SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF EEE

Course Code :	EE0203
Course Title :	Electric Circuit Analysis
Semester :	III
Course Time :	July-Nov 2013
Location :	ESB BLOCK

Course timings:

Day	Section												
	A B			В	С			D	Е				
	HR	HR TIMING		HR TIMING		TIMING	HR	TIMING	HR	TIMING			
Day			5	1.30 - 2.20	7	2.20 - 3.10	7	2.20 - 3.10	4,6	11.25 - 12.15			
1										2.20 - 3.10			
Day2	1	8.45 -9.35			4,5	11.25 - 12.15	5	1.30 - 2.20					
						1.30 - 2.20							
Day3	2	9.35 - 10.25	1	8.45 - 9.35			1	8.45 - 9.35					
Day4			3, 5	10.35 - 11.25	2	9.35 - 10.25	3	10.35 - 11.25	1,4	8.45 - 9.35			
				1.30 - 2.20						11.25 - 12.15			
Day5	3, 6	10.35-11.25											
		2.20 - 3.10											

Faculty Details:

Sec.	Name of the Staff	Office	Office hour	Mail id
А	Mr.D. Sattianadan	ESB310	12.30 -1.30PM	sattianandan.d@ktr.srmuniv.ac.in
В	Ms.Uthra.R	ESB219	12.30 -1.30PM	uthra.r@ktr.srmuniv.ac.in
С	Ms.Subbuchitrakala	ESB207	12.30-1.30 PM	subbuchithirakala.v@ktr.srmuniv.ac.in
D	Ms.A.Geetha	ESB302	12.30-1.30 PM	geetha.a@ktr.srmuniv.ac.in
Е	Mr.K.Saravanan	ESB201	12.30-1.30 PM	saravanank@ktr.srmuniv.ac.in

Required Text Books:

TEXT BOOKS

- 1. Edminister J.A., *Theory and Problems of Electric Circuits*, Schaum's Outline Series, McGraw Hill Book Company, 5th Edition, 1994
- 2. Sudhakar, A. and Shyam Mohan S.P, *circuits and Networks Analysis and Synthesis*, Tata McGraw Hill Publishing Company Ltd., New Delhi, 1994.

REFERENCE BOOKS

- 1. Muthusubramanian R and Iyyappan K, Circuit Theor, Anuradha Publishing Private Ltd., Tamil Nadu, 1999.
- 2. Arumugam and Prem Kumar, *Electric Circuit Theory*, Khanna Publishers, 2002.
- 3. Hayt & Kemmerley, Engineering Circuit Analysis, Tata McGraw Hill, 1993.
- 4. Soni and Gupta, A Course in Electric Circuit Analysis, Dhanpat Rai and Co., 1981.
- 5. T.Nageswara Rao, Electric Circuit Analysis, A.R Publications, sirkali , Tamil Nadu-2009

Web Resources :

- <u>www.allaboutcircuits.com</u>
- www.circuit-magic.com

Prerequisite : Nil

INSTRUCTIONAL OBJECTIVES:

After the completion of this course successfully the students will be able to:

At the end of the course the students will be able to:

- 1. Understand about the network elements, types of networks, network topology
- 2. Analysis complex circuits using Mesh current & Nodal voltage method & Gain knowledge about the solution methods of AC and DC circuits.
- 3. Get an insight into solution of RLC circuits, single phase and three phase power measurements, analysis of coupled circuits.
- 4. Understand the concept of two port network.
- 5. Understand the fundamentals of filters.
- 6. Gain knowledge about synthesis of RL,RC & RLC networks.

Assessment Details

Cycle Test – I	:	10 Marks
Surprise Test	:	05 Marks
Cycle Test – II	:	10 Marks
Model Exam	:	20 Marks
Attendance	:	05 Marks
Total	:	50 Marks

Detailed Session Plan

BASICS OF CIRCUITS, NETWORK TOPOLOGY AND TRANSIENT ANALYSIS

Ideal sources – Dependent and Independent sources – Linear relation between voltage and current of Network elements – source Transformation – Types of Networks – Network reduction – voltage division – current division – Star – delta transformation – concept of duality – Dual networks – Free & forced responses of RL, RC, RLC circuits with DC and sinusoidal excitation.

Session No.	Topics to be covered	Text book	Chap. no & Page No.	Instructional Objective	Program Outcome
1	Types of Electrical networks, Types of sources		I.1 to I.5, I.11 to I.14		
2	Source Transformation, KCL, KVL, Series Parallel circuits		1.1 to 1.69		(a) an ability to apply knowledge of mathematics, science, and engineering
3	Network reduction, voltage division, current division rule	R5	1.1 to 1.69		
4	Star – delta transformation		1.69-1.73	Understand about the network elements, types of networks, network topology	
5	concept of duality – Dual networks		12.1 to 12.11		
6	Transient: DC Response of RL, RC, RLC circuit		490-500		
7	Transient: Sinusoidal Response of RL, RC, circuit	Т2	500-506		
8	Transient: Sinusoidal Response of RLC circuit	ſ	506-511		

NETWORK THEOREMS

Formation of matrix equations and analysis of complex circuits using Mesh current method and nodal method -Thevenin's Theorem- Norton's Theorem-Superposition theorem- Maximum power transfer theorem, substitution theorem, Reciprocity theorem, Millman's theorem, Tellegen's theorem – Statement, illustration & application to AC & DC circuits.

Session No.	Topics to be covered	Text book	Chap.no & Page No.	Instructional Objective	Program Outcome
9	Mesh current method-DC Problems		7.1 to 7.17		
10	Mesh current method-AC Problems		7.1 to 7.17		(a) an ability to apply knowledge of
11	Nodal method- DC Problems		7.17 to 7.37		mathematics, science, and engineering (b) an ability to design and conduct experiments, as well as to analyze and interpret data (e) an ability to identify, formulate, and solve engineering problems
12	Nodal method- AC Problems	R5	7.17 to 7.37	Analysis complex circuits using Mesh current & Nodal voltage method & Gain knowledge about the solution methods of AC and DC circuits	
13	Superposition theorem		9.1 to 9.12		
14	Thevenin's Theorem		9.32 to 9.49		
15	Norton's Theorem		9.49 to 9.63		
16	Maximum power transfer theorem		9.63 to 9.65		
17	Substitution theorem, Reciprocity theorem		9.13 to 9.31		
18	Millman's theorem, Tellegen's theorem		9.75 to 9.94		

POWER MEASUREMENTS AND COUPLED CIRCUITS

Single phase power measurement by 3 volt meter and 3 ammeter method – series resonance, parallel resonance – Q factor – Bandwidth. Solution of three phase balanced circuits & unbalanced circuits – Three phase power measurement using 2 wattmeters. Self Inductance – Mutual Inductance – Coefficient of coupling – dot rule – ideal transformer effective inductance of coupled coils in series & in parallel – Analysis of coupled circuits.

Session No.	Topics to be covered	Text book	Chap.no & Page No.	Instructional Objective	Program Outcome
19	Single phase power measurement by 3 volt meter and 3 ammeter method, Three phase power measurement using 2 watt meters	-	Class Notes, 6.30 to 6.33		(a) an ability to apply knowledge of mathematics, science,

20	Series resonance		5.1 to 5.24	Get an insight into solution	and engineering (b) an ability to design
21	Parallel resonance		5.24 to 5.47	of RLC circuits, single phase and three phase	and conduct
22	Parallel resonance-Problems		5.24 to 5.47	power measurements, analysis of coupled circuits	experiments, as well as to analyze and interpret data (e) an ability to identify, formulate, and solve engineering
23	Solution of three phase balanced circuits & unbalanced circuits		6.4 to 6.30		
24	Self Inductance – Mutual Inductance – Coefficient of coupling	R5	8.1 to 8.4		
25	Dot rule		8.5 to 8.18		problems
26	Ideal transformer effective inductance of coupled coils in series & in parallel		8.5 to 8.18		
27	Analysis of coupled circuits		8.5 to 8.18		
TWO PO Open Circ Hybrid (h	PRT NETWORKS cuit Impedance (Z) Parameters, short) Parameters and Inverse Hybrid Para	Circuit A meters, C	dmittance (Y) Parameters, Transmiss onversion between parameters, interc	ion (ABCD) Parameters and Inve- onnection of two-port networks.	erse Transmission Parameters,
Session No.	Topics to be covered	Text book	Chap.no & Page No.	Instructional Objective	Program Outcome
	$T \rightarrow N/W \rightarrow C' \gamma$				
28	Impedance (Z) Parameters		13.1 to 13.6		
28 29	Iwo port N/w, Open Circuit Impedance (Z) Parameters Open Circuit Impedance (Z) Parameters-Problems		13.1 to 13.6 13.31-13.33	_	
28 29 30	Iwo port N/w, Open Circuit Impedance (Z) Parameters Open Circuit Impedance (Z) Parameters-Problems Short Circuit Admittance (Y) Parameters		13.1 to 13.6 13.31-13.33 13.4-13.5		(a) an ability to apply
28 29 30 31	Two port N/w, Open Circuit Impedance (Z) Parameters Open Circuit Impedance (Z) Parameters-Problems Short Circuit Admittance (Y) Parameters short Circuit Admittance (Y) Parameters-Problems		13.1 to 13.6 13.31-13.33 13.4-13.5 13.31-13.33		(a) an ability to apply knowledge of mathematics, science,
28 29 30 31 32	Two port N/w, Open Circuit Impedance (Z) Parameters Open Circuit Impedance (Z) Parameters-Problems Short Circuit Admittance (Y) Parameters short Circuit Admittance (Y) Parameters-Problems Transmission (ABCD) Parameters and Inverse Transmission Parameters		13.1 to 13.6 13.31-13.33 13.4-13.5 13.31-13.33 13.9 to 13.10		 (a) an ability to apply knowledge of mathematics, science, and engineering (b) an ability to design
28 29 30 31 32 33	Two port N/w, Open Circuit Impedance (Z) Parameters Open Circuit Impedance (Z) Parameters-Problems Short Circuit Admittance (Y) Parameters short Circuit Admittance (Y) Parameters-Problems Transmission (ABCD) Parameters and Inverse Transmission Parameters- Problems	R5	13.1 to 13.6 13.31-13.33 13.4-13.5 13.31-13.33 13.9 to 13.10 13.31-13.33	Understand the concept of two port network.	 (a) an ability to apply knowledge of mathematics, science, and engineering (b) an ability to design and conduct experiments, as well as to analyze and
28 29 30 31 32 33 34	Two port N/w, Open Circuit Impedance (Z) Parameters Open Circuit Impedance (Z) Parameters-Problems Short Circuit Admittance (Y) Parameters short Circuit Admittance (Y) Parameters-Problems Transmission (ABCD) Parameters and Inverse Transmission Parameters Transmission Parameters Transmission Parameters- Problems Hybrid (h) Parameters and Inverse Hybrid (h) Parameters	R5	13.1 to 13.6 13.31-13.33 13.4-13.5 13.31-13.33 13.9 to 13.10 13.6 to 13.7	Understand the concept of two port network.	 (a) an ability to apply knowledge of mathematics, science, and engineering (b) an ability to design and conduct experiments, as well as to analyze and interpret data (e) an ability to
28 29 30 31 32 33 34 35	Two port N/w, Open Circuit Impedance (Z) Parameters Open Circuit Impedance (Z) Parameters-Problems Short Circuit Admittance (Y) Parameters short Circuit Admittance (Y) Parameters-Problems Transmission (ABCD) Parameters Transmission Parameters Transmission Parameters Transmission Parameters Transmission Parameters Problems Hybrid (h) Parameters Hybrid (h) Parameters	R5	13.1 to 13.6 13.31-13.33 13.4-13.5 13.31-13.33 13.9 to 13.10 13.31-13.33 13.6 to 13.7 13.31-13.33	Understand the concept of two port network.	 (a) an ability to apply knowledge of mathematics, science, and engineering (b) an ability to design and conduct experiments, as well as to analyze and interpret data (e) an ability to identify, formulate, and solve engineering problems
28 29 30 31 32 33 34 35 36	Two port N/w, Open Circuit Impedance (Z) Parameters Open Circuit Impedance (Z) Parameters-Problems Short Circuit Admittance (Y) Parameters short Circuit Admittance (Y) Parameters-Problems Transmission (ABCD) Parameters Transmission Parameters Transmission Parameters Transmission Parameters Transmission Parameters- Problems Hybrid (h) Parameters and Inverse Hybrid Parameters Hybrid (h) Parameters and Inverse Hybrid Parameters - Problems Conversion between parameters	R5	13.1 to 13.6 13.31-13.33 13.4-13.5 13.31-13.33 13.9 to 13.10 13.31-13.33 13.6 to 13.7 13.31-13.33 13.10 to 13.16	Understand the concept of two port network.	 (a) an ability to apply knowledge of mathematics, science, and engineering (b) an ability to design and conduct experiments, as well as to analyze and interpret data (e) an ability to identify, formulate, and solve engineering problems
28 29 30 31 32 33 33 34 35 36 37	Two port N/w, Open Circuit Impedance (Z) Parameters Open Circuit Impedance (Z) Parameters-Problems Short Circuit Admittance (Y) Parameters short Circuit Admittance (Y) Parameters-Problems Transmission (ABCD) Parameters and Inverse Transmission (ABCD) Parameters and Inverse Transmission Parameters Transmission Parameters- Problems Hybrid (h) Parameters and Inverse Hybrid Parameters Hybrid (h) Parameters and Inverse Hybrid Parameters And Inverse Hybrid Parameters Conversion between parameters Conversion between parameters	R5	13.1 to 13.6 13.31-13.33 13.4-13.5 13.31-13.33 13.9 to 13.10 13.31-13.33 13.6 to 13.7 13.31-13.33 13.10 to 13.16 13.10 to 13.16	Understand the concept of two port network.	 (a) an ability to apply knowledge of mathematics, science, and engineering (b) an ability to design and conduct experiments, as well as to analyze and interpret data (e) an ability to identify, formulate, and solve engineering problems

FILTERS, ATTENUATORS AND SYNTHESIS OF NETWORKS Classification of filters, filter network, characteristic impedance in the pass band and stop band , constant K and m-derived, BPF, BEF, attenuators. Hurwitz polynomials, Positive real function, synthesis of one port networks, synthesis of RL, RC by Foster and Cauer method.

Session No.	Topics to be covered	Text book	Chap.no & Page No.	Instructional Objective	Program Outcome
39	Classification of filters, filter networks	T2	762-770		(a) an ability to apply

40	Filter Design(LPF,HPF,BPF,BEF)- constant K and m-derived	770-797	Understand the fundamentals of filters.	knowledge of mathematics, science,
41	Attenuators, Design of Attenuators	798-807	Gain knowledge about synthesis of RL,RC &	(b) an ability to design
42	Hurwitz polynomials	840842	RLC networks.	and conduct experiments, as well
43	Positive real function, synthesis of one port networks	842-846		as to analyze and interpret data
44	Foster method	846-867		(e) an ability to
45	Cauer method	846-867		and solve engineering problems

TEXT BOOKS

- 3. Edminister J.A., *Theory and Problems of Electric Circuits*, Schaum's Outline Series, McGraw Hill Book Company, 5th Edition, 1994
- 4. Sudhakar, A. and Shyam Mohan S.P, *circuits and Networks Analysis and Synthesis*, Tata McGraw Hill Publishing Company Ltd., New Delhi, 1994.

REFERENCE BOOKS

- 6. Muthusubramanian R and Iyyappan K, Circuit Theor, Anuradha Publishing Private Ltd., Tamil Nadu, 1999.
- 7. Arumugam and Prem Kumar, *Electric Circuit Theory*, Khanna Publishers, 2002.
- 8. Hayt & Kemmerley, Engineering Circuit Analysis, Tata McGraw Hill, 1993.
- 9. Soni and Gupta, A Course in Electric Circuit Analysis, Dhanpat Rai and Co., 1981.
- 10. T.Nageswara Rao, Electric Circuit Analysis, A.R Publications, sirkali , Tamil Nadu-2009