Chapter 5. Regression

Regression Analysis

ﬁRegression' (latin) means 'retreat’,
'‘going back to', 'stepping back'.
In a 'regression' we try to (stepwise)
retreat from our data and explain
them with one or more explanatory
predictor variables. We draw a
'regression line' that serves as the

\(Iinear) model of our observed data.

= 1992 3. Meixner

_ Making a curve fit. _ )
www.vias.org/.../img/gm_regression.jpg



Correlation vs. regression

» Correlation « Regression

. In a correlation, we « INn a regression, we

look at the
relationship between
two variables without
knowing the direction
of causality

try to predict the
outcome of one
variable from one or
more predictor
variables. Thus, the
direction of causality
can be established.

1 predictor=simple
regression

>1 predictor=multiple
regression




Correlation vs. regression

-Corretation

For a correlation you
do not need to
know anything
about the possible
relation between
the two variables

Many variables
correlate with each
other for unknown
reasons

Correlation underlies
regression but is
descriptive only

Regression

For a regression you do want to find
out about those relations between
variables, in particular, whether
one 'causes' the other.

Therefore, an unambiguous causal
template has to be established
between the causer and the
causee before the analysis!

This template Is inferential.

Regression is THE statistical
method underlying ALL inferential
statistics (t-test, ANOVA, etc.). All
that follows is a variation of
regression.




Linear regression
Independent and dependent variables

In a regression, the predictor variables are
labelled 'independent’ variables. They predict
the outcome variable labelled 'dependent’
variable.

A regression in SPSS iIs always a linear
regression, I.e., a straight line represents the
data as a model. S
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Method of least squares

In order to know which line to choose as the best
model of a given data cloud, the method of least
squares is used. We select the line for which the
sum of all squared deviations (SS) of all data

points Is lowest. This line is labelled 'line of best

fit', or regression line'.
o / Regression line

o/ 3L 107 + 2.74%




S | m ple reg reSS|On /In mathematics, a coefficient is a

constant multiplicative factor of a

Reg reSS|On CoeﬁICIentS certain object. For example, the

coefficient in 9x2 is 9.
http://en.wikipedia.org/wiki/Coefficient

The linear regression equation ( 5.2) is:

Yi =0y + b X) + ¢

Y. = outcome we want to predict

b, = Intercept of the regression line regression
b, = slope of the regression line coefficients

X. = Score of subject, on the predictor variable
€ =residual term, error



Slope/gradient and intercept

.Slope/gradient:
steepness of the line;
neg or pos

Intercept: where the line
crosses the y-axis

—4510, —4) is the y-intercep Yi — (- 4 + 1'33Xi) + €.

http://algebra-tutoring.com/slope-intercept-form-equation-lines-1-gifs/slope-52.gif



'‘goodness-of-fit’

The line of best fit (regression line) is compared
with the most basic model. The former should be

significantly better than the latter. The most basic
model Is the mean of the data.



Relation between tobacco and

. alcohol consume
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c model

The summed
squared
differences

between
observed
values and the
mean, SST, are
big, hence the
mean IS not a
good model of
the data

Sum of squares total: SS_.



Regresstonline-as-amaqdet—

The summed
squared
differences
between
observed
values and the
regression line,
SS,, are
smaller, hence
this regression
line IS a much
45 - o . . better model of

e the data
sum of squares residual SS,

Tobacco

/
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4.5

] .. Z Model J

Sum of squares

/( ' model, SS,,

4.0
|
<
(D
Q)
“3
<
-
\
AN

2.5
I
—
—

45 SRl R 6.0 i
Alcohol

SS,,: sum of squared differences between the
mean of Y and the regresion line (as our model)



Comparing the basic model and the
regression model: R?

The Improvement by the regression model
can be expressed by dividing the sum of
squares of the regression model SS,, by the
sum of squares of the basic model SS..

The basic comparison in statistics is always\

to compare the amount of variance that our
R2 — SS model can explain with the total amount of
—M variation there is. If the model is good it can
SS explain a significant proportion of this overall
= T variance. )

This is the same measure as the R? in chapter 4 on
correlation. Take the square root of R? and you have the
Pearson correlation coefficient r!



Comparing the basic model and the
regression model: F-Test

In the F-Test, the ratio of the improvement due to the
model SS;, and the difference between the model and
the observed data, SS., Is calculated.

We take the mean sum of squares, or mean sqguares,
MS, for the model, MS,,, and the observed data, MS.

F=MS,,
MS,
The F-ratio should be high (since the model should

have improved the prediction considerably, as
expressed in MS;,). MS.,, the difference between the
model and the observed data (the residual), should be

small.




The coefficient of a predictor

o

The coefficient of the predictor ) b0
Xis b,. B, indicates the
gradient/slope of the regression : | b,=0

line. It says how much Y e 7
changes when X is changed .
one unit. In a good model, b, -

should always be different from L L L
0, since the slope is either

-y : If b.=0, this means:
posmve or negatlve. .A%:hange In one unit of the

Only a bad model, I.e., the basiC predictor X does not change

model of the mean, has a slope the predicted variable Y
of O .The gradient of the

regression line is 0.
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T-Test of the coefficient of the predictor

A good predictor variable should have a bl that is
different from O (the regression coefficient of the
basic model, the mean). Whether this difference is
significant, can be tested by a t-test.

The b of the expected values (0-Hypothesis, I.e.,
0) Is subtracted from the b of the observed values
and divided by the standard error of b.

b Since b 0

expected _— expeted:

t=D

observed

SE,

observed t should be * different from

t=Db
0

SE,



Simple regression on SPSS
(using the Recordl.sav data)

Descriptive glance: Scatterplot of the correlation
between advertisement and record sales

Graphs --> Interactive --> Scatterplot
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Comparing the mean and the regression model
(using the Recordl.sav data)
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Simple regression on SPSS
(using the Recordl.sav data)

Analyze --> Regression --> Linear

Predictor: N
How much money
(in 1000)
you spend on

advert|§elment . )
w k]

1 @f-‘«dvertm udget [the Dependent:

-

Block 1 of 1 MNewt |

dependent(s):

#

What you want to predict:
# of records (in 1000) sold

S

|® Record Sales thousar

Fazte

~

J

Reset

Cancel

Help




Output of simple regression on SPSS
(using the Recordl.sav data)

Analyze --> Regress --> Linear

R is the simple Pearson\ 4 A
correlation between R? is the amount of
‘advertisement' and explained variance

'records sold'
< % -
Model Summary

N Adjusted | Std. Error of
Model R R Square | R Square | the Estimate

1 5781 335 331 65,9914

a. Predictors: (Constant), ADVERTS Advertsing Budget
(thousands of pounds)

R?= 33% of the total variance can be explained
by the predictor 'advertisement’.

66% of the variance cannot be explained.



ANOVA for the SS,, (F-test): advertisement

predicts sales significantly
)

SS

~

M

—

-

7 /ANOVA®
\

SS

R

-

MS

F =MS,/MS,
= 433687,833/4354,87
= 99,587

\ Sum of qZ/

Model . Squares df Mean Square F__| _Sid.

1 Regression 433687,?/ 1| 4336873833 | (99587 000 >
Residual | 862264, 198 | 4354870 —
Total 1295952 199 \

a. Predictors: (Constanf},

b. Dependent Variablg: SALES Record Sales (thousands)

{sum of squares total

SS.

VERTS Advertsing Budget (thotsands of pounds)




b0 intercept
where regres-
sion line
crosses Y axis
When no money
IS spent (X=0),
134,140 records are

Regression
coefficients b0, bl

/"

bl gradient
If predictor X
IS Increased
by 1 unit (1000, then
06,12 extra
records will

be sold

L

a )
sold / t= BISE,
g 134,14/7,537=
Coefficients® 17.799
AN )
/Stardardi
zed
Unstandardiie/‘% Coefficien
Coefficient ts
Model B /Sfd./Error Beta t Sig.
1 (Constant) N\ 134,140 o~ 7,537 17,799 ,000
ADVERTS Advertsing /
Budget (thousands of |9 612E-02 010 578 9,979 ,000
pounds) .

a. Dependent Variable: SALES Record Sales (thousan
=.09612



A closer look at the t-values

Coefficients?
Standardi
zed
Unstandardized Coefficien
Coefficients ts
Model B Std. Error Beta t Sig.
1 (Constant) 134,140 7,537 17,799 ,000
ADVERTS Advertsing
Budget (thousands of |9,612E-02 010 578 9,979 ,000
pounds)

a. Dependent Variable: SALES Record Sales (thousands)

The equation for computing the t-valueis  t= B/SEg

For the constant: 134,14/7,537=17,799
For ADVERTS: B=0.09612/.010 should result in 9.612, however, t= 9.979

What's wrong? Nothing, this is a rounding error. If you double-click on the output table
“Coefficients”, a more exact number will be shown:

9.612E-02 = 0,09612448597388

.010 = 0,00963236621523

If you re-compute the equation with these numbers, the result is correct:
0,09612448597388/ 0,00963236621523 = 9.979




Using the model for Prediction

Imagine the record company wants to spend
100,000 £ for advertisement.

Using Equation 5.2, we can fit in the values of b0
and b1l:

Y. = (b, + b, X)

=134.14 + (.09612 x Advertising Budget,)

Is that a
good deal?

Expl: 1f 100,000 £ are spenton ads, __ > O

134.14 + (.09612 x 100) = 143.75

144 000 records should be sold on the first week.
QH%H?H@%i@Q&WHB@ﬂUfgaben/SommerOS/zweifeI.png



Multiple regression

In a multiple regression, we predict the outcome of a
dependent variable Y by a linear combination of >1
iIndependent predictor variables X.

Outcome, = (Model) + error,

Every variable has its own coefficient: b, b,,...,b

5.9) Y. =(b,+b X +b, X, +..+Db X )+e

b, X,= 1% predictor variable with its coefficient
b, X, = 2" predictor variable with its coefficient, etc.

g = residual term



Multiple Regression on SPSS

using file record2.sav

We want to predict record sales (Y) by two
predictors:

X1 = advertisement budget
X2 = number of plays on Radio 1

Record Sales; = b, + b,Ad, + b,Play; + &

Instead of a regression line, a regression plane (2

dimensions) Is now fitted to the data (3
dimensions)



3D-Scatterplot of the relation
between record sale (Y) and
advertisement budget (X1)
No of plays on Radio 1/week (X2)

Record Sales (thousands)
— é‘] .(=:

Graphs -->
Interactive -->
“Scatterplot --> 3D

Multiple regression with 2 Variables
can be visualized as a 3D-scatterplot.
More variables cannot be
accomodated visually.



Regression planes and confidence
Intervals of multiple regression
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U n d er th e \ fssign Variables  Fit l Spikez ] Titles l Optiohz ]
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W Mean | Individual Canfidence Interval |E|5,EI _|:|
Fit lines far
v Total

| Subgroups

Ok Fazte Rezet abbrechen Hilfe




@ L w
------- 5 b 3-D-scatterplot
....... 108 R |
50000
500,00
%‘mu-
gam,m N E
: ' 3 .
o 300,00 =
""-E" adverts + ﬁﬂ * airpla
& A3 200,00-
E 200,03 'g
T g
E o 100,00
& 1000e
g 0.00
-
dh'& 0,00 e ?i:m'“-
kh‘k No. of plays on Radio 1 per week - 80,00 4000 2000 0,00
|f adjusted approprlately, No. of plays on Radio 1 per week
you can see the _ _
regression plain and the The regression plains are
confidence plains chosen as to cover most of
almost like lines the data points in the three-

dimensional data cloud



Sum of squares, R, R?

The terms we encountered for simple regression,
SS;, SS;,, SS;,, still mean the same, but are more
complicated to compute now.

Instead of the simple correlational coefficient R, we
use a multiple correlation coefficient Multiple R.

Multiple R Is the correlation between the predicted
and observed values of the outcome. As in simple
R, Multiple R, should be great.

Multiple R? is a measure of the explained variance
of Y by the predictor variables X -X .



Methods of regression

The predictors of the model should be selected
carefully, e.g., based on past research or
theoretically well motivated.

.Hierarchical method (ordered entry): first,
known predictors are entered, then new ones,
either blockwise (all together) or stepwise
.Forced entry (‘enter’): All predictors are forced
iInto the model simultaneously

Stepwise methods: Forward: Predictors are
iIntroduced one by one, according to their
predictive power. Stepwise: Same as Forward + a
removal test. Backward: Predictors are judged
against a removal criterion and eliminated
accordingly.



How to choose one's predictors

.Based on the theoretical literature,
choose predictors In their order of
importance. Do not choose too many
«Run an initial multiple regression
«Eliminate useless predictors

. Take ca. n=15 subjects per predictor



Evaluating the model

1. The model must fit the data sample
2. The model should generalize beyond
the sample



Evaluating the model - diagnostics

1. Fitting the observed data:

- Check for outliers which bias the Analyze --> Regression

model and enlarge the residual --> Linear
- Look at standardized residuals (z-Under 'Save', specify:

scores). If > 1% are lying outside
the margins of +/- 2.58, the model
IS pOOr.

- Look at studentized residuals:
(unstandardized residuals/ SD that
varies point by point.) Yields a
more exact estimate of error
variance.

Note: SPSS adds the computed
scores into new columns in the
data file.

Lipzir fladrasaiug Jiya

Predicted Walues Resziduals

| Unstandardized hztandardized
[ Standardized R andardized
v Adiusted udentized

[ 5.E. of mean predictions v [Deleted

[v Studentized deleted

Distances

vt ahalanobis Influence Statistics

[v Cook's [+ DFfBetals]

W Leverage values v Standardized DB etals)
Iv DifFit

Prediction |htersals v Standardized DiFi

| Mean | Individua [ Covariance ra tic

Confidence Interval: pd

Save to Mew File

[ Coefficient statistics

Expart model information to =kL file




Evaluating the model - diagnostics
- continued

oldentify influential cases and

X]
" Predicted ¥ alues R esiduals Carli
S e e h OW th e m O d e I C h a‘n g e S If [ Unstandardized [ Unstandardized ;::::le
= , .
they are excluded. . || | 2
[ 5.E. of mean predictions Iv Deleted

Iv Studentized deleted
Digtances

This is done by running the " Wt
regression without that particular ¥ Lovoge v St mapr
case and then use the new model to resinmers ST
oredict the value of the just Contomimt | x| |
excluded case (its 'adjusted

oredicted value'). If the case is " Coiintsaiies - |

similar to all other cases, its
‘adjusted predicted value' will not o |

differ much from its predicted value,
given the model including it.



Evaluating the model - continued

DFBeta:a measure of the
ir}ﬂgence of a case on the values
of b..

DFFit; “...difference between the
adjusted predicted value and the
original predicted value of a
particular case.” (Field 2005, 729).
Deleted residual: residual based
on the adjusted predicted value.
“... the difference between the
adjusted predicted value for a
case and the original observed
\7/%%1)9 for that case.” (Field 2005,

A way of standardizing the deleted
residual is to divide it by its SD -->
studentized deleted residual.

Linzar fagrassion: Jiye
Predicted Y alues Residuals
| Unstandardized | Unstandardized
[ Standardized v Standardized
v Adjusted [v Studentized
[ 5.E. of mean predictions v Deleted
Iv Studentized deleted
Diztances
¥ tahalanobiz MlLence Statistics
[v Cook's (B etaz)
v Leverage values tandardzed DfBetaz]
P iFit
Prediction Intervals tandardized DIFi
[~ Mean [ Individual [ Covariance ra fio

Confidence Interval: 4

Save to Mew File

[ Coefficient statistics

Esport model information o kL file




Evaluating the model

- continued

Jldentify influential cases and see how the
model changes if they are excluded.

Cook's distance measures the influence of

a case on the overall model's ability to
predict all cases. . i
Leverage estimates “the influence of the

observed value of the outcome variable

over the predicted values.” (Field 2005, 736)
Leverage values lie between 0<x>1 and may be
used to define cut-off points for excluding
Influential cases.

Mahalanobis distances measure the
distance of cases from the means of the
predictor variables.



Example for using DFBeta as an

iIndicator of an 'influential case
using file dfbeta.sav

« Run a simple regression with all data
(including outlier, case 30):

Analyze --> Regression --> Linear

! )
What you
want to
predict
e HEBTECET0T) y—/ d
Dependent?
?} E Y

Independent|z]:

e

Elock 1 af 1 Mext

|y |P|P
@ |3 2 @
T8 |z |&




Example for using DFBeta as an

iIndicator of an 'influential case
using file dfbeta.sav

o All data (including » Case 30 removed
outlier, case 30): (with Data --> Select
cases --> use filter
variable)

. BO=231; bl=-1

— Both regression coefficients
b0 (constant/intercept) and bl
(gradient/slope) changed !

. B0=29; b1=-.90

Coefficients? Coefficients®
Standardi Standardi
zed zed
Unstandardized Coefficien Unstandardized Coefficien
Coefficients ts Coefficients ts
Model B Std. Error Beta Model B Std. Error Beta Sig.
1 (Constant) 29,000 992 1 (Constant) 31,000 ,000
X -903 056 -950 X -1,000 000 -1,000

d. Dependent Variable: Y

a. Dependent Variable: Y




Example for using DFBeta as an

indicator of an 'Influential case'
using file dfbeta.sav

dfbziu - 963 Uat Editur
File Edit Wiew Dakta Transform  Analyze  Graphs  Utlikies  Window  Help

=S| =] o] L] =[k] @l Fi= BEEe @
1: caze 1
case | x|y | diter§ | om0t | a1t |
7 27 400 2700 Selectad 20013 - 00903
28 28 300/ 28,00 Selectad 22781 - 01060
29 29 200/ 29,00 |Selectad 25791 - 01225
30 30 1,00 1500 Mot Sele | -200000) 09677

AN

/beeta of the constant (dfbO)

and of the predictor x (dfbl)

are much higher than those
of the other cases

- /




Summary of both calculations
Scatterplots for both samples

Parameter (b) + case 30 - case 30 Difference
Constant (b0) 29.00 31.00 -2.00
Gradient (b1) -.90 -1 10
Model Y=(-.9)X+29 Y=(-1)X+31
_ Predicted Y 28.0100 30-1.09
« With case 30: « Without case 30

30,00 - 20,00 =

20,00 -
20,00=

b

10,00 =
10,00 =
Outller I:l.I:ll:ll:I T m.ﬂﬂ yi@ﬂ;n“*—_"'“u*%nlnn
' ' - are =1.00 '
0,00 = ¥=29.00+-0.90*x ¥

T H-9quare = U.90 T
0,00 10,00 20,00 30,00



DFBetas, DFFit, CVR's

All the following measures measure the difference
between a model including and one excluding
influential cases:

.Standardized DFBeta: Difference between a
parameter estimated using all cases and
estimated when one case Is excluded, e.q.
DFBetas of the parameters b, and b,.
.Standardized DFFit: Difference between the
predicted value for a case in a model including vs.
In a model excluding this value.

.Covariance ratio (CVR): measure of whether a
case Influences the variance of the regression

parameters. This ratio should be close to 1.



Help-Window, Topic index ‘Linear Regression'’
~ YWindow ,Save new variables®

| find it hard to

remember what all PS5 for Windows - [B]x]

those influence Inhalt | Index Diucken | Optionen
StatiStiCS mean... Linear Regression Save

How To | Seedlzo

=

Y'ou can save predicted values, residualz, and other statistics useful for diagnostics. Each selection
adds one or more new vanables to pour active data file.

Predicted Yalues. "Yalugssz that the regrezsion model predicts for each caze.

Distances. Measures to identify cazes with unuzual combinations of walues far the independent
wariables and cazes that may have a large impact on the regression model,

~

Why don't you look
the m u p | n the i H elp Enqizi:ij,:,l:?ls- The actual walue of the dependent variable minus the value predicted by the regression

WI ndOW“ ? Influence Statistics. The change in the reqrezsion coefficients [DfBetalz]) and predicted values
[DfFit] that resultz fram the excluzion of a particular caze. Standardized DfBetaz and DFit values are
alzo available along with the covariance ratio, which iz the ratio of the determinant of the covanance
matrix with a particular caze excliuded to the determinant af the covanance matrx with all cazes
included.

)
.‘ .. Save to New File. 5Saves regression coefficients to a file that you specify.
Export model information to XML file. Exports model information to the specified file.
; J SmartScore and future releazes of WhatlF? will be able to uze this file.
Click See Alzo for descriptions of related dialog boxes and procedures.
% Click wour right mouze button o any item in the dialog box for a description of the item.

BERH ?H@%i@gﬂwgﬁgﬂhfgabenﬁommerOB/zweifeI.png

Prediction Intervalz. The upper and lower bounds for both mean and individual prediction intervals.




Residuals and influence statistics
(using the file pubs.sav)

15000 =

outlier

10000 =

Deaths

G000 =

1] 1I;IZI EISEI 3|;IZI =1[II|:I 5IZII|ZI
Number of Pubs
Scatterplot of both variables

Graphs --> Interactive -->
scatterplot

The correlation between no.
of pubs in London districts
and deaths with and without
the outlier.

Note: The residual for the
outlier fitted to the regression
line including it is small.
However, its influence
statistics Is huge.

Why? The outlier is the 'City of
London' district, where a lot of

ubs are but only few residents
Ive. The ones who are drinking Iin
those pubs are visitors, hence,
the ratio of deaths of citizens
given the overall consumation of
alcohol is relatively low.



Linzay pladrasaiog: Giiiisiies d
Rearezsion Coefficients ¥ Moadel fit Continue
v Estimates [+ B squared change

L Cancel |
[ Confidence intervals v Descriptives
[ Covariance mal bris Iv Part and partial comelations Help

Iv Callinearity diagniostics
Feziduals
[ Diurbitsd abzon

. 8

London districts

0,37
0,18
0,07
-0,01
-0,06
-0,1
-0,12

;E;ii::iutside |_ standard deviations
St. Res. Lever St. DFFIT  St. DFB Interc St. DFB Pubs
1 -1,34 0,04 -0,74 -0,74
2 -0,88 0,03 -0,41 -0,41
3 -0,42 0,02 -0,18 -0,17
4 0,04 0,02 0,02 0,02
5 0,5 0,01 0,2 0,19
6 0,96 0,01 0,4 0,38
7 1,42 0 0,68 0,63
8 -0,28 0,86 -4,60E+008 02676016 -4,30E+008

Total ] 8
The residual of th

8 8 38

outlier #8 is small
because it actuall
Sits very close to
regression line

e

the

The influence statistics are huge!

8




Excluding the outlier

(pubs.sav)

If you create a variable “num_dist” (number of the
district) in the variables list of the pubs.sav file and
simply allocate a number to each district (1-8), you can
use this variable to exclude the problematic district #8.

Data = Select cases = If condition Is satisfied =
num_dist~=8

Salgen Orpnass | f
> Number of Pubs [pubs’ num_dist ~= § -
@) Dreaths [mortalit] l:\ Ii'|E |%| | ﬂ' | | E' E? | ﬂ|
@ number of the district [¢ 8 : num_dist g
= [ 1 ?Iﬁlﬂ Funchions: ‘:l pubs | mortalit | num_dist |
1 10 1000 1
el e s AMY[test value value... )
| =]zl 1] 2] 3] AR5 IM[nurmespr) 3 30 3000 3
e S D e e Eggﬁgmwexﬁw] ] 1 40 4000 4
il ey zvalue
J | []l Lrelete | COF.BERNOULLIG.p) 5 a0 000 ]
a] 2] =000 a]
Coantinue | Cancel | Help | ! 70 Foao F
| > g A00 10000 &




Excluding the outlier — continued
(pubs.sav)

Look at the scatterplot again
now that district # 8 has
been excluded:

Graphs =2 Interactive -

Scatterplot

Deaths = 0.00 + 100.00 * pu
R-Square =1.00

0000 =

Now the 7 remaining districts
all line up perfectly on the
(idealized) regression line

0000 =

Deaths

10000 =
0 =
T T T T T |
I 100 200 300 400 A00

Number of Pubs



Will our sample regression
generalize to the population?

If we want to generalize our findings of one sample to
the population, we have to check some assumptions:
.Variable types: predictor variables must be
guantitative (interval) or categorical (binary); outcome
variable must be quantitative, continuous and
unbounded (whole range must be instantiated)
«Non-zero variance of predictors

«No perfect correlation between > 2 predictors
«Predictors are uncorrelated to any 'third variable'
which was not included in the regression

JAll levels of the predictor variables should have same
variance



Wil our sample regression

generalize to the population?
- continued

.Independent errors: The residual terms of any
two observations should be uncorrelated (Durbin-
Watson Test)

«Residuals should be normally distributed

JAll of the values of the outcome variable are
iIndependent

.Predictors and outcome have a linear relation

oIf these assumptions are not met, we cannot
draw valid conclusions from our model!



Two methods for the cross-

validation of the model

If our model Is generalizable, it should be able to
predict the outcome of a different sample.

- Adjusted R?: R? indicates the loss of
predictive power (shrinkage) if the model
were applied to the population:

adj R?=1- Jpn-1 J n-2 J [n+1} \>(1-R2)

*-1) nk-2)

-

R2= unadjusted value
n= number of cases

k= number of predictors in the model
\

J

- Data splitting: The entire sample is split
Into two. Regressions are computed and
compared for both halves. Nice method
but one rarely has so many data.



Sample size

The required sample size for a regression
depends on

.The number of predictors k
.The size of the effect
.The size of the statistical power

e.g.,
large efffect -->n=80 (for up to 20 predictors)
medium effect -->n=200

small effect -->n=600



(Multi-)Collinearity

If > 2 predictors are inter-correlated, we speak of
collinearity. In the worst case, 2 variables have a
correlation of 1. This is bad for a regression, since
the regression cannot be computed reliably
anymore. This Is because the variables become
iInterchangeable.
High collinearity Is rare, but some degree of
collinearity is always around.

Problems with collinearity:

oIt underestimates the variance of a second variable If
this variable is strongly intercorrelated with the first
variable. It adds little unique variance although — taken
for itself — it would explain a lot.

We can't decide which variable is important, which
variable should be included

«The regression coefficients (b-values) become instable.



How to deal with collinearity

SPSS has some collinearity diagnostics:

.Variance inflation factor
. l0lerance statistics

— In the 'Statistics' window of the ‘linear
regression’ menu



Multiple Regression on SPSS

(using the file Record2.sav)

Example: Predicting the record sales from 3
predictors:

.X1: Advertisement budget,
.X2: times played on radio,
.X3: attractiveness of the band

Since we know aIreadK that money for ads Is a predictor,
it will be entered into the regression first (1% block), and
the 2 new predictors later (2" block) --> hierarchical
method (‘Enter").

|

block
Block 1of2  Next | Var 2+3 Previous | Block 202 Nest |

Var 1
Independent|z): Independent(s);

" Dependent:
13 k | |@ Record 5ales [thousar { 2 nd bIOCk E |<{F> Record Sales [thousar

> Attractiveness of B
> Mo, of plays on Ran

{%‘} Advertzing Budget [the D

]

b ethod: | E mter j M ethod: | Enter j



What the ,Statistics” box should look like
Analyze --> Regression --> Linear

Dipiair pladrassions SriiEes d
Reqgreszion Coetficients W Maodel fit Cantinue
W Eztimates W R sguared change —

. ance
v Confidence intervals v Descriptives
| Covarance matmix W Part and partial comelations Help

W Callinearity diagnostics

Residuals

W [lurbin-\ atson

W Cazewize diagnostics
¢ Outhers outzide ‘E standard deviations
O Al cazes



Regression Plots

Plotting *2RESID (standardized residuals = errors) against *2PRED
(standardized predicted values) helps us determine whether the
assumption of random errors and homoscedasticity (equal variances) are

met.

, . . l
AT EPTESSTON 1S d

[
-

DEPENDMT Cantinue
ZPRELD Scatter 1 af 2 Mext ‘

ZRESID Cancel
*DRESID .

*4DJPRED Yo *ZRESID ZRED Help
"ol [ *ZPRED

*SDRESID T 1 ® |ZFRED J \

_ | For heteroscedasticity
Standardized Residual Plots [V Prodice all partial plots

v Hiztogram Heleroscedasticity occurs
thn the residuals at each

v MNarmal probability plat level of the predictor

For 'random errors' varjables have unequal
variances.



Regression diagnostics

Lingaly fadpassiuys Sy

FPredicted Y alues

v nstandardized
v Standardized
v Adjusted

| 5.E. of mean predictions

Distances

v Mahalanobis
W Cook's

W Leverage values

Prediction [ntervals

| Mean | Individual

Confidence Interval: | =

Save to Mew File

| Coefficient statistics |

E =port model infarmation to =L file

Residuals

| Unstandardized

v Standardized
| Studentized

v Deleted
v Studentized deleted

Influence Statistics

| DfBetas)
W Standardized DfEetals)

| DifFit
v Standardized DFFit

| Covanance ratio

Browse

X]

Caontinue

Cancel

Help

The
regression
diagnostics
are saved In
the data file,
each as a
separate
variable in a
new column



Options
leave them as they are

I e ESTES ST VDT d

Stepping Method Criteria e
{¢ ze prabability of F

E ntny: |7| Fermowval; IW

(" Dz F value Help

354 271

W Include constant in equation

Cancel

bizzing Y alues

(o Euwclude cazes lizhwize

(" Exclude cazes painwize

(" Replace with mean




Interpreting Multiple Regression

Descriptive Statistics

Mean Std. Deviation N
SALES Record Sales
(thousands) 193,2000 80,6990 200
ADVERTS Advertsing
Budget (thousands of | 6144123 4856552 200
pounds)
ARPLAY No. of plays | 7 5549 12,2696 200
on Radio 1 per week
ATTRACT

6,7700 13953 200

Aftractiveness of Band

The 'Descriptives’
give you a brief
summary of the
variables



Interpreting Multiple Regression

Pearson correlations R

R of predictors 123 with
l[outcome

R of pred1 with the others
R of pred2 with the other
R of pred3 with the others

Correlations
ADVERTS
Advertsing AlRPLAY
SALES Budget Mo, of plays ATTRACT
Record Sales (thousands on Radio1 | Aftractiveness
ithousands) of pounds) perweek of Band
Pearson Correlation  SALES Record Sales @
thousands) 1,000 Aare . 326
ADVERTS Advertsing
Budget ithousands of 78 1,000 02 81
pounds)
AIRPLAY Mo, of plays
on Radio 1 perweek 589 102 1,000 182
ATTRACT
Attractiveness of Band 328 et 182 1,000
ai. (1-tailed) SALES Record Sales

thousands) 00 00 00
ADVERTS Adversing
Budget ithousands of 00 76 128
pounds)
AIRPLAY Mo. of plays
on Radio 1 perweek 000 H7e 103
ATTRALT 0o 128 04

Attractiveness of Band

Significance levels for all
[correlations

Correlations: R's between all v
levels. Pred 2 (plays on radio) is the best pre

| variables and sig_nif-
|

ctor.

Predictors should not correlate higher than R>.9 (collinearity)



Summary of model

4 N C oy N

Ct())r{elation Dfegrges of .

etween reedom; errors are

predictor(s) Cgﬁgg%:ggom dfl:p-1 independent.

and out- (Model 1) df2:N-p-1 If value close

Only come S e o A (N=sample size; | | to 2, then OK

adver- p=# of predictors)
as rtJredic (Model 2) | .. \\ l / H
or ||

Change;( //ics

\ _ \j«

Std. Error of \ \/
Adjusted the R Square F Sig. F | Durbin-
\Model R |RSquare | R Square | Estimate Change | Change | dff | df2 | Change | Watson
1 578 335 331 65,9914 335 99,587 11 198 ,000
2 815P [ 665 4 660 47,0873 330 96,447 2 | 196 000 1,950

a. Predictors: (C/[nstant),
b. Predictors: (

ERTS Advertsing Budget (thousands

ERTS Advertsing Budget (thousand
r week

How well [Sales (thousan

the model
eneralizes.
imilar val-

pounds)
pounds), ATTRACT Attra

nstant) ness of Band,

F-values
for R?
change

The model(s)
bring about
a S|ﬁnlflcant

change

3 predic Explained

ues to R?
tors Vg{,‘%ﬂge are good.
predic- Only 5%

tor(s) shrinkage

< )

<



SSR

SST

ANOVA for the model against the

bgsic model (the

mean)
p

-

433687.8/1=433687.8

862264.2/198=4354.

87
/

e f I\/I#f %qual to\ I
Dt equal| # Of cases F-values:
D! gl o %lof | minus s o Sk
minus 1_ | predic- | coefficients 4336 4.87=99.587
— 200-1=199 | tOrs |, 6892,2%)98 287125. 217=129.498
;{ N\
ANO
N PAN \ « /ﬁ 7 / % .
Sum Of\ £ Slgrflflcaltnce
odel Squares df an Square F A
1 Regression | 433687,8 1 )/ 433687,833) 99,587
/& 8622642 \198/ 4354.870}“/v 2% /
\/'IYJFI/- 1295952 199 \ -
2 ession | 8613774 3 | 2871258067 129,498 ,000
Residual | 4345746 196 | 21 .217}—/' Both Model 1
Total 1295952 199 and 2 have
a. Predictors: (Constant), ADVERTS Advertsing Bufiget (thousands of pounds) Impéo\{:ed the
b. Predictors: (Constant), ADVERTS Advertsing Bydget (thbusands of pounds), p-re !I;C Iontl
ATTRACT Attractiveness of Band, AIRPLAYANG. of plays on Radio Tperw S'gg' Ilcgn y;
C. Dependent Variable: SALES Record Saleg (thousands) I\go ed
Mean s?uares: ( pre ICtOrS)
SS/df even better

than Model 1
(1 predictor)



Recorg 1slalée|% incrﬁase d I
t%e p%edlctosrg\éldesg M O e p a-r
bl andCbS1 ha?/% equal 'gains' Coefficients?

With 95% confidence the b-values
lie within these boundaries
Tight boundaries are good

\

Model 1= same \ Unstemir{dized Standardized 95% Confidence Collinearity
as in first Coefficignts Coefficients Interval for B Correlations Statistics
analysis td. _ Lower Upper Zero- _ Toler

Model B Erxor Beta t Sig. | Bound Bound order | Partial | Part | ance | VIF
1 (Constant) 134,140 N\7.5 17,799 | ,000 | 119,28 | 149,002
ADVERTS Advertsing
Budget (thousands of | 9,61E-02 578 | 9979 | 000 077 115 578 578 | 578 [ 1,000 | 10
pounds) N
200  (Constant) -26,613 | 17,350 -1,534 | 127 |-60,830 7,604
ADVERTS Advertsing '\
bl Budget (thousands of | 8 49E-02 ,007 511 112,261 |/,000 071 ,099 578 659 | 507 986 | 10
pounds)
AIRPLAY No. of plays
b2 on Radio 1 per week 3,367 278 512 112123 || ,000 2,820 ﬁ 599 655 | 501 959 | 10
h3 ATTRACT
Attractiveness of Band 11,086 | 2,438 192 | 4548 @ 6,279 15,894 | /326 309 | 188 | 963 | 10
N,

a. Dependent Variable: SALES Record Sales (thousands) predlctor X outcome

controlled for each single

Pearson Corrof \
other predictor

o Pearson Corr of
The 'Coefficients' table tells us the predictor x outcome

individual contribution of variables to the C:’r?”o”efjj _fotf all

. - " other predictor
regression model. The Standardlze_d Beta's _ ‘unique relationship'
tell us the importance of each predictor




Excluded variables

Excluded Variables®

Collinearity Statistics
Partial Minimum
Model Beta In t Sig. | Correlation | Tolerance | VIF | Tolerance
P ARPLATNo.ofplars | g ys® a5t | 000 665 | 990 | 1010 | 990

on Radio 1 per week ! ! ! ! ! ! !

ATTRACT a

Atractiveness of Band 281 | 5,136 | ,000 344 993 | 1,007 993

a. Predictors in the Model: (Constant), ADVERTS Advartsing Budget (thousands of pounds)
b. Dependent Variable: SALES Record Sales/tthousands)
/

What contribution would
this predictor have made

to a model containing it
o J

SPSS gives a summary of those predictors that were not
entered in the Model (here only for Model 1) and
evaluates the contribution of the excluded variables.




Regression equation for
Model 2

(including all 3 predictor
variables)

Sales.

Model 1= same

Unstandardized

as in first Coefficients
i Std.

Model analySIS B Error
1 (Constant) 134140 | 7537

ADVERTE Adwertsing

Budget {thousands of |8 61E-02 010

pounds)
U (Constant) 26613 |17 350
b1 ADVERTS Adwertsing

Budget ithousands of |8 49E-02 oor

pounds)
b2 AIEPLAY Mo, ofplays

on Radio 1 perweek 3.367 218
b3  ATTRACT

Affractiveness of Band 11086 24348

= bO+b1Advertising, +b2airplay, +b3attractiveness.

= -26.61+(0.08Ad)+ (3.37Airplay,) + (11.09 Attract)

Interpretation:

If Ad increaes 1 unit-->sales increase .08 units; If airplay + 1
unit-->sales+3.37; If attract + 1 unit --> sales +11 units,
Independent of the contributions of the other predictors.




No Multicollinearity

(In this regression, variables are not closely linearly
related

Collinearity Diagnostic<’

Variance Proportions

ADVERTS
Advertsing AIRPLAY
Budget No. of plays ATTRACT
Condition (thousands | onRadio1 | Aftractiveness
Model Dimension |Eigenvalue Index (Constant) | of pounds) perweek of Band
1 1 1,785 1,000 11 1
2 215 2,883 .89 89
2 1 3,562 1,000 ,00 02 01 ,00
2 ;308 3,401 ,01 96 05 ,01
3 109 5,704 .05 02 93 07
4 2,039E-02 13,219 94 ,00 ,00 92

a. Dependent Variable: SALES Record Sales (thousands)

Each predictor's variance proportions load highly on
a different dimension (Eigenvalue)
--> they are not intercorrelated, hence no collinearity



Casewise diagnostics

Casewise Diagnostics’

‘ z-value \ SALES
Record Sales | Predicted
Case Number | Std. Residual | (thousands) Value Residual
1 >50p 2,125 330,00 | 2299203 | 100,0797
2 -2,314 120,00 | 2289490 |-108,9490
10 2,114 300,00 | 200,4662 | 99,5338
47 -2,442 40,00 | 1549698 |-114,9698
52 2,069 190,00 925973 | 97,4027
55 2,424 190,00 | 3041231 [-114,1231
61 2,098 300,00 | 201,897 | 98,8103
68 -2,345 70,00 | 1804156 |-110,4156
100 v 2,066 250,00 | 1527133 | 97,2867
164 >1% 2,577 120,00 | 2413240 |-121,3240
169 >19% 3,061 360,00 | 2158675 | 1441325
200 >5094 -2,064 110,00 | 2072061 | 97,2061

a. Dependent Variable: SALES Record Sales (thousands)

The casewise
diagnostics lists cases
that lie outside the
boundaries of 2 SD (in
the z-distribution, only
5% should be beyond
1.96 SD and only 1%
beyond 2.58

Case 169 deviates
most and needs to be
followed up



Following up influential cases with ,Case summaries”
--> everything OK

No DFBETA's >1 (all OK w

,

Leverage values

ook distances <1 (all OK

\//

<15 (all OK)

Case <.06 {all OK)

S0B0_1 5DEI1_1/ s0DB2_1 s0B3_1 [ LEYV_1
Standardized | Standardized | Standardized | Standardized S0F 1 o0 MAH 1 Centered
OFBETA DFBETA CFBETA CFBETA Standardized Cook's Mahalanobi | Leverage

Intercept ADVERTS AlRP LAY ATTRACT OFFIT Distance 5 Distance Yalue
i -, 31554 -,24234 1aTTd 38324 48929 08870 8,39591 142149
2 01254 - 12637 0942 - 01868 -21110 01084 29330 030
3 - 012456 - 14612 JRTT2 J0RT 2 2ERYA L1776 207154 1041
4 JBE45 9602 148249 -178aT -, 314649 2412 212475 1068
] 38291 -, 02881 - 13667 - 26965 SETAZ JO33E 4,81841 12421
B AT427 -, 326449 - 02307 - 12434 - 407 36 04042 4 19960 02110
T a00az - 014349 27493 2054 185862 04545 JEaa0 0034
= -, 00281 21146 - 14766 - 01760 - 30116 2228 21306 1071
g J6113 144523 -, 29934 JATRR 3873z 3136 4,83310 02278
10 17983 234938 - 40033 - 11706 -54029 RIEAIF 6,83538 13435
11 -, 16818 -, 25764 28734 JE96E8 AE132 J0a0ay 31484 11582
12 JEE33 -, 046349 14213 -, 25907 -,31935 02513 3,48043 1754
Tatal M 12 12 12 12 12 12 12 12
N 12 12 12 12 12/%,1’2 12 12

\ﬁ

Mahalanobis' distances




ldentify influencing cases by the case
summary

oIn the standardized residulas, no more than 5%
must have values exceeding 2 and 1% exceeding 3.
« Cook's distances >1 might pose a problem
.Leverage (# of predictors + 1/sample size) must not
be twice or three times higher

.Mahalanobis distance: cases with >25 in large
samples (n=500) and >15 in small samples (n=100)
can be problemantic

-Absolute values of DFBeta should not exceed 1
.Determine upper and lower limit of covariance ratio
(CVR). Upper limit = 1+3(average leverage); lower
limit = 1-3(average leverage).



Regression Standardized Fesidual

Checking assumptions:
Heteroscedasticity

Dependent Variable: Record Sales (thousands

“ (Heteroscedasticity:
o ” residuals (errors) at each
a S e e ey level of predictor have
o D':'n a o . .
! 0 8% g0 3 Mﬂﬂgf different variances). Here
oog B mrgo -
: R T T variances are equal
- Ebnnnﬁn?ﬂ Enuumnﬂf'n”n
1 B roar g ¥ g
&
-2 4 o
e D ;

Fegression Standardized Predicted Yalue

Plot of standardized residual *ZRESID/
standardized predicted value *2PRED
Points are randomly and evently dispersed
--> assumptions of linearity zt;md homoscedasticity
are me



Freguency

Checkm(r:; assumptions
Normality of re3|duals

Dependent Variable: Record Sales (thousands)

30

75

20 4

50

=y
o}

25

Std. Dev = 598
fean = 0,00
M = 200,00

Expected Cum Prob

000 |4
D T T L S Te i T Ta To e o : 1 e
3, v, T T, G T g, Tg Vg, e, Vg, 0,00 25 50 75 1,00

Chserved Cum FProb

Fegression Standardized Residual

The distribution of the residuals is normal (left
hand picture), the observed probabillities
correspond to the expected ones (right hand side)



Checking assumptions
Normality of résiduals - continued

Tests of Normality

_ Kolmogorov-Smimoy’_ The Kolmogoroff-Smirnov-Test for
Statistic df Sig. . . .
RETSmnaadzed| | .| .. the standardized residuals is n.s.
Residual --> normal distribution

" This is a lower bound ofthe true significance.

a. Lilliefors Significance Correction

L]

Boxplots, too, show the
nor allté/ _
(note thé 3 outliers!)




Record Sales (thousands)

Record Sales (thousands)

Checking assumptions
Partial Regression Plots

Dependent Variable: Record Sales (thousands)
200 ]

1000 a 1000 2000

Advertsing Budget (thousands of pounds)

200

100 o

Attractiveness of Band

Dependent Variable: Record Sales (thousands)
200

100 =

0

-100 o

Record Sales (thousands)

=200
-30 =20 -10 0 10 20 30 40

Mo. of plays on Radio 1 per week

Dependent Variable: Record Sales (thousands) SCatterp OtS Of the reS|dua|S

of the outcome variable and
each of the preadictors
separately.

No indication of outliers
evenly s||oaced out cloud of
dots (only the residual
variance of ‘attractiveness of
band' seems to be uneven.
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