model SST:

R2 = SSM
SST

This is the same measure as the R2 in chapter 4 on 
correlation. Take the square root of R2 and you have the 
Pearson correlation coefficient r!

The basic comparison in statistics is always 
to compare the amount of variance that our 
model can explain with the total amount of 
variation there is. If the model is good it can 
explain a significant proportion of this overall 
variance.



Comparing the basic model and the 
regression model: F-Test

In the F-Test, the ratio of the improvement due to the 
model SSM and the difference between the model and 
the observed data, SSR, is calculated. 
We take the mean sum of squares, or mean squares, 
MS, for the model, MSM, and the observed data, MSR:

F = MSM
MSR

The F-ratio should be high (since the model should 
have improved the prediction considerably, as 
expressed in MSM). MSR, the difference between the 
model and the observed data (the residual), should be 
small. 



The coefficient of a predictor

The coefficient of the predictor 
X is b1. B1 indicates the 
gradient/slope of the regression 
line. It says how much Y 
changes when X is changed 
one unit. In a good model, b1
should always be different from 
0, since the slope is either 
positive or negative. 
Only a bad model, i.e., the basic 
model of the mean, has a slope 
of 0.

b1=0

b1≠0

If b1=0, this means:
A change in one unit of the 

predictor X does not change 
the predicted variable Y
The gradient of the 

regression line is 0.



T-Test of the coefficient of the predictor
A good predictor variable should have a b1 that is  
different from 0 (the regression coefficient of the 
basic model, the mean). Whether this difference is 
significant, can be tested by a t-test. 
The b of the expected values (0-Hypothesis, i.e., 
0) is subtracted from the b of the observed values 
and divided by the standard error of b.

t = bobserved – bexpected Since bexpeted=0

SEb

t= bobserved t should be * different from 
0.

SEb



Simple regression on SPSS
(using the Record1.sav data) 

Descriptive glance: Scatterplot of the correlation 
between advertisement and record sales 

Graphs --> Interactive --> Scatterplot

Under 'Fit', tick 
'include constant' 

and 'fit line to 
total'

Under 'Fit', tick 
'include constant' 

and 'fit line to 
total'



Comparing the mean and the regression model
(using the Record1.sav data) 

--> The regression line is quite 
different from the mean 

Graphs --> Interactive --> 
Scatterplot

Under 'Fit', tick 
'mean'



Simple regression on SPSS
(using the Record1.sav data) 

Analyze --> Regression --> Linear

What you want to predict:
# of records (in 1000) sold

Predictor:
How much money 

(in 1000) 
you spend on 
advertisement



Output of simple regression on SPSS
(using the Record1.sav data) 

R2= 33% of the total variance can be explained 
by the predictor 'advertisement'.

66% of the variance cannot be explained.

Analyze --> Regress --> Linear
R is the simple Pearson 

correlation between 
'advertisement' and 

'records sold'

R² is the amount of 
explained variance



ANOVA for the SSM (F-test): advertisement  
predicts sales significantly

MSM

MSR

SST
sum of squares total

SSM

SSR

F = MSM/MSR

= 433687,833/4354,87

= 99,587



b0 intercept
where regres-

sion line
crosses Y axis

When no money
is spent (X=0),

134,140 records are
sold

b1 gradient
If predictor X
is increased

by 1 unit (1000, then
96,12 extra
records will

be sold

=.09612

t= B/SEB
134,14/7,537=

17,799

Regression 
coefficients b0, b1



A closer look at the t-values

The equation for computing the t-value is t= B/SEB

For the constant: 134,14/7,537=17,799
For ADVERTS: B=0.09612/.010 should result in 9.612, however, t= 9.979

What’s wrong? Nothing, this is a rounding error. If you double-click on the output table 
“Coefficients”, a more exact number will be shown:
9.612E-02 = 0,09612448597388
.010 = 0,00963236621523
If you re-compute the equation with these numbers, the result is correct:
0,09612448597388/ 0,00963236621523 = 9.979



Using the model for Prediction
Imagine the record company wants to spend 
100,000 £ for advertisement.
Using Equation 5.2, we can fit in the values of b0 
and b1:

Yi = (b0 + b1Xi) 

= 134.14 + (.09612 x Advertising Budgeti) 

Expl: If 100,000 £ are spent on ads, 

134.14 + (.09612 x 100) = 143.75

144,000 records should be sold on the first week.
http://image.informatik.htw-aalen.de/Thierauf/Knobelaufgaben/Sommer03/zweifel.png

Is that a 
good deal?



Multiple regression

In a multiple regression, we predict the outcome of a 
dependent variable Y by a linear combination of >1 
independent predictor variables Xi

Outcomei = (Modeli) + errori

Every variable has its own coefficient: b1, b2,...,bn

(5.9) Yi = (b0 + b1X1 + b2X2 + ... + bnXn) + εi

b1X1= 1st predictor variable with its coefficient
b2X2 = 2nd predictor variable with its coefficient, etc.
εi = residual term



Multiple Regression on SPSS
using file record2.sav

We want to predict record sales (Y) by two 
predictors:
X1 = advertisement budget
X2 = number of plays on Radio 1

Record Salesi = b0 + b1Adi + b2Playi + εi

Instead of a regression line, a regression plane (2 
dimensions) is now fitted to the data (3 
dimensions) 



3D-Scatterplot of the relation 
between record sale (Y) and
advertisement budget (X1) 

No of plays on Radio 1/week (X2) 

Multiple regression with 2 Variables 
can be visualized as a 3D-scatterplot. 
More variables cannot be 
accomodated visually.

Graphs --> 
Interactive --> 
Scatterplot --> 3D



Regression planes and confidence 
intervals of multiple regression

Under the 
menu 'Fit', 
specify the 
following 
options



3-D-scatterplot

If adjusted appropriately, 
you can see the 
regression plain and the 
confidence plains 
almost like lines

The regression plains are 
chosen as to cover most of 
the data points in the three-
dimensional data cloud



Sum of squares, R, R2

The terms we encountered for simple regression, 
SST, SSR, SSM, still mean the same, but are more 
complicated to compute now.

Instead of the simple correlational coefficient R, we 
use a multiple correlation coefficient Multiple R.

Multiple R is the correlation between the predicted 
and observed values of the outcome. As in simple 
R, Multiple R, should be great.
Multiple R2 is a measure of the explained variance 
of Y by the predictor variables X1-Xn. 



Methods of regression
The predictors of the model should be selected 
carefully, e.g., based on past research or 
theoretically well motivated.

Hierarchical method (ordered entry): first, 
known predictors are entered, then new ones, 
either blockwise (all together) or stepwise
Forced entry ('enter'): All predictors are forced 

into the model simultaneously
Stepwise methods: Forward: Predictors are 

introduced one by one, according to their 
predictive power. Stepwise: Same as Forward + a 
removal test. Backward: Predictors are judged 
against a removal criterion and eliminated 
accordingly. 



How to choose one's predictors

Based on the theoretical literature, 
choose predictors in their order of 
importance. Do not choose too many
Run an initial multiple regression
Eliminate useless predictors
Take ca. n=15 subjects per predictor



Evaluating the model

1. The model must fit the data sample
2. The model should generalize beyond 
the sample



Evaluating the model - diagnostics
1. Fitting the observed data:
- Check for outliers which bias the 
model and enlarge the residual
- Look at standardized residuals (z-
scores): If > 1% are lying outside 
the margins of +/- 2.58, the model 
is poor.
- Look at studentized residuals: 
(unstandardized residuals/ SD that 
varies point by point.) Yields a 
more exact estimate of error 
variance.

Note: SPSS adds the computed 
scores into new columns in the 
data file.

Analyze --> Regression 
--> Linear
Under 'Save', specify:



Evaluating the model - diagnostics
- continued

Identify influential cases and 
see how the model changes if 
they are excluded.

This is done by running the 
regression without that particular 
case and then use the new model to 
predict the value of the just 
excluded case (its 'adjusted 
predicted value'). If the case is 
similar to all other cases, its 
'adjusted predicted value' will not 
differ much from its predicted value, 
given the model including it.



Evaluating the model - continued

DFBeta:a measure of the 
influence of a case on the values 
of bi.DFFit: “...difference between the 
adjusted predicted value and the 
original predicted value of a 
particular case.” (Field 2005, 729).
Deleted residual: residual based 
on the adjusted predicted value. 
“... the difference between the 
adjusted predicted value for a 
case and the original observed 
value for that case.” (Field 2005, 
728) 

A way of standardizing the deleted 
residual is to divide it by its SD -->
studentized deleted residual.



Evaluating the model
- continued

Identify influential cases and see how the 
model changes if they are excluded.

Cook's distance measures the influence of 
a case on the overall model's ability to 
predict all cases.
Leverage estimates “the influence of the 
observed value of the outcome variable 
over the predicted values.” (Field 2005, 736) 
Leverage values lie between 0<x>1 and may be 
used to define cut-off points for excluding 
influential cases.

Mahalanobis distances measure the 
distance of cases from the means of the 
predictor variables. 



Example for using DFBeta as an 
indicator of an 'influential case'

using file dfbeta.sav
Run a simple regression with all data 
(including outlier, case 30):

Analyze --> Regression --> Linear

What you 
want to
predict

Your predictor



Example for using DFBeta as an 
indicator of an 'influential case'

using file dfbeta.sav
All data (including 
outlier, case 30):

B0=29; b1= -.90

Case 30 removed
(with Data --> Select 
cases --> use filter 
variable) 
B0 = 31; b1=-1

→ Both regression coefficients 
b0 (constant/intercept) and b1 
(gradient/slope) changed !



Example for using DFBeta as an 
indicator of an 'influential case'

using file dfbeta.sav

Dfbeta of the constant (dfb0) 
and of the predictor x (dfb1) 
are much higher than those 

of the other cases

Dfbeta of the constant (dfb0) 
and of the predictor x (dfb1) 
are much higher than those 

of the other cases



Summary of both calculations
Scatterplots for both samples

With case 30: Without case 30

Outlier

Parameter (b) + case 30 - case 30 Difference
Constant (b0) 29.00 31.00 -2.00
Gradient (b1) -.90 -1 .10
Model Y=(-.9)X+29 Y=(-1)X+31
Predicted Y 28.0100 30-1.09



DFBetas, DFFit, CVR's
All the following measures measure the difference 
between a model including and one excluding 
influential cases:

Standardized DFBeta: Difference between a 
parameter estimated using all cases and 
estimated when one case is excluded, e.g. 
DFBetas of the parameters b0 and b1. Standardized DFFit: Difference between the 
predicted value for a case in a model including vs. 
in a model excluding this value.
Covariance ratio (CVR): measure of whether a 

case influences the variance of the regression 
parameters. This ratio should be close to 1.



I find it hard to 
remember what all 

those influence 
statistics mean...

Help-Window,Topic index 'Linear Regression'
Window „Save new variables“

http://image.informatik.htw-aalen.de/Thierauf/Knobelaufgaben/Sommer03/zweifel.png

Why don't you look 
them up in the „Help 

window“ ?



Residuals and influence statistics
(using the file pubs.sav) 

The correlation between no. 
of pubs in London districts 
and deaths with and without 
the outlier. 
Note: The residual for the 
outlier fitted to the regression 
line including it is small. 
However, its influence 
statistics is huge.

Why? The outlier is the 'City of 
London' district, where a lot of 
pubs are but only few residents 
live. The ones who are drinking in 
those pubs are visitors, hence, 
the ratio of deaths of citizens 
given the overall consumation of 
alcohol is relatively low.

outlier

Scatterplot of both variables
Graphs --> Interactive --> 
scatterplot



Case summary: 8 
London districts

St. Res. Lever St. DFFIT St. DFB Interc St. DFB Pubs
1 -1,34 0,04 -0,74 -0,74 0,37
2 -0,88 0,03 -0,41 -0,41 0,18
3 -0,42 0,02 -0,18 -0,17 0,07
4 0,04 0,02 0,02 0,02 -0,01
5 0,5 0,01 0,2 0,19 -0,06
6 0,96 0,01 0,4 0,38 -0,1
7 1,42 0 0,68 0,63 -0,12
8 -0,28 0,86 -4,60E+008 92676016 -4,30E+008

Total 8 8 8 8 8
The residual of the 
outlier #8 is small 
because it actually 
sits very close to the 
regression line

The influence statistics are huge!



Excluding the outlier
(pubs.sav) 

If you create a variable “num_dist” (number of the 
district) in the variables list of the pubs.sav file and 
simply allocate a number to each district (1-8), you can 
use this variable to exclude the problematic district #8. 

Data Select cases If condition is satisfied 
num_dist~=8



Excluding the outlier – continued 
(pubs.sav) 

Look at the scatterplot again 
now that district # 8 has 
been excluded:  

Graphs Interactive 
Scatterplot

Now the 7 remaining districts 
all line up perfectly on the 
(idealized) regression line



Will our sample regression 
generalize to the population?

If we want to generalize our findings of one sample to 
the population, we have to check some assumptions:
Variable types: predictor variables must be 

quantitative (interval) or categorical (binary); outcome 
variable must be quantitative, continuous and 
unbounded (whole range must be instantiated) 
Non-zero variance of predictors
No perfect correlation between ≥ 2 predictors
Predictors are uncorrelated to any 'third variable' 

which was not included in the regression
All levels of the predictor variables should have same 

variance



Will our sample regression 
generalize to the population? 

- continued 

Independent errors: The residual terms of any 
two observations should be uncorrelated (Durbin-
Watson Test) 
Residuals should be normally distributed
All of the values of the outcome variable are 

independent
Predictors and outcome have a linear relation

If these assumptions are not met, we cannot 
draw valid conclusions from our model!



Two methods for the cross-
validation of the model

If our model is generalizable, it should be able to 
predict the outcome of a different sample. 

− Adjusted R2: R2 indicates the loss of 
predictive power (shrinkage) if the model 
were applied to the population:

adj R2 = 1- n-1 n-2 n+1 (1-R2) 
n-k-1 n-k-2 n

− Data splitting: The entire sample is split 
into two. Regressions are computed and 
compared for both halves. Nice method 
but one rarely has so many data.

R²= unadjusted value
n= number of cases
k= number of predictors in the model



Sample size

The required sample size for a regression 
depends on 

The number of predictors k
The size of the effect
The size of the statistical power

e.g., 
large efffect --> n= 80  (for up to 20 predictors) 
medium effect --> n=200  
small effect --> n=600 



(Multi-)Collinearity
If ≥ 2 predictors are inter-correlated, we speak of 
collinearity. In the worst case, 2 variables have a 
correlation of 1. This is bad for a regression, since 
the regression cannot be computed reliably 
anymore. This is because the variables become 
interchangeable. 
High collinearity is rare, but some degree of 
collinearity is always around. 

Problems with collinearity:

It underestimates the variance of a second variable if 
this variable is strongly intercorrelated with the first 
variable. It adds little unique variance although – taken 
for itself – it would explain a lot.
We can't decide which variable is important, which 

variable should be included
The regression coefficients (b-values) become instable.



How to deal with collinearity

SPSS has some collinearity diagnostics:

Variance inflation factor
Tolerance statistics
...

→ in the 'Statistics' window of the 'linear 
regression' menu



Multiple Regression on SPSS
(using the file Record2.sav) 

Example: Predicting the record sales from 3 
predictors:

X1: Advertisement budget, 
X2: times played on radio, 
X3: attractiveness of the band

Since we know already that money for ads is a predictor, 
it will be entered into the regression first (1st block), and 
the 2 new predictors later (2nd block) --> hierarchical 
method ('Enter'). 

1st

block
Var 1

2nd block
Var 2+3



What the „Statistics“ box should look like
Analyze --> Regression --> Linear



Regression Plots

*ZRED

*ZPRED

For heteroscedasticity

For 'random errors'

Heteroscedasticity occurs 
when the residuals at each 
level of the predictor 
variables have unequal 
variances.

Plotting *ZRESID (standardized residuals = errors) against *ZPRED 
(standardized predicted values) helps us determine whether the 
assumption of random errors and homoscedasticity (equal variances) are 
met.



Regression diagnostics

The 
regression 
diagnostics 
are saved in 
the data file, 
each as a 
separate 
variable in a 
new column



Options
leave them as they are



Interpreting Multiple Regression

The 'Descriptives'
give you a brief 
summary of the 
variables



Interpreting Multiple Regression

Correlations: R's between all variables and signif-
levels. Pred 2 (plays on radio) is the best predictor.
Predictors should not correlate higher than R>.9 (collinearity) 

R of predictors 123 with 
outcome

R of pred1 with the others

R of pred2 with the other

R of pred3 with the others

Significance levels for all 
correlations

Pearson correlations R



Summary of model

Only 
adver-

tisement
as predic

tor

3 predic
tors

Correlation
between

predictor(s) 
and out-

come

Explained
variance
by the
predic-
tor(s) 

How well
the model

generalizes.
Similar val-
ues to R2

are good.
Only 5%
shrinkage

Change from
0 to .335 
(Model 1) 

and another
change of .330

(Model 2) 

F-values
for R2

change

If errors are
independent.
If value close
to 2, then OK

The model(s) 
bring about
a significant

change

Degrees of
freedom;
df1:p-1

df2:N-p-1
(N=sample size; 
p=# of predictors) 



ANOVA for the model against the 
basic model (the mean) 

SSM

SSR

Df equal
to # of
predic-

tors

Df equal to
# of cases
minus # of
coefficients

(b0,b1) 
200-2=198

Df equal to
# of cases
minus 1

200-1=199

F-values: 
MSM/MSR:

433687.833/4354.87=99.587
287125.806/2217.217=129.498

Significance
level

Mean squares:
SS/df

433687.8/1=433687.8
862264.2/198=4354.87

Both Model 1 
and 2 have 
improved the
prediction 
significantly,
Model 2 
(3 predictors) 
even better
than Model 1 
(1 predictor) 

SST



Model parameters

b0
b1

b2
b3

*

Record sales increase 
by  .511 SD's when
the predictor (ads) 

changes 1 SD;
b1 and b2 have equal 'gains'

With 95% confidence the b-values 
lie within these boundaries
Tight boundaries are good

Pearson Corr of 
predictor x outcome
controlled for each single
other predictor

Pearson Corr of 
predictor x outcome
controlled for all
other predictor

'unique relationship'

The 'Coefficients' table tells us the 
individual contribution of variables to the 
regression model. The Standardized Beta's 
tell us the importance of each predictor

Model 1= same 
as in first 
analysis



Excluded variables

SPSS gives a summary of those predictors that were not 
entered in the Model (here only for Model 1) and 
evaluates the contribution of the excluded variables. 

What contribution would
this predictor have made
to a model containing it



Regression equation for 
Model 2
(including all 3 predictor 
variables) 

Salesi = b0+b1Advertisingi +b2airplayi +b3attractivenessi

= -26.61+(0.08Adi)+ (3.37Airplayi) + (11.09 Attracti) 

Interpretation: 
If Ad increaes 1 unit-->sales increase .08 units; if airplay + 1 
unit-->sales+3.37; if attract + 1 unit --> sales +11 units, 
independent of the contributions  of the other predictors.



No Multicollinearity
(In this regression, variables are not closely linearly 
related) 

Each predictor's variance proportions load highly on 
a different dimension (Eigenvalue) 
--> they are not intercorrelated, hence no collinearity



Casewise diagnostics
The casewise 
diagnostics lists cases 
that lie outside the 
boundaries of 2 SD (in 
the z-distribution, only 
5% should be beyond 
1.96 SD and only 1% 
beyond 2.58
Case 169 deviates 
most and needs to be 
followed up

>5%

>1%
>1%
>5%

z-value



Following up influential cases  with „Case summaries“
--> everything OK

Cook distances <1 (all OK) 

Leverage values
<.06 (all OK) 

Mahalanobis' distances
<15 (all OK) 

No DFBETA's >1 (all OK



Identify influencing cases by the case 
summary

In the standardized residulas, no more than 5% 
must have values exceeding 2 and 1% exceeding 3.

Cook's distances >1 might pose a problem
Leverage (# of predictors + 1/sample size) must not 

be twice or three times higher
Mahalanobis distance: cases with >25 in large 

samples (n=500) and >15 in small samples (n=100) 
can be problemantic
Absolute values of DFBeta should not exceed 1
Determine upper and lower limit of covariance ratio 

(CVR). Upper limit = 1+3(average leverage); lower 
limit = 1-3(average leverage).



Checking assumptions: 
Heteroscedasticity

Plot of standardized residual *ZRESID/
standardized predicted value *ZPRED

Points are randomly and evently dispersed
--> assumptions of linearity and homoscedasticity 

are met

(Heteroscedasticity: 
residuals (errors)  at each 
level of predictor have 
different variances). Here 
variances are equal



Checking assumptions
Normality of residuals

The distribution of the residuals is normal (left 
hand picture), the observed probabilities 
correspond to the expected ones (right hand side) 



Checking assumptions
Normality of residuals - continued

Boxplots, too, show the
normality
(note the 3 outliers!) 

The Kolmogoroff-Smirnov-Test for 
the standardized residuals is n.s. 
--> normal distribution



Checking assumptions
Partial Regression Plots

Scatterplots of the residuals 
of the outcome variable and 
each of the predictors 
separately.
No indication of outliers, 
evenly spaced out cloud of 
dots (only the residual 
variance of 'attractiveness of 
band' seems to be uneven.


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73

