Faculty of Engineering & Technology, SRM University, Kattankulathur – 603203
School of Mechanical Engineering
Department of Mechanical Engineering

Course plan
Course code: ME1010
Course title: Mechanics of Solids
Semester: IV
Academic year: 2015 - 2016 / Even
Semester: (Feb 2016 – May 2016)
Date: 24/01/2016
Course Coordinator: Ravi Krishnamoorthy S

Faculty details:

<table>
<thead>
<tr>
<th>Section</th>
<th>Class room No</th>
<th>Name</th>
<th>Room No.</th>
<th>Cell Phone No.</th>
<th>e-mail id (@ktr.srmuniv.ac.in)</th>
<th>Student contact time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mr. Ravi Krishnamoorthy S</td>
<td>MEM 12/D</td>
<td>94425 21224</td>
<td>ravikrishnamoorthy.s</td>
<td>12:45pm-1:30pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. Raja D</td>
<td>MEC 302A</td>
<td>98416 14330</td>
<td>Raja.d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sermaraj M</td>
<td>MEB 305</td>
<td>94426 15494</td>
<td>Sermaraj.m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ramesh K</td>
<td>MEM 12/D</td>
<td>99402 39214</td>
<td>Ramesh.k</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kumaran D</td>
<td></td>
<td>97907 99585</td>
<td>Kumaran.d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinoth A</td>
<td>MEH 105C</td>
<td>98427 88830</td>
<td>Vinoth.a</td>
<td></td>
</tr>
</tbody>
</table>

Direct assessment details:

<table>
<thead>
<tr>
<th>Name of assessment</th>
<th>Marks</th>
<th>Topics</th>
<th>Tentative date</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle test - I</td>
<td>10</td>
<td>Concept of Stress and Strain, Shear force and Bending moment diagrams.</td>
<td>Feb 24, 2016</td>
<td>100 minutes</td>
</tr>
<tr>
<td>Surprise test</td>
<td>05</td>
<td>Bending stresses, Shear stresses</td>
<td>Before mid Mar 2016</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Cycle test - II</td>
<td>10</td>
<td>Bending stresses, Shear stresses, Torsion of shafts, deflection of beams - cantilevers</td>
<td>Mar 23, 2016</td>
<td>100 minutes</td>
</tr>
<tr>
<td>Model examination</td>
<td>20</td>
<td>Entire Syllabus</td>
<td>Apr 15, 2016</td>
<td>3 hours</td>
</tr>
<tr>
<td>End semester examination</td>
<td>50</td>
<td>Entire Syllabus</td>
<td>May 16, 2016</td>
<td>3 hours</td>
</tr>
<tr>
<td>Attendance</td>
<td>05</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
ME1010

MECHANICS OF SOLIDS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total contact hours - 60</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Prerequisite</td>
<td>Nil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE

To familiarize the students with the fundamentals of deformation, stresses, strains in structural elements.

INSTRUCTIONAL OBJECTIVES

1. Know the concepts of stress and strain.
2. Analyze the beam of different cross sections for shear force, bending moment, slope and deflection.
3. Understand the concepts necessary to design the structural elements and pressure vessels.

UNIT I - CONCEPT OF STRESSES AND STRAINS

(12 hours)

Concept of stress and strain, Hooke’s law - Tension, Compression, and Shear, stress-strain diagram - Poisson’s ratio, elastic constants and their relationship - Deformation of simple and compound bars. Thermal stresses – simple and Composite bars. Principal plane, principal stress, maximum shearing stress - Uniaxial, biaxial state of stress - Mohr's circle for plane stresses.

UNIT II - ANALYSIS OF BEAMS

(12 hours)

Types of beams and loads - shear force and bending moment diagrams for cantilevers, simply supported and over hanging beams. Theory of pure bending - Bending stresses in simple and composite beams. Shear stress distribution in beams of different sections.

UNIT III - TORSION OF SHAFTS

(12 hours)

Theory of pure torsion, torsion of circular shafts and composite shafts.

UNIT IV - DEFLECTION OF BEAMS

(12 hours)

Slope and deflection of cantilever, simply supported beam by double integration method - Macaulay’s method - Moment area method - Castigliano’s theorem.

UNIT V - COLUMNS AND CYLINDERS

(12 hours)

Columns and struts: Member subjected to combined bending and axial loads, Euler’s theory, Crippling load, Rankine’s theory. Cylinders And Shells: Thin cylinder, thin spherical shells under internal pressure - Thick cylinders - Lame’s equation - Shrink fit and compound cylinders.

TOTAL : 60 hours
TEXT BOOKS

REFERENCES

<table>
<thead>
<tr>
<th>Course Designed by</th>
<th>Department of Mechanical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Student outcomes</td>
<td>a b c d e f g h i j k</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2. Mapping of</td>
<td>1-3</td>
</tr>
<tr>
<td>instructional</td>
<td></td>
</tr>
<tr>
<td>objectives</td>
<td></td>
</tr>
<tr>
<td>with student</td>
<td></td>
</tr>
<tr>
<td>outcome</td>
<td></td>
</tr>
<tr>
<td>3. Category</td>
<td>General (G)</td>
</tr>
<tr>
<td></td>
<td>Basic</td>
</tr>
<tr>
<td></td>
<td>Sciences</td>
</tr>
<tr>
<td></td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td>Engineering</td>
</tr>
<tr>
<td></td>
<td>Sciences</td>
</tr>
<tr>
<td></td>
<td>and Technical</td>
</tr>
<tr>
<td></td>
<td>Arts (E)</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
</tr>
<tr>
<td></td>
<td>Subjects (P)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Approval</td>
<td>23rd Meeting of Academic Council, May 2013</td>
</tr>
</tbody>
</table>
SESSION PLAN

<table>
<thead>
<tr>
<th>Session No.</th>
<th>CONTENTS</th>
<th>Text / Ref. book</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCEPT OF STRESSES AND STRAINS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Concept of stress and strain, Hooke’s law - Tension, compression and shear, stress – strain diagram.</td>
<td>T3, Ch-1, T1, Ch-1</td>
</tr>
<tr>
<td>2</td>
<td>Poisson’s ratio, elastic constants and their relationship.</td>
<td>T3, Ch-1, T1, Ch-2</td>
</tr>
<tr>
<td>3</td>
<td>Tutorial – stress, strain, volumetric strain.</td>
<td>T3, Ch-1, T1, Ch-2</td>
</tr>
<tr>
<td>4</td>
<td>Analysis of bars of uniform and varying sections subjected to single load and varying loads.</td>
<td>T3, Ch-1, T1, Ch-1</td>
</tr>
<tr>
<td>5</td>
<td>Analysis of bars of composite sections.</td>
<td>T3, Ch-1, T1, Ch-1</td>
</tr>
<tr>
<td>6</td>
<td>Tutorial on Analysis of composite bars.</td>
<td>T3, Ch-1, T1, Ch-1</td>
</tr>
<tr>
<td>7</td>
<td>Thermal stresses – concepts and problems.</td>
<td>T3, Ch-1, T1, Ch-1</td>
</tr>
<tr>
<td>8</td>
<td>Thermal stresses in composite bars - problems.</td>
<td>T3, Ch-1, T1, Ch-1</td>
</tr>
<tr>
<td>9</td>
<td>Principal plane, principal stress - Analytical method, direct stress in one plane - Simple problems.</td>
<td>T3, Ch-2, T1, Ch-3</td>
</tr>
<tr>
<td>10</td>
<td>Analytical method - Direct stress in two mutually perpendicular directions accompanied by a simple shear stress.</td>
<td>T3, Ch-2, T1, Ch-3</td>
</tr>
<tr>
<td>11</td>
<td>Mohr’s circle – direct stress in two mutually perpendicular directions.</td>
<td>T3, Ch-2, T1, Ch-3</td>
</tr>
<tr>
<td>12</td>
<td>Mohr’s circle - Direct stress in two mutually perpendicular directions accompanied by a simple shear stress.</td>
<td>T3, Ch-2, T1, Ch-3</td>
</tr>
<tr>
<td>ANALYSIS OF BEAMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Types of beams, Transverse loadings - Point load, uniformly distributed load (UDL) and uniformly varying load (UVL), boundary conditions.</td>
<td>T3, Ch-4, T1, Ch-6</td>
</tr>
<tr>
<td>14</td>
<td>Shear force and bending moment diagrams for cantilever beam - problems. (pure point load, pure UDL, pure UVL)</td>
<td>T3, Ch-4, T1, Ch-6</td>
</tr>
<tr>
<td>15</td>
<td>Shear force and bending moment diagrams for cantilever beam. Tutorial on Combined loading.</td>
<td>T3, Ch-4, T1, Ch-6</td>
</tr>
<tr>
<td>16</td>
<td>Shear force and bending moment diagrams for simply supported beam - problems. (pure point load, pure UDL, pure UVL)</td>
<td>T3, Ch-4, T1, Ch-6</td>
</tr>
<tr>
<td>17</td>
<td>Shear force and bending moment diagrams for simply supported beam. Tutorial on Combined loading.</td>
<td>T3, Ch-4, T1, Ch-6</td>
</tr>
<tr>
<td>18</td>
<td>Shear force and bending moment diagrams for overhanging beam - problems. (pure point load, pure UDL, pure UVL)</td>
<td>T3, Ch-4, T1, Ch-6</td>
</tr>
<tr>
<td>No</td>
<td>Topic</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>19</td>
<td>Theory of pure bending – derivation.</td>
<td>T3, Ch-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-7</td>
</tr>
<tr>
<td>20</td>
<td>Bending stress in simple beams – symmetrical sections problems.</td>
<td>T3, Ch-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-7</td>
</tr>
<tr>
<td>21</td>
<td>Bending stress in simple beams – unsymmetrical sections Problems</td>
<td>T3, Ch-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-7</td>
</tr>
<tr>
<td>22</td>
<td>Bending stress in composite beams – Problems</td>
<td>T3, Ch-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-7</td>
</tr>
<tr>
<td>23</td>
<td>Shear stress distribution in beams of different sections– derivation.</td>
<td>T3, Ch-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-8</td>
</tr>
<tr>
<td>24</td>
<td>Tutorial on Shear stress distribution in beams of different sections.</td>
<td>T3, Ch-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-8</td>
</tr>
</tbody>
</table>

TORSION OF SHAFTS

<table>
<thead>
<tr>
<th>No</th>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Theory of pure torsion, derivation of shear stress produced in a</td>
<td>T3, Ch-13</td>
</tr>
<tr>
<td></td>
<td>circular shaft subjected to torsion.</td>
<td>T1, Ch-16</td>
</tr>
<tr>
<td>26</td>
<td>Expression for torque terms of polar moment of inertia Strength,</td>
<td>T3, Ch-13</td>
</tr>
<tr>
<td></td>
<td>stiffness of shaft and Torsional rigidity & power transmitted.</td>
<td>T1, Ch-16</td>
</tr>
<tr>
<td>27</td>
<td>Tutorial on solid shaft</td>
<td>T3, Ch-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-16</td>
</tr>
<tr>
<td>28</td>
<td>Tutorial on hollow shaft - finding dimensions based on strength</td>
<td>T3, Ch-13</td>
</tr>
<tr>
<td></td>
<td>and rigidity.</td>
<td>T1, Ch-16</td>
</tr>
<tr>
<td>29</td>
<td>Tutorial on hollow shaft - finding dimensions, problems on</td>
<td>T3, Ch-13</td>
</tr>
<tr>
<td></td>
<td>percentage of material savings.</td>
<td>T1, Ch-16</td>
</tr>
<tr>
<td>30</td>
<td>Shafts in series and parallel - problems</td>
<td>T3, Ch-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-16</td>
</tr>
<tr>
<td>31</td>
<td>Shafts in series and parallel - problems</td>
<td>T3, Ch-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-16</td>
</tr>
<tr>
<td>32</td>
<td>Strain energy due to torsion - concepts</td>
<td>T3, Ch-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1-16</td>
</tr>
<tr>
<td>33</td>
<td>Shaft subjected to combined bending and torsion</td>
<td>T3, Ch-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-16</td>
</tr>
<tr>
<td>34</td>
<td>Shaft subjected to combined bending and torsion - problems</td>
<td>T3, Ch-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-16</td>
</tr>
<tr>
<td>35</td>
<td>Composite shaft tutorial.</td>
<td>T3, Ch-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-16</td>
</tr>
<tr>
<td>36</td>
<td>Composite shaft tutorial.</td>
<td>T3, Ch-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1, Ch-16</td>
</tr>
</tbody>
</table>

DEFLECTION OF BEAMS

<table>
<thead>
<tr>
<th>No</th>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Relationship between deflection, slope, radius of curvature, shear</td>
<td>T3, Ch-8</td>
</tr>
<tr>
<td></td>
<td>force and bending moment.</td>
<td>T1, Ch-12</td>
</tr>
<tr>
<td>38</td>
<td>Slope and deflection of cantilever beam with a point load at a</td>
<td>T3, Ch-8</td>
</tr>
<tr>
<td></td>
<td>distance from free end by Double integration method.</td>
<td>T1, Ch-13</td>
</tr>
<tr>
<td>39</td>
<td>Slope and deflection of cantilever beam beam with UDL by Double</td>
<td>T3, Ch-8</td>
</tr>
<tr>
<td></td>
<td>integration method.</td>
<td>T1, Ch-13</td>
</tr>
</tbody>
</table>
| | Problems on cantilever beam by double integration method. | T3, Ch-8
T1, Ch-13 |
|---|---|------------|
| 41 | Slope and deflection of cantilever beam with a point load and UDL at a distance from free end by Double integration method. | T3, Ch-8
T1, Ch-13 |
| 42 | Problems - Slope and deflection of cantilever beam with a point load and UDL at a distance from free end by Double integration method. | T3, Ch-8
T1, Ch-13 |
| 43 | Slope and deflection of simply supported beam with an eccentric point load Macaulay’s method. | T3, Ch-8
T1, Ch-12 |
| 44 | Problem on slope and deflection of simply supported beam with point load & UDL by Macaulay’s method. | T3, Ch-8
T1, Ch-12 |
| 45 | Problem on slope and deflection of simply supported beam with point load & UDL by Macaulay’s method. | T3, Ch-8
T1, Ch-12 |
| 46 | Slope and deflection of cantilever beam and simply supported beam with point load and UDL by Moment area method. | T3, Ch-8
T1, Ch-13 |
| 47 | Problems on slope and deflection of cantilever beam with point load and UDL by Moment area method. | T3, Ch-8
T1, Ch-13 |
| 48 | Slope and deflection of simply supported beam with point load and UDL by Moment area method. Castigliano’s theorem. | T3, Ch-8
T3, Ch-12 |

COLUMNS AND CYLINDERS

| | Members subjected to combined bending and axial loads. | T3, Ch-16
T1, Ch-19 |
|---|---|------------|
| 49 | Euler’s column theory – assumptions, limitations. | T3, Ch-16
T1, Ch-19 |
| 50 | Expression for crippling load with different end conditions. | T3, Ch-16
T1, Ch-19 |
| 51 | Rankine’s theory –problems. | T3, Ch-16
T1, Ch-19 |
| 52 | Tutorial – crippling load. | T3, Ch-16
T1, Ch-19 |
| 53 | Thin cylindrical vessel subjected to internal pressure. | T3, Ch-10
T1, Ch-17 |
| 54 | Change in dimensions due to internal pressure- problems. | T3, Ch-10
T1, Ch-17 |
| 55 | Thin spherical shells subjected internal pressure- problems. | T3, Ch-10
T1, Ch-17 |
| 56 | Tutorial – Thin cylinders. | T3, Ch-10
T1, Ch-17 |
| 57 | Stresses in Thick cylinders –Lame’s theory. | T3, Ch-11
T1, Ch-18 |
| 58 | Stresses in compound thick cylinder. | T3, Ch-11
T1, Ch-18 |
| 59 | Tutorial - Thick cylinders. | T3, Ch-11
T1, Ch-18 |
TEXT BOOKS

REFERENCES

Name and Signature Faculty:

<table>
<thead>
<tr>
<th>Section</th>
<th>Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mr. Ravi Krishnamoorthy S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mr. Raja D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serrmaraj M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ramesh K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kumaran D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinoth A</td>
<td></td>
</tr>
</tbody>
</table>

(Ravi Krishnamoorthy S)

Officers Co-ordinator

HOD (Mechanical)